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Abstract. 
In this work an HIV-1 infection model with nonlinear incidence rate and distributed intracellular delays and with humoral immunity is investigated. The disease transmission function is assumed to be
governed by general incidence rate . The intracellular delays describe the time between viral entry into a target cell and the production of new virus particles and the time between infection of a cell and the emission of viral particle. Lyapunov functionals are constructed  and LaSalle  invariant principle for delay differential equation is used to establish the global asymptotic stability of the infection-free equilibrium, infected equilibrium without  cells response, and infected equilibrium with  cells response. The results obtained show that the global dynamics of the system depend on both the properties of the general incidence function and the value of certain threshold parameters  and  which depends on the delays. 




1. Introduction
Immunity can be broadly categorized into adaptive immunity and innate immunity. Adaptive immunity is mediated by clonally distributed  and  lymphocytes, namely, humoral and cellular immunity, and is characterized by specificity and memory. The humoral immunity plays an important role in antiviral defence by attacking virus. A basic mathematical model describing HIV-1 infection dynamics model with humoral immunity was introduced by Murase et al. [1] as
						
					where , , , and  represent the densities of uninfected cells, infected cells, virus, and  cells at time , respectively.  and  are the birth and death rate constants of uninfected cells.  is the infection rate,  is the average number of virus particles produced over the lifetime of a single infected cells, and  is the death rate of infected cells;  is the death rate constant of the virus,  and  are the recruited rate and death rate constants of  cells, and  is the  cells neutralization rate. Mathematical models for virus dynamics with antibody immune response has drawn much attention of researchers (see, e.g., [1–13] and the reference therein). Recently many studies have been done to improve the model (1) by introducing delays and changing the incidence rate according to different practical background. These studies used different delayed models with different forms of incidence rate; see, for example, [6, 9–11] for discrete delays and [5, 13] for distributed delays.
In the present paper, motivated by the works of [1, 5, 13], we propose the following model with a general incidence rate and distributed delays and humoral immunity:
						
					where the parameters in system (2) have the same meanings as in system (1).  is the general incidence rate. It is assumed in (2) that the uninfected cells that are contacted by the virus particles at time  become infected cells at time , where  is distributed according to  over the interval , where  is the limit superior of this delay. The constant    is assumed to be the death rate for infected cells during time period  but not yet virus-producing cells and the term  denotes the surviving rate of infected cells during the delay period. On the other hand, it is assumed in (2) that a cell infected at time  starts to yield new infectious virus at time , where  is distributed according to a probability distribution  over the interval  and  is limit superior of this delay. The factor  accounts for the probability of surviving infected cells during the time period of delay, where  is constant. In (2), the probability distribution functions , , are assumed to satisfy ,  and
						
					The function  is assumed to be continuously differentiable in the interior of  and satisfies the following hypotheses:(H 1), for all ,(H 2), for all  and ,(H 3), for all  and .(H 4), for all .
The biological meaning of hypothesis (H 1) to (H 4) is given in [10].
Note the following.
The incidence rate  given in (2) generalizes many common forms such as [5, 9, 13] (see Section 6).
The distributed delay is more general than the discrete one and it is more adapted to biological phenomena.
 or  can be infinity.
The present paper is organized as follows. In Section 2, we establish the nonnegativity and boundedness of solutions and we derived the basic reproduction ratios for viral infection and humoral immune response  and , respectively. In Section 3, the existence of a possible three positive equilibria, an infection-free equilibrium , an infected equilibrium without  cells response , and an infected equilibrium with  cells response , is established. In Sections 4 and 5, we show that the global asymptotic stability of these equilibria depend only on the basic reproduction numbers under some hypotheses on the incidence function. In Section 6, some examples are given. A brief discussion is given in the last section to conclude this paper.
2. Preliminary Results
The initial conditions of (2) are given as
						
					where , here , with ; denotes the Banach space of continuous functions mapping the interval  into .
Theorem 1.  Under the initial conditions (4), all solutions  of system (2) are nonnegative on  and bounded.
Proof. Let us put system (2) in a vector form by setting  andwhere  and . It is easy to check that , . Due to [14, Lemma  2], any solution of (2) with , say , is such that  for all . Next we show that the solutions are also bounded. It follows from the first equation of (2) that . This implies , so  is bounded.
Let
							
						Then
							
						where  and thus . This implies that  is bounded and so is . Thus, there exists a  such that . It follows from the third equations in (2) that
							
						and consequently  is bounded. On the other hand, let
							
						Then,
							
						We have , where ; this implies that  is bounded so also for . Finally, all the solutions of system (2) are bounded. This completes the proof.
To simplify the notations we note that
						
					Global behaviour of system (2) may depend on the basic reproduction numbers  and  given by
						
					where  and
						
					with, . Here,  and  are the basic reproduction ratios for viral infection and humoral immune response of system (2), respectively. Based on the hypotheses (H 2) and (H 3) it is clear that .
3. The Existence of Positive Equilibria
In this section we prove the existence of positive equilibrium. The system (2) always has an infection-free equilibrium . For other possible equilibriums, we have the following theorem.
Theorem 2.  Suppose that the conditions (H1)–(H3) are satisfied. (1)If , then system (2) has an infected equilibrium without  cells response of the form  with .(2)If , then system (2) has an infected equilibrium with  cells response of the form  with .
Proof. The steady states of system (2) satisfy the following equations:
							
