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Abstract. 
Let 
	
		
			

				𝐺
			

		
	
 be a group, and let 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
			

		
	
 denote the number of distinct centralizers of its elements. A group 
	
		
			

				𝐺
			

		
	
 is called 
	
		
			

				𝑛
			

		
	
-centralizer if 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				𝑛
			

		
	
. In this paper, we investigate the structure of finite groups of odd order with 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				1
				0
			

		
	
 and prove that there is no finite nonabelian group of odd order
with 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				1
				0
			

		
	
.


1. Introduction
Throughout this paper all groups mentioned are assumed to be finite, and we will use usual notation; for example, 
	
		
			

				𝐶
			

			

				𝑛
			

		
	
 denotes the cyclic group of order 
	
		
			

				𝑛
			

		
	
, and 
	
		
			

				𝐶
			

			

				𝑛
			

			
				⋊
				𝐶
			

			

				𝑝
			

		
	
 denotes the semidirect product of 
	
		
			

				𝐶
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝑝
			

		
	
 with normal subgroup 
	
		
			

				𝐶
			

			

				𝑛
			

		
	
, where 
	
		
			

				𝑛
			

		
	
 is a positive integer and 
	
		
			

				𝑝
			

		
	
 is a prime. For a group 
	
		
			

				𝐺
			

		
	
, 
	
		
			
				𝑍
				(
				𝐺
				)
			

		
	
 denotes the center of 
	
		
			

				𝐺
			

		
	
, and 
	
		
			
				C
				e
				n
				t
				(
				𝐺
				)
				=
				{
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
				∣
				𝑥
				∈
				𝐺
				}
			

		
	
, where 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
 is the centralizer of the element 
	
		
			

				𝑥
			

		
	
 in 
	
		
			

				𝐺
			

		
	
; that is, 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
				=
				{
				𝑦
				∈
				𝐺
				|
				𝑥
				𝑦
				=
				𝑦
				𝑥
				}
			

		
	
. A group 
	
		
			

				𝐺
			

		
	
 is a 
	
		
			
				𝐶
				𝐴
			

		
	
-group if 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
 is abelian for every 
	
		
			
				𝑥
				∈
				𝐺
				⧵
				𝑍
				(
				𝐺
				)
			

		
	
. Many authors have studied the influence of 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
			

		
	
 on finite group 
	
		
			

				𝐺
			

		
	
 (see [1–9]). It is clear that a group 
	
		
			

				𝐺
			

		
	
 is 1-centralizer if and only if it is abelian. In [6] Belcastro and Sherman proved that there is no 
	
		
			

				𝑛
			

		
	
-centralizer group for 
	
		
			
				𝑛
				=
				2
				,
				3
			

		
	
. They also proved that 
	
		
			

				𝐺
			

		
	
 is 4-centralizer if and only if 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐶
			

			

				2
			

			
				×
				𝐶
			

			

				2
			

		
	
, and 
	
		
			

				𝐺
			

		
	
 is 5-centralizer if and only if 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐶
			

			

				3
			

			
				×
				𝐶
			

			

				3
			

		
	
 or 
	
		
			

				𝑆
			

			

				3
			

		
	
. In [2] Ashrafi proved that if 
	
		
			

				𝐺
			

		
	
 is 6-centralizer, then 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐷
			

			

				8
			

		
	
, 
	
		
			

				𝐴
			

			

				4
			

		
	
, 
	
		
			

				𝐶
			

			

				2
			

		
	
 × 
	
		
			

				𝐶
			

			

				2
			

		
	
 × 
	
		
			

				𝐶
			

			

				2
			

		
	
, or 
	
		
			

				𝐶
			

			

				2
			

		
	
 × 
	
		
			

				𝐶
			

			

				2
			

		
	
 × 
	
		
			

				𝐶
			

			

				2
			

		
	
 × 
	
		
			

				𝐶
			

			

				2
			

		
	
. In [1] Abdollahi et al. proved that 
	
		
			

				𝐺
			

		
	
 is 7-centralizer if and only if 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐶
			

			

				5
			

			
				×
				𝐶
			

			

				5
			

		
	
, 
	
		
			

				𝐷
			

			
				1
				0
			

		
	
 or 
	
		
			
				⟨
				𝑥
				,
				𝑦
				∣
				𝑥
			

			

				5
			

			
				=
				𝑦
			

			

				4
			

			
				=
				1
			

		
	
, 
	
		
			

				𝑦
			

			
				−
				1
			

			
				𝑥
				𝑦
				=
				𝑥
			

			

				3
			

			

				⟩
			

		
	
. They also proved that if 
	
		
			

				𝐺
			

		
	
 is 8-centralizer, then 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐶
			

			

				2
			

			
				×
				𝐶
			

			

