Research Article

A New Upper Bound for $\|A^{-1}\|$ of a Strictly α-Diagonally Dominant M-Matrix

Zhanshan Yang, Bing Zheng, and Xilan Liu

1 Department of Mathematics and Statistics, Qinghai University for Nationalities, Xining 810007, China
2 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

Correspondence should be addressed to Zhanshan Yang; yangzhanshan123456@126.com

Received 22 September 2013; Accepted 10 December 2013

1. Introduction

The estimation for the bound for the norm $\|A^{-1}\|$ of a real invertible $n \times n$ matrix A is important in numerical analysis, so many researchers were devoted to studying this kind of problems. For example, Varah [1] discussed the bound for the infinity norm $\|A^{-1}\|_\infty$ of a strictly diagonally dominant matrix $A = (a_{ij})_{n \times n} \in \mathbb{R}^{n \times n}$ and obtained the following estimation:

$$\|A^{-1}\|_\infty \leq \max_i \left\{ \frac{1}{|a_{ii}| - \sum_{j=1, j \neq i}^{|a_{ij}|}} \right\}, \quad i \in N. \quad (1)$$

After that Varga [2] extended the result of [1] to H-matrices. Evidently, the upper bound for $\|A^{-1}\|_\infty$ in (1) only involves the entries in the matrix A. If the diagonal dominance of A is weak, that is, $\min |a_{ii}| - \sum_{j=1, j \neq i} |a_{ij}|$ is small, then the bound given by (1) may be large. For this reason, some authors were devoted to improving the result of (1). Recently, Cheng and Huang [3] presented a more compacted upper bound for a strictly diagonally dominant M-matrix

$$\|A^{-1}\|_\infty \leq \frac{1}{a_{11} (1 - u_1 d_1)} + \sum_{i=2}^n \left[\frac{1}{a_{ii} (1 - u_i d_i)} \right]^{i-1} \left(\frac{1}{1 - u_j f_j} \right),$$

and then Wang [4] further improved this bound and gave the following result:

$$\|A^{-1}\|_\infty \leq \frac{1}{a_{11} (1 - u_1 d_1)} + \sum_{i=2}^n \left[\frac{1}{a_{ii} (1 - u_i d_i)} \right]^{i-1} \left(\frac{1}{1 - u_j f_j} \right),$$

where notations in (2) and (3) have the same meanings as those used in this paper, which will be shown later.

In this paper, we present a new upper bound $\|A^{-1}\|_\infty$ of a strictly diagonally dominant matrix $A = (a_{ij})_{n \times n} \in \mathbb{R}^{n \times n}$, which is better than that obtained by Wang, and a new lower bound of the smallest eigenvalue $\lambda_{\min}(A)$ of A is also obtained. Furthermore, an upper bound for $\|A^{-1}\|$ of a real strictly α-diagonally dominant M-matrix is shown.
a positive eigenvalue of \(A \) related to the Perron eigenvalue of the nonnegative matrix \(A^{-1} \). If \(q(A) \) denotes the minimum of the real parts of the eigenvalues of \(A \), that is, \(q(A) = \alpha - \rho(B) \), then \(q(A) = 1/\rho(A^{-1}) \). For further properties of the \(M \)-matrix \(A \), we refer the readers to [5–7].

An \(n \times n \) matrix \(A = (a_{ij}) \) is called a strictly diagonally dominant matrix if \(|a_{ii}| > \sum_{j \neq i} |a_{ij}| \) for \(i \in N \). Let

\[
R_i(A) = \sum_{j=1, j \neq i}^n |a_{ij}|, \quad r_i(A) = \sum_{j=1}^n |a_{ij}|
\]

\[
d_i = \frac{1}{|a_{ii}|} \sum_{j=1, j \neq i}^n |a_{ij}|, \quad J(A) = \{ i \in N : d_i < 1 \},
\]

\[
u_i = \frac{1}{|a_{ii}|} \sum_{j=1}^n |a_{ij}|
\]

\[
l_k = \max_{k \leq n} \frac{\sum_{i,k,l \in J} |a_{ij}|}{|a_{ik}|}, \quad l_n = u_n = 0,
\]

