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Abstract. 
An ideal topological space is a triplet (
	
		
			

				𝑋
			

		
	
, 
	
		
			

				𝜏
			

		
	
, 
	
		
			

				ℑ
			

		
	
), where 
	
		
			

				𝑋
			

		
	
 is a nonempty set, 
	
		
			

				𝜏
			

		
	
 is a topology on 
	
		
			

				𝑋
			

		
	
, and 
	
		
			

				ℑ
			

		
	
 is an ideal of subsets of 
	
		
			

				𝑋
			

		
	
. In this paper, we introduce 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect, 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect, and 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect sets in ideal spaces and study their properties. We obtained a characterization for compatible ideals via 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets. Also, we obtain a generalized topology via ideals which is finer than 
	
		
			

				𝜏
			

		
	
 using 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets on a finite set.


1. Introduction and Preliminaries
The contributions of Hamlett and Jankovic [1–4] in ideal topological spaces initiated the generalization of some important properties in general topology via topological ideals. The properties like decomposition of continuity, separation axioms, connectedness, compactness, and resolvability [5–9] have been generalized using the concept of ideals in topological spaces.
By a space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
, we mean a topological space 
	
		
			

				𝑋
			

		
	
 with a topology 
	
		
			

				𝜏
			

		
	
 defined on 
	
		
			

				𝑋
			

		
	
 on which no separation axioms are assumed unless otherwise explicitly stated. For a given point 
	
		
			

				𝑥
			

		
	
 in a space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
, the system of open neighborhoods of 
	
		
			

				𝑥
			

		
	
 is denoted by 
	
		
			
				𝑁
				(
				𝑥
				)
				=
				{
				𝑈
				∈
				𝜏
				∶
				𝑥
				∈
				𝑈
				}
			

		
	
. For a given subset 
	
		
			

				𝐴
			

		
	
 of a space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
				,
				c
				l
				(
				𝐴
				)
			

		
	
 and 
	
		
			
				i
				n
				t
				(
				𝐴
				)
			

		
	
 are used to denote the closure of 
	
		
			

				𝐴
			

		
	
 and interior of 
	
		
			

				𝐴
			

		
	
, respectively, with respect to the topology.
A nonempty collection of subsets of a set 
	
		
			

				𝑋
			

		
	
 is said to be an ideal on 
	
		
			

				𝑋
			

		
	
, if it satisfies the following two conditions: (i) If 
	
		
			
				𝐴
				∈
				ℑ
			

		
	
 and 
	
		
			
				𝐵
				⊆
				𝐴
			

		
	
, then 
	
		
			
				𝐵
				∈
				ℑ
			

		
	
; (ii) If 
	
		
			
				𝐴
				∈
				ℑ
			

		
	
 and 
	
		
			
				𝐵
				∈
				ℑ
			

		
	
, then 
	
		
			
				𝐴
				∪
				𝐵
				∈
				ℑ
			

		
	
. An ideal topological space (or ideal space) 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 means a topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 with an ideal 
	
		
			

				ℑ
			

		
	
 defined on 
	
		
			

				𝑋
			

		
	
. Let 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a topological space with an ideal 
	
		
			

				ℑ
			

		
	
 defined on 
	
		
			

				𝑋
			

		
	
. Then for any subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			
				𝑋
				,
				𝐴
			

			

				∗
			

			
				(
				ℑ
				,
				𝜏
				)
				=
				{
				𝑥
				∈
				𝑋
				/
				𝐴
				∩
				𝑈
				∉
				ℑ
			

		
	
 for every 
	
		
			
				𝑈
				∈
				𝑁
				(
				𝑥
				)
				}
			

		
	
 is called the local function of 
	
		
			

				𝐴
			

		
	
 with respect to 
	
		
			

				ℑ
			

		
	
 and 
	
		
			

				𝜏
			

		
	
. If there is no ambiguity, we will write 
	
		
			

				𝐴
			

			

				∗
			

			
				(
				ℑ
				)
			

		
	
 or simply 
	
		
			

				𝐴
			

			

				∗
			

		
	
 for 
	
		
			

				𝐴
			

			

				∗
			

			
				(
				ℑ
				,
				𝜏
				)
			

		
	
. Also, 
	
		
			
				c
				l
			

			

				∗
			

			
				(
				𝐴
				)
				=
				𝐴
				∪
				𝐴
			

			

				∗
			

		
	
 defines a Kuratowski closure operator for the topology 
	
		
			

				𝜏
			

			

				∗
			

			
				(
				ℑ
				)
			

		
	
 (or simply 
	
		
			

				𝜏
			

			

				∗
			

		
	
) which is finer than 
	
		
			

				𝜏
			

		
	
. An ideal 
	
		
			

				ℑ
			

		
	
 on a space 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 is said to be codense ideal if and only if 
	
		
			
				𝜏
				∩
				ℑ
				=
				{
				∅
				}
			

		
	
. 
	
		
			

				𝑋
			

			

				∗
			

		
	
 is always a proper subset of 
	
		
			

				𝑋
			

		
	
. Also, 
	
		
			
				𝑋
				=
				𝑋
			

			

				∗
			

		
	
 if and only if the ideal is codense.
Lemma 1 ([see 12]).  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space with 
	
		
			

				ℑ
			

			

				1
			

		
	
 and 
	
		
			

				ℑ
			

			

				2
			

		
	
 being ideals on 
	
		
			

				𝑋
			

		
	
, and let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 be two subsets on 
	
		
			

				𝑋
			

		
	
. Then (i)
	
		
			
				𝐴
				⊆
				𝐵
				⇒
				𝐴
			

			

				∗
			

			
				⊆
				𝐵
			

			

				∗
			

		
	
;
								(ii)
	
		
			

				ℑ
			

			

				1
			

			
				⊆
				ℑ
			

			

				2
			

			
				⇒
				𝐴
			

			

				∗
			

			
				(
				ℑ
			

			

				2
			

			
				)
				⊆
				𝐴
			

			

				∗
			

			
				(
				ℑ
			

			

				1
			

			

				)
			

		
	
;
								(iii)
	
		
			

				𝐴
			

			

				∗
			

			
				=
				𝑐
				𝑙
				(
				𝐴
			

			

				∗
			

			
				)
				⊆
				𝑐
				𝑙
				(
				𝐴
				)
			

		
	
 (
	
		
			

				𝐴
			

			

				∗
			

		
	
 is a closed subset of 
	
		
			
				𝑐
				𝑙
				(
				𝐴
				)
			

		
	
);(iv)
	
		
			
				(
				𝐴
			

			

				∗
			

			

				)
			

			

				∗
			

			
				⊆
				𝐴
			

			

				∗
			

		
	
