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Abstract. 
We present sufficient conditions under which the sequence of arithmetic means , where , is the partial sum built on a stationary sequence  of associated integer-valued and uniformly bounded random variables, which satisfy the large deviation principle.



1. Introduction and the Notation
Let  be a strictly stationary sequence of square-integrable random variables (r.v.’s). Denote , , and . Consider a sequence satisfying the strong law of large numbers (SLLN) and the central limit theorem (CLT), that is, . SLLN asserts that the arithmetic mean  converges to  almost surely when , whereas the CLT specifies the probability that  differs from  by the quantity of order . Such deviation is called normal. However, in the case of  and  being distant by the quantity of order , we deal with so-called large deviation events.
It turns out that under certain condition on the tail distribution function of , for , the probability  tends to zero with exponential rate; that is,
						
					where  is called the rate function.
In the i.i.d. case, the well-known Cramer theorem gives the explicit formula for the rate function (see, for example, [1]). Let us recall that if the moment generating function  is finite for all , then  for all , where
						
					which means that  is the Fenchel-Legendre transform of the function .
In general setting, we follow [1] to give the definition of the rate function as the function defined on a Polish space , taking values in closed half line  and satisfying three conditions:(i) is not identically infinite;(ii) is lower semicontinuous;(iii) is compact for all .
Let us further recall that it is said that the sequence of probability measures  satisfies the large deviation principle (LDP) with rate  and the rate function , if(D1) is the rate function in the sense of the invoked definition;(D2), for all closed ;(D3), for all open .It is also well known that the rate function corresponding to the sequence  is uniquely determined.
The role of open and closed sets in the above definition is similar to the one they play in Portmanteau theorem stating equivalent conditions for the weak convergence of probability measures. In fact, LDP may be thought of as the analogue of the weak convergence but in the exponential scale. Bryc [2] proved that if the sequence of probability measures  is exponentially tight (see Appendix) and for all continuous and bounded functions  defined on the Polish space  (denoted by ) the limit
						
					exists, then  satisfies LDP with rate  and the rate function
						
This result explains the relation between the LDP and the concept of weak convergence of probability measures. Moreover, it appears very useful in proving the LDP, since it suffices to show existence of  for sufficiently large subfamily of continuous and bounded functions.
There is only a few results on LDP for dependent r.v.’s other than Markov processes. Bryc [3] and Bryc and Dembo [4] studied LDP for strongly mixing sequences of r.v.’s; Henriques and Oliveira [5, 6] dealt with stationary sequences of associated absolutely continuous r.v.’s. They assumed that the probability density function  of the random variable  satisfies the following condition:
						
Our goal is to extend the results of Henriques and Oliveira [5, 6] by proving the LDP for a stationary sequence  of integer-valued r.v.’s satisfying the following additional conditions:(A1), , are associated;(A2), , are uniformly bounded; that is, there exists  such that ;(A3) for some .
For the definition of associated r.v.’s and their properties we refer the reader to the monographs of Bulinski and Shashkin [7], Oliveira [6], and Rao [8].
The paper is organized as follows. Section 2 presents the LDP in question, its proof, and an example demonstrating the applicability of the result. For convenience while reading, we place the technical lemmas used in the proof in Section 3. At the end, in the Appendix, we recall the Gärtner-Ellis theorem and essential results of Varadhan [9] and Bryc [2] as well as two lemmas on convergence of real sequences. In the proofs we will follow the ideas of Henriques and Oliveira [5, 6].
2. Main Result
Theorem 1.  Let  be a strictly stationary sequence of integer-valued r.v.’s satisfying conditions (A1), (A2), and (A3). Then the sequence of probability measures  satisfies the large deviation principle with rate  and the rate function  being Fenchel-Legendre transform of the function
							
						which means that
							
Proof. The main tool in proving LDP for dependent r.v.’s is the Gärtner-Ellis theorem (see Appendix) which states that it is enough to verify the existence of limit (6) together with the differentiability of  to have LDP.
To be more precise, in order to obtain the upper bound (A.1), we need to prove that limit (6) exists, which is shown in Lemma 3 (see Section 3). Actually, we prove even more—the finiteness of (6) for all .
With a view to getting the lower bound (A.2), we first need to verify the existence of a more general limit
							
						for any real continuous, concave, and bounded from above function  (the class of such functions will be denoted by ). It is presented in Lemma 4, Section 3. In fact, these are continuous and bounded functions  which is required in limit (A.5). Nevertheless, in order to claim the sole existence of this limit, it suffices to consider the subfamily , since it is well separated (see Definition B.7 and Theorem B.8 in [6]).
Further, from (A2), it is easy to see that the distributions of  are exponentially tight (see Appendix).
As a result, by Lemma A.4, we can claim that the LDP holds with rate  and the rate function
							
						However, to make sure that  is the Fenchel-Legendre transform of  defined by (6), we are still in need of showing convexity of  (see Lemma A.2). To this end, somewhat unobvious implication is inevitable. If  are such that, for all ,  for , then
							
						It is shown in Lemma 6.
We are already in a position to prove the convexity of , proceeding exactly like in the proof of Theorem 3.20 in [6]. According to Theorem B.2 in [6], the rate function  may be presented in the following form:
							
						Since for  there exists  such that  is immersed in , it is enough to write
							
						Let us now take  such that . As the assumption of Lemma 6 is satisfied, we have
							
						Hence,
							
						which means that  is midconvex (called by some authors Jensen-convex or J-convex). The function  is measurable; thus according to Sierpiński Theorem (see [10], Theorem 9.4.2. and Theorem 5.3.5), it is convex and the proof is completed.
Finally, let us present an example of a sequence satisfying the assumptions of our theorem; for this sequence obviously the results of [5] do not apply.
Example 2. Let  be a Gaussian sequence with the squared exponential covariance function; that is,
							