\[
w_{ij} = \frac{|a_{ij}|}{|a_{ij}| - \sum_{k \neq j} |a_{ik}|}, \quad i \neq j, \quad j < k \leq n,
\]

\[
w_i = \max_{j \neq i} \{ w_{ij} \}, \quad C_i(A) = \sum_{j=1, j \neq i}^n |a_{ij}|,
\]

\[
m_j = \frac{|a_{ij}| + \sum_{k \neq j} |a_{ik}| w_{ki}}{|a_{ij}|}, \quad i \neq j, \quad j < k \leq n,
\]

where \(N \) is the set of positive integers. For an \(n \times n \) matrix \(A \), the principal matrix of \(A \) formed by rows and columns with indices between \(n_1 \) and \(n_2 \) is denoted by \(A^{[n_1,n_2]} \).

Definition 1 (see [8]). \(A \in R^{n \times n} \) is weakly chained diagonally dominant if, for all \(i \in N \), \(d_i \leq 1 \) and \(J(A) \neq \emptyset \) and for all \(i \in N \), \(i \neq J(A) \), there exist indices \(i_1, i_2, \ldots, i_k \) in \(N \) with \(a_{i_1,i_2} \neq 0, 0 \leq r \leq k - 1 \), where \(i_0 = i \) and \(i_k \in J(A) \).

Definition 2 (see [9]). Let \(A \in R^{n \times n} \), \(A \) is strictly diagonally dominant if \(J(A) = N \).

Obviously, if \(A \in R^{n \times n} \) is a strictly diagonally dominant matrix, then \(A \) is a weakly chained diagonally dominant matrix.

Definition 3 (see [9]). \(A \in R^{n \times n} \) is an \(L \)-matrix if, for all \(i, j \in N \) with \(i \neq j \), \(a_{ij} \leq 0 \) and \(a_{ii} > 0 \).

Definition 4 (see [10]). Let \(A \in R^{n \times n} \); if there exist \(\alpha \in [0, 1] \), such that

\[
|a_{ii}| \geq \alpha R_i(A) + (1 - \alpha) C_i(A),
\]

for all \(i \in N \), then \(A \) is said to be an \(\alpha \)-diagonal dominant matrix, denoted by \(D^\alpha_n \).

Remark 5. By Definition 4, we know that \(A \) is just a diagonal dominant matrix while \(\alpha = 1 \).

Definition 6. If all the inequalities in (5) strictly hold, then \(A \) is said to be strictly \(\alpha \)-diagonal dominant matrix (SD\(^\alpha\)_n).

2. Estimation for an Upper Bound for \(\|A^{-1}\|_\infty \) of Strictly Diagonally Dominant \(M \)-Matrix

We state some lemmas before giving a new upper bound for \(\|A^{-1}\|_\infty \).

Lemma 7 (see [3]). Let \(A = (a_{ij}) \) be an \(n \times n \) weakly chained diagonally dominant \(M \)-matrix, \(B = A^{2n}, A^{-1} = (\alpha_j)_{i,j=1}^n \), and \(B^{-1} = (\beta_j)_{i,j=1}^n \). Then, for \(i, j = 1, 2, \ldots, n \),

\[
\alpha_{i1} = \frac{1}{\Delta},
\]

\[
\alpha_{i1} = \frac{\sum_{k=2}^n \beta_{k1}}{\beta_{i1}}, \quad \alpha_{ij} = \frac{\sum_{k=2}^n \beta_{kj} - \alpha_{jk}}{\beta_{ij}},
\]

where

\[
\Delta = a_{i1} - \sum_{k=2}^n \beta_{ki} a_{i1} > 0.
\]

Furthermore, if \(J(A) = N \), then \(\Delta \geq a_{i1}(1 - d_i l_1) \geq a_{i1}(1 - d_i) \).

Lemma 8 (see [11]). A weakly chained diagonally dominant \(L \)-matrix is a nonsingular \(M \)-matrix.

