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Abstract. 
We deal with the new class of pre--regular pre--open sets in which the notion of pre--open set is involved. We characterize these sets and study some of their fundamental properties. We also present other notions called extremally pre--disconnectedness, locally pre--indiscreetness, and pre--regular sets by utilizing the notion of pre--open and pre--closed sets by which we obtain some equivalence relation for pre--regular pre--open sets.



1. Introduction
The subject of ideals in topological space has been studied by Kuratowski [1] and Vaidyanathaswamy [2]. An ideal  on a topological space  is a nonempty collection of subsets of  which satisfies (i)  and  implies  and (ii)  and  implies . Given a topological space  with an ideal  on  and if  is the set of all subsets of , a set operator , called a local function [1] of  with respect to  and , is defined as follows: for , , for every  where . A Kuratowski closure operator  for a topology , called the -topology, finer than  is defined by  [3]; when there is no chance for confusion, we will simply write  for  and  for . If  is an ideal on , then  is called an ideal space. A subset  of an ideal space  is said to be -open [4] if . A subset  of an ideal space  is said to be pre--open [5] if . The complement of pre--open set is called pre--closed. The family of all pre--open sets in  is denoted by  or simply . Clearly . The largest pre--open set contained in , denoted by , is called the pre--interior of . The smallest pre--closed set containing , denoted by , is called the pre--closure of . A subset  of an ideal space  is said to be --open [6] if . The family of all --open sets is a topology finer than . We will denote the --interior subset of  of  by . A subset  of an ideal space  is  [7] if . A space  is  [8] if every  subset of  is open.
The following lemmas will be useful in the sequel.
Lemma 1.  Let  be an ideal space and let  be a subset of . Then  [9].
2. Pre--Regular Pre--Open Sets
A pre--open set  of a space  is said to be pre- -regular pre- -open if . The complement of a pre--regular pre--open set is called pre- -regular pre- -closed set, equivalently . A subset  of a space  with an ideal  is said to be pre--regular if it is pre--open and pre--closed. Clearly,  and  are pre--regular pre--open.
Remark 2. Also every pre--regular set is pre--regular pre--open.
Proof. Assume  is pre--regular that implies  is pre--open and pre--closed.  is pre--open which implies . Hence  is pre--regular pre--open.
But the converse is not true as shown by Example 3.
Example 3. Consider the ideal space  where , , and . Here  is pre--regular pre--open but not pre--closed.
Moreover, the intersection of two pre--regular pre--open sets is not pre--regular pre--open in general as Example 4 shows.
Example 4. Consider the ideal space  where , , and . Here . Thus, ,  are both pre--regular pre--open. But  is not, since it is not even pre--open.
The notions of pre--regular pre--open and -open sets are independent of each other. Consider the space  with an ideal  as in Example 4. Here  is -open but not pre--regular pre--open. Consider the space  and , . Here  is pre--regular pre--open but not -open. Observe that every pre--regular pre--open set is pre--open but the converse need not be true. Here  is pre--open but not pre--regular pre--open.
Theorem 5.  Let  be an ideal space and let ,  be any subsets of . Then the following hold. (a)If , then .(b)If , then .(c)For every , .(d)If  and  are disjoint pre--open sets, then  and  are disjoint.(e)If  is a pre--regular pre--open, then  is pre--regular pre--closed.(f)If  is pre--regular pre--open, then  is pre--regular pre--open.
Proof. (a)Suppose . Therefore .(b)Suppose that .(c)It is obvious that , so by (b) we have . On the other hand  which implies . Therefore, . Hence .(d)Since  and  are disjoint pre--open sets, we have  which implies . Since  is pre--open, . Hence.(e)Given that  is pre--regular pre--open,  implies . Therefore,  − . Hence  is pre--regular pre--closed.(f)By (e) if  is pre--regular pre--open, then  is pre--regular pre--closed. Hence  is pre--regular pre--open that implies  is pre--regular pre--open.
Lemma 6.  For an ideal topological space  the following are equivalent. (a)Every pre--open set is open.(b)Every -dense set is open.
Proof. (a)  (b): let  be a -dense set that implies  which implies , so that . By (a) every pre--open set is open and hence  is open.
(b)  (a): let  be a pre--open subset of , so that , say. Then , so that , and thus  is -dense in . Thus  is open. Now  is the intersection of two open sets, so that  is open.
Lemma 7.  If a space  with an ideal  is -submaximal, then any finite intersection of pre--open set is pre--open.
Proof. From Lemma 6, every pre--open set is open and hence a finite intersection of pre--open set is pre--open.
Theorem 8.  If a space  with an ideal  is -submaximal, then any finite intersection of pre--regular --open set is pre--regular pre--open.
Proof. Let  be a finite family of pre--regular pre--open sets. Since the space  is -submaximal, then by Lemma 6,  is pre--open. Therefore, . Also, for each  which implies . Also, each  is pre--regular pre--open that implies  which implies  and so . Hence  is pre--regular pre--open.