				2
			

			
				×
				𝐶
			

			

				2
			

		
	
, 
	
		
			

				𝐴
			

			

				4
			

		
	
 or 
	
		
			

				𝐷
			

			
				1
				2
			

		
	
.
Our main result is as follows.
Theorem 1.  There is no finite nonabelian group 
	
		
			

				𝐺
			

		
	
 of odd order with 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				1
				0
			

		
	
.
2. Preliminary Results
By [1], a cover 
	
		
			

				Γ
			

		
	
 for a group 
	
		
			

				𝐺
			

		
	
 is a collection of proper subgroups whose union is the whole 
	
		
			

				𝐺
			

		
	
. We use the term 
	
		
			

				𝑛
			

		
	
-cover for a cover with 
	
		
			

				𝑛
			

		
	
 members. A cover is called irredundant if no proper subcollection is also a cover. A cover is called a partition with kernel 
	
		
			

				𝑘
			

		
	
 if the intersection of pairwise members of the cover is 
	
		
			

				𝑘
			

		
	
. Neumann in [10] obtained a uniform bound for the index of the intersection of an irredundant 
	
		
			

				𝑛
			

		
	
-cover in terms of 
	
		
			

				𝑛
			

		
	
, and Tomkinson [11] improved this bound. For a natural number 
	
		
			

				𝑛
			

		
	
, let 
	
		
			
				𝑓
				(
				𝑛
				)
			

		
	
 denote the largest index 
	
		
			
				|
				𝐺
				∶
				𝐷
				|
			

		
	
, where 
	
		
			

				𝐺
			

		
	
 is a group with an irredundant 
	
		
			

				𝑛
			

		
	
-cover whose intersection of all of them is 
	
		
			

				𝐷
			

		
	
. We know that 
	
		
			
				𝑓
				(
				3
				)
				=
				4
			

		
	
, 
	
		
			
				𝑓
				(
				4
				)
				=
				9
			

		
	
, 
	
		
			
				𝑓
				(
				5
				)
				=
				1
				6
			

		
	
, and 
	
		
			
				𝑓
				(
				6
				)
				=
				3
				6
			

		
	
 (see [12–15], resp.). Now we present some lemmas and propositions that will be used in the proof of Theorem 1.
Lemma 2 (Lemma 3.3 of [11]).  Let 
	
		
			

				𝑀
			

		
	
 be a proper subgroup of the finite group 
	
		
			

				𝐺
			

		
	
, and let 
	
		
			

				𝐻
			

			

				1
			

		
	
, 
	
		
			

				𝐻
			

			

				2
			

			
				,
				…
				,
				𝐻
			

			

				𝑘
			

		
	
 be subgroups of 
	
		
			

				𝐺
			

		
	
 with 
	
		
			
				|
				𝐺
				∶
				𝐻
			

			

				𝑖
			

			
				|
				=
				𝛽
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝛽
			

			

				1
			

			
				≤
				⋯
				≤
				𝛽
			

			

				𝑘
			

		
	
. If 
	
		
			
				𝐺
				=
				𝑀
				∪
				𝐻
			

			

				1
			

			
				∪
				⋯
				∪
				𝐻
			

			

				𝑘
			

		
	
, then 
	
		
			

				𝛽
			

			

				1
			

			
				≤
				𝑘
			

		
	
. Furthermore, if 
	
		
			

				𝛽
			

			

				1
			

			
				=
				𝑘
			

		
	
, then 
	
		
			

				𝛽
			

			

				1
			

			
				=
				𝛽
			

			

				2
			

			
				=
				⋯
				=
				𝛽
			

			

				𝑘
			

			
				=
				𝑘
			

		
	
 and 
	
		
			

				𝐻
			

			

				𝑖
			

			
				∩
				𝐻
			

			

				𝑗
			

			
				≤
				𝑀
			

		
	
 for any two distinct 
	
		
			

				𝑖
			

		
	
 and 
	
		
			

				𝑗
			

		
	
.
Definition 3 (Definition  2.1 of [1]). A nonempty subset 
	
		
			
				𝑋
				=
				{
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑟
			

			

				}
			

		
	
 of a finite group 
	
		
			

				𝐺
			

		
	
 is called a set of pairwise noncommuting elements if 
	
		
			

				𝑥
			

			

				𝑖
			

			

				𝑥
			

			

				𝑗
			

			
				≠
				𝑥
			

			

				𝑗
			

			

				𝑥
			

			

				𝑖
			

		
	
 for all distinct 
	
		
			
				𝑖
				,
				𝑗
				∈
				{
				1
				,
				…
				,
				𝑟
				}
			

		
	
. A set of pairwise noncommuting elements of 
	
		
			