Lemma 9 (see [11]). Let \(A = (a_{ij}) \) be an \(n \times n \) weakly chained diagonally dominant \(M \)-matrix; then \(B = A^{2n} \) is an \((n-1)\times(n-1)\) weakly chained diagonally dominant \(M \)-matrix; that is, \(B^{-1} = (\beta_{ij}) \) exists and \(\beta_{ij} \geq 0 \) (\(i, j = 2, 3, \ldots, n \)).

Lemma 10 (see [11]). Let \(A = (a_{ij}) \) be an \(n \times n \) weakly chained diagonally dominant \(M \)-matrix, \(A^{-1} = (\alpha_{ij}) \). Then, for \(i \neq j \),

\[
\alpha_{ij} \leq d_i \alpha_{jj} \leq \alpha_{ij}.
\]

Lemma 11 (see [11]). Let \(A = (a_{ij}) \) be an \(n \times n \) row strictly diagonally dominant \(M \)-matrix; then

\[
\Delta \geq a_{i1}(1 - d_i l_1) > a_{i1}(1 - d_i) > 0.
\]

Lemma 12 (see [2]). Let \(A = (a_{ij}) \) be an \(n \times n \) row strictly diagonally dominant \(M \)-matrix; then, for \(A^{-1} = (\alpha_{ij})_{i,j=1}^n \), we have

\[
\frac{1}{a_{ij}} \leq \alpha_{ij} \leq \frac{1}{a_{ij} - \sum_{j \neq i} |a_{ij}| m_{ji}}.
\]
Lemma 13 (see [1]). Let $A = (a_{ij})$ be an $n \times n$ weakly chained diagonally dominant M-matrix, $A^{-1} = (\alpha_{ij})$, and $q = q(A)$, $N = 1, 2, \ldots, n$. Then

$$q \leq \min_{i \in N} |a_{ii}|, \quad q \leq \max_{i \in N} \left\{ \sum_{j \in N} a_{ij} \right\}, \quad q \geq \min_{i \in N} \left\{ \sum_{j \in N} a_{ij} \right\},$$

$$\frac{1}{M} \leq q \leq \frac{1}{m}$$

where

$$M = \max_{i \in N} \left\{ \sum_{j \in N} a_{ij} \right\} = \|A^{-1}\|_{\infty}, \quad m = \min_{i \in N} \left\{ \sum_{j \in N} a_{ij} \right\}.$$ \hspace{1cm} (11)

Now we give an upper bound for $\|A^{-1}\|_{\infty}$ and $q(A)$ of a strictly diagonally dominant M-matrix A by the following theorem.

Theorem 14. Let $A = (a_{ij})$ be an $n \times n$ row strictly diagonally dominant M-matrix, $A^{-1} = (\alpha_{ij})$. Then

$$\|A^{-1}\|_{\infty} \leq \frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| m_{k1}} + \sum_{j=2}^{n} \left[\frac{1}{a_{ij} - \sum_{k=2}^{n} |a_{ik}| m_{k1}} \right] m_{k1} \prod_{j=1}^{i-1} \left(1 - u_{j} l_{j} \right).$$ \hspace{1cm} (13)

Proof. We prove this theorem by induction.

(1) Let $r_{j} = \sum_{i=1}^{n} a_{ij}, B = A^{(2,n)}, M_{A} = \|A^{-1}\|_{\infty}$, and $M_{B} = \|B^{-1}\|_{\infty}$. Then

$$M_{A} = \max \left\{ r_{i} : i \in N \right\},$$

$$M_{B} = \max \left\{ \sum_{j=2}^{n} \beta_{ji} : 2 \leq i \leq n \right\}.$$ \hspace{1cm} (14)

By Lemmas 7, 11, and 12, we know that

$$r_{i} = \alpha_{i1} + \sum_{j=2}^{n} \alpha_{ij}$$

$$= \frac{1}{\Delta} + \sum_{k=2}^{n} \frac{1}{\Delta} \left(-\alpha_{k1} \right)$$

$$= \frac{1}{\Delta} \left(1 + \sum_{k=2}^{n} \left(-\alpha_{k1} \right) \sum_{j=2}^{n} \beta_{kj} \right)$$

$$\leq \frac{1}{\Delta} \left(1 + a_{11} \cdot d_{1} \cdot M_{B} \right) \leq \frac{1}{\Delta} + \frac{d_{1} M_{B}}{1 - d_{1} l_{1}}$$

$$\leq \frac{1}{\Delta} + \frac{M_{B}}{1 - d_{1} l_{1}}$$

$$\leq \frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| m_{k1}} + \frac{M_{B}}{1 - d_{1} l_{1}}.$$ \hspace{1cm} (15)

