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Abstract. 
We continue our study of the complex Monge-Ampère operator on the weighted pluricomplex energy classes. We give more characterizations of the range of the classes  by the complex Monge-Ampère operator. In particular, we prove that a nonnegative Borel measure  is the Monge-Ampère of a unique function  if and only if . Then we show that if  for some  then  for some , where  is given boundary data. If moreover the nonnegative Borel measure  is suitably dominated by the Monge-Ampère capacity, we establish a priori estimates on the capacity of sublevel sets of the solutions. As a consequence, we give a priori bounds of the solution of the Dirichlet problem in the case when the measure has a density in some Orlicz space.



1. Introduction
Let  be a bounded hyperconvex domain, that is, a connected, bounded open subset of , such that there exists a negative plurisubharmonic function  such that , for all . Such a function  is called an exhaustion function. We let  denote the cone of plurisubharmonic functions (psh for short) on  and let  denote the subclass of negative functions.
As known (see [1, 2]), the complex Monge-Ampère operator  is well defined, as a nonnegative measure, on the set of locally bounded plurisubharmonic functions. Therefore the question of describing the measures which are the Monge-Ampère of bounded psh functions is very important for pluripotential theory, complex dynamic, and complex geometry. This problem has been studied extensively by various authors; see, for example, [2–6] and reference therein. In [7], Cegrell introduced the pluricomplex energy classes  and  () on which the complex Monge-Ampère operator is well defined. He proved that a measure  is the Monge-Ampère of some function  if and only if it satisfies 
						
					where  is the cone of all bounded psh functions  defined on the domain  with finite total Monge-Ampère mass and , for every . Recently, Åhag et al. in [8] proved that, in the case , inequality (1) is equivalent to . In this note, our first objective is to extend this result by showing that, for all positive number , inequality (1) is equivalent to . In fact, we prove some more general result. Given a nondecreasing function , we consider the set  of plurisubharmonic functions of finite -weighted Monge-Ampère energy and, in some sense, has boundary values zero. These are the functions  for which there exists a decreasing sequence  with limit  and 
						
Then we have the following characterization of the image of the complex Monge-Ampère acting in the class .
Theorem 1.  Let  be an increasing convex or homogeneous function such that . The following assertions are equivalent: (1)there exists a unique function  such that ;(2). 								
Next, we extend our previous result to families of functions having prescribed boundary data. Let  be a maximal psh function. We define the class  to be the class of psh functions  such that there exists a function  such that 
						
					Some particular cases of the classes  have been studied in [6, 7, 9–16].
More precisely, we prove the following result.
Theorem 2.  Let  be a nonnegative measure in , let  be an increasing convex or homogeneous function such that , and let  be a maximal function. Then, if  for some  then there exists a unique function  such that .
Moreover, when the nonnegative measure  is dominated by the Monge-Ampère capacity, we give an estimate of the growth of solutions of the equation . As in [12], let us consider the function 
						
					Then  is a nondecreasing function on  and satisfies 
						
					Write  where  is nondecreasing.
Such measures dominated by the Monge-Ampère capacity have been extensively studied by Kołodziej in [3–5]. He proved that if  is a continuous function and , then  is the Monge-Ampère of a unique function  with .
When , we have the following estimate.
Theorem 3.  Let  be a positive finite measure. Assume, for all compact subsets , 
							
						Then there exists a unique function  such that , and 
							
						Here  is the reciprocal function of . 
In particular if  then 
							
The paper is organised as follows. In Section 2, we recall the definitions of the energy classes  and some classes of psh functions introduced by Cegrell [7, 13, 14] and we prove Theorem 1. In Section 3, we prove Theorem 2. As a consequence, we generalize the main result in the paper [9]. In Section 4, we prove Theorem 3. As application, we give a priori bound of the solution of Dirichlet problem in the case when the measure , where  belongs to some Orlicz space .
2. Energy Classes with Zero Boundary Data 
Let us recall some Cegrell’s classes (Cf. [7, 13, 14]). The class  is the set of plurisubharmonic functions  such that, for all , there exists a neighbourhood  of  and , a decreasing sequence which converges towards  in  and satisfies . Cegrell [13] has shown that the operator  is well defined on , continuous under decreasing limits, and the class  is stable under taking maximum; that is, if  and  then . This class is the largest class with these properties (Theorem 4.5 in [13]). The class  has been further characterized by Błocki [17, 18] and Le Mau et al. in [19].
The class  is the global version of : a function  belongs to  if and only if there exists a decreasing sequence  converging towards   in all of  , which satisfies . The class  has been further characterized in [12, 17].
Let  be an increasing sequence of strictly pseudoconvex domains such that . Let  be a given psh function and put 
						