				𝐺
			

		
	
 is said to have maximal size if its cardinality is the largest one among all such sets.
Remark 4. Let 
	
		
			

				𝐺
			

		
	
 be a finite group, and let 
	
		
			
				{
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑟
			

			

				}
			

		
	
 be a set of pairwise noncommuting elements of 
	
		
			

				𝐺
			

		
	
 having maximal size. Then (1)
	
		
			
				{
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			
				)
				∣
				𝑖
				=
				1
				,
				…
				,
				𝑟
				}
			

		
	
 is an irredundant 
	
		
			

				𝑟
			

		
	
-cover with the intersection 
	
		
			
				𝑍
				(
				𝐺
				)
				=
				∩
			

			
				𝑟
				𝑖
				=
				1
			

			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			

				)
			

		
	
 (see Theorem  5.1 of [11]).(2)
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				≤
				𝑓
				(
				𝑟
				)
			

		
	
 (see Corollary  5.2 of [11]).(3)
	
		
			
				𝑓
				(
				3
				)
				=
				4
			

		
	
, 
	
		
			
				𝑓
				(
				4
				)
				=
				9
			

		
	
, 
	
		
			
				𝑓
				(
				5
				)
				=
				1
				6
			

		
	
, 
	
		
			
				𝑓
				(
				6
				)
				=
				3
				6
			

		
	
, and 
	
		
			
				𝑓
				(
				7
				)
				=
				8
				1
			

		
	
 (see [12–16], resp.).(4)Let 
	
		
			

				𝐺
			

		
	
 be a group such that every proper centralizer in 
	
		
			

				𝐺
			

		
	
 is abelian. Then for all 
	
		
			
				𝑎
				,
				𝑏
				∈
				𝐺
				⧵
				𝑍
				(
				𝐺
				)
			

		
	
 either 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑎
				)
				=
				𝐶
			

			

				𝐺
			

			
				(
				𝑏
				)
			

		
	
 or 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑎
				)
				∩
				𝐶
			

			

				𝐺
			

			
				(
				𝑏
				)
				=
				𝑍
				(
				𝐺
				)
			

		
	
.If 
	
		
			
				𝑧
				∈
				(
				𝐶
			

			

				𝐺
			

			
				(
				𝑎
				)
				∩
				𝐶
			

			

				𝐺
			

			
				(
				𝑏
				)
				)
				⧵
				𝑍
				(
				𝐺
				)
			

		
	
, then 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑧
				)
			

		
	
 contains both 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑎
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑏
				)
			

		
	
, since 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑎
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑏
				)
			

		
	
 are abelian. Since 
	
		
			

				𝑧
			

		
	
 is not in 
	
		
			
				𝑍
				(
				𝐺
				)
			

		
	
, 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑧
				)
				≤
				𝐶
			

			

				𝐺
			

			
				(
				𝑎
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑧
				)
				≤
				𝐶
			

			

				𝐺
			

			
				(
				𝑏
				)
			

		
	
. Thus, 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑧
				)
				=
				𝐶
			

			

				𝐺
			

			
				(
				𝑎
				)
				=
				𝐶
			

			

				𝐺
			

			
				(
				𝑏
				)
			

		
	
. Hence, in such a group 
	
		
			

				𝐺
			

		
	
, 
	
		
			
				{
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
				∣
				𝑥
				∈
				𝐺
				⧵
				𝑍
				(
				𝐺
				)
				}
			

		
	
 forms a partition with kernel 
	
		
			
				𝑍
				(
				𝐺
				)
			

		
	
. It follows that 
	
		
			
				{
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
				/
				𝑍
				(
				𝐺
				)
				∣
				𝑥
				∈
				𝐺
				⧵
				𝑍
				(
				𝐺
				)
				}
			

		
	
 forms a partition whose kernel is the trivial subgroup (see also Proposition 1.2 of [17]).
Lemma 5 (Lemma  2.4 of [1]).  Let 
	
		
			

				𝐺
			

		
	
 be a finite nonabelian group, and let 
	
		
			
				{
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑟
			

			

				}
			

		
	
 be a set of pairwise noncommuting elements of 
	
		
			

				𝐺
			

		
	
 with maximal size. Then (1)
	
		
			
				𝑟
				≥
				3
			

		
	
;(2)
	
		
			
				𝑟
				+
				1
				≤
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
			

		
	
;(3)
	
		
			
				𝑟
				=
				3
			

		
	
 if and only if 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				4
			

		
	
;(4)
	
		
			
				𝑟
				=
				4
			

		
	
 if and only if 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				5
			

		
	
.
Proposition 6 (Proposition  2.5 of [1]).  Let 
	
		
			

				𝐺
			

		
	
 be a finite group, and let 
	
		
			
				𝑋
				=
				{
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑟
			

			