Let $2 \leq i \leq n$. By (8) and the second equality in (6), we have

$$\sum_{k=2}^{n} \beta_{ik} (-\alpha_{k1}) = \Delta \alpha_{i1} \leq \Delta d_{i} \alpha_{i1} = d_{i} < 1.$$ \hspace{1cm} (16)

From (8) with $2 \leq j \leq n$, we have

$$\alpha_{ij} \leq \beta_{ij} + \alpha_{1j} d_{i} < \beta_{ij} + \alpha_{1j}.$$ \hspace{1cm} (17)

Thus, for $2 \leq i \leq n$, we obtain

$$r_{i} = \alpha_{i1} + \sum_{j=2}^{n} \alpha_{ij}$$

$$\leq d_{i} \alpha_{i1} + \sum_{j=2}^{n} \left(\beta_{ij} + \alpha_{1j} d_{i} \right)$$

$$= d_{i} \alpha_{i1} + \sum_{j=2}^{n} \beta_{ij} + \sum_{j=2}^{n} \alpha_{1j} d_{i}$$

$$\leq r_{i} d_{i} + \sum_{j=2}^{n} \beta_{ij}$$

$$\leq r_{i} d_{i} + \sum_{j=2}^{n} \beta_{ij}$$

$$\leq r_{i} d_{i} + \sum_{j=2}^{n} \beta_{ij}$$

$$\leq r_{i} l_{1} + M_{B}$$

$$\leq \left\{ \frac{1}{\Delta} + \frac{d_{i} M_{B}}{1 - d_{1} l_{1}} \right\} l_{1} + M_{B}$$

$$\leq \frac{l_{1}}{\Delta} + \frac{d_{i} M_{B}}{1 - d_{1} l_{1}} + M_{B}$$

$$\leq \frac{1}{\Delta} + \frac{M_{B}}{1 - d_{1} l_{1}}$$

$$\leq \frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| m_{k1}} + \frac{M_{B}}{1 - d_{1} l_{1}}.$$ \hspace{1cm} (18)

So by (15) and (18), we get

$$\|A^{-1}\|_{\infty} \leq \frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| m_{k1}} + \frac{M_{B}}{1 - d_{1} l_{1}}.$$ \hspace{1cm} (19)

(2) Applying induction with respect to k of $A^{(k,n)}$ in (19) finishes the proof. \hspace{1cm} \Box

From Theorem 14 and Lemma 13, the following theorem can be obtained easily.

Theorem 15. Let $A = (a_{ij})$ be an $n \times n$ row strictly diagonally dominant M-matrix. Then the smallest eigenvalue of A is

$$q(A) \geq \left\{ \frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| m_{k1}} + \frac{M_{B}}{1 - d_{1} l_{1}} \right\}^{-1}.$$ \hspace{1cm} (20)
Theorem 16. Let $A = (a_{ij})$ be an $n \times n$ row strictly diagonally dominant M-matrix. Then the bound in (13) is sharper than that in (3), that is,

$$
\frac{1}{a_{ii} - \sum_{k=2}^{n} |a_{ik}| m_{ki}}
$$

$$
+ \sum_{i=2}^{n} \left[\frac{1}{a_{ii} - \sum_{k \neq i, j \leq n} |a_{ik}| m_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_{ij}} \right]
$$

$$
\leq \frac{1}{a_{ii} (1 - u_{ii})} + \sum_{i=2}^{n} \left[\frac{1}{a_{ii} (1 - u_{ii})} \prod_{j=1}^{i-1} \frac{1}{1 - u_{ij}} \right].
$$

(21)

Proof. Since A is a strictly diagonally dominant matrix, $0 \leq d_k < 1, m_k \leq d_k < 1$, and $1 \leq j \leq n - 1$, then we have

$$
\frac{1}{a_{ii} - \sum_{k=2}^{n} |a_{ik}| m_{ki}} \leq \frac{1}{a_{ii} (1 - u_{ii})}.
$$

(22)

The results follow Lemma 12. Inequality (21) shows that the bound in (13) is better than that in (3).

