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Abstract. 
This article is concerned with the study of the theory of basic sets in Fréchet modules in Clifford analysis. The main aim of this account, which is based on functional analysis consideration, is to formulate criteria of general type for the effectiveness (convergence properties) of basic sets either in the space itself or in a subspace of finer topology. By attributing particular forms for the Fréchet module of different classes of functions, conditions are derived from the general criteria for the convergence properties in open and closed balls. Our results improve and generalize some known results in complex and Clifford setting concerning the effectiveness of basic sets.



1. Introduction
The theory of bases in function spaces plays an important role in mathematics and its applications, for example, in approximation theory, partial differential equations, geometry, and mathematical physics.
The subject of basic sets of polynomials in one complex variable, in its classical form, was introduced by Whittaker [1, 2] who laid down the definition of basic sets, basic series, and effectiveness of basic sets. Many well-known polynomials such as Laguerre, Legendre, Hermite, Bernoulli, Euler, and Bessel polynomials form simple bases of polynomials (see [3–7]). A significant advance was contributed to the subject by Cannon [8, 9] who obtained necessary and sufficient conditions for the effectiveness of basic sets for classes of functions with finite radius of regularity and entire functions.
The theory of basic sets of polynomials can be generalized to higher dimensions in several different ways, for instance, to several complex variables or to hypercomplex analysis.
The theory of basic sets of polynomials in several complex variables was developed at the end of the 1950s by Mursi and Maker [10] and later by Nassif [11] and was studied in more detail afterwards by others (c.f [12–15]). Also, the representation of matrix functions by bases of polynomials has been studied by Makar and Fawzy [16]. For more information about the study of basic sets of polynomials in complex analysis, we refer to [17–20].
In theory of basic sets of polynomials in hypercomplex analysis, Abul-Ez and Constales gave in [21, 22] the extension of the theory of bases of polynomials in one complex variable to the setting of Clifford analysis. This is the natural generalization of complex analysis to Euclidean space of dimension larger than two, where the holomorphic functions have values in Clifford algebra and are null solutions of a linear differential operator. An important subclass of the Clifford holomorphic functions called special monogenic functions is considered, for which a Cannon theorem on the effectiveness in closed and open ball [21, 23] was established. Many authors studied the basic sets of polynomials in Clifford analysis [24–30].
In [31], Adepoju laid down a treatment of the subject of basic sets of polynomials of a single complex variable in Banach space which is based on functional analysis considerations. Also, the authors in [12, 32] studied the basic sets of polynomials of several complex variables in Banach space.
We shall lay down in this paper a treatment of the subject of basic sets based primarily on functional analysis and Clifford analysis. The aim of this treatment is to construct a criterion, of general type, for effectiveness of basic sets in Fréchet modules. By attributing particular forms to these Fréchet modules, we derive, in the remaining articles of the present paper, from the general criterion of effectiveness already obtained, particular conditions for effectiveness in the different forms of the regions which are relevant to our subsequent work. Thus, effectiveness in open and closed balls is studied. In addition, we give some applications of the effectiveness of basic sets of polynomials in approximation theory concerned with(1)the expansion of Clifford valued functions in closed and open ball by infinite series in a given sequence of basic sets,(2)the expansion of Clifford valued functions in closed and open ball by infinite series in a given sequence of Cannon sets of special monogenic polynomials.
 These new results extend and generalize the known results in complex and Clifford setting given in [12, 21, 23, 31, 32].
2. Notation and Preliminaries
In order to introduce our results, we give several notations and assumptions.
Let us denote by  the canonical basis of the Euclidean vector space  and by  the associated real Clifford algebra in which one has the multiplication rules ,  , where  denotes the Kronecker symbol.
A vector space basis for the Clifford algebra  is given by the set  with ,  , and . Every  can be written in the form  with . The conjugate element of  is defined by , where , , and .
We denote also by  the space of paravectors . In this notation, the paravector  will be represented in the form  with  being the scalar part and  being the vector part of . The induced Clifford norm of arbitrary  is given by .
Some care must be taken when using this norm to estimate product. We will always use the formula .
