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Abstract. 
A partial ordering of ω-words can be introduced with regard to whether an ω-word can be transformed into another by a Mealy machine. It is known that the poset of ω-words that is introduced by this ordering is a join-semilattice. The width of this join-semilattice has the power of continuum while the depth is at least 
	
		
			

				ℵ
			

			

				0
			

		
	
. We have created a technique for proving that power-characteristic ω-words are incomparable. We use this technique to show that this join-semilattice is not modular.
 

1. Introduction
Infinite words (
	
		
			

				𝜔
			

		
	
-words) provide a fertile ground of research and many classes of 
	
		
			

				𝜔
			

		
	
-words are known. While closure properties of some classes of 
	
		
			

				𝜔
			

		
	
-words have been studied extensively (see, e.g., [1–3]), we are interested in the general algebraic structure of 
	
		
			

				𝜔
			

		
	
-words. Mealy machines are a simple model of a word transforming automaton with the beneficial property of always transforming an 
	
		
			

				𝜔
			

		
	
-word into an 
	
		
			

				𝜔
			

		
	
-word. A partial ordering is defined on 
	
		
			

				𝜔
			

		
	
-words by the existence of a Mealy machine transforming one word into another (we write 
	
		
			
				𝑥
				⇁
				𝑦
			

		
	
 if such a machine exists). When both 
	
		
			
				𝑥
				⇁
				𝑦
			

		
	
 and 
	
		
			
				𝑦
				⇁
				𝑥
			

		
	
 are true, we say that 
	
		
			

				𝑥
			

		
	
  and  
	
		
			

				𝑦
			

		
	
  are machine equivalent. A class 
	
		
			

				𝔎
			

		
	
 of 
	
		
			

				𝜔
			

		
	
-words is called machine invariant if 
	
		
			

				𝔎
			

		
	
 contains all possible transformations of its elements.
Buls [4] has shown that machine invariant classes of 
	
		
			

				𝜔
			

		
	
-words form a completely distributive lattice. Belovs [5] showed that the poset of machine equivalent classes of 
	
		
			

				𝜔
			

		
	
-words is a join-semilattice and that the width of this join-semilattice has the power of continuum while the depth is at least 
	
		
			

				ℵ
			

			

				0
			

		
	
. We show in this paper that this join-semilattice is not modular.
2. Preliminaries
Let 
	
		
			

				𝐴
			

		
	
 be a finite, nonempty set and 
	
		
			

				𝐴
			

			

				∗
			

		
	
 the free monoid generated by 
	
		
			

				𝐴
			

		
	
. Call 
	
		
			

				𝐴
			

		
	
 an alphabet, its elements letters, and the elements of 
	
		
			

				𝐴
			

			

				∗
			

		
	
   finite words. The identity element of 
	
		
			

				𝐴
			

			

				∗
			

		
	
 is called the empty word and is denoted by 
	
		
			

				𝜆
			

		
	
.
Let 
	
		
			

				𝑤
			

		
	
 be a word over a finite and non-empty alphabet 
	
		
			

				𝐴
			

		
	
. We denote the length of 
	
		
			

				𝑤
			

		
	
 by 
	
		
			
				|
				𝑤
				|
			

		
	
. Similarly, the cardinality of 
	
		
			

				𝐴
			

		
	
 is denoted by 
	
		
			
				|
				𝐴
				|
			

		
	
. The concatenation of the words 
	
		
			
				𝑢
				,
				𝑣
			

		
	
 is denoted by 
	
		
			
				𝑢
				#
				𝑣
			

		
	
 or simply 
	
		
			
				𝑢
				𝑣
			

		
	
. Define 
	
		
			

				𝑤
			

			

				0
			

			
				=
				𝜆
			

		
	
 and for all 
	
		
			

				𝑖
			

		
	
  
	
		
			

				𝑤
			

			
				𝑖
				+
				1
			

			
				=
				𝑤
			

			

				𝑖
			

			

				𝑤
			

		
	
. We say that 
	
		
			

				𝑢
			

		
	
 (resp., 
	
		
			

				𝑣
			

		
	
) is a prefix (resp., suffix) of 
	
		
			
				𝑢
				𝑣
			

		
	
. Denote by 
	
		
			
				P
				r
				e
				f
				(
				𝑤
				)
			

		
	
 and 
	
		
			
				S
				u
				ﬀ
				(
				𝑤
				)
			

		
	
 the respective sets of prefixes and suffixes of 
	
		
			

				𝑤
			

		
	
. Let 
	
		
			
				
			
			
				𝑘
				,
				𝑛
			

		
	
 denote the set of integers 
	
		
			
				{
				𝑘
				,
				𝑘
				+
				1
				,
				𝑘
				+
				2
				,
				…
				,
				𝑛
				}
			

		
	
:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				ℕ
				=
				{
				0
				,
				1
				,
				2
				,
				…
				,
				𝑛
				,
				…
				}
				.
			

		
	

					Call a total map 
	
		
			
				𝑥
				∶
				ℕ
				→
				𝐴
			

		
	
 an (indexed) 
	
		
			

				𝜔
			

		
	
-word of the alphabet 
	
		
			

				𝐴
			

		
	
. For any 
	
		
			
				𝑖
				≥
				0
			

		
	
 define 
	
		
			

				𝑥
			

			

				𝑖
			

			
				=
				𝑥
				(
				𝑖
				)
			

		
	
 and write
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				𝑥
				𝑥
				=
			

			

				𝑖
			

			
				
				=
				𝑥
			

			

				0
			

			

				𝑥
			

			

				1
			

			
				⋯
				𝑥
			

			

				𝑛
			

			
				⋯
				[
				[
				]
				𝑥
				(
				𝑘
				+
				1
				,
				𝑛
				+
				1
				)
				=
				𝑥
				𝑘
				,
				𝑛
				+
				1
				)
				=
				𝑥
				𝑘
				,
				𝑛
				=
				𝑥
			

			

				𝑘
			

			

				𝑥
			

			
				𝑘
				+
				1
			

			
				…
				𝑥
			

			
				𝑛
				−
				1
			

			

				𝑥
			

			

				𝑛
			

			

				.
			

		
	

					The set of all 
	
		
			

				𝜔
			

		
	
-words over 
	
		
			

				𝐴
			

		
	
 is denoted by 
	
		
			

				𝐴
			

			

				𝜔
			

		
	
. We say that 
	
		
			

				𝑦
			

		
	
 is a prefix of 
	
		
			

				𝑥
			

		
	
, if there exists an integer 
	
		
			

				𝑘
			

		
	
 such that 
	
		
			
				𝑦
				=
				𝑥
				[
				0
				,
				𝑘
				]
			

		
	
. An 
	
		
			

				𝜔
			

		
	
-word 
	
		
			

				𝑥
			

		
	
 is called ultimately periodic if there exist integers 
	
		
			
				𝑝
				≥
				0
			

		
	
 and 
	
		
			
				𝑇
				>
				0
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑖
			

			
				=
				𝑥
			

			
				𝑖
				+
				𝑇
			

		
	
 for all 
	
		
			
				𝑖
				≥
				𝑝
			

		
	
. In this case 
	
		
			

				𝑝
			

		
	
 is called preperiod and 
	
		
			

				𝑇
			

		
	
 a period of 
	
		
			

				𝑥
			

		
	
. An ultimately periodic 
	
		
			

				𝜔
			

		
	
-word with a preperiod of zero is called periodic. We say a finite word 
	
		
			

				𝑤
			

		
	
 is (ultimately) periodic if it is a prefix of some (ultimately) periodic 
	
		
			

				𝜔
			

		
	
-word. We recall the important periodicity theorem due to Fine and Wilf [6].
Theorem 1.  Let 
	
		
			

				𝑤
			

		
	
 be a word having periods 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 and denote by 
	
