Research Article

Hermitian Self-Orthogonal Constacyclic Codes over Finite Fields

Amita Sahni and Poonam Trama Sehgal

Centre for Advanced Study in Mathematics, Panjab University, Chandigarh 160014, India

Correspondence should be addressed to Amita Sahni; sahniamita05@gmail.com

Received 21 July 2014; Accepted 23 October 2014; Published 12 November 2014

1. Introduction

Let \(F_q^2 \) denote a finite field with \(q^2 \) elements. An \([n,k]_q\) linear code \(C \) of length \(n \) and dimension \(k \) over \(F_q^2 \) is a \(k \)-dimensional subspace of the vector space \(F_q^{n} \). Elements of the subspace \(C \) are called codewords and are written as row vectors \(c = (c_0, c_1, \ldots, c_{n-1}) \). A linear code \(C \) over \(F_q^2 \) is called \(\lambda \)-constacyclic if \((\lambda c_{n-1}, c_0, \ldots, c_{n-2}) \) is in \(C \) for every \((c_0, c_1, \ldots, c_{n-1}) \) in \(C \). Let \(\vartheta : F_q^{n} \rightarrow F_q^2[x]/(x^n - \lambda) \) be the map given by \(\vartheta((c_0, c_1, \ldots, c_{n-1})) \mapsto c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \mod(x^n - \lambda) \). One can easily check that \(\vartheta \) is an \(F_q^2 \)-module isomorphism. We can therefore identify \(\lambda \)-constacyclic codes of length \(n \) over \(F_q^2 \) with ideals in \(F_q^2[x]/(x^n - \lambda) \). The Hamming weight \(w(c) \) of \(c \in F_q^n \) is the number of nonzero coordinates of \(c \). The minimum distance of \(C \) is defined to be \(d = \min \{w(c); c \neq 0 \in C\} \). An \([n,k,d]_q\) code, that is, a \([n,k]_q\) linear code with minimum distance \(d \), is said to be maximum distance separable (MDS) if \(d = n - k + 1 \). The Hermitian inner product of elements \(u, v \in F_q^n \) is defined as \(\langle u, v \rangle_H = \sum_{i=0}^{n-1} u_i \overline{v_i} \), for \(u = (u_0, u_1, \ldots, u_{n-1}) \) and \(v = (v_0, v_1, \ldots, v_{n-1}) \). For a linear code \(C \) of length \(n \) over \(F_q^2 \), the Hermitian dual code \(C^{\perp_H} \) of \(C \) is defined by \(C^{\perp_H} = \{ v \in F_q^n; \langle u, v \rangle_H = 0, \forall u \in C \} \). If \(C = C^{\perp_H} \), then \(C \) is known as Hermitian self-dual and \(C \) is Hermitian self-orthogonal if \(C \subseteq C^{\perp_H} \).

Aydin et al. [1] dealt with constacyclic codes and a constacyclic BCH bound was given. Gulliver et al. [2] showed that there exists Euclidean self-dual MDS code of length \(q^2 \) over \(F_q^2 \) when \(q = 2^m \) by using a Reed-Solomon (RS) code and its extension. They also constructed many new Euclidean and Hermitian self-dual MDS codes over finite fields. Blackford [3] studied negacyclic codes over finite fields by using multipliers. He gave conditions on the existence of Euclidean self-dual codes. Recently, Guenda [4] constructed MDS Euclidean and Hermitian self-dual codes from extended cyclic duadic or negacyclic codes and gave necessary and sufficient conditions on the existence of Hermitian self-dual negacyclic codes arising from negacyclic codes. In [5] the authors gave a formula to enumerate the number of Euclidean self-dual and self-orthogonal negacyclic codes of length \(n \) over a finite field \(F_q^2 \), where \(q \) is coprime to \(n \). In [6] Yang and Cai gave the necessary and sufficient conditions for the existence of Hermitian self-dual constacyclic codes. They also gave some conditions under which Hermitian self-dual and self-orthogonal MDS codes exist. In this paper, we find necessary and sufficient conditions for the existence of Hermitian self-orthogonal constacyclic codes of length \(n \) over a finite field \(F_q^2 \), \(n \) coprime to \(q \), and also give a characterization of their defining sets. We obtain a formula to calculate the number of these codes. We give conditions for the existence of some MDS Hermitian self-orthogonal constacyclic codes. We also found their number and defining sets (Table 1).
2 Journal of Discrete Mathematics

Table 1: Number of Hermitian self-orthogonal codes over \mathbb{F}_{2^r}.