;
								(v)
	
		
			
				(
				𝐴
				∪
				𝐵
				)
			

			

				∗
			

			
				=
				𝐴
			

			

				∗
			

			
				∪
				𝐵
			

			

				∗
			

		
	
;
								(vi)
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐵
			

			

				∗
			

			
				=
				(
				𝐴
				−
				𝐵
				)
			

			

				∗
			

			
				−
				𝐵
			

			

				∗
			

			
				⊆
				(
				𝐴
				−
				𝐵
				)
			

			

				∗
			

		
	
;(vii)for every 
	
		
			
				𝐼
				∈
				ℑ
				,
				(
				𝐴
				∪
				𝐼
				)
			

			

				∗
			

			
				=
				𝐴
			

			

				∗
			

			
				=
				(
				𝐴
				−
				𝐼
				)
			

			

				∗
			

		
	
.
Definition 2 (see [3]). Let 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space with an ideal 
	
		
			

				ℑ
			

		
	
 on 
	
		
			

				𝑋
			

		
	
. One says that the topology 
	
		
			

				𝜏
			

		
	
 is compatible with the ideal 
	
		
			

				ℑ
			

		
	
, denoted by 
	
		
			
				𝜏
				∼
				ℑ
			

		
	
, if the following holds, for every 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
: if for every 
	
		
			
				𝑥
				∈
				𝐴
			

		
	
, there exists a 
	
		
			
				𝑈
				∈
				𝑁
				(
				𝑥
				)
			

		
	
 such that 
	
		
			
				𝑈
				∩
				𝐴
				∈
				ℑ
			

		
	
, then 
	
		
			
				𝐴
				∈
				ℑ
			

		
	
.
Definition 3. A subset 
	
		
			

				𝐴
			

		
	
 of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 is said to be(i)
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed [3] if 
	
		
			

				𝐴
			

			

				∗
			

			
				⊆
				𝐴
			

		
	
,(ii)*-dense-in-itself [10] if 
	
		
			
				𝐴
				⊆
				𝐴
			

			

				∗
			

		
	
,(iii)
	
		
			

				𝐼
			

		
	
-open [11] if 
	
		
			
				𝐴
				⊆
				i
				n
				t
				(
				𝐴
			

			

				∗
			

			

				)
			

		
	
,(iv)almost 
	
		
			

				𝐼
			

		
	
-open [12] if 
	
		
			
				𝐴
				⊆
				c
				l
				(
				i
				n
				t
				(
				𝐴
			

			

				∗
			

			
				)
				)
			

		
	
,(v)
	
		
			

				𝐼
			

		
	
-dense [7] if 
	
		
			

				𝐴
			

			

				∗
			

			
				=
				𝑋
			

		
	
,(vi)almost strong 
	
		
			

				𝛽
			

		
	
-
	
		
			

				𝐼
			

		
	
-open [13] if 
	
		
			
				𝐴
				⊆
				c
				l
			

			

				∗
			

			
				(
				i
				n
				t
				(
				𝐴
			

			

				∗
			

			
				)
				)
			

		
	
,(vii)*-perfect [10] if 
	
		
			
				𝐴
				=
				𝐴
			

			

				∗
			

		
	
,(viii)regular 
	
		
			

				𝐼
			

		
	
-closed [14] if 
	
		
			
				𝐴
				=
				(
				i
				n
				t
				(
				𝐴
				)
				)
			

			

				∗
			

		
	
,(ix)an 
	
		
			

				𝑓
			

			

				𝐼
			

		
	
-set [15] if 
	
		
			
				𝐴
				⊆
				(
				i
				n
				t
				(
				𝐴
				)
				)
			

			

				∗
			

		
	
.
Theorem 4 ([3]).  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space with an ideal 
	
		
			

				ℑ
			

		
	
 on 
	
		
			

				𝑋
			

		
	
. Then the following are equivalent. (i)
	
		
			
				𝜏
				∼
				ℑ
			

		
	
.(ii)If 
	
		
			

				𝐴
			

		
	
 has a cover of open sets each of whose intersection with 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				ℑ
			

		
	
, then 
	
		
			

				𝐴
			

		
	
 is in 
	
		
			

				ℑ
			

		
	
.(iii)For every 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
, 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

			
				=
				∅
				⇒
				𝐴
				∈
				ℑ
			

		
	
.(iv)For every 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
, 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
.(v)For every 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed subset 
	
		
			
				𝐴
				,
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
.(vi)For every 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
, if 
	
		
			

				𝐴
			

		
	
 contains no nonempty subset 
	
		
			

				𝐵
			

		
	
 with 
	
		
			
				𝐵
				⊆
				𝐵
			

			

				∗
			

		
	
, then 
	
		
			
				𝐴
				∈
				ℑ
			

		
	
.
2. 
	
		
			

				𝐿
			

			

				∗
			

		
	
-Perfect, 
	
		
			

				𝑅
			

			

				∗
			

		
	
-Perfect, and 
	
		
			

				𝐶
			

			

				∗
			

		
	
-Perfect Sets
In this section, we define three collections of subsets 
	
		
			

				𝔏
			

		
	
, 
	
		
			

				ℜ
			

		
	
 and 
	
		
			

				ℭ
			

		
	
 in an ideal space and study some of their properties.
Definition 5. Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 be an ideal topological space. A subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝑋
			

		
	
 is said to be(i)
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect if 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
,(ii)
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect if 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				∈
				ℑ
			

		
	
,(iii)
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect if 
	
		
			

				𝐴
			

		
	
 is both 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect and 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect. The collection of 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect sets, 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets, and 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect sets in 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 is denoted by 
	
		
			

				𝔏
			

		
	
, 
	
		
			

				ℜ
			

		
	
, and 
	
		
			

				ℭ
			

		
	
, respectively.
Remark 6. (i) If 
	
		
			
				ℑ
				=
				{
				∅
				}
			

		
	
, then
							
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				
				𝔏
				=
				𝐴
				⊆
				𝑋
				∶
				𝐴
				⊆
				𝐴
			

			

				∗
			

			
				
				=
				c
				l
				(
				𝐴
				)
				=
				t
				h
				e
				c
				o
				l
				l
				e
				c
				t
				i
				o
				n
				o
				f
				a
				l
				l
			

			

				∗
			

			
				
				-
				d
				e
				n
				s
				e
				-
				i
				n
				-
				i
				t
				s
				e
				l
				f
				s
				e
				t
				s
				=
				℘
				(
				𝑋
				)
				,
				ℜ
				=
				𝐴
				⊆
				𝑋
				∶
				𝐴
			

			

				∗
			

			
				
