Research Article

On Positive Solutions for the Rational Difference Equation Systems $x_{n+1} = A/x_n y_n^2$, and $y_{n+1} = By_n/x_{n-1} y_{n-1}$

Hui-li Ma and Hui Feng

Department of Mathematics, Northwest Normal University, Lanzhou, Gansu 730070, China

Correspondence should be addressed to Hui-li Ma; mahuili@nwnu.edu.cn

Received 3 June 2014; Revised 24 July 2014; Accepted 6 August 2014; Published 29 October 2014

Academic Editor: Dang Dinh Hai

Copyright © 2014 H.-l. Ma and H. Feng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Our aim in this paper is to investigate the behavior of positive solutions for the following systems of rational difference equations:

$x_{n+1} = A/x_n y_n^2$, and $y_{n+1} = By_n/x_{n-1} y_{n-1}$, $n = 0, 1, \ldots$

where x_{-1}, x_0, y_{-1}, and y_0 are positive real numbers and A and B are positive constants.

1. Introduction

In recent years, with the wide application of computers, difference system has become one of the important theoretical bases for computer, information system, engineering control, ecological balance, and so forth. As typical nonlinear difference equations, rational difference equations have become a research hot spot in mathematical modelling. The behavior of solutions of the system for rational difference equation has received extensive attention.

In [1], Ozban has investigated the periodicity of solutions of the system of difference equations:

$x_{n+1} = 1/y_{n-k}$, $y_{n+1} = y_n/x_{n-m} y_{n-m-k}$, $n = 0, 1, \ldots$ (1)

In [2], Kurbanli et al. studied the behavior of the positive solutions of the system of difference equations:

$x_{n+1} = x_{n-1}/y_n x_{n-1} + 1$, $y_{n+1} = y_{n-1}/x_n y_{n-1} + 1$, $n = 0, 1, \ldots$ (2)

The periodicity of the positive solutions of the rational difference system

$x_{n+1} = 1/y_n$, $y_{n+1} = y_n/x_{n-1} y_{n-1}$, $n = 0, 1, \ldots$ (3)

has been studied by Çinar in [3].

In [4], Ozban studied the behavior of the positive solutions of the system of difference equations

$x_n = a/y_{n-3}$, $y_n = b y_{n-3}/x_{n-q} y_{n-q}$, $n = 0, 1, \ldots$ (4)

For similar research on difference systems, we refer the reader to [5, 6] and the references therein.

In this paper, we investigate the behavior of positive solutions for the system of rational difference equations

$x_{n+1} = A/x_n y_n$, $y_{n+1} = B y_n/x_{n-1} y_{n-1}$, $n = 0, 1, \ldots$ (5)

where $A, B \in [0, +\infty)$ and x_{-1}, x_0, y_{-1}, and $y_0 \in [0, +\infty)$.

Before stating our main results, we state some definitions used in this paper.

Definition 1. A pair of sequences of positive real numbers $(x_n, y_n)_{n=0}^{\infty}$ that satisfies (5) is called a positive solution of (5).

Definition 2. A solution $(x_n, y_n)_{n=0}^{\infty}$ of (5) is periodic, if there exists a positive integer T such that $(x_n, y_n) = (x_{n+T}, y_{n+T})$, $n = 0, 1, \ldots$, and T is called a period.
2. Main Results

First, we study the periodic nature of positive solution of system (5).

Theorem 3. Let \(x_{-1}, x_0, y_{-1}, \) and \(y_0 \) be positive real numbers and let \(\{(x_n, y_n)\}_{n=0}^{\infty} \) be a solution of system (5). Then for \(A = B^2, A, B \in [0, +\infty), \) all solutions of system (5) are periodic with period 3.

Proof. For \(A, B > 0 \), it can be seen easily that all solutions of (5) are positive. Thus, by (5) we have the following equality:

\[
x_{n+1} = \frac{A}{x_n y_n}, \quad y_{n+1} = \frac{B y_n}{x_{n-1} y_{n-1}}.
\]

Repeating application of (5) yields

\[
x_{n+2} = \frac{A}{x_{n+1} y_{n+1}} = \frac{A x_n x_{n-1} y_{n-1}}{B^2}, \quad y_{n+2} = \frac{B y_{n+1}}{x_n y_n},
\]

Similarly,

\[
x_{n+3} = \frac{A}{x_{n+2} x_{n+1} y_{n+1}} = \frac{A}{B^2} x_n = x_n, \quad y_{n+3} = \frac{B y_{n+2}}{x_{n+1} y_n} = y_n.
\]

The proof is complete. \(\square \)

Theorem 4. Suppose that \(x_{-1}, x_0, y_{-1}, \) and \(y_0 \) are positive real numbers. Let \(\{(x_n, y_n)\}_{n=0}^{\infty} \) be a solution of system (5) with \(x_{-1} = c, x_0 = a, y_{-1} = d, \) and \(y_0 = b \). Then for \(A = B^2, \) where \(A \) and \(B \) are positive constants, all solutions of system (5) are

\[
x_{3n+1} = \frac{A}{ab^2}, \quad y_{3n+1} = \frac{B b}{cd},
\]

\[
x_{3n+2} = \frac{ac^2 d^2}{b^2}, \quad y_{3n+2} = \frac{B^2}{acd},
\]

\[
x_{3n+3} = a, \quad y_{3n+3} = b, \quad n = 0, 1, \ldots,
\]

Proof. For \(A, B > 0 \), it can be seen easily that all solutions of (5) are positive.

