Research Article

On Hermite-Hadamard Type Inequalities for Riemann-Liouville Fractional Integrals via Two Kinds of Convexity

Feixiang Chen

School of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou, Chongqing 404000, China

Correspondence should be addressed to Feixiang Chen; cfx2002@126.com

Received 16 February 2014; Revised 20 May 2014; Accepted 3 June 2014; Published 15 June 2014

Academic Editor: Annamaria Barbagallo

Copyright © 2014 Feixiang Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We obtain some Hermite-Hadamard type inequalities for products of two m-convex functions via Riemann-Liouville integrals. The analogous results for (α, m)-convex functions are also established.

1. Introduction

If $f : I \to \mathbb{R}$ is a convex function on the interval I, then for any $a, b \in I$ with $a \neq b$ we have the following double inequality:

$$f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_{a}^{b} f(t) \, dt \leq \frac{f(a) + f(b)}{2}. \quad (1)$$

This remarkable result is well known in the literature as the Hermite-Hadamard inequality.

Since then, some refinements of the Hermite-Hadamard inequality for convex functions have been extensively obtained by a number of authors (e.g., [1–7]).

In [8], Toader defined the concept of m-convexity as follows.

Definition 1 (see [8]). The function $f : [0, b] \to \mathbb{R}$ is said to be m-convex, where $m \in (0, 1]$, if for every $x, y \in [0, b]$ and $t \in (0, 1)$ one has

$$f \left(tx + m(1 - t) y \right) \leq tf(x) + m(1 - t)f(y). \quad (2)$$

In [3], Dragomir and Toader proved the following inequality of Hermite-Hadamard type for m-convex functions.

Theorem 2 (see [3]). Let $f : [0, \infty) \to \mathbb{R}$ be a m-convex function with $m \in (0, 1]$; if $0 \leq a < b < \infty$ and $f \in L_{1}[a, b]$, then one has the following inequality:

$$\frac{1}{b - a} \int_{a}^{b} f(x) \, dx \leq \min \left\{ \frac{f(a) + mf(b/m)}{2}, \frac{f(b) + mf(a/m)}{2} \right\}. \quad (3)$$

The notion of m-convexity has been further generalized in [9] as it is stated in the following definition.

Definition 3 (see [9]). The function $f : [0, b] \to \mathbb{R}$ is said to be (α, m)-convex, where $(\alpha, m) \in [0, 1]^{2}$, if for every $x, y \in [0, b]$ and $t \in [0, 1]$ one has

$$f \left(tx + m(1 - t) y \right) \leq t^{\alpha} f(x) + m(1 - t^{\alpha}) f(y). \quad (4)$$

In [10], Pachpatte established two new Hermite-Hadamard type inequalities for products of convex functions as follows.
Theorem 4 (see [10]). Let f and g be real-valued, nonnegative, and convex functions on $[a, b]$. Then

$$\frac{1}{b-a} \int_a^b f(x)g(x)\,dx \leq \frac{1}{3} M(a, b) + \frac{1}{6} N(a, b),$$

where $M(a, b) = f(a)g(a) + f(b)g(b)$ and $N(a, b) = f(a)g(b) + f(b)g(a)$.

Some Hermite-Hadamard type inequalities for products of two m-convex and (a, m)-convex functions are established in [11].

Theorem 5 (see [11]). Let $f, g : [0, \infty) \to [0, \infty)$ be functions such that $fg \in L_1[a,b]$, where $0 \leq a < b < \infty$. If f is m_1-convex and g is m_2-convex on $[a, b]$ for some fixed $m_1, m_2 \in (0, 1]$, then

$$\frac{1}{b-a} \int_a^b f(x)g(x)\,dx \leq \min \{M_1, M_2\},$$

where

$$M_1 = \frac{1}{3} \left[f(a)g(a) + m_1m_2f\left(\frac{b}{m_1}\right)g\left(\frac{b}{m_2}\right) \right] + \frac{1}{6} \left[m_2f(a)g\left(\frac{b}{m_2}\right) + m_1f\left(\frac{b}{m_1}\right)g(a) \right],$$

$$M_2 = \frac{1}{3} \left[f(b)g(b) + m_1m_2f\left(\frac{a}{m_1}\right)g\left(\frac{a}{m_2}\right) \right] + \frac{1}{6} \left[m_2f(b)g\left(\frac{a}{m_2}\right) + m_1f\left(\frac{a}{m_1}\right)g(b) \right].$$