		
			
				𝑔
				𝑐
				𝑑
				(
				𝑝
				,
				𝑞
				)
			

		
	
 the greatest common divisor of 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
. If 
	
		
			
				|
				𝑤
				|
				≥
				𝑝
				+
				𝑞
				−
				𝑔
				𝑐
				𝑑
				(
				𝑝
				,
				𝑞
				)
			

		
	
, then 
	
		
			

				𝑤
			

		
	
 has also the period 
	
		
			
				𝑔
				𝑐
				𝑑
				(
				𝑝
				,
				𝑞
				)
			

		
	
.
Corollary 2.  Let 
	
		
			
				𝑢
				𝑣
			

		
	
 and 
	
		
			
				𝑣
				𝑤
			

		
	
 be words having periods, respectively, 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
. If 
	
		
			
				|
				𝑣
				|
				≥
				𝑝
				+
				𝑞
				−
				𝑔
				𝑐
				𝑑
				(
				𝑝
				,
				𝑞
				)
			

		
	
, then 
	
		
			
				𝑢
				𝑣
				𝑤
			

		
	
 has the period 
	
		
			
				𝑔
				𝑐
				𝑑
				(
				𝑝
				,
				𝑞
				)
			

		
	
.
This is almost folklore in combinatorics on words. Nevertheless, for the sake of completeness, we will give the proof of this corollary.
Proof. Since 
	
		
			
				|
				𝑣
				|
				≥
				𝑝
				+
				𝑞
				−
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
, then (Theorem 1) 
	
		
			

				𝑣
			

		
	
 has the period 
	
		
			
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
.(i) At first we will prove by induction on 
	
		
			
				|
				𝑢
				|
			

		
	
 that 
	
		
			
				𝑢
				𝑣
			

		
	
 has the period 
	
		
			
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
. Let 
	
		
			
				𝑣
				=
				𝑣
			

			

				1
			

			

				𝑣
			

			

				2
			

			
				⋯
				𝑣
			

			

				𝑘
			

		
	
. If 
	
		
			
				|
				𝑢
				|
				=
				1
			

		
	
, then 
	
		
			
				𝑢
				=
				𝑣
			

			

				0
			

		
	
 for some letter. Since the period of 
	
		
			
				𝑢
				𝑣
			

		
	
 is 
	
		
			

				𝑝
			

		
	
 then 
	
		
			

				𝑣
			

			

				0
			

			
				=
				𝑣
			

			

				𝑝
			

		
	
.Notice that 
	
		
			
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
 divides 
	
		
			

				𝑝
			

		
	
. Since the period of 
	
		
			

				𝑣
			

		
	
 is 
	
		
			
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
, then 
	
		
			

				𝑣
			

			

				𝑝
			

			
				=
				𝑣
			

			
				g
				c
				d
			

			
				(
				𝑝
				,
				𝑞
				)
			

		
	
. Hence, 
	
		
			

				𝑣
			

			

				0
			

			
				=
				𝑣
			

			
				g
				c
				d
			

			
				(
				𝑝
				,
				𝑞
				)
			

		
	
.(ii) If 
	
		
			
				|
				𝑢
				|
				>
				1
			

		
	
, then 
	
		
			

				𝑢
			

		
	
 can be represented as concatenation 
	
		
			
				𝑎
				𝑢
			

			

				
			

			
				=
				𝑢
			

		
	
, where 
	
		
			
				|
				𝑢
			

			

				
			

			
				|
				+
				1
				=
				|
				𝑢
				|
			

		
	
. By assumption the period of 
	
		
			

				𝑢
			

			

				
			

			

				𝑣
			

		
	
 is 
	
		
			
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
. Now from (i) follows that the period of 
	
		
			
				𝑎
				𝑢
			

			

				
			

			

				𝑣
			

		
	
 is 
	
		
			
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
 too. We have completed the inductive step.Now we shall prove by induction on 
	
		
			
				|
				𝑤
				|
			

		
	
 that 
	
		
			
				𝑣
				𝑤
			

		
	
 has the period 
	
		
			
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
.(iii) If 
	
		
			
				|
				𝑤
				|
				=
				1
			

		
	
, then 
	
		
			
				𝑤
				=
				𝑣
			

			
				𝑘
				+
				1
			

		
	
 for some letter. Since the period of 
	
		
			
				𝑣
				𝑤
			

		
	
 is 
	
		
			

				𝑞
			

		
	
, then 
	
		
			

				𝑣
			

			
				𝑘
				+
				1
				−
				𝑞
			

			
				=
				𝑣
			

			
				𝑘
				+
				1
			

		
	
. Notice
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑘
				+
				1
				−
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
				≡
				𝑘
				+
				1
				−
				𝑞
				,
				(
				m
				o
				d
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
				)
				.
			

		
	

						Hence, 
	
		
			

				𝑣
			

			
				𝑘
				+
				1
				−
			

			
				g
				c
				d
			

			
				(
				𝑝
				,
				𝑞
				)
			

			
				=
				𝑣
			

			
				𝑘
				+
				1
				−
				𝑞
			

			
				=
				𝑣
			

			
				𝑘
				+
				1
			

		
	
.(iv) If 
	
		
			
				|
				𝑤
				|
				>
				1
			

		
	
, then 
	
		
			

				𝑤
			

		
	
 can be represented as concatenation 
	
		
			

				𝑤
			

			

				
			

			
				𝑏
				=
				𝑤
			

		
	
, where 
	
		
			
				|
				𝑤
			

			

				
			

			
				|
				+
				1
				=
				|
				𝑤
				|
			

		
	
. By assumption the period of 
	
		
			
				𝑣
				𝑤
			

			

				
			

		
	
 is 
	
		
			
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
. Now from (iii) follows that the period of 
	
		
			
				𝑣
				𝑤
			

			

				
			

			

				𝑏
			

		
	
 is 
	
		
			
				g
				c
				d
				(
				𝑝
				,
				𝑞
				)
			

		
	
 too. We have completed the inductive step.
A 3-sorted algebra 
	
		
			
				𝑉
				=
				⟨
				𝑄
				,
				𝐴
				,
				𝐵
				;
				𝑞
			

			

				0
			

			
				,
				∘
				,
				∗
				⟩
			

		
	
 is called an initial Mealy machine if 
	
		
			

				𝑄
			

		
	
, 
	
		
			

				𝐴
			

		
	
, 
	
		
			

				𝐵
			

		
	
 are finite, nonempty sets, called the set of states, the input alphabet, and the output alphabet, respectively, 
	
		
			

				𝑞
			

			

				0
			

			
				∈
				𝑄
			

		
	
 is called the initial state, 
	
		
			
				∘
				∶
				𝑄
				×
				𝐴
				→
				𝑄
			

		
	
 is a total function called the transition function, and 
	
		
			
				∗
				∶
				𝑄
				×
				𝐴
				→
				𝐵
			

		
	
 is a total surjective function called the output function. We write 
	
		
			
				⟨
				𝑄
				,
				𝐴
				,
				𝐵
				;
				∘
				,
				∗
				⟩
			

		
	
 or even 
	
		
			
				⟨
				𝑄
				,
				𝐴
				,
				𝐵
				;
				𝑞
			

			

				0
			

			

				⟩
			

		
	
 if there is no danger of confusion. The mappings 
	
		
			

				∘
			

		
	
 and 
	
		
			

				∗
			

		
	
 are extended to 
	
		
			
				𝑄
				×
				𝐴
			

			

