Research Article

Ultra-Quasi-Metrically Tight Extensions of Ultra-Quasi-Metric Spaces

Collins Amburo Agyingi

African Institute for Mathematical Sciences, Crystal Gardens, P.O. Box 608, Limbe, Cameroon

Correspondence should be addressed to Collins Amburo Agyingi; agyingic@gmail.com

Received 2 July 2015; Accepted 16 August 2015

1. Introduction

In [1] a concept of tight extension that is appropriate in the category of T_0-quasi-metric spaces and nonexpansive maps was studied. In particular such an extension was constructed and it was shown that this extension is maximal among the tight extensions.

In this paper we will show how the studies of [1] can be modified in order to obtain a theory that is appropriate for UQP-metric spaces. By UQP-metric space in the following, we mean T_0-ultra-quasi-metric spaces. Even though our studies follow essentially [1, 2], we found it imperative to work out every detail of this theory in this paper.

We will show that every UQP-metric space X has a uq-tight extension which is maximal amongst the uq-tight extensions of X. This agrees with the result we have for T_0-quasi-metric spaces (check [1]).

2. Preliminaries

We mention that the ultra-quasi-pseudometric spaces should not be confused with the quasi-ultrametrics as they are discussed in the theory of dissimilarities (check, e.g., [3]).

Definition 1 (compare [4, page 2]). Let X be a set and let $d : X \times X \to [0, \infty)$ be a mapping into the set $[0, \infty)$ of nonnegative reals. Then d is an ultra-quasi-pseudometric or, for short, a uqp-metric on X if

(a) $d(x, x) = 0$ for all $x \in X$,

(b) $d(x, z) \leq \max \{d(x, y), d(y, z)\}$ whenever $x, y, z \in X$.

We remark here that the conjugate d^t of d where $d^t(x, y) = d(y, x)$ whenever $x, y \in X$ is also uqp-metric on X.

If d also satisfies the condition,

(c) for any $x, y \in X, d(x, y) = 0 = d(y, x)$ implies that $x = y$,

then d is called UQP-metric on X.

Notice that $d^t = \max \{d, d^t\} = d \lor d^t$ is ultrametric on X.

Example 2 (compare [4, Example 2]). Note that, for $X = [0, \infty)$, the pair (X, n) is UQP-metric space, where n is such that $n(x, y) = x$ if $x, y \in X$ and $x > y$, and $n(x, y) = 0$ if $x \in X$ and $x \leq y$. We show the strong triangle inequality $n(x, z) \leq \max \{n(x, y), n(y, z)\}$ whenever $x, y, z \in X$ since the other conditions are obvious. For $n(x, y) = x$, the result is trivial, since $n(x, z) \leq n(x, y)$. Similarly the case that $n(x, y) = 0$ and $n(y, z) = y$ is obvious, since $x \leq y$ and $n(x, z) \leq n(y, z)$. In the remaining case that $n(x, y) = 0 = n(y, z)$, we have by transitivity of \leq that $x \leq z$, and thus $n(x, z) = 0$. It is obvious that n satisfies the T_0-condition.
Notice also that, for \(x, y \in [0, \infty) \), we have \(n'(x, y) = \max\{x, y\} \) if \(x \neq y \) and \(n'(x, y) = 0 \) if \(x = y \). The ultrametric \(n' \) is complete on \([0, \infty)\) since \(n \) and \(n'^{-1} \) are bicomplete on \([0, \infty)\). Recall that a UQP-metric space \((X, d)\) is said to be bicomplete if the ultrametric space \((X, d')\) is complete.

Furthermore, the only nonisolated point of \(\tau(n') \). Indeed \(\{0\} \cup \{1/n : n \in \mathbb{N}\) is a compact subspace of \([0, \infty)\).

In some cases we will replace \([0, \infty)\) with \([0, \infty)\) and, in this case, we will speak of an extended uap-metric.

Lemma 3 (compare [5, Proposition 2.1]). Let \(\alpha, \beta, \gamma \in [0, \infty) \). Then the following are equivalent:

(a) \(n(\alpha, \beta) \leq \gamma \),

(b) \(\alpha \leq \max\{\beta, \gamma\} \).

Proof.