				⊆
				𝐴
				=
				t
				h
				e
				c
				o
				l
				l
				e
				c
				t
				i
				o
				n
				o
				f
				a
				l
				l
				𝜏
			

			

				∗
			

			
				=
				
				-
				c
				l
				o
				s
				e
				d
				s
				e
				t
				s
				𝐴
				⊆
				𝑋
				∶
				𝐴
				=
				𝐴
			

			

				∗
			

			
				
				=
				c
				l
				(
				𝐴
				)
				=
				t
				h
				e
				c
				o
				l
				l
				e
				c
				t
				i
				o
				n
				o
				f
				a
				l
				l
				c
				l
				o
				s
				e
				d
				s
				e
				t
				s
				i
				n
				(
				𝑋
				,
				𝜏
				)
				=
				t
				h
				e
				c
				o
				l
				l
				e
				c
				t
				i
				o
				n
				o
				f
				a
				l
				l
			

			

				∗
			

			
				
				-
				p
				e
				r
				f
				e
				c
				t
				s
				e
				t
				s
				,
				ℭ
				=
				𝐴
				⊆
				𝑋
				∶
				𝐴
			

			

				∗
			

			
				⊆
				𝐴
				,
				𝐴
				⊆
				𝐴
			

			

				∗
			

			
				
				=
				𝐴
				𝑋
				∶
				𝐴
				=
				𝐴
			

			

				∗
			

			
				=
				c
				l
				(
				𝐴
				)
				=
				t
				h
				e
				c
				o
				l
				l
				e
				c
				t
				i
				o
				n
				o
				f
				a
				l
				l
				c
				l
				o
				s
				e
				d
				s
				e
				t
				s
				i
				n
				(
				𝑋
				,
				𝜏
				)
				=
				t
				h
				e
				c
				o
				l
				l
				e
				c
				t
				i
				o
				n
				o
				f
				a
				l
				l
			

			

				∗
			

			
				-
				p
				e
				r
				f
				e
				c
				t
				s
				e
				t
				s
				.
			

		
	
(ii) If 
	
		
			
				ℑ
				=
				𝔓
				(
				𝑋
				)
			

		
	
, then 
	
		
			
				𝔏
				=
				𝔗
				=
				℘
				(
				𝑋
				)
			

		
	
.(iii) If 
	
		
			
				𝜏
				∼
				ℑ
			

		
	
, then 
	
		
			
				𝔏
				=
				℘
				(
				𝑋
				)
			

		
	
 (by Theorem 4(iv)).
Remark 7. Every *-perfect set is both 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect and 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect (and hence 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect). In Proposition 15, we proved that every members of an ideal is both 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect and 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect (and hence 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect). But any nonempty member of an ideal is not a *-perfect set. Hence 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect and 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect sets (and hence 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect sets) need not be *-perfect.
Proposition 8.  If a subset 
	
		
			

				𝐴
			

		
	
 of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 is 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect, then 
	
		
			
				𝐴
				Δ
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
.
Proof. Since 
	
		
			

				𝐴
			

		
	
 is both 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect and 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect, 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
 and 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				∈
				ℑ
			

		
	
. By the finite additive property of ideals, 
	
		
			
				(
				𝐴
				−
				𝐴
			

			

				∗
			

			
				)
				∪
				(
				𝐴
			

			

				∗
			

			
				−
				𝐴
				)
				∈
				ℑ
			

		
	
. Hence 
	
		
			
				𝐴
				Δ
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
.
Proposition 9.  In an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
, every 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed set is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect.
Proof. Let 
	
		
			

				𝐴
			

		
	
 be a 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed set. Therefore, 
	
		
			

				𝐴
			

			

				∗
			

			
				⊆
				𝐴
			

		
	
. Hence 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				=
				𝜙
				=
				ℑ
			

		
	
. Therefore, 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set.
Corollary 10.  In an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
, (i)
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝜙
			

		
	
 are 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets,(ii)every 
	
		
			

				𝜏
			

		
	
-closed set is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect,(iii)for any subset 
	
		
			

				𝐴
			

		
	
 of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
				,
				𝑐
				𝑙
				(
				𝐴
				)
				,
				𝐴
			

			

				∗
			

			
				,
				𝑐
				𝑙
			

			

				∗
			

			
				(
				𝐴
				)
			

		
	
 are 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets,(iv)every regular-
	
		
			

				𝐼
			

		
	
-closed set is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect.
Proof. The proof follows from Proposition 9.
The following example shows that the converses of Proposition 9 and Corollary 10
	
		
			
				(
				i
				v
				)
			

		
	
 are not true.
Example 11. Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 be an ideal space with 
	
		
			
				𝑋
				=
				{
				𝑎
				,
				𝑏
				,
				𝑐
				}
			

		
	
, 
	
		
			
				𝜏
				=
				{
				𝜙
				,
				𝑋
				,
				{
				𝑎
				}
				}
			

		
	
, and 
	
		
			
				ℑ
				=
				{
				𝜙
				,
				{
				𝑏
				}
				}
			

		
	
. The set 
	
		
			
				{
				𝑎
				,
				𝑐
				}
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set which is not a 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed set and hence not a regular-
	
		
			

				𝐼
			

		
	
-closed set.
Proposition 12.  If a subset 
	
		
			

				𝐴
			

		
	
 of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 is such that 
	
		
			
				𝐴
				∈
				ℑ
			

		
	
, then 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect.
Proof. Since 
	
		
			
				𝐴
				∈
				ℑ
				,
				𝐴
			

			

				∗
			

			
				=
				𝜙
			

		
	
. Then 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				=
				𝐴
				∈
				ℑ
			

		
	
 and 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				=
				𝜙
				∈
				ℑ
			

		
	
. Hence 
	
		
			

				𝐴
			

		
	
 is both an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect and 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set.
Corollary 13.  Let 
	
		
			

				𝐴
			

		
	
 be a subset of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
. Consider the following. (i)If 
	
		
			
				𝐴
				∈
				ℑ
			

		
	
, then every subset of 
	
		
			

				𝐴
			

		
	
 is a 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect set.(ii)If 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect, then 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
			

		
	
 is 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect.(iii)If 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set, then 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

		
	
 is a 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect set.(iv)If 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect, then 
	
		
			
				𝐴
				Δ
				𝐴
			

			

				∗
			

		
	
 is a 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect set.
Proof. The proof follows from Proposition 12.
Corollary 14.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space with an ideal 
	
		
			

				ℑ
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				𝜏
				∼
				ℑ
			

		
	
. Then for every 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
, (i)if 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

			
				=
				𝜙
			

		
	
, then 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect;(ii)
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect;(iii)if 
	
		
			

				𝐴
			

		
	
 contains nonempty subset 
	
		
			

