Effect of Stiffness on Reflection and Transmission of Waves at an Interface between Heat Conducting Elastic Solid and Micropolar Fluid Media

Rajneesh Kumar, S. C. Rajvanshi, and Mandeep Kaur

1 Department of Mathematics, Kurukshetra University, Kurukshetra 136119, India
2 Research Centre, Punjab Technical University, Kapurthala, India
3 Department of Applied Sciences, GuruKul Vidyapeeth Institute of Engineering and Technology, Banur, Sector 7, Patiala District, Punjab 140601, India

Correspondence should be addressed to Mandeep Kaur; mandateep1125@yahoo.com

Received 28 March 2014; Accepted 8 July 2014; Published 29 October 2014

1. Introduction

The fluids in which coupling between the spin of each fluid particle and the microscopic velocity field is taken into account are termed as micropolar fluids. They represent fluids consisting of rigid, randomly oriented, or spherical particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The theory of microfluids was introduced by Eringen [1]. A microfluid possesses three gyration vector fields in addition to its classical translatory degrees of freedom. As a subclass of these fluids, Eringen introduced the micropolar fluids [2] to describe the physical systems, which do not fall in the realm of viscous fluids. In micropolar fluids the local fluid elements were allowed to undergo only rigid rotations without stretch. These fluids support couple stress, the body couples, and asymmetric stress tensor and possess a rotational field, which is independent of the velocity of fluid. A large class of fluids such as anisotropic fluids, liquid crystals with rigid molecules, magnetic fluids, cloud with dust, muddy fluids, biological fluids, and dirty fluids (dusty air, snow) can be modeled more realistically as micropolar fluids. The importance of micropolar fluids in industrial applications has motivated many researchers to extend the study in numerous ways to explain various physical effects.

and angular velocity profile are prescribed together with the temperature field at the finite end of the pipe. Hsia and Cheng [12] studied longitudinal plane waves propagation in elastic micropolar porous media. Propagation of transverse waves in elastic micropolar porous semispaces is discussed by Hsia et al. [13].

The purpose of the present study is to study the problem of reflection and transmission of plane waves at an imperfect interface between heat conducting elastic solid and micropolar fluid media. Effects of stiffness and thermal relaxation times on the amplitude ratios for incidence of various plane waves, for example, longitudinal wave (P-wave), thermal wave (T-wave), and transverse wave (SV-wave), are depicted numerically and shown graphically with angle of incidence.

2. Basic Equations

The field equations in a homogeneous and isotropic elastic medium in the context of generalized theories of thermoelasticity, without body forces and heat sources, are given by Lord Shulman (L-S) theory $\eta_0 = 1$, $\tau_1 = 0$ and for Green-Lindsay (G-L) theory $\eta_0 = 0$, $\tau_1 > 0$.

Following Ciarletta [11], the field equations and the constitutive relations for heat conducting micropolar fluids without body forces, body couples, and heat sources are given by

$$D_1 \ddot{v} + \left(\lambda f + \mu f \right) \nabla (\nabla \cdot \dot{v}) + K f (\nabla \times \dot{\Psi}) - bV \nabla T = 0,$$
$$D_2 \dot{\Psi} + \left(\alpha f + \beta f \right) \nabla \left(\nabla \cdot \dot{\Psi} \right) + K f (\nabla \times \dot{v}) = 0,$$
$$K f \Delta T^f - bT_0^f (\nabla \cdot \dot{v}) = \rho f aT_0^f \frac{\partial T^f}{\partial t},$$

where

$$D_1 = \left(\mu f + K f \right) \Delta - \rho f \frac{\partial}{\partial t}, \quad D_2 = \gamma f \Delta - I \frac{\partial}{\partial t} - 2K f,$$

such that superscript f denotes physical quantities and material constants related to the fluid and the constitutive relations are

$$t_{ij}^f = -p \delta_{ij} + \sigma_{ij}^f,$$
$$p = bT^f + \gamma_0 \phi^f,$$
$$\sigma_{ij}^f = \lambda f \gamma_{rr} \delta_{ij} + \left(\mu f + K f \right) \eta_{ij} + \mu f \gamma_{ji},$$
$$m_{ij}^f = \alpha f \nu_{ij} \delta_{ij} + \beta f \nu_{ij} + \gamma f \nu_{ij},$$

where $\gamma_{ij} = \nu_{ij} + e_{ij} \Psi_{ij}$, $\nu_{ij} = \Psi_{ij}$, $b = (3 \lambda f + 2 \mu f + K f) \alpha_{T}$, and symbols are defined in the list at the end of the paper.

3. Formulation of the Problem

An imperfect interface of a homogeneous, isotropic generalized thermoelastic half-space (medium M_1) in contact with heat conducting micropolar fluid half-space (medium M_2) is considered. The rectangular Cartesian coordinate system $Ox_1x_2x_3$ having origin on the surface $x_3 = 0$ separating the two media is taken. Let us take the x_1-axis along the interface between two half-spaces, namely, M_1 ($0 < x_3 < \infty$) and M_2 ($-\infty < x_3 < 0$), in such a way that x_3-axis is pointing vertically downward into the medium M_1. The geometry of the problem is shown in Figure 1.

For two dimensional problem in x_1x_3-plane, we take the displacement vector \bar{u}, velocity vector \bar{v}, and microrotation velocity vector Ψ as

$$\bar{u} = (u_1(x_1, x_3), 0, u_3(x_1, x_3)),$$
$$\bar{v} = (v_1(x_1, x_3), 0, v_3(x_1, x_3)),$$
$$\Psi = (0, \Psi_2(x_1, x_3), 0).$$

only and $\Delta = \partial^2/\partial x_1^2 + \partial^2/\partial x_3^2$ is the Laplacian operator. For Lord Shulman (L-S) theory $\eta_0 = 1$, $\tau_1 = 0$ and for Green-Lindsay (G-L) theory $\eta_0 = 0$, $\tau_1 > 0$.

