Research Article

Toeplitz Matrices in the Problem of Semiscalar Equivalence of Second-Order Polynomial Matrices

B. Z. Shavarovskii

Department of Algebra, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv 79060, Ukraine

Correspondence should be addressed to B. Z. Shavarovskii; bshavarovskii@gmail.com

Received 21 June 2017; Accepted 24 September 2017; Published 26 October 2017

Academic Editor: Shwetabh Srivastava

Copyright © 2017 B.Z. Shavarovskii. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the problem of determining whether two polynomial matrices can be transformed to one another by left multiplying with some nonsingular numerical matrix and right multiplying by some invertible polynomial matrix. Thus the equivalence relation arises. This equivalence relation is known as semiscalar equivalence. Large difficulties in this problem arise already for 2-by-2 matrices. In this paper the semiscalar equivalence of polynomial matrices of second order is investigated. In particular, necessary and sufficient conditions are found for two matrices of second order being semiscalarly equivalent. The main result is stated in terms of determinants of Toeplitz matrices.

1. Introduction

Let \(\mathbb{C} \) be a field of complex numbers and \(\mathbb{C}[x] \) the ring of polynomials in an indeterminate \(x \) over \(\mathbb{C} \). Let \(M(n, \mathbb{C}) \) and \(M(n, \mathbb{C}[x]) \) denote the algebras of \(n \times n \) matrices over \(\mathbb{C} \) and \(\mathbb{C}[x] \), respectively, and \(GL(n, \mathbb{C}), GL(n, \mathbb{C}[x]) \) their corresponding groups of units. Given two matrices \(F(x), G(x) \in M(n, \mathbb{C}[x]) \), the question of determining whether there exist the matrices \(P \in GL(n, \mathbb{C}), Q(x) \in GL(n, \mathbb{C}[x]) \), such that

\[
F(x) = PQ(x)Q^{-1}(x),
\]

has attracted much attention for many years. This proved to be a bigger problem than originally anticipated. Large difficulties in this problem arise already for elements of \(M(2, \mathbb{C}[x]) \). The matrices \(F(x), G(x) \in M(n, \mathbb{C}[x]) \) are called semiscalarly equivalent, if the equality (1) is satisfied for some nonsingular matrix \(P \in M(n, \mathbb{C}) \) and for some invertible matrix \(Q(x) \in M(n, \mathbb{C}[x]) \) [1] (see also [2]). Due to this fact the problem of finding the conditions under which the matrices are semiscalarly equivalent is of current interest. In this paper the indicated problem for the matrices of second order is solved. Toeplitz matrices plays an important role in the conditions under which two matrices of second order can be transformed to one another by semiscalar equivalent transformation. In spite of Toeplitz matrices forming a special matrix class, many classical problems related Laurent series, moment’s problem, orthogonal polynomials, and others are reduced to them. A more serious interest to Toeplitz matrices has, to a large extent, the following explanation. Any matrix has connection with Toeplitz matrices in the sense that every matrix can be represented as a sum of the products of Toeplitz matrices. Much applied problems of electrodynamics, geophysics, acoustics, and automatic control require investigation of Toeplitz matrices. Also, there is a correspondence between complex functions and Fourier series and the latter is closely related to some sequence of Toeplitz matrices. The monographs [3–5] present plenty of material about the research of Toeplitz and Hankel matrices. The articles [6–8] refer to modern problems of these matrices. The results of this paper may be applied in the solving of the matrix equations, which are utilized in many problems of engineering.

2. Preliminaries

Let \(F(x), G(x) \in M(2, \mathbb{C}[x]) \). If matrices \(F(x) \) and \(G(x) \) are semiscalarly equivalent then it is necessary for them to satisfy the following condition: \(\det F(x) = c \det G(x), c \in \mathbb{C}, c \neq 0 \). If the matrices \(F(x) \) and \(G(x) \) are of full rank, then
according to [1] (see also [2]), they are semiscalarly equivalent to the lower triangular matrices $A(x)$ and $B(x)$, respectively, with the invariant multipliers of the main diagonal. Similar results are published in [9, 10]. We may assume, without loss of generality, that first invariant multipliers of matrices $A(x)$ and $B(x)$ are identities. Therefore, these matrices can be considered in the form

\[
A(x) = \begin{pmatrix} 1 & 0 \\ a(x) & \delta(x) \end{pmatrix}, \\
B(x) = \begin{pmatrix} 1 & 0 \\ b(x) & \delta(x) \end{pmatrix},
\]

(2)

\[\deg a(x), \deg b(x) < \deg \delta(x).\]

Denote by $a^{(t)}(x)$ and $b^{(t)}(x)$ the values at $x = \alpha$ of the t-th derivatives of $a(x)$ and $b(x)$, respectively, in the matrices $A(x)$ and $B(x)$. The determinant $|A(x)| = \delta(x)$ is called the characteristic polynomial and its roots are called the characteristic roots of the matrix $A(x)$ (resp., for matrix $B(x)$). Let us denote by M the set of characteristic roots of matrix $A(x)$ of the form (2). Now consider a partition

\[M = \bigcup_{v=1}^{n} M_v\]

(3)

of the set M into subsets M_v such that $\alpha, \beta \in M_v$ if $a(\alpha) = a(\beta)$. Evidently, each two different subsets M_v of the partition (3) are disjoint.

The following two assertions are valid.

Proposition 1. The partition (3) of the set M of characteristic roots of matrix $A(x)$ of the form (2) is invariant for the class $\{CA(x)Q(x)\}$ of semiscalarly equivalent matrices.

Proof. Let the matrices $A(x), B(x)$ of the form (2) be semiscalarly equivalent; that is, the equality

\[
\begin{pmatrix}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{pmatrix} \begin{pmatrix} 1 & 0 \\ a(x) & \delta(x) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ b(x) & \delta(x) \end{pmatrix},
\]

(4)

where $\begin{pmatrix}s_{11} & s_{12} \\
s_{21} & s_{22}\end{pmatrix} \in GL(2, \mathbb{C}), \begin{pmatrix}r_{11}(x) & r_{12}(x) \\
r_{21}(x) & r_{22}(x)\end{pmatrix} \in GL(2, \mathbb{C}[x])$, holds. We deduce from (4) the relations

\[
s_{11} + s_{12}a(x) = r_{11}(x),
\]

(5)

\[
s_{12} \delta(x) = r_{12}(x),
\]

(6)

\[
s_{21} + s_{22}a(x) = b(x) r_{11}(x) + \delta(x) r_{21}(x).
\]

(7)

Setting $x = \alpha$ and $x = \beta$, $\alpha \neq \beta$, $\alpha, \beta \in M$, we obtain the relations

\[
s_{21} + s_{22}a(\alpha) = b(\alpha) r_{11}(\alpha),
\]

\[
s_{21} + s_{22}a(\beta) = b(\beta) r_{11}(\beta).
\]

(8)

If $a(\alpha) = a(\beta)$, then left sides of the resulting relations are equal. Therefore, from the equality of right sides, taking into account that $r_{11}(\alpha) = r_{11}(\beta) \neq 0$ (see (5), (6)), we have $b(\alpha) = b(\beta)$. The notion of semiscalar equivalence is a symmetric relation. Then $b(\alpha) = b(\beta)$ by the similar argument yields $a(\alpha) = a(\beta)$. This completes the proof.