				𝐵
			

		
	
 with 
	
		
			
				𝐵
				⊆
				𝐵
			

			

				∗
			

		
	
, then 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect.
Proof. Follows from Theorem 4 and Proposition 12.
Proposition 15.  In an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
, every *-dense-in-itself set is an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set.
Proof. Let 
	
		
			

				𝐴
			

		
	
 be a *-dense-in-itself set of 
	
		
			

				𝑋
			

		
	
. Then 
	
		
			
				𝐴
				⊆
				𝐴
			

			

				∗
			

		
	
. Therefore, 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				=
				𝜙
				∈
				ℑ
			

		
	
. Hence 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set.
Corollary 16.  In an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
, (i)every 
	
		
			

				𝐼
			

		
	
-dense set is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect,(ii)every 
	
		
			

				𝐼
			

		
	
-open set is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect,(iii)every almost strong 
	
		
			

				𝛽
			

		
	
-I-open set is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect,(iv)every almost 
	
		
			

				𝐼
			

		
	
-open set is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect,(v)every regular-
	
		
			

				𝐼
			

		
	
-closed set is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect,(vi)every 
	
		
			

				𝑓
			

			

				𝐼
			

		
	
-set is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect.
Proof. Since all the above sets are *-dense-in-itself, by Proposition 15, these sets are 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect.
Remark 17. The members of the ideal of an ideal space are 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect, but the nonempty members of the ideal are not *-dense-in-itself. Therefore, the converses of the above Corollary and Proposition 15 need not to be true.
Proposition 18.  In an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
, (i)empty set is an  
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set,(ii)
	
		
			

				𝑋
			

		
	
  is an  
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set if the ideal is codense.
Proof. (i) Since 
	
		
			
				𝜙
				−
				𝜙
			

			

				∗
			

			
				=
				𝜙
				∈
				ℑ
			

		
	
, the empty set is an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set. (ii) We know that 
	
		
			
				𝑋
				=
				𝑋
			

			

				∗
			

		
	
 if and only if the ideal 
	
		
			

				ℑ
			

		
	
 is codense. Then 
	
		
			
				𝑋
				−
				𝑋
			

			

				∗
			

			
				=
				𝜙
				∈
				ℑ
			

		
	
. Hence the result follows.
3. Main Results
In this section, we prove that finite union and intersection of 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets are again 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set. Using these results, we obtain a new topology for the finite topological spaces which is finer than 
	
		
			

				𝜏
			

			

				∗
			

		
	
-topology.
In Ideal spaces, usually 
	
		
			
				𝐴
				⊂
				𝐵
			

		
	
 implies 
	
		
			

				𝐴
			

			

				∗
			

			
				⊂
				𝐵
			

			

				∗
			

		
	
. We observe that there are some sets 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 such that 
	
		
			
				𝐴
				⊂
				𝐵
			

		
	
 but 
	
		
			

				𝐴
			

			

				∗
			

			
				=
				𝐵
			

			

				∗
			

		
	
.
Example 19. Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 be an ideal space with 
	
		
			
				𝑋
				=
				{
				𝑎
				,
				𝑏
				,
				𝑐
				,
				𝑑
				}
			

		
	
, 
	
		
			
				𝜏
				=
				{
				𝜙
				,
				𝑋
				,
				{
				𝑎
				,
				𝑐
				}
				,
				{
				𝑑
				}
				,
				{
				𝑎
				,
				𝑐
				,
				𝑑
				}
				}
			

		
	
, 
	
		
			
				ℑ
				=
				{
				𝜙
				,
				{
				𝑐
				}
				,
				{
				𝑑
				}
				,
				{
				𝑐
				,
				𝑑
				}
				}
			

		
	
. Here the sets 
	
		
			
				𝐴
				=
				{
				𝑎
				}
			

		
	
 and 
	
		
			
				𝐵
				=
				{
				𝑎
				,
				𝑏
				}
			

		
	
 are such that 
	
		
			
				𝐴
				⊆
				𝐵
			

		
	
, but 
	
		
			

				𝐴
			

			

				∗
			

			
				=
				𝐵
			

			

				∗
			

			
				=
				{
				𝑎
				,
				𝑏
				,
				𝑐
				}
			

		
	
.
Proposition 20.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 be an ideal space. Let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 be two subsets of 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				𝐴
				⊆
				𝐵
			

		
	
 and 
	
		
			

				𝐴
			

			

				∗
			

			
				=
				𝐵
			

			

				∗
			

		
	
; then (i)
	
		
			

				𝐵
			

		
	
  is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect if 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect;(ii)
	
		
			

				𝐴
			

		
	
  is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect if 
	
		
			

				𝐵
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect.
Proof. (i) Let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set. Then 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				∈
				ℑ
			

		
	
. Now, 
	
		
			

				𝐵
			

			

				∗
			

			
				−
				𝐵
				=
				𝐴
			

			

				∗
			

			
				−
				𝐵
				⊆
				𝐴
			

			

				∗
			

			
				−
				𝐴
			

		
	
. By heredity property of ideals, 
	
		
			

				𝐵
			

			

				∗
			

			
				−
				𝐵
				∈
				ℑ
			

		
	
. Hence 
	
		
			

				𝐵
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect.(ii) Let 
	
		
			

				𝐵
			

		
	
 be an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set. Then 
	
		
			
				𝐵
				−
				𝐵
			

			

				∗
			

			
				∈
				ℑ
			

		
	
. Now, 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				=
				𝐴
				−
				𝐵
			

			

				∗
			

			
				⊆
				𝐵
				−
				𝐵
			

			

				∗
			

		
	
. By heredity property of ideals, 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
. Hence 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect.
Corollary 21.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 be an ideal space. Let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 be two subsets of 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				𝐴
				⊆
				𝐵
				⊆
				𝑐
				𝑙
			

			

				∗
			

			

				𝐴
			

		
	
; then (i)
	
		
			

				𝐵
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect if 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect,(ii)
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect if 
	
		
			

				𝐵
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect.
Proof. Since 
	
		
			
				𝐴
				⊆
				𝐵
				⊆
				c
				l
			

			

				∗
			

			

				𝐴
			

		
	
, 
	
		
			

				𝐴
			

			

				∗
			

			
				⊆
				𝐵
			

			

				∗
			

			
				⊆
				(
				c
				l
			

			

				∗
			

			
				𝐴
				)
			

			

				∗
			

			
				=
				𝐴
			

			

				∗
			

		
	
. Hence 
	
		
			

				𝐴
			

			

				∗
			

			
				=
				𝐵
			

			

				∗
			

		
	
. Therefore, the result follows from Proposition 20.
Proposition 22.  Let 
	
		
			

