Research Article

One-Pot Synthesis of Metallopyrazinoporphyrazines Using 2,3-Diaminomaleonitrile and 1,2-Dicarboxyl Compounds Accelerated by Microwave Irradiation

Ali Maleki¹ and Ali Hossein Rezayan²

¹ Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
² Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran

Correspondence should be addressed to Ali Maleki; maleki@iust.ac.ir

Received 30 October 2013; Revised 7 January 2014; Accepted 28 January 2014; Published 27 February 2014

A one-pot microwave-assisted synthesis of metallopyrazinoporphyrazines as porphyrazine derivatives carrying six-membered pyrazine rings annulated at the periphery of the tetrapyrrolic macrocycle is described starting from 2,3-diaminomaleonitrile, 1,2-dicarboxyl compounds, metal salts, and urea.

1. Introduction

Tetrapyrrolic macrocycles of porphyrins, phthalocyanines, and related compounds, modified by the attachment of peripheral substituents, have attracted significant attention for many years because of their industrial applications in diverse areas, especially in modern technologies [1–4], such as elaboration of Langmuir-Blodgett films [5–7], chemical sensors [8, 9], nonlinear optical materials [10–12] biomedical agents for diagnosis, and therapy [13] as well as sensitizers in solar cells [14–16].

Porphyrazines (Pzs), as an important class of phthalocyanine analogues or porphyrinoid macrocycles, carrying heterocyclic rings, such as diazepine, pyridine, and pyrazine rings, directly annulated to the pyrrole rings of the porphyrin core, have been presented in recent years as optical agents with clear advantages over the porphyrins [17–25]. Porphyrins are either naturally occurring molecular systems or original synthetic products, whereas Pzs are derived exclusively from synthetic laboratory work. An area of further expansion of new Pzs macrocycles can be directed to the synthesis of new phthalocyanines-like macrocycles opening a route to new forms of investigation and promising potential practical applications [26].

Metal complexes of Pzs (MPzs) ligands have been at the focus of interest because of their high electronic delocalization, biological significance, and numerous potential technological applications such as electronic, magnetic, photophysical, and photosensitizing properties of Pzs [27–31]. It has been found that functional groups fused to the peripheral positions of MPzs are integrated to the macrocyclic core more effectively than that of phthalocyanines [32–34]. It implies that the modification of the structure influences the photosensitizing properties [35].

There are only a few reports for the synthesis of Pzs under mild and efficient conditions. On the other hand, attempts for direct synthesis of Pzs carrying unprotected vicinal NH groups from 2,3-diaminomaleonitrile were unsuccessful [17–20]. Due to the importance of these macrocycles, introduction of new, efficient, and inexpensive protocol for this purpose is of prime importance.

Microwave-assisted organic reactions are well known as environmentally benign transformations that can improve a diverse area of chemical processes. In particular, the reaction time and energy input of these processes are assumed to be mostly reduced in comparison with reactions of a long duration at high temperatures under conventional heating conditions [36].
In a typical experiment, the synthesis of MPPzs was carried out by mixing 2,3-diaminomaleonitrile (1) with 1,2-dicarbonyl compounds (2), urea (3), and metal salts (4) under microwave irradiation conditions (Scheme 1).

In comparison with the previously reported multistep procedures [17, 18, 26, 42], this work has some advantages such as higher yields, atom economy, and mild reaction conditions. Furthermore, our protocol does not require any protection/deprotection of functional groups (Scheme 2) [42].

In summary, we have described an efficient microwave-assisted procedure for the synthesis of porphyrazine derivatives carrying six-membered pyrazine rings annulated at the periphery of the tetrapyrrolic macrocycle starting from simple and readily available precursors including 2,3-diaminomaleonitrile, 1,2-dicarbonyl compounds, metal salts, and urea. This new multicomponent protocol for the preparation of synthetically, biologically, and technologically relevant MPPzs includes some important aspects like the fast and simple reaction, easy workup procedure, and high atom economy.