Proposition 2. Let α be the characteristic root of the multiplicity n of matrix $A(x)$ of the form (2). Let also m be the lowest (nonzero) order of the nonzero derivative $a^{(m)}(\alpha) \neq 0$ of the entry $a(x)$ of this matrix at $x = \alpha$. Then the number m (as n) is an invariant for the class $\{CA(x)Q(x)\}$ of semiscalarly equivalent matrices, if $m < n$.

Proof. Let the matrices $A(x), B(x)$ of the form (2) be semiscalarly equivalent and m' be the lowest (nonzero) order of the nonzero derivative $b^{(m')}(\alpha) \neq 0$ of the entry $b(x)$ of matrix $B(x)$ at $x = \alpha$. Suppose that $m < m'$. From relations (5) and (7), we obtain

\[
s_{21} + s_{22}a(\alpha) - s_{11}b(x) - s_{12}a(x) b(x) = \delta(x) r_{21}(x).
\]

(9)

Substituting $x = \alpha$ into (9), we find

\[
s_{21} + s_{22}a(\alpha) - s_{11}b(\alpha) - s_{12}a(\alpha) b(\alpha) = 0.
\]

(10)

Taking m-the derivative of (9) at $x = \alpha$, we obtain

\[
s_{22}a^{(m)}(\alpha) - s_{12}a^{(m)}(\alpha) b(\alpha) = 0.
\]

(11)

Dividing both sides of obtained equality by $a^{(m)}(\alpha) \neq 0$ and the substituting in (10) yields

\[
s_{22} - s_{12}b(\alpha) = 0,
\]

(12)

\[s_{21} - s_{11}b(\alpha) = 0.
\]

But this is impossible, since matrix $||s_{ij}||^2_2$ is nonsingular. Therefore, $m \geq m'$. Inasmuch the semiscalar equivalence is a symmetric relation, we have $m = m'$. The Proposition is proved.

Next it is assumed that $u \geq 3$ in the partition (3). The simplest cases are when $u = 1$ or $u = 2$ may be found in some other articles of the author (see, for example, [11, 12]). We may take $a(\alpha) = b(\alpha) = 0$, for entries $a(x), b(x)$ of $A(x), B(x)$, if $\alpha \in M_1$. By Proposition 2 for the matrices $A(x)$ and $B(x)$ being semiscalarly equivalent, it is necessary that $a(\beta), b(\beta) \neq 0$, when $\beta \in M$, $\beta \notin M_1$.

We use the following notations: $s = \deg \delta(x)$ is a degree of characteristic polynomial of the matrices $A(x), B(x)$ of the form (2); n_i is the multiplicity of characteristic root α_i of these matrices; m_i is the lowest (nonzero) order of the nonzero derivative $a^{(m)}(\alpha_i) \neq 0$ of $a(x)$. If $m_i \leq n_i$, then by Proposition 2 the semiscalar equivalence of $A(x)$ and $B(x)$ implies that $b^{(m)}(\alpha_i) = 0, b^{(v)}(\alpha_i) = 0, 0 < v < m_i$, for the entry $b(x)$ of $B(x)$. For entries $a(x), b(x)$ of $A(x), B(x)$ and for
their arbitrary characteristic root α_i we denote by a_i, a_n, b_1, b_n the following quantities:

$$a_i = a(\alpha_i),$$

$$a_n = a^{(m+t)}(\alpha_i),$$

$$b_1 = b(\alpha_i),$$

$$b_n = b^{(m+t)}(\alpha_i),$$

$$t = 0, 1, \ldots, s - m - 1.$$

The following cases are possible:

The Case 1. $m_i \geq n_i$ for every root $\alpha_i \in \mathbf{M}$.

The Case 2. There is a root $\alpha_j \in \mathbf{M}$ such that $m_j < n_j$ and $2m_i \geq n_i$ for every root $\alpha_i \in \mathbf{M}$.

The Case 3. There is a root $\alpha_j \in \mathbf{M}$ such that $2m_j < n_j$.

Let us now consider each of them separately.

3. The Case 1

Let us now formulate the following Theorem based on the defined notation and the assumption.

Theorem 3. Let the partition of the set \mathbf{M} of characteristic roots of matrix $A(x)$ (2) be of the form (3) and $\alpha_v \in \mathbf{M}_v$, $v = 1, \ldots, u$, $u \geq 3$. Also suppose the entry $a(x)$ of the matrix $A(x)$ satisfies the condition $a(\alpha_i) = 0$ and $m_i \geq n_i$ for each root $\alpha_i \in \mathbf{M}$. The matrix $A(x)$ in the class $\{CA(x)Q(x)\}$ of semiscalarly equivalent matrices is determined up to constant factor $c \neq 0$ of the row

$$\left\| \begin{array}{cccc}
 a_2 - a_3 & \cdots & a_2 - a_n \\
 a_2a_3 & & a_2a_n \\
\end{array} \right\|.$$

(14)

Proof. Let the entry $b(x)$ of the matrix $B(x)$ of the form (2) satisfy the condition $b_i = 0$ (see notations (13)). If the matrices $A(x)$ and $B(x)$ are semiscalarly equivalent, then the equality (4) implies $s_{21} = 0$ and

$$s_{22}a(x) - s_{11}b(x) - s_{12}a(x)b(x) \equiv 0 \pmod{\delta(x)},$$

(15)

where $s_{11}, s_{22} \neq 0$. Substituting $x = \alpha_2, \alpha_3, \ldots, \alpha_n$ in the congruence (15), we obtain the system of equalities

$$s_{22}a_2 - s_{11}b_2 - s_{12}a_2b_2 = 0,$$

$$s_{22}a_3 - s_{11}b_3 - s_{12}a_3b_3 = 0,$$

$$\vdots$$

$$s_{22}a_n - s_{11}b_n - s_{12}a_nb_n = 0,$$

(16)

where $a_2, \ldots, a_n, b_2, \ldots, b_n \neq 0$. By excluding s_{12} in the system (16), we find that

$$c \left\| \begin{array}{cccc}
 a_2 - a_3 & \cdots & a_2 - a_n \\
 a_2a_3 & & a_2a_n \\
 b_2 - b_3 & \cdots & b_2 - b_n \\
 b_2b_3 & & b_2b_n \\
\end{array} \right\| = \left\| \begin{array}{cccc}
 a_2 - a_3 & \cdots & a_2 - a_n \\
 a_2a_3 & & a_2a_n \\
 b_2 - b_3 & \cdots & b_2 - b_n \\
 b_2b_3 & & b_2b_n \\
\end{array} \right\|,$$

(17)

where $c = s_{11}/s_{22}$.

Conversely, the quality (17), after some transformations, can be written in the form

$$\frac{a_2 - cb_2}{a_2b_2}, \cdots, \frac{a_2 - cb_n}{a_2b_n} = \frac{a_n - cb_n}{a_nb_n}.$$

(18)

Introducing the notations

$$s_{11} = c,$$

$$s_{22} = 1,$$

$$s_{12} = \frac{a_2 - cb_2}{a_2b_2},$$

based on the equalities (18), we obtain the system (16). Since $m_i \geq n_i$ for each root $\alpha_i \in \mathbf{M}$ then every term of degree $1, \ldots, n_i - 1$ in the binomial decomposition of the entries $a(x), b(x)$ of the matrices $A(x), B(x)$ vanishes in the powers of $x - \alpha_i$. This and the system (16) mean that congruence (15) is valid. This implies that

$$s_{22}a(x) - s_{11}b(x) - s_{12}a(x)b(x) \in \mathbb{C}[x].$$

(20)

Denoting $r_{21}(x) = (s_{22}a(x) - s_{11}b(x) - s_{12}a(x)b(x))/\delta(x)$ and $r_{11}(x) = s_{11} + s_{12}a(x), r_{12}(x) = s_{11}\delta(x), r_{22}(x) = s_{22} - s_{12}b(x)$, it is easy to make sure that the equality (4) holds true, where $s_{21} = 0, s_{11}, s_{22} \neq 0$ (see (19)), and $\frac{r_{11}(x)}{r_{12}(x)} = \frac{r_{21}(x)}{r_{22}(x)}$. This means that the matrices $A(x)$ and $B(x)$ are semiscalarly equivalent. The Theorem is proved.