It should be noted that an arbitrary union of pre--regular pre--open set is pre--regular pre--open. But the intersection of two pre--regular pre--closed sets fails to be pre--regular pre--closed as shown by Example 9.
Example 9. Consider the ideal space  as in Example 3. Clearly, ,  are pre--regular pre--closed but their intersection is not pre--regular pre--closed.
Theorem 10.  The following hold for a subset  of a space . (a)If  is pre--closed, then  is pre--regular pre--open.(b)If , then  is pre--regular pre--closed.(c)If  and  are pre--regular pre--closed sets, then  if and only if .(d)If  and  are pre--regular pre--open sets, then  if and only if .
Proof. (a) Since  is pre--closed, .
Now, . Hence  is pre--regular pre--open.
(b) Now . Hence  is pre--regular pre--closed.
(c) Given that  and  are pre--regular pre--closed sets, therefore,  and . Clearly,  if .
Conversely, . Now . Hence .
(d) Given that  and  are pre--regular pre--open, therefore,  and . Suppose , . Therefore, .
Conversely, . Now .
A subset  of an ideal topological space  is said to be -rare if it has no interior points in .
Theorem 11.  Let  be an ideal space. Then the following hold. (a)The empty set is the only subset which is nowhere dense and pre--regular pre--open.(b)If  is pre--regular pre--closed, then every -rare set is pre--open.
Proof. (a) Suppose  is nowhere dense and  is pre--regular pre--open. Then , by Lemma 1. Therefore, .
(b) Suppose  is pre--regular pre--closed. Then . Therefore, . Hence  is pre--open.
An ideal space  is called extremally pre--disconnected if the pre--closure of every pre--open set is pre--open.
Theorem 12.  For a topological space  the following are equivalent. (a) is extremally pre--disconnected.(b)Every pre--regular pre--open subset is pre--regular.
Proof. (a)  (b): assume  is extremally pre--disconnected. Suppose  is pre--regular pre--open. Then  is pre--open and so  is a pre--open set. Hence . Hence  is pre--closed which implies  is pre--regular.
(b)  (a): suppose  is pre--open. Then  is pre--regular pre--closed which implies  is pre--regular pre--open. Hence  is pre--regular. Therefore,  is pre--closed and so  is pre--open. Hence  is extremally pre--disconnected.
Theorem 13.  Let  be an extremally pre--disconnected space and . Then the following are equivalent: (a) is pre--regular,(b),(c) is pre--regular pre--open,(d) is pre--regular pre--open.
Proof. (a)  (b): suppose  is pre--regular. Then  is pre--open and pre--closed and so  and . Hence .
(b)  (c): let . Then  so  is pre--regular pre--open.
(c)  (d) is clear.
(d)  (a) follows from Theorem 12.
An ideal space  is called locally pre- -indiscrete if every pre--open subset of  is pre--closed (or) if every pre--closed subset of  is pre--open.
Theorem 14.  Let  be an ideal space. Then the following are equivalent. (a) is locally pre--indiscrete.(b)Every pre--open subset is pre--regular.(c)Every pre--open subset is pre--regular pre--open.(d), for every .(e)The empty set is the only nowhere dense subset of .
Proof. (a)  (b): assume that  is locally pre--indiscrete. Let  be a pre--open subset of . By hypothesis,  is pre--closed. Hence  is pre--regular.
(b)  (c): if  is pre--open, then . Also by hypothesis,  is pre--closed. Therefore, . Hence  is pre--regular pre--open.
(c)  (d): since  is preopen,  is pre--open. By (c),  is a pre--regular pre--open set. Therefore, .
(d)  (e): by Theorem 11, in any space, the empty set is the only subset which is nowhere dense and pre--regular pre--open.
(e)  (a): suppose that  is a pre--closed set. Now  − . Therefore  is nowhere dense which implies , and so  is pre--open. Hence is  locally pre--indiscrete.
An ideal space  is said to be -door if every subset of  is either pre--regular pre--open or pre--regular pre--closed.
Theorem 15.  Let  be a -door space; then every pre--open set in the space is pre--regular pre--open.
Proof. Let  be a pre--open subset of . Since  is -door,  is pre--regular pre--closed and so  which implies that . Since  is pre--open, . Hence  is pre--regular pre--open.
Theorem 16.  Let  be an ideal space. A subset  of  is both --open and --closed; then  is a pre--regular pre--open set.
Proof. Let  be an --open and --closed set. Then  is a pre--open and pre--closed set and hence  is a pre--regular pre--open set.
Theorem 17.  Let  be an ideal space. A subset  of  is --open and pre--regular pre--open; then .
Proof. Suppose  is --open. Then . And  is pre--regular pre--open which implies . Therefore .
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