Theorem 6 (see [11]). Let $f, g : [0, \infty) \to [0, \infty)$ be functions such that $fg \in L_1[a,b]$, where $0 \leq a < b < \infty$. If f is (α_1, m_1) convex and g is (α_2, m_2)-convex on $[a, b]$ for some fixed $\alpha_1, m_1, \alpha_2, m_2 \in (0, 1]$, then

$$\frac{1}{b-a} \int_a^b f(x)g(x)\,dx \leq \min \{N_1, N_2\},$$

where

$$N_1 = \frac{f(a)g(a)}{\alpha_1 + \alpha_2 + 1} + m_2 \left[\frac{1}{1 + \alpha_1} - \frac{1}{1 + \alpha_1 + \alpha_2} \right] f\left(\frac{b}{m_2}\right) g\left(\frac{b}{m_1}\right),$$

$$N_2 = \frac{f(b)g(b)}{\alpha_1 + \alpha_2 + 1} + m_1 \left[\frac{1}{1 + \alpha_1} - \frac{1}{1 + \alpha_1 + \alpha_2} \right] f\left(\frac{a}{m_1}\right) g\left(\frac{a}{m_2}\right).$$

Some new integral inequalities involving two nonnegative and integrable functions that are related to the Hermite-Hadamard type are also proposed by many authors. In [12], Pachpatte established some Hermite-Hadamard type inequalities involving two log-convex functions. An analogous result for s-convex functions is obtained by Kirmaci et al. in [13]. In [14], Sarikaya et al. presented some integral inequalities for two h-convex functions.

It is remarkable that Sarikaya et al. [15] proved the following interesting inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional integrals.

Theorem 7 (see [15]). Let $f : [a, b] \to \mathbb{R}$ be a positive function with $a < b$ and $f \in L_1[a,b]$. If f is a convex function on $[a, b]$, then the following inequalities for fractional integrals hold:

$$f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)^\alpha} \left[f_a^\alpha f (b) + f_b^\alpha f (a) \right] \leq \frac{f(a) + f(b)}{2},$$

with $a > 0$.

We remark that the symbols f_a^α and $f_b^\alpha f$ denote the left-sided and right-sided Riemann-Liouville fractional integrals of the order $\alpha \geq 0$ with $a \geq 0$ which are defined by

$$f_a^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) \, dt, \quad x > a,$$

$$f_b^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) \, dt, \quad x < b,$$

respectively. Here, $\Gamma(\alpha)$ is the Gamma function defined by $\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} \, dt$.

In this paper, we obtain some new Hermite-Hadamard type inequalities for products of two \(m \)-convex functions via Riemann-Liouville integrals. The analogous results for \((a, m)\)-convex functions are also given.

2. Inequalities for Products of Two Functions for Riemann-Liouville Fractional Integrals

Theorem 8. Let \(f, g : [0, \infty) \to [0, \infty) \), \(0 \leq a < b \), be functions such that \(fg \in L_1[a, b] \). If \(f \) is \(m_1 \)-convex and \(g \) is \(m_2 \)-convex on \([a, b]\) with \(m_1, m_2 \in (0, 1] \), then one has

\[
\frac{\Gamma(\alpha)}{(b-a)^\alpha} f_a^\alpha f (b) g(b) \leq \frac{f(a) g(a)}{\alpha + 2} + m_2 \frac{f(a) g\left(\frac{b}{m_2}\right)}{(\alpha+1)(\alpha+2)} \int_0^1 t^\alpha (1-t)^{\alpha-1} dt
\]

(13)

Multiplying both sides of the above inequality by \(t^{\alpha-1} \) and then integrating the resulting inequality with respect to \(t \) over \([0, 1]\), we obtain

\[
\int_0^1 t^{\alpha-1} f \left(ta + (1-t) b \right) g \left(ta + (1-t) b \right) dt
\]

\[
= \int_b^a \left(\frac{b-u}{b-a} \right)^{\alpha-1} f(u) g(u) \frac{du}{a-b}
\]

\[
= \frac{\Gamma(\alpha)}{(b-a)^\alpha} f_b^\alpha f (a) g(b)
\]

\[
\leq f(a) g(a) \int_0^1 t^{\alpha+1} dt + m_2 f(a) g\left(\frac{b}{m_2}\right) \int_0^1 t^\alpha (1-t)^{\alpha-1} dt
\]

\[
+ m_1 g(a) \int_0^1 t^{\alpha-1} dt + m_2 g\left(\frac{b}{m_2}\right) \int_0^1 t^\alpha (1-t)^2 dt.
\]