4. The Case 2

Further we shall retain the earlier introduced notations (see, in particular, (13)).

Theorem 4. Let the partition of the set \mathbf{M} of characteristic roots of matrix $A(x)$ (2) be of the form (3) and $\alpha_v \in \mathbf{M}_v$, $v = 1, \ldots, u$, $u \geq 3$. Let the entries $a(x), b(x)$ of this matrix satisfy the condition $a(\alpha_i) = b(\alpha_i) = 0$. Let also $2m_i \geq n_i$ for every root $\alpha_i \in \mathbf{M}$ and $m_i < n_i$ for some roots $\alpha_i \in \mathbf{M}$. Matrices $A(x), B(x)$ are semiscalarly equivalent if and only if there exists a number $c \neq 0$; the following conditions hold:

1. \(\left\| a_{p_0} a_{p_1} \cdots a_{p_{n_p-m_p-1}} - c b_{p_0} b_{p_1} \cdots b_{p_{n_p-m_p-1}} \right\| \)
 for every root $\alpha_i \in \mathbf{M}_i$ such that $m_p < n_p$;

2. \(\left\| a_{q_0}/a_{q_1}^2 \cdots a_{q_{n_q-m_q-1}}/a_{q_1}^2 \right\| = 1/c \)
 \(\left\| b_{q_0}/b_{q_1}^2 b_{q_1}/b_{q_2}^2 \cdots b_{q_{n_q-m_q-1}}/b_{q_1}^2 \right\| \)
 for every root $\alpha_i \in \mathbf{M}$ such that $\alpha_q \notin \mathbf{M}_q$ and $m_q < n_q$;

3. \(\left\| (a_2 - a_3)/a_2b_2 \cdots (a_2 - a_n)/a_2b_n \right\| = 1/c \)
 \(\left\| (b_2 - b_3)/b_2b_3 \cdots (b_2 - b_n)/b_2b_n \right\| \).

(16)
Proof.

Necessity. If the matrices \(A(x) \) and \(B(x) \) are semisclarly equivalent, then from congruence (15) we obtain the system of equalities

\[
\begin{align*}
 s_{22}a_{p0} - s_{11}b_{p0} &= 0, \\
 s_{22}a_{p1} - s_{11}b_{p1} &= 0, \\
 &\vdots \\
 s_{22}a_{p,n_y-m_y-1} - s_{11}b_{p,n_y-m_y-1} &= 0,
\end{align*}
\]

(21)

for every root \(\alpha_p \in \mathbf{M} \) such that \(m_y < n_y \). The condition \(s_{11}, s_{22} \neq 0 \) implies the condition (1) of Theorem, for \(c = s_{11}/s_{22} \).

From the congruence (15) we can write the system of equations

\[
\begin{align*}
 s_{22}a_q - s_{11}b_q - s_{12}a_qb_q &= 0, \\
 s_{22}a_q - s_{11}b_q - s_{12}a_qb_q &= 0, \\
 &\vdots \\
 s_{22}a_q - s_{11}b_q - s_{12}a_qb_q &= 0, \\
 s_{22}a_q - s_{11}b_q - s_{12}a_qb_q &= 0, \\
\end{align*}
\]

(22)

for every root \(\alpha_q \in \mathbf{M} \) such that \(\alpha_q \notin \mathbf{M}_1 \) and \(m_y < n_y \). It is understood that \(s_{22}a_qb_q, s_{11}s_{22} \neq 0 \). From first equation of system (22) we find that

\[
s_{12} = \frac{s_{11}a_q - s_{12}b_q}{a_qb_q}. \tag{23}
\]

Substituting it into second and every succeeding equalities we obtain

\[
\begin{align*}
 s_{11}a_q &= s_{22}b_q, \\
 s_{11}a_q &= s_{22}b_q, \\
 &\vdots \\
 s_{11}a_q &= s_{22}b_q. \\
\end{align*}
\]

(24)

The condition (2) of the Theorem is proved.

As in the proof of Theorem 3, from congruence (15) by virtue of the substitution \(x = \alpha_q, v = 1, \ldots, u \), we can easily obtain the equalities (16). By excluding \(s_{12} \), we arrive at condition (3) of Theorem. The necessity of the conditions (1)–(3) of Theorem is proved.

Sufficiency. Suppose that the conditions of Theorem are satisfied. If we introduce the notations \(s_{11} = c, s_{22} = 1 \), then the condition (1) denotes the equalities (21) being satisfied for every root \(\alpha_p \in \mathbf{M} \) such that \(m_y < n_y \). From this it follows immediately the congruence

\[
s_{22}a(x) - s_{11}b(x) - s_{12}a(x)b(x) \equiv 0 \pmod{(x - \alpha_q)^{n_q}} \tag{25}
\]

where \(s_{12} \) is arbitrary number, for every root \(\alpha_q \in \mathbf{M}_1 \) (but not necessarily \(m_y < n_y \)).

From the condition (3) of Theorem follows the equalities (18). If we introduce the notations (19), then from (18) we can obtain the system (16). This means that the congruence

\[
s_{22}a(x) - s_{11}b(x) - s_{12}a(x)b(x) \equiv 0 \pmod{(x - \alpha_q)^{n_q}} \tag{26}
\]

is valid for every root \(\alpha_q \in \mathbf{M} \) such that \(\alpha_q \notin \mathbf{M}_1 \).

Using the notations (19) we can proceed from condition (2) of Theorem to the system of equations (22). Last system is equivalent to the congruence

\[
s_{22}a(x) - s_{11}b(x) - s_{12}a(x)b(x) \equiv 0 \pmod{(x - \alpha_q)^{n_q}} \tag{27}
\]

for every root \(\alpha_q \in \mathbf{M} \) such that \(\alpha_q \notin \mathbf{M}_1 \) and \(m_y < n_y \). When it is considered the congruence (26), then from (27) we actually have

\[
s_{22}a(x) - s_{11}b(x) - s_{12}a(x)b(x) \equiv 0 \pmod{(x - \alpha_q)^{n_q}} \tag{28}
\]

for every root \(\alpha_q \in \mathbf{M}_1 \) (but not necessarily \(m_y < n_y \)). Combining (25) with (28), we obtain the congruence (15). We complete the proof of Theorem in a way analogous to the end of the proof of Theorem 3.

5. Auxiliary Statements

In the following studies we need to use Lemmas 5 and 6 that we prove in the current section.