				𝐴
			

		
	
 be a subset of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 such that 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set and 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect; then both 
	
		
			

				𝐴
			

		
	
 and 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

		
	
 are 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect.
Proof. Since 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect, 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
. By Lemma 1(vii), for every 
	
		
			
				𝐼
				∈
				ℑ
			

		
	
, 
	
		
			
				(
				𝐴
				∪
				𝐼
				)
			

			

				∗
			

			
				=
				𝐴
			

			

				∗
			

			
				=
				(
				𝐴
				−
				𝐼
				)
			

			

				∗
			

		
	
. Therefore, 
	
		
			
				(
				𝐴
				∪
				(
				𝐴
				−
				𝐴
			

			

				∗
			

			
				)
				)
			

			

				∗
			

			
				=
				𝐴
			

			

				∗
			

			
				=
				(
				𝐴
				−
				(
				𝐴
				−
				𝐴
			

			

				∗
			

			
				)
				)
			

			

				∗
			

		
	
. This implies 
	
		
			

				𝐴
			

			

				∗
			

			
				=
				(
				𝐴
				∩
				𝐴
			

			

				∗
			

			

				)
			

			

				∗
			

		
	
. Therefore, we have 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

			
				⊆
				𝐴
			

		
	
 with 
	
		
			
				(
				𝐴
				∩
				𝐴
			

			

				∗
			

			

				)
			

			

				∗
			

			
				=
				𝐴
			

			

				∗
			

		
	
. By Proposition 20, 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect if 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect and 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect if 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set. Hence 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect and 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect.
Proposition 23.  If a subset 
	
		
			

				𝐴
			

		
	
 of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set and 
	
		
			

				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect, then 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect.
Proof. Since 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect, 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				∈
				ℑ
			

		
	
. By Lemma 1
	
		
			
				(
				v
				i
				i
				)
			

		
	
, for every 
	
		
			
				𝐼
				∈
				ℑ
			

		
	
, 
	
		
			
				(
				𝐴
				∪
				𝐼
				)
			

			

				∗
			

			
				=
				𝐴
			

			

				∗
			

			
				=
				(
				𝐴
				−
				𝐼
				)
			

			

				∗
			

		
	
. Therefore, 
	
		
			
				(
				𝐴
			

			

				∗
			

			
				∪
				(
				𝐴
			

			

				∗
			

			
				−
				𝐴
				)
				)
			

			

				∗
			

			
				=
				𝐴
			

			
				∗
				∗
			

			
				=
				(
				𝐴
			

			

				∗
			

			
				−
				(
				𝐴
			

			

				∗
			

			
				−
				𝐴
				)
				)
			

			

				∗
			

		
	
. This implies 
	
		
			

				𝐴
			

			
				∗
				∗
			

			
				=
				(
				𝐴
				∩
				𝐴
			

			

				∗
			

			

				)
			

			

				∗
			

		
	
. Therefore, we have 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

			
				⊆
				𝐴
			

			

				∗
			

		
	
 with 
	
		
			
				(
				𝐴
				∩
				𝐴
			

			

				∗
			

			

				)
			

			

				∗
			

			
				=
				𝐴
			

			
				∗
				∗
			

		
	
. By Proposition 20, 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect if 
	
		
			

				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set. Hence 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect.
Proposition 24.  If 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 are 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets, then 
	
		
			
				𝐴
				∪
				𝐵
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set.
Proof. Let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 be 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets. Then 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				∈
				ℑ
			

		
	
 and 
	
		
			

				𝐵
			

			

				∗
			

			
				−
				𝐵
				∈
				ℑ
			

		
	
. By finite additive property of ideals, 
	
		
			
				(
				𝐴
			

			

				∗
			

			
				−
				𝐴
				)
				∪
				(
				𝐵
			

			

				∗
			

			
				−
				𝐵
				)
				∈
				ℑ
			

		
	
. Since 
	
		
			
				(
				𝐴
			

			

				∗
			

			
				∪
				𝐵
			

			

				∗
			

			
				)
				−
				(
				𝐴
				∪
				𝐵
				)
				⊆
				(
				𝐴
			

			

				∗
			

			
				−
				𝐴
				)
				∪
				(
				𝐵
			

			

				∗
			

			
				−
				𝐵
				)
			

		
	
, by heredity property 
	
		
			
				(
				𝐴
			

			

				∗
			

			
				∪
				𝐵
			

			

				∗
			

			
				)
				−
				(
				𝐴
				∪
				𝐵
				)
				∈
				ℑ
			

		
	
. Hence 
	
		
			
				(
				𝐴
				∪
				𝐵
				)
			

			

				∗
			

			
				−
				(
				𝐴
				∪
				𝐵
				)
				∈
				ℑ
			

		
	
. This proves the result.
Corollary 25.  Finite union of 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set.
Proof. The proof follows from Proposition 24.
Proposition 26.  If 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 are 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect sets, then 
	
		
			
				𝐴
				∪
				𝐵
			

		
	
 is an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set.
Proof. Since 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 are 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect sets, 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
 and 
	
		
			
				𝐵
				−
				𝐵
			

			

				∗
			

			
				∈
				ℑ
			

		
	
. Hence by finite additive property of ideals, 
	
		
			
				(
				𝐴
				−
				𝐴
			

			

				∗
			

			
				)
				∪
				(
				𝐵
				−
				𝐵
			

			

				∗
			

			
				)
				∈
				ℑ
			

		
	
. Since 
	
		
			
				(
				𝐴
				∪
				𝐵
				)
				−
				(
				𝐴
				∪
				𝐵
				)
			

			

				∗
			

			
				=
				(
				𝐴
				∪
				𝐵
				)
				−
				(
				𝐴
			

			

				∗
			

			
				∪
				𝐵
			

			

				∗
			

			
				)
				⊆
				(
				𝐴
				−
				𝐴
			

			

				∗
			

			
				)
				∪
				(
				𝐵
				−
				𝐵
			

			

				∗
			

			

				)
			

		
	
, by heredity property 
	
		
			
				(
				𝐴
				∪
				𝐵
				)
				−
				(
				𝐴
				∪
				𝐵
				)
			

			

				∗
			

			
				∈
				ℑ
			

		
	
. This proves that 
	
		
			
				𝐴
				∪
				𝐵
			

		
	
 is an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set.
Corollary 27.  Finite union of 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect sets is an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect sets.
Proof. The proof follows from Proposition 26.
Proposition 28.  If 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 are 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets, then 
	
		
			
				𝐴
				∩
				𝐵
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set.
Proof. Suppose that 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 are 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets. Then 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				∈
				ℑ
			

