Let A denote the class of functions which are analytic in the unit disk $D = \{ z : |z| < 1 \}$ and given by the power series $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Let C be the class of convex functions. In this paper, we give the upper bounds of $|a_3 - \mu a_2^2|$ for all real number μ and for any $f(z)$ in the family $\mathcal{V} = \{ f(z) : f \in A, \Re (f(z)/g(z)) > 0 \text{ for some } g \in C \}$.

1. Introduction

Let A denote the class of functions which are analytic in the unit disk $D = \{ z : |z| < 1 \}$ and satisfy $f(0) = f'(0) - 1 = 0$. The set of all functions $f \in A$ that are univalent will be denoted by S. Let $C, S^*(\beta)$ and K be the classes of convex, starlike of order β and close-to-convex functions, respectively. Fekete and Szegö [1] proved that

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
4\mu - 3, & \mu \geq 1, \\
1 + 2 \exp \left(\frac{-2\mu}{1 - \mu} \right), & 0 \leq \mu < 1, \\
3 - 4\mu, & \mu < 0
\end{cases}
\]

holds for any $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S$ and that this inequality is sharp. The coefficient functional $\Lambda_\mu(f) = a_3 - \mu a_2^2$ on f in A plays an important role in function theory. For example, $a_3 - a_2^2 = S_f(0)/6$, where S_f is the Schwarzian derivative. The problem of maximizing the absolute value of the functional $\Lambda_\mu(f)$ is called the Fekete-Szegö problem. In the literature, there exist a large number of results about the Fekete-Szegö problem (see, for instance, [2–11]).

For $0 \leq \alpha < 1$ and $0 \leq \beta < 1$, let u^β_α denote the class of functions f satisfying $f \in A$ and

\[
\Re \left\{ \frac{az^3 f'(z)}{g(z)} + \frac{zf'(z)}{g(z)} \right\} > 0
\]

for some $g \in S^*(\beta)$. Al-Abbadi and Darus [7] investigated the Fekete-Szegö problem on the class u^β_α.

Let $C_1(\beta)$ be the class of functions f in A satisfying the inequality

\[
\Re \left\{ \frac{zf'(z)}{\phi(z)} e^{i\beta} \right\} > 0 \quad (|z| < 1, -\frac{\pi}{2} < \beta < \frac{\pi}{2})
\]

for some function $\phi \in C$. In [11], Srivastava et al. studied the Fekete-Szegö problem on the class

\[
C_1 = \bigcup_{\beta} C_1(\beta) \quad \left(-\frac{\pi}{2} < \beta < \frac{\pi}{2} \right)
\]

for $0 \leq \mu \leq 1$ by proving that

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{5}{3} - \frac{9}{4}\mu, & 0 \leq \mu \leq \frac{2}{9}, \\
\frac{2}{3} + \frac{1}{9}\mu, & \frac{2}{9} \leq \mu \leq \frac{2}{3}, \\
\frac{5}{6}, & \frac{2}{3} < \mu \leq 1
\end{cases}
\]

Srivastava et al. held that the inequality (5) was sharp. However, the extremal function given in [11] did not exist in the case of $2/3 < \mu \leq 1$.

In this paper, we solve the Fekete-Szegö problem for the family

\[
\mathcal{V} = \left\{ f(z) : f \in A, \Re \left(\frac{f(z)}{g(z)} \right) > 0 \text{ for some } g \in C \right\}
\]
As a corollary of the main result, we find the sharp upper bounds for absolute value of the Fekete-Szegő functional for the class v_{α} defined by

$$v_{\alpha} = \left\{ f(z) : f \in H, \text{Re}\left(\frac{az^2f''(z)}{g(z)} + \frac{zf'(z)}{g(z)}\right) > 0 \right\}$$

for some $g \in C$.

Clearly, v_{α} is a subclass of u_{α}^0. In the case of $\alpha = 0$, we get sharp estimation of the absolute value of the Fekete-Szegő functional for the class $C(0)$ and for all real number μ, which prove that the inequality (5) is not sharp actually when $2/3 < \mu \leq 1$.