Lemma 5. The matrix equation

\[
\begin{bmatrix}
 a_0 & b_0 & 0 \\
 a_1 & b_1 & 0 \\
 \vdots & \vdots & \vdots \\
 a_{m-1} & b_{m-1} & 0 \\
 a_m & b_m & a_0b_0 \\
 a_{m+1} & b_{m+1} & a_0b_1 + a_1b_0 \\
 \vdots & \vdots & \vdots \\
 a_k & b_k & \sum_{i=0}^{k-m} a_ib_{k-m-i} \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_{m-1} \\
 x_m \\
 x_{m+1} \\
 \vdots \\
 x_k \\
\end{bmatrix}
= 0, \tag{29}
\]

over C, where $a_0, b_0 \neq 0$, has nonzero solutions if and only if
the following conditions are satisfied:

$$
\begin{vmatrix}
 a_1 & a_2 & \cdots & a_{m-1} & a_m \\
 a_0 & a_1 & \cdots & a_{m-2} & a_{m-1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & a_0 & a_1 \\
\end{vmatrix}
= c^v
\begin{vmatrix}
 b_1 & b_2 & \cdots & b_{m-1} & b_m \\
 b_0 & b_1 & \cdots & b_{m-2} & b_{m-1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & b_0 & b_1 \\
\end{vmatrix},
$$

(30)

where $v = 1, \ldots, m - 1, m + 1, \ldots, k$, $c = a_0/b_0$. If the
conditions of Lemma are satisfied then for every nonzero
solution $\|x_{10} x_{20} x_{30}\|$ of (29) $x_{10}, x_{20} \neq 0$.

Proof.

Necessity. Let (29) have the solution $\|x_{10} x_{20} x_{30}\| \neq 0$.
Then

$$
\begin{align*}
 a_0 x_{10} + b_0 x_{20} &= 0, \\
 a_1 x_{10} + b_1 x_{20} &= 0, \\
 &\vdots \\
 a_{m-1} x_{10} + b_{m-1} x_{20} &= 0, \\
 a_m x_{10} + b_m x_{20} + a_0 b_3 x_{30} &= 0, \\
 a_{m+1} x_{10} + b_{m+1} x_{20} + (a_1 b_1 + a_1 b_1) x_{30} &= 0, \\
 &\vdots \\
 a_k x_{10} + b_k x_{20} + \sum_{i=0}^{k-m} a_i b_{k-m-i} &= 0.
\end{align*}
$$

(31)

We assume that $x_{10} = 0$ or $x_{20} = 0$. Then, from first
equalities of (31) and (32) we obtain $x_{10} = x_{20} = x_{30} = 0$.
This contradicts the assumption that solution $\|x_{10} x_{20} x_{30}\|$ is nonzero. So, we have $x_{10}, x_{20} \neq 0$.
From equalities (31) we obtain the conditions (30), where $c = -x_{20}/x_{10} = a_0/b_0$, for $v = 1, \ldots, m - 1$.

We conclude from (32), if $a_m = c b_m$, then $x_{30} = 0$ and $a_h = b_h$ for $h = m + 1, \ldots, k$. From this it follows that equality
(30) holds true for $v = m + 1, \ldots, k$. For this reason in the
following assume that $a_m \neq c b_m$, where $c = -x_{20}/x_{30} = a_0/b_0$.
From the first and second equalities (32) by excluding x_{30}, we obtain

$$
a_0 a_{m+1} - a_m (c b_1 + a_1) = c^2 b_0 b_{m+1} - c b_m (c b_1 + a_1).
$$

(33)

If $m = 1$ then $a_0 a_2 - a_2^2 = c^2 (b_0 b_2 - b_2^2)$. This means that
conditions (30) are satisfied for $v = m + 1 = 2$. If $m > 1$, then
$a_1 = c b_1$, and by multiplication of the both sides by $a_0^{-1} = c^{m-1} b_0^{-1}$ in (33) we find

$$
a_0^m a_{m+1} - 2 a_0^{m-1} a_m = c \left(b_0^m b_{m+1} - 2 b_0^{m-1} b_b b_m\right)
.$$ (34)

Denote by A_{n_u}, B_{n_w} the submatrices obtained, respectively, from matrices

$$
\begin{vmatrix}
 a_1 & a_2 & \cdots & a_m & a_{m+1} \\
 a_0 & a_1 & \cdots & a_{m-1} & a_m \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & a_0 & a_1 \\
\end{vmatrix},
$$

(35)

by obliterating of two last columns and u-th and w-th
rows. Also denote by $\Delta_{m+1}(A), \Delta_{m+1}(B)$ the determinants of
matrices (35), respectively. Decompose them by the minors of
order two that are contained in the last two columns. Because $|A_{n_u}| = |B_{n_w}| = 0$ (for $u \neq m + 1$), we have

$$
\Delta_{m+1} (A) = (-1)^{m+1} \left| \begin{array}{cc}
 a_m & a_{m+1} \\
 a_0 & a_1 \\
\end{array} \right| A_{1,m+1},
$$

(36)

$$
\Delta_{m+1} (B) = (-1)^{m+1} \left| \begin{array}{cc}
 b_m & b_{m+1} \\
 b_0 & b_1 \\
\end{array} \right| B_{1,m+1}.
$$

(37)

Since $\|a_0 a_1 \cdots a_m\| = c \|b_0 b_1 \cdots b_{m-1}\|$ each
summand of expression in parenthesis for $\Delta_{m+1}(A)$, possibly
except the first two, differs from the corresponding summand
for $\Delta_{m+1}(B)$ by the multiplier c^{m+1}. From this fact and from
the equality (34) for $v = m + 1$ follows equality (30).

Denote by $\Delta_r(A)$ and $\Delta_r(B)$ the determinants in
the left and right sides of equality (30), respectively. Suppose by
induction $\Delta_r(A) = c^r \Delta_r(B)$ for all r such that $m < r < k$.
For the sake of determinacy we assume that $r > 2m$. In the case
when $r \leq 2m$ the proof is not different in principle. From the
first $r - m + 2$ equalities (32), by excluding x_{30} and by
sufficiently evident transformations, we arrive at the system

$$
\begin{align*}
 (a_{m+1} - (a_0 b_0)^{-1} a_m \sum_{i=0}^{m} a_i b_{i-m}) (-a_0)^m & \Delta_{r-m} (A) \\
 = c^{r+1} \left(b_{m+1} - (a_0 b_0)^{-1} b_m \sum_{i=0}^{m} a_i b_{i-m} \right) (-b_0)^m & \Delta_{r-m} (B),
\end{align*}
$$