| r | n | N | $|\Lambda^{(1)}|$ |
|-----|-----|-----|----------------|
| 2 | 2 | 3 | 3 |
| 4 | 6 | 27 | 9 |
| 6 | 12 | 729 | 27 |
| 11 | 2 | 3 | 9 |
| 12 | 6 | 27 | 2 |
| 13 | 12 | 729 | 3 |
| 14 | 6 | 27 | 4 |
| 16 | 4 | 9 | 2 |
| 17 | 2 | 3 | 2 |
| 18 | 10 | 243 | 3 |
| 19 | 2 | 3 | 1 |
| 22 | 6 | 27 | 2 |
| 24 | 12 | 729 | 1 |
| 4 | 2 | 3 | 2 |
| 8 | 6 | 27 | 4 |
| 11 | 2 | 3 | 2 |
| 12 | 2 | 3 | 2 |
| 13 | 6 | 27 | 2 |
| 16 | 10 | 243 | 2 |
| 17 | 2 | 3 | 2 |
| 19 | 2 | 3 | 2 |
| 22 | 4 | 9 | 2 |
| 24 | 14 | 2187| 2 |
| 2 | 2 | 3 | 2 |
| 4 | 4 | 9 | 2 |
| 6 | 2 | 3 | 2 |
| 8 | 4 | 9 | 2 |
| 11 | 2 | 3 | 2 |
| 12 | 4 | 9 | 2 |
| 13 | 6 | 27 | 2 |
| 14 | 6 | 27 | 2 |
| 16 | 4 | 9 | 2 |
| 17 | 2 | 3 | 2 |
| 18 | 2 | 3 | 2 |
| 19 | 2 | 3 | 2 |
| 22 | 6 | 27 | 2 |
| 24 | 4 | 9 | 2 |

2. Hermitian Self-Orthogonal Constacyclic Codes

Let q be an odd prime power and n a positive integer relatively prime to q. Let C be an $[n,k]$ λ-constacyclic code over \mathbb{F}_{q^r} with $r = \operatorname{ord}_{\mathbb{F}_{q^r}}(\lambda)$, where \operatorname{ord}_{\mathbb{F}_{q^r}}(\lambda) denotes the order of λ in \mathbb{F}_{q^r}. Let $g(x)$ be the generator polynomial of C. Then $g(x)$ divides $(x^n - \lambda)$. Write $(x^n - \lambda) = g(x)h(x)$. The polynomial $h(x)$ is called the check polynomial of C. For $0 \leq s < rn$, let $C_s = \{s, s^2, \ldots, (s^q)^{r^{-1}}\}$ be the q^r-cyclotomic coset modulo s, where n_s is the least positive integer such that $(s^q)^{rn} \equiv s \pmod{rn}$. Let α be a primitive rnth root of unity in some extension field of \mathbb{F}_{q^r} such that $\alpha^{n_s} = \lambda$.

Then the polynomial $M_{(s)}(x) = \prod_{\gamma \in C_s} (x - \alpha^\gamma)$ is the minimal polynomial of α^s over \mathbb{F}_{q^r} and

$$x^n - 1 = \prod_{s \in \Lambda} M_{(s)}(x),$$

where Λ is the set of representatives of all the distinct q^r-cyclotomic cosets modulo rn. As $(x^n - \lambda) | (x^n - 1)$, one can check that the roots of $(x^n - \lambda)$ are precisely α^{ir+1}, $0 \leq i < n$.

Define

$$O_{\lambda n}(1) = \{ir + 1; 0 \leq i < n\} \pmod{rn}.$$

Hence we have

$$x^n - \lambda = \prod_{s \in \Lambda_{\lambda}} M_{(s)}(x),$$

where $\Lambda_{\lambda} = \Lambda \cap O_{\lambda n}(1)$.

Let $C = \langle g(x) \rangle$ be a λ-constacyclic code with defining set $T = \{ir + 1 \in O_{\lambda n}(1); \alpha^{ir+1}$ is a root of $g(x)\}$. Clearly T is a union of some q^r-cyclotomic cosets C_s mod rn for $s \in \Lambda_{\lambda}$. The Hermitian dual $C^{\perp H}$ of the code C is a λ^{q^r}-constacyclic code over \mathbb{F}_{q^r} with defining set $T^{\perp H} = -qT$ of $O_{\lambda n}(1) \setminus T \pmod{rn}$ (see Theorem 3.2 of [6]). Write the generator polynomial $g(x)$ of the code C as $g(x) = \prod_{s \in \Lambda_{\lambda}} (M_{(s)}(x))^{\delta_{(s)}}$, where

$$\delta_{(s)} = \begin{cases} 1, & \text{if } s \in T, \\ 0, & \text{if } s \notin T. \end{cases}$$

