Research Article

On the Barycentric Labeling of Certain Graphs

Saeid Alikhani and Zeynab Amirzadeh

Department of Mathematics, Yazd University, Yazd 89195-741, Iran

Correspondence should be addressed to Saeid Alikhani; alikhani206@gmail.com

Received 6 September 2014; Accepted 29 October 2014; Published 16 November 2014

1. Introduction

Let $G = (V, E)$ be a finite, simple, and undirected graph. Labeling for a graph is a map that takes graph elements to numbers (usually positive or nonnegative integers). Let G be an abelian group (written additively). The graph G is called A-magic if there exists labeling $l : E(G) \rightarrow A \setminus \{0\}$ such that the induced vertex set labeling $l^* : V(G) \rightarrow A$, defined by $l^*(v) = \sum_{uv \in E(G)} l(uv)$, where the sum is over all edges in $E(G)$, is a constant map. A graph G is A-barycentric-magic (or has A-barycentric labeling) if G is A-magic and also satisfies $l^*(v) = \deg(v)(u, v)$ for all $v \in V$ and for some vertex u, adjacent to v. In this paper we consider some graphs G and characterize all $m \in \mathbb{N}$ for which G is \mathbb{Z}_m-barycentric-magic.

Theorem 1. A graph G is \mathbb{Z}_2-magic if and only if every vertex of G is of the same parity.

Theorem 2. An Eulerian graph G with even size is A-magic.

Theorem 3. If A_1 is a subgroup of A and graph G is A_1-magic, then G is A-magic.

Various authors have introduced labeling that generalizes the idea of magic square. Kotzig and Rosa [3] defined a magic labeling to be total labeling on the vertices and edges in which the labels are the integers from 1 to $|V(G)| + |E(G)|$. The sum of labels on an edge and its two endpoints is constant. In 1996 Ringel and Llado [4] redefined this type of labeling as edge-magic. Also, Enomoto et al. [5] have introduced the name super edge-magic for magic labeling in the sense of Kotzig and Rosa, with the added property that the n vertices receive the smaller labels, $\{1, 2, \ldots, n\}$. Lee et al. [6] defined the concept of k-edge magic graphs and studied it for certain graphs (see, e.g., [7]). Recently authors in [8] defined a new kind of group magicness graphs.

Here we recall the following definition.

Definition 4 (see [8]). If there exists labeling l for a graph G, whose induced vertex set labeling is a constant map and for all $v \in V(G)$ the sum $l^*(v)$ also satisfies $l^*(v) = \deg(v)(u, v)$ for some vertex u, adjacent to v, G is said to be A-barycentric-magic.

Note that the motivation of Definition 4 is the following definition of k-barycentric sequence which was introduced in [9] and has already been used in graph labeling problems, specially in Ramsey theory [9–11].

Definition 5. Let x_1, x_2, \ldots, x_k be k elements of an abelian group A. This sequence is k-barycentric if there exists j such that $x_1 + x_2 + \cdots + x_j + \cdots + x_k = kx_j$. The element x_j is called a barycenter.
Similar to the definition of integer magic spectrum of A-magic graphs we state the definition of barycenter-magic spectrum of graph.

Definition 7 (see [8]). For a given graph G the set of all positive integers m for which G is \mathbb{Z}_m-barycentric-magic is called the barycenter-magic spectrum of G and is denoted by $BMS(G)$.

In this paper, we consider specific graphs G and characterize all $m \in \mathbb{N}$ for which G is \mathbb{Z}_m-barycentric-magic.

2. Barycentric-Magic Labeling of Certain Graphs

In this section, we characterize all $m \in \mathbb{N}$ for which G is \mathbb{Z}_m-barycentric-magic. First we consider some complete bipartite graphs.

First we state the following theorem.

Theorem 8 (see [8]). The complete bipartite graph $K_{2,3}$ is not \mathbb{Z}_m-barycentric-magic for any m.

We generalize the previous theorem.

Theorem 9. For $n \geq 3$, $K_{2,n}$ is \mathbb{Z}_m-barycentric-magic if and only if $gcd(n - 2, m) \neq 1$.

Proof. Let $V(K_{2,n}) = \{u_1, u_2\} \cup \{v_1, v_2, \ldots, v_n\}$ be the set of vertices of $K_{2,n}$. For each j, the edges incidents to v_j must have the same label. Suppose that $l(u_1, v_j) = \alpha_j$ and $l(u_2, v_j) = \alpha_j$. Then $2\alpha_1 \equiv 2\alpha_2 \equiv \cdots \equiv 2\alpha_n \pmod{m}$. We consider the two following cases.

Case 1 (m is odd). In this case, the condition $2\alpha_1 \equiv 2\alpha_2 \equiv \cdots \equiv 2\alpha_n \pmod{m}$ implies that all edges have the same label, say α. By the condition $l(u_i, v_j) = \alpha_j$ we have $(n - 2)\alpha \equiv 0 \pmod{m}$ and this is impossible when $gcd(n - 2, m) = 1$.

If $gcd(n - 2, m) = d \neq 1$, then using $\alpha = m/d$ gives a barycentric-magic labeling.