where $\sum_{i=0}^{m} a_i b_{i-m}$ means $\sum_{i=0}^{m} a_i b_{i-m}$.
\[
\begin{align*}
\left(a_{n+2} & - (a_0 b_0)^{-1} a_n \sum_{u=0}^{2} a_u b_{r-u} \right) (-a_0)^{m+1} \Delta_{r-m-1} (A) \\
= & \; c^{r+1} \left(b_{m+2} - (a_0 b_0)^{-1} b_m \sum_{u=0}^{2} a_u b_{r-u} \right) (-b_0)^{m+1} \\
& \; \cdot \Delta_{r-m-1} (B), \\
\vdots \\
\left(a_{r+1} & - (a_0 b_0)^{-1} a_m \sum_{u=0}^{r-m+1} a_u b_{r-u} \right) (-a_0)^{r-m} \\
= & \; c^{r+1} \left(b_{r+1} - (a_0 b_0)^{-1} b_m \sum_{u=0}^{r-m+1} a_u b_{r-u} \right) (-b_0)^{r-m} \\
& \; \cdot \Delta_1 (B), \\
\left(a_1 & - (a_0 b_0)^{-1} a_m \sum_{u=0}^{m} a_u b_{m-u} \right) (-a_0)^{m+1} \\
= & \; c^{r+1} \left(b_{r+1} - (a_0 b_0)^{-1} b_m \sum_{u=0}^{m} a_u b_{r-u} \right) (-b_0)^{m+1} \\
& \; \cdot (-b_0)^{m+1} + \cdots + b_{r-m} \delta_{j} (A) (-a_0)^{m+1} \\
+ & \; (a_0 b_0)^{-1} a_m \left(b_1 \Delta_{r-m} (A) (-a_0)^{m+1} \\
& \; + b_2 \Delta_{r-m-1} (A) (-a_0)^{m+2} + \cdots + b_{r-m} \Delta_1 (A) \right) \\
& \; \cdot (-a_0)^{r+1} + b_{r-m+1} (-a_0)^{r+1} - \left(a_{r-m+1} - (a_0 b_0)^{-1} \\
& \; \cdot a_m \sum_{u=0}^{r-2m+1} a_u b_{r-2m+u+1} \right) (-a_0)^{r-m} \Delta_m (A) \\
= & \; c^{r+1} \left((-b_0)^{r+1} b_{r+1} + (-b_0)^{r-m} b_{r} \Delta_1 (B) \right) + \cdots \\
+ & \; (-b_0)^{r-m} b_{r-m+1} \Delta_m (B) + \cdots + (-b_0)^{m} \\
& \; \cdot b_{m+1} \Delta_{r-m} (B) + (-b_0)^{m} b_m \Delta_{r-m+1} (B) \\
& \; \cdot (-a_0 b_0)^{-1} b_m \left(a_1 \Delta_{r-m} (B) (-b_0)^{m+1} \\
& \; + a_2 \Delta_{r-m-1} (B) (-b_0)^{m+2} + \cdots \\
+ & \; a_{r-m} \Delta_1 (B) (-b_0)^{r} + a_{r-m+1} (-b_0)^{r+1} \right) - \left(b_{r-m+1} \\
& \; \cdot (-a_0 b_0)^{-1} b_{m} \sum_{u=0}^{r-2m+1} a_u b_{r-2m+u+1} \right) (-b_0)^{r-m} \\
& \; \cdot \Delta_m (B). \\
\end{align*}
\]

(38)

where \(c = a_0 / b_0 \).

If we add left sides of equalities (38) and separate right sides, we obtain

\[
\begin{align*}
(-a_0)^{r+1} a_{r+1} + (-a_0)^{r-m} a_1 \Delta_1 (A) + \cdots + (-a_0)^{r-m} \\
& \; \cdot a_{r-m+1} \Delta_m (A) + \cdots + (-a_0)^{m} a_{r-m+1} \Delta_{r-m} (A) \\
& \; + (-a_0)^{m} a_{r-m+1} \Delta_{r-m+1} (A) - (a_0 b_0)^{-1} \\
& \; \cdot a_m \left(b_1 \Delta_{r-m} (A) (-a_0)^{m+1} + b_2 \Delta_{r-m-1} (A) \right) \\
& \; \cdot (-a_0)^{m+2} + \cdots + b_{r-m} \delta_{j} (A) (-a_0)^{m+1} \\
& \; \cdot (a_0 b_0)^{-1} a_m \left(b_1 \Delta_{r-m} (A) (-a_0)^{m+1} \\
& \; + b_2 \Delta_{r-m-1} (A) (-a_0)^{m+2} + \cdots + b_{r-m} \Delta_1 (A) \right) \\
& \; \cdot (-a_0)^{r+1} + b_{r-m+1} (-a_0)^{r+1} - \left(a_{r-m+1} - (a_0 b_0)^{-1} \\
& \; \cdot a_m \sum_{u=0}^{r-2m+1} a_u b_{r-2m+u+1} \right) (-a_0)^{r-m} \Delta_m (A) \\
\end{align*}
\]

Gathering similar terms in both sides of obtained equalities, we obtain

\[
\begin{align*}
(-a_0)^{r+1} a_{r+1} + (-a_0)^{r-m} a_1 \Delta_1 (A) + \cdots + (-a_0)^{r-m} \\
& \; \cdot a_{r-m+1} \Delta_m (A) + \cdots + (-a_0)^{m} a_{r-m+1} \Delta_{r-m} (A) \\
& \; + (-a_0)^{m} a_{r-m+1} \Delta_{r-m+1} (A) + (a_0 b_0)^{-1} \\
& \; \cdot a_m \left(b_1 \Delta_{r-m} (A) (-a_0)^{m+1} + b_2 \Delta_{r-m-1} (A) \right) \\
& \; \cdot (-a_0)^{m+2} + \cdots + b_{r-m} \delta_{j} (A) (-a_0)^{m+1} \\
& \; \cdot (a_0 b_0)^{-1} a_m \left(b_1 \Delta_{r-m} (A) (-a_0)^{m+1} \\
& \; + b_2 \Delta_{r-m-1} (A) (-a_0)^{m+2} + \cdots + b_{r-m} \Delta_1 (A) \right) \\
& \; \cdot (-a_0)^{r+1} + b_{r-m+1} (-a_0)^{r+1} - \left(a_{r-m+1} - (a_0 b_0)^{-1} \\
& \; \cdot a_m \sum_{u=0}^{r-2m+1} a_u b_{r-2m+u+1} \right) (-a_0)^{r-m} \Delta_m (A) \\
\end{align*}
\]
\[\begin{align*}
= c^{r+1} \left((-b_0)^r b_{r+1} + (-b_0)^{r-1} b_0 \Delta_1 (B) + \cdots \right) \\
+ (-b_0)^r \cdot \sum_{m=1}^{\infty} a_m b_{r-m} + (-b_0)^{r-1} b_0 \Delta_1 (B) + \cdots + (-b_0)^m \cdot \Delta_{m+1} (B) + \cdots \rightarrow (b_0)^m \cdot \Delta_{m+1} (B)
\end{align*}\]

It follows from (32) that
\[a_{r-1} + (a_0 b_0)^{-1} a_m \sum_{u=0}^{r-2m+1} a_u b_{r-2m+1} = c \left(b_{r+1} + (a_0 b_0)^{-1} b_m \sum_{u=0}^{r-2m+1} a_u b_{r-2m+1} \right).\]

From this relation it is easy to say that the following equality holds:
\[\begin{align*}
&\left(a_0 b_0 \right)^{-1} a_m b_{r-m+1} (\Delta_1 (B)) \left(a_0 b_0 \right)^{-1} \sum_{u=0}^{r-2m+1} a_u b_{r-2m+1} \\
&\Delta_{r-m+1} (B) + \left(b_0 \right)^{r-m} \Delta_{m+1} (B)
\end{align*}\]

From (31) and the induction hypothesis, we can write
\[\begin{align*}
&\left(a_0 b_0 \right)^{-1} a_m b_{r-m+1} (\Delta_1 (B)) \\
&\Delta_{r-m+1} (B) + \left(b_0 \right)^{r-m} \Delta_{m+1} (B)
\end{align*}\]

that is, \[\Delta_{r+1} (A) = c^{r+1} \Delta_{r+1} (B),\] where \(c = a_0 / b_0\). The necessity of conditions of Lemma is proved.

