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Abstract. 
In this work we present an application of a theory of vessels to a solution of the evolutionary nonlinear Schrödinger (NLS) equation. The classes of functions for which the initial value problem is solvable rely on the existence of an analogue of the inverse scattering theory for the usual NLS equation. This approach is similar to the classical approach of Zakharov-Shabath for solving evolutionary NLS equation but has an advantage of simpler formulas and new techniques and notions to understand the solutions.



1. Introduction and Background
Solutions of the nonlinear Schrödinger (NLS) evolutionary equation play a special role in the theory of PDEs and in physics (optics and water waves). This equation can be defined as follows:
						
					where  is a complex valued function of two real variables ,  and  is the initial condition, defined on an interval . Notice that constant  used in this work can be replaced with arbitrary number by scaling of the variables. This equation has so-called integrability property, which enables the usage of the inverse scattering theory and Zakharov-Shabath system [1]. Additionally, there are also numerous numerical solutions of this equation, among which we can mention split-step (Fourier) method. In this work we are going to generalize the method of Zakharov-Shabath by introducing evolutionary NLS (regular) vessels. Although the setting we choose to work with involves bounded operators only and Hilbert space techniques, there are many classes of analytic solutions of the NLS equation obtained. It is worth noticing that one can also generalize this theory to unbounded operators (as it was done in [2] for the Sturm-Liuoville differential equation).
We assume from the beginning that the initial value  is analytic on  function and moreover arises from a regular NLS vessel. From a recent work of the author [3] it follows that in a similar way to another completely integrable PDE, called Korteweg-de Vries, every analytic on  function can be presented using a vessel and, as a result, the evolutionary NLS equation with this initial value is solvable. In this work we show examples of how to construct different , which have a bounded spectrum, a spectrum on a bounded, continuous curve, or an infinite discrete spectrum. The problem of constructing of a vessel for a given  is identical to the inverse scattering problem of the NLS equation. To emphasize this point let us briefly discuss how the construction of the solution of (1) is performed starting from the spectral data encoded in a  matrix-function  which is realized [4] in the following manner:
						
					Here  is an auxiliary Hilbert space, on which there are defined bounded operators ,  and the operator . We also assume that
						
					Then solving for  in (13) , for  and defining next  we will obtain that the function
						
					is analytic (Theorem 6) on an interval, where  is invertible. On the other hand,  is invertible on an interval  including  because  is such. Indeed, at the definition of , we add to  a bounded operator with bounded growth. Moreover, it turns out (Theorem 5) that the function
						
					maps solutions  of the trivial NLS equation (24)
						
					to solutions  of the NLS equation (25)
						
					In order to obtain a solution of the evolutionary NLS (1), we evolve the operator  with respect to  as follows:
						
					and redefine
						
					One of the most interesting results of this paper is Theorem 17, where we prove that the new
						
					satisfies (1) and coincides with  for , proving the existence of solutions for (1) with initial value.
The formulas presented here enable us also to explicitly perform this construction for some basic and important cases. We show how to construct a vessel, for which the spectrum of  lies on a curve  (Section 3.2 for  and Section 5.2 for ), with a discrete set (Section 3.3 for  and Section 5.3 for ). We also discuss the general construction in Sections 3.1 and 5.1. Finally we present constructions of the Solitons in Section 5.4. Much of the results presented here were originated in the work of the author and collaborators [5–8]. As we pointed out, as this paper was being processed for the publication, the result of solving the KdV equation with analytic initial condition was accepted for publication in the Journal of Math. Physics. [3], showing that a similar result is correct for the NLS equation too.
2. Definition of a Regular NLS Vessel and Its Properties
We define first parameters, which will be frequently used in the sequel. Another choice of these parameters generates solutions of the Sturm-Liuoville differential equation and the Kortweg-de-Vries equation (see [2, 9] for details). A similar result was presented for the setting canonical systems and their evolution [10].
Definition 1. NLS vessel parameters are defined as follows:
							
