Research Article
On Self-Centeredness of Product of Graphs

Priyanka Singh and Pratima Panigrahi

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Correspondence should be addressed to Priyanka Singh; priyankait22@gmail.com

Received 4 April 2016; Revised 28 June 2016; Accepted 12 July 2016

Academic Editor: Laszlo A. Szekely

Copyright © 2016 P. Singh and P. Panigrahi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A graph G is said to be a self-centered graph if the eccentricity of every vertex of the graph is the same. In other words, a graph is a self-centered graph if radius and diameter of the graph are equal. In this paper, self-centeredness of strong product, co-normal product, and lexicographic product of graphs is studied in detail. The necessary and sufficient conditions for these products of graphs to be a self-centered graph are also discussed. The distance between any two vertices in the co-normal product of a finite number of graphs is also computed analytically.

1. Introduction

The concept of self-centered graphs is widely used in applications, for example, the facility location problem. The facility location problem is to locate facilities in a locality (network) so that these facilities can be used efficiently. All graphs in this paper are simple and connected graphs. The distance between two vertices u and v in a graph G, denoted by d_{G}(u,v) (or simply d(u,v)), is the minimum length of u-v path in the graph. The eccentricity of a vertex v in G, denoted by ecc_{G}(v), is defined as the distance between v and a vertex farthest from v; that is, ecc_{G}(v) = max{d_{G}(v,u): u \in V(G)}. The radius rad(G) and diameter diam(G) of the graph G are, respectively, the minimum and maximum eccentricity of the vertices of graph G; that is, rad(G) = min{ecc(v): v \in V(G)} and diam(G) = max{ecc(v): v \in V(G)}. The center C(G) of graph G is the induced subgraph of G on the set of all vertices with minimum eccentricity. A graph G is said to be a self-centered graph if the eccentricity of every vertex is the same; that is, C(G) = G or rad(G) = diam(G). If the eccentricity of every vertex is equal to d, then G is called d-self-centered graph.

For any kind of graph product G of the graphs G_{1}, G_{2}, \ldots , G_{n}, the vertex set is taken as V(G) = \{(x_{1},x_{2},\ldots ,x_{n}): x_{i} \in V(G_{i})\}. Because of their adjacency rules, product names are different. Let x = (x_{1},\ldots ,x_{n}) and y = (y_{1},\ldots ,y_{n}) be two vertices in V(G). Then the product is called

(i) Cartesian product, denoted by G = G_{1}\square G_{2}\square \cdots \square G_{n}, where x \sim y if and only if x_{i}y_{i} \in E(G_{i}) for exactly one index i, 1 \leq i \leq n, and x_{j} = y_{j} for each index j \neq i,

(ii) strong product, denoted by G = G_{1} \boxtimes \cdots \boxtimes G_{n}, where x \sim y if and only if x_{i}y_{i} \in E(G_{i}) or x_{i} = y_{i}, for every i, 1 \leq i \leq n,

(iii) lexicographic product, denoted by G = G_{1} \circ \cdots \circ G_{n}, where x \sim y if and only if, for some j \in \{1,2,\ldots ,n\}, x_{j}y_{j} \in E(G_{j}) and x_{i} = y_{i} for each 1 \leq i < j,

(iv) co-normal product, denoted by G = G_{1} \star G_{2} \star \cdots \star G_{n}, where x \sim y if and only if x_{i} \sim y_{i} for some i \in \{1,2,\ldots ,n\}.

Self-centered graphs have been broadly studied and surveyed in [1–3]. In [4], the authors described several algorithms to construct self-centered graphs. Stanic [5] proved that the Cartesian product of two self-centered graphs is a self-centered graph. Inductively, one can prove that Cartesian product of n-self-centered graphs is also a self-centered graph.

In this paper, we find conditions for self-centeredness of strong product, co-normal product, and lexicographic product of graphs.

2. Main Results

In this section, we will discuss the self-centeredness of different types of product graphs. As mentioned before, all graphs
considered here are simple and connected. The following result is given by Stanić [5].

Theorem 1. If G_1 and G_2 are m- and n-self-centered graphs, respectively, then $G_1 \Box G_2$ is $(m+n)$-self-centered graph. Reciprocally, if $G_1 \Box G_2$ is self-centered, then both graphs G_1 and G_2 are self-centered.

By method of induction, one can extend the above theorem and get the result given below.

