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Abstract. 
Galerkin method is presented to solve singularly perturbed differential-difference equations with delay and advanced shifts using fitting factor. In the numerical treatment of such type of problems, Taylor’s approximation is used to tackle the terms containing small shifts. A fitting factor in the Galerkin scheme is introduced which takes care of the rapid changes that occur in the boundary layer. This fitting factor is obtained from the asymptotic solution of singular perturbations. Thomas algorithm is used to solve the tridiagonal system of the fitted Galerkin method. The method is analysed for convergence. Several numerical examples are solved and compared to demonstrate the applicability of the method. Graphs are plotted for the solutions of these problems to illustrate the effect of small shifts on the boundary layer solution.



1. Introduction
Singularly perturbed differential-difference equations (SPDDEs) arise very frequently in the mathematical modelling of real life situations in science and engineering [1–3]. In the mathematical modelling of a physical system as in control theory, the presence of small time parasitic parameters like moments of inertia, resistances, inductances, and capacitances increases the order and stiffness of these systems. The suppression of these small constants results in the reduction of the order of the system. Such systems are termed as singular perturbation systems and when these systems take into account the past history as well as the present state of the physical system then they are called singularly perturbed delay differential equations. Delay differential equations arise in first-exit time problems in neurobiology and in mathematical formulation of various practical phenomena in biosciences. A differential-difference equation with the presence of shift terms induces large amplitudes and exhibits oscillations, resonance, turning point behaviour, and boundary and interior layers. Hence, to control such behaviour, we need some simple and efficient numerical techniques.
Lange and Miura [3–7] published a series of papers extending the method of matched asymptotic expansions initially developed for ordinary differential equations to obtain approximate solution of singularly perturbed differential-difference equations.
Numerical analysis of singularly perturbed differential-difference turning point problems was initiated by Kadalbajoo and Sharma. In a series of papers, [8–10], they gave many robust numerical techniques for the solution of such type of problems. Kadalbajoo and Sharma [8] elucidate a numerical method to solve boundary value problems for singularly perturbed differential-difference equation with mixed shifts. Kadalbajoo and Sharma [9] proposed a numerical method to solve boundary value problems for a singularly perturbed differential-difference equation of a mixed type, that is, which contains both types of terms having negative shifts as well as positive shifts, and considered the case in which the solution of the problem exhibits rapid oscillations. Kadalbajoo and Sharma [10] described a numerical approach based on finite difference method to solve a mathematical model arising from a model of neuronal variability. Kadalbajoo and Kumar [11] used B-spline collocation method with fitted mesh for the solution of singularly perturbed differential-difference equations with small delay.
Patidar and Sharma [12] combined fitted-operator methods with Micken’s nonstandard finite difference techniques for the numerical approximations of singularly perturbed linear delay differential equations. Kadalbajoo et al. [13] derived -uniformly convergent fitted methods for the solution of singularly perturbed differential-difference equation (SPDDE). Kumar and Sharma [14] presented a numerical scheme based on B-spline collocation to approximate the solution of boundary value problems for singularly perturbed differential-difference equations with delay and advance.
With this motivation, an exponentially fitting factor is introduced in Galerkin method for the solution of singularly perturbed differential-difference equation with delay and advanced parameters. In Section 2, description of the problem is given. In Section 3, numerical scheme for the solution of the problem is presented and Section 4 deals with convergence analysis of the proposed scheme. To demonstrate the efficiency of the proposed method, numerical experiments are carried out for several test problems and the results are given in Section 5. Finally the conclusions are given in the last section.
2. Description of the Problem
Consider a linear singularly perturbed differential-difference equation of the following form:on (0, 1), under the boundary conditionsHere  is a small parameter such that , and  are smooth functions, and  are, respectively, the delay (negative shift) and the advance (positive shift) parameters. If , the solution of (1) with (2) exhibits layer at the left end of the interval and if , the layer exists at the right end of the interval.
Since the solution  of boundary value problem equations (1) and (2) is sufficiently differentiable, we expand the terms  and  using Taylor series; we getUsing (3) and (4) in (1), we getEquation (5) is an asymptotically equivalent second-order singular perturbation problem of (1) with boundary conditionsSince  and , the transition from (1) to (5) is admitted. This replacement is significant from the computational point of view. For more details on the validity of this transition, one can refer El’sgol’ts and Norkin [15]. Thus, the solution of (5) provides a good approximation to the solution of (1).
Here,
3. Numerical Scheme
3.1. Left-End Boundary Layer Problem