(8)
The following nondimensional quantities are defined:

\[x'_i = \frac{\omega^* x_i}{c_1}, \quad u'_i = \frac{\rho^\ast c_1}{\sqrt{T_0}} u_i, \quad v'_i = \frac{\rho c_i}{\sqrt{T_0}} v_i, \]

\[\psi'_2 = \frac{\rho c_2^*}{\omega^* \sqrt{T_0}} \psi_2, \quad (t'_i, \tau'_i, t'_t) = (\omega^* t, \omega^* \tau_0, \omega^* \tau_1), \]

\[(T', T'') = \left(\frac{T}{T_0}, \frac{T}{T_0} \right), \quad (t_{ij}, t'_{ij}) = \frac{1}{\sqrt{T_0}} (t_{ij}, t'_{ij}), \]

\[m_{ij}^f = \frac{\omega^*}{c_1 \sqrt{T_0}} m_{ij}^f, \quad \phi^f = \rho \phi^f, \]

\[K'^n = \frac{c_1}{\sqrt{T_0}} K_n, \quad K'^i = \frac{c_1}{\sqrt{T_0}} K_i, \quad K'^0 = \frac{1}{\omega c_1} K_0, \]

where \(\omega^* = \rho^\ast c_2^2 / K^*, \ c_1^2 = (\lambda + 2\mu) / \rho. \)

The displacement components \(u_1, u_3 \) and velocity components \(v_1, v_3 \) are related to the potential functions \(\phi, \phi^f \) and \(\psi, \psi^f \) in dimensionless form as

\[(u_1, v_1) = \left(\frac{\partial}{\partial x_1} (\phi, \phi^f) - \frac{\partial}{\partial x_3} (\psi, \psi^f) \right), \]

\[(u_3, v_3) = \left(\frac{\partial}{\partial x_3} (\phi, \phi^f) + \frac{\partial}{\partial x_1} (\psi, \psi^f) \right). \]

Using (10) in (1) and (3)–(5) and with the aid of (8) and (9) (after suppressing the primes), we obtain

\[\nabla^2 \phi - \left(1 + \tau_0 \frac{\partial}{\partial t} \right) T - \frac{\partial^2 \phi}{\partial t^2} = 0, \]

\[\nabla^2 \psi - a_1 \frac{\partial^2 \psi}{\partial t^2} = 0, \]

\[\nabla^2 T = \left(1 + \tau_0 \frac{\partial}{\partial t} \right) \frac{\partial T}{\partial t} + e_1 \left(\frac{\partial}{\partial t} + \eta_0 \tau_0 \frac{\partial^2}{\partial t^2} \right) \nabla^2 \psi, \]

\[\nabla^2 \phi^f - b_1 T^f - b_3 \phi^f - b_4 \frac{\partial \phi^f}{\partial t} = 0, \]

\[\nabla^2 \psi^f + b_4 \psi^f - b_3 \frac{\partial \psi^f}{\partial t} = 0, \]

\[\nabla^2 T^f - b_2 \nabla^2 \phi^f - b_1 T^f = 0, \]

\[\nabla^2 \psi^f - b_2 \nabla^2 \psi^f - b_3 \phi^f - b_8 \frac{\partial \psi^f}{\partial t} = 0, \]

\[b_1 \nabla^2 \phi^f - \frac{\partial}{\partial t} \phi^f = 0, \]

where

\[a_1 = \frac{\rho c_2^2}{\mu}, \quad e_1 = \frac{\gamma^2 T_0}{K^* \omega^* \rho^*}, \quad b_1 = \frac{b \rho c_2^2}{(\lambda^* + 2\mu^* + K^*) \omega^* \gamma}, \]

\[b_2 = \frac{c_2^2}{\omega^* \sqrt{T_0}}, \quad b_3 = \frac{K^f}{\mu^* + K^*}, \]

\[b_4 = \frac{\rho c_2^2}{(\mu^* + K^*) \omega^*}, \quad b_5 = \frac{K^f c_2^2}{\gamma^2 \omega^*}, \]

\[b_6 = \frac{b \sqrt{T_0} \omega^*}{K^* \rho \omega^*}, \quad b_7 = \frac{1}{\gamma^2 \omega^*}, \quad b_8 = \frac{b \sqrt{T_0}}{K^* \rho \omega^*}. \]

4. Boundary Conditions

The boundary conditions at the interface \(x_3 = 0 \) are defined as

\[t'_{33} = K_n \left(\frac{\partial u_3}{\partial t} - v_3 \right), \quad t'_{31} = K_i \left(\frac{\partial u_3}{\partial t} - v_1 \right), \]

\[K'^n \frac{\partial T'}{\partial x_3} = K_0 \left(T - T' \right), \quad t_{33} = t'_{33}, \quad t_{31} = t'_{31}, \]

\[m_{33} = 0, \quad K_0 \frac{\partial T'}{\partial x_3} = K_0' \frac{\partial T'}{\partial x_3}, \]

where \(K_n, K_i, \) and \(K_0 \) are the normal force stiffness, transverse force stiffness, and thermal contact conductance coefficients of unit layer thickness having dimensions N sec/m², N sec/m³, and N/m sec K.

5. Reflection and Transmission

The longitudinal wave (P-wave) or thermal wave (T-wave) or transverse wave (SV-wave) propagating through the medium \(M_1 \) which is designated as the region \(x_3 > 0 \) is considered. The plane wave is taken to be incident at the plane \(x_3 = 0 \) with its direction of propagation with angle \(\theta_0 \) normal to the surface. Each incident wave corresponds to reflected P-wave, T-wave, and SV-wave in medium \(M_1 \), and transmitted longitudinal wave (L-wave), thermal wave (T-wave), and transverse longitudinal wave coupled with transverse microrotational wave (C-I and C-II waves) in medium \(M_2 \) as shown in Figure I.
In order to solve (11), we assume the solutions of the system of the form

\[\begin{align*}
\{\phi, \psi, \phi^f, \psi^f, T^f, \psi^f, T, \psi \} \\
= \left\{ \phi, \psi, \phi^f, \psi^f, T^f, \psi^f, T, \psi \right\} e^{ik(x_1 \sin \theta - x_3 \cos \theta - \omega t)},
\end{align*} \]

(14)

where \(k \) is the wave number, \(\omega \) is the angular frequency, and \(\phi, \psi, \phi^f, \psi^f, T^f, \psi^f, T, \psi \) are arbitrary constants.