Theorem 2. Let $G = G_1 \Box G_2 \Box \cdots \Box G_n$ be the Cartesian product of graphs G_1, G_2, \ldots, G_n. If every G_i is d_i-self-centered graph, then G is m-self-centered graph, where $m = \sum_{i=1}^n d_i$, $1 \leq i \leq n$. Conversely, if G is a self-centered graph, then every G_i is a self-centered graph.

Next we will discuss self-centeredness of strong product of graphs.

Theorem 3. Let $G = G_1 \boxtimes \cdots \Box G_n$ be the co-normal product of graphs G_1, G_2, \ldots, G_n. Then G is d-self-centered graph if and only if, for some $k \in \{1, \ldots, n\}$, G_k is d-self-centered graph and $\text{diam}(G_k) \leq d$ for every i, $1 \leq i \leq n$.

Proof. For any two vertices $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$, the distance between x and y is given in [6]:

$$d(x, y) = \max_{1 \leq i < n} \{d_{G_i}(x_i, y_i)\}.$$ \hfill (1)

Now, the eccentricity of any vertex x of G is given by

$$\text{ecc}(x) = \max \{d(x, y) : y \in V(G)\}.$$ \hfill (2)

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.

First, let G_k be d-self-centered graph for some $k \in \{1, 2, \ldots, n\}$ and $\text{diam}(G_k) \leq d$ for all i, $1 \leq i \leq n$. Since G_k is d-self-centered, $\text{ecc}(x_k) = d$ and there exists some y_k in G_k such that $d(x_k, y_k) = d$. As $\text{diam}(G_k) \leq d$ for all i, $1 \leq i \leq n$, the distance between any two vertices in any G_i cannot exceed d. Hence, $\text{ecc}(x) = d$ for all $x \in V(G)$ and thus G is d-self-centered graph.

Conversely, let G be a d-self-centered graph. If, for some $l \in \{1, \ldots, n\}$, $\text{diam}(G_l) = d_l > d$, then there exist vertices x_l and y_l in G_l such that $d(x_l, y_l) = d_l$. Now for $x = (x_1, \ldots, x_l, x_{l+1}, \ldots, x_n)$ and $y = (y_1, \ldots, y_l, y_{l+1}, \ldots, y_n)$ in $V(G)$, $d(x, y) \geq d(x_l, y_l) = d_l > d$ and so $\text{ecc}(x) \geq d_l > d$. This contradicts the fact that G is d-self-centered graph and thus it is proven that $\text{diam}(G_k) \leq d$ for all i. Now, our claim is that there exists $k \in \{1, \ldots, n\}$ such that G_k is d-self-centered graph. On the contrary, suppose that none of G_i is d-self-centered graph. Then there exist vertices $x_l \in V(G_l)$ for all i such that $\text{ecc}(x_l) = d_l < d$. Let $x = (x_1, \ldots, x_n)$. Then $\text{ecc}(x) = \max_{1 \leq i \leq n} \{d_i\} < d$, which contradicts the fact that G is d-self-centered graph.

In the following lemma, we determine the formula for the distance between two vertices in the co-normal product of a finite number of graphs.

Lemma 4. Let $G = G_1 \ast G_2 \ast \cdots \ast G_n$ be the co-normal product of graphs G_1, G_2, \ldots, G_n. The distance between $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in G is

$$d(x, y) = \begin{cases} 1 & \text{if } x_i \sim y_i \text{ for some } i \in \{1, 2, \ldots, n\} \\ d(x_l, y_l) & \text{if } G_l = K_1, \forall j \neq i \\ 2 & \text{if } x + y, x_i \neq y_i \text{ for exactly one index } l \text{ and } G_j \neq K_1 \text{ for some } j \neq l \\ 2 & \text{if } x + y \text{ and } \exists \text{ at least two indices } k, l \text{ s.t. } x_k \neq y_k \text{ and } x_l \neq y_l. \end{cases}$$ \hfill (3)

Finally, consider the case, where, for at least two indices k and l, $x_k \neq y_k$ and $x_l \neq y_l$; that is, for at least two indices k and l, $G_k \neq K_1$ and $G_l \neq K_1$. Since $x + y$, $x_k + y_k$, and $x_l + y_l$, then from the connectivity of graphs G_k and G_l there exist vertices $z_k \in V(G_k)$ and $z_l \in V(G_l)$ such that $z_k \sim x_k$ in G_k and $z_l \sim y_l$ in G_l. Then we have a vertex $z = (z_1, \ldots, z_k, z_l, \ldots, z_n) \in V(G)$ such that $x \sim z$ and $z \sim y$. Thus xzy will be an x-y path of length two and this proves that $d(x, y) = 2$.