				}
			

		
	
 be a set of pairwise noncommuting elements of 
	
		
			

				𝐺
			

		
	
 having maximal size. (a)If 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				<
				𝑟
				+
				4
			

		
	
, then (1)for each element 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
, 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
 is abelian if and only if 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
				=
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			

				)
			

		
	
 for some 
	
		
			
				𝑖
				∈
				{
				1
				,
				…
				,
				𝑟
				}
			

		
	
;(2)if 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			

				)
			

		
	
 is a maximal subgroup of 
	
		
			

				𝐺
			

		
	
 for some 
	
		
			
				𝑖
				∈
				{
				1
				,
				…
				,
				𝑟
				}
			

		
	
, then 
	
		
			
				𝑍
				(
				𝐺
				)
				=
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			
				)
				∩
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑗
			

			

				)
			

		
	
 for all 
	
		
			
				𝑗
				∈
				{
				1
				,
				…
				,
				𝑟
				}
				⧵
				{
				𝑖
				}
			

		
	
. In particular, if 
	
		
			
				|
				𝐺
				∶
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				1
			

			
				)
				|
				≤
				|
				𝐺
				∶
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				2
			

			
				)
				|
				≤
				2
			

		
	
, then 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				4
			

		
	
, and if 
	
		
			
				|
				𝐺
				∶
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				1
			

			
				)
				|
				≤
				|
				𝐺
				∶
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				2
			

			
				)
				|
				=
				3
			

		
	
, then 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				5
			

		
	
.(b)If 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				𝑟
				+
				2
			

		
	
, then there exists a proper nonabelian centralizer 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
 which contains 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			

				1
			

			

				)
			

		
	
, 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			

				3
			

			

				)
			

		
	
 for three distinct 
	
		
			

				𝑖
			

			

				1
			

			
				,
				𝑖
			

			

				2
			

			
				,
				𝑖
			

			

				3
			

			
				∈
				{
				1
				,
				…
				,
				𝑟
				}
			

		
	
.(c)If 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				𝑟
				+
				3
			

		
	
, then there exists a proper nonabelian centralizer 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
 which contains 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			

				2
			

			

				)
			

		
	
 for two distinct 
	
		
			

				𝑖
			

			

				1
			

			
				,
				𝑖
			

			

				2
			

			
				∈
				{
				1
				,
				…
				,
				𝑟
				}
			

		
	
.
Lemma 7 (Lemma  2.6 of [1]).  Let 
	
		
			

				𝐺
			

		
	
 be a finite nonabelian group. Then every proper centralizer of 
	
		
			

				𝐺
			

		
	
 is abelian if and only if 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				𝑟
				+
				1
			

		
	
, where 
	
		
			

				𝑟
			

		
	
 is the maximal size of a set of pairwise noncommuting elements of 
	
		
			

				𝐺
			

		
	
.
Theorem 8 (Theorem  4.2 of [11]).  Suppose that 
	
		
			

				𝐺
			

		
	
 is covered by 
	
		
			

				𝑛
			

		
	
 abelian subgroups 
	
		
			

				𝐴
			

			

				1
			

			
				,
				𝐴
			

			

				2
			

			
				,
				…
				,
				𝐴
			

			

				𝑛
			

		
	
; then (i)if 
	
		
			
				𝐺
				=
				⟨
				𝐴
			

			

				1
			

			
				,
				𝐴
			

			

				2
			

			

				⟩
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				≤
				(
				𝑛
				−
				1
				)
			

			

				2
			

		
	
;(ii)if 
	
		
			
				⟨
				𝐴
			

			

				1
			

			
				,
				𝐴
			

			

				2
			

			
				⟩
				<
				𝐺
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				≤
				2
				(
				𝑛
				−
				2
				)
			

			
				l
				o
				g
			

			

				2
			

			
				(
				𝑛
				−
				2
				)
			

		
	
.
Definition 9 (see [18]). A group 
	
		
			

				𝐺
			

		
	
 is said to be an 
	
		
			

				𝑛
			

		
	
-sum group if it can be written as the sum of 
	
		
			

				𝑛
			

		
	
 of its proper subgroups and of no smaller number. One then writes 
	
		
			
				∑
				𝐺
				=
			

			
				𝑛
				𝑟
				=
				1
			

			

				𝐻
			

			

				𝑟
			

		
	
, where, for each 
	
		
			

				𝑟
			

		
	
, 
	
		
			

				𝐻
			

			

				𝑟
			

		
	
 is a proper subgroup, which can be assumed to be maximal where convenient.
Theorem 10 (Theorem  1 of [18]).  If 
	
		
			
				∑
				𝐺
				=
			

			
				𝑛
				𝑟
				=
				1
			

			

				𝐻
			

			

				𝑟
			

		
	