Making use of (14) in (11), we obtain

\[\begin{align*}
V^4 + D_1 V^2 + E_1 &= 0, \\
V^4 + D_2 V^2 + E_2 &= 0, \\
V^4 + D_3 V^2 + E_3 &= 0,
\end{align*} \]

(15-17)

where

\[\begin{align*}
D_1 &= -\frac{1}{\tau_{00}} \left[1 + (1 - \tau_1 \omega) \frac{\epsilon_1 \omega^2}{\omega_0 \tau_0} \right] - 1, \\
E_1 &= \frac{1}{\tau_{00}}, \\
D_2 &= \frac{\omega^2}{b_3} \left(1 - \frac{ib_1 b_3}{\omega} \right) + \frac{\omega^2}{b_0} \left(1 + \frac{ib_1 b_3}{\omega b_3} \right), \\
E_2 &= -\frac{\omega^2}{b_3 b_0} \left(1 - \frac{ib_1 b_3}{\omega} \right), \\
D_3 &= \frac{\omega}{b_5} + \frac{\omega}{\omega} \left(1 - \frac{ib_3 b_0}{b_0} \right), \\
E_3 &= \frac{\omega}{b_5} + \frac{\omega}{b_0} \left(1 - \frac{ib_3 b_0}{b_0} \right),
\end{align*} \]

\[E_3 = -\frac{\omega^2}{(b_3 + (i/\omega)b_3) b_5}, \notag \]

\[V^2 = \frac{\omega^2}{k^2}, \quad \tau_{00} = \left(\frac{L}{\omega} + \tau_0 \right), \]

(17)

Here \(V_1, V_2 \) are the velocities of P-wave and T-wave in medium \(M_1 \) and these are roots of (15) and \(V_3 = 1/\sqrt{\alpha} \) is the velocity of SV-wave in medium \(M_1 \). \(V_4, V_5, V_6 \), and \(V_7 \) are the velocities of reflected (P-wave, T-wave) and SV-wave, respectively.

Medium \(M_1 \) is as follows:

\[\begin{align*}
\{\phi, T\} &= \sum_{i=1}^{2} \{ f_i e^{\xi_i(x, \sin \theta_3-\cos \theta_3-\omega t)} + p_i \}, \\
\psi &= S_{03} e^{(k_1(x, \sin \theta_3-\cos \theta_3)-\omega t)} + S_5 e^{(k_1(x, \sin \theta_3-\cos \theta_3)-\omega t)},
\end{align*} \]

(18)

where

\[\begin{align*}
f_i &= \frac{-b_1 b_3}{b_3 b_0 (i/\omega) + b_0 (1 - ib_3 b_1/\omega)} \left(1/\sqrt{V_i} - \frac{b_3}{b_0} (i/\omega) \right), \\
P_i &= S_5 e^{(k_1(x, \sin \theta_3-\cos \theta_3)-\omega t)},
\end{align*} \]

(19)

Medium \(M_2 \) is as follows:

\[\begin{align*}
\{\phi^f, T^f, \phi^f \} &= \sum_{j=1}^{2} \{ f_j e^{\xi_j(x, \sin \theta_3-\cos \theta_3)-\omega t)} \}, \\
\psi^f, \psi^f \} &= \sum_{j=3}^{4} \{ f_j e^{(k_1(x, \sin \theta_3-\cos \theta_3)-\omega t)} \},
\end{align*} \]

(20-21)

where

\[\begin{align*}
f_j &= \frac{-b_1 b_3}{b_3 b_0 (i/\omega) + b_0 (1 - ib_3 b_1/\omega)} \left(1/\sqrt{V_j} - \frac{b_3}{b_0} (i/\omega) \right), \\
\psi^f, \psi^f \} &= \sum_{j=3}^{4} \{ f_j e^{(k_1(x, \sin \theta_3-\cos \theta_3)-\omega t)} \},
\end{align*} \]

(22)

and \(S_{03}, S_{03} \) are the amplitudes of incident (P-wave, T-wave) and SV-wave, respectively. \(S_1 \) and \(S_5 \) are the amplitudes of reflected (P-wave, T-wave) and SV-wave and \(S_7, S_7 \) are the amplitudes of transmitted longitudinal wave, thermal wave,
and transverse longitudinal wave coupled with transverse microrotational wave, respectively.

Equation (20) represents the relation between \(\psi^f \) and \(T^f \) and \(\psi^r \) and \(\phi^r \).

Snell’s law is given by

\[
\frac{\sin \theta_0}{V_0} = \frac{\sin \theta_1}{V_1} = \frac{\sin \theta_2}{V_2} = \frac{\sin \theta_3}{V_3} = \frac{\sin \theta_4}{V_4} = \frac{\sin \theta_5}{V_5} = \frac{\sin \theta_6}{V_6} = \frac{\sin \theta_7}{V_7} \tag{23}
\]

where

\[
k_1V_1 = k_2V_2 = k_3V_3 = k_4V_4 = k_5V_5 = k_6V_6 = k_7V_7 = \omega, \quad \text{at} \ x_3 = 0. \tag{24}
\]

Making use of (18)–(21) in the boundary conditions (13) and with the help of (2), (7), (9), (10), (23), and (24), we obtain a system of seven nonhomogeneous equations which can be written as

\[
\sum_{j=1}^{7} a_{ij}Z_j = Y_i; \quad (i = 1, 2, 3, 4, 5, 6, 7), \tag{25}
\]

where the values of \(a_{ij} \) are given in the Appendix.

