Exact Traveling Wave Solutions for Wick-Type Stochastic Schamel KdV Equation

Hossam A. Ghany1,2 and M. Zakarya3

1Department of Mathematics, Faculty of Science, Taif University, Al Hawiyah, Taif 888, Saudi Arabia
2Department of Mathematics, Helwan University, Cairo, Egypt
3Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

Correspondence should be addressed to Hossam A. Ghany; h.abdelghany@yahoo.com

Received 29 May 2014; Accepted 9 October 2014; Published 15 December 2014

Academic Editor: Alkesh Punjabi

Copyright © 2014 H. A. Ghany and M. Zakarya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

F-expansion method is proposed to seek exact solutions of nonlinear partial differential equations. By means of Hermite transform, inverse Hermite transform, and white noise analysis, the variable coefficients and Wick-type stochastic Schamel KdV equations are completely described. Abundant exact traveling wave solutions for variable coefficients Schamel KdV equations are given. These solutions include exact stochastic Jacobi elliptic functions, trigonometric functions, and hyperbolic functions solutions.

1. Introduction

In this paper, we investigate the variable coefficients Schamel KdV equations [1, 2]:

\[u_t + \left[g_1(t) u^{1/2} + g_2(t) u \right] u_x + g_3(t) u_{xxx} = 0, \]

\((t, x) \in \mathbb{R}_+ \times \mathbb{R}, \) \hspace{1cm} (1)

where \(g_1(t), g_2(t), \) and \(g_3(t) \) are bounded measurable or integrable functions on \(\mathbb{R}_+ \). Random wave is an important subject of stochastic partial differential equations (SPDEs). Many authors have studied this subject. Wadati first introduced and studied the stochastic KdV equations and gave the diffusion of soliton for KdV equation under Gaussian noise in [3, 4] and others [5–9] also researched stochastic KdV equations. Xie first introduced Wick-type stochastic KdV equations on white noise space and showed the auto-Backlund transformation and the exact white noise functional solutions in [10]. Furthermore, Xie [11–14] and Ghany et al. [15–21] researched some Wick-type stochastic wave equations using white noise analysis.

In this paper we use F-expansion method for finding new periodic wave solutions of nonlinear evolution equations in mathematical physics, and we obtain some new periodic wave solutions for Schamel KdV equations. This method is more powerful and will be used in further works to establish more entirely new solutions for other kinds of nonlinear partial differential equations arising in mathematical physics. The effort in finding exact solutions to nonlinear equations is important for the understanding of most nonlinear physical phenomena, for instance, the nonlinear wave phenomena observed in the fluid dynamics, plasma, and optical fibers [1, 2]. Many effective methods have been presented such as homotopy analysis method [22], variational iteration method [23, 24], tanh-function method [25–27], homotopy perturbation method [28–30], tanh-coth method [26, 31, 32], Exp-function method [33–38], Jacobi elliptic function expansion method [39–42], and F-expansion method [43–46]. The main objective of this paper is using F-expansion method to construct the exact traveling wave solutions for Wick-type stochastic Schamel KdV equations via the Wick-type product, Hermite transform, and white noise analysis. If (1) is considered in a random environment, we can get stochastic Schamel KdV equations. In order to give the exact solutions of stochastic Schamel KdV equations, we only consider this problem in white noise environment.
We will study the following Wick-type stochastic Schamel KdV equations:
\[
U_t + \left[G_1(t) \circ U^{\circ 1/2} + G_2(t) \circ U \right] \circ U_x + G_3(t) \circ U_{xxx} = 0,
\] (2)
where "\circ" is the Wick product on the Kondratiev distribution space \((\mathcal{D})_{-1}\) and \(G_1(t), G_2(t),\) and \(G_3(t)\) are \((\mathcal{D})_{-1}\) valued functions [47].