Let  be a decomposition of the considered interval  into  equal intervals with constant mesh length . Then we have the nodes , for . Assume that , and  are sufficiently continuously differentiable functions in . If  in  where  is a positive constant, (5) has a unique solution  which, in general, displays a boundary layer of width  at .
Lemma 1 (Doolan et al. [16] and O’Malley [17]).  Let  be the zeroth-order asymptotic approximation to the solution of (5), where  represents the zeroth-order approximate outer solution (i.e., the solution of the reduced problem of (5)) and  represents the zeroth-order approximate solution in the boundary layer region of (5). 
Then for a fixed positive integer ,
Proof. Let  be the solution of the reduced problem of (5)and  is the solution of the boundary value problem (cf. O’Malley [17])From the theory of singular perturbation, the zeroth-order asymptotic approximation to the solution of (4) is (cf. O’Malley [17])As we are considering the differential equations on sufficiently small subintervals, the coefficients could be assumed to be locally constant. Hence,So, at the nodal points, we havethat is,Thereforewhere .
Now, we consider the difference scheme [18] by Galerkin method as follows:
Select a set of basis functions , which will define an interpolation scheme for the approximate solution over a grid of points . For simplicity, we use piecewise Lagrange polynomials  of first degree as the basis functions. These interpolating polynomials arein local element coordinates .
The  nodal values of the approximate solution  at the interior nodes  are determined using this basis. The given boundary conditions determine the value of  at the end nodes  and . The Galerkin method is now employed to obtain the integral equations; we havewhich is an integral equation .
Since  is sum of piecewise linear Lagrange polynomials, the second-order derivatives appearing in (17) vanish except at the element boundaries , where they become infinite.
By integration by parts, (18) becomesUsing the substitution of trial function  into the integral equation (19), we havefor .
It can be observed that all quantities on the right side of (20) can be computed from known boundary data to obtain  equations in the  unknown values  at the interior nodes.
The integrals in (20) can be solved by taking advantage of local coordinate  system.
Sincewe have, by simple integration,By assuming , and  as constants, the integral equation (20) gives, for a typical internal node ,Equation (23), when rearranged, gives the following system of difference equations:Now, introduce a fitting factor  in the Galerkin scheme as follows:for with  Here  is a fitting factor which is to be determined in such a way that the solution of (25) converges uniformly to the solution of (5). Multiplying (25) by  and taking the limit as  (in [16]), we get Now, approximating the solution y(x) by zeroth-order asymptotic approximation  and using Lemma 1, we haveUsing the above equations in (27), we getFrom (25), we havefor .
Equation (30) can be written as a three-term recurrence relation as follows:whereThe tridiagonal system equation (31) is solved using Thomas algorithm.
3.2. Right-End Layer Problems
We now discuss the method for singularly perturbed two-point boundary value problems with right-end boundary layer of the underlying interval. Assume that , and  are sufficiently continuously differentiable functions in . Furthermore, assume that  in , where  is a negative constant. Under these assumptions, (5) has a unique solution  which, in general, displays a boundary layer of width  at .
Lemma 2.  Let  be the zeroth-order asymptotic approximation to the solution of (5), where  represents the zeroth-order approximate outer solution and  represents the zeroth-order approximate solution in the boundary layer region. 
Then for a fixed positive integer ,
Proof. The proof is based on asymptotic analysis (Doolan et al. [16] and O’Malley [17]) and is similar to the proof of Lemma 1.
Applying the same procedure as in Section 3 and using Lemma 2, we get the tridiagonal system equation (20) with fitting factor as
4. Convergence Analysis
Writing the tridiagonal system equation (31) in matrix-vector form, we getin which , is a tridiagonal matrix of order , withand  is a column vector with , where  with local truncation errorand 
We also havewhere  denotes the actual solution and  is the local truncation error.
From (35) and (38), we getThus, the error equation iswhere .
Let the th row elements sum of matrix  be ; then we haveWe can choose  sufficiently small so that the matrix  is irreducible and monotone. It follows that  exists and its elements are nonnegative.
Hence, from (40), we getAlso from the theory of matrices we havewhere  is  element of the matrix  for some  between 1 and .
Therefore,where . We define  and .
From (37), (40), (43), and (45), we getwhich impliesTherefore,that is, our method reduces to a first-order convergent for uniform mesh.
5. Numerical Examples
To demonstrate the applicability of the method, we have applied the method on four boundary value problems. These examples have been chosen because they have been widely discussed in literature and exact solutions are available for comparison.
The exact solution of the boundary value problem under the boundary conditionsiswhere , , ,
Example 1. Consider the model boundary value problem of the type given by (1)-(2) having the boundary layer at the left endwith boundary conditions , and , .
The maximum absolute errors are given in Tables 1 and 2 for different values of the delay and advanced parameters with perturbation parameter. The effect of the small parameters on the boundary layer solutions is shown in Figures 1 and 2.
Table 1: The maximum absolute errors in solution of Example 1.
	