(a) \(\Rightarrow \) (b). To reach a contradiction, suppose that \(\alpha > \max\{\beta, \gamma\} \). Since \(\alpha > \beta \), we have \(n(\alpha, \beta) = \alpha \leq \gamma \) by part (a) and the way \(n \) was defined. Thus, we would get \(\alpha \leq \max\{\beta, \gamma\} < \alpha \), a contradiction.

(b) \(\Rightarrow \) (a). Suppose that, on the contrary, \(n(\alpha, \beta) > \gamma \) would hold. Then \(\alpha > \beta \) and, hence, \(\alpha > \gamma \) would hold which would imply \(\alpha > \max\{\beta, \gamma\} \) in contradiction to our assumption \(\alpha \leq \max\{\beta, \gamma\} \).

The following corollaries are immediate. Their proofs rely on Lemma 3.

Corollary 4 (see [4]). Let \((X, d)\) be uap-metric space. Consider a map \(f : X \rightarrow [0, \infty) \) and let \(x, y \in X \). Then the following are equivalent:

(a) \(n(f(x), f(y)) \leq d(x, y) \),

(b) \(f(x) \leq \max\{f(y), d(x, y)\} \).

Definition 5. A map \(f : (X, d_X) \rightarrow (Y, d_Y) \) between two uap-metric spaces \((X, d_X)\) and \((Y, d_Y)\) is called nonexpansive if \(d_Y(f(x), f(y)) \leq d_X(x, y) \) holds for any \(x, y \in X \).

Corollary 6 (see [4]). Let \((X, d)\) be uap-metric space. Then

(a) \(f : (X, d) \rightarrow ([0, \infty), n) \) is a nonexpansive map if and only if \(f_2(x) \leq \max\{f_1(y), d(x, y)\} \) holds for all \(x, y \in X \),

(b) \(f : (X, d) \rightarrow ([0, \infty), n^{-1}) \) is a nonexpansive map if and only if \(f_1(x) \leq \max\{f_2(y), d(x, y)\} \) holds for all \(x, y \in X \).

Definition 7. A map \(f : (X, d_X) \rightarrow (Y, d_Y) \) between two uap-metric spaces \((X, d_X)\) and \((Y, d_Y)\) is said to be an isometry provided that \(d_Y(f(x), f(y)) = d_X(x, y) \) whenever \(x, y \in X \). Two uap-metric spaces \((X, d_X)\) and \((Y, d_Y)\) are said to be isometric provided that there exists a bijective isometry between them. Note that if \((X, d_X)\) is a UQP-metric space, then \(f \) is injective.

3. Ultra-Ample Function Pairs on UQP-Metric Space

We will recall some results from the theory of hyperconvex hulls of UQP-metric spaces due to [4].

Definition 8 (compare [4, Definition 1, page 4]). Let \((X, d)\) be UQP-metric space. One will say that a function pair \(f = (f_1, f_2) \) on \((X, d)\), where \(f_1 : X \rightarrow [0, \infty) \) is ultra-ample if, for all \(x, y \in X \), one has \(d(x, y) \leq \max\{f_2(x), f_1(y)\} \).

Let us denote by \(u_P \) the set of all ultra-ample function pairs on \(UQP\)-metric space \((X, d)\). For each \(f, g \in u_P \), define

\[
N(f, g) = \max \left\{ \sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x)) \right\},
\]

where the UQP-metric (of course we can use UQP-metric \(n \) here since the function pairs take values in \([0, \infty)\)) \(n \) is as defined in Example 2. Then \(N \) is an extended UQP-metric on \(u_P \).

Lemma 9. Let \((X, d)\) be UQP-metric space and let \(a \in X \). Then one has that \(f_a(x) := (d(a, x), d(x, a)) \) whenever \(x \in X \) is an ultra-ample function pair belonging to \(u_P \).

We say that a function pair \(f \) is uap-minimal among the ultra-ample function pairs on \((X, d)\) if it is an ultra-ample function pair and if \(g = (g_1, g_2) \) is an ultra-ample function pair on \((X, d)\), and for each \(x \in X \), \(g_1(x) \leq f_1(x) \) and \(g_2(x) \leq f_2(x) \), which implies \(f = g \). We will also call uap-minimal ultra-ample function pair uap-extremal (ultra-ample) function pair.