Case 2 (m is even). Here we give two different approaches. In this case, the condition $2\alpha_1 \equiv 2\alpha_2 \equiv \cdots \equiv 2\alpha_n \pmod{m}$ implies that there are at most two different labels α and $\beta = \alpha + m/2$, such that $2\alpha \equiv 2\beta \pmod{m}$. Now label $K_{2,n}$ as follows: $l(u_1, v_j) = \alpha$ for $1 \leq j \leq k$ and $l(u_1, v_j) = \beta$ for $k + 1 \leq j \leq n$, for some $1 \leq k \leq n$. Then, the edges incidents to u_2 must be labeled in the same way. This labeling is barycentric-magic if and only if

$$k\alpha + (n - k)\beta \equiv n\alpha \equiv 2\alpha \equiv 2\beta \pmod{m} \quad (1)$$

or

$$k\alpha + (n - k)\beta \equiv n\beta \equiv 2\alpha \equiv 2\beta \pmod{m} \quad (2)$$

Without loss of generality, we consider only the first relation. The condition $n\alpha \equiv 2\alpha \pmod{m}$ is satisfied only when $gcd(n - 2, m) \neq 1$. So suppose that $gcd(n - 2, m) = d \neq 1$. Choose
Figure 3: Friendship graphs F_2, F_3, F_4, and F_n, respectively.

Figure 4: Graph H_{2n}.

$k = d$, $\alpha = m/d$, and $\beta = \alpha + m/2$ and since $n - d$ is even we get

$$ka + (n - k)\beta \equiv na \pmod{m},$$

$$na \equiv 2\beta \equiv 2\alpha \pmod{m}.$$ (3)

Therefore with this labeling K_{2n} is \mathbb{Z}_m-barycentric-magic.

Now we state the second approach.

Since $na = 2\alpha \pmod{m}$, if gcd($m, n - 2$) = 1, then $\alpha = 0$, a contradiction. Conversely, let $\alpha_1 = \alpha_2 = \cdots = \alpha_k = m/d$. This is also a \mathbb{Z}_m-barycentric-magic labeling for K_{2n}. \(\square\)

Example 10. Consider the graph $K_{2,10}$ and the group \mathbb{Z}_{10}. Let $V(K_{2,10}) = \{u_1, u_2\} \cup \{v_1, v_2, \ldots, v_{10}\}$ be the set of vertices of $K_{2,10}$. In this case, since $d = \gcd(n - 2, m) = 2$ choose $\alpha = m/d = 5$ and $\beta = \alpha + m/2 = 10$ and $k = d = 2$. The labeling of $K_{2,10}$ is as follows:

$$l(u_i, v_j) = 5 \text{ for } i = 1, 2 \text{ and } j = 1, 2;$$

$$l(u_1, v_j) = 10 \text{ for } i = 1, 2 \text{ and } j = 3, \ldots, 10;$$

then $l'(v_j) = 2 \times 5 = \deg(v_j) \times 5 \equiv 10 \pmod{10}$ for $j = 1, 2$;

$$l'(v_j) = 2 \times 10 = \deg(v_j) \times 10 \equiv 10 \pmod{10} \text{ for } j = 3, \ldots, 10;$$

Then with this labeling we get barycentric-magic labeling.

Here we consider friendship graphs.

Let n be any positive integer and F_n Dutch-Windmill, or friendship graph with $2n + 1$ vertices and $3n$ edges. In other words, the friendship graph F_n is a graph that can be constructed by coalescence n copies of the cycle graph C_3 of length 3 with a common vertex. The friendship theorem of Erdős et al. [12] states that graphs with the property that every two vertices have exactly one neighbour in common are exactly the friendship graphs. Figure 3 shows some examples of friendship graphs.

Theorem 11. Friendship graphs F_n are \mathbb{Z}_{2m}-barycentric-magic graphs for any $m \in \mathbb{N}$.

Proof. Consider friendship graph F_n and suppose that $\deg(v) = 2n$ and $\deg(u_i) = 2$ for $i = 1, \ldots, n$. We label all the edges of F_n with $\alpha \in \mathbb{Z}_{2m} \setminus \{0\}$. Since $2na \equiv 2\alpha \pmod{2m}$ (e.g., put $m = \alpha$), the graphs F_n are \mathbb{Z}_{2m}-barycentric-magic. \(\square\)

Here we consider another families of graphs denoted by H_{2n} (see Figure 4).
Theorem 12. The graphs H_{2n} are not \mathbb{Z}_k-barycentric-magic for every k.

Proof. Suppose that the set of vertices of H_{2n} is $V = \{u_1, u_2\} \cup \{v_1, v_2\}$, where $i = 1, \ldots, n/2$ and $j = 1, \ldots, n - 2$ and \text{deg}(u_1) = \text{deg}(u_2) = 2$, \text{deg}(v_1) = 3$, and \text{deg}(v_2) = 4$. One can consider some cases to prove that there is no \mathbb{Z}_k barycentric-magic labeling for H_{2n}. Here we state two cases. We label the graph H_{2n} as follows.

Case 1. Label all edges of H_{2n} with $\alpha \in \mathbb{Z}_k \setminus \{0\}$. In this case $3\alpha \equiv 2\alpha \pmod{k}$ or $\alpha \equiv 0 \pmod{k}$ which is not true.

Case 2. We label H_{2n} as follows: $l(u_1, u_{11}) = l(v_1, u_{13}) = \alpha + r$ for each $i = 1, \ldots, n/2$ and $l(u_1, v_1) = l(v_2, v_{2n-2}) = \alpha$ for each $j = 1, \ldots, n - 3$ and $l(v_{2j-1}, v_{2j}) = \alpha + 3r$ for each $j = 1, \ldots, n - 3$ and $l(u_1, u_{21}) = l(v_1, u_{12}) = l(u_2, u_{2(n/2)}) = \alpha + 2r$ for each $i = 1, \ldots, n/2$ and $j = 1, \ldots, n - 2$). From $l^*(u_1) = l^*(u_{11})$ we have $3\alpha + 3r \equiv 2\alpha + 2r \pmod{k}$ or $\alpha + r \equiv 0 \pmod{k}$, but $\alpha + r$ is the label of edges u_{11}, v_1, so this labeling is not barycentric-magic. \hfill \Box

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors would like to express their gratitude to the referee for careful reading and helpful comments.

References

