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Abstract. 
A gradient recovery operator based on projecting the discrete gradient onto the standard finite element space is considered. We use an oblique projection, where the test and trial spaces are different, and the bases of these two spaces form a biorthogonal system. Biorthogonality allows efficient computation of the recovery operator. We analyze the approximation properties of the gradient recovery operator. Numerical results are presented in the two-dimensional case.



1. Introduction
The gradient reconstruction is a popular technique to develop reliable a posteriori error estimators for approximating the solution of partial differential equations using adaptive finite element methods [1–6]. The main idea of the gradient recovery error estimators is based on postprocessing the computed gradient and showing that the postprocessed gradient has a better convergence rate to the true gradient than the computed gradient. There are many ideas of gradient postprocessing. Most popular techniques are local least-squares fitting or patch recovery [1, 2, 4], weighted averaging [4], local or global -projection [4, 5, 7], and polynomial preserving recovery [8].
Recently we have presented a gradient reconstruction operator based on an oblique projection [9], where the global -projection is replaced by an oblique projection in order to gain the computational efficiency. The oblique projection operator is constructed by using a biorthogonal system. In fact, for the linear finite element in simplicial meshes, this approach reproduces the so-called gradient reconstruction scheme by the weighted averaging [4, 6, 10]. We proved that the error estimator based on the oblique projection is asymptotically exact in mildly unstructured meshes using the fact that the error estimator based on -projection is also asymptotically exact for such meshes [4, 5, 7, 11].
In this paper, we aim at analyzing the approximation property of the recovered gradient in one dimension using an oblique projection. As the approach of using an oblique projection reproduces the weighted average gradient recovery of linear finite elements [4, 6], this construction is quite useful in extending the weighted average gradient recovery of linear finite elements to quadrilaterals and hexahedras.
Let  with  and . Let  be a partition of the interval . We define the interior of the grid, denoted by , as 
						
					We also define the set of intervals in the partition  as , where . Two sets  and  of indices are also defined as
						
					respectively. A piecewise linear interpolant of a continuous function  is written as  with
						
					where  is the standard hat function associated with the point , . We define a discrete space,
						
					The linear interpolant of  is the continuous function defined by . However, if we compute the derivative of this interpolant , the resulting function will not be continuous. To make the derivative continuous we project the derivative of the interpolant, , onto the discrete space . There are two different types of projection. One is an orthogonal projection and the other is an oblique projection. The orthogonal projection operator, , that projects  onto  is to find a  that satisfies
						
					Since , we can represent it as an -dimensional vector:
						
					Now the requirement given in (5) is equivalent to a linear system: , where  is a mass matrix, and
						
					Here the mass matrix  is tridiagonal. We can reduce computation time greatly if we have a diagonal mass matrix. This can be done if we use a suitable oblique projection instead of an orthogonal projection. We consider the projection
						
					which is defined as the problem of finding  such that
						
					where  is another piecewise polynomial space, not orthogonal to , with ; see [12]. In fact, the projection operator  is well-defined due to the following stability condition. There is a constant  independent of the mesh-size  such that [9, 13]
						
					In order to achieve that the mass matrix  is diagonal we need to define a new set of basis functions for , , that are biorthogonal to the standard hat basis function (Figure 1) we used previously. This biorthogonality relation is defined as
						
					where  is the Kronecker delta function:
						
					and  is a positive scaling factor. The basis functions for  are simply given by 
						
					and, for , 
						
					By using an oblique projection  the mass matrix will be diagonal. We let the diagonal mass matrix be , so that our system is . The values  are our estimates of the gradient of  at the point . So, we estimate the gradient by finding , where
						
					We want to calculate the error in this approximation and find out when  approximates  exactly for each . As in [14, 15] we want to see if  approximates  exactly when  is a quadratic polynomial.
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(b)
Figure 1: The hat basis function (a) and biorthogonal basis function (b) with stepsize .




2. Superconvergence
Theorem 1.  Let . Then one has
							
Proof. We note that
							
						Now, we calculate  for :
							
						where
							
Therefore,  
							
						Now we look at the endpoints. We note that
							
						Computing as before we get
							

        We have the following super-convergence in -norm. This is proved as in [4, 16].
Theorem 2.  Let  for , , , and . If the point distribution satisfies  for , then one has the estimate
							
						where, for ,
							
						If one measures the error in the whole domain , one has
							
Proof. Since the gradient of a quadratic function is exactly reproduced in the interior of the domain, the first estimate (23) follows from the Bramble-Hilbert lemma. The second estimate is proved as in [4, 16].
For the tensor product meshes in two or three dimensions satisfying the above mesh condition this theorem has an easy extension. We will discuss about the simple extension to the two-dimensional case in Section 3.
2.1. Application to Quadratic Functions
Corollary 3.  Let  be a quadratic polynomial on . Then  reproduces  exactly for all , where 
Proof. We use the result of Theorem 1 to get
									