2. Description of the F-Expansion Method

In order to simultaneously obtain more periodic wave solutions expressed by various Jacobi elliptic functions to nonlinear wave equations, we introduce an F-expansion method which can be thought of as a succinctly overall generalization of Jacobi elliptic function expansion. We briefly show what F-expansion method is and how to use it to obtain various periodic wave solutions expressed by various Jacobi elliptic functions to nonlinear wave equations. Suppose a polynomial in \(u, u_x, u_{xx}, u_{xxx}, \ldots\) is one of Jacobi elliptic functions (see Appendices A, B, and C) [43–45].

Step 1. Look for traveling wave solution of (3) by taking
\[
u(t, x) = u(\xi), \quad \xi(t, x) = kx + \int_0^t \theta(\tau) d\tau + c.
\] (4)

Hence, under the transformation in (4), (3) can be transformed into ordinary differential equation (ODE) as follows:
\[
\Psi_2\left(u, \theta u', ku', k^2 u'', k^3 u'''', \ldots\right) = 0.
\] (5)

Step 2. Suppose that \(u(\xi)\) can be expressed by a finite power series of \(F(\xi)\) of the form
\[
u(t, x) = u(\xi) = \sum_{i=0}^{N} a_i F^i(\xi),
\] (6)
where \(a_0, a_1, \ldots, a_N\) are arbitrary constants which satisfy \(k \neq 0\) and \(\theta(t, x)\) is a nonzero function of the indicated variables to be determined later. Thus, (3) can be transformed into the following ODE:
\[
\xi(t, x) = k\left[x - \int_0^{t} \theta(\tau, z) d\tau\right] + c,
\] (10)

where \(k\) and \(c\) are arbitrary constants which satisfy \(k \neq 0\) and \(\theta(t, x)\) is a nonzero function of the indicated variables to be determined later. Thus, (3) can be transformed into the following ODE:
\[
\theta V' + \left[g_1 V^2 + g_2 V^3 \right] V' + g_3 k^2 \left[V V'' + 3V' V''' \right] = 0,
\] (11)

where \(V' = dV/d\xi\). The balancing procedure implies that \(N = 1\). Therefore, in view of F-expansion method the solution of (3) can be expressed in the form
\[
V(t, x) = \nu(\xi) = a_0 + a_1 F(\xi(t, x, z)),
\] (12)
where \(a_0, a_1\) are constants to be determined later. Substitute (12) with conditions (7) and (8) into (11) and collect all terms.
with the same power of $F'(\xi)[F'(\xi)]^i$ $(i = 0, \pm 1, \pm 2, \ldots, j = 0, 1)$ as follows:

$$
\begin{align*}
-\theta a_0 a_1 & + g_1 a_0^2 a_1 + g_2 a_0^3 a_1 + g_3 k^2 a_0 a_1 Q \frac{F'}{F'} \\
+ \left[-\theta a_1^2 + 2 g_1 a_0 a_1^2 + 3 g_2 a_0^2 a_1^2 + 4 g_3 k^2 a_0^2 Q \right] \frac{F'}{F} \\
+ \left[g_1 a_1^3 + 3 g_2 a_0 a_1^3 + 6 g_3 k^2 a_0 a_1 P \right] \frac{F^2}{F} \\
+ \left[g_2 a_1^4 + 12 g_3 k^2 a_0^2 P \right] \frac{F^3}{F} = 0.
\end{align*}
$$

(13)

Setting each coefficient of $F'(\xi)[F'(\xi)]^i$ to be zero, we get a system of algebraic equations which can be expressed by

$$
\begin{align*}
(\theta + g_1 a_0 + g_2 a_0^2 + g_3 k^2 Q) a_0 a_1 &= 0, \\
(\theta + 2 g_1 a_0 + 3 g_2 a_0^2 + 4 g_3 k^2 Q) a_1 &= 0, \\
(g_1 a_1^2 + 3 g_2 a_0 a_1^2 + 6 g_3 k^2 a_0 a_1 n) a_1 &= 0, \\
(g_2 a_1^2 + 12 g_3 k^2 a_0^2 P) a_1 &= 0,
\end{align*}
$$