One useful approach to generalize complex analysis to higher dimensional spaces is the Cauchy-Riemann approach which is based on the consideration of functions that are in the kernel of the generalized Cauchy-Riemann operator  in  (for more details, see [33, 34]).
Definition 1 (unitary right -module). A unitary right -module  is an abelian group  with a mapping ;  such that for all  and :(i).(ii).(iii).(iv).
Remark 2. Notice that  becomes a real vector space if  is identified with .
In the following, all -modules will be right -modules.
Definition 3 (-linear operator). Let  and  be two unitary -modules. Then a function  is said to be an -linear operator if, for all  and ,  The set of all -linear operators from  into  is denoted by .
Definition 4 (proper system of seminorms). Let  be a unitary -module. Then a family  of functions  is said to be a proper system of seminorms on  if the following conditions are fulfilled:There exists a constant  such that, for all ,  and :(i).(ii), and  if For any finite number , there exist  and  such that, for all , If  for all  then 
Definition 5 (Fréchet module). A Fréchet module  over  is a Hausdorff space with a countable proper system of seminorms  satisfying(i);  ,(ii)a subset  of  is open if, , there exist  and  such that (iii) is complete with respect to this topology. We denote by  the topology defined by the family  of seminorms on .
Definition 6 (convergent sequences in the topology ). The sequence  of elements of  converges in the topology  to the element  of , if and only if, for all , we haveWe may also equivalently say that the sequence  converges in  to  with respect to .
It is a familiar property for the Fréchet module  that a seminorm  on  is -continuous, if and only if there is a seminorm  and a positive finite constant  such that
It is also known that a linear operator  on  is continuous if and only if there is a seminorm  and a constant  such that
3. Basis and Absolute Basis
Definition 7 (basis for Fréchet module ). Let  be a Fréchet module over . A sequence  of nonzero elements of  is called a basis for  if, for each element , there is one and only one sequence  of the Clifford algebra , such that
Definition 8 (Cauchy’s inequality). We shall assume that Cauchy’s inequality holds for the basis  in the form that for each  there is a positive finite constant  such thatfor all integers  and for all .
Also, the nature of the problems considered here necessitates that whenever , there is a finite positive constant , such that
Definition 9 (absolute basis for Fréchet module ). The basis  is called an absolute basis for  if the series is convergent in  for all integers  and for all . Thus, in this case, we can write
We start with the following introductory theorems.
Theorem 10.  If  is a basis for  and if Cauchy’s inequality (8) is satisfied, then  is a continuous linear operator on , orthonormal to .
Proof. It easily follows from the uniqueness of representation (7) that if  and , then so that  is a linear operator on . Also, putting  in (7), it can be verified thatand  is orthonormal to .
We deduce the continuity of  from (6) and (8).
Theorem 11.  Let  be an absolute basis for  and let  be given by (11). Then the family  forms a proper system of continuous seminorms. Moreover, for , there exists a constant  such thatfor all .
Proof. Firstly, we prove that the family  is a proper system of seminorms as follows.
 We observe, from the linearity of  and properties (i) and (ii) of seminorms, that whenever  and 
   Let  be defined by (11). Since  is a proper system of seminorms, then there exist  and  such that, for all ,  Suppose that ; then . Since  is a proper system of seminorms and  is a basis, for each  there exists  such that . So  for all  and hence (7) implies that 
Finally, when , inequality (14) can be obtained from (8), (9), and (11) as follows:It follows from condition (5) that the seminorm  is continuous on . Therefore the family  forms a proper system of continuous seminorms, as required.
4. Basic Sets
In this section, we lay down the definition of basic sets, basic coefficients, and basic series and show (in Theorem 13) that when the basic series converges, it will converge to the element with which it is associated.
Let  be a sequence of nonzero elements of , and suppose that  is a matrix of coefficients in the Clifford algebra  such that, for each , we have the unique representationIn this case, we shall call the sequence  a basic set on .
Let  be any element of  and substitute (18) in (7) to obtain the formal serieswhereWhen series (20) converges in ,  exists and is called the th basic coefficient of  relative to the set . When the basic coefficient  exists for all , series (19) is called the basic series associated with .
The following theorem is concerned with the basic coefficients 
Theorem 12.  If  is defined for all  in , the map  is a continuous linear operator on .