2. Main Result

Let B_0 be the class of functions $\phi(z)$ that are analytic in D and satisfy $|\phi(z)| \leq |z|$ for all $|z| < 1$. The following two lemmas can be found in [2].

Lemma 1 (see [2]). If $\phi(z) = \sum_{n=1}^{\infty} a_n z^n$ is in the class B_0, then, for any complex number s, one has $|a_2 - sa_1^2| \leq 1 + (|s| - 1)|a_1|^2 \leq \max\{1,|s|\}$. The inequality is sharp.

Lemma 2 (see [2]). If $g(z) = z + \sum_{n=2}^{\infty} c_n z^n$ is in the class C and μ is a complex number, then $|c_3 - \mu c_2^2| \leq 1/3 + (|\mu| - 1/3)|c_2| \leq \max\{1/3,|\mu| - 1\}$. The inequality is sharp.

Theorem 3. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is in the class \mathcal{C} and μ is a real number, then

$$|a_3 - \mu a_2^2| \leq \begin{cases} 5 - 9\mu, & \text{when } \mu \leq \frac{1}{6}, \\ 2 + \frac{1}{4\mu}, & \text{when } \frac{1}{2} \leq \mu \leq \frac{2}{5}, \\ 3 - 2\mu + \frac{1}{4(1-\mu)}, & \text{when } \frac{5}{6} \leq \mu \leq \frac{6}{5}, \\ 7\mu - 3, & \text{when } \frac{1}{6} \leq \mu \leq 1, \\ 9\mu - 5, & \text{when } 1 \leq \mu. \end{cases}$$

Proof. By definition, $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is in the class \mathcal{C} if and only if there exists a function $g(z) = z + \sum_{n=2}^{\infty} c_n z^n \in C$ such that $\phi(z) = [f(z) - g(z)]/([f(z) + g(z)] = \sum_{n=1}^{\infty} a_n z^n \in B_0$. A simple computation shows $a_2 = c_2 + 2a_1, a_3 = c_3 + 2(a_1c_2 + a_2 + a_1^2)$. Thus,

$$a_3 - \mu a_2^2 = c_3 - \mu c_2^2 + 2\left[a_2 + (1-2\mu) a_1^2\right] + 2(1-2\mu) a_1 c_2.$$

So, by Lemmas 1 and 2, we have

$$|a_3 - \mu a_2^2| \leq \left|c_3 - \mu c_2^2\right| + 2\left|a_2 + (1-2\mu) a_1^2\right|$$

$$+ 2\left|1 - 2\mu\right||a_1||c_2|$$

$$\leq \left\{ \frac{1}{3} + \left[\left|\mu - 1\right| - \frac{1}{3}\right]\right\}|c_2|^2 + 2\left[1 + (1 - 2\mu)^2 - 1\right]|a_1|^2$$

$$+ 2\left|1 - 2\mu\right||a_1||c_2|.$$

Putting $|a_1| = x$ and $|c_2| = y$, we get from (10) that $|a_3 - \mu a_2^2| \leq F(x, y)$, where

$$F(x, y) = \frac{1}{3} + \left[\left|\mu - 1\right| - \frac{1}{3}\right]y^2$$

$$+ 2\left[1 + (1 - 2\mu)^2 - 1\right]x^2$$

$$+ 2\left|1 - 2\mu\right|x y.$$

Since $|a_1| \leq 1$ and $|c_2| \leq 1$, we will calculate the maximum value of $F(x, y)$ for $(x, y) \in [0, 1] \times [0, 1]$.