				∗
			

		
	
 by defining
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝑞
				∘
				𝜆
				=
				𝑞
				,
				𝑞
				∘
				(
				𝑢
				𝑎
				)
				=
				(
				𝑞
				∘
				𝑢
				)
				∘
				𝑎
				,
				𝑞
				∗
				𝜆
				=
				𝜆
				,
				𝑞
				∗
				(
				𝑢
				𝑎
				)
				=
				(
				𝑞
				∗
				𝑢
				)
				#
				(
				(
				𝑞
				∘
				𝑢
				)
				∗
				𝑎
				)
				,
			

		
	

					for all 
	
		
			
				𝑞
				∈
				𝑄
			

		
	
, 
	
		
			
				(
				𝑢
				,
				𝑎
				)
				∈
				𝐴
			

			

				∗
			

			
				×
				𝐴
			

		
	
. Henceforth, we shall omit parentheses if there is no danger of confusion. So, for example, we will write 
	
		
			
				𝑞
				∘
				𝑢
				∗
				𝑎
			

		
	
 instead of 
	
		
			
				(
				𝑞
				∘
				𝑢
				)
				∗
				𝑎
			

		
	
. Let 
	
		
			
				(
				𝑥
				,
				𝑦
				)
				∈
				𝐴
			

			

				𝜔
			

			
				×
				𝐵
			

			

				𝜔
			

		
	
. If for some Mealy machine 
	
		
			

				𝑉
			

		
	
: for all 
	
		
			

				𝑛
			

		
	
  
	
		
			
				𝑦
				[
				0
				,
				𝑛
				]
				=
				𝑞
			

			

				0
			

			
				∗
				𝑥
				[
				0
				,
				𝑛
				]
			

		
	
, we say that 
	
		
			

				𝑉
			

		
	
  transforms   
	
		
			

				𝑥
			

		
	
 to   
	
		
			

				𝑦
			

		
	
 and write 
	
		
			
				𝑦
				=
				𝑞
			

			

				0
			

			
				∗
				𝑥
			

		
	
 or 
	
		
			

				𝑥
			

			

				𝑉
			

			
				⇁
				𝑦
			

		
	
. We write 
	
		
			
				𝑥
				⇁
				𝑦
			

		
	
 if there exists 
	
		
			

				𝑉
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑉
			

			
				⇁
				𝑦
			

		
	
; otherwise, we write 
	
		
			

				𝑥
			

			

				/
			

			
				⇁
				𝑦
			

		
	
. We write 
	
		
			
				𝑥
				⇌
				𝑦
			

		
	
 if 
	
		
			
				𝑥
				⇁
				𝑦
			

		
	
 and 
	
		
			
				𝑦
				⇁
				𝑥
			

		
	
 and say that 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 are machine equivalent.
Given the integers 
	
		
			

				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

		
	
, let 
	
		
			
				l
				c
				m
				(
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

			

				)
			

		
	
 denote the least common multiple of 
	
		
			

				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

		
	
. Given a number 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
, denote by 
	
		
			
				⌊
				𝑥
				⌋
			

		
	
 the greatest integer less than or equal to 
	
		
			

				𝑥
			

		
	
 and by 
	
		
			
				⌈
				𝑥
				⌉
			

		
	
 the least integer greater than or equal to 
	
		
			

				𝑥
			

		
	
.
3. Machine Transformations of Power-Characteristic 
	
		
			

				𝜔
			

		
	
-Words
Definition 3. We will call the 
	
		
			

				𝜔
			

		
	
-word 
	
		
			

				𝜁
			

			
				𝑥
				∈
				{
				0
				,
				1
				}
			

			

				𝜔
			

		
	
 the characteristic word of the power 
	
		
			

				𝜁
			

		
	
 if
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝜁
			

			
				𝑥
				
				(
				𝑛
				)
				=
				1
				,
				i
				f
				∃
				𝑘
				∈
				ℕ
				,
				𝑛
				=
				𝑘
			

			

				𝜁
			

			
				,
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				.
			

		
	

						For example, 
	
		
			

				2
			

			
				𝑥
				=
				1
				1
				0
				0
				1
				0
				0
				0
				0
				1
				0
				0
				…
			

		
	
 is the characteristic word of the squares.
Convention. Henceforth, we assume that 
	
		
			
				𝜁
				≥
				2
			

		
	
 and it is a natural number.
More generally, let 
	
		
			
				𝑓
				∶
				ℕ
				→
				ℕ
			

		
	
 be any total increasing function; then
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑓
			

			
				𝑥
				
				(
				𝑛
				)
				=
				1
				,
				i
				f
				∃
				𝑘
				∈
				ℕ
				,
				𝑛
				=
				𝑓
				(
				𝑘
				)
				,
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				.
			

		
	

					Let 
	
		
			
				𝑉
				=
				⟨
				𝑄
				,
				{
				0
				,
				1
				}
				,
				{
				0
				,
				1
				}
				;
				∘
				,
				∗
				⟩
			

		
	
 be a Mealy machine, where
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				
				𝑞
				𝑄
				=
			

			
				
				1
			

			
				,
				𝑞
			

			
				
				2
			

			
				,
				…
				,
				𝑞
			

			
				
				𝑏
			

			
				
				.
			

		
	

					Applying the pigeonhole principle, we can state that for every 
	
		
			
				𝑞
				∈
				𝑄
			

		
	
 there is a least integer 
	
		
			
				𝑖
				≥
				0
			

		
	
 such that 
	
		
			
				𝑞
				∘
				0
			

			

				𝑖
			

			
				=
				𝑞
				∘
				0
			

			

				𝑗
			

		
	
 for some 
	
		
			
				𝑖
				<
				𝑗
			

		
	
. The integer 
	
		
			

				𝑖
			

		
	
 is called the index of 
	
		
			

				𝑞
			

		
	
, and 
	
		
			
				𝑗
				−
				𝑖
			

		
	
 is called the period of 
	
		
			

				𝑞
			

		
	
. We can visualize this as the diagrams (see Figure 1).

























	
		
		
	


	
		
	
	
		
	
	
		
	


	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	


	
		
			
		
		
			
		
		
			
		
	

Figure 1: Indices and periods.


Claim 1. If 
	
		
			

				𝑎
			

			

				𝑠
			

		
	
 is the index and 
	
		
			

				𝑐
			

			

				𝑠
			

		
	
 is the period of 
	
		
			

				𝑞
			

			
				
				𝑠
			

		
	
,
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑎
			

			

				𝑠
			

			
				≤
				𝑚
			

			

				1
			

			
				<
				𝑚
			

			

				2
			

			
				,
				𝑚
			

			

				1
			

			
				≡
				𝑚
			

			

				2
			

			
				
				m
				o
				d
				𝑐
			

			

				𝑠
			

			
				
				,
			

		
	

						then
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑞
			

			
				
				𝑠
			

			
				∘
				0
			

			

				𝑚
			

			

				1
			

			
				=
				𝑞
			

			
				
				𝑠
			

			
				∘
				0
			

			

				𝑚
			

			

				2
			

			

				.
			

		
	

Claim 2. If 
	
		
			
				m
				a
				x
				(
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			

				𝑏
			

			
				)
				≤
				𝑚
			

			

				1
			

			
				<
				𝑚
			

			

				2
			

		
	
 and 
	
		
			

				𝑚
			

			

				1
			

			
				≡
				𝑚
			

			

				2
			

			
				(
				m
				o
				d
				𝑚
				)
			

		
	
, where
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				𝑐
				𝑚
				=
				l
				c
				m
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				…
				,
				𝑐
			

			

				𝑏
			

			
				
				,
			

		
	

						then
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				∀
				𝑞
				∈
				𝑄
				,
				𝑞
				∘
				1
				0
			

			

				𝑚
			

			

				1
			

			
				=
				𝑞
				∘
				1
				0
			

			

				𝑚
			

			

				2
			

			

				.
			