	ε ↓						
	

	Present method , 
		0.03707062	0.01012487	0.00237565	0.0005848	0.00014565	3.6379e − 005
		0.06876102	0.04407092	0.02342131	0.00865832	0.002129327	0.00050922
		0.08556830	0.05231609	0.02808039	0.01392938	0.00720360	0.00356728
		0.08740211	0.05431975	0.03006119	0.01590962	0.00810919	0.00401592 
		0.08758721	0.05452232	0.03026147	0.01610995	0.00830856	0.00421487 
		0.08760574	0.05454260	0.03028152	0.01613000	0.00832852	0.00423478 
	

	Results in Kadalbajoo and Sharma [10]
		0.12011566	0.07181396	0.04482982	0.02694612	0.01516093	0.00775036
		0.18727108	0.10697821	0.05904116	0.30796891	0.01567964	0.00799076
		0.20429729	0.11915028	0.06879232	0.03655236	0.01893849	0.00963304
		0.20614146	0.12048418	0.06989944	0.03721375	0.01932774	0.00984236
		0.20632746	0.12061888	0.07001167	0.03728089	0.01936732	0.00986365
		0.20634608	0.12063236	0.07002291	0.03728761	0.01937129	0.00986578
	



Table 2: The maximum errors in solution of Example 1 with .
	

	 				
	

	Present method
	δ ↓	
	    0.00	0.03724038	0.00231155	0.00014202	8.8820e − 006
	    0.05	0.03707062	0.00237565	0.00014565	9.0928e − 006
	    0.09	0.03669100	0.00241210	0.00014764	9.2248e − 006
	η ↓	
	    0.00	0.03720017	0.00234619	0.00014399	8.9938e − 006
	    0.05	0.03707062	0.00237565	0.00014565	9.0928e − 006
	    0.09	0.03690625	0.00239551	0.00014675	9.1626e − 006
	

	Results in Kadalbajoo and Sharma [10]
	δ ↓	
	    0.00	0.09190267	0.03453494	0.01164358	0.00300463
	    0.05	0.10233615	0.03823132	0.01295871	0.00335137
	    0.09	0.11018870	0.04110846	0.01400144	0.00362925
	η ↓	
	    0.00	0.09720079	0.03640446	0.01229476	0.00317786
	    0.05	0.10233615	0.03823132	0.01295871	0.00335137
	    0.09	0.10632014	0.03965833	0.01348348	0.00349050
	







	
	
		
		
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 1: Numerical solution of Example 1 for different values of  with .






	
	
		
		
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 2: Numerical solution of Example 1 for different values of  with .