Case 1. Suppose $\mu \leq 1/2$. Then it follows from (11) that

$$F(x, y) = \frac{7}{3} + \left(\frac{2}{3} - \mu\right)y^2 - 4\mu x^2 + 2(1 - 2\mu) xy.$$

Since

$$F_x(x, y) = -8\mu x + 2(1 - 2\mu) y,$$

$$F_y(x, y) = 2(1 - 2\mu) x + \left(\frac{4}{3} - 2\mu\right) y,$$

$$\left|\frac{\mu}{2} - \frac{2}{3}\right| = \frac{16\mu}{3} - 4 < 0,$$

$F(x, y)$ does not have a local maximum at any point of the open rectangle $(0, 1) \times (0, 1)$. Hence, $F(x, y)$ must attain its maximum at a boundary point. Since $F(0, y) \leq 3 - \mu, F(1, y) \leq F(1, 1) = 5 - 9\mu$ for $\mu \leq 1/2$ and

$$F(x, 0) \leq \begin{cases} \frac{7}{3} - 4\mu, & \text{if } \mu < 0, \\ \frac{7}{3}, & \text{if } 0 \leq \mu < \frac{1}{2}, \end{cases}$$

$$F(x, 1) \leq \begin{cases} F(1, 1) = 5 - 9\mu, & \text{if } \mu < \frac{1}{6}, \\ F\left(\frac{1 - 2\mu}{4\mu}, 1\right) = \frac{1}{4\mu} + 2, & \text{if } \frac{1}{6} \leq \mu \leq \frac{1}{2}, \end{cases}$$

we have

$$|a_3 - \mu a_2^2| \leq F(x, y) \leq \begin{cases} 5 - 9\mu, & \text{when } \mu \leq \frac{1}{6}, \\ 2 + \frac{1}{4\mu}, & \text{when } \frac{1}{6} < \mu \leq \frac{1}{2}. \end{cases}$$
Case 2. Suppose $1/2 < \mu \leq 1$. Then, we get from (11) that
\[
F(x, y) = \frac{7}{3} + \left(\frac{2}{3} - \mu\right)y^2 + 4(\mu - 1)x^2 + 2(2\mu - 1)xy.
\] (16)

Since
\[
F_x(x, y) = 8(\mu - 1)x + 2(2\mu - 1)y,
\]
\[
F_y(x, y) = 2(2\mu - 1)x + \left(\frac{4}{3} - 2\mu\right)y,
\] (17)
\[
8(\mu - 1) \quad 2(2\mu - 1) \\
2(2\mu - 1) \quad 2\mu - \frac{8}{3}
\]
\[
= 4\left(-8\mu^2 + \frac{32}{3}\mu - \frac{11}{3}\right) < 0,
\]
\[
F(0, y) \leq \frac{7}{3} + \left(\frac{2}{3} - \mu\right)y^2 + 4(\mu - 1)x^2 + 2(2\mu - 1)xy.
\]
\[
F(1, y) \leq \frac{7}{3} + \left(\frac{2}{3} - \mu\right)y^2 + 4(\mu - 1)x^2 + 2(2\mu - 1)xy.
\]
\[
F(1, 1) = \frac{7}{3} + \left(\frac{2}{3} - \mu\right)y^2 + 4(\mu - 1)x^2 + 2(2\mu - 1)xy.
\]
\[
F(1, y) \leq F(1, 1) = 7\mu - 3, \quad \text{if} \quad \frac{1}{2} < \mu \leq 1,
\]
we get
\[
\left|a_3 - \mu a_2^2\right| \leq F(x, y)
\]
\[
\leq \begin{cases}
3 - 2\mu + \frac{1}{4}\left(1 - \mu\right), & \text{when } \frac{1}{2} < \mu \leq \frac{5}{6}, \\
7\mu - 3, & \text{when } \frac{5}{6} < \mu \leq 1.
\end{cases}
\] (19)

Case 3. Suppose $\mu > 1$. Then, (11) gives
\[
F(x, y) = \frac{7}{3} + \left(\mu - \frac{4}{3}\right)y^2 + 4(\mu - 1)x^2 + 2(2\mu - 1)xy.
\] (20)

Since
\[
F_x(x, y) = 8(\mu - 1)x + 2(2\mu - 1)y,
\]
\[
F_y(x, y) = 2(2\mu - 1)x + \left(2\mu - \frac{8}{3}\right)y,
\] (21)
\[
8(\mu - 1) \quad 2(2\mu - 1) \\
2(2\mu - 1) \quad 2\mu - \frac{8}{3}
\]
\[
= 4\left(13 - 16\mu\right) < 0,
\]
\[
F(x, y) \text{ must attain its maximum at a boundary point of the rectangle } [0, 1] \times [0, 1].
\]