(1) For incident P-wave,

\[
\begin{align*}
A^* &= S_{01i}, & S_{02} = S_{03} = 0, & Y_1 = a_{11}, \\
Y_2 &= -a_{21}, & Y_3 = -a_{31}, & Y_4 = -a_{41}, \\
Y_5 &= a_{51}, & Y_6 = 0, & Y_7 = a_{71}.
\end{align*} \tag{26}
\]

(2) For incident T-wave,

\[
\begin{align*}
A^* &= S_{02i}, & S_{01} = S_{03} = 0, & Y_1 = a_{12}, \\
Y_2 &= -a_{22}, & Y_3 = -a_{32}, & Y_4 = -a_{42}, \\
Y_5 &= a_{52}, & Y_6 = 0, & Y_7 = a_{72}.
\end{align*} \tag{27}
\]

(3) For incident SV-wave,

\[
\begin{align*}
A^* &= S_{03i}, & S_{01} = S_{02} = 0, & Y_1 = -a_{13}, \\
Y_2 &= a_{23}, & Y_3 = a_{33}, & Y_4 = -a_{43}, \\
Y_5 &= -a_{53}, & Y_6 = 0, & Y_7 = a_{73}, \\
Z_1 &= \frac{S_1}{A^*}, & Z_2 &= \frac{S_2}{A^*}, & Z_3 &= \frac{S_3}{A^*}, \\
Z_4 &= \frac{S_4}{A^*}, & Z_5 &= \frac{S_5}{A^*}, & Z_6 &= \frac{S_6}{A^*}, & Z_7 &= \frac{S_7}{A^*},
\end{align*} \tag{28}
\]

where \(Z_1, Z_2, \) and \(Z_3 \) are the amplitude ratios of reflected P-wave, T-wave, and SV-wave in medium \(M_1 \) and \(Z_4, Z_5, Z_6, \) and \(Z_7 \) are the amplitude ratios of transmitted longitudinal

\[
\text{wave (L-wave), thermal wave (T-wave), and transverse longitudinal wave coupled with transverse microrotational wave (C-I and C-II waves) in medium } M_2.
\]

6. Particular Cases

6.1. Case I: Normal Force Stiffness. \(K_n \neq 0, K_t \rightarrow \infty, \) and \(K_\theta \rightarrow \infty \) in (25) yield the resulting quantities for normal force stiffness and lead a system of seven nonhomogeneous equations given by (A.1) with the changed values of \(a_{ij} \) as

\[
\begin{align*}
a_{22} &= -\omega^2 \frac{\sin \theta_0}{V_0}, & a_{23} &= \omega^2 \left(1 - \frac{V_1^2}{V_0^2} \sin^2 \theta_0 \right), \\
a_{24} &= i \omega \frac{\sin \theta_0}{V_0}, & a_{25} &= i \omega \frac{\sin \theta_0}{V_0}, \\
a_{26} &= i \omega \frac{\sqrt{V_1^2 - V_0^2} \sin \theta_0}{V_0}, & a_{27} &= i \omega \frac{\sqrt{V_1^2 - V_0^2} \sin \theta_0}{V_0}, \\
a_{33} &= f_1, & a_{35} &= -f_1, & a_{36} &= a_{37} = 0.
\end{align*} \tag{29}
\]

6.2. Case II: Transverse Force Stiffness. \(K_t \neq 0, K_n \rightarrow \infty, \) and \(K_\theta \rightarrow \infty \) in (25) provide the case of transverse force stiffness giving a system of seven nonhomogeneous equations given by (A.1) with the changed values of \(a_{ij} \) as

\[
\begin{align*}
a_{11} &= \omega^2 \frac{\sin \theta_0}{V_1} \left(1 - \frac{V_1^2}{V_0^2} \sin^2 \theta_0 \right), \\
a_{13} &= -\omega^2 \frac{\sin \theta_0}{V_0}, & a_{14} &= - \left(\omega^2 \left(1 - \frac{V_1^2}{V_0^2} \sin^2 \theta_0 \right) \right), \\
a_{15} &= - \left(i \omega \frac{\sqrt{V_1^2 - V_0^2} \sin \theta_0}{V_0} \right), & a_{16} &= i \omega \frac{\sin \theta_0}{V_0}, \\
a_{17} &= i \omega \frac{\sin \theta_0}{V_0}, & a_{31} &= f_1, & a_{33} &= 0, \\
a_{34} &= -f_1, & a_{35} &= -f_2, & a_{36} &= a_{37} = 0.
\end{align*} \tag{30}
\]

6.3. Case III: Thermal Contact Conductance. Taking \(K_\theta \neq 0, K_t \rightarrow \infty, \) and \(K_n \rightarrow \infty \) in (25) corresponds to the case of thermal contact conductance and yields a system of
seven nonhomogeneous equations as given by (A.1) with the changed values of \(a_{ij}\) as

\[
\begin{align*}
a_{11} &= -\frac{\omega^2}{V_1} \sqrt{1 - \frac{V_1^2}{V_0^2} \sin^2 \theta_0}, & a_{13} &= -\frac{\omega^2}{V_0} \sin \theta_0, \\
a_{14} &= -\left\{ \frac{\omega}{V_1} \left(1 - \frac{V_1^2}{V_0^2} \sin^2 \theta_0 \right) \right\}, \\
a_{15} &= -\left\{ \frac{\omega}{V_2} \left(1 - \frac{V_2^2}{V_0^2} \sin^2 \theta_0 \right) \right\}, \\
a_{16} = a_{17} &= i \frac{\omega}{V_0} \sin \theta_0, & a_{21} &= -\frac{\omega^2}{V_0} \sin \theta_0, \\
a_{23} &= \frac{\omega^2}{V_3} \sqrt{1 - \frac{V_3^2}{V_0^2} \sin^2 \theta_0}, & a_{24} &= i \frac{\omega}{V_0} \sin \theta_0, \\
a_{25} &= i \frac{\omega}{V_0} \sin \theta_0, & a_{26} &= i \frac{\omega}{V_5} \sqrt{1 - \frac{V_5^2}{V_0^2} \sin^2 \theta_0}, \\
a_{27} &= i \frac{\omega}{V_4} \sqrt{1 - \frac{V_4^2}{V_0^2} \sin^2 \theta_0}, & a_{31} &= f_1, \\
a_{33} &= 0, & a_{34} &= -f_1, & a_{35} &= -f_2, & a_{36} = a_{37} &= 0.
\end{align*}
\]

6.5. Subcases

(i) If micropolar heat conducting fluid medium is absent, we obtain the amplitude ratios at the free surface of thermoelastic solid with one relaxation time and two relaxation times.