Example 2. Consider the boundary value problem having the boundary layer at the left endwith boundary conditions , and .
The maximum absolute errors are given in Table 3 for different values of  with the delay and advance parameter values . The effect of the small parameters on the boundary layer solutions is shown in Figures 3 and 4.
Table 3: The maximum errors in solution of Example 2.
	

	ε ↓						
	

	Present method , 
		0.00470784	0.00123359	0.00029344	7.2455e − 005	1.8125e − 005	4.5281e − 006
		0.01585466	0.00697845	0.00240001	0.00093287	0.00024806	5.8741e − 005
		0.01910533	0.01015879	0.00512445	0.00244082	0.00105444	0.00037664
		0.01944288	0.01049291	0.00545649	0.00277170	0.00138358	0.00067752 
		0.01947677	0.01052645	0.00548983	0.00280492	0.00141674	0.00071065 
		0.01948016	0.01052981	0.00549316	0.00280824	0.00142006	0.000713967 
	

	Results in Kadalbajoo and Sharma [10]
		0.08579690	0.05129568	0.03202130	0.01924723	0.01098354	0.00553597
		0.13376506	0.07641301	0.04217226	0.02199778	0.01119974	0.00570769
		0.14592663	0.08510734	0.04913737	0.02610883	0.01352749	0.00688074
		0.14724390	0.08606013	0.04992817	0.02658125	0.01380553	0.00703026
		0.14737676	0.08615634	0.05000834	0.02662921	0.01383380	0.00704546
		0.14739006	0.08616597	0.05001637	0.02663401	0.01383663	0.00704699
	







	
	
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 3: Numerical solution of Example 2 for different values of  with .






	
	
		
		
			
		
		
			
		
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 4: Numerical solution of Example 2 for different values of  with .


Example 3. Consider the boundary value problem of the type given by (1)-(2) having the boundary layer at the right end with boundary conditions , and .
The maximum absolute errors are given in Table 4 with  for different values of the delay and advance parameters. The effect of the small parameters on the boundary layer solutions is shown in Figures 5 and 6.
Table 4: The maximum errors in solution of Example 3 with .
	

	 				
	

	Present method
	δ ↓	
	    0.00	0.031377538	0.001800241	0.000112071	7.0036e − 006
	    0.05	0.029748010	0.001700026	0.000105418	6.5860e − 006 
	    0.09	0.028294285	0.001611053	9.9793e − 005	6.2344e − 006 
	η ↓	
	    0.00	0.027910529	0.001587651	9.8361e − 005	6.1442e − 006
	    0.05	0.029748010	0.001700026	0.000105418	6.5860e − 006 
	    0.09	0.031068500	0.001781207	0.000110800	6.9223e − 006 
	

	Results in Kadalbajoo and Sharma [10]
	δ ↓	
	    0.00	0.09930002	0.03685072	0.01331683	0.00342882
	    0.05	0.09997296	0.03218424	0.01167102	0.00299572
	    0.09	0.10044578	0.02850398	0.01038902	0.00266379
	η ↓	
	    0.00	0.10055269	0.02759534	0.01007834	0.00258299
	    0.05	0.09997296	0.03218424	0.01167102	0.00299572
	    0.09	0.09944067	0.03591410	0.01297367	0.00334044
	







	
	
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 5: Numerical solution of Example 3 for different values of  with .






	
	
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
		
		
			
		
			
		
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 6: Numerical solution of Example 3 for different values of  with .


Example 4. Consider the boundary value problem having the boundary layer at the left end with boundary conditions , and .
The maximum absolute errors are given in Table 5 and Table 6 for different values of delay and advanced parameters with perturbation parameter. The effect of the small parameters on the boundary layer solutions is shown in Figures 7 and 8.
Table 5: The maximum errors in solution of Example 4.
	