Proof. Let  It is clear that  is a continuous linear operator on  as a finite sum of continuous linear functional .
Now, if  is defined for all  in , the sequence  converges pointwise to  in . Therefore, by the Banach-Steinhaus theorem for Fréchet space [35], we deduce that  is equally a continuous linear operator on , and the theorem is established.
We now writefor the th partial sum of basic series (19). The following theorem establishes the required conformity of the limit of  with the space .
Theorem 13.  If, for every ,  is defined for all  and if the sequence  converges in  to some limit , then  for all elements .
Proof. We prove that  is a continuous linear operator on  as a limit of finite sum of continuous linear operators as in Theorem 12.
Now, it can be proven, from (13) and (20), that  Hence, (18) and (22) together yieldLet  be any element of  and writeThen, in view of (24) and (25), we haveand, by continuity of , we deduce that  and Theorem 13 is therefore established.
5. Effectiveness of Basic Sets
We have seen that when  converges for each  of ,  converges to . This means that basic series (19) associated with the element  converges to  itself for all . In this case, we say that the set  is effective for . To find a necessary and sufficient condition for the effectiveness of a basic set  for the space , we consider, for each seminorm , the mapping  defined bySuppose that  is finite for all . We first show that  is a seminorm on .
Let  and ; it follows from (27) and the linearity of  that 
The first result concerning the effectiveness of basic set  is the following theorem.
Theorem 14.  For  to be effective for , it is necessary and sufficient that, for each , the seminorm  exist and be continuous.
Proof.   
Necessity. When the basic set  is effective for , basic series (19) associated with each element  converges to , and it follows that  is a continuous linear operator on .
Therefore, if we write then from (27) we shall have If , then  Then for every  there exists a natural number , such that if , then  Hence, we have If  with fixed , then  Hence, for some , there is  such that, for all  and , This shows that the seminorm  exists.
Now, to prove the continuity of , let  be a sequence in  which converges to an element . By this hypothesis, if , there exists a natural number  such that if , then 
Hence, if , it follows that if , then Thus  and  is a continuous seminorm on .
Sufficiency. We observe from (22) and (27) that Since  is continuous on , we deduce that the sequence  is an equicontinuous sequence on .
Now define the subspace  of  by It follows from the equicontinuity of  that the set  is closed. Hence, the set  is everywhere dense and is closed, so that . Therefore  is a Cauchy sequence on  and since  is complete, the sequence  converges for all  and hence it converges to  in . Thus, the set  is effective for  and Theorem 14 is established.
Theorem 15.  Suppose that  is an absolute basis for . Then the basic set  will be effective for  if and only if, for any continuous seminorm , there is a continuous seminorm  and a positive finite number  such that
Proof.   
Necessity. If the basic set  is effective for , then, by Theorem 14, the application  is a continuous seminorm on . Hence, by (5), there is a seminorm  and a positive number  such that Putting ,  , we obtain (36).
Sufficiency. Multiplying the basic coefficient  of (20) by  and using (11), (27), and (36), we obtain where  is defined by (11). According to inequality (14), there is a seminorm  and a positive number  such that It follows from condition (5) that  is continuous on . Then, by Theorem 14, we deduce that the set  is effective for  and the proof of Theorem 15 is therefore terminated.
6. Alternative Treatment of the Problem
In this treatment, we consider the Fréchet module  as a subspace of a Banach module  with a continuous norm  such thatwhere  is the family of seminorms defined, as before, in the space . Thus, the topology induced in  by the topology  of  determined by the norm  is coarser than the topology  defined on  by the family  of seminorms.
Let  be a basis for  and let  be a sequence of nonzero elements of . We suppose that  is a matrix of  such that, for each , we have the unique representationand the convergence is in . In this case, we call the sequence  a basic set on . Let  be an element of  and substitute (41) in (7) to obtain the formal serieswhere
When series (43) converges in , we call  the basic coefficient of , and when  exists for each , series (42) is called the basic series of . Recall that the partial sum  is defined (see (22)) byTheorem 12 remains unchanged, while the alternative form of Theorem 13 is the following.
Theorem 16.  If, for every ,  is defined for all  and if the sequence  converges in  to some element , then  for all elements .