These results are similar to those obtained by A. N. Sinha and S. B. Sinha [28] for one relaxation time (L-S theory) and Sinha and Elsibai [29] for two relaxation times (G-L theory).

(ii) In the absence of upper medium \(M_2\), we obtain the amplitude ratios at the free surface of thermoelastic solid for CT-theory \((\eta_0 = \tau_0 = \tau_1 = 0)\).

These results are similar to those obtained by Deresiewicz [30] for CT-theory.

7. Special Cases

(i) If \(\eta_0 = 1, \tau_1 = 0\) in (25), (A.1), (29), (30), and (31) then we obtain the corresponding amplitude ratios at an interface of thermoelastic solid with one relaxation time and heat conducting micropolar fluid half-space for normal force stiffness, transverse force stiffness, and thermal contact conductance.

(ii) If \(\eta_0 = 0, \tau_1 > 0\) in (25), (A.1), (29), (30), and (31) then we obtain the corresponding amplitude ratios at an interface of thermoelastic solid with two relaxation times and heat conducting micropolar fluid half-space for normal force stiffness, transverse force stiffness, and thermal contact conductance.

8. Numerical Results and Discussion

The following values of relevant parameters for both the half-spaces for numerical computations are taken.

Following Singh and Tomar [19], the values of elastic constants for medium \(M_1\) are taken as

\[
\begin{align*}
\lambda &= 0.209730 \times 10^{10} \text{ Nm}^{-2}, & \mu &= 0.91822 \times 10^{9} \text{ Nm}^{-2}, \\
\rho &= 0.0034 \times 10^3 \text{ Kg m}^{-3},
\end{align*}
\]

(33)
and thermal parameters are taken from Dhaliwal and Singh [31]:

\[
\begin{align*}
\nu &= 0.268 \times 10^7 \text{Nm}^{-2} \text{K}^{-1}, \\
c^* &= 1.04 \times 10^3 \text{Nm Kg}^{-1} \text{K}^{-1}, \\
K^* &= 1.7 \times 10^2 \text{N sec}^{-1} \text{K}^{-1}, \\
T_0 &= 0.298 \text{K}, \\
\tau_0 &= 0.613 \times 10^{-12} \text{sec}, \\
\tau_1 &= 0.813 \times 10^{-12} \text{sec}, \\
\omega &= 1.
\end{align*}
\]

Following Singh and Tomar [19], the values of micropolar constants for medium \(M_2 \) are taken as

\[
\begin{align*}
\lambda^f &= 1.5 \times 10^8 \text{N sec m}^{-2}, \\
\mu^f &= 0.03 \times 10^8 \text{N sec m}^{-2}, \\
K^f &= 0.000223 \times 10^8 \text{N sec m}^{-2}, \\
\gamma^f &= 0.0000222 \text{N sec}, \\
\rho^f &= 0.8 \times 10^3 \text{Kg m}^{-3}, \\
I &= 0.00400 \times 10^{-16} \text{N sec m}^{-2}.
\end{align*}
\]

(34)

Thermal parameters for the medium \(M_2 \) are taken as of comparable magnitude:

\[
\begin{align*}
T_0^f &= 0.196 \text{K}, \\
K_1^* &= 0.89 \times 10^2 \text{N sec}^{-1} \text{K}^{-1}, \\
\epsilon_0 &= 0.005 \times 10^{11} \text{N sec}^2 \text{m}^{-6}, \\
a &= 1.5 \times 10^5 \text{m}^2 \text{sec}^{-2} \text{K}^{-2}, \\
b &= 1.6 \times 10^5 \text{Nm}^{-2} \text{K}^{-1}.
\end{align*}
\]

(35)

The values of amplitude ratios have been computed at different angles of incidence.

In Figures 2–22, for L-S theory, we represent the solid line for stiffness (ST1), small dashes line for normal force stiffness (NS1), medium dashes line for transverse force stiffness (TS1), and dash dot dash line for thermal contact conductance (TCS1). For G-L theory, we represent the dash double dot dash line for stiffness (ST2), solid line with center symbol “plus” for normal force stiffness (NS2), solid line with center symbol “diamond” for transverse force stiffness (TS2), and solid line with center symbol “cross” for thermal contact conductance (TCS2).

8.1. P-Wave Incident. Variations of amplitude ratios \(|Z_1|\), \(1 \leq i \leq 7\), with the angle of incidence \(\theta_0 \), for incident P-wave are shown in Figures 2–8.

Figure 2 shows that the values of \(|Z_1|\) for NS1 and NS2 increase in the whole range. The values for ST1, ST2, transverse force stiffness, and thermal contact conductance decrease in the whole range, except near the grazing incidence, where the values get increased. The values for ST1 remain more than the values for TS1, TS2, ST2, TCS1, and TCS2 in the whole range.

From Figure 3 it is evident that the values of \(|Z_2|\) for all the stiffnesses, except ST1 and ST2, decrease in the whole range. The values of \(|Z_3|\) for NS1 and NS2 are magnified by multiplying by 10.

Figure 4 shows that the values of \(|Z_3|\) for all the stiffnesses for L-S theory and G-L theory first increase up to intermediate range and then decrease with the increase in \(\theta_0 \) and the values for ST2 are greater than the values for ST1, NS1, NS2, TS1, TS2, TCS1, and TCS2 in the whole range. The values of \(|Z_3|\) for NS1 and NS2 are magnified by multiplying by 10.

From Figure 5 it is noticed that the values of \(|Z_4|\) for all the stiffnesses start with maximum value at normal incidence and then decrease to attain minimum value at grazing incidence. The values of amplitude ratios for ST1 and NS1 are more than the values for ST2 and NS2, respectively, in the whole range. There is slight difference in the values of TCS1 and TCS2 in the whole range. The values of \(|Z_4|\) for ST1, ST2, NS1, and NS2 are magnified by multiplying by 10^2 and the values for TS1, TS2, TCS1, and TCS2 are magnified by multiplying by 10.