Lemma 10. Let \((X, d)\) be UQP-metric space and let \(f \in u_P \). For all \(x, y \in X \), \((f_1(x) > f_2(y)) \) implies that \(f_1(x) \leq d(x, y) \) and \((f_2(x) > f_1(y)) \) implies that \(f_2(x) \leq d(x, y) \).

Proof. See the proof of Lemma 3 of [4].

As a corollary, we have the following.

Corollary 11. Let \((X, d)\) be UQP-metric space. If \(f \) is a minimal ultra-ample function pair on \((X, d)\), then \(f_1(x) \leq \max\{f_2(y), d(x, y)\} \) and \(f_2(x) \leq \max\{f_1(y), d(x, y)\} \) whenever \(x, y \in X \). Thus the maps \(f_1 : (X, d) \rightarrow ([0, \infty), n^{-1}) \) and \(f_2 : (X, d) \rightarrow ([0, \infty), n) \) are contracting maps (check, e.g., Corollary 6).

Lemma 12. Let \(f \) be a minimal ultra-ample function pair on a \(T_0 \)-ultra-quasi-metric space \((X, d)\). Then

\[
f_1(x) = \sup \left\{ d(y, x) : y \in X, d(y, x) > f_2(y) \right\} = \sup \left\{ (f_2)_2(y) : y \in X, (f_2)_2(y) > f_2(y) \right\},
\]
For each $x \in X$ and $f \in uP_X$ set $(p_x(f))(z) = f_1(z)$ if $z \in X \setminus \{x\}$ and $(p_x(f))(z) = \sup\{d(y, x) : y \in X$ and $d(y, x) > f_2(y)\}$.

Similarly for each $x \in X$ and $f \in uP_X$ set $(p_x(f))(z) = f_2(z)$ if $z \in X \setminus \{x\}$ and $(p_x(f))(z) = \sup\{d(x, y) : y \in X$ and $d(x, y) > f_2(y)\}$.

We show first that $p_x(f)$ is ultra-ample. We will consider the following cases.

Case I. If $z = x$ and $y = x$, then the result holds since $d(x, x) = 0$.

Case 2. If $z \neq x$ and $y \neq x$, then $(p_x(f))(z) = f_2(z)$, so that

$$
\max \{(p_x(f))(z), (p_x(f))(y)\} = \max \{f_2(z), f_1(y)\} \geq d(z, y).
$$

Case 3. Consider $z = x$ and $y \neq x$. In this case $(p_x(f))(y) = f_1(y)$ and $(p_x(f))(z) = \sup\{d(z, y) : y \in X$ and $d(z, y) > f_1(y)\}$, so that

$$
\max \{(p_x(f))(z), (p_x(f))(y)\} = \max \{\sup\{d(z, y) : y \in X, d(z, y) > f_1(y)\}, f_1(y)\} \geq d(z, y).
$$

Case 4. In a manner similar to case 3, the result can be shown. Thus $p_x(f)$ is ultra-ample and also satisfies $p_x(f) \leq f$ by the way it was constructed.

Thus by taking $g = p_x(f)$, we can conclude that, for any $f \in uP_X$, $g \leq f$.

Proof. See the proof of Lemma 4 of [4].

The following lemma and its proof are found in [4].

Lemma 13. If f and g are minimal ultra-ample function pairs on a UQP-metric space (X, d), then

$$
N(f, g) = \sup_{x \in X} \{n(f_1(x), g_1(x)) \leq n(f_2(x), g_2(x))\}.
$$

As a consequence of Lemmas 12 and 13 we have the following corollary.

Corollary 14. Any minimal ultra-ample function pair $f = (f_1, f_2)$ on UQP-metric space (X, d) satisfies the following:

$$
\begin{align*}
\ f_1(x) &= \sup \{n(d(y, x), f_2(y)) : y \in X\}, \\
\ f_2(x) &= \sup \{n(d(y, x), f_1(y)) : y \in X\}
\end{align*}
$$

whenever $x \in X$.

4. UQP-Metric Tight Extensions

In this paper we will study uq-tight extensions as defined below in Definition 19. Moreover, by uq-tight extensions, we will mean tight extensions of UQP-metric spaces.

Proposition 15 (compare with [2, Section 1.3]). Let (X, d) be UQP-metric space. Then uQ_X consists of all functions pairs which are “minimal” in uP_X.