Proof. We prove, as before, that, for each integer ,  is a linear operator from  to . We show now that  is continuous. In fact, if  is a sequence of elements of  converging to an element  of , it can be deduced from (40) and (44) and Theorem 12 that Hence  converges to  in  and hence  is a continuous linear operator. Proceeding exactly as in the proof of Theorem 13, we can deduce that  is a continuous linear operator.
Now, set . It is clear that  in  and ; hence , as required.
We see that when  converges in , for every element ,  converges in  to . This means that basic series (42) associated with the element  converges in  to the element , for all . In this case, we say that the basic set  is effective for  in .
The necessary and sufficient condition for effectiveness of  for  in  is obtained through the expressionIt can be proven in exactly the same way as before that  is a seminorm on . The revised version of Theorem 14 is as follows.
Theorem 17.  For the basic set  to be effective for  in , it is necessary and sufficient that  exist and be continuous on .
Proof.   
Necessity. Since  is continuous linear operator from  to , we apply the same method as in the proof of Theorem 14.
Sufficiency. We see here, from (22) and (46), thatSince  is continuous on , then the sequence  will be equicontinuous from  to . The proof is then completed in exactly the same way as in the proof of Theorem 14.
Now, if  is an absolute basis for , the effectiveness of the set  for  in  will be estimated through the expression  as it is seen from the following Theorem which is the alternative form of Theorem 15.
Theorem 18.  Suppose that  is an absolute basis for . Then the basic set  will be effective for  in  if and only if there is a seminorm  and a constant  such that
Proof.   
Necessity. If  is effective for  in , then, by Theorem 17,  is a continuous norm on . Hence, by (5), there is a seminorm  and a constant  such that Putting , we obtain (48).
Sufficiency. As in the proof of Theorem 15, we deduce from (11), (43), (46), and (48) that Applying inequality (14), we obtain So we deduce that  is continuous on  and hence Theorem 17 implies that  is effective for  in . Theorem 18 is therefore established.
7. Applications
We need to mention some definitions and notations in Clifford analysis [21, 22, 33, 34].
Definition 19 (monogenic function). Let  be an open set; then an -valued function  is called left (resp. right) monogenic in  if it satisfies  (resp. ) in . Here, , defined in Section 2, is the generalized Cauchy-Riemann operator.
Definition 20 (special monogenic polynomial). A polynomial  is special monogenic if and only if  (so  is monogenic) and there exists  for which 
Definition 21 (special monogenic function). Let  be a connected open subset of  containing  and let  be monogenic in . Then  is called special monogenic in  if and only if its Taylor series near zero (which exists) has the form  for certain special monogenic polynomials .
The fundamental references for special monogenic function are [36, 37].
Remark 22. Note that if  is a homogeneous special monogenic polynomial of degree , then (see [21, 29]) :  is some constant in  andwhere, for , .
It is well known that  is an Appell sequence with respect to  or  (which represent the same operator for monogenic functions):  and  in  (see [38–40]).
The maximum value of  in  is given by (see [21])
An open ball is usually denoted by , and closed ball is denoted by , where Also, the class of special monogenic functions in an open ball  is written as  and  denotes the class of special monogenic functions in closed ball .
The first application of the above theory is to the effectiveness in an open ball.
7.1. Effectiveness in Open Balls
We propose to derive in the present section, from the results of Section 5, conditions for effectiveness of basic sets in open balls. For this case, we take the Fréchet module  to be the class , , of special monogenic functions in the open ball .
Let  be a certain positive number less than  and construct the sequence  as follows: SoThe countable family  of seminorms  on the Fréchet module  is defined as follows.
For , we setThus, when ,  . Soand, therefore, condition (i) of Definition 5 is satisfied.
The topology on  defined by the family  is the topology of normal convergence over the compact sets . It is easy to show that the -module  is complete for this topology; that is to say,  is a Fréchet module.
We shall take a basis for , the Appell sequence . In fact every function  has the unique expansionThus (7) is true. In this case, Cauchy’s inequality (8) takes the form (see [22])
It can be verified also that  is an absolute basis for  in the sense that series (11), which is rewritten here asis convergent .