Then the generator polynomial of the Hermitian dual $C^{\perp H}$ of C is $h^{\perp H}(x) = \prod_{s \in \Lambda_{\lambda}} (M_{(s)}(x))^{1-\delta_{(s)}}$, where

$$\Delta_{(s)} = \begin{cases} 1, & \text{if } s \in T^{\perp H}, \\ 0, & \text{if } s \notin T^{\perp H}. \end{cases}$$

It can be easily verified that $\Delta_{(s)} = 1 - \delta_{(s-q^r)}$ so that $h^{\perp H}(x) = \prod_{s \in \Lambda_{\lambda}} (M_{(s)}(x))^{1-\delta_{(s-q^r)}}$.

Lemma 1. Let C be a λ-constacyclic code over \mathbb{F}_{q^r} with $\operatorname{ord}_{\mathbb{F}_{q^r}}(\lambda) = r$. If C is a Hermitian self-orthogonal code, then $r | (q + 1)$.

Proof. The proof is similar to [6, Proposition 2.3].

Theorem 2. Nontrivial Hermitian self-orthogonal λ-constacyclic codes of length n over \mathbb{F}_{q^r} exist if and only if $C_s \neq C_{-q^r}$ for some $s \in O_{\lambda n}(1)$.

Proof. Let C be a nontrivial Hermitian self-orthogonal λ-constacyclic code of length n over \mathbb{F}_{q^r} with defining set T. Then there exists $s \in O_{\lambda n}(1)$ such that $s \neq 0$ and $s \notin T$.

Hence \(s \in O_{r, n}(1) \setminus T \) giving us that \(-qs \in T^{-n} \subseteq T\). Thus, \(C_s \neq C_{-qs} \) (as \(s \notin T \) and \(-qs \in T\)). Conversely, let \(s \in O_{r, n}(1) \) be such that \(C_s = C_{-qs} \). Consider \(T = O_{r, n}(1) \setminus C_s \). The code \(C \) is a nontrivial Hermitian self-orthogonal code since \(T^{-n} = -qO_{r, n}(1) \setminus T = -qC_s = C_{-qs} \subseteq T \).

Define \(T_0 = \{ s \in O_{r, n}(1); C_s = C_{-qs} \} \). The following theorem characterizes the defining set of a Hermitian self-orthogonal constacyclic code of length \(n \) over \(\mathbb{F}_q \).

Theorem 3. Let \(C \) be a \(\lambda \)-constacyclic code of length \(n \) over \(\mathbb{F}_q \) with the defining set \(T \). Then \(C \) is Hermitian self-orthogonal if and only if \((i) \ T_0 \subseteq T \) and \((ii) \) for each \(s \notin T_0 \), at least one of \(s \) and \(-qs \) belongs to \(T \).

Proof. Let \(C \) be a \(\lambda \)-constacyclic code. Let \(s \in T_0 \). Then \(C_s = C_{-qs} \). Suppose that \(s \notin T \). Then \(-qs \in T^{-n} \subseteq T \) so that \(C_{-qs} \subseteq T \) and \(C_s \notin T \), which contradicts the hypothesis that \(C_s = C_{-qs} \). Thus, \(T_0 \subseteq T \). Now, let \(s \notin T_0 \). Then either \(s \in T \) or \(-qs \in T^{-n} \subseteq T \), as required.

Conversely, let the defining set be such that \(T_0 \subseteq T \) and for each \(s \notin T_0 \), at least one of \(s \) and \(-qs \) is in \(T \). Then \(T^{-n} = -qO_{r, n}(1) \setminus T = -qC_s \in T \), by condition \((ii)\) so that the code \(C \) having \(T \) as a defining set is a Hermitian self-orthogonal code.

Corollary 4. A \(\lambda \)-constacyclic code \(C \) of length \(n \) over \(\mathbb{F}_q \) generated by \(g(x) = \prod_{\lambda \in A_1} (M_\lambda(x))^{a_\lambda} \) is a Hermitian self-orthogonal if and only if \(\delta_\lambda + \delta_{-\lambda} \geq 1 \) for all \(\lambda \in A_1 \).