(14)

with solving the above system to get the following coefficients:

$$
\begin{align*}
a_1 &= \pm \sqrt{\frac{-12 g_2^2 + 5 g_2^2 (t, z) P}{g_2 (t, z)}}, \\
a_0 &= \frac{2 g_1 (t, z)}{5 g_2 (t, z)}, \\
\theta &= \frac{-6 g_1^2 (t, z) + 25 k^2 g_2 (t, z) g_3 (t, z) Q}{25 g_2 (t, z)}.
\end{align*}
$$

(15)

Substituting coefficient (15) into (12) yields general form solutions to (2):

$$
u (t, x, z) = \left[-\frac{2 g_1 (t, z)}{5 g_2 (t, z)} \pm i k \sqrt{\frac{12 g_3 (t, z) P}{g_2 (t, z)}} F(\xi (t, x, z)) \right]^2,
$$

(16)

with

$$
\xi (t, x, z) = k \left\{ x - \int_0^t \left[\frac{-6 g_1^2 (t, z) + 25 k^2 g_2 (t, z) g_3 (t, z) Q}{25 g_2 (t, z)} \right] d\tau \right\} + c.
$$

(17)

From Appendix A, we give the special cases as follows.

Case 1. If we take $P = 1, Q = (2 - m^2)$, and $R = (1 - m^2)$, then $F(\xi) \rightarrow \text{cs}(\xi)$;

$$
u_1 (t, x, z) = \left[-\frac{2 g_1 (t, z)}{5 g_2 (t, z)} \pm i k \sqrt{\frac{12 g_3 (t, z) \text{cs} (\xi_1 (t, x, z))}{g_2 (t, z)}} \right]^2,
$$

(18)

with

$$
\xi_1 (t, x, z) = k \left\{ x - \int_0^t \left[\frac{-6 g_1^2 (t, z) + 25 k^2 g_2 (t, z) g_3 (t, z) (2 - m^2)^2}{25 g_2 (t, z)} \right] d\tau \right\} + c,
$$

(19)

In the limit case when $m \rightarrow 0$, we have $\text{cs}(\xi) \rightarrow \cot(\xi)$; thus (18) becomes

$$
u_2 (t, x, z) = \left[-\frac{2 g_1 (t, z)}{5 g_2 (t, z)} \pm i k \sqrt{\frac{12 g_3 (t, z) \cot (\xi_2 (t, x, z))}{g_2 (t, z)}} \right]^2,
$$

(20)

with

$$
\xi_2 (t, x, z) = k \left\{ x - \int_0^t \left[\frac{-6 g_1^2 (t, z) + 50 k^2 g_2 (t, z) g_3 (t, z)}{25 g_2 (t, z)} \right] d\tau \right\} + c.
$$

(21)

In the limit case when $m \rightarrow 1$, we have $\text{cs}(\xi) \rightarrow \text{csch}(\xi)$; thus (18) becomes

$$
u_3 (t, x, z) = \left[-\frac{2 g_1 (t, z)}{5 g_2 (t, z)} \pm i k \sqrt{\frac{12 g_3 (t, z) \text{csch} (\xi_3 (t, x, z))}{g_2 (t, z)}} \right]^2,
$$

(22)

with

$$
\xi_3 (t, x, z) = k \left\{ x - \int_0^t \left[\frac{-6 g_1^2 (t, z) + 25 k^2 g_2 (t, z) g_3 (t, z)}{25 g_2 (t, z)} \right] d\tau \right\} + c.
$$

(23)

Case 2. If we take $P = 1/4, Q = (m^2 + 1)/2$, and $R = (1 - m^2)^2/4$, then $F(\xi) \rightarrow \text{sn} \xi/(\text{cn} \xi \pm \text{dn} \xi)$ and

$$
u_4 (t, x, z) = \left[-\frac{2 g_1 (t, z)}{5 g_2 (t, z)} \pm i k \sqrt{\frac{3 g_3 (t, z)}{g_2 (t, z)}} \cdot \frac{\text{sn} (\xi_4 (t, x, z))}{\text{cn} (\xi_4 (t, x, z)) \pm \text{dn} (\xi_4 (t, x, z))} \right]^2,
$$