The following theorem gives necessary and sufficient conditions for a co-normal product of graphs to be a self-centered graph.
Theorem 5. Let $G = G_1 \ast G_2 \ast \cdots \ast G_n$ be the co-normal product of graphs G_1, G_2, \ldots, G_n with $|V(G_i)| = n_i$. Then the following hold:

(i) Let $G_i \neq K_1$ and $G_j = K_1$ for all $j \neq i$. Then G is d-self-centered graph if and only if G_i is d-self-centered graph.

(ii) Let there be at least two values of i such that $G_i \neq K_1$. Then G is 2-self-centered graph if and only if there exists an index l such that $\Delta(G_l) \neq n_l - 1$, where $\Delta(G)$ is the maximum degree of a vertex in G.

Proof. (i) The result is true because G is isomorphic to G_i in this case through the isomorphism

$$f : V(G) \longrightarrow V(G_i)$$

with $f(x_1, \ldots, x_n) = x_i$.

(ii) Let G be a 2-self-centered graph. If, for all the indices i, $\Delta(G_i) = n_i - 1$, then there are vertices $x_j \in V(G_i), 1 \leq j \leq n$, such that $\deg(x_j) = n_j - 1$. Now, the vertex $x = (x_1, x_2, \ldots, x_n)$, ecc$(x) = 1$, which contradicts the fact that G is 2-self-centered graph. Hence there exists an index l such that $\Delta(G_l) \neq n_l - 1$.

Conversely, let there be an index l such that $\Delta(G_l) \neq n_l - 1$. Then for any vertex $x = (x_1, x_2, \ldots, x_l, x_{l+1}, \ldots, x_n)$ in G there exists another vertex $y = (y_1, y_2, \ldots, y_l, y_{l+1}, \ldots, y_n)$, where $y_j \in V(G_l)$ and $x_j \neq y_j$. Since $x \neq y$, from the third option of the distance formula given in Lemma 4, ecc$(x) = 2$. Since x is an arbitrary vertex, G is 2-self-centered graph. \qed

Theorem 6. Let $G = G_1 \ast G_2 \ast \cdots \ast G_n$ be the lexicographic product of graphs G_1, G_2, \ldots, G_n and let $k \geq 1$ be the smallest index for which $G_k \neq K_1$. If G_k is a d-self-centered graph, where $d \geq 2$, then G is d-self-centered graph. The converse is true for $d \geq 3$.

Proof. For vertices $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ of G, the following distance formula is due to Hammack et al. [6]:

$$d(x, y) = \begin{cases} d_{G_1}(x_1, y_1) & \text{if } x_i \neq y_i \\ d_{G_k}(x_r, y_r) & \text{if } d_{G_i}(x_i) = 0 \forall 1 \leq i < l \\ \min \{d_{G_i}(x_i, y_i), 2\} & \text{if } d_{G_i}(x_i) \neq 0 \text{ for some } 1 \leq i < l, \end{cases}$$

where i is the smallest index for which $x_i \neq y_i$.

Let $|V(G_i)| = 1$ for $i = 1, 2, \ldots, k - 1$ and let G_k be d-self-centered graph, where $d \geq 2$. First let $k = 1$. Since $|V(G_1)| > 1$, G_1 is connected and degree of no vertex in G_1 is zero; then the second option in the distance formula will not arise. Then the above formula to calculate the distance reduces to

$$d(x, y) = \begin{cases} d_{G_i}(x_1, y_1) & \text{if } i = 1 \\ \min \{d_{G_i}(x_i, y_i), 2\} & \text{if } i \geq 2, \end{cases}$$

where i is the smallest index for which $x_i \neq y_i$. For $i \geq 2$, let $r = \min\{d_{G_i}(x_i, y_i), 2\}$. Then $r \leq 2$. Since $d \geq 2$, we get $r \leq d$. Now, for $x' \in V(G)$,

$$\text{ecc}(x) = \max \{d(x, y) : y \in V(G)\} = \max \{d_{G_i}(x_1, y_1), r : y_1 \in V(G_i)\}$$

$$= d,$$

because ecc$(x_1) = d$ and there exists $y_1 \in G_1$ such that $d(x_1, y_1) = d$. This proves that ecc$(x) = d$ for all $x \in V(G)$ and hence G is a d-self-centered graph.