Definition 2. An NLS regular vessel is a collection of operators and spaces:
							
						where , , and  are the NLS vessel parameters and  is a closed interval. The operators ,  are bounded operators for all . The operator  is invertible for all . The operators are subject to the following vessel conditions:
							
For each NLS vessel there exist three notions, which play a significant role in research.
Definition 3. Suppose that we are given an NLS vessel . Then its transfer function , the tau-functions , and the beta-function  are defined as follows:
							
The definition of  may be considered as excessive, because actually the matrix-function  turns to be
						
					using the self-adjointness of . Still, we will use these two notions extensively, so we have defined both of them. Notice that  is a  matrix-function, whose poles and singularities with respect to  are determined by the operator  only. Since all the involved operators, appearing at the definition of , are bounded, we can see that  is analytic in  for all  with value  (=identity  matrix) there. As a result, we can consider its Taylor series
						
					which is convergent at least for . Thus we define its (Markov) moments as follows.
Definition 4. th moment of the vessel  is
							
We will present in the next section basic properties of an NLS vessel  by exploring all the objects (the transfer, the tau, the beta functions, and the moments). We will also see that there is a standard technique for construction of such vessels.
2.1. The Transfer and the Tau-Function of an NLS Vessel
The main reason to consider NLS vessel is Theorem 5, whose proof we present in full detail, and also it appeared in different settings in [5, 11–14]. It turns out that we can see an NLS vessel as a Bäcklund transformation of the trivial NLS equation to a more complicated one. More precisely, the transfer function  of such a vessel maps solutions of the so-called input LDE with the spectral parameter 
							to solutions of the output LDE with the same spectral parameter
								
							As a result the following differential equation holds:
								
Theorem 5 (vessel as a Bäcklund transformation).  Suppose that  is an NLS vessel, defined in (12), and suppose that  is a solution of the input LDE (24)
									
								then  is a solution of the output LDE (25)
									
Proof. We plug in the expression
									
								into (25) for all . Let us denote ; then, for all  and 
								Let us differentiate the expression  using formulas (13) and (15):
									
								Plugging this expression back into (25) developed earlier and performing some obvious cancellations, we will obtain
									
								using linkage condition (16) and the differential equation (24).
Let us present next the significance (and well-definedness) of the tau-function , defined in (19). Using vessel condition (15)  has the formula
								
							and as a result
								
							Since  has rank 2, this expression is of the form , for a trace-class operator , and since  is an invertible operator, there exists a nontrivial interval (of length at least ) on which  and  are defined. Recall [15] that a function  from  into the group  (the set of bounded invertible operators on  of the form , for a trace-class operator ) is said to be differentiable if  is differentiable as a map into the trace-class operators. In our case,
								
							exists in trace-class norm. Israel Gohberg and Mark Krein [15, formula 1.14 on p. 163] proved that if  is a differentiable function into , then  (sp stands for the trace in the infinite dimensional space) is a differentiable map into  with
								
							The most important question, related to this theory, is what classes of  are obtained. This question is answered in the next theorem.
Theorem 6.  Suppose that  is an NLS vessel, defined in (12). Then the function  is analytic on the interval .
Proof. Notice that from formula (13) it follows the operator  is analytic in . Since  is invertible on , the operator  is also analytic in  using the formula
									
								Thus , defined by (20), is analytic on .
Theorem 7 (permanency conditions).  Suppose that we are given an NLS regular vessel ; then (1)if the Lyapunov equation (14) holds for a fixed , then it holds for all ,(2)if , then
												for all , (3) for all ,  and all points of -analyticity of .
Proof. Differentiating Lyapunov equation and using vessel conditions (13) and (15) we will obtain that
									
								from where the permanency of the Lyapunov equation follows. Similarly, differentiating  we will obtain zero and the permanency of (38) follows. For the last statement, using (26) we calculate for 
We will not be using the last property in this statement, but we find it interesting by itself.
2.2. Moments
The following properties of the moments  of an NLS vessel are immediate from their definition as the coefficients of  at the Taylor series of .
Theorem 8.  Let  be an NLS vessel. Then its moments satisfy the following equations:
									