Sufficiency. Consider the equalities (31) and (32) as one system of equations in three indeterminate \(x_{10}, x_{20}, x_{30}\). In conditions (30) \(c = a_0 / b_0\). This means that \(x_{10} = 1, x_{20} = -c\) satisfy the first equation in the system (31). From condition (30) with \(v = 1\) it follows that \(x_{10} = 1, x_{20} = -c\) satisfy the second equation in system (31). Next, the third and all following equalities in system (31) for \(x_{10} = 1, x_{20} = -c\) can be recurrently obtained from conditions (30) with \(v = 2, \ldots, m - 1\). Evidently, the values
\[\begin{align*}
&x_{10} = 1, \\
&x_{20} = -c,
\end{align*}\]

satisfy the first equation (32). We compute both determinants in equality (30) with \(v = m + 1\). After the annihilation of equal summands on both sides of obtained equality and after division by \(a_0 = c^m b_0^m\) using the of simple transformations, we can obtain the following relation:
\[a_{m+1} c b_{m+1} + (c b_m - a_m) (a_0 b_0)^{-1} (a_0 b_1 + a_1 b_1) = 0.\]

This means that (45) satisfies the second equation of system (32).

Assume by induction that (45) satisfies first \(r - m + 1\) equations of system (32), that is,
\[\begin{align*}
a_m - c b_m + (c b_m - a_m) (a_0 b_0)^{-1} & (a_0 b_1 + a_1 b_1) = 0, \\
a_{m+1} c b_{m+1} + (c b_m - a_m) (a_0 b_0)^{-1} \sum_{u=0}^{r-m-1} a_u b_{r-u} = 0,
\end{align*}\]

While proceeding we may assume \(r > 2m\). In the opposite case the proof is completely analogous. Taking into account the conditions (30) and the assumption of induction we can write the equalities (43), (44), and (45). From these equalities we obtain the relation (40). This relation implies the equality (39). It is evident that from the second and all following equalities of (47) we find that first \(r - m\) equations of (38) are valid. The first \(r - m\) equations of (38) along with relation (39) yield the last equality of (38). Dividing by \((-a_0)^r = c(-b_0)^r\) and after some simplifications this equality can be written in the form
\[\begin{align*}
a_{r+1} c b_{r+1} + (c b_m - a_m) (a_0 b_0)^{-1} \sum_{u=0}^{r-m-1} a_u b_{r-u} = 0.
\end{align*}\]
We have inductively proved the existence of the nonzero solution (45) of systems (31) and (32). Thus, matrix equation (29) has nonzero solution. Lemma is proved.

Lemma 6. The matrix equation

\[
\begin{vmatrix}
 a & ab \\
 0 & b_0 + a_0 b \\
 a_1 & b_1 + a_1 b \\
 \vdots & \vdots \\
 a_{m-1} & b_{m-1} + a_{m-1} b + a \sum_{t=0}^{k-m} a_{b-k-m-t} + a_k b \\
 a_m & b_m + a_0 b_0 + a_m b \\
 a_{m+1} & b_{m+1} + a_0 b_1 + a_1 b + a_{m+1} b \\
 \vdots & \vdots \\
 a_k & b_k + a b + a m + a m + a b + a k b
\end{vmatrix}
\]

over \(\mathbb{C} \), where \(a, b, a_0, b_0 \neq 0, k \geq m, m \geq 1 \), has nonzero solutions if and only if the following conditions are satisfied:

\[
(a^{m+1} a_0)^{-1}
\]

\[
(b^{m+1} b_0)^{-1}
\]

Over the conditions of Lemma are satisfied then every nonzero solution \(\begin{vmatrix} x_0 & x_1 & x_2 & 0 \end{vmatrix} \) of the equation (49) have nonzero solution \(x_{10}, x_{20} \neq 0 \).

Proof.

Necessity. The equality (50) for \(\nu = 0 \) holds true trivially. Let (49) have nonzero solution. Then the matrix of this equation has rank less than 3. The two first rows of the matrix are linearly independent. Then, each of the following rows of the matrix linearly depends on these first two rows. Because

\[
\begin{vmatrix}
 a & ab \\
 a_0 & b_0 + a_0 b \\
 a_0 & ab + a_0 b_0 + a_m b \\
 a_m & b_m + a_0 b_0 + a_m b \\
 a_{m+1} & b_{m+1} + a_0 b_1 + a_1 b + a_{m+1} b \\
 a_k & b_k + a b + a m + a b + a k b
\end{vmatrix}
= 0, \quad \nu = 1, \ldots, m - 1,
\]

we have \(a_\nu a_0 = b_\nu / b_0 \). This implies the equality (50) for \(\nu = 1, \ldots, m - 1 \). From the equality

\[
\begin{vmatrix}
 a & ab \\
 a_0 & b_0 + a_0 b \\
 a_0 & ab_0 + a_m b_0 + a_m b \\
 a_m & b_m + a_0 b_0 + a_m b \\
 a_{m+1} & b_{m+1} + a_0 b_1 + a_1 b + a_{m+1} b \\
 a_k & b_k + a b + a m + a b + a k b
\end{vmatrix}
= 0
\]

we have

\[
ad_\nu a_0 - a_0 b_a b + a_0 b_0 a - a_0 b b = 0,
\]

where, after division of both sides by \(ab_0 b_0 \), we obtain equality (50) for \(\nu = m \). Assume by induction that equality (50) holds true for all \(\nu = m, m+1, \ldots, r, m \leq r < k \). Consider the equality

\[
\begin{vmatrix}
 a & ab \\
 a_0 & b_0 + a_0 b \\
 a_0 & ab + a_0 b_0 + a_m b \\
 a_m & b_m + a_0 b_0 + a_m b \\
 a_{m+1} & b_{m+1} + a_0 b_1 + a_1 b + a_{m+1} b \\
 a_{r+1} & b_{r+1} + a b_{r+1} + a b_{r+1} + a_{r+1} b
\end{vmatrix}
= 0.
\]

After the calculation of the determinant on the left, we obtain the equation

\[
ab_0 \sum_{t=0}^{r+1-m} a b_{r+1-m-t} - a_0 b_{r+1} a b + a_{r+1} b a b
\]

\[
= a_0 b \sum_{t=0}^{r+1-m} a b_{r+1-m-t} = 0.
\]

We can divide by \(ab_0 b_0 \) both sides to obtain the equality

\[
a_{r+1} a_0^{-1} - b_{r+1} b_0^{-1} - (ab_0)^{-1} \sum_{t=0}^{r+1-m} a b_{r+1-m-t}
\]

\[
+ (a_0 b)^{-1} \sum_{t=0}^{r+1-m} a b_{r+1-m-t} = 0.
\]

Let us denote by \(\Delta_\nu (a) \) and \(\Delta_\nu (b) \) the determinants in the left and right sides of the equality (50), respectively.
Considering the inductive assumption, we can write the equalities

\[(−1)^{r−1} a_{r−m} a−((a^m a_0)^{−1} \Delta_1 (a) − (b^{m+1} b_0)^{−1} \Delta_1 (b)) = 0, \]

\[−(b^{−1} b_0)^{−1} \Delta_0 (b) = 0, \]

\[(−1)^{r−1} b_{r−m} b−((a^m a_0)^{−1} \Delta_0 (a) − (b^{m+1} b_0)^{−1} \Delta_0 (b)) = 0, \]

\[−(b^{−1} b_0)^{−1} \Delta_0 (b) = 0. \]

\[\vdots \]

\[\vdots \]

\[((−1)^{r−1} b_{r−m} b−((a^m a_0)^{−1} \Delta_1 (a) − (b^{m+1} b_0)^{−1} \Delta_1 (b)) = 0, \]

\[−(b^{−1} b_0)^{−1} \Delta_0 (b) = 0. \]