(16)

Analogously, we obtain

\[
\int_0^1 f \left((1-t) a + tb \right) g \left((1-t) a + tb \right) dt
\]

\[
\leq t^2 f(b) g(b) + m_2 f(b) g\left(\frac{a}{m_2}\right) t (1-t)
\]

\[
+ m_1 g(b) f\left(\frac{a}{m_1}\right) t (1-t)
\]

\[
+ m_1 m_2 f\left(\frac{a}{m_1}\right) g\left(\frac{a}{m_2}\right) (1-t)^2.
\]

(17)

From (14), we get

\[
f \left(ta + (1-t) b \right) \leq f(a) + m_1 f\left(\frac{b}{m_1}\right) t (1-t)
\]

\[
g \left(ta + (1-t) b \right) \leq g(a) + m_2 g\left(\frac{b}{m_2}\right) (1-t)^2.
\]

(14)
\[\leq f(b)g(b) \int_{0}^{1} t^{\alpha+1} dt + m_2 f(b) \int_{0}^{1} t^\alpha (1-t) dt \\
+ m_1 g(b) \int_{0}^{1} t^\alpha (1-t) dt \\
+ m_1 m_2 f \left(\frac{a}{m_1} \right) g \left(\frac{a}{m_2} \right) \int_{0}^{1} t^{\alpha-1} (1-t)^2 dt \]
\[= \frac{f(b)g(b)}{\alpha + 2} + \frac{m_2}{(\alpha + 1)(\alpha + 2)} f(b) g \left(\frac{a}{m_2} \right) \]
\[+ \frac{m_1}{(\alpha + 1)(\alpha + 2)} g(b) f \left(\frac{a}{m_1} \right) \]
\[+ \frac{2m_1 m_2}{\alpha(\alpha + 1)(\alpha + 2)} f \left(\frac{a}{m_1} \right) g \left(\frac{a}{m_2} \right). \] (18)

which completes the proof. \(\square\)

Corollary 9. With assumptions in Theorem 8, if \(\alpha = 1\), one gets

\[\frac{1}{b-a} \int_{a}^{b} f(x) g(x) \, dx \]
\[\leq \frac{1}{5} \left[f(a) g(a) + m_1 m_2 f \left(\frac{b}{m_1} \right) g \left(\frac{b}{m_2} \right) \right] \]
\[+ \frac{1}{6} \left[m_2 f(a) g \left(\frac{b}{m_2} \right) + m_1 f \left(\frac{b}{m_1} \right) g(a) \right], \] (19)

which is just the result in Theorem 5.

Corollary 10. With assumptions in Theorem 8, one gets

\[\frac{\Gamma(\alpha)}{(b-a)^{\alpha}} \left[\int_{a}^{b} f(b) g(b) + \int_{a}^{b} f(a) g(a) \right] \]
\[\leq \frac{1}{2(\alpha + 2)} \left[f(a) g(a) + f(b) g(b) \right] \]
\[+ \frac{m_2}{2(\alpha + 1)(\alpha + 2)} \left[f(b) g \left(\frac{a}{m_2} \right) + f(a) g \left(\frac{b}{m_2} \right) \right]. \] (20)

Corollary 11. With assumptions in Theorem 8, if one chooses \(g: [a, b] \to \mathbb{R}\) as \(g(x) = 1\) and \(m_2 = 1\) for all \(x \in [a, b]\), one has

\[\frac{\Gamma(\alpha)}{(b-a)^{\alpha}} \left[\int_{a}^{b} f(b) g(b) + \int_{a}^{b} f(a) g(a) \right] \]
\[\leq \frac{1}{\alpha_1 + \alpha_2 + \alpha} f(a) g(a) \]
\[+ \frac{\alpha_2}{(\alpha + \alpha_1)(\alpha + \alpha_1 + \alpha_2)} m_2 f(a) g \left(\frac{b}{m_2} \right) \]
\[+ \frac{\alpha_1}{(\alpha + \alpha_2)(\alpha + \alpha_1 + \alpha_2)} m_1 g(a) f \left(\frac{b}{m_1} \right) \]
\[+ \frac{1}{\alpha - 1} \left(- \frac{1}{\alpha + \alpha_1} + \frac{1}{\alpha + \alpha_1 + \alpha_2} \right) \]
\[\times m_1 m_2 f \left(\frac{b}{m_1} \right) g \left(\frac{b}{m_2} \right). \] (21)