Proof. Plugging the Taylor expansion formula into (26) and equating the coefficients of  we will obtain the first formula (41). The second formula (42) is obtained in the same manner from (42).
It turns out that using only the differential equations (41) one can create a recursive formula for the entries  as follows:
								
							while the first moment  is found from linkage condition (16)
								
							and the entries  are found using two last equations of (43):
								
							As a result, we obtain that the formula for the tau-function (36) becomes
								
							For example, if we choose the initial parameters  to be equal, we will obtain that under normalization 
3. Examples of Constructions of Regular NLS Vessels
3.1. Construction of an NLS Vessel from a Realized Function
Construction of an NLS vessel from the scattering data (initial condition ) can be performed as follows. Suppose that the function  is realized [4] as follows:
								
							satisfying additionally  and . These two conditions are required by the permanency conditions (Theorem 7) and will hold for all  by the construction. Then define  as the unique solution of (13) with initial value :
								
							Then define
								
							and define  (and hence ) using (16). It is straightforward to check that all vessel conditions hold.
Theorem 9.  Suppose that we are given a function 
									
								where using an auxiliary Hilbert space  the operators act as follows
									
								and satisfy  and . Define a collection (12) using the formulas (49), (50), and (16)
									
								then this collection is an NLS regular vessel existing on an interval  on which the operator  is invertible.
We show two special examples, arising from this construction for special cases of the choice of .
3.2. Construction of a Regular NLS Vessel with the Spectrum on a Curve 
Let us fix a bounded continuous curve  (i.e.,  is continuous) and define . We suppose without loss of generality that  and we construct a vessel, existing on an interval  including zero.
Let ; that is, it is a bounded operator acting within . Solving differential equation (13) we find that
								
							Notice that the adjoint  is defined as follows:
								
							It is a well-defined operator, because by the Cauchy-Schwartz inequality the integrals are finite.
It turns out that the operator  can be also explicitly defined as follows for any . Notice that  is a new function at , for which we present its value at the point :
								
							It is almost immediate that such an operator satisfies conditions (14) and (15). For example, for the Lyapunov equation, the expression  is obtained by multiplying the expression under the integral in  by . When it is canceled with the denominator, we obtain . Similarly, differentiating  we cancel the denominator and switch the sign of the first term, so that (15) holds. There is only one problem, arising from the zero of the denominator . It can be overcome by requiring that either  or  are Hölder functions and , whenever  (so that the zero of the denominator is canceled by the numerator).
We will make the following assumption on the curve to simplify arguments.
Definition 10. Suppose that , where .
Then investigating the formula for  we find that for each 
							Notice that this expression can be presented as
								
							where the functions
								
							are analytic functions of  in . Notice also that  by the assumption on . Thus the functions  can have only isolated zeros on  or to be identically zero.
To simplify a proof that  is an invertible operator, let us assume that  and that they are an analytic function of . Then the equality  is equivalent to
								
							Taking here  around infinity so that  is big in absolute value and  is small we obtain that . Conversely, taking  big and  small the second expression  must vanish too. Finally, considering values of , we can develop into Taylor series
								
							and plugging it back, the moments of the function  must be zero, for all , or that the function  is orthogonal to a dense subset  of . Thus  is identically zero and  is invertible for all .
Lemma 11.  If  is a bounded continuous curve, satisfying , and the operator  defined in (57) using analytic functions , then  is bounded and invertible for all .
Finally, we obtain the following.
Theorem 12.  Suppose that  is a bounded continuous curve, satisfying . Define a collection (12)
									