		
	

						Let 
	
		
			
				𝛼
				(
				𝑋
				)
			

		
	
 be an integer polynomial; that is, 
	
		
			
				𝛼
				(
				𝑋
				)
				∈
				ℤ
				[
				𝑋
				]
			

		
	
. The following theorem is known from elementary number theory.
Theorem 4.  If 
	
		
			
				𝑖
				≡
				𝑗
				(
				m
				o
				d
				𝑚
				)
			

		
	
, then 
	
		
			
				𝛼
				(
				𝑖
				)
				≡
				𝛼
				(
				𝑗
				)
				(
				m
				o
				d
				𝑚
				)
			

		
	
.
If we take 
	
		
			

				𝛼
			

			

				𝑘
			

			
				=
				(
				𝑘
				+
				1
				)
			

			

				𝜁
			

			
				−
				𝑘
			

			

				𝜁
			

			
				−
				1
			

		
	
, then we can express
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝜁
			

			
				𝑥
				=
				1
				1
				0
			

			

				𝛼
			

			

				1
			

			
				1
				0
			

			

				𝛼
			

			

				2
			

			
				⋯
				1
				0
			

			

				𝛼
			

			

				𝑘
			

			
				⋯
				=
				𝑢
			

			

				0
			

			

				𝑢
			

			

				1
			

			
				⋯
				𝑢
			

			

				𝑘
			

			
				⋯
				,
			

		
	

					where 
	
		
			

				𝑢
			

			

				𝑘
			

			
				=
				1
				0
			

			

				𝛼
			

			

				𝑘
			

		
	
. Hence, 
	
		
			

				𝜁
			

			
				𝑥
				[
				0
				,
				𝑘
			

			

				𝜁
			

			
				)
				=
				𝑢
			

			

				0
			

			

				𝑢
			

			

				1
			

			
				⋯
				𝑢
			

			
				𝑘
				−
				1
			

		
	
.
Corollary 5.  If 
	
		
			
				𝑖
				≡
				𝑗
				(
				m
				o
				d
				𝑚
				)
			

		
	
, then 
	
		
			

				𝛼
			

			

				𝑖
			

			
				≡
				𝛼
			

			

				𝑗
			

			
				(
				m
				o
				d
				𝑚
				)
			

		
	
.
Let
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑤
			

			

				0
			

			
				=
				𝑢
			

			

				0
			

			
				,
				𝑤
			

			
				𝑘
				+
				1
			

			
				=
				𝑤
			

			

				𝑘
			

			

				𝑢
			

			
				𝑘
				+
				1
			

			

				.
			

		
	

					Then 
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝜁
			

			
				𝑥
				
				0
				,
				𝑘
			

			

				𝜁
			

			
				
				=
				𝑢
			

			

				0
			

			

				𝑢
			

			

				1
			

			
				⋯
				𝑢
			

			
				𝑘
				−
				1
			

			
				=
				𝑤
			

			
				𝑘
				−
				1
			

			

				.
			

		
	

					Let 
	
		
			
				𝑞
				∈
				𝑄
			

		
	
. We define a sequence 
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑞
			

			

				0
			

			
				,
				𝑞
			

			

				1
			

			
				,
				…
				,
				𝑞
			

			

				𝑘
			

			
				,
				…
				,
			

		
	

					where 
	
		
			

				𝑞
			

			

				𝑘
			

			
				=
				𝑞
				∘
				𝑤
			

			

				𝑘
			

		
	
.
Corollary 6.  The sequence 
	
		
			

				𝑞
			

			

				0
			

			
				,
				𝑞
			

			

				1
			

			
				,
				…
				,
				𝑞
			

			

				𝑘
			

			
				,
				…
			

		
	
 is ultimately periodic.
Proof. Let 
	
		
			
				𝑚
				=
				l
				c
				m
				(
				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				…
				,
				𝑐
			

			

				𝑏
			

			

				)
			

		
	
. There exists 
	
		
			

				𝑛
			

		
	
 such that
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑢
			

			
				𝑚
				𝑛
			

			
				|
				|
				
				𝑎
				>
				m
				a
				x
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			

				𝑏
			

			
				
				.
			

		
	

						Now consider the sequence 
	
		
			

				𝑞
			

			
				𝑚
				𝑛
			

			
				,
				𝑞
			

			
				𝑚
				(
				𝑛
				+
				1
				)
			

			
				,
				…
				,
				𝑞
			

			
				𝑚
				(
				𝑛
				+
				𝑏
				)
			

		
	
. Since 
	
		
			

				|
			

			
				
			
			
				0
				,
				𝑏
				|
				=
				𝑏
				+
				1
				>
				|
				𝑄
				|
			

		
	
, then—by the pigeonhole principle—there must exist two equal states
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑞
			

			
				𝑚
				(
				𝑛
				+
				𝑖
				)
			

			
				=
				𝑞
			

			
				𝑚
				(
				𝑛
				+
				𝑗
				)
			

			
				,
				w
				i
				t
				h
				0
				≤
				𝑖
				<
				𝑗
				≤
				𝑏
				.
			

		
	

						Hence
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑞
			

			
				𝑚
				(
				𝑛
				+
				𝑖
				)
				+
				1
			

			
				=
				𝑞
			

			
				𝑚
				(
				𝑛
				+
				𝑖
				)
			

			
				∘
				𝑢
			

			
				𝑚
				(
				𝑛
				+
				𝑖
				)
				+
				1
			

			
				=
				𝑞
			

			
				𝑚
				(
				𝑛
				+
				𝑗
				)
			

			
				∘
				𝑢
			

			
				𝑚
				(
				𝑛
				+
				𝑖
				)
				+
				1
			

			

				=
			

			
				C
				l
				a
				i
				m
			

			

				2
			

			

				𝑞
			

			
				𝑚
				(
				𝑛
				+
				𝑗
				)
			

			
				∘
				𝑢
			

			
				𝑚
				(
				𝑛
				+
				𝑗
				)
				+
				1
			

			
				=
				𝑞
			

			
				𝑚
				(
				𝑛
				+
				𝑗
				)
				+
				1
			

			

				.
			

		
	

						The rest follows by induction.
The following lemma is very easy, but it turns out to be useful.
Lemma 7.  Let 
	
		
			
				𝑉
				=
				⟨
				𝑄
				,
				𝐴
				,
				𝐵
				;
				𝑞
			

			

				0
			

			

				⟩
			

		
	
 be a Mealy machine. If 
	
		
			
				|
				𝑄
				|
				=
				𝑚
			

		
	
 and 
	
		
			

				𝑞
			

			

				0
			

			
				∗
				0
			

			

				𝑠
			

			
				=
				𝑤
			

		
	
, then there exists 
	
		
			

				𝜘
			

		
	
 such that
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝑤
				=
				𝑢
				𝑣
			

			

				𝜘
			

			
				̇
				̇
				𝑣
				,
				w
				h
				e
				r
				e
				|
				𝑢
				|
				+
				|
				𝑣
				|
				≤
				𝑚
				a
				n
				d
				𝑣
				∈
				P
				r
				e
				f
				(
				𝑣
				)
				.
			

		
	

Proof. (i) If 
	
		
			
				𝑠
				≤
				𝑚
			

		
	
, then 
	
		
			
				|
				𝑤
				|
				=
				|
				0
			

			

				𝑠
			

			
				|
				=
				𝑠
				≤
				𝑚
			

		
	
, and we can choose 
	
		
			
				𝑢
				=
				𝑤
			

		
	
, 
	
		
			
				̇
				𝑣
				=
				𝑣
				=
				𝜆
			

		
	
.(ii) Let 
	
		
			
				𝑠
				>
				𝑚
			

		
	
 and 
	
		
			

				𝑞
			

			

				0
			

			
				,
				𝑞
			

			

				1
			

			
				,
				…
				,
				𝑞
			

			

				𝑚
			

		
	
 states, where
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				∀
				𝑖
				∈
			

			
				
			
			
				0
				,
				𝑚
				𝑞
			

			

				𝑖
			

			
				=
				𝑞
			

			

				0
			

			
				∘
				0
			

			

				𝑖
			

			

				.
			

