A Generalization of the Fuglede-Putnam Theorem to Unbounded Operators

Fotios C. Paliogiannis

Department of Mathematics, St. Francis College, 180 Remsen Street, Brooklyn Heights, NY 11201, USA

Correspondence should be addressed to Fotios C. Paliogiannis; fpaliogiannis@sfc.edu

Received 8 September 2014; Accepted 8 March 2015

Academic Editor: El Hassan Youssi

Copyright © 2015 Fotios C. Paliogiannis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this note we prove a generalization of the classical Fuglede-Putnam theorem to unbounded operators. A special case of this generalization is given in [1]. We begin with some preliminary results.

Let \mathcal{H} be a complex Hilbert space and let $B(\mathcal{H})$ be the algebra of bounded linear operators in \mathcal{H}. Let $Op(\mathcal{H})$ denote the set of unbounded densely defined linear operators in \mathcal{H}. For $A \in Op(\mathcal{H})$ we denote the domain of A by $\mathcal{D}(A)$. Given $A, B \in Op(\mathcal{H})$, the operator B is called an extension of A, denoted by $A \subseteq B$, if $\mathcal{D}(A) \subseteq \mathcal{D}(B)$ and $Ax = Bx$ for all $x \in \mathcal{D}(A)$. An operator $A \in Op(\mathcal{H})$ is called closed if $A = A^\star$ (the closure of A). A closed densely defined operator $A \in Op(\mathcal{H})$ is said to commute with the bounded operator $T \in B(\mathcal{H})$, if $TA \subseteq AT$. This means that for each $x \in \mathcal{D}(A)$, we have $Tx \in \mathcal{D}(A)$ and $TAx = A^\star x$. Let $[A]_T = \{T \in B(\mathcal{H}) : TA \subseteq AT\}$. If $A \in B(\mathcal{H})$ this notion agrees with the usual notion of commutant. One sees $[A]_T$ is a strongly closed subalgebra of $B(\mathcal{H})$, and $T \in [A]_T$ if and only if $T^\star \in [A^*]^I$. Hence, $[A]^I \cap [A^*]^I$ is a von Neumann algebra.

Definition 1. Let $A \in Op(\mathcal{H})$ be closed and \mathcal{A} a von Neumann algebra. If $\mathcal{A}' \subseteq [A]^I$, the operator A is said to be affiliated with \mathcal{A}, denoted by $A \mathcal{A}'$.

The algebra $W^*(A) = \{[A]^I \cap [A^*]^I'\}'$ is the smallest von Neumann algebra with which A is affiliated, and is referred to it as the von Neumann algebra generated by A.

Definition 2. Let $A \in Op(\mathcal{H})$. A bounding sequence for A is a non-decreasing sequence $\{F_n\}_{n \in \mathbb{N}}$ of projections on \mathcal{H} such that $\bigcup_{n=1}^{\infty} F_n = I$, $F_nA \subseteq AF_n$ and $AF_n \in B(\mathcal{H})$ for all $n \in \mathbb{N}$.

A closed operator $N \in Op(\mathcal{H})$ is normal if $N^*N = NN^*$. This implies that $\mathcal{D}(N) = \mathcal{D}(N^*)$ and $\|Nx\| = \|N^*x\|$ for every $x \in \mathcal{D}(N)$ [2, page 51]. It turns out that the von Neumann algebra $W^*(N)$ is abelian, and $W^*(N) = [N]^I$ [3]. Hence, from Lemma 3, there is a bounding sequence $\{E_n\}$ for N in $W^*(N)$.

Theorem 4 (Fuglede-Putnam). Let N and M be normal operators in a Hilbert space. If T is any bounded operator satisfying $TN \subseteq MT$, then $TN^* \subseteq M^*T$.

The following result from [2, page 97] is essential to our proof of the generalization of the Fuglede-Putnam theorem.
Lemma 5. Let $A_1, A_2 \in \text{Op}(H)$ be self-adjoint operators and let $T \in \mathcal{B}(H)$. Then $TA_1 \subseteq A_2 T$ if and only if $TE_{\lambda} = P_{\lambda}$ for all $\lambda \in \mathbb{R}$, where $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ and $\{P_{\lambda}\}_{\lambda \in \mathbb{R}}$ are the spectral families of A_1 and A_2, respectively.

Theorem 6. Let $N, M \in \text{Op}(H)$ be normal operators and let $T \in \text{Op}(H)$ be a closed operator such that $\mathcal{D}(N) \subseteq \mathcal{D}(T)$ and $\mathcal{D}(M) \subseteq \mathcal{D}(T^*)$. If $TN \subseteq MT$, then $TN^* \subseteq M^* T$.

Proof. Let $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ and $\{P_{\lambda}\}_{\lambda \in \mathbb{R}}$ be the spectral families of the self-adjoint operators $N^* N$ and $M^* M$, respectively. For $m, n \in \mathbb{N}$, consider the bounding sequences $F_n = E_n - E_{n-1}$ and $G_m = P_m - P_{m-1}$ for N and M, respectively. Since $\mathcal{D}(N) \subseteq \mathcal{D}(T)$, it follows $\mathcal{H} = \mathcal{D}(N^*) \subseteq \mathcal{D}(T^*)$. Since TF_n is closed, the closed graph theorem implies $TF_n \in \mathcal{B}(\mathcal{H})$. Similarly, by the hypothesis on the domain of M and the closed graph theorem, we see $T^* G_m \in \mathcal{B}(\mathcal{H})$.

From the hypothesis $TN \subseteq MT$, we have $TNF_n \subseteq MTF_n$. Moreover, since $F_nN \subseteq NF_n$, we also have $TF_nN \subseteq TNF_n$.