Theorem 12. Let \(f, g: [0, \infty) \to [0, \infty)\), \(0 \leq a < b\), be functions such that \(fg \in L^1_{[a, b]}\). If \(f\) is \((\alpha_1, m_1)\)-convex and \(g\) is \((\alpha_2, m_2)\)-convex on \([a, b]\) with \((\alpha_1, m_1), (\alpha_2, m_2) \in (0, 1)^2\), respectively, then one has

\[\frac{\Gamma(\alpha)}{(b-a)^{\alpha}} \int_{a}^{b} f(b) g(b) \]
\[\leq \frac{1}{\alpha_1 + \alpha_2 + \alpha} f(a) g(a) \]
\[+ \frac{\alpha_2}{(\alpha + \alpha_1)(\alpha + \alpha_1 + \alpha_2)} m_2 f(a) g \left(\frac{b}{m_2} \right) \]
\[+ \frac{\alpha_1}{(\alpha + \alpha_2)(\alpha + \alpha_1 + \alpha_2)} m_1 g(a) f \left(\frac{b}{m_1} \right) \]
\[+ \frac{1}{\alpha - 1} \left(- \frac{1}{\alpha + \alpha_1} + \frac{1}{\alpha + \alpha_1 + \alpha_2} \right) \]
\[\times m_1 m_2 f \left(\frac{b}{m_1} \right) g \left(\frac{b}{m_2} \right). \] (22)
Proof. Since \(f \) is \((\alpha_1, m_1)\)-convex and \(g \) is \((\alpha_2, m_2)\)-convex on \([a, b]\), then for \(t \in [0, 1] \) we get

\[
\begin{align*}
 f(ta + (1-t)b) & \leq \ell^{\alpha_1} f(a) + m_1 f(a) + m_2 f(a) g \left(\frac{b}{m_2} \right) (1-\ell^{\alpha_2}), \\
 g(ta + (1-t)b) & \leq \ell^{\alpha_2} g(a) + m_2 g(a) f \left(\frac{b}{m_1} \right) (1-\ell^{\alpha_1}).
\end{align*}
\]

From (23), we get

\[
\begin{align*}
 f(ta + (1-t)b) g(ta + (1-t)b) & \leq \ell^{\alpha_1+\alpha_2} f(a) g(a) + m_1 f(a) g \left(\frac{b}{m_2} \right) (1-\ell^{\alpha_2}) + m_1 g(a) f \left(\frac{b}{m_1} \right) (1-\ell^{\alpha_1}) + m_1 m_2 f \left(\frac{b}{m_1} \right) g \left(\frac{b}{m_2} \right) (1-\ell^{\alpha_2}) (1-\ell^{\alpha_1}).
\end{align*}
\]

Multiplying both sides of above inequality by \(\ell^{\alpha_1-1} \) and then integrating the resulting inequality with respect to \(t \) over \([0, 1]\), we obtain

\[
\begin{align*}
\int_0^1 \ell^{\alpha_1-1} f(ta + (1-t)b) g(ta + (1-t)b) \, dt & = \int_0^1 \ell^{\alpha_1-1} f(u) g(u) \, du + \frac{\Gamma(\alpha_1)}{(b-a)^{\alpha_1}} f_b^a f(a) g(b) \\
& \leq f(a) g(a) \int_0^1 \ell^{\alpha_1+\alpha_2+\alpha_1-1} \, dt + m_2 f(a) g \left(\frac{b}{m_2} \right) \int_0^1 \ell^{\alpha_1+\alpha_2+\alpha_1-1} \, dt \\
& \quad + m_1 g(a) f \left(\frac{b}{m_1} \right) \int_0^1 \ell^{\alpha_1+\alpha_2+\alpha_1-1} \, dt + m_1 m_2 f \left(\frac{b}{m_1} \right) g \left(\frac{b}{m_2} \right) \int_0^1 \ell^{\alpha_1+\alpha_2+\alpha_1-1} \, dt.
\end{align*}
\]