3. Experimental

3.1. Materials and Equipment. All solvents, chemicals, and reagents were purchased from Merck, Fluka, and Sigma-Aldrich international chemical companies. Melting points were measured on an Electrothermal 9200 apparatus and are uncorrected. IR and UV-Vis spectra were recorded with a Shimadzu IR-470 spectrometer and UV-Vis Shimadzu 2100, respectively. The elemental analyses were performed with an Elementar Analysensysteme GmbH VarioEL. The microwave oven was a Samsung model GE-4020W (max. 900 W) with five power level options (option used for this experiment: medium 50% power).

3.2. General Procedure for the Preparation of MPPzs (5a–h). 2,3-Diaminomaleonitrile (1 mmol), 1,2-dicarbonyl compound (1 mmol), metal salt (0.5 mmol), and urea (4 mmol) were taken in a round bottomed flask. Then, the resulting mixture was irradiated in a domestic microwave oven at medium state for appropriate time. As the reaction proceeded, colorful solid gradually appeared. After completion of the reaction, the crude product was washed with water (4 × 10 mL) to give dark-green solid. Then, the precipitated solid...
Table 1: Microwave-assisted synthesis of MPPzs 5a–h.

<table>
<thead>
<tr>
<th>Product</th>
<th>R</th>
<th>MX (\cdot)</th>
<th>Time (min)</th>
<th>Yield a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>CH(_3)</td>
<td>CuCl(_2)(\cdot)2H(_2)O</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>5b</td>
<td>p-CH(_2)O-C(_6)H(_4)</td>
<td>CuCl(_2)(\cdot)2H(_2)O</td>
<td>6</td>
<td>78</td>
</tr>
<tr>
<td>5c</td>
<td>CH(_3)</td>
<td>CoCl(_2)</td>
<td>10</td>
<td>68</td>
</tr>
<tr>
<td>5d</td>
<td>p-CH(_2)O-C(_6)H(_4)</td>
<td>CoCl(_2)</td>
<td>7</td>
<td>74</td>
</tr>
<tr>
<td>5e</td>
<td>CH(_3)</td>
<td>FeCl(_2)(\cdot)4H(_2)O</td>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>5f</td>
<td>p-CH(_2)O-C(_6)H(_4)</td>
<td>FeCl(_2)(\cdot)4H(_2)O</td>
<td>8</td>
<td>73</td>
</tr>
<tr>
<td>5g</td>
<td>CH(_3)</td>
<td>ZnCl(_2)</td>
<td>10</td>
<td>66</td>
</tr>
<tr>
<td>5h</td>
<td>p-CH(_2)O-C(_6)H(_4)</td>
<td>ZnCl(_2)</td>
<td>8</td>
<td>70</td>
</tr>
</tbody>
</table>

\(^{a}\)Isolated yield.

was dried under vacuum and the solid residue was purified by washing three times in boiling EtOH (3 \(\times \) 5 mL) until the filtrate was colorless. The solid was dissolved in DMF and filtered through a cartridge filter to remove any inorganic impurities that may have been present. Concentration of the filtrate afforded 5a–h as dark green to blue solids.

The prepared compounds were known and the data are comparable to the literature reports \[17,18,26,42\].

3.3. Characterization of the Products. 5a: Dark blue solid; mp > 200°C. IR (KBr): \(\nu \), cm\(^{-1} \) 1604 (m), 1500 (w), 1457 (m), 1415 (m), 1328 (w), 1282 (m), 1166 (s), 1085 (m), 1067 (m), 897 (m), 871 (m), 799 (s), 775 (m), 752 (w). UV-Vis (DMSO): \(\lambda_{\text{max}} \), nm 655, 564, 457. Anal. Calcd for C\(_{32}\)H\(_{24}\)CuN\(_{16}\): C, 55.21; H, 3.47; N, 32.19. Found C, 55.34; H, 3.56; N, 32.10.

5b: Dark blue solid; mp > 200°C. IR (KBr): \(\nu \), cm\(^{-1} \) 1604 (m), 1500 (w), 1457 (m), 1415 (s), 1328 (w), 1282 (m), 1166 (s), 1085 (m), 1067 (m), 897 (m), 871 (m), 799 (s), 775 (w), 752 (w). UV-Vis (DMSO): \(\lambda_{\text{max}} \), nm 655, 564, 457. Anal. Calcd for C\(_{32}\)H\(_{24}\)CuN\(_{16}\): C, 55.21; H, 3.47; N, 32.19. Found C, 55.34; H, 3.56; N, 32.10.