Hence,

$$ (TF_n)N \subseteq M(TF_n), \quad \forall n \in \mathbb{N}. \quad (1) $$

Since TF_n is bounded, the Fuglede-Putnam theorem implies

$$ (TF_n)N^* \subseteq M^*(TF_n), \quad \forall n \in \mathbb{N}. \quad (2) $$

From (1), (2), we have

$$ (TF_n)N^* N \subseteq M^*(TF_n)N \subseteq M^* M(TF_n). \quad (3) $$

That is,

$$ (TF_n)N^* N \subseteq M^* M(TF_n), \quad \forall n \in \mathbb{N}. \quad (3) $$

Consequently, from Lemma 5,

$$ (TF_n)E_{\lambda} = P_{\lambda}(TF_n), \quad \forall \lambda \in \mathbb{R}. \quad (4) $$

Therefore

$$ (TF_n)F_k = G_m(TF_n), \quad \forall k, n, m \in \mathbb{N}. \quad (5) $$

Taking adjoints in (5) we have

$$ [G_m(TF_n)]^* = [(TF_n)F_k]^* = F_k(TF_n)^* \supseteq F_k F_n T^*. \quad (6) $$

But

$$ [G_m(TF_n)]^* = (TF_n)^* G_m \supseteq F_n T^* G_m. \quad (7) $$

As $F_n T^* G_m \in \mathcal{B}(\mathcal{H})$, we get

$$ F_k F_n T^* \supseteq F_n T^* G_m. \quad (8) $$

Furthermore, since F_k and F_n commute,

$$ F_k F_n T^* \subseteq F_n T^* G_m; \quad (9) $$

that is, for every $x \in \mathcal{D}(T^*)$, we have $G_m x \in \mathcal{D}(T^*)$ and

$$ F_k F_n T^* x = F_n T^* G_m x. \quad (10) $$

Let $x \in \mathcal{D}(T^*)$ and fix $k, m < n$. Then since $F_n \rightarrow I$ (strongly) as $n \rightarrow \infty$, it follows

$$ F_k T^* \subseteq T^* G_m, \quad \forall k, m \in \mathbb{N}. \quad (11) $$

Taking adjoints in (11) and using the closeness of T,

$$ (F_k T^*)^* \supseteq (T^* G_m)^* \supseteq G_m T^{**} = G_m T. \quad (12) $$

But $(F_k T^*)^* = T^{**} F_k = T F_k$. Hence,

$$ G_m T \subseteq T F_k, \quad \forall k, m \in \mathbb{N}. \quad (13) $$

Multiplying (2) by F_n, we get

$$ (TF_n)N^* F_n \subseteq M^*(TF_n)F_n = M^* TF_n. \quad (14) $$

Since $(TF_n)(N^* F_n) = T^* F_n N$ and $(TF_n)(N^* F_n) \in \mathcal{B}(\mathcal{H})$, we obtain

$$ TN^* F_n = M^* TF_n \quad \forall n \in \mathbb{N}. \quad (15) $$

Now let $x \in \mathcal{D}(TN^*)$; that is, $x \in \mathcal{D}(N^*)$ and $N^* x \in \mathcal{D}(T)$. Fix $m > k$, and let $m \rightarrow \infty$. Then using (13) and the fact $G_m \rightarrow I$ (strongly), we have

$$ TF_k x = G_m T x \rightarrow T x. \quad (16) $$

Moreover, from (14), the fact $F_n N^* \subseteq N^* F_n$, and (13), we have

$$ M^* TF_k x = TN^* F_k x = TF_k N^* x = G_m T N^* x \rightarrow T N^* x. \quad (17) $$

Since M^* is closed, it follows $x \in \mathcal{D}(M^*T)$ and $M^* T x = T N^* x$. Therefore, $TN^* \subseteq M^* T$.

As a special case for $M = N$, we obtain the following generalization of Fuglede's theorem [5].

Corollary 7. Let $N \in \text{Op}(\mathcal{H})$ be normal and let $T \in \text{Op}(\mathcal{H})$ be a closed operator such that $\mathcal{D}(N) \subseteq \mathcal{D}(T) \cap \mathcal{D}(T^*)$. If $TN \subseteq NT$, then $TN^* \subseteq N^* T$.

Corollary 8. Let $N_1, N_2 \in \text{Op}(\mathcal{H})$ be normal operators. If $\mathcal{D}(N_1) \subseteq \mathcal{D}(N_2)$, then $N_2 N_1 \subseteq N_1 N_2 \Leftrightarrow N_2^* N_1^* \subseteq N_1^* N_2$.

Corollary 9. Let $N_1, N_2 \in \text{Op}(\mathcal{H})$ be normal operators. If $\mathcal{D}(N_i) \subseteq \mathcal{D}(N)$, for $i = 1, 2$, then $N_1 N_2 \subseteq N_2 N_1 \Leftrightarrow N_1^* N_2^* \subseteq N_2^* N_1^*$.

Remark 10. Recently in the article “An All-Unbounded-Operator Version of the Fuglede-Putnam Theorem,” Complex Analysis and Operator Theory (2012) [6: 1269–1273], a similar result was offered, but its proof is incorrect. In fact, on the last page of this paper [page 1273] the proof is wrong; note that from the equality $F_{b_n}(M) A N^* F_{b_n}(N) x = P_{b_n}(M) M^* A P_{b_n}(N) x$, the fact $P_{b_n}(M) \rightarrow I$ (strongly) gives $AN^* F_{b_n}(N) x = M^* A P_{b_n}(N) x$; however, (dealing with unbounded operators, as is the case here) the fact (alone) that $P_{b_n}(N) \rightarrow I$ (strongly) does not give the equality $AN^* x = M^* A x$.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.
References

Submit your manuscripts at http://www.hindawi.com