(24)
Physics Research International

\[\xi_4(t, x, z) = k \left\{ x - \int_0^t \left[\frac{-12g_1^2(r, z) + 25k^2g_2(r, z)g_3(r, z)(m^2 + 1)}{50g_2(r, z)} \right] \, dr \right\} + c. \]

(25)

In the limit case when \(m \to o \), we have \(\sin \xi/(\cos \xi \pm 1) \); thus (24) becomes

\[u_5(t, x, z) = \left[-\frac{2g_1(t, z)}{5g_2(t, z)} \pm ik \frac{3g_3(t, z)}{g_2(t, z)} \cos (\xi_5(t, x, z) + 1) \right]^2, \]

(26)

with

\[\xi_5(t, x, z) = k \left\{ x - \int_0^t \left[\frac{-12g_1^2(r, z) + 25k^2g_2(r, z)g_3(r, z)}{50g_2(r, z)} \right] \, dr \right\} + c. \]

(27)

In the limit case when \(m \to 1 \), we have \(\sin \xi/(\cos \xi \pm 1) \); thus (24) becomes

\[u_6(t, x, z) = \left[-\frac{2g_1(t, z)}{5g_2(t, z)} \pm ik \frac{3g_3(t, z)}{g_2(t, z)} \sin (\xi_6(t, x, z)) \right]^2, \]

(28)

Case 3. If we take \(P = 1/4 \), \(Q = (1 - 2m^2)/2 \), and \(R = 1/4 \), then \(F(\xi) \to \text{ns}(\xi) \pm \text{cs}(\xi) \) and

\[u_7(t, x, z) = \left[-\frac{2g_1(t, z)}{5g_2(t, z)} \pm ik \frac{3g_3(t, z)}{g_2(t, z)} \text{ns}(\xi_7(t, x, z)) \pm \text{cs}(\xi_7(t, x, z)) \right]^2, \]

(29)

with

\[\xi_7(t, x, z) = k \left\{ x - \int_0^t \left[\frac{-12g_1^2(r, z) + 25k^2g_2(r, z)g_3(r, z)(1 - 2m^2)}{50g_2(r, z)} \right] \, dr \right\} + c. \]

(30)

Remark that there are other solutions for (2). These solutions come from setting different values for the coefficients \(P, Q, R \), and \(\lambda \) (see Appendices A, B, and C). The above-mentioned cases are just to clarify how far our technique is applicable.

4. White Noise Functional Solutions of (2)

In this section, we employ the results of Section 3 by using Hermite transform to obtain exact white noise functional solutions for Wick-type stochastic Schamel KdV equations (2). The properties of exponential and trigonometric functions yield the fact that there exists a bounded open set \(H \subset \mathbb{R}_+ \times \mathbb{R}, \rho < \infty, \lambda > 0 \) such that the solution \(u(t, x, z) \) of (9) and all its partial derivatives which are involved in (9) are uniformly bounded for \((t, x, z) \in H \times K(\lambda), \) continuous with respect to \((t, x) \in H \) for all \(z \in K(\lambda), \) and analytic with respect to \(z \in K(\lambda), \) for all \((t, x) \in H. \) From Theorem 4.1.1 in [47], there exists \(U(t, x, z) \in (\delta)_{-1} \) such that \(u(t, x, z) = \tilde{U}(t, x)(z) \) for all \((t, x, z) \in H \times K(\lambda) \) and \(U(t, x) \) solves (2) in \((\delta)_{-1}. \) Hence, by applying the inverse Hermite transform to the results of Section 3, we get exact white noise functional solutions of (2) as follows.
(i) Exact stochastic Jacobi elliptic functions solutions:

\[U_1(t, x) = \left[-2G_1(t) \pm i k \sqrt{12G_3(t) \frac{G_1(t)}{G_2(t)}} \right]^2, \]

\[U_2(t, x) = \left[-2G_1(t) \pm i k \frac{G_2(t)}{G_2(t)^2} \right]^2, \]