, then 
	
		
			
				∑
				|
				𝐺
				|
				≤
			

			
				𝑛
				𝑟
				=
				2
			

			
				|
				𝐻
			

			

				𝑟
			

			

				|
			

		
	
, with equality if and only if 
	
		
			
				(
				𝑎
				)
				𝐻
			

			

				1
			

			

				𝐻
			

			

				𝑟
			

			
				=
				𝐺
			

		
	
; 
	
		
			
				𝑟
				≠
				1
			

		
	
 and 
	
		
			
				(
				𝑏
				)
				𝐻
			

			

				𝑟
			

			
				∩
				𝐻
			

			

				𝑠
			

			
				⊂
				𝐻
			

			

				1
			

		
	
; 
	
		
			
				𝑟
				≠
				𝑠
			

		
	
.
Remark 11. If 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 are subgroups of finite index in a group 
	
		
			

				𝐺
			

		
	
, and 
	
		
			
				|
				𝐺
				∶
				𝐴
				|
			

		
	
 and 
	
		
			
				|
				𝐺
				∶
				𝐵
				|
			

		
	
 are relatively prime, then 
	
		
			
				𝐺
				=
				𝐴
				𝐵
			

		
	
.
Proposition 12 (Proposition  2.2 of [19]).  Let 
	
		
			

				𝑝
			

		
	
 be the smallest prime that is dividing 
	
		
			
				|
				𝐺
				|
			

		
	
. If 
	
		
			
				|
				𝐺
				∶
				𝑍
				(
				𝐺
				)
				|
				=
				𝑝
			

			

				3
			

		
	
, then 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				𝑝
			

			

				2
			

			
				+
				𝑝
				+
				2
			

		
	
 or 
	
		
			

				𝑝
			

			

				2
			

			
				+
				2
			

		
	
.
Proposition 13 (Proposition  2.9 of [19]).  Let 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
			

		
	
 be nonabelian, 
	
		
			

				𝑛
			

		
	
 an integer, and 
	
		
			

				𝑝
			

		
	
 a prime. If 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐶
			

			

				𝑛
			

			
				⋊
				𝐶
			

			

				𝑝
			

		
	
, then 
	
		
			
				|
				𝐶
				𝑒
				𝑛
				𝑡
				(
				𝐺
				)
				|
				=
				𝑛
				+
				2
			

		
	
.
Now we are ready to state the main result of this paper.
3. The Proof of Theorem 1
In this section, we give the proof of the main theorem.
Suppose, on the contrary, that 
	
		
			

				𝐺
			

		
	
 is a finite nonabelian group of odd order with 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				1
				0
			

		
	
. Let 
	
		
			
				{
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑟
			

			

				}
			

		
	
 be a set of pairwise noncommuting elements of finite nonabelian group 
	
		
			

				𝐺
			

		
	
 having maximal size. Then 
	
		
			

				𝑋
			

			

				𝑖
			

			
				=
				𝐶
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑖
			

			

				)
			

		
	
, 
	
		
			
				1
				≤
				𝑖
				≤
				𝑟
			

		
	
, is an irredundant 
	
		
			

				𝑟
			

		
	
-cover with intersection 
	
		
			
				𝑍
				(
				𝐺
				)
			

		
	
. Assume that 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				𝑖
			

			
				|
				=
				𝛼
			

			

				𝑖
			

		
	
, where 
	
		
			

				𝛼
			

			

				1
			

			
				≤
				⋯
				≤
				𝛼
			

			

				𝑟
			

		
	
. Since 
	
		
			

				𝐺
			

		
	
 is a 10-centralizer group, therefore, by Lemma 5, we have 
	
		
			
				5
				≤
				𝑟
				≤
				9
			

		
	
.
Suppose 
	
		
			
				𝑟
				=
				5
			

		
	
. By Remark 4, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				≤
				1
				6
			

		
	
 and 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			
				∪
				𝑋
			

			

				2
			

			
				∪
				⋯
				∪
				𝑋
			

			

				5
			

		
	
; therefore by Lemma 2, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				≤
				4
			

		
	
. Since 
	
		
			
				|
				𝐺
				|
			

		
	
 is odd, then 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				3
			

		
	
. On the other hand, 3 is a divisor of 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
			

		
	
; therefore, we have 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				∈
				{
				9
				,
				1
				5
				}
			

		
	
. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				9
			

		
	
, then 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				5
			

		
	
 by [6, Theorem  6], which is a contradiction. Now if 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				1
				5
			

		
	
, then 
	
		
			

				𝐺
			

		
	
 is abelian which is not possible. It implies that 
	
		
			
				𝑟
				≠
				5
			

		
	
.
Suppose 
	
		
			
				𝑟
				=
				6
			

		
	