		
	

						Since 
	
		
			

				|
			

			
				
			
			
				0
				,
				𝑚
				|
				=
				𝑚
				+
				1
				>
				|
				𝑄
				|
			

		
	
, then—by the pigeonhole principle—there must exist two equal states; namely, there exist 
	
		
			

				𝑖
			

		
	
 and 
	
		
			

				𝑗
			

		
	
, 
	
		
			
				0
				≤
				𝑖
				<
				𝑗
				≤
				𝑚
			

		
	
, such that
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑞
			

			

				𝑖
			

			
				=
				𝑞
			

			

				𝑗
			

			

				.
			

		
	

						Putting
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑢
				=
				𝑞
			

			

				0
			

			
				∗
				0
			

			

				𝑖
			

			
				,
				𝑣
				=
				𝑞
			

			

				𝑖
			

			
				∗
				0
			

			
				𝑗
				−
				𝑖
			

			
				,
				
				𝜘
				=
				𝑠
				−
				𝑖
			

			
				
			
			
				
				,
				̇
				𝑗
				−
				𝑖
				𝑣
				=
				𝑞
			

			

				𝑖
			

			
				∗
				0
			

			
				𝑠
				−
				𝑖
				−
				𝜘
				(
				𝑗
				−
				𝑖
				)
			

			

				,
			

		
	

						then 
	
		
			
				|
				𝑢
				|
				+
				|
				𝑣
				|
				=
				|
				0
			

			

				𝑖
			

			
				|
				+
				|
				0
			

			
				𝑗
				−
				𝑖
			

			
				|
				=
				𝑖
				+
				(
				𝑗
				−
				𝑖
				)
				=
				𝑗
				≤
				𝑚
			

		
	
 and 
	
		
			
				𝑤
				=
				𝑢
				𝑣
			

			

				𝜘
			

			
				̇
				𝑣
			

		
	
.
Proposition 8.  If 
	
		
			

				𝑓
			

			
				𝑥
				⇁
				𝑦
			

		
	
, 
	
		
			

				𝜁
			

			
				𝑥
				⇁
				𝑦
			

		
	
 and
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				∀
				𝜘
				∃
				𝑎
				𝑘
				𝑓
				(
				𝑘
				)
				≤
				𝑎
			

			

				𝜁
			

			
				<
				(
				𝑎
				+
				𝜘
				)
			

			

				𝜁
			

			
				≤
				𝑓
				(
				𝑘
				+
				1
				)
				,
			

		
	

						then 
	
		
			

				𝑦
			

		
	
 is ultimately periodic.
Proof . Since 
	
		
			

				𝜁
			

			
				𝑥
				⇁
				𝑦
			

		
	
 and 
	
		
			

				𝑓
			

			
				𝑥
				⇁
				𝑦
			

		
	
, there exist Mealy machines
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝑉
				=
				⟨
				𝑄
				,
				{
				0
				,
				1
				}
				,
				𝐵
				;
				𝑞
				,
				∘
				,
				∗
				⟩
				,
				𝑉
			

			

				
			

			
				=
				
				𝑄
			

			

				
			

			
				,
				{
				0
				,
				1
				}
				,
				𝐵
				;
				𝑞
			

			

				
			

			
				,
				∘
			

			

				
			

			
				,
				∗
			

			

				
			

			

				
			

		
	

						such that 
	
		
			

				𝜁
			

			

				𝑥
			

			

				𝑉
			

			
				⇁
				𝑦
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑥
			

			

				𝑉
			

			

				′
			

			
				⇁
				𝑦
			

		
	
.(i) First, we express 
	
		
			

				𝜁
			

			
				𝑥
				=
				𝑢
			

			

				0
			

			

				𝑢
			

			

				1
			

			
				⋯
				𝑢
			

			

				𝑛
			

			

				⋯
			

		
	
 with
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑛
			

			
				=
				1
				0
			

			

				𝛼
			

			

				𝑛
			

			
				,
				𝛼
			

			

				𝑛
			

			
				=
				(
				𝑛
				+
				1
				)
			

			

				𝜁
			

			
				−
				𝑛
			

			

				𝜁
			

			
				−
				1
				,
			

		
	

						and look at the sequence 
	
		
			

				𝑞
			

			

				0
			

			
				,
				𝑞
			

			

				1
			

			
				,
				…
				,
				𝑞
			

			

				𝑛
			

			
				,
				…
			

		
	
, where
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑞
			

			

				𝑛
			

			
				
				𝑢
				=
				𝑞
				∘
			

			

				0
			

			

				𝑢
			

			

				1
			

			
				⋯
				𝑢
			

			

				𝑛
			

			
				
				.
			

		
	

						We have shown (Corollary 6) that the sequence 
	
		
			

				𝑞
			

			

				0
			

			
				,
				𝑞
			

			

				1
			

			
				,
				…
				,
				𝑞
			

			

				𝑛
			

			
				,
				…
			

		
	
 is ultimately periodic. Assume its period is 
	
		
			

				𝑇
			

		
	
 and the preperiod 
	
		
			

				𝑝
			

		
	
.(ii) By assumption (see (23)) we can choose integers 
	
		
			

				𝑘
			

		
	
 and 
	
		
			

				𝑎
			

		
	
 such that
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑘
				)
				≤
				𝑎
			

			

				𝜁
			

			
				<
				(
				𝑎
				+
				𝑇
				+
				1
				)
			

			

				𝜁
			

			
				≤
				𝑓
				(
				𝑘
				+
				1
				)
			

		
	

						and, moreover, 
	
		
			
				𝑎
				>
				𝑝
				+
				7
			

		
	
 and 
	
		
			
				(
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				−
				𝑎
			

			

				𝜁
			

			
				>
				3
				⋅
				m
				a
				x
				(
				|
				𝑄
				|
				,
				|
				𝑄
			

			

				
			

			
				|
				)
				+
				7
			

		
	
. Now, 
	
		
			

				𝑓
			

			
				𝑥
				(
				𝑓
				(
				𝑘
				)
				,
				𝑓
				(
				𝑘
				+
				1
				)
				)
			

		
	
 is a word of the form 
	
		
			

				0
			

			

				𝑑
			

		
	
, and thus (by Lemma 7)
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑓
				(
				𝑘
				)
				,
				𝑓
				(
				𝑘
				+
				1
				)
				)
			

		
	

						must be ultimately periodic with both its period and preperiod not greater than 
	
		
			
				|
				𝑄
			

			

				
			

			

				|
			

		
	
. We denote this preperiod by 
	
		
			

				𝑝
			

			

				
			

		
	
 and the least period by 
	
		
			

				𝑇
			

			

				
			

		
	
. Since
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝑝
			

			

				
			

			
				≤
				|
				|
				𝑄
			

			

				
			

			
				|
				|
				<
				(
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				−
				𝑎
			

			

				𝜁
			

			
				−
				7
				,
			

		
	

						then 
	
		
			
				𝑦
				[
				(
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				𝑎
				+
				1
				+
				𝑇
				)
			

			

				𝜁
			

			

				)
			

		
	
 is periodic with the period 
	
		
			

				𝑇
			

			

				
			

		
	
. Notice that
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝑦
				
				(
				𝑎
				+
				𝑖
				)
			

			

				𝜁
			

			
				,
				(
				𝑎
				+
				𝑖
				+
				1
				)
			

			

				𝜁
			

			
				
				=
				𝑞
			

			
				𝑎
				+
				𝑖
				−
				1
			

			

				∗
			

			

				𝜁
			

			
				𝑥
				
				(
				𝑎
				+
				𝑖
				)
			

			