\[U_3(t, x) = \left[-2G_1(t) \pm i k \frac{G_2(t)}{G_2(t)^2} \right]^2, \]

\[\Xi_1(t, x) = k \left[x - \int_0^t \frac{-6G_1^2(r) + 25k^2G_2(r) \circ G_3(r) \left(2 - m^2 \right)}{25G_2(r)} \, dr \right] + c, \]

\[\Xi_2(t, x) = k \left[x - \int_0^t \frac{-12G_1^2(r) + 25k^2G_2(r) \circ G_3(r) \left(m^2 + 1 \right)}{50G_2(r)} \, dr \right] + c, \]

\[\Xi_3(t, x) = k \left[x - \int_0^t \frac{-12G_1^2(r) + 25k^2G_2(r) \circ G_3(r) \left(1 - 2m^2 \right)}{50G_2(r)} \, dr \right] + c. \]

(ii) Exact stochastic trigonometric solutions:

\[U_4(t, x) = \left[-2G_1(t) \pm i k \sqrt{-12k^2G_3(t) \frac{G_1(t)}{G_2(t)}} \right]^2, \]

\[U_5(t, x) = \left[-2G_1(t) \pm i k \frac{G_2(t)}{G_2(t)^2} \right]^2, \]

\[\Xi_4(t, x) = k \left[x - \int_0^t \frac{-6G_1^2(r) + 25k^2G_3(r) \circ G_3(r)}{25G_2(r)} \, dr \right] + c, \]

\[U_6(t, x) = \left[-2G_1(t) \pm i k \sqrt{3G_3(t) \frac{G_1(t)}{G_2(t)}} \right]^2, \]

\[U_7(t, x) = \left[-2G_1(t) \pm i k \sqrt{3G_3(t) \circ G_3(t)} \right]^2, \]

\[\Xi_5(t, x) = k \left[x - \int_0^t \frac{-12G_1^2(r) + 25k^2G_2(r) \circ G_3(r)}{50G_2(r)} \, dr \right] + c. \]

(iii) Exact stochastic hyperbolic solutions:

\[U_8(t, x) = \left[-2G_1(t) \pm i k \frac{G_2(t)}{G_2(t)^2} \right]^2, \]

\[U_9(t, x) = \left[-2G_1(t) \pm i k \frac{G_2(t)}{G_2(t)^2} \right]^2, \]

\[\Xi_6(t, x) = k \left[x - \int_0^t \frac{-6G_1^2(r) + 25k^2G_2(r) \circ G_3(r)}{25G_2(r)} \, dr \right] + c. \]
\[\Xi_\gamma (t, x) = k \left\{ x + \int_0^t \left[6 G_1^2 (\tau) + 25 k^2 G_2 (\tau) \right] d\tau \right\} + c. \] (39)

We observe that, for different forms of \(G_1, G_2, \) and \(G_3, \) we can get different types of exact stochastic functional solutions of (2) from (34)–(38).

5. Example

It is well known that Wick version of function is usually difficult to evaluate. So, in this section, we give non-Wick version of solutions of (2). Let \(W' = \dot{B} \) be the Gaussian white noise, where \(B \) is the Brownian motion. We have the Hermite transform [47]:

\[\overline{W} (z) = \sum_{n=1}^{\infty} z^n \int_0^t \mu_n (s) ds. \] (40)

Since

\[\exp^\circ \left(B\right) = \exp \left(B - \frac{t^2}{2} \right), \] \[\sin^\circ \left(B\right) = \sin \left(B - \frac{t^2}{2} \right), \] \[\cos^\circ \left(B\right) = \cos \left(B - \frac{t^2}{2} \right), \] \[\cot^\circ \left(B\right) = \cot \left(B - \frac{t^2}{2} \right), \] \[\csc^\circ \left(B\right) = \csc \left(B - \frac{t^2}{2} \right), \] \[\coth^\circ \left(B\right) = \coth \left(B - \frac{t^2}{2} \right), \] \[\csch^\circ \left(B\right) = \csch \left(B - \frac{t^2}{2} \right), \] \[\sinh^\circ \left(B\right) = \sinh \left(B - \frac{t^2}{2} \right). \] (41)