. By Remark 4, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				≤
				3
				6
			

		
	
 and 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			
				∪
				𝑋
			

			

				2
			

			
				∪
				⋯
				∪
				𝑋
			

			

				6
			

		
	
; therefore by Lemma 2, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				≤
				5
			

		
	
. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				5
			

		
	
, since 5 is a divisor of 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				∈
				{
				1
				5
				,
				2
				5
				,
				3
				5
				}
			

		
	
. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				∈
				{
				1
				5
				,
				3
				5
				}
			

		
	
, then 
	
		
			

				𝐺
			

		
	
 is abelian, which is not possible. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				2
				5
			

		
	
, then by [6, Theorem  6], 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				7
			

		
	
, a contradiction. Now suppose 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				3
			

		
	
; since 3 is a divisor of 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
			

		
	
, therefore 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				∈
				{
				9
				,
				1
				5
				,
				2
				1
				,
				2
				7
				,
				3
				3
				}
			

		
	
. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				∈
				{
				1
				5
				,
				3
				3
				}
			

		
	
, then 
	
		
			

				𝐺
			

		
	
 is abelian which is not possible. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				2
				1
			

		
	
, then 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐶
			

			

				7
			

			
				⋊
				𝐶
			

			

				3
			

		
	
, and by Proposition 13, 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				9
			

		
	
. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				9
			

		
	
, then 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				5
			

		
	
. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				2
				7
			

		
	
, then by Proposition 12, 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				1
				1
			

		
	
 or 14. Hence, 
	
		
			
				𝑟
				≠
				6
			

		
	
 and so 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				<
				𝑟
				+
				4
			

		
	
.
Now suppose 
	
		
			
				𝑟
				=
				7
			

		
	
. By Remark 4, 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			
				∪
				𝑋
			

			

				2
			

			
				∪
				⋯
				∪
				𝑋
			

			

				7
			

		
	
, and by Lemma 2, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				≤
				6
			

		
	
. Now if 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				5
			

		
	
, then 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
			

		
	
 or 5. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
			

		
	
, then by Remark 11, 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			

				𝑋
			

			

				2
			

		
	
, and by Proposition 6, 
	
		
			

				𝑋
			

			

				1
			

			
				∩
				𝑋
			

			

				2
			

			
				=
				𝑍
				(
				𝐺
				)
			

		
	
. Hence, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				1
				5
			

		
	
 which is not possible, since 
	
		
			

				𝐺
			

		
	
 is nonabelian. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				5
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				≤
				2
				5
			

		
	
, and since 5 is a divisor of 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				∈
				{
				1
				5
				,
				2
				5
				}
			

		
	
, which is again a contradiction. Hence, 
	
		
			
				𝑟
				≠
				7
			

		
	
.
Now suppose 
	
		
			
				𝑟
				=
				8
			

		
	
. By Remark 4, 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			
				∪
				𝑋
			

			

				2
			

			
				∪
				⋯
				∪
				𝑋
			

			

				8
			

		
	
, and by Lemma 2, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				≤
				7
			

		
	
. Now if 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				3
			

		
	
, by Proposition 6, 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				5
			

		
	
, a contradiction. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				5
			

		
	
, then 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
			

		
	
 or 5. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
			

		
	
, then by Remark 11, 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			

				𝑋
			

			

				2
			

		
	
, and by Proposition 6, 
	
		
			

				𝑋
			

			

				1
			

			
				∩
				𝑋
			

			

				2
			

			
				=
				𝑍
				(
				𝐺
				)
			

		
	
. Hence, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				1
				5
			

		
	
 which is not possible, since 
	
		
			

				𝐺
			

		
	
 is nonabelian. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				5
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				≤
				2
				5
			

		
	
. Now since 5 is a divisor of 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
			

		
	
, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				∈
				{
				1
				5
				,
				2
				5
				}
			

		
	
, which is again a contradiction. Finally, suppose that 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				7
			

		
	
. By Lemma 2, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				|
				𝐺
				∶
				𝑋
			

			

				3
			

			
				|
				=
				⋯
				=
				|
				𝐺
				∶
				𝑋
			

			

				8
			

			
				|
				=
				7
			

		
	
. Therefore, 
	
		
			
				∑
				|
				𝐺
				|
				=
			

			
				8
				𝑖
				=
				2
			

			
				|
				𝑋
			

			

				𝑖
			

			

				|
			

		
	
, and by Theorem 10, 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			

				𝑋
			

			

				2
			

		
	
. Again by Proposition 6, 
	
		
			

				𝑋
			

			

				1
			

			
				∩
				𝑋
			

			

				2
			

			
				=
				𝑍
				(
				𝐺
				)
			

		
	