Next, let $k > 1$. Since $|V(G_1)| = 1$, there is no $y_1 \in G_1$ such that $x_1 \neq y_1$. So, first option in the distance formula will not arise. Since the degree of the vertex in G_i for $j = 1, 2, \ldots, k - 1$ is zero, if $i = k$ in the above distance formula then $d(x, y) = d_{G_k}(x_k, y_k)$. Since $G_k \neq K_1$ and is connected $\deg(x_k) \neq 0$. So if $i \geq k + 1$ in the above formula, $d(x, y) = \min\{d_{G_i}(x_i, y_i), 2\}$ and thus the above formula to calculate the distance reduces to

$$d(x, y) = \begin{cases} d_{G_i}(x_i, y_k) & \text{if } i = k \\ \min \{d_{G_i}(x_i, y_k), 2\} & \text{if } i \geq k + 1, \end{cases}$$

where i is the smallest index for which $x_i \neq y_i$. For $i \geq k + 1$ let $r_1 = \min\{d_{G_i}(x_i, y_i), 2\}$. Then $r_1 \leq 2$. Since $d \geq 2$, we get $r_1 \leq d$. Thus, for any vertex $x \in V(G)$, we have

$$\text{ecc}(x) = \max \{d(x, y) : y \in V(G)\} = \max \{d_{G_i}(x_k, y_k), r_1 : y_k \in V(G_k)\}$$

$$= d.$$
of graphs K_2, P_4, and K_2 is shown in Figure 1. One can check that the eccentricity of every vertex of G is two and hence G is a 2-self-centered graph. However, G_1 is not a 2-self-centered graph.

In the theorem below, we present the general version of the 2-self-centered product graphs included in the previous example.

Theorem 8. Let $G = G_1 \circ G_2 \circ \cdots \circ G_n$ be the lexicographic product of graphs G_1, G_2, \ldots, G_n with $|V(G_i)| = n_i$, let G_k be 1-self-centered graph for some $k \in \{1, \ldots, n-1\}$, and let G_i (if it exists) be K_1 for all $i < k$. Then G is a 2-self-centered graph if and only if $\Delta(G_j) \neq n_j - 1$ for some $j \geq k + 1$.

Proof. First let G be a 2-self-centered graph. It is given that, for some $k \in \{1, \ldots, n-1\}$, G_k is 1-self-centered graph and let G_i be K_1 for all $i < k$. Our claim is that $\Delta(G_j) \neq n_j - 1$ for some $j \geq k + 1$. On the contrary, let $\Delta(G_j) = n_j - 1$ for all $j \geq k + 1$. Then there are vertices $g_i \in G_i$ such that $ecc(g_i) = 1$ for every $i, k \leq i \leq n$. Now, by using above distance formula, for every $x = (x_1, \ldots, x_{k-1}, g_k, \ldots, g_n)$ in G, one gets $ecc(x) = 1$. This contradicts the fact that G is a 2-self-centered graph.

Conversely, let $\Delta(G_l) \neq n_l - 1$ for some $l \geq k + 1$. Then for any vertex $x_l \in G_l$ there exists $y_l \in G_l$ such that $x_l \sim y_l$. For any vertex $x = (x_1, \ldots, x_{k-1}, x_k, \ldots, x_n)$ there exists a vertex $y = (x_1, \ldots, x_{k-1}, y_k, \ldots, x_n)$ such that $x \sim y$. So, $ecc(x) \geq 2$. Since $G_l = K_1$ for all $i < k$ (if any), the distance formula will be

$$d(x, y) = \begin{cases} d_{G_i}(x_i, y_i) & \text{if } i = k \\ \min\{d_{G_i}(x_i, y_i), 2\} & \text{if } i \geq k + 1, \end{cases}$$

(11)

where i is the smallest index for which $x_i \neq y_i$. Since G_i is a 1-self-centered graph, $d_{G_i}(x_i, y_i) = 1$ if $i = k$. Also, for $i \geq k + 1$, $\min\{d_{G_i}(x_i, y_i), 2\} \leq 2$. Thus eccentricity of no vertex is more than two and we get $ecc(x) = 2$ for every $x \in G$. Hence G is a 2-self-centered graph.

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

References