Suppose that

\[G_1 (t) = \eta_1 G_3 (t), \quad G_2 (t) = \eta_2 G_3 (t), \] \[G_3 (t) = \sigma (t) + \eta_3 W', \] (42)

where \(\eta_1, \eta_2, \) and \(\eta_3 \) are arbitrary constants and \(\sigma (t) \) is integrable or bounded measurable function on \(\mathbb{R}_+ \). Therefore, for \(G_1 (t) G_2 (t) G_3 (t) \neq 0, \) exact white noise functional solutions of (2) are as follows:

\[U_{10} (t, x) = \left[-\frac{2 \eta_1}{5 \eta_2} + i k \sqrt{\frac{12}{\eta_2}} \cot \Pi_1 (t, x) \right]^2, \] \[U_{11} (t, x) = \left[-\frac{2 \eta_1}{5 \eta_2} + i k \sqrt{\frac{3}{\eta_2}} \left[\sin \Pi_2 (t, x) \pm \cos \Pi_2 (t, x) \right] \right]^2, \] \[U_{12} (t, x) = \left[-\frac{2 \eta_1}{5 \eta_2} + i k \sqrt{\frac{3}{\eta_2}} \left[\csc \Pi_2 (t, x) \pm \cot \Pi_2 (t, x) \right] \right]^2, \] \[U_{13} (t, x) = \left[-\frac{2 \eta_1}{5 \eta_2} + i k \sqrt{\frac{12}{\eta_2}} \sinh \Pi_3 (t, x) \right]^2, \] \[U_{14} (t, x) = \left[-\frac{2 \eta_1}{5 \eta_2} + i k \sqrt{\frac{3}{\eta_2}} \left[\coth \Pi_4 (t, x) \pm \csch \Pi_4 (t, x) \right] \right]^2, \] \[U_{15} (t, x) = \left[-\frac{2 \eta_1}{5 \eta_2} + i k \sqrt{\frac{3}{\eta_2}} \left[\coth \Pi_4 (t, x) \pm \csch \Pi_4 (t, x) \right] \right]^2, \] (43)

with

\[\Pi_1 (t, x) = k \left[x - \frac{6 \eta_1^2 + 50 k^2 \eta_2}{25 \eta_2} \left[\int_0^t \sigma (\tau) d\tau + \eta_3 \left[B - \frac{t^2}{2} \right] \right] \right] + c, \] \[\Pi_2 (t, x) = k \left[x - \frac{12 \eta_1^2 + 25 k^2 \eta_2}{50 \eta_2} \left[\int_0^t \sigma (\tau) d\tau + \eta_3 \left[B - \frac{t^2}{2} \right] \right] \right] + c, \] \[\Pi_3 (t, x) = k \left[x - \frac{6 \eta_1^2 + 25 k^2 \eta_2}{25 \eta_2} \left[\int_0^t \sigma (\tau) d\tau + \eta_3 \left[B - \frac{t^2}{2} \right] \right] \right] + c, \] \[\Pi_4 (t, x) = k \left[x + \frac{12 \eta_1^2 + 25 k^2 \eta_2}{50 \eta_2} \left[\int_0^t \sigma (\tau) d\tau + \eta_3 \left[B - \frac{t^2}{2} \right] \right] \right] + c. \] (44)
Table 1

\[F' (\xi) = P F^4 (\xi) + Q F^2 (\xi) + R, \]