Proof. To prove this proposition, we prove that there is no $g \in uP_X$ with $g < f$ but $g \neq f$. This is so since, on the one hand, $g \leq f \in uQ_X$ and $g \in uP_X$ imply

$$
\begin{align*}
f_2(x) &= \sup \{d(y, x) : y \in X, d(x, y) > f_1(y) \geq g_1(y)\}, \\
\ &= \sup \{d(y, x) : y \in X, d(x, y) > g(y) \} \leq g_2(x).
\end{align*}
$$

Thus

$$
f_2(x) \leq g_2(x).
$$

Using (6) and the condition that $g_2 \leq f_2$, we have that $f_2 = g_2$.

In the same manner we can show that $f_1 = g_1$ so as to conclude that $f = g$.

On the other hand, suppose that, for some $x \in X$ and $f \in uP_X$, we have that $f_2(x) > \sup\{d(x, y) : y \in X$ and $d(x, y) > f_1(y)\}$.

For each $x \in X$ and $f \in uP_X$ set $(p_x(f))(z) = f_1(z)$ if $z \in X \setminus \{x\}$ and $(p_x(f))(z) = \sup\{d(y, x) : y \in X$ and $d(y, x) > f_2(y)\}$.

Similarly for each $x \in X$ and $f \in uP_X$ set $(p_x(f))(z) = f_2(z)$ if $z \in X \setminus \{x\}$ and $(p_x(f))(z) = \sup\{d(x, y) : y \in X$ and $d(x, y) > f_2(y)\}$.

We show first that $p_x(f)$ is ultra-ample. We will consider the following cases.

Case I. If $z = x$ and $y = x$, then the result holds since $d(x, x) = 0$.

Case 2. If $z \neq x$ and $y \neq x$, then $(p_x(f))(z) = f_2(z)$, so that

$$
\max \{(p_x(f))(z), (p_x(f))(y)\} = \max \{f_2(z), f_1(y)\} \geq d(z, y).
$$

Case 3. Consider $z = x$ and $y \neq x$. In this case $(p_x(f))(y) = f_1(y)$ and $(p_x(f))(z) = \sup\{d(z, y) : y \in X$ and $d(z, y) > f_1(y)\}$, so that

$$
\max \{(p_x(f))(z), (p_x(f))(y)\} = \max \{\sup\{d(z, y) : y \in X, d(z, y) > f_1(y)\}, f_1(y)\} \geq d(z, y).
$$

Case 4. In a manner similar to case 3, the result can be shown. Thus $p_x(f)$ is ultra-ample and also satisfies $p_x(f) \leq f$ by the way it was constructed.

Thus by taking $g = p_x(f)$, we can conclude that, for any $f \in uP_X$, $g \leq f$.

Proof. We will prove Proposition 17 by the use of Zorn’s lemma.

Indeed, let (X, d) be UQP-metric space and let \mathcal{P} be the set of all maps from uP_X to uP_X satisfying conditions (a) and (b) in Proposition 17.

Order \mathcal{P} by

$$
p \preceq q \iff p(f) \leq q(f),
$$

$$
\Rightarrow N(p(f), p(g)) \leq N(q(f), q(g)).
$$
for all \(f, g \in uP_X \) and \(p, q \in \mathcal{P} \). Then \(\mathcal{P} \neq \emptyset \) since the identity map belongs to \(\mathcal{P} \).

We have to check now that \(\leq \) is actually a partial order. Reflexivity is obvious since every map is equal to itself. Let now \(p, q \in \mathcal{P} \) such that \(p \leq q \) and \(q \leq p \). Consider

\[
\begin{align*}
\mathcal{P} \leq \mathcal{Q} & \implies (p(f))_1 \leq (q(g))_1, \\
& \implies (p(f))_2 \leq (q(g))_2, \\
& \implies N(p(f), p(g)) \leq N(q(f), q(g)) \quad (11)
\end{align*}
\]

\(q \leq p \)

\[
\begin{align*}
(\mathcal{P} \leq \mathcal{Q}) & \implies (p(f))_1 \leq (p(g))_1, \\
& \implies (p(f))_2 \leq (p(g))_2, \\
& \implies N(p(f), p(g)) \leq N(p(f), p(g)).
\end{align*}
\]