For \(n = 0 \) we have

\[
x_1 = \frac{A}{x_0 y_0} = \frac{A}{ab^2}, \quad y_1 = \frac{By_0}{x_{-1} y_{-1}} = \frac{B b}{cd},
\]

\[
x_2 = \frac{A}{x_1 y_1} = \frac{ac^2 d^2}{b^2}, \quad y_2 = \frac{B y_1}{x_0 y_0} = \frac{B^2}{acd},
\]

\[
x_3 = \frac{A}{x_2 y_2} = a, \quad y_3 = \frac{By_2}{x_1 y_1} = b.
\]

Now suppose that \(n \in \mathbb{Z}^+ \) and that our assumption holds for \(n - 1 \). One will show that the result holds for \(n \). From system (5), we obtain

\[
x_{3n+1} = \frac{A}{x_{3(n-1)+1} y_{3(n-1)+1}} = \frac{A}{ab^2}, \quad y_{3n+1} = \frac{B y_{3(n-1)+1}}{x_{3(n-1)+3} y_{3(n-1)+3}} = \frac{B b}{cd}.
\]

Then,

\[
x_{3n+2} = \frac{A}{x_{3n+1} y_{3n+1}} = \frac{ac^2 d^2}{b^2}, \quad y_{3n+2} = \frac{B y_{3n+1}}{x_{3n+3} y_{3n+3}} = \frac{B^2}{acd}.
\]

In particular, from Theorem 3, we get

\[
x_{3n+3} = x_0 + 3(n+1) = x_0 = a, \quad y_{3n+3} = y_0 + 3(n+1) = y_0 = b.
\]

Therefore, the proof is complete. \(\square \)

Example 5. Set \(A = 2.25 \) and \(B = 1.5 \) and \(x_{-1} = 3, x_0 = 1, y_{-1} = 0.6, \) and \(y_0 = 1.6 \). Figure 1 describes the periodic nature of system (5).

Next, we consider the case that \(A \neq B^2, \) where \(A \) and \(B \) are positive constants.

Theorem 6. Let \(\{(x_n, y_n)\}_{n=0}^{\infty} \) be an arbitrary positive solution of (5).

(i) If \(A < B^2, \) then, for each integer \(n \geq 0, \) the subsequence \(\{x_{n+3}\}_{n=0}^{\infty} \to 0, \) and the subsequence \(\{y_{n+3}\}_{n=0}^{\infty} \to \infty. \)
(ii) If $A > B^2$, then, for each integer $n \geq 0$, the subsequence $(x_{n+3l})_{l=0}^{\infty} \to \infty$, and the subsequence $(y_{n+3l})_{l=0}^{\infty} \to 0$.

(iii) $x_{n+3l} y_{n+3l} = x_n y_n$, $n = 0, 1, \ldots$

Proof. (i) For every fixed n, we will show that

$$x_{n+3l} = \left(\frac{A}{B^2}\right)^l x_n, \quad l = 0, 1, 2, \ldots \tag{14}$$

In fact, for $l = 0$, $x_n = (A/B^2)^0 x_n$. Assume that (14) holds for $l - 1$; that is,

$$x_{n+3l-3} = \left(\frac{A}{B^2}\right)^{l-1} x_n, \quad l = 0, 1, 2, \ldots \tag{15}$$

For l, we have the following:

$$x_{n+3l} = x_{(n+3)+(l-3)} = \left(\frac{A}{B^2}\right)^{l-1} x_{n+3} \tag{16}$$

Similarly, it can be obtained by induction that

$$y_{n+3l} = \left(\frac{B^2}{A}\right)^l y_n, \quad l = 0, 1, 2, \ldots \tag{17}$$

If $A < B^2$, we can get by (14) and (17) that

$$\{x_{n+3l}\}_{l=0}^{\infty} \to 0, \quad \{y_{n+3l}\}_{l=0}^{\infty} \to \infty. \tag{18}$$

(ii) If $A > B^2$, by (14) and (17),

$$\{x_{n+3l}\}_{l=0}^{\infty} \to \infty, \quad \{y_{n+3l}\}_{l=0}^{\infty} \to 0. \tag{19}$$

(iii) From the proof of Theorem 3, we have

$$x_{n+3} = \frac{A}{x_{n+2} y_{n+2}} = \frac{A}{B^2} x_n \tag{20}$$

$$y_{n+3} = \frac{B y_{n+2}}{x_{n+1} y_{n+1}} = \frac{B^2}{A} y_n$$

Multiplying both sides, respectively, yields $x_{n+3} y_{n+3} = x_n y_n$, $n = 0, 1, \ldots$

Example 7. Let $x_{-1} = 8$, $x_0 = 1$, $y_{-1} = 3$, and $y_0 = 7$.

(i) For $A = 1$, $B = 2$, and $n = 2$, Figure 2 and Table 1 describe the behavior of the sequence $(x_{n+3l})_{l=0}^{\infty}$ and $(y_{n+3l})_{l=0}^{\infty}$ (shown by the black spot at the top of every peak).

(ii) For $A = 2$, $B = 1$, and $n = 2$, Figure 3 and Table 2 describe the behavior of the sequence $(x_{n+3l})_{l=0}^{\infty}$ and $(y_{n+3l})_{l=0}^{\infty}$ (shown by the black spot at the top of every peak).
Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (61363058), the Scientific Research Fund for Colleges and Universities of Gansu Province (2013B-007, 2013A-016), Natural Science Foundation of Gansu Province (145RZA232, 145RJA259), and Promotion Funds for Young Teachers in Northwest Normal University (NWNU-LKQN-12-14).

References

[2] A. S. Kurbanlı, C. Çinar, and İ. Yalçınkaya, “On the behavior of positive solutions of the system of rational difference equations $x_{n+1} = x_{n-1}/y_nx_{n-1} + 1, y_{n+1} = y_{n-1}/x_ny_{n-1} + 1$,” Mathematical and Computer Modelling, vol. 53, pp. 1261–1267, 2011.