Figure 6 shows that the values of \(|Z_5|\) for all the boundary stiffnesses decrease with increase in \(\theta \) and the values of amplitude ratio for TS1 are greater than the values for all other boundary stiffnesses in the whole range that shows the effect of transverse force stiffness. The values of \(|Z_5|\) for all the stiffnesses are magnified by multiplying by 10^2.

From Figure 7 it is evident that the amplitude of \(|Z_6|\) for normal force stiffness increases in the range \(0^\circ < \theta_0 < 48^\circ\) and then decreases in the further range. The values for transverse force stiffness increase in the range \(0^\circ < \theta_0 < 59^\circ\) and for thermal contact conductance increase in the range \(0^\circ < \theta_0 < 56^\circ\) and then decrease. The values of \(|Z_6|\) for all the stiffnesses, except TCS1 and TCS2, are magnified by
Figure 3: Variation of $|Z_2|$ with angle of incidence (P-wave).

Figure 4: Variation of $|Z_3|$ with angle of incidence (P-wave).

Figure 5: Variation of $|Z_4|$ with angle of incidence (P-wave).

Figure 6: Variation of $|Z_5|$ with angle of incidence (P-wave).
multiplying by 10^3, while the values for TCS1 and TCS2 are magnified by multiplying by 10^2.

Figure 8 depicts that the values of $|Z_6|$ for ST1, ST2, TS1 and TS2 increase in the range $0' < \theta_0 < 56'$ and decrease in the remaining range. The values for ST2 and TS2 are greater than the values for ST1 and TS1 respectively in the whole range. The values for normal force stiffness for G-L theory remain more than the values for L-S theory. The values of $|Z_6|$ for ST1, ST2 are magnified by multiplying by 10^3, the values for TCS1, TCS2 are magnified by multiplying by 10^6 and the values for NS1, NS2, ST1 and TS2 are magnified by multiplying by 10^5.

8.2. T-Wave Incident. The values of amplitude ratio $|Z_7|$ for transverse force stiffness and thermal contact conductance decrease in the whole range with slight increase in the initial range. The values for ST1 and ST2 increase in the range $0' < \theta_0 < 48'$ and then decrease. These variations have been shown in Figure 9. The values for ST1, ST2, TCS1 and TCS2 are reduced by dividing by 10.

The values of amplitude ratio $|Z_7|$ for NS1 and NS2 increase in the whole range, while the values for ST1, ST2, ST1, ST2, TCS1, TCS2 first decrease and then increase to attain maximum value at grazing incidence. These variations are shown in Figure 10.

From Figure 11, it is noticed that the values of $|Z_7|$ for normal force stiffness, transverse force stiffness, and thermal contact conductance for G-L theory are greater than the corresponding values for L-S theory. It is seen that the values for ST1 are greater than the values for ST2 in the range $0' < \theta_0 < 38'$ and, in the further range, the values for ST2 are more.

Figure 12 depicts that the values of amplitude ratios $|Z_7|$ for transverse force stiffness and thermal contact conductance oscillate up to intermediate range and then decrease in the further range to attain minimum value at grazing incidence. The values for ST1, ST2, NS1, and NS2 decrease in the whole range. The values of $|Z_7|$ for ST1 and ST2 are magnified by multiplying by a factor of 10^2 and NS1, NS2, TS1, TS2, TCS1, and TCS2 are magnified by a factor of 10.

Figure 13 shows that the behavior of variation of $|Z_7|$ for all the boundary stiffnesses is similar to that of $|Z_4|$, but the magnitude of variation is different. The values of $|Z_7|$ for ST1 and ST2 are magnified by multiplying by a factor of 10^2 and NS1, NS2, TS1, TS2, TCS1, and TCS2 are magnified by a factor of 10.

From Figure 14 it is evident that the values of $|Z_7|$ for all the boundary stiffnesses increase to attain maximum value and then decrease up to grazing incidence. The values for NS1 and ST1 are greater than the values for NS2 and TS2, respectively, that reveals the thermal relaxation time effect. The values of $|Z_7|$ for ST1 and ST2 are magnified by multiplying by a factor of 10^3 and NS1, NS2, TS1, TS2, TCS1, and TCS2 are magnified by a factor of 10^2.

Figure 15 depicts that the values of $|Z_7|$ for ST1 and ST2 increase in the interval $0' < \theta_0 < 39'$ and then decrease in the further range. It is noticed that there is slight difference in the values of amplitude ratio for L-S and G-L theory.
Figure 9: Variation of $|Z_1|$ with angle of incidence (P-wave).

Figure 10: Variation of $|Z_2|$ with angle of incidence (P-wave).

Figure 11: Variation of $|Z_3|$ with angle of incidence (T-wave).

Figure 12: Variation of $|Z_4|$ with angle of incidence (T-wave).
The values of $|Z_2|$ for ST1 and ST2 are magnified by multiplying by a factor of 10^8 and NS1, NS2, TS1, TS2, TCS1, and TCS2 are magnified by a factor of 10^6.

8.3. **SV Wave Incident**. Variations of amplitude ratios $|Z_i|$, $1 \leq i \leq 7$, with the angle of incidence θ_0, for incident SV-wave are shown in Figures 16–22.

Figure 16 depicts that the values of $|Z_1|$ for transverse force stiffness and thermal contact conductance increase to attain peak values in the range $15^\circ < \theta_0 < 25^\circ$ and then decrease in the further range. The values for ST1 and ST2 increase in the range $0^\circ < \theta_0 < 35^\circ$ and $45^\circ < \theta_0 < 66^\circ$, respectively, and decrease in the remaining range. The values for normal force stiffness increase from normal incidence to attain maximum value in the range $45^\circ < \theta_0 < 55^\circ$ and then decrease up to grazing incidence. The values for TS1, TS2, TCS1, and TCS2 are reduced by dividing by 10.

Figure 17 shows that values of amplitude ratio $|Z_3|$ for all the boundary stiffnesses follow oscillatory pattern in the whole range. The maximum value is attained by TCS1 in the range $15^\circ < \theta_0 < 25^\circ$. It is seen that the values for L-S theory are greater than the values for G-L theory in the whole range.