Indeed

\[
N(f, g) \geq N(k(f), k(g)), \quad \text{since } k \in \mathcal{P}
\]

\[
\geq \sup_{x \in X} [n((k(f))_1(x), (k(g))_1(x))]
\]

\[
\vee \sup_{x \in X} [n((k(g))_2(x), (k(f))_2(x))]
\]

\[
\geq \sup_{x \in X} \inf_{k \in \mathcal{X}} [n((k(f))_1(x), (k(g))_1(x))]
\]

\[
\vee \sup_{x \in X} \inf_{k \in \mathcal{X}} [n((k(g))_2(x), (k(f))_2(x))]
\]

\[
\geq \sup_{x \in X} \inf_{k \in \mathcal{X}} [\inf_{k \in \mathcal{X}} (k(f))_1(x), \inf_{k \in \mathcal{X}} (k(g))_1(x)]
\]

\[
\geq \sup_{x \in X} [\inf_{k \in \mathcal{X}} (k(g))_2(x), \inf_{k \in \mathcal{X}} (k(f))_2(x)]
\]

\[
N(s(f), s(g)).
\]

Thus we have that condition (b) is satisfied and since \(s \) is a map from \(uP_X \) to \(uP_Y \), we conclude that \(s \in \mathcal{P} \) and \(s \) is a lower bound of the chain \(\mathcal{H} \) by construction. Therefore we appeal to Zorn’s lemma to conclude that \(\mathcal{P} \) has a minimal element, say \(m \), with respect to the partial order \(\leq \).

To complete the proof, we show that \(m(f) \in uP_X \) whenever \(f \in uP_X \).

For each \(x \in X \), we have that \(p_x \circ m \in \mathcal{P} \) and \(p_x \circ m \leq m \) (where \(p_x \) is as defined in the proof of Proposition 15). Thus by minimality of \(m \), we have \(p_x \circ m = m \). It therefore follows that, for each \(x \in X \), \(p_x(m(f)) = m(f) \) whenever \(f \in uP_X \). Thus by the way elements in \(uP_X \) are defined, we conclude that \(m(f) \in uP_X \) whenever \(f \in uP_X \).

Proposition 18 (compare [1, Proposition 3]). Let \((Y, d) \) be UQP-metric space and let \(0 \neq X \) be a subspace of \((Y, d) \). Then there exists an isometric embedding \(\tau : uP_X \to uP_Y \) such that \(\tau(f)|_X = f \) whenever \(f \in uP_X \).

Proof. Fix \(x_0 \in X \) and let \(p : uP_X \to uP_Y \) be a retraction satisfying the conditions of Proposition 17. Also let \(s : uP_X \to uP_Y \) be such that \(s(f) = f' \), where \(f'_1(y) = f_1(y) \) whenever \(y \in X \), and \(f'_1(y) = \max f_i(x_{0}),d(x_0,y)) \) whenever \(y \in Y \setminus X \). The coordinate \(f'_2 \) of pair \(f' \) is defined similarly.

We will consider the following cases to prove that \(f' \) belongs to \(uP_Y \).

Case 1. Consider that \(x \in X \) and \(y \in X \).

Then

\[
\max \{ f'_2(x), f'_1(y) \} = \max \{ f_2(x_0) \circ f_1(x_0), d(x_0,y), d(x_0,y) \} \geq d(x, y).
\]

Case 2. One has that \(x \in Y \setminus X \) and \(y \in Y \setminus X \).

Then

\[
\max \{ f'_2(x), f'_1(y) \} = \max \{ f_2(x_0) \circ f_1(x_0), d(x_0,y), d(x_0,y) \} \geq d(x, y).
\]
Chinese Journal of Mathematics

Case 3. Consider that $x \in X$ and $y \in Y \setminus X$.

Then $\max\{f_2' (x), f_1'(y)\} = \max\{f_2(x), f_1(x_0), d(x_0, y)\} \geq \max\{d(x, x_0), d(x_0, y)\} \geq d(x, y)$.

Case 4. Consider that $x \in Y \setminus X$ and $y \in X$.

Then $\max\{f_2' (x), f_1'(y)\} = \max\{f_2(x), f_1(x_0), d(x_0, y)\} \geq \max\{d(x, x_0), d(x_0, y)\} \geq d(x, y)$.

Thus $f' \in uP_Y$.