For all i, $\max_{j \leq n} \{1/(a_{ii} - \sum_{k=2}^{n} |a_{ik}| m_{ki})\} < \max_{i \leq k \leq n} \{1/ a_{ii}(1 - u_{ii}d_i)\}$, we have

$$
\frac{1}{a_{ii} - \sum_{k=2}^{n} |a_{ik}| m_{ki}}
$$

$$
+ \sum_{i=2}^{n} \left[\frac{1}{a_{ii} - \sum_{k \neq i, j \leq n} |a_{ik}| m_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_{ij}} \right]
$$

$$
< \frac{1}{a_{ii} (1 - u_{ii}d_i)} + \sum_{i=2}^{n} \left[\frac{1}{a_{ii} (1 - u_{ii})} \prod_{j=1}^{i-1} \frac{1}{1 - u_{ij}} \right].
$$

(23)

With the help of the above discussions, we give the upper bound for $\|A^{-1}\|_\infty$ of a real strictly α-diagonally dominant M-matrix.

3. Estimation for an Upper Bound for $\|A^{-1}\|_\infty$ of a Strictly α-Diagonally Dominant M-Matrix

We show some notations and lemmas which are necessary to our conclusions.

Lemma 17 (see [12]). Let $A, B \in \mathbb{R}_{\text{non}}^{n \times n}$, $A - B$ be nonsingular, then

$$(A - B)^{-1} = A^{-1} + A^{-1}B(I - A^{-1}B)^{-1}A^{-1}. \quad (24)$$

Lemma 18. Let $A = (a_{ij}) \in \mathbb{R}_{\text{non}}^{n \times n}$ be a strictly diagonal dominant M-matrix. If $B = (b_{ij}) \in \mathbb{R}_{\text{non}}^{n \times n}$, with

$$
\|A^{-1}B\|_\infty \leq \max_{1 \leq i \leq n} \|B\|_\infty,
$$

(25)

and if

$$
\kappa_0 < \frac{1}{\|B\|_\infty},
$$

(26)

then $\|A^{-1}B\|_\infty < 1$, where

$$
\kappa_0 = \frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| m_{k1}}
$$

$$
+ \sum_{i=2}^{n} \left[\frac{1}{a_{ii} - \sum_{k \neq i, j \leq n} |a_{ik}| m_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_{ij}} \right].
$$

(27)

Proof. By Theorem 14, we get

$$
\|A^{-1}B\|_\infty \leq \|A^{-1}\|_\infty \cdot \|B\|_\infty \leq \max_{1 \leq i \leq n} \kappa_0 \cdot \|B\|_\infty.
$$

(28)

It is easy to see that $\|A^{-1}B\|_\infty < 1$, if

$$
\kappa_0 < \frac{1}{\|B\|_\infty},
$$

(29)

where

$$
\kappa_0 = \frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| m_{k1}}
$$

$$
+ \sum_{i=2}^{n} \left[\frac{1}{a_{ii} - \sum_{k \neq i, j \leq n} |a_{ik}| m_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_{ij}} \right].
$$

(30)

Lemma 19 (see [12]). If $\|A^{-1}\|_\infty < 1$, then $I - A$ is nonsingular and

$$
\|I - A\|_\infty < \frac{1}{1 - \|A\|_\infty}.
$$

(31)

Theorem 20. Let $A = (a_{ij}) \in \mathbb{R}_{\text{non}}^{n \times n}$ be a strictly α-diagonal dominant matrix, $\alpha \in (0, 1]$, and A be an M-matrix. If, for those $i \in N_1 \subset N$, $R_i(A) > C_i(A)$, and $\kappa_1 < 1/ \max_{1 \leq i \leq n} \alpha(R_i(A) - C_i(A))$, then

$$
\|A^{-1}\|_\infty \leq \frac{k_1}{1 - \kappa_1 \max_{1 \leq i \leq n} \alpha(R_i(A) - C_i(A))},
$$