				𝜁
			

			
				,
				(
				𝑎
				+
				𝑖
				+
				1
				)
			

			

				𝜁
			

			
				
				=
				𝑞
			

			
				𝑎
				+
				𝑖
				−
				1
			

			
				∗
				1
				0
			

			

				𝛼
			

			
				𝑎
				+
				𝑖
			

		
	

						and that the sequence of states 
	
		
			

				𝑞
			

			

				𝑎
			

			
				,
				𝑞
			

			
				𝑎
				+
				1
			

			
				,
				𝑞
			

			
				𝑎
				+
				2
			

			
				,
				…
				,
				𝑞
			

			
				𝑎
				+
				𝑇
			

			
				,
				…
			

		
	
 is also periodic. Therefore
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝑦
				
				(
				𝑎
				+
				𝑖
				+
				𝑇
				)
			

			

				𝜁
			

			
				,
				(
				𝑎
				+
				𝑖
				+
				1
				+
				𝑇
				)
			

			

				𝜁
			

			
				
				=
				𝑞
			

			
				𝑎
				+
				𝑖
				−
				1
				+
				𝑇
			

			

				∗
			

			

				𝜁
			

			
				𝑥
				
				(
				𝑎
				+
				𝑖
				+
				𝑇
				)
			

			

				𝜁
			

			
				,
				(
				𝑎
				+
				𝑖
				+
				1
				+
				𝑇
				)
			

			

				𝜁
			

			
				
				=
				𝑞
			

			
				𝑎
				+
				𝑖
				−
				1
				+
				𝑇
			

			
				∗
				1
				0
			

			

				𝛼
			

			
				𝑎
				+
				𝑖
				+
				𝑇
			

			
				=
				𝑞
			

			
				𝑎
				+
				𝑖
				−
				1
			

			
				∗
				1
				0
			

			

				𝛼
			

			
				𝑎
				+
				𝑖
				+
				𝑇
			

			
				̇
				𝑣
				̇
				=
				̇
				𝑢
				𝑤
				,
			

		
	

						where 
	
		
			
				̇
				|
				̇
				𝑢
				|
				=
				|
				𝑣
				|
				=
				m
				a
				x
				(
				|
				𝑄
				|
				,
				|
				𝑄
			

			

				
			

			
				|
				)
			

		
	
. So we have two periodic words 
	
		
			
				̇
				𝑣
				̇
				𝑢
			

		
	
 and 
	
		
			
				̇
				𝑣
				̇
				𝑤
			

		
	
. Hence by Corollary 2
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝑦
				
				(
				𝑎
				+
				𝑖
				+
				𝑇
				)
			

			

				𝜁
			

			
				,
				(
				𝑎
				+
				𝑖
				+
				1
				+
				𝑇
				)
			

			

				𝜁
			

			

				
			

		
	

						is periodic with period 
	
		
			

				𝑇
			

			

				
			

		
	
. Therefore we can conclude that 
	
		
			
				𝑦
				[
				(
				𝑎
				+
				𝑖
				)
			

			

				𝜁
			

			
				,
				(
				𝑎
				+
				𝑖
				+
				1
				)
			

			

				𝜁
			

			

				)
			

		
	
 is periodic with period 
	
		
			

				𝑇
			

			

				
			

		
	
 for all 
	
		
			
				𝑖
				>
				0
			

		
	
; besides, 
	
		
			

				𝑇
			

			

				
			

		
	
 is the least period for all 
	
		
			
				𝑖
				>
				0
			

		
	
.(iii) Let 
	
		
			
				𝑋
				>
				𝑎
			

		
	
 and 
	
		
			
				𝜇
				=
				l
				c
				m
				(
				𝑇
				,
				𝑇
			

			

				
			

			

				)
			

		
	
. Then
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				(
				𝑋
				+
				𝜇
				)
			

			

				𝜁
			

			
				−
				𝑋
			

			

				𝜁
			

			

				=
			

			

				𝜁
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝜁
				𝑗
				⎞
				⎟
				⎟
				⎟
				⎠
				𝜇
			

			

				𝑗
			

			

				𝑋
			

			
				𝜁
				−
				𝑗
			

			
				−
				𝑋
			

			

				𝜁
			

			
				=
				𝜇
			

			

				𝜁
			

			

				
			

			
				𝑗
				=
				1
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝜁
				𝑗
				⎞
				⎟
				⎟
				⎟
				⎠
				𝜇
			

			
				𝑗
				−
				1
			

			

				𝑋
			

			
				𝜁
				−
				𝑗
			

			
				=
				𝜇
				𝑃
				(
				𝑋
				)
				,
			

		
	

						where
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑃
				(
				𝑋
				)
				=
			

			

				𝜁
			

			

				
			

			
				𝑗
				=
				1
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝜁
				𝑗
				⎞
				⎟
				⎟
				⎟
				⎠
				𝜇
			

			
				𝑗
				−
				1
			

			

				𝑋
			

			
				𝜁
				−
				𝑗
			

			

				.
			

		
	

						We have shown in (ii) that 
	
		
			
				𝑦
				[
				𝑋
			

			

				𝜁
			

			
				,
				(
				𝑋
				+
				1
				)
			

			

				𝜁
			

			

				)
			

		
	
 is periodic. Therefore there is a 
	
		
			

				𝑣
			

		
	
 such that
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				𝑦
				
				𝑋
			

			

				𝜁
			

			
				,
				(
				𝑋
				+
				1
				)
			

			

				𝜁
			

			
				
				=
				𝑣
			

			

				𝑟
			

			

				𝑣
			

			

				
			

			

				,
			

		
	

						where 
	
		
			
				|
				𝑣
				|
				=
				𝑇
			

			

				
			

		
	
 and 
	
		
			

				𝑣
			

			

				
			

			
				∈
				P
				r
				e
				f
				(
				𝑣
				)
			

		
	
. Since 
	
		
			

				𝑇
			

		
	
 divides 
	
		
			

				𝜇
			

		
	
, then 
	
		
			

				𝑞
			

			
				𝑋
				−
				1
			

			
				=
				𝑞
			

			
				𝑋
				−
				1
				+
				𝜇
			

		
	
. But then
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				𝑦
				
				(
				𝑋
				+
				𝜇
				)
			

			

				𝜁
			

			
				,
				(
				𝑋
				+
				𝜇
				+
				1
				)
			

			

				𝜁
			

			
				
				=
				𝑞
			

			
				𝑋
				+
				𝜇
				−
				1
			

			

				∗
			

			

				𝜁
			

			
				𝑥
				
				(
				𝑋
				+
				𝜇
				)
			

			

				𝜁
			

			
				,
				(
				𝑋
				+
				𝜇
				+
				1
				)
			

			

				𝜁
			

			
				
				=
				𝑞
			

			
				𝑋
				−
				1
			

			

				∗
			

			

				𝜁
			

			
				𝑥
				
				(
				𝑋
				+
				𝜇
				)
			

			

				𝜁
			

			
				,
				(
				𝑋
				+
				𝜇
				+
				1
				)
			

			

				𝜁
			

			
				
				=
				𝑞
			

			
				𝑋
				−
				1
			

			
				∗
				1
				0
			

			

				𝛼
			

			
				𝑋
				+
				𝜇
			

			
				=
				𝑣
			

			

				𝑟
			

			

				′
			

			

				𝑣
			

			
				
				
			

			

				,
			

		
	

						for some number 
	
		
			

				𝑟
			

			

				
			

		
	
 and 
	
		
			

				𝑣
			

			
				
				
			

			
				∈
				P
				r
				e
				f
				(
				𝑣
				)
			

		
	
. It follows from (33) that
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				(
				𝑋
				+
				𝜇
				+
				1
				)
			

			

				𝜁
			

			
				−
				(
				𝑋
				+
				𝜇
				)
			