						From the last equation of (14), we have
							
						Equations (15) has two possible solutions,  or .
If , (14)3 yields .
By substituting this into (14)2, we obtain that
							
						which gives  or .
If , we obtain the infection-free equilibrium .
If , (14)1 and (14)2 yields 
							
						By substituting this into (14)3, we obtain
							
						Since  and , this implies that .
Now, from (H 1), (H 2), and (H 3), the following functional
							
						satisfies 
							
						Hence, we obtain the infected equilibrium without  cells response
							
						where  is the unique zero in  of  and  and  are given by (17) and (18).
If , from (15), we obtain 
							
						and from the first and second equation of (14), we have 
							
						By substituting this into (14)3, we obtain 
							
						which implies that .
Now, from (14)1 the functional
							
						satisfies
							
						Hence, we obtain the infected equilibrium with  cells response , where  is the unique zero of  in  and  and  are given by (23) and (24), respectively. This completes the proof.
Remark 3. From (19) we have  if . So, as  is increasing in the interval , we deduces that  and consequently .
4. Global Stability of the Infection-Free Equilibrium
In this section, we study the global stability of the infection-free equilibrium  of system (2).
Theorem 4.  Suppose that the conditions (H1)–(H3) are satisfied. Then the infection-free equilibrium  of system (2) is globally asymptotically stable if .
Proof. Define a Lyapunov functional:
							
						where  and  are given in (11).
It is obvious that  is defined and continuously differentiable for all , and  at . The time derivative of  along the solutions of system (2) is given by
							
						with , , , , , , and .
At , using , we obtain
							
						From (H 2) and (H 3) we have, respectively,
							
						Then,  ensures that , for all ,  holds only for , , and from (2)2 we obtain . It follows that  is the largest invariant set in . It follows from LaSalle invariance principle [15] that the infection-free equilibrium  is globally asymptotically stable.
5. Global Stability of the Infected Equilibria 
In this section, we study the global stability of the infected equilibrium without  cells response  and the infected equilibrium with  cells response  of system (2) by the Lyapunov direct method.
We set
						
					It is clear that for any ,  and  has the global minimum , with .
Theorem 5.  Suppose that the conditions (H 1)–(H 4) are satisfied. Then the equilibrium  is globally asymptotically stable if .
Proof. Define a Lyapunov functional
							
						where
							
						where  and  are given in (11).
The function  verifies
							
From (H 2), we have  for ,  for , and , so . Consequently  is nonnegative defined with respect to the endemic equilibrium , which is a global minimum.
We now prove that the time derivative of  is nonpositive. Calculating the time derivative of  along the positive solutions of (2), we obtain
							
						At , by using  and  and , we have
							
						Calculating the time derivative of , we obtain
							
						Combining (36) and (37) and by using , we obtain
							
						From (H 2), we have
							
						and from (H 3) and (H 4) we have
							
						and as  is positive, we have
							
						From Remark 3 we have  for all . It is easy to verify that from (38), the largest invariant set in  is the singleton . Using LaSalle invariance principle [15], if , then the equilibrium  is globally asymptotically stable. This completes the proof.
Theorem 6.  Suppose that the conditions (H 1)–(H 4) are satisfied. Then the equilibrium  is globally asymptotically stable if .
Proof. Define a Lyapunov functional
							
						where
							
						where  and  are given in (11).
The function  verifies
							
						From (H 2), we have  for ,  for , and , so . Consequently  is nonnegative defined with respect to the endemic equilibrium , which is a global minimum.
We now prove that the time derivative of  is nonpositive. Calculating the time derivative of  along the positive solutions of (2), we obtain 
							
						At , by using , , and , we have
							
						Calculating the time derivative of , we obtain
							
						Combining (47) and (48) and by using , we obtain
							
						From (H 2), we have
							
						and from (H 3) and (H 4) we have
							
						and as  is positive, we have
							
						Thus, the equilibrium  is stable. In this case, note that  if and only if , , and  and using the third equation of (2), we obtain . Therefore, it follows from LaSalle’s invariance principal [15] that the infected equilibrium with  cells response  is globally asymptotically stable. This completes the proof.
6. Application
In this section, we give some particular examples. In (2), if  we obtain the following model:
						
					The global dynamics of model (53) is studied by Elaiw et al. [5]. So the work presented in [5] is a particular case of (2) because the function  satisfies the hypothesises (H 1)–(H 4).
Another particular case of (2), if  and , we obtain the following model which is presented by Yang et al. [13]:
						
					The global asymptotic stability of possible equilibrium of (54) is established in [13].
A last example, in (2), if  and , where  is the Dirac delta function, we obtain the results presented in [6].
7. Conclusion
In the current paper, we have studied an HIV-1 infection model with humoral immune response and intracellular distributed delays and general incidence rate. The model has two distributed time delays describing time needed for infection of cell and virus replication. The global stability of our model is studied by employing the method of Lyapunov functionals which are motivated by McCluskey [16] for delayed epidemic models. This general incidence represents a variety of possible incidence functions that could be used in virus dynamics model as well as epidemic models. We establish that the global dynamics are determined by two threshold parameters, the basic reproduction ratios for viral infection and humoral immune response  and , respectively, which depend on the incidence function and the delay. We have proved that the infection-free equilibrium  is globally asymptotically stable if the basic reproduction ratios viral infection . In this case, the virus is cleared up. The hypotheses on the general incidence function are used to assure the existence of infected equilibrium without  cells response  and infected equilibrium with  cells response . We prove that if , the infected equilibrium without  cells response  is globally asymptotically stable and if , the infected equilibrium with  cells response  is globally asymptotically stable.
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