		
	
 and 
	
		
			

				𝐵
			

			

				∗
			

			
				−
				𝐵
				∈
				ℑ
			

		
	
. By finite additive property of ideals, 
	
		
			
				(
				𝐴
			

			

				∗
			

			
				−
				𝐴
				)
				∪
				(
				𝐵
			

			

				∗
			

			
				−
				𝐵
				)
				∈
				ℑ
			

		
	
. Since 
	
		
			
				(
				𝐴
			

			

				∗
			

			
				∩
				𝐵
			

			

				∗
			

			
				)
				−
				(
				𝐴
				∩
				𝐵
				)
				⊆
				(
				𝐴
			

			

				∗
			

			
				−
				𝐴
				)
				∪
				(
				𝐵
			

			

				∗
			

			
				−
				𝐵
				)
			

		
	
, by heredity property 
	
		
			
				(
				𝐴
			

			

				∗
			

			
				∩
				𝐵
			

			

				∗
			

			
				)
				−
				(
				𝐴
				∩
				𝐵
				)
				∈
				ℑ
			

		
	
. Also 
	
		
			
				(
				𝐴
				∩
				𝐵
				)
			

			

				∗
			

			
				−
				(
				𝐴
				∩
				𝐵
				)
				⊆
				(
				𝐴
			

			

				∗
			

			
				∩
				𝐵
			

			

				∗
			

			
				)
				−
				(
				𝐴
				∩
				𝐵
				)
				∈
				ℑ
			

		
	
. This proves the result.
Corollary 29.  Finite intersection of 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set.
Proof. The proof follows from Proposition 28.
Proposition 30.  Finite union of 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect sets is a 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect set.
Proof. From Corollaries 27 and 29, finite union of 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect sets is a 
	
		
			

				𝐶
			

			

				∗
			

		
	
-perfect set.
Proposition 31.  If 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 is an ideal topological space with 
	
		
			

				𝑋
			

		
	
 being finite, then the collection 
	
		
			

				ℜ
			

		
	
 is a topology which is finer than the topology of 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed sets.
Proof. By Corollary 10, 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝜙
			

		
	
 are 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets. By Corollary 25, finite union of 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set, and by Corollary 29, finite intersection of 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect sets is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect. Hence the collection 
	
		
			

				ℜ
			

		
	
 is a topology if 
	
		
			

				𝑋
			

		
	
 is finite. Also, by Proposition 9 every 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed set is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set. Hence the topology 
	
		
			

				ℜ
			

		
	
 is finer than the topology of 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed sets if 
	
		
			

				𝑋
			

		
	
 is finite.
Proposition 32.  In an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
, 
	
		
			
				{
				𝜏
			

			

				∗
			

			
				-
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
				𝑠
				𝑒
				𝑡
				𝑠
				}
				∪
				ℑ
				⊆
				ℜ
			

		
	
.
Proof. The proof follows from Propositions 9 and 12.
The following example shows that 
	
		
			
				{
				𝜏
			

			

				∗
			

			
				-
				c
				l
				o
				s
				e
				d
				s
				e
				t
				s
				}
				∪
				ℑ
				≠
				ℜ
			

		
	
.
Example 33. Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 be an ideal space with 
	
		
			
				𝑋
				=
				{
				𝑎
				,
				𝑏
				,
				𝑐
				}
			

		
	
, 
	
		
			
				𝜏
				=
				{
				∅
				,
				𝑋
				,
				{
				𝑎
				}
				}
			

		
	
, and 
	
		
			
				ℑ
				=
				{
				∅
				,
				{
				𝑏
				}
				}
			

		
	
. The collection of 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed sets is 
	
		
			
				{
				∅
				,
				𝑋
				,
				{
				𝑏
				}
				,
				{
				𝑏
				,
				𝑐
				}
				}
			

		
	
 and 
	
		
			
				ℜ
				=
				{
				∅
				,
				𝑋
				,
				{
				𝑏
				}
				,
				{
				𝑏
				,
				𝑐
				}
				,
				{
				𝑎
				,
				𝑐
				}
				}
			

		
	
.
Now, 
	
		
			
				{
				𝜏
			

			

				∗
			

		
	
-closed sets
	
		
			
				}
				∪
				ℑ
				=
				{
				∅
				,
				𝑋
				,
				{
				𝑏
				}
				,
				{
				𝑏
				,
				𝑐
				}
				}
				≠
				ℜ
			

		
	
.
Proposition 34.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 be an ideal space and 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
. The set 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect if and only if 
	
		
			
				𝐹
				⊆
				𝐴
			

			

				∗
			

			
				−
				𝐴
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 implies that 
	
		
			
				𝐹
				∈
				ℑ
			

		
	
.
Proof. Assume that 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set. Then 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				∈
				ℑ
			

		
	
. By heredity property of ideals, every set 
	
		
			
				𝐹
				⊆
				𝐴
			

			

				∗
			

			
				−
				𝐴
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 is also in 
	
		
			

				ℑ
			

		
	
. Conversely assume that 
	
		
			
				𝐹
				⊆
				𝐴
			

			

				∗
			

			
				−
				𝐴
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 implies that 
	
		
			
				𝐹
				∈
				ℑ
			

		
	
. Since 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
			

		
	
 is a subset of itself, by assumption 
	
		
			

				𝐴
			

			

				∗
			

			
				−
				𝐴
				∈
				ℑ
			

		
	
. Hence 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect.
Proposition 35.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 be an ideal space and 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
. The set 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect if and only if 
	
		
			
				𝐹
				⊆
				𝐴
				−
				𝐴
			

			

				∗
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 implies that 
	
		
			
				𝐹
				∈
				ℑ
			

		
	
.
Proof. Assume that 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect set. Then 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
. By heredity property of ideals, every set 
	
		
			
				𝐹
				⊆
				𝐴
				−
				𝐴
			

			

				∗
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 is also in 
	
		
			

				ℑ
			

		
	
. Conversely, assume that 
	
		
			
				𝐹
				⊆
				𝐴
				−
				𝐴
			

			

				∗
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 implies that 
	
		
			
				𝐹
				∈
				ℑ
			

		
	
. Since 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

		
	
 is a subset of itself, by assumption 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
. Hence 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝐿
			

			

				∗
			

		
	
-perfect.
Proposition 36.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a topological space and 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
. Let 
	
		
			

				ℑ
			

			

				1
			

		
	
 and 
	
		
			

				ℑ
			

			

				2
			

		
	
 be two ideals on 
	
		
			

				𝑋
			

		
	
 with 
	
		
			

				ℑ
			

			

				1
			

			
				⊆
				ℑ
			

			

				2
			

		
	
. Then 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect with respect to 
	
		
			