			

				𝜁
			

			
				≡
				(
				𝑋
				+
				1
				)
			

			

				𝜁
			

			
				−
				𝑋
			

			

				𝜁
			

			
				
				m
				o
				d
				𝑇
			

			

				
			

			

				
			

		
	

						and therefore 
	
		
			

				𝑣
			

			

				
			

			
				=
				𝑣
			

			
				
				
			

		
	
.(iv) Finally, we can select integers 
	
		
			
				̆
				𝑘
			

		
	
, 
	
		
			
				̆
				𝑎
			

		
	
 such that 
	
		
			
				̆
				𝑘
				𝑘
				<
			

		
	
 and
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				𝑓
				
				̆
				𝑘
				
				≤
				̆
				𝑎
			

			

				𝜁
			

			
				<
				(
				̆
				𝑎
				+
				𝜇
				+
				1
				)
			

			

				𝜁
			

			
				
				̆
				
				.
				≤
				𝑓
				𝑘
				+
				1
			

		
	

						Now we repeat the proof from (ii). So we can conclude that there is the least period 
	
		
			

				𝑇
			

			
				
				
			

			
				≤
				|
				𝑄
			

			

				
			

			

				|
			

		
	
 of the word 
	
		
			
				𝑦
				[
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				1
				+
				𝜇
				)
			

			

				𝜁
			

			

				)
			

		
	
. A period of
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				𝑦
				
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				2
				)
			

			

				𝜁
			

			

				
			

		
	

						is 
	
		
			

				𝑇
			

			

				
			

		
	
 too. Hence (Theorem 1) 
	
		
			

				𝑇
			

			
				
				
			

			
				=
				𝑇
			

			

				
			

		
	
. Denote 
	
		
			
				𝑦
				[
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				+
				𝑇
			

			

				
			

			
				)
				=
				𝑢
			

		
	
. Since (from formula (33))
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				(
				̆
				𝑎
				+
				1
				+
				𝜇
				)
			

			

				𝜁
			

			
				−
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				
				≡
				0
				m
				o
				d
				𝑇
			

			

				
			

			
				
				,
			

		
	

						there is an integer 
	
		
			

				𝑠
			

		
	
 such that 
	
		
			
				𝑦
				[
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				1
				+
				𝜇
				)
			

			

				𝜁
			

			
				)
				=
				𝑢
			

			

				𝑠
			

		
	
. As it was shown in (iii) we can choose 
	
		
			

				𝑠
			

			
				
				1
			

			
				,
				𝑠
			

			
				
				2
			

		
	
 such that
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				𝑦
				
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				2
				)
			

			

				𝜁
			

			
				
				=
				𝑢
			

			

				𝑠
			

			
				′
				1
			

			

				𝑢
			

			

				
			

			
				,
				𝑦
				
				(
				̆
				𝑎
				+
				1
				+
				𝜇
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				2
				+
				𝜇
				)
			

			

				𝜁
			

			
				
				=
				𝑢
			

			

				𝑠
			

			
				′
				2
			

			

				𝑢
			

			

				
			

			

				.
			

		
	

						But then 
	
		
			
				𝑦
				[
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				2
				+
				𝜇
				)
			

			

				𝜁
			

			
				)
				=
				𝑢
			

			

				𝑠
			

			

				𝑢
			

			
				𝑠
				
			

			

				2
			

			

				𝑢
			

			

				
			

		
	
, which means that
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝑦
				
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				2
				+
				𝜇
				)
			

			

				𝜁
			

			

				
			

		
	

						is periodic with the period 
	
		
			

				𝑇
			

			

				
			

		
	
. Now suppose that 
	
		
			
				𝑦
				[
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				𝑛
				)
			

			

				𝜁
			

			
				)
				=
				𝑢
			

			

				𝜎
			

			
				̆
				𝑢
			

		
	
, where 
	
		
			
				𝑛
				>
				𝜇
				+
				1
			

		
	
 and 
	
		
			
				̆
				𝑢
				∈
				P
				r
				e
				f
				(
				𝑢
				)
			

		
	
. Then there exists such 
	
		
			
				̆
				𝑣
				∈
				S
				u
				ﬀ
				(
				𝑢
				)
			

		
	
 that 
	
		
			
				̆
				̆
				𝑢
				𝑣
				=
				𝑢
			

		
	
. From (see formula (33)) 
	
		
			
				(
				̆
				𝑎
				+
				𝑛
				)
			

			

				𝜁
			

			
				−
				(
				̆
				𝑎
				+
				𝑛
				−
				𝜇
				)
			

			

				𝜁
			

			
				≡
				0
				(
				m
				o
				d
				𝑇
				)
			

			

				
			

		
	
, we can conclude that
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				̆
				
				𝑦
				
				𝑣
				∈
				P
				r
				e
				f
				(
				̆
				𝑎
				+
				𝑛
				−
				𝜇
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				𝑛
				−
				𝜇
				+
				1
				)
			

			

				𝜁
			

			
				.
				
				
			

		
	

						It follows from what we have shown in (iii) that there are 
	
		
			

				𝜎
			

			

				1
			

			
				,
				𝜎
			

			

				2
			

		
	
 such that
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				𝑦
				
				(
				̆
				𝑎
				+
				𝑛
				−
				𝜇
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				𝑛
				−
				𝜇
				+
				1
				)
			

			

				𝜁
			

			
				
				=
				𝑣
			

			

				𝜎
			

			

				1
			

			

				𝑣
			

			

				
			

			
				,
				𝑦
				
				(
				̆
				𝑎
				+
				𝑛
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				𝑛
				+
				1
				)
			

			

				𝜁
			

			
				
				=
				𝑣
			

			

				𝜎
			

			

				2
			

			

				𝑣
			

			

				
			

		
	

						with 
	
		
			
				|
				𝑣
				|
				=
				𝑇
			

			

				
			

		
	
 and 
	
		
			

				𝑣
			

			

				
			

			
				∈
				P
				r
				e
				f
				(
				𝑣
				)
			

		
	
. But then 
	
		
			
				̆
				𝑣
				=
				𝑣
				̆
				𝑢
			

		
	
 and
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝑦
				
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				𝑛
				+
				1
				)
			

			

				𝜁
			

			
				
				=
				𝑢
			

			

				𝜎
			

			
				̆
				𝑢
				𝑣
			

			

				𝜎
			

			

				2
			

			

				𝑣
			

			

				
			

			
				=
				𝑢
			

			

				𝜎
			

			
				̆
				̆
				𝑢
				(
				𝑣
				̆
				𝑢
				)
			

			

				𝜎
			

			

				2
			

			

				𝑣
			

			

				
			

			
				=
				𝑢
			

			

				𝜎
			

			
				̆
				(
				̆
				𝑢
				𝑣
				)
			

			

				𝜎
			

			

				2
			

			
				̆
				𝑢
				𝑣
			

			

				
			

			
				=
				𝑢
			

			
				𝜎
				+
				𝜎
			

			

				2
			

			
				̆
				𝑢
				𝑣
			

			

				
			

			

				.
			