. Since 
	
		
			
				|
				𝐺
				|
			

		
	
 is odd, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
				,
				5
			

		
	
, or 7. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				2
				1
			

		
	
. So 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐶
			

			

				7
			

			
				⋊
				𝐶
			

			

				3
			

		
	
, and by Proposition 13, 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				9
			

		
	
, which is a contradiction. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				5
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				3
				5
			

		
	
. Therefore, 
	
		
			

				𝐺
			

		
	
 is abelian, which is not possible. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				7
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				4
				9
			

		
	
. Now by [6, Theorem  6], 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				9
			

		
	
, which is a contradiction. Hence, 
	
		
			
				𝑟
				≠
				8
			

		
	
.
Thus, 
	
		
			
				𝑟
				=
				9
			

		
	
. By Lemma 7, 
	
		
			

				𝐺
			

		
	
 is a 
	
		
			
				𝐶
				𝐴
			

		
	
-group, and by Remark 4, 
	
		
			

				𝑋
			

			

				𝑖
			

			
				∩
				𝑋
			

			

				𝑗
			

			
				=
				𝑍
				(
				𝐺
				)
			

		
	
 for all distinct 
	
		
			
				𝑖
				,
				𝑗
				∈
				{
				1
				,
				2
				,
				…
				,
				9
				}
			

		
	
. Now 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			
				∪
				𝑋
			

			

				2
			

			
				∪
				⋯
				∪
				𝑋
			

			

				9
			

		
	
, and by Lemma 2, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				≤
				8
			

		
	
. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				3
			

		
	
, then 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				5
			

		
	
, a contradiction. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				5
			

		
	
, then 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
			

		
	
 or 5. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
			

		
	
, then by Remark 11, 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			

				𝑋
			

			

				2
			

		
	
. Since 
	
		
			

				𝑋
			

			

				1
			

			
				∩
				𝑋
			

			

				2
			

			
				=
				𝑍
				(
				𝐺
				)
			

		
	
, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				1
				5
			

		
	
, which is a contradiction. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				5
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				≤
				2
				5
			

		
	
, and since 5 is a divisor of 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
			

		
	
, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				∈
				{
				1
				5
				,
				2
				5
				}
			

		
	
, which is again a contradiction. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				2
			

			
				|
				=
				7
			

		
	
, then 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
				,
				5
			

		
	
, or 7. If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				3
			

		
	
, then by Remark 11, 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			

				𝑋
			

			

				2
			

		
	
, and since 
	
		
			

				𝑋
			

			

				1
			

			
				∩
				𝑋
			

			

				2
			

			
				=
				𝑍
				(
				𝐺
				)
			

		
	
, therefore 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				2
				1
			

		
	
 and so 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐶
			

			

				7
			

			
				⋊
				𝐶
			

			

				3
			

		
	
, and by Proposition 13, 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				9
			

		
	
, which is a contradiction. Similarly, If 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				5
			

		
	
, then 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				3
				5
			

		
	
, a contradiction. Finally, if 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				7
			

		
	
, then 
	
		
			
				𝐺
				=
				⟨
				𝑋
			

			

				1
			

			
				,
				𝑋
			

			

				2
			

			

				⟩
			

		
	
. Therefore by Theorem 8, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				≤
				6
				4
			

		
	
. Since 
	
		
			
				|
				𝐺
				|
			

		
	
 is odd and 
	
		
			

				𝐺
			

		
	
 is nonabelian, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				∈
				{
				2
				1
				,
				3
				5
				,
				4
				9
				,
				6
				3
				}
			

		
	
. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				2
				1
			

		
	
, then 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
				≅
				𝐶
			

			

				7
			

			
				⋊
				𝐶
			

			

				3
			

		
	
, and by Proposition 13, 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				9
			

		
	
, which is a contradiction. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				3
				5
			

		
	
, then 
	
		
			

				𝐺
			

		
	
 is abelian which is not possible. If 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				4
				9
			

		
	
, then by [6, Theorem  6], 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				9
			

		
	
, which is a contradiction. Now suppose that 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				6
				3
			

		
	
. If 
	
		
			

				𝑋
			

			

				1
			

		
	
 or 
	
		
			

				𝑋
			

			

				2
			

		
	
 is normal in 
	
		
			

				𝐺
			

		
	
, then 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			

				𝑋
			

			

				2
			

		
	
. Since 
	
		
			

				𝑋
			

			

				1
			

			
				∩
				𝑋
			

			

				2
			

			
				=
				𝑍
				(
				𝐺
				)
			

		
	
, 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				=
				4
				9
			

		
	
, and by [6, Theorem  6], 
	
		
			
				|
				C
				e
				n
				t
				(
				𝐺
				)
				|
				=
				9
			

		
	