Define map $\tau = p \circ s$. Then $\tau(f)|_X = p(f')|_X = f$ whenever $f \in uQ_X$ since $p(f') \leq f'$. Thus $p(f')|_X \leq f'|_X = f$, and f is minimal on X.

Moreover for any $f, g \in uQ_X$, we have

$$N(f, g) = N(\tau(f)|_X, \tau(g)|_X) \leq N(f, g)$$

$$\leq N(p(f'), p(g')) \leq N(f', g')$$

$$= N(f, g).$$

The last equality follows from the definition of f' and g'. Hence we have that $N(f, g) \leq N(\tau(f), \tau(g)) \leq N(f, g)$, which implies that $N(\tau(f), \tau(g)) = N(f, g)$ and hence τ is an isometric map.

Definition 19. Let X be a subspace of UQP-space (Y, d_Y). Then (Y, d_Y) is called uq-tight extension of X if for any uq-metric d on Y that satisfies $d \leq d_Y$ and agrees with d_Y on $X \times X$, we have that $d = d_Y$.

Remark 20. For any uq-metric uq-tight extension Y_1 of X, any uq-metric uq-extension (Y_2, d) of X and any nonexpansive map $\varphi: Y_1 \to Y_2$ satisfying $\varphi(x) = x$ whenever $x \in X$ must necessarily be an isometric map.

Indeed if that is not the case, then the uq-metric $\rho: Y_1 \times Y_1 \to [0, \infty)$ defined by $(x, y) \mapsto \rho(x, y) = d(\varphi(x), \varphi(y))$ would contradict the fact that the span Y_1 of X is ultra-ample.

It was shown in [4] that the map $e_X: (X, d) \to (uQ_X, N)$ from UQP-space (X, d) to its ultra-quasi-metrically injective hull (uQ_X, N) defined by $e_X(a) = f_a$ whenever $a \in X$ is an isometric embedding. We will proceed now with the help of Lemma 16 to show that uQ_X is uq-tight extension of $e_X(X)$.

Proposition 21. Let (X, d) be UQP-space metric space and let $e_X: X \to uQ_X$ be as defined above. Then uQ_X is uq-tight extension of $e_X(X)$.

Proof. Let ρ be uq-metric on uQ_X such that $\rho \leq N$ and $\rho(f_x, f_y) = N(f_x, f_y)$ whenever $x, y \in X$. By Lemma 16 and the fact that $\rho \leq N$, for any $f, g \in uQ_X$, we have

$$N(f, g) = \sup_{x, y \in X} \{N(f, g): N(f_x, f_y) \leq \sup_{x, y \in X} \{N(f_x, f_y): N(f_x, f_y) \leq N(f, g)\} \leq \rho(f_x, f_y) \leq \rho(f, g),$$

$$\leq \rho(f_x, f_y) \leq \rho(f, g),$$

since $\rho(f_x, f_y) \leq \max \{\rho(f_x, f_y), \rho(f, g), \rho(g, f_y)\}$.

Thus $\rho = N$.

Proposition 22. Let (Y, d) be UQP-space uq-tight extension of X. Then the restriction map defined by $f \mapsto f|_X$ whenever $f \in uQ_Y$ is a bijective isometric map $uQ_Y \to uQ_X$.

Proof. Let $p: uP_X \to uQ_X$ be a retraction map that satisfies the conditions of Proposition 17 and let $\varphi: uQ_Y \to uQ_X$ be the composition of the retraction map p with the restriction map. Then one sees immediately that φ is nonexpansive. Thus by Lemma 3, φ must be an isometry, because uQ_Y is uq-tight extension of X (this is so since uQ_Y is uq-tight extension of Y and Y is uq-tight extension of X).

Choose $\tau: uQ_X \to uQ_Y$ an isometric embedding such that $\tau(f)|_X = f$ for every $f \in uQ_X$ (compare Proposition 18). We therefore have

$$\varphi(\tau(f)) = \tau(\varphi(f)) = f$$

for every $f \in uQ_X$.