Decompose the determinants \(\Delta_{r+1}(a)\) and \(\Delta_{r+1}(b)\) for entries of their last columns. Then the left and right sides of equality (50) for \(v = r + 1\) can be written in the form

\[(a^{m^{r+1}} b_0)^{−1} \Delta_{r+1} (a) = (a^{m^{r+1}} a_0)^{−1} \left((−1)^{m^{r+1}} b_{r+1} b^{m^{r+1}} + (−1)^r b_{r+1−m} b^r \Delta_0 (a) + (−1)^r a_{r−m} a^{r+1} \Delta_1 (a) \right) \]

\[+ \cdots + (−1)^{m+1} a_{r−m} a^{m+1} \Delta_{r−m−1} (a) \]

\[+ (−1)^m a_{r−m} a^{m+1} \Delta_{r−m} (a) \]

\[+ (−1)^{m−1} a_{r−m} a^{m−1} \Delta_{r−m−1} (a) \),

We add the left sides of equalities (57) and (58) and multiply by \((−1)^{m^{r+1}}\) the left side of the equality (56) and separately add right sides of the these equalities. Taking into account the expression (59), (60) for \((a^{m^{r+1}} a_0)^{−1} \Delta_{r+1} (a), (b^{m^{r+1}} b_0)^{−1} \Delta_{r+1} (b)\) and the identity (61), we obtain \((a^{m^{r+1}} a_0)^{−1} \Delta_{r+1} (a) = (−1)^{m^{r+1}} (a b_0)^{−1} = 0\). This means that the equality (50) for \(v = r + 1\) is true. The necessity of the conditions of Lemma is proved.

Sufficiency. Let the conditions (50) for \(v = 1, \ldots, m − 1\) be satisfied. Then the submatrix formed by first \(m + 1\) rows of the matrix of (49) has rank less than 3. In fact, this rank is equal to 2, because (as has been stated above) the first two rows of this matrix are linearly independent. The equality (50) for \(v = m\) implies that \((m + 2)\)-th row of the matrix of equation (49) linearly depends on its first two rows. Our inductive assumption is the following. Let each of the first \(r + 2, m \leq r < k\), rows of the matrix of (49) linearly depend on its first two rows. We now reverse the order of arguments, as compared to the proof of the necessity, passing from relation (50) for \(v = r + 1\) to relation (56). This relation implies that the minor of order 3 of the matrix of (49) that is contained in 1-st, 2-nd, and \((r + 3)\)-th rows is equal to zero. This means that indicated rows are linearly dependent. The above argument
inductively proves that the matrix of equation (49) has the rank 2. From this it follows that (49) has the nonzero solution. The rest of the Lemma will be proved by contradiction. Let
\[\begin{bmatrix} x_{10} & x_{20} & x_{30} \end{bmatrix} \] be the nonzero solution of the equation (49), where \(x_{10} = 0 \) or \(x_{20} = 0 \). Hence we have the equality
\[
\begin{bmatrix} b & ab \\ a_0 & ab_0 + a_b & x_{30} \end{bmatrix} = 0
\] or
\[
\begin{bmatrix} a & ab \\ a_0 & ab_0 + a_b & x_{10} \end{bmatrix} = 0.
\] (62)

Since \(a, b, a_0, b_0 \neq 0 \), the determinants of the \(2 \times 2 \) matrices of these equalities are nonzero. Hence, \(\| x_{30} \| = 0 \) or \(\| x_{10} \| = 0 \); that is, \(\| x_{20} \| = 0 \) contrary to our assumption. Therefore in the nonzero solution \(\| x_{30} \| \) of (49) necessarily \(x_{10}, x_{20} \neq 0 \). Lemma is proved.

6. The Case 3

The notations are the same as in the Cases 1 and 2 (in particular, see (13)).

Theorem 7. Let the partition of the set \(M \) of characteristic roots of matrices \(A(x), B(x) \) (2) be of the form (3), where \(u \geq 3 \). Let the entries \(a(x), b(x) \) of these matrices satisfy the condition \(a(\alpha_1) = b(\alpha_1) = 0 \) for root \(\alpha_1 \in M_1 \). Let also \(2m_1 < n_1 \) for some root \(\alpha_1 \in M_1 \). Matrices \(A(x), B(x) \) are semiscalarly equivalent if and only if there exists a number \(c \neq 0 \) such that the following conditions hold:

1. \(a_{p0} = cb_{p0} \) and

\[
\begin{bmatrix}
 a_{p0} & a_{p1} & \cdots & a_{p,s-1} & a_{p,s} \\
 a_{p1} & a_{p2} & \cdots & \cdots & \cdots \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 \vdots & \vdots & \cdots & a_{p1} & a_{p2} \\
 0 & a_{p0} & a_{p1} & \cdots & a_{p,s}
\end{bmatrix}
\] (64)

\[
\begin{bmatrix}
 b_{p1} & b_{p2} & \cdots & b_{p,s-1} & b_{p,s} \\
 b_{p0} & b_{p1} & \cdots & \cdots & \cdots \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 \vdots & \vdots & \cdots & b_{p1} & b_{p2} \\
 0 & b_{p0} & b_{p1} & \cdots & b_{p,s}
\end{bmatrix}
\] = \(c_{s+1} \)

\[
\begin{align*}
 s_1 &= 1, \ldots, m_p - 1, n_p + 1, \ldots, n_p - m_p - 1, \\
 a_{k,s} &= \frac{a_{m,s} - a_{m_0}}{a_{0}^2} = \frac{1}{c} \left(b_{k,m_0} b_{k_0} - b_{m,m_0} \right)
\end{align*}
\] (65)

for every pair of the roots \(\alpha_k, \alpha_q \in M_1 \) such that \(2m_k < n_k, 2m_q < n_q \); \((3) \)

\[
\begin{align*}
 0 & \cdots & 0 & a_{q0} & a_{q1} & \cdots & a_{q,s} \\
 1 & & & & & & \\
 a_{q} & & & & & & \\
 \vdots & \ddots & & \ddots & \ddots & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 0 & & & & & \cdots & a_{q} \\
 0 & & & & & \cdots & 0
\end{align*}
\] (66)

for every root \(\alpha_q \in M \) such that \(\alpha_q \notin M_1 \) and \(m_q < n_q \); \((4) \)

\[
\begin{align*}
 a_r - a_h & = \frac{b_r - b_h}{b_r b_h} \\
 a_{p0} & = \frac{a_{p0}}{a_{p0}^2} + \frac{1}{a_{q}} \left(\frac{b_{p,m_0}}{b_{p0}} + \frac{1}{b_{q}} \right)
\end{align*}
\] (67)

for every pair of the roots \(\alpha_r, \alpha_h \in M \) such that \(\alpha_r, \alpha_h \notin M_1 \); \((5) \)

\[
\begin{align*}
 a_{p0} & = \frac{a_{p0}}{a_{p0}^2} + \frac{1}{a_{q}} \left(\frac{b_{p,m_0}}{b_{p0}} + \frac{1}{b_{q}} \right)
\end{align*}
\] (68)

for every pair of the roots \(\alpha_p, \alpha_q \in M \) such that \(\alpha_p \in M_1, 2m_p < n_p \) and \(\alpha_q \notin M_1 \).

Proof.