Figure 18 shows that the values of $|Z_4|$ for transverse force stiffness increase from normal incidence to grazing incidence and attain peak value in the interval $15^\circ < \theta_0 < 25^\circ$. The values for normal stiffness and thermal contact conductance decrease in the intervals $0^\circ < \theta_0 < 56^\circ$ and $0^\circ < \theta_0 < 17^\circ$, respectively, and then increase in the further range.

Figure 19 shows that the values of $|Z_5|$ for all the boundary stiffnesses oscillate in the whole range. The values for ST1 are greater than the values for ST2 in the whole range, except some intermediate range. The values of $|Z_6|$ for ST1 and ST2 are magnified by multiplying by a factor of 10^3 and NS1, NS2, TS1, and TS2 by a factor of 10^2 and TCS1 and TCS2 are magnified by a factor of 10.

Figure 20 depicts that the behavior of variation of $|Z_7|$ for ST1 and ST2 decrease in the range $0^\circ < \theta_0 < 45^\circ$ and then increase with increase in angle of incidence. The values of amplitude ratio for transverse force stiffness and thermal contact conductance decrease in the whole range, except the ranges $16^\circ < \theta_0 < 24^\circ$ and $17^\circ < \theta_0 < 23^\circ$, respectively. The amplitude ratio for normal force stiffness attains maximum value at normal incidence. The values of $|Z_8|$ for ST1, ST2 are magnified by multiplying by a factor of 10^2 and NS1, NS2, TCS1, TCS2, TS1, and TS2 are magnified by a factor of 10^3.

Figure 22 depicts that the values of $|Z_9|$ for all the boundary stiffnesses attain maximum value at the normal incidence and then decrease with oscillation to attain minimum value at the grazing incidence. The values of $|Z_9|$ for ST1 and ST2 are magnified by multiplying by a factor of 10^2 and NS1, NS2, TS1, TS2, TCS1, and TCS2 are magnified by a factor of 10^3.

Figure 13: Variation of $|Z_3|$ with angle of incidence (T-wave).

Figure 14: Variation of $|Z_4|$ with angle of incidence (T-wave).
Figure 15: Variation of $|Z_7|$ with angle of incidence for T-wave.

Figure 16: Variation of $|Z_1|$ with angle of incidence (SV-wave).

Figure 17: Variation of $|Z_8|$ with angle of incidence (SV-wave).

Figure 18: Variation of $|Z_2|$ with angle of incidence (SV-wave).
Figure 19: Variation of $|Z_4|$ with angle of incidence (SV-wave).

Figure 20: Variation of $|Z_5|$ with angle of incidence (SV-wave).

Figure 21: Variation of $|Z_6|$ with angle of incidence (SV-wave).

Figure 22: Variation of $|Z_7|$ with angle of incidence (SV-wave).
9. Conclusion
Reflection and transmission at an interface between heat conducting elastic solid and micropolar fluid media are discussed in the present paper. Effect of normal force stiffness, transverse force stiffness, thermal contact conductance, and thermal relaxation times is observed on the amplitude ratios for incidence of various plane waves (P-wave, T-wave, and SV-wave). When P-wave is incident, it is noticed that the values of amplitude ratio for transverse force stiffness for transmitted T-wave are greater than all the other boundary stiffnesses. When plane wave (SV-wave) is incident, the trend of variation of amplitude ratio for transmitted transverse wave coupled with transverse microrotational wave, that is, C-I and C-II waves, is similar, but magnitude of oscillation is different. The values of amplitude ratio of transmitted LD-wave and T-wave for L-S theory are greater than the value for G-L theory (when T-wave is incident). The model considered is one of the more realistic forms of earth models and it may be of interest for experimental seismologists in exploration of valuable materials such as minerals and crystal metals.

Appendix
Consider the following:

\[a_{11} = -c_i K_n \frac{\omega^2}{V_i^2} \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0}, \quad a_{13} = -c_i K_n \frac{\omega^2}{V_i^2} \sin \theta_0, \]
\[a_{14} = - \left(d_i^f + d_i^t \left(1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0 \right) \right) \frac{\omega^2}{V_i^2} \]
\[+ d_i^f [f_{1i} + \frac{\omega}{V_i} d_i^t] \]
\[+ c_i K_n \frac{\omega}{V_i} \left(\sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} \right), \]
\[a_{15} = - \left(d_i^f + d_i^t \left(1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0 \right) \right) \frac{\omega^2}{V_i^2} \]
\[+ d_i^f [f_{1i} + \frac{\omega}{V_i} d_i^t] \]
\[+ c_i K_n \frac{\omega}{V_i} \left(\sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} \right), \]
\[a_{16} = d_i^f \frac{\omega^2}{V_i V_0} \sin \theta_0 \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} + c_i K_n \frac{\omega}{V_0} \sin \theta_0, \]
\[a_{17} = d_i^f \frac{\omega^2}{V_i V_0} \sin \theta_0 \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} + c_i K_n \frac{\omega}{V_0} \sin \theta_0, \]
\[a_{22} = -c_i K_n \frac{\omega^2}{V_i^2} \sin \theta_0, \quad a_{23} = c_i K_n \frac{\omega^2}{V_i^2} \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0}, \]
\[a_{24} = \left(2d_i^f + d_i^t \right) \frac{\omega^2}{V_i V_0} \sin \theta_0 \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} + c_i K_n \frac{\omega}{V_0} \sin \theta_0, \]
\[a_{25} = \left(2d_i^f + d_i^t \right) \frac{\omega^2}{V_i V_0} \sin \theta_0 \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} + c_i K_n \frac{\omega}{V_0} \sin \theta_0, \]
\[a_{26} = d_i^f \frac{\omega^2}{V_i^2} \left(1 - 2 \frac{V_i^2}{V_0^2} \sin^2 \theta_0 \right) + d_i^t \left(\sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} - f_{1i} \right) \]
\[+ c_i K_n \frac{\omega}{V_i} \left(1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0 \right), \]
\[a_{33} = c_i K_n f_i, \quad a_{33} = 0, \]
\[a_{34} = \left[\frac{\omega}{V_i} \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} - c_i K_n \right] f_{1i}, \]
\[a_{35} = \left[\frac{\omega}{V_i} \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} - c_i K_n \right] f_{2i}, \quad a_{36} = a_{37} = 0, \]
\[a_{44} = \left(d_i^f + d_i^t \left(1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0 \right) \right) \frac{\omega^2}{V_i^2} \]
\[+ (1 - r_i \omega) f_i, \]
\[a_{45} = \left(d_i^f + d_i^t \left(1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0 \right) \right) \frac{\omega^2}{V_i^2} \]
\[+ (1 - r_i \omega) f_i, \]
\[a_{46} = d_i^f \frac{\omega^2}{V_i V_0} \sin \theta_0 \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0}, \]
\[a_{47} = d_i^f \frac{\omega^2}{V_i V_0} \sin \theta_0 \sqrt{1 - \frac{V_i^2}{V_0^2} \sin^2 \theta_0} + c_i K_n \frac{\omega}{V_0} \sin \theta_0, \]
\[a_{47} = d_4^f \frac{\omega^2}{V_4} \sin \theta_0 \sqrt{1 - \frac{V_4^2}{V_0^2} \sin^2 \theta_0}, \]