					Then we have  and  is an increasing sequence. Let . It follows from the properties of  that . Note that the definition of  is independent of the choice of the sequence  and is maximal; that is, .  is the smallest maximal psh function above . Define . In fact, this class is the analogous of potentials for subharmonic functions.
Definition 4. Let  be a nondecreasing function. We let  denote the set of all functions  for which there exists a sequence  decreasing to  in  and satisfying 
							
It was proved in [15, 20] that if  then 
						
					In particular, for any function , the complex Monge-Ampère operator  is well defined as nonnegative measure. Furthermore, if  for all , then 
						
					The class  has been characterized by the speed of decrease of the capacity of sublevel sets [11, 12].
Recall that the Monge-Ampère capacity has been introduced and studied by Bedford and Taylor in [1]. Given , a compact subset, its Monge-Ampère capacity relatively to  is defined by 
						
					The following estimates (cf [12]) will be useful later on. For any 
Let  be a nondecreasing function. Without loss of generality, from now on, we assume that . We define the class 
Proposition 5.  One has , while 
							
						Moreover, if  is convex, then 
							
						Here  denote the real number satisfying , for all , and , for all .
Proof. Compare with [12, 20].
Theorem 6.  Let  be an increasing convex function such that . The following conditions are equivalent: (1)there exists a unique function  such that ;(2);
								(3)there exists a constant  such that 
										(4)there exists a constant  such that
										(5)there exists a locally bounded function  such that  and 
										Here  denotes the class  and .
The equivalences  are proved in [11] (Theorem 5.1) and the implication  is proved in [12] (Theorem 5.2). For the sake of completeness we include a complete proof.
Proof. We start by the implication . Let . It follows from Proposition 5 that . Hence 
							
						Now, for the implication , assume that (3) is not satisfied. Then for each  we can find a function  such that 
							
						Consider the function 
							
						Observe that 
							
						Hence 
							
						Now, since the weight  is convex or homogeneous and using the estimates (14), we get 
							
						Hence . On the other hand, from (22) we have
							
						which yields a contradiction.
Now, we prove that . Let , denote . If , that is, , then 
							
						If  the function  defined by 
							
						Indeed, from the monotonicity of , we have 
							
						It follows from (18) and the convexity of  that
							
						Hence we get (19).
For the implication , we consider .
. It follows from [12] (Theorem 4.5) that the class  characterizes pluripolar sets in the sense that if  is a locally pluripolar subset of  then , for some . Then assumption (20) on  implies that it vanishes on pluripolar sets. It follows from [13] that there exists a function  and  such that .
Consider . This is a finite measure which is bounded from above by the complex Monge-Ampère measure of a bounded function. It follows therefore from [3] that there exist  such that 
							
						The comparison principle shows that  is a decreasing sequence. Set . It follows from (20) that 
							
						Hence 
							
						This implies that 
							
						Then  and therefore .
We conclude now by continuity of the complex Monge-Ampère operator along decreasing sequences that . The uniqueness of  follows from the comparison principle.
3. The Weighted Energy Class with Boundary Values
Let  be a nondecreasing function and let  be a maximal psh function. We define the class  (resp., , , , and ) to be the class of psh functions  such that there exists a function  (resp., ) such that 
						
					Later on, we will use repeatedly the following well known comparison principle from [1] as well as its generalizations to the class  (cf. [10, 14]).
Theorem 7 (see [1, 10, 14]).  Let  be a maximal function and  be such that  vanishes on all pluripolar sets in . Then 
							
						Furthermore if  then .
The following lemma, which gives an estimate of the size of sublevel set in terms of the mass of Monge-Ampère measure, will be useful shortly.
Lemma 8.  Let  be a nondecreasing function such that , for all , and  a maximal function. Then for all  
Proof. Fix . Let  be a compact subset. Then
							
						where  is the relative extremal function of the compact  and . It follows from Theorem 7 that 
							
						Taking the supremum over all ’s yields the first inequality.
Proposition 9.  Let  be an increasing function. Then one has 
							
						In particular, if , then  for all  and .
Proof. Let . Then there exists a function  such that . Therefore . It follows from Lemma 8
Theorem 10.  Let  be an increasing function which satisfies  and  a maximal function. Then if there exists a decreasing sequence  such that 
							
						then  and . 
Conversely, if  and  then there exists sequence  decreasing towards  such that 
							