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(R)</th>
<th>(F(\xi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m^4)</td>
<td>(m^2 - 2)</td>
<td>1</td>
<td>(\frac{sn \xi}{dn \xi}, \frac{cn \xi}{dn \xi})</td>
</tr>
<tr>
<td>(m^2)</td>
<td>(m^2 - 2)</td>
<td>(m^2)</td>
<td>(\frac{sn \xi \pm i cn \xi}{dn \xi}, \frac{i \sqrt{1 - m^2} sn \xi + cn \xi}{dn \xi}, \frac{msn \xi}{dn \xi})</td>
</tr>
<tr>
<td>(m^2)</td>
<td>(m^2 - 1)</td>
<td>(m^2 - 1)</td>
<td>(\frac{sn \xi \pm cn \xi}{dn \xi}, \frac{cn \xi}{dn \xi}, \frac{1 \pm s \xi}{dn \xi})</td>
</tr>
<tr>
<td>(-1)</td>
<td>(m^2 + 1)</td>
<td>(-1)</td>
<td>(\frac{sn \xi}{dn \xi}, \frac{sn \xi}{dn \xi}, \frac{sn \xi}{dn \xi})</td>
</tr>
<tr>
<td>(-1)</td>
<td>(m^2 + 1)</td>
<td>(1)</td>
<td>(\frac{sn \xi}{dn \xi}, \frac{sn \xi}{dn \xi}, \frac{sn \xi}{dn \xi})</td>
</tr>
</tbody>
</table>

6. Summary and Discussion

We have discussed the solutions of SPDEs driven by Gaussian white noise. There is a unitary mapping between the Gaussian white noise space and the Poisson white noise space. This connection was given by Benth and Gjerde [48]. From [47, section 4.9] and by the aid of the connection, we can derive some stochastic exact soliton solutions, which are Poisson white noise functions in (2). In this paper, using Hermitian transformation, white noise theory, and F-expansion method, we study the white noise functional solutions for Wick-type stochastic Schamel KdV equations. This paper shows that F-expansion method is sufficient to solve the stochastic nonlinear equations in mathematical physics. The method which we have proposed in this paper is standard, direct, and computerized method, which allows us to do complicated and tedious algebraic calculation. It is shown that the algorithm can be also applied to other nonlinear SPDEs in mathematical physics such as modified Hirota-Satsuma coupled KdV, KdV-Burgers, modified KdV Burgers, Sawada-Kotera, and Zhiber-Shabat equations and Benjamin-Bona-Mahony (BBM) equations. Since (2) has other solutions of Jacobi elliptic functions, trigonometric functions, and hyperbolic functions if we select other values of \(P, Q, \) and \(R \) (see Appendices A, B, and C), there are many other exact traveling wave solutions for Wick-type stochastic Schamel KdV equations.

Appendices

A.

The Jacobi elliptic functions degenerate into trigonometric functions when \(m \rightarrow 0 \):

\[sn \xi \rightarrow \sin \xi, \quad cn \xi \rightarrow \cos \xi, \quad dn \xi \rightarrow 1, \]

\[sc \xi \rightarrow \tan \xi, \]

\[sd \xi \rightarrow \sin \xi, \quad cd \xi \rightarrow \cos \xi, \]

\[ns \xi \rightarrow \csc \xi, \quad nc \xi \rightarrow \sec \xi, \quad nd \xi \rightarrow 1, \]
\[\begin{align*}
\csc \xi & \rightarrow \cot \xi, \\
ds \xi & \rightarrow \csc \xi, \\
dc \xi & \rightarrow \sec \xi.
\end{align*} \] (A.I)

B.

The Jacobi elliptic functions degenerate into hyperbolic functions when \(m \rightarrow 1 \):

\[\begin{align*}
\sinh \xi & \rightarrow \tanh \xi, \\
\cosh \xi & \rightarrow \sech \xi, \\
\sinh \xi & \rightarrow \csch \xi, \\
\tanh \xi & \rightarrow 1, \\
\cosh \xi & \rightarrow \coth \xi, \\
\sech \xi & \rightarrow \csch \xi, \\
\coth \xi & \rightarrow 1.
\end{align*} \] (B.I)

C.

The ODE and Jacobi elliptic functions: for relation between values of \(P, Q, \) and \(R \) and corresponding \(F(\xi) \) in ODE, see Table 1.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

Submit your manuscripts at http://www.hindawi.com