						This sequence is stationary and associated (positively correlated Gaussian). Define a sequence  as follows:
							
						where  is an arbitrary number. The r.v.’s  inherit the properties of association and stationarity from the sequence  (we applied the same nonincreasing indicator function to the r.v.’s  which are associated). Furthermore, for , from the covariance inequality for Gaussian r.v.’s (see [11]) we have
							
						Therefore
							
						and the binary sequence  is stationary and fulfills assumptions (A1), (A2), and (A3).
3. Auxiliary Results
Lemma 3.  Let  be the sequence as in Theorem 1. Then limit (6) exists and is finite for all .
Proof. The proof is nearly rewritten from Theorem 3.16 in [6]. For , , by assumption (A1), we have . Since the sequence of r.v.’s , , is stationary, we obtain . Denoting , by Lemma A.5 we get the existence of (6). It remains to verify its finiteness for all . By assumption (A2), we have
							
						Thus, for arbitrarily chosen ,  is finite.
Lemma 4.  Let  be the sequence as in Theorem 1. Then, for every real continuous, concave, and bounded from above function , the limit  exists.
Proof. Except for the steps where discreteness of r.v.’s in question is involved, the proof goes along exactly like in Theorem 3.18 in [6].
Without loss of generality, we may and do assume that  for  and for some . Since  is continuous and concave, it is a Lipschitz function with constant , for example. By assumption (A2), we get that for 
						Thus, since  is Lipschitz,
							
						By assumed concavity of , this implies that
							
						which is equivalent to
							
						When we denote , the above inequality takes the following form:
							
						We will now aim at finding the bound for the second term at the r.h.s. of inequality (24).
Let us now define, for  and , the sequence of continuous functions  in the following way:
							
						Each  is thus a polyline with vertices having first coordinate of the form ,  , and second coordinate in the interval . Now, since  is nonpositive and Lipschitz with constant , we have
							
						so  is absolutely continuous (since it is Lipschitz continuous) and almost everywhere differentiable with .
We will now make use of the Newman identity (see [12]) which allows us to express the covariance of two absolutely continuous functions of arbitrary r.v.’s via the covariance of the indicators of these r.v.’s. Let us recall that if  and  are absolutely continuous functions and ,  are random variables, such that  and  are square-integrable, then
							
						In light of the above identity, we can write
							
						where the last inequality is a consequence of nonpositivity of  and application of the well-known Hoeffding identity stating that
							
						By the assumption of stationarity of , we can bound the above expression in the following way:
							
						Hence, we get
							
						which, on the basis of uniform boundedness of , , yields
							
						Let us now define the following quantity: , and restate (32):
							
						Going back to inequality (24), we obtain
							
						Choose , where  is the constant taken from assumption (A3). By Lemma A.6,
							
						Therefore it is easy to show that putting , for sufficiently large , we have
							
						As a result, from inequality (34), we arrive at
							
						and by Lemma A.5 we conclude that the limit  exists and the proof is completed.
Lemma 5.  Let  and  be integer-valued, associated, square-integrable r.v.’s; then
							
						for any  and .
Proof. The proof follows from the covariance inequality
							
						obtained in [13] for integer-valued associated r.v.’s , .
Lemma 6.  Let  be the sequence as in Theorem 1. Let also  be such that, for all ,
							
						Then,
							
Proof. Again, apart from the calculations we conduct with remark that the r.v.’s are integer-valued, the proof goes like in Theorem 3.19 in [6].
From assumption (40) we know that there exist , , such that, for sufficiently large , ; thus, for some ,
							
						Now, for , by Lemma 5 and by stationarity of r.v’s, we can write
							
Hence and in light of inequality (42), we get
							
						Next, on the basis of (A2) we see that
							
						which yields that
							
						By triangle inequality, this implies
							
						Putting  in the above inequality and plugging it in inequality (44), we arrive at
							
						If we finally put , where , then by Lemma A.6 we get the thesis.
Appendix
We recall the Gärtner-Ellis theorem invoked throughout the proof of the main result.
Theorem A.1 (Gärtner-Ellis [14, 15]).  Assume that, for every ,  defined by (6) exists. Then, its Fenchel-Legendre transform  satisfies the following: (a)for every closed (b)if  is differentiable, then for every open 
The next two theorems we lean against in the proof are Varadhan’s Lemma (necessary condition for LDP) and Bryc’s result (sufficient conditions for LDP).
Lemma A.2 (Varadhan [9]).  Assume that the large deviation principle is satisfied with a rate function . Moreover, assume that for every  
						Then (i)for every  the limit above exists and is the Fenchel-Legendre transform of ; that is, ;(ii)if the rate function  is convex, then it is the Fenchel-Legendre transform of ; that is, .
In order to formulate the next lemma let us recall the notion of exponential tightness of a sequence of probability measures.
Definition A.3. It is said that the sequence of probability measures  is exponentially tight, if for every  there exists a compact set  such that
							
Lemma A.4 (Bryc [2]).  Assume that , the distributions of , are exponentially tight and that, for every continuous and bounded function , the following limit exists:
							
						Then the probability measures , , satisfy the large deviation principle with rate  and the rate function , where the  is taken over the family of bounded and continuous functions. Moreover, for every such ,
							
Finally, we invoke two lemmas concerning the existence of the limit of specific real sequences. Both of them are taken from [6].
Lemma A.5.  Let  and  be real sequences such that , and for some , . Then the limit  exists.
Lemma A.6.  Let  be a real sequence of nonnegative numbers such that there exist  satisfying
							
						Then, for all  and ,
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