This implies that φ is onto. The fact that φ is injective is clear since (uQ_X, N) is UQP-space (see, e.g., the last line of Definition 7). Thus φ is bijective. In this case, the inverse of φ has to be the inverse of τ and hence for any $f \in uQ_Y$, we have $f|_X = \tau(\varphi(f))|_X = \varphi(f)|_X \in uQ_X$, which is the map

$$uQ_Y \to uP_X: f \mapsto f|_X$$

that maps uQ_Y onto uQ_X, without it being composed of p. Hence for any uq-tight extension Y of X, the map

$$uQ_Y \to uQ_X: f \mapsto f|_X$$

is a bijective isometry between uQ_X and uQ_Y.

Theorem 23. Let X be a subspace of the UQP-space (Y, d). Then the following are equivalent:

(a) Y is UQP-space uq-tight extension of X.

(b) $d(y_1, y_2) = \sup\{d(x_1, x_2): x_1, x_2 \in X, d(x_1, x_2) > d(y_1, y_2), d(x_1, x_2) > d(y_2, x_2)\}$ whenever $y_1, y_2 \in Y$.

(c) $f_y|_X(x) = (d(y, x), d(y, x))$, $x \in X$, is minimal on X whenever $y \in Y$ and the map $(Y, d) \to (uQ_X, N)$ defined by $y \mapsto f_y|_X$ is an isometric embedding.

Proof.

(a) \Rightarrow (b). Let Y be UQP-space uq-tight extension of X. By Proposition 22, the restriction map $uQ_Y \to uQ_X$ is a bijective isometry between uQ_Y and uQ_X. Thus the extension $Y \subseteq uQ_Y$ satisfies condition (b), since uQ_X satisfies it by Lemma 16.

(b) \Rightarrow (c). Let $x_1, x_2 \in X$ and $y_1 \in Y$. Then we have that $d(x_1, x_2) \leq \max\{d(x_1, y_1), d(y_1, x_2)\}$. Thus by condition (b) we have that $d(x_1, x_2) \leq d(y_1, y_2)$. Also

$$d(x_1, x_2) \leq n(d(y_1, x_2), d(y_2, x_2)) \leq d(y_1, y_2).$$
Hence for $y_1, y_2 \in Y$ we have by condition (b) that
\begin{equation}
\begin{align*}
d(y_1, y_2) &= \sup \{d(x_1, x_2) : x_1, x_2 \in X, \ d(x_1, x_2) \\
&> d(x_1, y_1), \ d(x_1, x_2) > d(y_2, x_2)\} \\
&\leq \sup \{d(x_1, y_2) : x_1, x_2 \in X, \ d(y_1, x_2) > d(y_2, x_2)\} \\
&\leq d(y_1, y_2).
\end{align*}
\end{equation}

Similarly we have that $d(x_1, x_2) \leq \max\{d(x_1, y_2), d(y_2, x_2)\}$ whenever $x_1, x_2 \in X$ and $y_2 \in Y$ so that by condition (b) we get $d(x_1, x_2) \leq d(x_1, y_2)$. It therefore follows that, for each $x_1, x_2 \in X$ and $y_1, y_2 \in Y$, $d(x_1, x_2) \leq d(x_1, y_2)$. Thus for $y_1, y_2 \in Y$ we see by (b) that
\begin{equation}
\begin{align*}
d(y_1, y_2) &= \sup \{d(x_1, x_2) : x_1, x_2 \in X, \ d(x_1, x_2) \\
&> d(x_1, y_1), \ d(x_1, x_2) > d(y_2, x_2)\} \\
&\leq \sup \{d(x_1, y_2) : x_1, x_2 \in X, \ d(y_1, x_2) > d(x_1, y_1)\} \\
&\leq d(y_1, y_2).
\end{align*}
\end{equation}

Thus we conclude that $d(y_1, y_2) = N(f_{y_1}|_X, f_{y_2}|_X)$.

As we have above, for any $y_1, y_2 \in Y$ we have that
\begin{equation}
\begin{align*}
d(y_1, y_2) &= \sup \{d(y_1, x_2) : x_2 \in X, \ d(y_1, x_2) > d(y_2, x_2)\}, \\
&\leq \sup \{d(y_1, x_2) : x_1, x_2 \in X, \ d(y_1, x_2) > d(y_2, x_2)\} \leq d(y_1, y_2).
\end{align*}
\end{equation}