, a contradiction. It is easy to see that 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑔
				)
				/
				𝑍
				(
				𝐺
				)
				≤
				𝐶
			

			
				𝐺
				/
				𝑍
				(
				𝐺
				)
			

			
				(
				𝑔
				𝑍
				(
				𝐺
				)
				)
			

		
	
 for any 
	
		
			
				𝑔
				∈
				𝐺
				⧵
				𝑍
				(
				𝐺
				)
			

		
	
. Therefore, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				𝑖
			

			
				|
				=
				7
				,
				9
			

		
	
, or 21, for 
	
		
			
				𝑖
				∈
				{
				1
				,
				2
				,
				…
				,
				9
				}
			

		
	
. Let 
	
		
			
				𝑥
				𝑍
				(
				𝐺
				)
			

		
	
 be an element of order 7 in 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
			

		
	
. Then 
	
		
			

				𝐶
			

			
				𝐺
				/
				𝑍
				(
				𝐺
				)
			

			
				(
				𝑥
				𝑍
				(
				𝐺
				)
				)
			

		
	
 is the normal Sylow 7-subgroup of 
	
		
			
				𝐺
				/
				𝑍
				(
				𝐺
				)
			

		
	
. Since 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
				/
				𝑍
				(
				𝐺
				)
				≤
				𝐶
			

			
				𝐺
				/
				𝑍
				(
				𝐺
				)
			

			
				(
				𝑥
				𝑍
				(
				𝐺
				)
				)
			

		
	
, 
	
		
			

				𝐶
			

			

				𝐺
			

			
				(
				𝑥
				)
				/
				𝑍
				(
				𝐺
				)
				=
				𝐶
			

			
				𝐺
				/
				𝑍
				(
				𝐺
				)
			

			
				(
				𝑥
				𝑍
				(
				𝐺
				)
				)
			

		
	
. Hence by [19, Lemma  3.1], 
	
		
			

				𝐺
			

		
	
 has exactly one centralizer of index 9. Suppose 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				3
			

			
				|
				=
				9
			

		
	
. Then 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				4
			

			
				|
				=
				|
				𝐺
				∶
				𝑋
			

			

				5
			

			
				|
				=
				|
				𝐺
				∶
				𝑋
			

			

				6
			

			
				|
				=
				|
				𝐺
				∶
				𝑋
			

			

				7
			

			
				|
				=
				|
				𝐺
				∶
				𝑋
			

			

				8
			

			
				|
				=
				|
				𝐺
				∶
				𝑋
			

			

				9
			

			
				|
				=
				2
				1
			

		
	
 and 
	
		
			
				∑
				|
				𝐺
				|
				>
			

			
				9
				𝑖
				=
				2
			

			
				|
				𝑋
			

			

				𝑖
			

			

				|
			

		
	
, which is a contradiction by Theorem 10. Therefore, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				3
			

			
				|
				=
				7
			

		
	
. Similarly, we can show that 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				4
			

			
				|
				=
				|
				𝐺
				∶
				𝑋
			

			

				5
			

			
				|
				=
				|
				𝐺
				∶
				𝑋
			

			

				6
			

			
				|
				=
				|
				𝐺
				∶
				𝑋
			

			

				7
			

			
				|
				=
				7
			

		
	
. So we have 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				1
			

			
				|
				=
				⋯
				=
				|
				𝐺
				∶
				𝑋
			

			

				7
			

			
				|
				=
				7
			

		
	
, 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				8
			

			
				|
				=
				9
			

		
	
, and 
	
		
			
				|
				𝐺
				∶
				𝑋
			

			

				9
			

			
				|
				=
				2
				1
			

		
	
. By 
	
		
			
				𝐺
				=
				𝑋
			

			

				1
			

			
				∪
				𝑋
			

			

				2
			

			
				∪
				⋯
				∪
				𝑋
			

			

				9
			

		
	
 and the property 
	
		
			

				𝑋
			

			

				𝑖
			

			
				∩
				𝑋
			

			

				𝑗
			

			
				=
				𝑍
				(
				𝐺
				)
			

		
	
 for all distinct 
	
		
			
				𝑖
				,
				𝑗
				∈
				{
				1
				,
				2
				,
				…
				,
				9
				}
			

		
	
, it is easy to see that 
	
		
			
				|
				𝐺
				|
				=
				|
				𝑋
			

			

				1
			

			
				|
				+
				⋯
				+
				|
				𝑋
			

			

				9
			

			
				|
				−
				8
				|
				𝑍
				(
				𝐺
				)
				|
			

		
	
. So we have 
	
		
			
				|
				𝐺
				/
				𝑍
				(
				𝐺
				)
				|
				<
				6
				3
			

		
	
, a contradiction.

				Now the proof of Theorem 1 is complete.
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