	ε ↓						
	

	, 
		0.02753382	0.00616170	0.00156771	0.00038927	9.7155e − 005	2.4278e − 005
		0.09909124	0.05582849	0.02171656	0.00554645	0.00131747	0.00032522 
		0.10181648	0.06264442	0.03547474	0.01902508	0.00950250	0.00372083
		0.10207612	0.06281638	0.03556178	0.01906740	0.00989895	0.00504914 
		0.10210236	0.06283382	0.03557070	0.01907016	0.00989794	0.00504604 
		0.10210499	0.06283557	0.03557159	0.01907044	0.00989798	0.00504673 
	



Table 6: The maximum errors in solution of Example 4 with .
	

	 				
	

	δ ↓	
	    0.00	0.025347510	0.001425327	8.9204e − 005	5.5742e − 006
	    0.05	0.027533826	0.001567710	9.7155e − 005	6.0690e − 006
	    0.09	0.028669770	0.001645550	0.000102186	6.3826e − 006 
	

	η ↓	
	    0.00	0.026174618	0.001478341	9.2083e − 005	5.7527e − 006
	    0.05	0.027533826	0.001567710	9.7155e − 005	6.0690e − 006
	    0.09	0.028348272	0.001623113	0.00010057	6.2854e − 006 
	







	
	
		
		
			
		
		
			
		
		
		
			
		
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
	


Figure 7: Numerical solution of Example 4 for different values of  with .






	
	
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 8: Numerical solution of Example 4 for different values of  with .


6. Discussion and Conclusion
An exponentially fitted Galerkin method has been presented for solving singularly perturbed differential-difference equations with delay as well as advance parameters. To demonstrate the applicability of the method, three examples with left-end and one with right-end boundary layer have been solved for different values of the delay, advance, and perturbation parameters. The numerical results are taken by using MATLAB coding and solutions have been compared with the exact solutions and maximum absolute errors are presented in tables. To show the efficiency of the method, we have compared results of the proposed scheme with the results of Kadalbajoo and Sharma [10]. The rate of convergence in the examples is given in Table 7. It is observed that the present method approximates the exact solution very well for which other classical finite difference methods fail to give good results. The effect of the delay and advance parameters on the solutions has also been investigated and presented by using graphs. When the solution of the boundary value problem exhibits layer behaviour on the left side, the effect of delay or advance on the solution in the boundary layer region is negligible while, in the outer region, it is considerable and the change in the advance affects the solution in similar fashion; that is, the width of the layer in the outer region increases as the advance parameter increases and decreases as the delay increases, but reversely (Figures 1–4). When the solution of the boundary value problem exhibits layer behaviour on the right side, the changes in delay or advance affect the solution in boundary layer region as well as outer region. The thickness of the layer increases as the size of the delay increases while it decreases as the size of the advance increases (Figures 5 and 6).
Table 7: The rate of convergence of the examples with  and .
	

	ε ↓					
	

	Example 1
		0.6418	0.9120	1.4357	2.0237	2.0640
		0.7098	0.8977	1.0114	0.9513	1.0139
		0.6862	0.8536	0.9180	0.9723	1.0138
		0.6839	0.8494	0.9095	0.9553	0.9791
		0.6836	0.8489	0.9087	0.9536	0.9758
	

	Example 2
		1.1839	1.5399	1.3633	1.9110	2.0782
		0.9112	0.9873	1.0700	1.2109	1.4852
		0.8898	0.9434	0.9772	1.0024	1.0301
		0.8877	0.9392	0.9688	0.9854	0.9954
		0.8875	0.9388	0.9680	0.9837	0.9920
	

	Example 3
		1.1839	1.5398	1.3633	1.9112	2.0779
		0.9112	0.9872	1.0700	1.2109	1.4853
		0.8898	0.9433	0.9771	1.0024	1.0300
		0.8877	0.9391	0.9688	0.9854	0.9954
		0.8875	0.9387	0.9679	0.9837	0.9920
	

	Example 4
		0.8278	1.3622	1.9692	2.0738	2.0183
		0.7007	0.8204	0.8989	1.0015	1.3527
		0.7004	0.8208	0.8992	0.9458 	0.9712
		0.7004	0.8209	0.8994	0.9461	0.9720
		0.7004	0.8209	0.8994	0.9461	0.9718
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