5c: Dark greenish blue solid; mp > 200°C. IR (KBr): \(\nu \), cm\(^{-1} \) 1604 (m), 1515 (w), 1485 (m), 1420 (s), 1326 (s), 1284 (m), 1153 (w), 1085 (s), 1024 (m), 948 (m), 910 (m), 871 (m), 778 (s), 756 (m). UV-Vis (DMSO): \(\lambda_{\text{max}} \), nm 615, 597, 420. Anal. Calcd for C\(_{32}\)H\(_{24}\)CuN\(_{16}\): C, 55.58; H, 3.50; N, 32.41. Found C, 55.63; H, 3.46; N, 32.58.

5d: Dark green solid; mp > 200°C. IR (KBr): \(\nu \), cm\(^{-1} \) 1604 (m), 1516 (w), 1484 (m), 1420 (s), 1326 (m), 1284 (s), 1153 (m), 1115 (s), 1085 (w), 1024 (m), 948 (w), 912 (m), 871 (w), 778 (s), 756 (m). UV-Vis (DMSO): \(\lambda_{\text{max}} \), nm 625, 617, 426. Anal.
Calcd for C_{80}H_{56}CoN_{16}O_{8}: C, 67.27; H, 3.95; N, 15.69. Found C, 67.36; H, 4.13; N, 15.52.

5e: Light olive gray solid; mp > 200°C. IR (KBr): ν, cm\(^{-1}\) 1601 (m), 1478 (w), 1448 (m), 1404 (s), 1327 (m), 1278 (s), 1152 (s), 1112 (w), 1087 (w), 884 (m), 775 (s), 748 (m).

UV-Vis (DMSO): \(\lambda_{max}\), nm 654, 645, 569. Anal. Calcd for C_{32}H_{32}FeN_{16}O_{8}: C, 67.82; H, 3.51; N, 32.55. Found C, 55.93; H, 3.42; N, 32.67.

5f: Light olive gray solid; mp > 200°C. IR (KBr): ν, cm\(^{-1}\) 1601 (m), 1478 (w), 1448 (m), 1404 (s), 1327 (s), 1278 (m), 1150 (w), 1088 (m), 884 (w), 775 (s), 748 (m).

UV-Vis (DMSO): \(\lambda_{max}\), nm 668, 662, 575. Anal. Calcd for C_{32}H_{32}FeN_{16}O_{8}: C, 67.42; H, 3.96; N, 15.72. Found C, 67.56; H, 4.15; N, 15.67.

5g: Light greenish blue solid; mp > 200°C. IR (KBr): ν, cm\(^{-1}\) 1600 (m), 1462 (s), 1416 (s), 1325 (m), 1282 (w), 1158 (m), 1112 (m), 1065 (w), 948 (m), 864 (w), 775 (s), 752 (m).

UV-Vis (DMSO): \(\lambda_{max}\), nm 642, 563, 414. Anal. Calcd for C_{32}H_{32}FeN_{16}O_{8}: C, 55.06; H, 3.47; N, 32.10. Found C, 54.98; H, 3.52; N, 32.27.

5h: Dark greenish blue solid; mp > 200°C. IR (KBr): ν, cm\(^{-1}\) 1600 (m), 1462 (s), 1415 (m), 1325 (s), 1282 (m), 1158 (w), 1112 (m), 1065 (m), 948 (w), 864 (m), 775 (s), 752 (w).

UV-Vis (DMSO): \(\lambda_{max}\), nm 658, 602, 498, 388. Anal. Calcd for C_{80}H_{56}CoN_{16}O_{8}: C, 66.97; H, 3.93; N, 15.62. Found C, 67.06; H, 4.10; N, 15.53.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors would like to thank partial support from the Research Council of the Iran University of Science and Technology.

References

Submit your manuscripts at http://www.hindawi.com