Define \(A_0 = A_1 \cap T_0 \) and \(A_1 = A \setminus A_0 \). Observe that \(T_0 = \bigcup_{\lambda \in A_1} C_\lambda \).

Example 5. Let \(q = 13, n = 15, \) and \(r = 7 \); then \(q^2 = 169 \). We consider the \(\lambda \)-constacyclic code of length 15 over \(\mathbb{F}_{13^2} \), where \(\lambda \in \mathbb{F}_{13^2} \) with order 7. Clearly

\[
O_{13^2}(1) = \{1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99\},
\]

\[
T_0 = \{15\}. \quad (6)
\]

Define \(T = \{1, 15, 22, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99\} \); then \(T^{-n} = -13O_{r, n}(1) \setminus T = \{1, 22, 36, 43, 50, 57, 64, 92, 99\} \subseteq T \). Hence, the code with defining set \(T \) is a \([15, 7]\) Hermitian self-orthogonal \(\lambda \)-constacyclic code.

Theorem 6. The number of Hermitian self-orthogonal \(\lambda \)-constacyclic codes of length \(n \) over \(\mathbb{F}_q \) is \(3^{|A_1|}/2 \).

Proof. Let \(C \) be a Hermitian self-orthogonal \(\lambda \)-constacyclic code of length \(n \) over \(\mathbb{F}_q \) generated by \(g(x) = \prod_{\lambda \in A_1} (M_\lambda(x))^{a_\lambda} \). Then \(\delta_\lambda + \delta_{-\lambda} \geq 1 \) for all \(\lambda \in A_1 \), \(\delta_{\lambda} = \delta_{-\lambda} = 1 \). However, for \(s \in A_1 \), the pairs \((\delta_\lambda, \delta_{-\lambda}) \) have three choices \((0,1), (1,0), \) and \((1,1)\). Hence, the number of Hermitian self-orthogonal \(\lambda \)-constacyclic codes of length \(n \) over \(\mathbb{F}_q \) is \(3^{|A_1|}/2 \).

In order to find the number of Hermitian self-orthogonal \(\lambda \)-constacyclic codes of length \(n \) over \(\mathbb{F}_q \), we need to compute the value of \(|A_1| \). Our aim is to prove the following.

Theorem 7. Let \(a, r, \) and \(d \) be positive integers such that \(\gcd(a, r) = 1 \). Then the number of solutions for the linear congruence

\[
ax \equiv 1 \pmod{r}
\]

in the set \(A = \{w; 0 \leq w < rd \text{ and } \gcd(w, rd) = 1\} \) is exactly \(\phi(rd)/\phi(r) \).

Since \(\gcd(a, r) = 1 \), the linear congruence \(ax \equiv 1 \pmod{r} \) has a unique solution modulo \(r \). Let it be \(x \equiv b \pmod{r} \). Then \(\gcd(b, r) = 1 \). We write \(A = \{ir + s; 0 \leq s < d, 0 \leq \gcd(ir + s, rd) = 1\} \). The solutions of (7) will be amongst \(A_b = \{ir + b; 0 \leq i < d\} \). Clearly, the elements of \(A_b \) are relatively prime to \(r \). We need to count the number of elements of \(A_b \) which are coprime to \(d \). Also, \(|A_b| = d \). Therefore, the required number \(N = d - |\{ir + b; 0 \leq i < d, \gcd(ir + b, d) > 1\}| \).

Lemma 8. Let \(p \) be a prime divisor of \(d \) such that \(p \nmid r \). The number of multiples of \(p \) in \(A_b \) is \(d/p \).

Proof. Write \(A_b = \bigcup_{k=0}^{d/p-1} A_{bk} \), where \(A_{bk} = \{kpr + b, (k+1)r + b, \ldots, (k+1)p - 1)r + b\} \) for each \(k, 0 \leq k < d \). Since each \(A_{bk} \) contains \(p \) elements which are pairwise incongruent mod \(p \), each \(A_{bk} \) forms a complete residue system modulo \(p \). Hence exactly one element in each \(A_{bk} \) is divisible by \(p \). Consequently, there exist \(d/p \) elements in \(A_b \), which are divisible by \(p \).

Lemma 9. Let \(p_1 \) and \(p_2 \) be two distinct prime divisors of \(d \) with \(\gcd(p_1 p_2, r) = 1 \). Then the number of multiples of \(p_1 \) or \(p_2 \) in \(A_b \) is \(d/p_1 + d/p_2 - d/p_1 p_2 \).