		
	

						This means that 
	
		
			
				𝑦
				[
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				𝑛
				+
				1
				)
			

			

				𝜁
			

			

				)
			

		
	
 is periodic with period 
	
		
			

				𝑇
			

			

				
			

		
	
. Now, by induction, we have 
	
		
			
				𝑦
				[
				(
				̆
				𝑎
				+
				1
				)
			

			

				𝜁
			

			
				,
				(
				̆
				𝑎
				+
				𝑖
				)
			

			

				𝜁
			

			

				]
			

		
	
 is periodic with the period 
	
		
			

				𝑇
			

			

				
			

		
	
 for any 
	
		
			
				𝑖
				>
				1
			

		
	
. Hence, 
	
		
			

				𝑦
			

		
	
 is ultimately periodic.
4. Modularity in the Semilattice of 
	
		
			

				𝜔
			

		
	
-Words
Our main object of investigation is the machine poset of infinite words. In order to avoid some set-theoretical problems, we make some assumptions. Let us take the set 
	
		
			
				⋃
				𝔑
				=
			

			
				∞
				𝑘
				=
				0
			

			

				(
			

			
				
			
			
				0
				,
				𝑘
				)
			

			

				𝜔
			

		
	
. We shall assume that the states of the involved Mealy machines as well as their input and output alphabets all are from the set 
	
		
			

				ℕ
			

		
	
. If another input or output alphabet 
	
		
			

				𝐴
			

		
	
 is used, we assume that there exists a bijection 
	
		
			
				𝛽
				∶
				𝐴
				→
			

			
				
			
			
				0
				,
				|
				𝐴
				|
				−
				1
			

		
	
 and that this bijection is applied to the input or output word, respectively.
We suppose that the reader is familiar with the basic notions of ordered sets [7]. If 
	
		
			

				⇁
			

		
	
 is used as an algebraic relation on 
	
		
			

				𝔑
			

		
	
, then the algebraic structure 
	
		
			
				⟨
				𝔑
				,
				⇁
				⟩
			

		
	
 defines a preorder [5], while the quotient set 
	
		
			

				∼
			

			
				𝔑
				=
				𝔑
				/
				⇌
			

		
	
 becomes the ordered set 
	
		
			
				⟨
				𝔑
				,
				⇁
				⟩
			

		
	
. It has been shown that this poset 
	
		
			

				∼
			

			

				𝔑
			

		
	
 is a join-semilattice [5], where the join 
	
		
			
				[
				(
				𝑥
			

			

				𝑖
			

			
				)
				]
				∨
				[
				(
				𝑦
			

			

				𝑖
			

			
				)
				]
				=
				[
				(
				𝑥
			

			

				𝑖
			

			
				,
				𝑦
			

			

				𝑖
			

			
				)
				]
			

		
	
.
Definition 9. A join-semilattice 
	
		
			
				⟨
				𝐷
				,
				≤
				⟩
			

		
	
 is distributive when
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				
				∀
				𝑥
				𝑎
				𝑏
				𝑥
				≤
				𝑎
				∨
				𝑏
				⟹
				∃
				𝑎
			

			

				
			

			

				𝑏
			

			

				
			

			
				
				𝑎
			

			

				
			

			
				≤
				𝑎
				&
				𝑏
			

			

				
			

			
				≤
				𝑏
				&
				𝑥
				=
				𝑎
			

			

				
			

			
				∨
				𝑏
			

			

				
			

			
				.
				
				
			

		
	

						A join-semilattice 
	
		
			
				⟨
				𝐷
				,
				≤
				⟩
			

		
	
 is modular when
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				
				∀
				𝑥
				𝑎
				𝑏
				𝑎
				≤
				𝑥
				≤
				𝑎
				∨
				𝑏
				⟹
				∃
				𝑏
			

			

				
			

			
				
				≤
				𝑏
				𝑥
				=
				𝑎
				∨
				𝑏
			

			

				
			

			
				.
				
				
			

		
	

Theorem 10.  The join-semilattice 
	
		
			

				⟨
			

			

				∼
			

			
				𝔑
				,
				⇁
				⟩
			

		
	
 is not modular.
Proof. We start by showing that 
	
		
			

				2
			

			
				𝑥
				∨
			

			

				4
			

			
				𝑥
				⇁
				𝑥
			

			

				
			

		
	
, where
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				𝑥
			

			

				
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝑛
				)
				=
				1
				,
				i
				f
				∃
				𝑘
				∈
				ℕ
				,
				𝑛
				=
				𝑘
			

			

				4
			

			
				,
				
				𝑘
				1
				,
				i
				f
				∃
				𝑘
				∈
				ℕ
				,
				𝑛
				=
			

			

				2
			

			
				
				+
				1
			

			

				2
			

			
				,
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				.
			

		
	

						By definition, 
	
		
			

				(
			

			

				2
			

			
				𝑥
				∨
			

			

				4
			

			
				𝑥
				)
				(
				𝑛
				)
				=
				(
			

			

				2
			

			
				𝑥
				(
				𝑛
				)
				,
			

			

				4
			

			
				𝑥
				(
				𝑛
				)
				)
			

		
	
. Define the Mealy machine
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				
				
				𝑞
				𝑉
				=
			

			

				0
			

			
				,
				𝑞
			

			

				1
			

			
				,
				𝑞
			

			

				2
			

			
				
				,
				⎧
				⎪
				⎨
				⎪
				⎩
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				1
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				1
				⎞
				⎟
				⎟
				⎟
				⎠
				⎫
				⎪
				⎬
				⎪
				⎭
				,
				{
				0
				,
				1
				}
				;
				𝑞
			

			

				0
			

			
				
				,
				∘
				,
				∗
			

		
	

						by
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				𝑞
			

			

				1
			

			
				=
				𝑞
			

			

				0
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				0
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				1
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				0
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				0
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				1
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				1
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				1
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				1
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				1
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				2
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				𝑞
			

			

				2
			

			
				=
				𝑞
			

			

				1
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				1
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				2
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				2
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				1
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝑞
			

			

				2
			

			
				∘
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				1
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				0
				=
				𝑞
			

			

				1
			

			
				∗
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				0
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						We illustrate this by the diagram in Figure 2. It follows straightforwardly from the construction that 
	
		
			

				2
			

			
				𝑥
				∨
			

			

				4
			

			

				𝑥
			

			

				𝑉
			

			
				⇁
				𝑥
			

			

				
			

			

				⇁
			

			

				4
			

			

				𝑥
			

		
	
. Now suppose that there exists 
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 such that 
	
		
			

				2
			

			
				𝑥
				⇁
				𝑦
			

		
	
 and 
	
		
			

				𝑥
			

			

				
			

			

				⇌
			

			

				4
			

			
				𝑥
				∨
				𝑦
			

		
	
. But then 
	
		
			

				𝑥
			

			

				
			

			
				⇁
				𝑦
			

		
	
 too. Notice that 
	
		
			

				𝑥
			

			

				
			

			

				=
			

			

				𝑔
			

			

				𝑥
			

		
	
 for
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				𝑔
				(
				𝑘
				)
				=
				0
				,
				i
				f
				𝑘
				=
				0
				,
				(
				𝑘
				+
				1
				)
			

			

				4
			

			
				
			
			
				
				𝑘
				1
				6
				,
				i
				f
				𝑘
				i
				s
				o
				d
				d
				,
			

			

				2
			

			
				
			
			
				4
				
				+
				1
			

			

				2
			

			
				,
				i
				f
				𝑘
				i
				s
				e
				v
				e
				n
				.
			

		
	

						Hence, by Proposition 8
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 is ultimately periodic. But if so, then 
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. However this is a contradiction because then 
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Figure 2: 
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				𝑥
				∨
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				⇁
				𝑥
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.


Corollary 11 (see [8]).  The join-semilattice 
	
		
			

				⟨
			

			

				∼
			

			
				𝔑
				,
				⇁
				⟩
			

		
	
 is not distributive.
We recall that every distributive join-semilattice is modular.
5. Conclusion
We agree that it is not sufficient to state that 
	
		
			

				∼
			

			

				𝔑
			

		
	
 is very complicated as it was done in Wikipedia writing review about Turing degrees [9]. Nevertheless it is clear that 
	
		
			

				∼
			

			

				𝔑
			

		
	
 is not modular and that there is no classical algebraic notion that describes such semilattice axiomatically at this moment. So we have challenge to extract axioms for semilattice 
	
		
			

				∼
			

			

				𝔑
			

		
	
.
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