Finally, when ,  , soand then relation (9) holds.
Now, let  be a basic set. Expression (18) is the unique representationand if , then by substituting (63) in (59) we obtain the basic series of :whereis the basic coefficient of .
In this case, the expression  is called the Cannon sum for the set  and is denoted by :The Cannon function for the same set in  isIt should be observed that (63), (66), and (67) together yieldand it is easily seen that  is a monotonic increasing function of .
The fundamental theorem for effectiveness for  is deducible from Theorem 15. It is stated in the following form.
Theorem 23.  The necessary and sufficient condition for the basic set  to be effective for  is that
Proof. Suppose that  is any positive number less than ; then there exists a number  such thatIf the set  is effective for , then, by Theorem 15, there exist  and a constant  such that Hence, (66) gives Using (67) and (70), we can deduce thatand condition (69) follows. Thus (69) is necessary.
On the other hand, suppose that condition (69) is satisfied and let  be any element of sequence (56). So we have Since the sequence  converges to  as  tends to infinity, then there exists an integer  such thatThen, by definition (67) of , there exists  such that Applying (53), (57), and (66), it follows thatHence, by Theorem 15, the set  is effective for , and the theorem is satisfied.
7.2. Effectiveness in Closed Balls
Let  be any fixed positive number and take the number  to be any finite number greater than . The -module  of Section 6 will be taken as the class  of special monogenic functions in the closed ball , with the norm  defined byThus, the topology  determined by the norm  is the topology of normal convergence on . It is well known that  is complete for this topology; that is to say,  is a Banach module. The subspace  of  will be taken as the Fréchet module  (see Section 7.1) which will be equipped with the family of seminorms  defined bywhere It is clear that So condition (40) is satisfied.
The basis for  is taken, as before, to be the Appell sequence  which accords to Cauchy’s inequality and it is also an absolute basis. Moreover, condition (9) is satisfied.
Now, let  be a basic set of  and suppose that  admits the representation where the convergence is in , so that Write the basic coefficient and the basic series as in (64) and (65). We are concerned with the convergence in ; that is to say, basic series (64) converges to  in  if The basic set  will be effective for  in  if the basic series of each special monogenic function in  converges to  normally in . In this case, we say that the basic set  is effective for  in , .
The theorem about such effectiveness is deducible from Theorem 18.
As in (66), we can see, by using (78), thatWe shall establish the following Theorem.
Theorem 24.  The necessary and sufficient condition for the basic set  to be effective for  in , , is that
Proof. Suppose that  is effective for  in . Hence, according to Theorem 18, there exist a norm  and a constant  such that Hence, (67), (79), and (85) together yield and condition (86) is necessary.
On the other hand, suppose that condition (86) is satisfied. Since  as , there is a number  such that . Then, by definition (67) of , there exists  such that Hence, from (53), (57), and, (85) it follows that By Theorem 18, it follows that the basic set  is effective for  in  as required.
Taking  sufficiently near to , Theorem 24 leads to the following corollary.
Corollary 25.  The necessary and sufficient condition for the basic set  to be effective in  is that
7.3. Cannon Sets
When  is a basic set of special monogenic polynomials, representation (63) is finite. Thus, if  is the number of nonzero coefficients in (63), then  is finite. If this number accords further to the restriction thatthe corresponding basic set  of polynomials is called Cannon set of special monogenic polynomials (see [21]). WriteThen, in view of (66), we shall have Hence, if we putthen, for Cannon sets, relation (67) implies that Therefore, for Cannon sets, the Cannon sum and the Cannon function  and  are given by (93) and (96), respectively.
For Cannon sets, the Cannon function  will replace  in all the concerned relations: (69), (86), and (91). Hence, concerning the effectiveness of Cannon sets of special monogenic polynomials (see [21, 23]), we have the following results which are special cases of our results.
Corollary 26.  The necessary and sufficient condition for the Cannon sets of special monogenic polynomials  to be effective for  is that 
Corollary 27.  The necessary and sufficient condition for the Cannon sets of special monogenic polynomials  to be effective for  in , , is that
Corollary 28.  The necessary and sufficient condition for the Cannon sets of special monogenic polynomials  to be effective for in  is that
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