Proof. The number of multiples of \(p_1 \) in \(A_b \) equals \(d/p_1 \), while the number of multiples of \(p_2 \) in \(A_b \) is \(d/p_2 \). By a similar argument as in Lemma 8, the number of multiples of \(p_1 \) or \(p_2 \) equals \(d/p_1 p_2 \). Therefore, the required number is \(d/p_1 + d/p_2 - d/p_1 p_2 \).

Theorem 10. Let \(p_1, p_2, \ldots, p_m \) be all the distinct prime divisors of \(d \) which are relatively prime to \(r \). The number of elements in \(A_b \) which are not coprime to \(d \) is

\[
N_0 = \sum_{i=1}^{m} \frac{d}{p_i} - \sum_{i \neq j} \frac{d}{p_ip_j} + \sum_{i,j,k,m} \frac{d}{p_ip_jp_k} + \cdots + (-1)^{m-1} \frac{d}{p_1p_2 \cdots p_m}
\]

Proof. The proof follows by induction on \(m \) Lemmas 8 and 9.

In order to prove Theorem 7, it is enough to show that \(N = d - N_0 = \phi(rd)/\phi(r) \).
Now,

\[N = d - \left\{ \sum_{1 \leq i \leq m} \frac{d}{P_i} - \sum_{i \neq j} \frac{d}{P_i P_j} + \sum_{i,j,k \text{ distinct}} \frac{d}{P_i P_j P_k} + \ldots + (-1)^{m-1} \frac{d}{P_1 P_2 \cdots P_m} \right\} \]

(9)

Let \(p_1, p_2, \ldots, p_{m+1} \) be all the distinct prime divisors of \(d \). Also, let \(p_{m+1}, \ldots, p_{m+1}, p_{m+1}, \ldots, p_{m+1}, p_{m+1} \) be all the distinct prime divisors of \(r \). Then \((d - N_b)\phi(r) = dr\prod_{p|m} (1 - (1/p)) = \phi(rd), \) which completes the proof of Theorem 7.

Pick \(s \in \Lambda_1 \). Let gcd\((rn, s) = m_s\). Define \(\Lambda_{1,m_s} = \{ s \in \Lambda_1; \gcd(rn, s) = m_s \} \).

Theorem 11. Consider

\[|\Lambda_{1,m_s}| = \frac{\phi(rd)}{\gcd(m_s, r)} = 1, \quad \text{if } \gcd(m_s, r) = 1, \]

\[0, \quad \text{if } \gcd(m_s, r) \neq 1, \quad (10) \]

where \(d_s = n/m_s \).

Proof. As \(s \in \Lambda_1, s \equiv 1 (\mod r), \) so that \(\gcd(r, s) = 1 \). Since \(m_s \) is a divisor of \(s \), we have that \(\gcd(m_s, r) = 1 \). Thus \(|\Lambda_{1,m_s}| = 1 \), whenever \(m_s \) is not coprime to \(r \).

As \(\gcd(rn, s) = \gcd(n, s) \), \(s = m_s s' \).

Also \(\gcd(d_s, s') = \gcd(n/m_s, s/m_s) = 1 \). As \(s \in \Lambda_1, s \equiv 1 (\mod r) \) holds giving us that \(m_s s' \equiv 1 (\mod r) \) holds with \(\gcd(d_s, s') = 1 \) and \(0 \leq s' < rd_s \). Hence, Theorem 7, there is \(\phi(d_s)/\phi(r) \) number of elements \(s \in \Lambda_{1,m_s} \) satisfying \(0 \leq s' < rd_s \), \(\gcd(d_s, s') = 1 \), and \(m_s s' \equiv 1 (\mod r) \).

However, we have to calculate the number of such \(s \in \Lambda_1 \). Now, for \(s \in \Lambda_1, \gcd(rn, s) = m_s \),

\[|C_s| = \gcd(m_s, \phi(d_s)) = \gcd(m_s, \phi(q^2)). \]

Consequently, \(|\Lambda_{1,m_s}| = \phi(d_s)/\gcd(d_s, \phi(q^2)) \), whenever \(\gcd(m_s, r) = 1 \).

Example 13 (let \(n = 12, r = 3, \) and \(q = 5 \)).

Then \(O_{12}q(1) = \{1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34\} \), \(C_1 = \{1, 25, 13\}, C_4 = \{4, 28, 16\}, C_7 = \{7, 31, 19\}, \) and \(C_{10} = \{10, 34, 22\} \). Take \(\Lambda_1 = \{1, 7, 10\} \). Thus \(|\Lambda_{1,1}| = \{1, 7\} \) as \(C_4 = C_{-20} = C_{-50} \).