								On the other hand,
									
								So,  reproduces  exactly for . Now, for  and , we have
									
								Since
									
								we have  and  reproduce  and , respectively, exactly.
Remark 4 (uniform grid). Let  be a uniform grid on the interval  so that , where  is some constant, called the stepsize. We note that if our grid is uniform, then . So, our gradient recovery operator will reproduce the exact gradient of any quadratic function on the interior of a uniform grid. We cannot recover the gradients at the endpoints exactly, however, since  and .
Corollary 5.  Let  on , and let the grid be uniform with step-size . Then  for  (i.e., for the endpoints of the grid).
Proof. We will start with the case where  (i.e., the left endpoint). We know from Corollary 3 that . Since our grid is uniform with stepsize , this simplifies to . We also have . Thus 
									
								The case for  (i.e., the right endpoint) is proven similarly.
For a nonuniform grid (Figure 2), we cannot simplify our approximations using the stepsize , since the spacing between each adjacent node is not always equal. We did not make any assumption about the uniformity of the grid in Corollary 3. Thus , , is not zero for a nonuniform grid. This is estimated in the following corollary.




	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
		
		
			
				
		
		
			
				
		
		
			
				
		
		
			
				
		
		
			
				
		
		
			
				
		
	


Figure 2: A nonuniform grid with 8 nodes (vertical lines). The points  (dots) are also shown.


Corollary 6.  Let . Then, 
									
Remark 7. For  let . Then we have
									
								We still get superapproximation of the gradient recovery when  and .
2.2. Application to Cubic Functions
Corollary 8.  Let  on . Then,
									
								for all , and 
									
								where  is defined as in Corollary 3. Similarly, for all  one has
									
Proof. The proof of this theorem is similar to Corollary 3.
3. Extension to the Two-Dimensional Case
Let  be a tensor product mesh of the two-dimensional rectangular domain  having the mesh-size , where elements of  are rectangles. Note that the elements are rectangles for a tensor product mesh in two dimensions. Here we have
						
					Let  be the collection of all these rectangles not touching the boundary of , and
						
					Let  be the space of bilinear polynomials on . Then the standard tensor product finite element space is defined as
						
					We now use the property of the gradient recovery operator  defined above by means of a biorthogonal system as in Theorem 2.
Let  be the Lagrange interpolation of . We consider a patch as shown in Figure 3 consisting of four elements , where the values of  are shown as . Let  and  be the length of elements  and , and  and  the height of  and , respectively, as shown in Figure 3.




	
	
		
			
			
			
		
		
			
				
					
						
						
							
						
					
				
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
				
			
			
		
	


Figure 3: A patch corresponding to the node .


Then for the rectangular mesh as shown in Figure 3 we have for the inner vertex 
					Thus using Taylor’s expansion as in [4, 16] we obtain
						
					if the tensor product mesh satisfies
						
					Hence if the mesh satisfies the above condition, we have
						
					If we compute the -norm of the error on  we have the estimate
						
4. Numerical Examples
We consider two examples. In each example, we compute the -norm of the error between the exact gradient  and the recovered gradient , where  is the Lagrange interplant of  with respect to the underlying mesh . The recovery operator  is based on the biorthogonal system in the two-dimensional case. We note that the biorthogonal system in the two-dimensional case is constructed by using the tensor product construction of the one-dimensional case. We also compute the errors in the whole domain  and , where  consists of elements not touching the boundary in the coarsest mesh. We have also verified that recovered gradient is exact with the absolute error  except on the boundary when we have a quadratic exact solution.
Example 1. For Example 1 we choose the exact solution  as
							
						We compute -norm of the difference between the exact gradient and recovered gradient in  and . The numerical results are tabulated in Table 1. We note that we fix  from the beginning. From Table 1 we can see the super-convergence of the recovered gradient. As predicted by the theory the -errors in  converge with order , whereas the -errors in  have quadratic convergence.
Table 1: -errors for the exact gradient and the recovered gradient, Example 1.
	

	Level 	# elem.		
	

	1	256	2.04366e − 03	 	5.43131e − 04 	 
	2	1024	7.32136e − 04	1.48	1.36444e − 04 	1.99
	3	4096	2.60025e − 04	1.49	3.41525e − 05 	2.00
	4	16384	9.20937e − 05	1.50	8.54072e − 06 	2.00
	5	65536	3.25843e − 05	1.50	2.13534e − 06 	2.00
	



Example 2. For Example 2 we choose the exact solution  as
							
						The errors in -norm are tabulated in Table 2, where we can observe the super-convergence as in Example 1. We note that the numerical results support the theoretical prediction in both examples.
Table 2: -errors for the exact gradient and the recovered gradient, Example 2.
	

	Level 	# elem.		
	

	1	256	2.04366e − 03 	 	5.43131e − 04 	 
	2	1024	7.32136e − 04 	1.48	1.36444e − 04 	1.99
	3	4096	2.60025e − 04 	1.49	3.41525e − 05 	2.00
	4	16384	9.20937e − 05 	1.50	8.54072e − 06 	2.00
	5	65536	3.25843e − 05 	1.50	2.13534e − 06 	2.00
	



5. Conclusion
We have presented an analysis of approximation property of the reconstructed gradient using an oblique projection. The reconstruction of the gradient is numerically efficient due to the use of a biorthogonal system. Numerical results demonstrate the optimality of the approach. It is useful to investigate the extension to higher order finite elements.
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