Since
\[
F(x, 0) \leq 4\mu - \frac{5}{3}, \quad \text{if } \mu \geq 1,
\]
\[
F(x, 1) \leq F(1, 1) = 9\mu - 5, \quad \text{if } \mu \geq 1,
\]
\[
F(0, y) \leq \begin{cases}
\frac{7}{3}, & \text{if } \mu \leq \frac{4}{3}, \\
1 + \mu, & \text{if } \mu > \frac{4}{3},
\end{cases}
\] (22)
\[
F(1, y) \leq F(1, 1) = 9\mu - 5, \quad \text{if } \mu \geq 1,
\]
\[
\text{it follows that}
\]
\[
\left|a_3 - \mu a_2^2\right| \leq F(x, y) \leq 9\mu - 5, \quad \text{when } \mu < 1.
\] (23)

Combining (15), (19) with (23), we get (8). Since inequalities in Lemmas 1 and 2 are sharp, it follows that inequality (8) is also sharp. The proof is completed.

Since $f \in \nu_a$ if and only if $F(z) = ax^2 f''(z) + zf'(z) \in \mathcal{V}$, by a simple calculation, we have the following.

Corollary 4. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \nu_a$, then
\[
\left|a_3 - \mu a_2^2\right| \leq \begin{cases}
\frac{5}{3} \left(1 + 2\alpha\right) - \frac{9\mu}{4(1 + \alpha)^2}, & \mu \leq 2(1 + \alpha)^2 \left(1 + \alpha\right), \\
\frac{2}{3} \left(1 + 2\alpha\right) + \frac{9\mu}{4(1 + \alpha)^2} \mu, & \mu \geq \frac{2}{3} \left(1 + 2\alpha\right) + \frac{9\mu}{4(1 + \alpha)^2} \mu, \\
\frac{1}{3} \mu^2 - \frac{2(1 + \alpha)^2}{(1 + \alpha)^2}, & \mu \geq \frac{1}{3} \mu^2 - \frac{2(1 + \alpha)^2}{(1 + \alpha)^2},
\end{cases}
\] (24)

Letting $\alpha = 0$ in (24), we get the following.
Corollary 5. If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in C_1(0) \), then

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{5}{3} - \frac{9}{4\mu}, & \text{when } \mu \leq \frac{2}{9}, \\
\frac{2}{3} + \frac{1}{9\mu}, & \text{when } \frac{2}{9} \leq \mu \leq \frac{2}{3}, \\
1 - \frac{1}{2\mu} + \frac{1}{12 - 9\mu}, & \text{when } \frac{2}{3} < \mu \leq \frac{10}{9}, \\
\frac{7}{4\mu} - 1, & \text{when } \frac{10}{9} < \mu \leq \frac{4}{3}, \\
\frac{9}{4\mu} - \frac{5}{3}, & \text{when } \frac{4}{3} < \mu \leq \mu.
\end{cases}
\] (25)

Remark 6. In [11], Srivastava et al. gave a function \(f(z) = z + \sum_{n=3}^{\infty} a_n z^n \in A \) satisfying \(\phi(z) = \frac{f(z) - g(z)}{f(z) + g(z)} = \sum_{n=1}^{\infty} \alpha_n z^n \in B_0 \), where \(g(z) = z + z^2 + z^3 + \cdots \in C \), \(\alpha_2 = 1 - \alpha_1^2 \) and

\[
\alpha_1 = \frac{(2 - 3\lambda) \pm i \sqrt{6\mu - 4}}{6\mu}. \] (26)

Srivastava held that \(f \in C_1(0) \) and \(|a_3 - \mu a_2^2| = 5/6 \) when \(2/3 \leq \mu \leq 1 \). But \(\phi \in B_0 \) implies that \(|\alpha_2| \leq 1 - |\alpha_1^2| \). So \(\phi(z) \) satisfying the above conditions does not exist.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The paper is supported by Educational Commission of Hubei Province of China (D2011006).

References

Submit your manuscripts at http://www.hindawi.com