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Abstract. 
To better understand the dynamics of the hepatitis B virus (HBV) infection, we introduce an improved HBV model with standard incidence function, cytotoxic T lymphocytes (CTL) immune response, and take into account the effect of the export of precursor CTL cells from the thymus and the role of cytolytic and noncytolytic mechanisms. The local stability of the disease-free equilibrium and the chronic infection equilibrium is obtained via characteristic equations. Furthermore, the global stability of both equilibria is established by using two techniques, the direct Lyapunov method for the disease-free equilibrium and the geometrical approach for the chronic infection equilibrium.



1. Introduction
Currently, HBV infection is a major global health problem, which can lead to cirrhosis and liver cancer. From the World Health Organization (WHO), more than  million people have chronic (long-term) liver infections, and about  people die every year due to the acute or chronic consequences of hepatitis B [1]. Therefore, many mathematical models have been developed in order to understand the dynamics of HBV infection. In this paper, we consider the model presented by Pang et al. in [2] that is given by the following nonlinear system of differential equations:
						
					where , , , and  are the numbers of uninfected target cells, infected cells, free virus, and CTL cells at time , respectively. Susceptible host (healthy hepatocytes) cells are produced at a rate , die at a rate , and become infected by virus at a rate . Infected cells die at a rate , return to the uninfected state by a nonlytic effector mechanism [3] at a rate , and are killed by the CTL immune response at a rate . Free virus is produced by infected cells at a rate  and decays at a rate . CTL cells expand in response to viral antigen derived from infected cells at a rate , where  is HBV-specific CTL stimulation rate and  represents virus load for half-maximal CTL cells stimulation [4] and decay in the absence of antigenic stimulation at a rate . The parameter  represents the export of precursor CTL cells from the thymus [4]. Note that the CTL immune response plays an important role in antiviral defense by killing infected cells and its effect has recently drawn much attention of many authors (see, e.g., [5–10]).
On the other hand, the authors Pang et al. [2] determined the basic reproduction number of system (1) as follows: 
						
					As in [10, 11], we observe that  is proportional to  which represents the number of total cells of the liver. This suggests that (1) may not be a reasonable model for describing HBV virus infection since it implies that an individual with a smaller liver may be more resistant to the virus infection than an individual with a larger one. Therefore, we propose the following model:
						
					In our case, the basic reproduction number is
						
					which is independent of liver size.
The rest of this paper is organized as follows. In the next section, we show that our model is well posed by proving the existence, positivity, and boundedness of solutions of problem. Further, we determine the steady states of the model. In Section 3, we discuss the local stability of equilibria by analyzing the corresponding characteristic equations. The global stability of equilibria is analyzed in Section 4. The paper ends with a conclusion and discussion in Section 5.
2. Well Posedness and Steady States
In this section, we will establish the positivity and boundedness of solutions of model (3), which imply that our model is well posed. Further, we will determine the steady states of the model.
2.1. Positivity and Boundedness of Solutions
First, we have the following result.
Theorem 1.  All solutions starting from nonnegative initial conditions exist for all  and remain bounded and nonnegative. Moreover, we have (i),(ii),(iii),where  that represents the total cells of liver and .
Proof. For the positivity, we show that any solution starting in nonnegative orthant , , ,  remains there forever. In fact,  and we have 
									
								Hence, the positivity of all solutions initiating in  is guaranteed.
Now, we prove that the solutions are bounded.
As , we deduce that
									
								since  and , we get (i).
Next, we show (ii). The equation, , implies that
									
								Then, 
									
								Since , we deduce (ii).
Finally, we show (iii). From the fourth equation of (3), we get
									
								Hence, 
									
								Thus, 
									
								Using the integration by parts, we get
									
								Hence,
									
								If  and , we have
									
								If  and , we have
									
								If  and , we have
									
								If  and , we have
									
								From (14)–(17), we deduce (iii).
2.2.  Steady States
In this subsection, we show that there exist a disease-free equilibrium and one infection equilibrium which represents the chronic infection equilibrium.
It is not hard to see that if , the disease-free steady state  is the unique steady state, corresponding to the extinction of the free virus. The following result presents the existence and uniqueness of endemic equilibrium when .
Theorem 2.   (1)If , then the system (3) has a unique disease-free equilibrium of the form .(2)If , then the system (3) has a unique chronic infection equilibrium of the form  with , , , and .
Proof. At any equilibrium, the following equations hold:
									
								By (18), we get 
									
								where 
									
								Hence, we obtain the following equation:
									
Now, we consider the function  defined on  by 
									
								We have  and 
									
								Let  be a pole of ; then, we discuss two cases.(i)If , then . As  we deduce that . Hence there is no equilibrium point if . It is easy to show that 
												 Then the function  admits a unique root  on interval ], since  and . So, there exists a unique  such that . We have 
												 We deduce that ; this implies that  because  is decreasing on ]. Then . Clearly  and  are positive. Hence, there exists a unique endemic  with , , , and .(ii)If , then  and . Since , hence there exists a unique  such that . We have 
												 Using the same technique, we deduce that , , and  are positive. Thus, there exists a unique endemic  with , , , and .This proves the theorem.
3. Local Stability of Equilibria
Let  be any arbitrary equilibrium. Then the characteristic equation about  is given byThe characterization of the local stability of the disease-free equilibrium is given by the following statement.
Theorem 3.  Let us define . (i)If , then  is locally asymptotically stable.(ii)If , then  is unstable.
Proof. At , (27) reduces to 
							
						where the roots are 
							
It is clear that , , and  are negative. Moreover,  is negative when ; thus,  is locally asymptotically stable.
Now, we focus on local stability of the chronic infection equilibrium . It is easy to verify that the point  does not exist if  and  when . If , then we have the following theorem.
Theorem 4.  If , then the chronic infection equilibrium  is locally asymptotically stable.
Proof. We assume that . At , (27) reduces to
							
						where 
							
						with 
							
						Clearly when , , , , and  are positive. In addition, 
							
						In the same manner, we have 
							
						From the Routh-Hurwitz theorem given in [12], all roots of (30) have negative real parts. Then  is locally asymptotically stable when .
4. Global Stability of Equilibria
In this section, we establish the global stability of the equilibria. Firstly, we have the following result.
Theorem 5.  The disease-free equilibrium  is globally asymptotically stable when .
Proof. Define
							