				ℑ
			

			

				2
			

		
	
 if it is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect with respect to 
	
		
			

				ℑ
			

			

				1
			

		
	
.
Proof. Since 
	
		
			

				ℑ
			

			

				1
			

			
				⊆
				ℑ
			

			

				2
			

			
				,
				𝐴
			

			

				∗
			

			
				(
				ℑ
			

			

				2
			

			
				)
				⊆
				𝐴
			

			

				∗
			

			
				(
				ℑ
			

			

				1
			

			

				)
			

		
	
 by Lemma 1(ii) Let 
	
		
			

				𝐴
			

		
	
 be 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect with respect to 
	
		
			

				ℑ
			

			

				1
			

		
	
. Then 
	
		
			

				𝐴
			

			

				∗
			

			
				(
				ℑ
			

			

				1
			

			
				)
				−
				𝐴
				∈
				ℑ
			

			

				1
			

		
	
. Also, 
	
		
			

				𝐴
			

			

				∗
			

			
				(
				ℑ
			

			

				2
			

			
				)
				−
				𝐴
				⊆
				𝐴
			

			

				∗
			

			
				(
				ℑ
			

			

				1
			

			
				)
				−
				𝐴
			

		
	
. Hence by heredity property of ideals, 
	
		
			

				𝐴
			

			

				∗
			

			
				(
				ℑ
			

			

				2
			

			
				)
				−
				𝐴
				∈
				ℑ
			

			

				1
			

			
				⊆
				ℑ
			

			

				2
			

		
	
. Therefore 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect with respect to 
	
		
			

				ℑ
			

			

				2
			

		
	
.
Theorem 37.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				)
			

		
	
 be a space with an ideal 
	
		
			

				ℑ
			

		
	
 on 
	
		
			

				𝑋
			

		
	
. Then the following are equivalent. (i)
	
		
			
				𝜏
				∼
				ℑ
			

		
	
. 								(ii)If 
	
		
			

				𝐴
			

		
	
 has a cover of open sets each of whose intersection with 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				ℑ
			

		
	
, then 
	
		
			

				𝐴
			

		
	
 is in 
	
		
			

				ℑ
			

		
	
.(iii)If 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
, then 
	
		
			
				𝐴
				∩
				𝐴
			

			

				∗
			

			
				=
				𝜙
				⇒
				𝐴
				∈
				ℑ
			

		
	
.(iv)If 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
, then 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
.(v)If 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
 and 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-perfect set, then 
	
		
			
				𝐴
				Δ
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
.(vi)For every 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed subset 
	
		
			
				𝐴
				,
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
.(vii)For every 
	
		
			
				𝐴
				⊆
				𝑋
			

		
	
, if 
	
		
			

				𝐴
			

		
	
 contains no nonempty subset 
	
		
			

				𝐵
			

		
	
 with 
	
		
			
				𝐵
				⊆
				𝐵
			

			

				∗
			

		
	
, then 
	
		
			
				𝐴
				∈
				ℑ
			

		
	
.
Proof. To prove this theorem, it is enough to prove (iv) 
	
		
			

				⇒
			

		
	
 (v) 
	
		
			

				⇒
			

		
	
 (vi). Others follow from Theorem 4. (iv) 
	
		
			

				⇒
			

		
	
 (v) follows from Proposition 8. Suppose that 
	
		
			
				𝐴
				Δ
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
. Since 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				⊆
				𝐴
				Δ
				𝐴
			

			

				∗
			

		
	
, by heredity property 
	
		
			
				𝐴
				−
				𝐴
			

			

				∗
			

			
				∈
				ℑ
			

		
	
. Hence (v) 
	
		
			

				⇒
			

		
	
 (vi).
4. 
	
		
			

				𝑅
			

			

				∗
			

		
	
-Topology
By Corollary 10 and Proposition 28, we observe that the collection 
	
		
			

				ℜ
			

		
	
 satisfies the conditions of being a basis for some topology and it will be called as 
	
		
			

				𝑅
			

			
				∗
				𝑐
			

			
				(
				𝜏
				,
				ℑ
				)
			

		
	
. We define 
	
		
			

				𝑅
			

			

				∗
			

			
				(
				𝜏
				,
				ℑ
				)
				=
				{
				𝐴
				⊆
				𝑋
				/
				𝑋
				−
				𝐴
				∈
				𝑅
			

			
				∗
				𝑐
			

			
				(
				𝜏
				,
				ℑ
				)
				}
			

		
	
 on a nonempty set 
	
		
			

				𝑋
			

		
	
. Clearly, 
	
		
			

				𝑅
			

			

				∗
			

			
				(
				𝜏
				,
				ℑ
				)
			

		
	
 is a topology if the set 
	
		
			

				𝑋
			

		
	
 is finite. The members of the collection 
	
		
			

				𝑅
			

			

				∗
			

			
				(
				𝜏
				,
				ℑ
				)
			

		
	
 will be called 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open sets. If there is no confusion about the topology 
	
		
			

				𝜏
			

		
	
 and the ideal 
	
		
			

				ℑ
			

		
	
, then we call 
	
		
			

				𝑅
			

			

				∗
			

			
				(
				𝜏
				,
				ℑ
				)
			

		
	
 as 
	
		
			

				𝑅
			

			

				∗
			

		
	
-topology when 
	
		
			

				𝑋
			

		
	
 is finite.
Definition 38. A subset 
	
		
			

				𝐴
			

		
	
 of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 is said to be 
	
		
			

				𝑅
			

			

				∗
			

		
	
-closed if it is a complement of an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set.
Definition 39. Let 
	
		
			

				𝐴
			

		
	
 be a subset of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
. One defines 
	
		
			

				𝑅
			

			

				∗
			

		
	
-interior of the set 
	
		
			

				𝐴
			

		
	
 as the largest 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set contained in 
	
		
			

				𝐴
			

		
	
.One will denote 
	
		
			

				𝑅
			

			

				∗
			

		
	
-interior of a set 
	
		
			

				𝐴
			

		
	
 by 
	
		
			

				𝑅
			

			

				∗
			

			
				−
				i
				n
				t
				(
				𝐴
				)
			

		
	
.
Definition 40. Let 
	
		
			

				𝐴
			

		
	
 be a subset of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
. A point 
	
		
			
				𝑥
				∈
				𝐴
			

		
	
 is said to be an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-interior point of the set 
	
		
			

				𝐴
			

		
	
 if there exists an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set 
	
		
			

				𝑈
			

		
	
 of 
	
		
			

				𝑥
			

		
	
 such that 
	
		
			
				𝑥
				∈
				𝑈
				⊆
				𝐴
			

		
	
.
Definition 41. Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 be an ideal space and 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
. One defines 
	