(32)

where

$$
k_1 = \frac{1}{\beta_1 - \sum_{k=2}^{n} |a_{1k}| m_{k1}}
$$

$$
+ \sum_{i=2}^{n} \left[\frac{1}{\beta_i - \sum_{k \neq i, j \leq n} |a_{ik}| m_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_{ij}} \right],
$$

$$
\beta_i = \max \{a_{ii}, a_{ii} + \alpha (R_i(A) - C_i(A))\}, \quad i = 1, 2, \ldots, n.
$$

(33)

Proof. Note that $R_i(A) > C_i(A)$. Then

$$
|a_{ii}| > (1 - \alpha)R_i(A) + \alpha C_i(A)
$$

$$
= R_i(A) - \alpha (R_i(A) - C_i(A)).
$$

(34)
So we can split A, such that $A = B - C$, where $B = (b_{ij})$ and $C = (c_{ij})$,

\[
\begin{align*}
b_{ij} &= \begin{cases} a_{ij} + \alpha(R_i(A) - C_i(A)) & i = j, R_i(A) > C_i(A) \\
a_{ij} & \text{others,}
\end{cases} \\
c_{ij} &= \begin{cases} \alpha(R_i(A) - C_i(A)) & i = j, R_i(A) > C_i(A) \\
0 & \text{others.}
\end{cases}
\end{align*}
\] (35)

We know $b_{ii} = a_{ii} + \alpha(R_i(A) - C_i(A)) > R_i(A) = R_i(B)$ and A is an M-matrix. Thus, B is a strictly diagonal dominant M-matrix; hence, $B^{-1} > 0$. Let $\beta_i = \max\{a_{ii}, a_{ii} + \alpha(R_i(A) - C_i(A))\}, i = 1, 2, \ldots, n$. If $\kappa_i < 1/\max_{1 \leq i \leq n}(R_i(A) - C_i(A))$, by Lemma 18, we get $\|B^{-1}\|_\infty \leq 1$. By Lemmas 17 and 19 and Theorem 14, we can obtain

\[
\begin{align*}
\|B^{-1}\|_\infty &\leq \frac{1}{b_{ii} - \sum_{k=2}^{n} |a_{ik}| m_{ki}} \\
&\quad + \sum_{j=2}^{n} \left[\frac{1}{b_{ii} - \sum_{k=2}^{n} |a_{ik}| m_{ki}} \left(\frac{1}{1 - u_{ij}} \right)^{i-1} \right] \\
&\quad \leq \frac{1}{\beta_i - \sum_{k=2}^{n} |a_{ik}| m_{ki}} \\
&\quad + \sum_{j=2}^{n} \left[\frac{1}{\beta_i - \sum_{k=2}^{n} |a_{ik}| m_{ki}} \left(\frac{1}{1 - u_{ij}} \right)^{i-1} \right].
\end{align*}
\] (36)

Let $\kappa_1 = 1/(\beta_1 - \sum_{k=2}^{n} |a_{ik}| m_{ki}) + \sum_{j=2}^{n} (1/(\beta_1 - \sum_{k=2}^{n} |a_{ik}| m_{ki})) [1/(1 - u_{ij})]^{i-1}$. Then

\[
\|B^{-1}C\|_\infty < \kappa_1 \max_{1 \leq i \leq n} |c_{ij}|
\] (37)

\[
< \kappa_1 \max_{1 \leq i \leq n} (R_i(A) - C_i(A)).
\]

