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Abstract. 
An algorithm is presented in this note for determining all Berge equilibria for an n-person game in normal form. This algorithm is based on the notion of disappointment, with the payoff matrix (PM) being transformed into a disappointment matrix (DM). The DM has the property that a pure strategy profile of the PM is a BE if and only if (0,…,0) is the corresponding entry of the DM. Furthermore, any (0,…,0) entry of the DM is also a more restrictive Berge-Vaisman equilibrium if and only if each player’s BE payoff is at least as large as the player’s maximin security level.
 


1. Introduction
In a Berge equilibrium (BE) for an -person game, every  player has pure strategies that maximized the remaining player’s payoff. The BE was intuitively defined for pure strategies in [1] as a refinement to the Nash equilibrium (NE) [2]. The BE was formalized in [3] as a game-theoretic solution concept modeling mutual support and cooperation, as opposed to the selfishness of the NE. However, the BE was not studied extensively until recently. For example, see [4–9]. Only [6, 7] offer approaches for obtaining BEs, though, and these methods are stated abstractly without examples.
A simple algorithm is presented here for computing all BEs for an -person game  in normal form, with  the set of players,  the finite set of pure strategies for player , and  the von Neumann-Morgenstern utility of player  for a pure strategy profile . The BE is defined as follows, where an incomplete strategy profile  denotes a member of .
Definition 1. The strategy profile  is a BE of  if and only if 
							
						The BE  is further called a Berge-Vaisman equilibrium (BVE) if and only if the maximin security levels  of the players satisfy 
							
						so that no player is guaranteed better payoff than that given by .
In Section 2 we define the disappointment matrix (DM) corresponding to the payoff matrix (PM) for  and prove that a pure strategy  is a BE if and only if  is the corresponding entry of the DM. In Section 3 the approach of Section 2 is formalized as an algorithm to obtain all BEs and BVEs for . In Section 4 a computational example is presented for .
2. The Disappointment Matrix
The disappointment function is defined as a transformation of a player’s payoffs to losses.


Definition 2. For the game , the disappointment incurred by any player  choosing  and the other  players choosing  is defined as 
							
The disappointment incurred by player  for a strategy profile  is thus the difference between the best payoff that player  could obtain by choosing  and the actual payoff that player  would obtain for the strategy profile . This definition immediately gives the following result.
Theorem 3.  The pure strategy profile  is a BE for the game  if and only if the disappointment  for all . Moreover, a BE  is also a BVE if and only if  for all .
Proof. The strategy profile  is a BE if and only if it satisfies (1) of Definition 1. However, (1) holds if and only if  in (3) for all . To complete the proof, the BE  is also a BVE if and only if it satisfies (2).
The DM of a game is now defined.
Definition 4. The disappointment matrix of  is the matrix obtained from its PM by replacing  by  for all .
3. Algorithm
Consider the game  in which each player  has  pure strategies. Denote the th strategy of player  by . Algorithm 1 describes the algorithm BECOMP for obtaining all BEs and BVEs for  from its DM. The computational complexity of BECOMP is  because of the unavoidable enumeration in Step 4 of all strategy profiles , for each player .
		(1) 
	(2) While  do
	(3)    While  do
	(4)    Compute  for all  from (3).
	(5)     for all 
	(6)    End While
	(7) End While
	(8) BE = .
	(9) BVE =  BE: .
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4. Example 
For  we use the notation of BECOMP with  and consider the game  with a PM of Table 1. The DM for  is obtained from the PM via BECOMP and shown in Table 2. The unique BE for  is  with associated payoffs . However,  is not a BVE since . Player 1 is guaranteed better payoff by choosing  instead of .
Table 1: PM for .
	

	Player 1
	Player 3
		
	                 Player 2	                 Player 2
				
	

		(3, 1, 2) 	(3, 4, 0)	(6, 3, 0)	(3, 5, 1)
		    (1, 4, 5)	(2, 2, 3)	(2, 4, 4)	(−1, 2, 3) 
	



Table 2: DM for .
	

	Player    1	Player 3
		
	                 Player 2	                 Player 2
				
	

		(3, 3, 3) 	(3, 1, 5)	(0, 1, 4)	(3, 0, 3)
		    (1, 0, 0)	(0, 3, 2)	(0, 0, 0)	(3, 3, 1) 
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