Similarly, we have

\[
\begin{align*}
 f((1-t)a + tb) g((1-t)a + tb) & \leq \ell^{\alpha_1+\alpha_2} f(b) g(b) + m_2 f(b) g \left(\frac{a}{m_2} \right) (1-\ell^{\alpha_2}) + m_1 g(b) f \left(\frac{a}{m_1} \right) (1-\ell^{\alpha_1}) \\
& \quad + m_1 m_2 f \left(\frac{a}{m_1} \right) g \left(\frac{a}{m_2} \right) (1-\ell^{\alpha_1})(1-\ell^{\alpha_2}) + m_1 g(b) f \left(\frac{a}{m_1} \right) g \left(\frac{a}{m_2} \right) (1-\ell^{\alpha_1})(1-\ell^{\alpha_2}) \\
& \quad + m_1 m_2 f \left(\frac{a}{m_1} \right) g \left(\frac{a}{m_2} \right) (1-\ell^{\alpha_1})(1-\ell^{\alpha_2}) \\
& \quad + m_1 m_2 f \left(\frac{a}{m_1} \right) g \left(\frac{a}{m_2} \right) (1-\ell^{\alpha_1})(1-\ell^{\alpha_2})
\end{align*}
\]
\[
\Gamma (\alpha) \left(\frac{1}{b-a} \left[f_a b (b) + f_a a (a) \right] \right) \\
\leq \frac{1}{\alpha_1 + \alpha_2 + \alpha} \left[f(a) g(a) + f(b) g(b) \right] \\
+ \frac{\alpha_2 m_2}{(\alpha + \alpha_1 + \alpha_2)} \\
+ \frac{\alpha_1 m_1}{(\alpha + \alpha_1 + \alpha_2)} \\
\times m_1 m_2 \left[f \left(\frac{a}{m_1} \right) g \left(\frac{a}{m_2} \right) + f \left(\frac{b}{m_1} \right) g \left(\frac{b}{m_2} \right) \right].
\]
\]

(27)

We get the desired result.

Corollary 13. With assumptions in Theorem 12, if \(\alpha = 1 \), then

\[
\frac{1}{b-a} \int_a^b f(x) g(x) \, dx \\
\leq \frac{f(a) g(a)}{\alpha_1 + \alpha_2 + 1} + m_2 \left[\frac{1}{1 + \alpha_1} - \frac{1}{1 + \alpha_1 + \alpha_2} \right] \\
\times f(a) g \left(\frac{b}{m_1} \right) \\
+ m_1 \left[\frac{1}{1 + \alpha_2} - \frac{1}{1 + \alpha_1 + \alpha_2} \right] f \left(\frac{b}{m_1} \right) g(a) \\
+ m_1 m_2 \left[\frac{1}{1 + \alpha_1} - \frac{1}{1 + \alpha_1 + \alpha_2} + \frac{1}{1 + \alpha_1 + \alpha_2} \right] \\
\times f \left(\frac{b}{m_1} \right) g \left(\frac{b}{m_2} \right),
\]

(28)

which is just the result in Theorem 6.

Corollary 14. With assumptions in Theorem 12, one gets

\[
\frac{1}{(b-a)^\alpha} \left[\int_a^b f(b) g(b) + f(a) g(a) \right] \\
\leq \frac{1}{\alpha_1 + \alpha_2 + \alpha} \left[f(a) g(a) + f(b) g(b) \right] \\
+ \frac{\alpha_2 m_2}{(\alpha + \alpha_1 + \alpha_2)} \\
+ \frac{\alpha_1 m_1}{(\alpha + \alpha_1 + \alpha_2)} \\
\times m_1 m_2 \left[f \left(\frac{a}{m_1} \right) g \left(\frac{a}{m_2} \right) + f \left(\frac{b}{m_1} \right) g \left(\frac{b}{m_2} \right) \right].
\]

(29)

3. Conclusion

In this paper, we obtain some new Hermite-Hadamard type inequalities for products of two m-convex functions via Riemann-Liouville integrals. The analogous results for (a, m)-convex functions are also established. An interesting topic is whether we can use the methods in this paper to establish the Hermite-Hadamard inequalities for products of two convex functions on the coordinates via Riemann-Liouville integrals.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This work is supported by Youth Project of Chongqing Three Gorges University of China (no. 13QN11).

References

Submit your manuscripts at http://www.hindawi.com