Observe that if we substitute $x_1 \in X$ for y_1 in (24) and $x_2 \in X$ for y_2 in (25) we obtain the following equations:
\begin{equation}
(f_{y_1}|_X(x)) = d(x_1, y_1)
\end{equation}
\begin{equation}
\begin{align*}
d(y_1, y_2) &= \sup \{d(y_1, x_2) : x_2 \in X, \ d(y_1, x_2) > d(y_2, x_2)\}
\end{align*}
\end{equation}

whenever $y_1 \in Y$ and $x_1 \in X$ and
\begin{equation}
\begin{align*}
(f_{y_1}|_X)(x_2) &= d(y_1, x_2) \\
&= \sup \{d(x_1, x_2) : x_1, x_2 \in X, \ d(x_1, x_2) > d(x_2, y_2)\}
\end{align*}
\end{equation}

whenever $y_1 \in Y$ and $x_2 \in X$. We have therefore that restriction $f_{y_1}|_X$ is minimal on X whenever $y \in Y$ (compare Lemma 12).

(c) \Rightarrow (a). Let ρ be uqp-metric on Y such that $\rho(y_1, y_2) \leq d(y_1, y_2)$ whenever $y_1, y_2 \in Y$ and $\rho(x_1, x_2) = d(x_1, x_2)$ whenever $x_1, x_2 \in X$. Then by part (c) and the fact that $f_{y_1}|_X$ is minimal whenever $y \in Y$, we have
\begin{equation}
\begin{align*}
d(y_1, y_2) &= N(f_{y_1}|_X, f_{y_2}|_X) \\
&= \sup \{d(y_1, x) : x \in X, \ d(y_1, x) > d(y_2, x)\} \\
&\leq \sup \{d(x, y_2) : x \in X, \ d(x, y_2) > d(x, y_1)\} \\
&\leq \rho(y_1, y_2).
\end{align*}
\end{equation}

By substituting
\begin{equation}
\begin{align*}
d(x_1, y_2) &= \sup \{d(x_1, x_2) : x_2 \in X, \ d(x_1, x_2) > d(y_2, x_2)\} \\
&= \sup \{d(x_1, x_2) : x_2 \in X, \ d(x_1, x_2) > d(x_1, y_2)\}
\end{align*}
\end{equation}

into formula
\begin{equation}
\begin{align*}
d(y_1, y_2) &= \sup \{d(x_1, y_2) : x_1 \in X, \ d(x_1, y_2) > d(x_1, y_1)\}
\end{align*}
\end{equation}

we obtain
\begin{equation}
\begin{align*}
d(y_1, y_2) &= \sup \{d(x_1, y_2) : x_1 \in X, \ d(x_1, y_2) > d(y_1, y_2)\} \\
&\leq \sup \{d(x_1, x_2) : x_1, x_2 \in X, \ d(x_1, y_2) > d(x_1, y_2)\} \\
&\leq d(x_1, y_2).
\end{align*}
\end{equation}

whenever $y_1, y_2 \in Y$. The last inequality holds by the light of the inequality
\begin{equation}
\begin{align*}
\rho(x_1, x_2) \leq \max \{\rho(x_1, y_1), \rho(y_1, y_2), \rho(y_2, x_2)\} \\
\end{align*}
\end{equation}

and the fact that $\rho(x_1, x_2) > \rho(x_1, y_1)$ and $\rho(x_1, x_2) > \rho(y_2, x_2)$. Thus we have that $\rho(y_1, y_2) = d(y_1, y_2)$ whenever $y_1, y_2 \in Y$ and hence (a) follows.

Remark 24. We see from Theorem 23 that there is only one isometric embedding $\varphi : Y \to uQ_X$ satisfying $\varphi(x) = f_x$ whenever $x \in X$, since for such an embedding we have
\begin{equation}
\begin{align*}
(f_{y_1}|_X)(x) &= d(x, y) = N(f_{y_1}, f_{y_2}) \\
&= N(f_{y_1}, f_{y_2})(x);
\end{align*}
\end{equation}

therefore $(f_{y_1}|_X) = (\varphi(y))_2$. Similarly, one can show that $(f_{y_2}|_X) = (\varphi(y))_1$ whenever $y \in Y$.

Thus we see that the uq-tight extension Y of X can be understood as a subspace of extension uQ_X of X. Hence uQ_X is maximal among the UQP-metric uq-tight extensions of X.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

References

Submit your manuscripts at http://www.hindawi.com