We see that any solution  starting in  remains there forever. Indeed, from Theorem 1 we get that . It remains to prove that  with . From the fourth equation of (3), we get 
							
						This implies that . Hence .
If , let us define a function  on  as follows: 
							
						Calculating the time derivative of  along the solution of (3), we obtain 
							
						Since , then . Furthermore, if  is the set of solutions of the system, where , then the Lyapunov-LaSalle theorem [13] implies that all paths in  approach the largest positively invariant subset of the set . Here,  is the set, where . On the boundary of , where , we have , , and . Then 
							
						Thus, all solution paths in  approach the disease-free equilibrium  when . Hence,  is globally asymptotically stable in .
To study the global stability of the chronic infection equilibrium, we will use the geometric approach defined by Li and Muldowney in [14]. A short overview of this geometric approach can be found in [15–17]. In a more simple way, Theorem   in [14] requires three conditions ensuring that global stability of a given equilibrium point is verified. The first condition is the existence of a unique locally stable endemic equilibrium. Indeed, as proved in Theorem 4 from this paper,  is the unique locally stable endemic equilibrium when . The second condition is the existence of a compact set in the interior of the definition domain of the solutions  defined in the proof of Theorem 5, which is absorbing for the system (3). This is equivalent as shown in [18] to the uniform persistence of the state variables and the boundness of . In our case, we proved in Theorem 1 that all solutions in system (3) are bounded. Thus the set  is also bounded. Further, we have proved in Theorem 3 that the disease-free equilibrium  is unstable if . This instability of  on  implies the uniform persistence [19]. The third condition is the fulfillment of the Bendixson criterion [14]. In order to verify this third condition, we consider the following subsystem of (3):
									The Jacobian matrix of system (40) is 
						
					and its second addictive compound matrix isIn this case, we choose . Hence, 
						
					where matrix  is obtained by replacing each entry  of  by its derivative in the direction of solution of (40). Moreover, we have 
						
					where
Let  be a vector in ; choose a norm in  defined as follows:  and let  be the Lozinskii measure with respect to this norm. Then we have the following estimate; see [20]:
						
					where  and ; here  denotes the Lozinskii measure with respect to  vector norm and  and  are matrix norms with respect to  norm. Moreover, we have 
						
					Hence, we obtain 
						
					Therefore, 
						
					Consequently, 
						
					which implies that the third condition is realized. Hence, the conditions of Theorem  3.5 in [14] are fulfilled; consequently, the endemic equilibrium  of the subsystem (40) is globally asymptotically stable.
Now, consider the fourth equation of system (3)
					and its limit system is 
						
					Since , we get 
						
					Therefore, 
						
					Thus, the endemic equilibrium  is globally asymptotically stable.
Summarizing the above, we have established the following result.
Theorem 6.  The chronic infection equilibrium  is globally asymptotically stable if .
5. Conclusion and Discussion
In this paper, we have presented a mathematical model based on a nonlinear system of differential equations. The population cells were partitioned into four classes, uninfected target cells, infected cells, free virus, and CTL cells. The basic reproduction number  corresponding to our model is independent of the liver size. Then, our model is more reasonable than the model presented in [2] to describe the HBV infection. In addition, we have proved the existence, positivity, and the boundedness of solutions of the problem, which implies that the model is well posed. By analyzing the model, we have shown that the disease-free equilibrium  is globally asymptotically stable if the basic reproduction number satisfies , which leads to the eradication of virus from the liver. When , the disease-free equilibrium becomes unstable and a unique chronic infection equilibrium exists and is globally asymptotically stable. In this case, the virus persists in the population.
From our main results summarized above, we conclude that the dynamical behavior of our model is completely determined by the basic reproduction number . This allows determining the strategies to control the HBV infection by reducing the value of  to below or equal one (the case when  is globally asymptotically stable). From the explicit formula (4) for , we see that  can be decreased by increasing the export of precursor CTL cells from the thymus and both cytolytic and noncytolytic mechanisms. This observation shows that the CTL immune response plays a critical role in eradication of virus from the liver. On the other hand,  can be decreased by decreasing the parameters  and  which represent the rates of infection and production of virus, respectively. To do this biologically, we improve better our model by introducing the nucleoside analogues lamivudine or adefovir dipivoxil drug treatment in order to stop the virus from replicating. In addition, nucleoside analogues may also interfere with de novo infection of hepatocytes by hindering the transformation of relaxed circular DNA into cccDNA [21]. So, under therapy both production rate of new virions () and the rate of de novo infection () are reduced. Consequently, our model becomes
						
					where the parameters  and  measure the efficacy of the therapy. An efficacy of  () denotes that there is no inhibition, whereas an efficacy of  () denotes complete inhibition. The basic reproduction number  under therapy becomes 
						
					which implies that the basic reproduction number can be decreased by increasing the efficacy of drug treatment. Therefore, the results obtained from this work can be useful to determine an effective treatment against the hepatitis B virus.
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