Further, we have

\[
\|A^{-1}\|_\infty = \|(B - C)^{-1}\|_\infty
\]

\[
= \|B^{-1} + B^{-1}C(I - B^{-1}C)^{-1}B^{-1}\|_\infty
\]

\[
\leq \|B^{-1}\|_\infty + \|B^{-1}C\|_\infty \cdot \|(I - B^{-1}C)^{-1}\|_\infty \cdot \|B^{-1}\|_\infty
\]

\[
\leq \|B^{-1}\|_\infty + \frac{\|B^{-1}C\|_\infty}{1 - \|B^{-1}C\|_\infty} \|B^{-1}\|_\infty
\]

\[
= \frac{1}{1 - \|B^{-1}C\|_\infty} \|B^{-1}\|_\infty
\]

\[
\leq \frac{\kappa_1}{1 - \kappa_1 \max_{1 \leq i \leq n} (R_i(A) - C_i(A))},
\] (38)

where

\[
\kappa_1 = \frac{1}{\beta_1 - \sum_{k=2}^{n} |a_{ik}| m_{ki}} + \sum_{j=2}^{n} \left[\frac{1}{\beta_1 - \sum_{k=2}^{n} |a_{ik}| m_{ki}} \left(\frac{1}{1 - u_{ij}} \right)^{i-1} \right],
\] (39)

\[
\beta_i = \max\{a_{ii}, a_{ii} + \alpha(R_i(A) - C_i(A))\},
\]

\[
i = 1, 2, \ldots, n.
\]

The proof is complete. \hfill \square

4. Examples

We illustrate our results by the following two examples.

(1) Consider the bound for $\|A^{-1}\|_\infty$ of a strictly diagonal dominant matrix A, where

\[
A = \begin{pmatrix} 10 & -1 & -1 & -1 & -1 \\ -1 & 10 & -1 & -1 & -1 \\ -1 & -1 & 10 & -1 & -1 \\ -1 & -1 & -1 & 10 & -1 \\ -1 & -1 & -1 & -1 & 10 \end{pmatrix}.
\] (40)

Direct calculation by MATLAB R2010a gives

\[
\|A^{-1}\|_\infty = 0.1669,
\]

\[
\|A^{-1}\|_\infty \leq 214.0217 \text{ (by Theorem 3.3 in [8])}
\]

\[
\|A^{-1}\|_\infty \leq 175.9183 \text{ (by (2))}
\] (41)

\[
\|A^{-1}\|_\infty \leq 9.2041 \text{ (by (3))}
\]

\[
\|A^{-1}\|_\infty \leq 6.5634 \text{ (by Theorem 14 (13))}.
\]

It is obvious that the bound of Theorem 14 of this paper is better than other known ones. Furthermore, we can estimate $q(A)$ by Theorem 15.

(2) Consider the bound for $\|A^{-1}\|_\infty$ of a strictly α-diagonal dominant matrix A for $\alpha = 0.5$,

\[
A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -0.5 & 0 & 2 \end{pmatrix},
\] (42)

\[
A^{-1} = \begin{pmatrix} 0.8889 & 0.4444 & 0.6667 \\ 0.5556 & 0.7778 & 0.6667 \\ 0.2222 & 0.1111 & 0.6667 \end{pmatrix}.
\]

Note that

\[
\|A^{-1}\|_\infty \approx 2.
\] (43)

We know that A is not a strictly diagonal dominant matrix, and the bound of $\|A^{-1}\|_\infty$ cannot be obtained by (2) or (3), but it can be estimated by (32) in Theorem 20.
Split the matrix A such that $A = B - C$, where $B = (b_{ij})$ and $b_{11} = a_{11} + \alpha (R_1(A) - C_1(A)) = 2 + 0.5 \times (2 - 1.5) = 2.25$, $b_{22} = a_{22} + \alpha (R_2(A) - C_2(A)) = 2 + 0.5 \times (2 - 1) = 2.5$. Then

$$B = \begin{pmatrix} 2.25 & -1 & -1 \\ -1 & 2.5 & -1 \\ -0.5 & 0 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 0.25 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \quad (44)$$

The bound for $\|A^{-1}\|_\infty$ can be estimated by (13) in Theorem 14 and (32) in Theorem 20 as follows:

$$\|A^{-1}\|_\infty \leq 11.4259. \quad (45)$$

Conflict of Interests

There is no conflict of interests regarding the publication of this paper.

Acknowledgment

This paper is supported by the NNSF of China (11171371, 11361047) and the NSF of Qinghai Province (2012-Z-910).

References

Submit your manuscripts at
http://www.hindawi.com