So that \(|\Lambda_{1,1}| = 2 \). By Theorem 12, \(d = 3, 6, 12 \) are possible values of \(d \) on right hand side. Now, \(\chi(9, 5) = \chi(18, 5) = 0 \) as \(5^3 \equiv -1 (\mod 18) \). However, \(\chi(36, 5) = 1 \) as there does not exist any odd integer \(k \) such that \(5^k \equiv -1 (\mod 36) \), so that

\[|\Lambda_{1,1}| = \chi(36, 5)\phi(36) = \chi(8, 25) = \frac{12}{3 \times 2} = 2. \]

We will now investigate the behavior of the function \(\chi(d, q) \).

Lemma 14. Let \(m_1 \) and \(m_2 \) be two integers coprime to \(q \) such that \(q^{a_1} \equiv -1 (\mod m_1) \) and \(q^{a_2} \equiv -1 (\mod m_2) \) for some odd integers \(a_1 \) and \(a_2 \). If \(q \equiv -1 (\mod 2^{a_2}b) \), where \(2^a \| m_1 \) and \(2^b \| m_2 \), then there exists an odd integer \(k \) such that \(q^k \equiv -1 (\mod m_1 m_2) \).

Proof. Write \(m_1 m_2 = 2^{a_2}b \prod_{p|m_2} p^e \), being odd distinct primes, \(e_i \equiv 1 \). Let \(p \) be an odd prime divisor of \(m_1 m_2 \), so that there exists an odd integer \(k (= k_1 \lor k_2) \) such that \(q^k \equiv -1 (\mod p) \). Therefore, \(q^{2a_2} \equiv 1 (\mod p) \). Consequently, \(\text{ord}_p(q) \equiv 2a_2 (\mod p) \). Hence, \(q^{2a_2} \equiv -1 (\mod p) \). Thus, \(q^{a_2} \equiv -1 (\mod m_1 m_2) \), where \(k_{pe} = \text{ord}_p(q)/2 \) is odd. Thus,

\[q^k \equiv -1 (\mod m_1 m_2), \]

(15)

where \(k = \text{lcm}[k_{pe}, e_i=1] \) is odd.

Lemma 15. Let \(a \geq 2 \). Then \(q^k \equiv -1 (\mod 2^a) \) holds for some integer \(k \geq 1 \) and only if \(q \equiv -1 (\mod 2^a) \). In fact, such a \(k \) is odd.

Proof. Proof is trivial.

Theorem 16. \(\chi(rd, q) = 0 \) if and only if \(q \equiv -1 (\mod 2^{a+b}) \) and \(2|\text{ord}_r(q) \) for all odd prime divisors \(d \) of \(d \), \(2^a \| d \) and \(2^b \| r \).

Proof. If \(\chi(rd, q) = 0 \), then there exists an odd integer \(k \) such that \(q^k \equiv -1 (\mod rd) \). Thus \(q^{2a} \equiv -1 (\mod 2^{a+b}) \) so that, by Lemma 15, \(q \equiv -1 (\mod 2^{a+b}) \). Also \(q^k \equiv -1 (\mod p) \) for every odd prime divisor \(p \) of \(d \). Thus, \(q^{2a} \equiv -1 (\mod p) \) showing that \(\text{ord}_r(q)2k \) and \(\text{ord}_r(q) \equiv k \). Therefore, \(2|\text{ord}_r(q) \) for all odd prime divisors \(p \) of \(d \).

Conversely, let \(q \equiv -1 (\mod 2^{a+b}) \) and \(2|\text{ord}_r(q) \) for all odd prime divisors \(p \) of \(d \). To prove \(\chi(rd, q) = 0 \), we need to find an odd integer \(k \) such that \(q^k \equiv -1 (\mod rd) \). For any odd prime divisor \(p \) of \(d \), as \(2|\text{ord}_r(q), q^p \equiv -1 (\mod p) \),
where \(k_p = \text{ord}_p(q)/2 \) is odd. As in the proof of Lemma 14, there exists an odd integer \(k_q \) such that \(q^{k_q} \equiv -1 \pmod{d'} \), where \(d = 2^a d' \). Also, \(q \equiv -1 \pmod{2^a} \). Therefore, \(q^{d} \equiv -1 \pmod{d} \) with \(k_q \) odd. By Lemma 1, \(q \equiv -1 \pmod{r} \). Using Lemma 14, we get that \(q^k \equiv -1 \pmod{rd} \), for some odd integer \(k \).