								where , , , and  are defined by (57) and by (54) for . Then the collection  is an NLS regular vessel existing on .
Proof. By the construction the operators are well defined and satisfy the vessel condition. Since the operator  is invertible, for all , we obtain that .
3.3. Construction of a Regular NLS Vessel with a Discrete Spectrum
In this section we want to show how to construct a vessel, whose spectrum is a given set of numbers . We define , which is the set of infinite sequences, summable in absolute value. Now we can imitate the construction of the vessel on a curve  using discretization as follows. We define first the operator  and for this operator to be bounded, we have to demand that the sequence  be bounded from below and from above as follows.
Definition 13. The sequence  is called bounded if there exists  such that  for . It is called separated from zero if there exists  such that  for all .
In the next definition we think of  as an infinite matrix with the entry  denoted by 
							We also assume that , whenever . The fact that  is a well-defined operator is immediate from the definition. Indeed, since the sequence  is bounded the term  is uniformly bounded in absolute value by . The fact that the operator  is bounded also easily follows from the definitions and from the assumption on :
								
							Under condition that  is invertible, there exists a nontrivial interval (of length at least ) on which  is invertible too. Thus we obtain the following theorem.
Theorem 14.  Suppose that we are given a bounded, separated from zero set , and two  sequences . Define a collection
									
								where , , , and  are defined by (63) for . Suppose that the operator  is invertible. Then the collection  is an NLS regular vessel existing on a nontrivial interval  including zero of length at least .
4. Evolutionary Regular NLS Vessel
We present a construction of solutions of (1) which has initial value  arising from a regular NLS vessel. For this we will insert dependence on the variable  into the vessel operators and postulate evolution of the operators  with respect to . This is done in the next definition.
Definition 15. The collection
							
						is called evolutionary regular NLS vessel if additionally to (13), (14), (15), and (16) the bounded operators satisfy also the equations
							
Theorem 16.  Moments  of the vessel  satisfy the following recurrence equation:
							
						And the transfer functions satisfy
							
Proof. We will calculate the derivative of  using the vessel conditions:
							
						The formula for  is an immediate consequence of the series representation of  using moments and equating the powers of .
Theorem 17.  Suppose that  is an evolutionary NLS vessel; then,  (20) satisfies the evolutionary NLS equation (1).
Proof. Consider the equality of mixed derivatives
							
						Plugging (26) and (70) here and representing  as a series of moments, we can further consider both sides of this equality and make the corresponding coefficients of  equal
							
						For example, taking the free coefficient, we wil obtain that
							
						Finally, from linkage condition (16)
							
						and using the formula for  we will obtain that the entry 12 is translated into (1) for , defined by (20).
So in order to solve (1) with initial  which arises from a vessel, it is enough to add dependence on  so that , , and the differential equations (67) and (68) hold. We will show that it is a simple task in the next examples.
5. Examples of Constructions of Solutions of the Evolutionary NLS Equation
We present examples of solutions of the evolutionary NLS (1) when the initial value for ,  is analytic on  and arises from a regular NLS vessel. We show how to construct the evolutionary vessel, coinciding with the vessel realizing  for . Then the beta function of this evolutionary vessel is a solution of (1) with the initial value.
5.1. Construction of a Solution for Evolutionary NLS Vessel from a Realized Function
Suppose that  was constructed from a realized function as in Section 3.1
							Then the construction can proceed the following steps, each one requiring a solution of linear differential equation with initial value. Construct  and  by formulas (49) and (50). Then solve
								
							Finally, define
								
							All the vessel equations will be satisfied by the construction and can be easily verified.
5.2. Solution of the Evolutionary NLS with the Spectrum on a Curve 
If we are given  which arises from a vessel on a curve, we can solve explicitly equations for  and  as follows:
								
							This function coincides with  for  and satisfies (13) and (67). The formula for  is as follows:
								
							This constructs a solution of the (1) with initial  arising from an NLS vessel with the spectrum on a curve .
5.3. Solution of the Evolutionary NLS with the Spectrum on a Discrete Set
Similarly to the continuous spectrum case we define
								
							We also assume that , whenever .
5.4. Solitons
We can also consider finite dimensional case: . Suppose that  and fixing nonzero values , satisfying , for all , , we will obtain that
								
							and the operator  is  matrix, defined by formula (82). Then the function
								
							is a Soliton solution of (1), because it is constructed from pure exponents.
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