\[a_{51} = -(2d_4) \frac{\omega^2}{V_1 V_0} \sin \theta_0 \sqrt{1 - \frac{V_1^2}{V_0^2} \sin^2 \theta_0}, \]

\[a_{52} = -(2d_4) \frac{\omega^2}{V_2 V_0} \sin \theta_0 \sqrt{1 - \frac{V_2^2}{V_0^2} \sin^2 \theta_0}, \]

\[a_{55} = -(2d_4 + d_5^f) \frac{\omega^2}{V_1 V_0} \sin \theta_0 \sqrt{1 - \frac{V_1^2}{V_0^2} \sin^2 \theta_0}, \]

\[a_{56} = - \left[d_4^f \frac{\omega^2}{V_3} \left(1 - 2 \frac{V_3^2}{V_0^2} \sin^2 \theta_0 \right) \right. \]
\[+ d_5^f \left(\frac{\omega^2}{V_3} \left(1 - \frac{V_3^2}{V_0^2} \sin^2 \theta_0 \right) - \bar{f}_3 \right), \]

\[a_{57} = - \left[d_4^f \frac{\omega^2}{V_4} \left(1 - 2 \frac{V_4^2}{V_0^2} \sin^2 \theta_0 \right) \right. \]
\[+ d_5^f \left(\frac{\omega^2}{V_4} \left(1 - \frac{V_4^2}{V_0^2} \sin^2 \theta_0 \right) - \bar{f}_4 \right), \]

\[a_{66} = a_{63} = a_{64} = a_{65} = 0, \]

\[a_{66} = \frac{\omega}{V_3} \bar{f}_3 \left(1 - \frac{V_3^2}{V_0^2} \sin^2 \theta_0 \right), \]

\[a_{67} = \frac{\omega}{V_4} \bar{f}_4 \left(1 - \frac{V_4^2}{V_0^2} \sin^2 \theta_0 \right), \]

\[a_{71} = \frac{\omega}{V_1} \left(1 - \frac{V_1^2}{V_0^2} \sin^2 \theta_0 \right) f_1, \quad a_{73} = 0, \]

\[a_{74} = p_2 \frac{\omega}{V_4} \left(1 - \frac{V_3^2}{V_0^2} \sin^2 \theta_0 \right) f_1, \]

\[a_{75} = p_2 \frac{\omega}{V_5} \left(1 - \frac{V_4^2}{V_0^2} \sin^2 \theta_0 \right) f_2, \]

\[a_{6} = a_{77} = 0, \quad (i = 1, 2), \]

\[d_1 = \frac{\lambda}{\rho c_1^2}, \quad d_2 = \frac{2\mu}{\rho c_1^2}, \quad d_3 = \frac{d_2}{2}, \]

\[d_4^f = \frac{\bar{b}}{\nu}, \quad d_1^f = \frac{c_0}{\nu T_0}, \quad d_2^f = \frac{\mu^f \omega^*}{\nu c_1^2}, \]

\[d_3^f = \frac{(2\mu^f + K^f) \omega^*}{\nu} \rho c_1^2, \quad d_4^f = \frac{\mu^f \omega^*}{\nu c_1^2}, \]

\[d_5 = \frac{K^f \omega^*}{\nu c_1^2}, \quad p_2 = \frac{K^*}{K^f}, \]

\[c_1 = c_2 = \frac{\nu T_0}{\nu c_1^2}, \quad c_4 = \frac{\nu c_2^2}{\omega^* K_1^*}. \]

(A.1)

Symbols

- \(\lambda, \mu \): Lame’s constants
- \(t_{ij} \): Components of the stress tensor
- \(u \): Displacement vector
- \(\rho \): Density
- \(K^* \): Thermal conductivity
- \(c^* \): Specific heat at constant strain
- \(T_0 \): Uniform temperature
- \(T \): Temperature change
- \(\alpha_T \): Coefficient of linear thermal expansion
- \(\delta_{ij} \): Kronecker delta
- \(\varepsilon_{ij} \): Alternating symbol
- \(\lambda^f, \mu^f, K^f, \alpha^f, \beta^f, \gamma^f, c_0 \): Material constants of the fluid
- \(\sigma_{ij}^f \): Components of stress tensor in the fluid
- \(m_{ij}^f \): Components of couple stress tensor in the fluid
- \(\bar{v} \): Velocity vector
- \(\Psi \): Microrotation velocity vector
- \(\rho \): Density
- \(I \): Scalar constant with the dimension of moment of inertia of unit mass
- \(p \): Pressure
- \(K_1^* \): Thermal conductivity
- \(\alpha_T \): Specific heat at constant strain
- \(\gamma^f \): Absolute temperature
- \(T^f \): Temperature change
- \(\phi^* \): Variation in specific volume
- \(\alpha_T \): Coefficient of linear thermal expansion.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

Thanks are due to Punjab Technical University, Kapurthala, for providing research facilities and enrolling one of the
authors (Mandeep Kaur) as a research scholar to Ph.D. Programme.

References