Proof. Assume that the sequence  (if necessary, we approximate  by a continuous sequence ). For a fixed , let  denote the function defined by 
							
						We claim that(1);(2);
								(3) on the subset .Then, it follows from statements (1), (2), and (3) that for each 
						Therefore 
							
						Hence, the function  satisfies .
For the converse implication, fix . Then there exists a function  such that . Let  be a decreasing sequence with limit function . Then for each , consider the function . The sequence  decreases towards  and 
							
						where  is a constant which depends only on  and the proof of the theorem is completed.
Theorem 11.  Let  be a nonnegative measure in , let  be an increasing convex (or homogeneous) function such that , and let  be a maximal function. Then there exists a unique function  such that  if and only if  satisfies one of the conditions of Theorem 6.
Proof. Assume that  for some . Let  be a fundamental sequence of strictly pseudoconvex subsets of . Choose a sequence  decreasing towards  on  and  is maximal on . It follows from [13] that there exist a function  and a function  such that 
							
						Consider the measure , where  denotes the characteristic function of the set . Now, solving the Dirichlet problem in the strictly pseudoconvex domain , we state that there exist functions  such that
							
						By the comparison principle, we have  and  are decreasing sequences and 
							
						Letting  we get that . The continuity of the complex Monge-Ampère operator under monotonic sequences yields that . Uniqueness of  follows from the comparison principle.
Corollary 12.  Let  be nonnegative measure in  with total finite mass  and let  be a maximal function. Then there exists a uniquely determined function  such that  if and only if  vanishes on pluripolar subsets.
Proof. It follows from [13] that there exist a function  and a function  such that 
							
						By [3], there exists a unique  such that . The comparison principle yields that  is a decreasing sequence. Let denote by . It follows from Lemma 8 that . Therefore . By the continuity of the complex Monge-Ampère operator under decreasing sequences, we have . Now, since 
							
						then there exists a convex function  with  and  such that . By Theorem 11, we can find a unique function  such that .
4. Measures Dominated by Capacity
Throughout this section,  denotes a fixed nonnegative measure of finite total mass . We want to solve the Dirichlet problem 
						
					and measure how far the distance between the solution  and the given boundary data  is from being bounded, by assuming that  is suitable dominated by the Monge-Ampère capacity.
Measures dominated by the Monge-Ampère capacity have been extensively studied by Kołodziej in [3–5]. The main result of his study, achieved in [4], can be formulated as follows. Fix  a continuous decreasing function and set . If for all compact subsets 
					and  is a continuous function, then  for some continuous function  with .
The condition  means that  decreases fast enough towards zero at infinity. This gives a quantitative estimate on how fast , hence  decreases towards zero as .
When , it is still possible to show that  for some function , but  will generally be unbounded. We now measure how far it is from being so.
Theorem 13.  Let  be a nonnegative finite measure. Assume for all compact subsets  
						Then there exists a unique function  such that , and 
							
						Here  is the reciprocal function of .
The proof is almost the same as that of Theorem 5.1 in [12], except that we use Corollary 12 for the existence of the solution and Lemma 8 to estimate the capacity of sublevel set.
Observe that if  then  is bounded by . Hence , . Therefore 
						
Now, we consider the case when  is absolutely continuous with respect to Lebesgue measure.
Let  denote a generic subspace of  that is a real subspace such that , where  is the usual complex structure on  (cf. [21] for more details).  will be endowed with the induced Euclidean structure and the corresponding Lebesgue measure which will be denoted by .
Let  be a positive real number. According to [22, 23], the Orlicz space  consists of -measurable functions  defined on  such that 
						
					On the space , we define the norm 
						
					The dual space to  is the exponential class ; that is, the vector space 
						
					equipped with the norm 
						
					Then we have the following Hölder inequality: 
						
					for  and , where  is a positive constant depending only on  and . By a simple computation, we have 
						
Corollary 14.  Let  be a measure with nonnegative density . Then there exists a unique bounded function  such that  and 
							
						where  only depends on , and .
Proof. We claim that there exists a constant  such that 
							
						Indeed, Hölder’s inequality and inequality (66) yield 
							
						By [21] we have 
							
						where  is a constant which depends only on  and .
Inequality (66) follows by combining (67) and (68).
Then we apply Theorem 13 with 
							
						which yields 
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