Proposition 17. If \(r \) and \(n \) are coprime, then \(\chi(rd, q) = \chi(d, q) \) for all divisors \(d \) of \(n \).

Proof. Since \(q \equiv -1 \pmod{r} \) and \(\gcd(r, d) = 1 \), for some odd integer \(k \), \(q^k \equiv -1 \pmod{rd} \) if and only if \(q^k \equiv -1 \pmod{d} \).

Corollary 18. There does not exist any nontrivial Hermitian self-orthogonal \(\lambda \)-constacyclic code of length \(n \) over \(\mathbb{F}_{q^2} \) if and only if \(q \equiv -1 \pmod{2^{a+1}} \) and \(2 \mid \text{ord}_p(q) \) for all prime divisors \(p \) of \(n \), where \(2^a \mid n \) and \(2^b \mid r \), for \(r = \text{ord}_d(\lambda) \).

Proof. The proof follows easily from Theorems 12 and 16.

For \(n \) odd, we have \(a = 0 \). The condition \(q \equiv -1 \pmod{2^{a+1}} \) reads as \(q \equiv -1 \pmod{2^2} \), which is always true as \(r \mid (q + 1) \). Hence, we have the following.

Corollary 19. There does not exist any nontrivial Hermitian self-orthogonal \(\lambda \)-constacyclic code of odd length \(n \) over \(\mathbb{F}_{q^2} \) if and only if \(2 \mid \text{ord}_p(q) \) for all prime divisors \(p \) of \(n \).

3. MDS Hermitian Self-Orthogonal Constacyclic Codes Over \(\mathbb{F}_{q^2} \)

Let \(C \) be a \(\lambda \)-constacyclic code of length \(n \) over \(\mathbb{F}_{q^2} \) and \(\text{ord}_{q^2}(\lambda) = r \). Let \(a \) be a primitive \(rm \) th root of unity in some extension field of \(\mathbb{F}_{q^2} \) such that \(a^\lambda = \lambda \). Then roots of \(C \) are of the form \(a^{r+1} \), \(0 \leq i \leq n-1 \). Put \(\xi = a^r \).

Theorem 20. Let the generator polynomial of \(C \) have roots that include the set \(\{a^{i+1}; 1 \leq i \leq n-d-1 \} \). Then the minimum distance of \(C \) is at least \(d \).

Proof. See [1, Theorem 2.2]

By Lemma 1, \(r \mid (q + 1) \). Write \(q + 1 = rs_0 \).

Theorem 21. Let \(n \) be a divisor of \((q-1) \). Let \(T = \text{O}_{r,n}(1) \setminus T_{l,m} \), where \(T_{l,m} = \{ir + 1; 1 \leq i \leq m \} \pmod{mn} \) for each \(m \leq [(n-1-s_0)/2] \) and each \(l \geq l_0 \), with

\[
l_0 = \begin{cases}
\frac{s_0 - 1}{2}, & \text{if } n \text{ is even}, \\
\frac{s_0 - 2}{2}, & \text{if } n \text{ is odd}.
\end{cases}
\]

Then the code \(C \) with defining set \(T \) is a Hermitian self-orthogonal \(\lambda \)-constacyclic MDS code with parameters \([n, m-l+1, n-m+1] \).

Proof. Let \(l, m \) be as above and

\[
T_{l,m} = \{ir + 1; 1 \leq i \leq m \} \pmod{mn}.
\]

Each \(T_{l,m} \) has \(m-l+1 \) elements. If \(C \) denotes the code with dimension \(T = \text{O}_{r,n}(1) \setminus T_{l,m} \), then the dimension of \(C \), \(\dim C = m - l + 1 \). Let \(l = \{i; l \leq i \leq m \} \). Then the set \(T = \{0, 1, \ldots (n-1)\} \) has \(n-(m-l+1) = n-m-l+1 \) consecutive elements modulo \(n \). By Theorem 20, the minimum distance of \(C \) is at least \((n-m+l) \). However, using the singleton bound, the minimum distance is at most \((n-m+l) \). Consequently, the minimum distance of \(C \) equals \((n-m+l) \), proving that \(C \) is an MDS code.