		
			

				𝑅
			

			

				∗
			

		
	
-neighborhood of 
	
		
			

				𝑥
			

		
	
 as an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set containing 
	
		
			

				𝑥
			

		
	
. One denotes the set of all 
	
		
			

				𝑅
			

			

				∗
			

		
	
-neighborhoods of 
	
		
			

				𝑥
			

		
	
 by 
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑁
				(
				𝑥
				)
			

		
	
.
Proposition 42.  In an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
, every 
	
		
			

				𝜏
			

			

				∗
			

		
	
-open set is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set.
Proof. Let 
	
		
			

				𝐴
			

		
	
 be a 
	
		
			

				𝜏
			

			

				∗
			

		
	
-open set. Therefore, 
	
		
			
				𝑋
				−
				𝐴
			

		
	
 is a 
	
		
			

				𝜏
			

			

				∗
			

		
	
-closed set. That implies that 
	
		
			
				𝑋
				−
				𝐴
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-closed set. Hence 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set.
Corollary 43.  The topology 
	
		
			

				𝑅
			

			

				∗
			

			
				(
				𝜏
				,
				ℑ
				)
			

		
	
 on a finite set 
	
		
			

				𝑋
			

		
	
 is finer than the topology 
	
		
			

				𝜏
			

			

				∗
			

			
				(
				𝜏
				,
				ℑ
				)
			

		
	
.
Proof. The proof follows from Proposition 42.
Corollary 44.  For any subset 
	
		
			

				𝐴
			

		
	
 of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
, 
	
		
			
				𝑖
				𝑛
				𝑡
				(
				𝐴
				)
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set.
Proof. The proof follows from Proposition 42.
Remark 45. (i) Since every open set is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set, every neighborhood 
	
		
			

				𝑈
			

		
	
 of a point 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-neighborhood of 
	
		
			

				𝑥
			

		
	
.(ii) If 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
 is an interior point of a subset 
	
		
			

				𝐴
			

		
	
 of 
	
		
			

				𝑋
			

		
	
, then 
	
		
			

				𝑥
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-interior point of 
	
		
			

				𝐴
			

		
	
.(iii) From (ii), we have 
	
		
			
				i
				n
				t
				(
				𝐴
				)
				⊆
				i
				n
				t
			

			

				∗
			

			
				(
				𝐴
				)
				⊆
				𝑅
			

			

				∗
			

			
				-
				i
				n
				t
				(
				𝐴
				)
			

		
	
, where 
	
		
			
				i
				n
				t
			

			

				∗
			

			
				(
				𝐴
				)
			

		
	
 denotes interior of 
	
		
			

				𝐴
			

		
	
 with respect to the topology 
	
		
			

				𝜏
			

			

				∗
			

		
	
.
Theorem 46.  Let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 be subsets of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 with 
	
		
			

				𝑋
			

		
	
 being finite. Then the following properties hold. (i)
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝐴
				)
				=
				∪
				{
				𝑈
				∶
				𝑈
				⊆
				𝐴
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is an 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set
	
		
			

				}
			

		
	
.(ii)
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝐴
				)
			

		
	
 is the largest 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open set of 
	
		
			

				𝑋
			

		
	
 contained in 
	
		
			

				𝐴
			

		
	
.(iii)
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-open if and only if 
	
		
			
				𝐴
				=
				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝐴
				)
			

		
	
.(iv)
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝐴
				)
				)
				=
				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝐴
				)
			

		
	
. 								(v)If 
	
		
			
				𝐴
				⊆
				𝐵
			

		
	
, then 
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝐴
				)
				⊆
				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝐵
				)
			

		
	
.
Proof. The proof follows from Definitions 39, 40, and 41.
Definition 47. Let 
	
		
			

				𝐴
			

		
	
 be a subset of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
. One defines 
	
		
			

				𝑅
			

			

				∗
			

		
	
-closure of the set 
	
		
			

				𝐴
			

		
	
 as the smallest 
	
		
			

				𝑅
			

			

				∗
			

		
	
-closed set containing 
	
		
			

				𝐴
			

		
	
. One will denote 
	
		
			

				𝑅
			

			

				∗
			

		
	
-closure of a set 
	
		
			

				𝐴
			

		
	
 by 
	
		
			

				𝑅
			

			

				∗
			

			
				-
				c
				l
				(
				𝐴
				)
			

		
	
.
Remark 48. For any subset 
	
		
			

				𝐴
			

		
	
 of an ideal topological space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
, 
	
		
			

				𝑅
			

			

				∗
			

			
				-
				c
				l
				(
				𝐴
				)
				⊆
				c
				l
			

			

				∗
			

			
				(
				𝐴
				)
				⊆
				c
				l
				(
				𝐴
				)
			

		
	
.
Theorem 49.  Let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 be subsets of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
 where 
	
		
			

				𝑋
			

		
	
 is finite. Then the following properties hold: (i)
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑐
				𝑙
				(
				𝐴
				)
				=
				∩
				{
				𝐹
				∶
				𝐴
				⊆
				𝐹
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-closed set
	
		
			

				}
			

		
	
.(ii)
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝑅
			

			

				∗
			

		
	
-closed if and only if 
	
		
			
				𝐴
				=
				𝑅
			

			

				∗
			

			
				-
				𝑐
				𝑙
				(
				𝐴
				)
			

		
	
(iii)
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑐
				𝑙
				(
				𝑅
			

			

				∗
			

			
				-
				𝑐
				𝑙
				(
				𝐴
				)
				)
				=
				𝑅
			

			

				∗
			

			
				-
				𝑐
				𝑙
				(
				𝐴
				)
			

		
	
(iv)If 
	
		
			
				𝐴
				⊆
				𝐵
			

		
	
, then 
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑐
				𝑙
				(
				𝐴
				)
				⊆
				𝑅
			

			

				∗
			

			
				-
				𝑐
				𝑙
				(
				𝐵
				)
			

		
	
.
Proof. The proof follows from Definition 47.
Theorem 50.  Let 
	
		
			

				𝐴
			

		
	
 be a subset of an ideal space 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				ℑ
				)
			

		
	
. Then the following properties hold: (i)
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝑋
				−
				𝐴
				)
				=
				𝑋
				−
				𝑅
			

			

				∗
			

			
				-
				𝑐
				𝑙
				(
				𝐴
				)
			

		
	
;(ii)
	
		
			

				𝑅
			

			

				∗
			

			
				-
				𝑐
				𝑙
				(
				𝑋
				−
				𝐴
				)
				=
				𝑋
				−
				𝑅
			

			

				∗
			

			
				-
				𝑖
				𝑛
				𝑡
				(
				𝐴
				)
			

		
	
. 								
Proof. The proof follows from Definitions 38, 39, and 47.
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