In order to prove that \(C \) is self-orthogonal, it is enough to prove that \(T_{l,m} \cap (-qT_{l,m}) = \emptyset \). We have \(-q(i+1) \equiv (n-i-s_0)\text{ mod }mn \). Let \(I_1 = \{i; l \leq i \leq m \} \pmod{mn} \) and \(I_2 = \{n-i-s_0; i \in I_1 \} \pmod{mn} \). Then \(T_{l,m} \cap (-qT_{l,m}) = \emptyset \) if and only if \(I_1 \cap I_2 = \emptyset \). Let \(i \in I_1 \cap I_2 \), then \(i = n-j-s_0 \) for some \(j \in I_1 \) so that

\[
s_0 + i + j = n \equiv 0 \pmod{n}.
\]

As \(i, j \) are from \(I_1 \), \(l \leq i \leq j \leq m = [(n-s_0 - 1)/2] \). Thus \(s_0 < 2l \leq 2l + i + j \leq 2[(n-s_0 - 1)/2] \leq n-s_0 < 1 < n-s_0 \) so that

\[
0 < s_0 + i + j < n.
\]

Consequently, there does not exist any \(i, j \) such that both (18) and (19) hold, thereby showing that \(C \) is a Hermitian self-orthogonal constacyclic MDS code.

Remark 22. For \(n \) even, \(l = l_0 = -[(s_0 - 1)/2] \) and \(m = [(n-s_0 - 1)/2] \), the codes obtained from above theorem are the same as given by Theorem 4.3 of [6].

Proposition 23. Let \(N \) be the number of Hermitian self-orthogonal \(\lambda \)-constacyclic MDS codes of length \(n \) which can be obtained from above theorem. Then \(N \) is given by

\[
N = \begin{cases}
\frac{n(n-2)}{8}, & \text{if } s \text{ is even, } n \text{ even}, \\
\frac{n(n+2)}{8}, & \text{if } s \text{ is odd, } n \text{ even}, \\
\frac{n(n-1)(n+1)}{8}, & \text{if } s \text{ is even, } n \text{ odd,} \\
\frac{(n-3)(n-1)}{8}, & \text{if } s \text{ is odd, } n \text{ odd.}
\end{cases}
\]

Proof. The required number \(N \) equals the number of \(T_{l,m} = \{ir + 1; 1 \leq i \leq m \} \pmod{mn} \); that is, we need to select \(m-l+1 \) consecutive integers from the set \(\{i; l \leq i \leq m \} \). The number of ways of selecting \(t \) consecutive integers from the set \(\{i; e \leq i \leq f \} \) is \(f - e + 2 \). Thus, the number of such codes is

\[
N = \sum_{j=1}^{m-n-l+1} j = (m_0 - l_0 + 1)(m_0 - l_0 + 2)/2.
\]

Hence the result follows.

Tables 2 and 3 list \([n, k, d] \) Hermitian self-orthogonal MDS codes over \(\mathbb{F}_{q^2} \) for \(q \leq 11 \). Here \(n, k, \) and \(d \) denote, respectively, the length, dimension, and minimum distance of the code while \(T \) denotes the defining set. \(N \) denotes the number of such Hermitian self-orthogonal MDS codes.
Table 2: \([n, k, d]\) Hermitian self-orthogonal MDS codes over \(F_{q^2}\).

<table>
<thead>
<tr>
<th>(q)</th>
<th>(n)</th>
<th>(r)</th>
<th>(N)</th>
<th>(k)</th>
<th>(d)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>([0, 1, 2])</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>([1, 3, 5])</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>([4, 7, 10])</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>([0, 2])</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>([1, 3])</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>([5, 9])</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>([0, 2, 3, 4])</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>([1, 3, 5])</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>([4, 7, 10])</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>([5, 9, 13, 17])</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>([7, 13, 19])</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>([1, 9, 13, 17, 21])</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>([9, 17, 25, 33, 41])</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>([0, 2, 3, 4])</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>([1, 3, 5])</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>([4, 7, 10])</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>([5, 9, 13, 17])</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>([7, 13, 19, 25])</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>([1, 9, 13, 17, 21])</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>([9, 17, 25, 33, 41])</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: \([n, k, d]\) Hermitian self-orthogonal MDS codes over \(F_{q^2}\).

<table>
<thead>
<tr>
<th>(q)</th>
<th>(n)</th>
<th>(r)</th>
<th>(N)</th>
<th>(k)</th>
<th>(d)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>([10, 13, 16, 19, 22, 25])</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>4</td>
<td>15</td>
<td>([17, 21, 25, 29, 33])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>10</td>
<td>([25, 31, 37, 43, 49, 55])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>6</td>
<td>([49, 61, 73, 85, 97, 109])</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.
References

Submit your manuscripts at http://www.hindawi.com