Necessity. As we already know, from semiscalar equivalence of the matrices \(A(x), B(x) \) it follows that the entries \(a(x), b(x) \) of these matrices satisfy the congruence (15), where \(s_{11}, s_{22} \neq 0 \). Taking into account that

\[
 a(x) = a_p + \sum_{t=0}^{s_m-1} a_{pt} (x - \alpha_p)^{m_p + t}, \quad a_{p0} \neq 0,
\] (69)

\[
 b(x) = b_p + \sum_{t=0}^{s_m-1} b_{pt} (x - \alpha_p)^{m_p + t}, \quad b_{p0} \neq 0,
\] (70)
we compare the coefficients of equal degrees of binomial \(x - \alpha_p \) on both sides of the congruence (15). Then we obtain

\[
s_{22}a_p - s_{11}b_p = 0, \quad t = 0, 1, \ldots, l_p - m_p - 1, \quad l_p = \min\left(2m_p, n_p\right).
\]

(71)

From this it follows that \(a_{p0} = cb_{p0} \) and equality (64), where \(c = s_{11}/s_{22} \), for all roots \(\alpha_p, \epsilon M_1 \) such that \(2m_p \geq n_p \).

Taking into account the roots \(\alpha_p \in M_1 \) such that \(2m_p < n_p \) and comparing the coefficients of equal degrees of binomial \(x - \alpha_p \) on both sides of the congruence (15), we obtain the system of equalities, which in the matrix form can be written

\[
\begin{bmatrix}
 a_{p0} & b_{p0} & 0 \\
 a_{p1} & b_{p1} & 0 \\
 \vdots & \vdots & \vdots \\
 a_{pm} & b_{pm} & \sum_{t=0}^{n_p-2m_p-1} a_{p0}b_{p,n_p-2m_p-1-t} \\
\end{bmatrix}
\begin{bmatrix}
 s_{22} \\
 s_{11} \\
\end{bmatrix}
= 0.
\]

(72)

Since \(s_{11}, s_{22} \neq 0 \), by Lemma 5 from the obtained equality we have that the condition (1) of Theorem is completely satisfied.

Let \(\alpha_k, \alpha_q \in M_1 \) be the arbitrary pair of the roots such that \(2m_k < n_k, 2m_q < n_q \). For the coefficients \(a_{km}, a_{qm}, b_{km}, b_{qm} \) of the compositions of types (69) and (70) of the entries \(a(x), b(x) \) into degrees of binomials \(x - \alpha_k, x - \alpha_q \) from the congruence (15) we can write the relations

\[
s_{22}a_{km} - s_{11}b_{km} - s_{12}a_{km}b_{km} = 0, \\
s_{22}a_{qm} - s_{11}b_{qm} - s_{12}a_{qm}b_{qm} = 0.
\]

(73)

By exclusion from these equalities \(s_{12} \) and considering that \(a_{km}b_{km} = cb_{km}, a_{km}b_{km} = cb_{km} \), we have equality (65). This proves the condition (2) of Theorem.

From the congruence (15) for the coefficients of the decomposition of types (69) and (70) of the entries \(a(x), b(x) \) into degrees of binomial \(x - \alpha_q \) for root \(\alpha_q \in M \) such that \(\alpha_q \notin M_1 \) and \(m_q < n_q \) can be written the system

\[
s_{22}a_q - s_{11}b_q - s_{12}a_qb_q = 0, \\
s_{22}a_{q0} - s_{11}b_{q0} - s_{12}a_{q0}b_{q0} = 0, \\
s_{22}a_{q1} - s_{11}b_{q1} - s_{12}a_{q1}b_{q1} = 0, \\
\vdots \\
s_{22}a_{q,l_q} - s_{11}b_{q,l_q} - s_{12}a_{q,l_q}b_{q,l_q} = 0.
\]

(74)

where \(l_q = \min(2m_q, n_q) \). Excluding from this system \(s_{12} \), we have

\[
s_{22}a_q = s_{11}b_q - s_{12}a_qb_q = 0,
\]

(75)

or

\[
\frac{a_q}{b_q} = \frac{1}{c}, \quad t = 0, 1, \ldots, l_q - m_q - 1,
\]

(76)

where \(c = s_{11}/s_{22} \). This implies the equality (66) for the roots \(\alpha_q \in M \) such that \(\alpha_q \notin M_1, m_q < n_q \), and \(2m_q \geq n_q \).

If \(2m_q < n_q \), then from congruence (15) the system of equalities can be obtained, which can be written in the matrix form

\[
\begin{bmatrix}
 F & G & H \\
\end{bmatrix}
\begin{bmatrix}
 s_{22} \\
 s_{11} \\
\end{bmatrix}
= 0,
\]

(77)

where

\[
F = \begin{bmatrix}
 a_q \\
 a_{q0} \\
 a_{q1} \\
 \vdots \\
 a_{q,m_q-1} \\
 a_{q,m_q} \\
 a_{q,m_q+1} \\
 \vdots \\
 a_{q,n_q-m_q-1} \\
\end{bmatrix}
\]

and

\[
G = \begin{bmatrix}
 b_q \\
 b_{q0} \\
 b_{q1} \\
 \vdots \\
 b_{q,m_q-1} \\
 b_{q,m_q} \\
 b_{q,m_q+1} \\
 \vdots \\
 b_{q,n_q-m_q-1} \\
\end{bmatrix}
\]

and

\[
H = \begin{bmatrix}
 s_{22} \\
 s_{11} \\
\end{bmatrix}
\]
We have

where \(s_q = 0,1, \ldots, n_q - m_q - 1 \). Here for \(t = 0,1, \ldots, m_q - 1 \) the equalities (76) hold. Now we multiply the left side of the equality (80) by the left side of the equality (76) at \(t = 0 \) and carry out analogous operation with the right sides. As a result we obtain the equality (66). This proves the condition (3) of Theorem entirely.

For the arbitrary pair of roots \(\alpha_q, \alpha_q \in \mathbf{M}, \alpha_q \in \mathbf{M} \) such that \(r, h \neq 1, r \neq h \), the congruence (15) implies

\[
 s_{22} \alpha_q - s_{11} b_r - s_{12} a_r b_r = 0,
\]

\[
 s_{22} a_h - s_{11} b_h - s_{12} a_h b_h = 0.
\]

(81)

Excluding \(s_{12} \) it follows the relation (67). The condition (4) of Theorem is proved.

Let \(\alpha_p, \alpha_q \in \mathbf{M} \) be the pair of the roots such that \(\alpha_p \in \mathbf{M}_p, 2m_p < n_p \) and \(\alpha_q \notin \mathbf{M}_1 \). For the coefficients \(a_{p0}, a_{p, m_q}, b_{p0}, b_{p, m_q} \) of the decomposition (69) and (70) and values \(\alpha = a(\alpha_q), b_q = b(\alpha_q) \) from the congruence (15) the system of equalities

\[
 s_{22} a_{p, m_q} - s_{11} b_{p, m_q} - s_{12} a_{p0} b_{p0} = 0,
\]

\[
 s_{22} a_q - s_{11} b_q - s_{12} a_q b_q = 0
\]

(82)

can be obtained. From these equalities we exclude \(s_{12} \). Considering \(a_{p0} = c b_{p0} \), we have relation (68). The necessity of the conditions of Theorem is completely proved.

Sufficiency. Let the conditions (1)–(5) of Theorem be satisfied. Consider the matrix equations

\[
\begin{bmatrix}
 a_{p0} & b_{p0} & 0 \\
 a_{p1} & b_{p1} & 0 \\
 \vdots & \vdots & \vdots \\
 a_{p, m_q} & b_{p, m_q} & 0 \\
 a_{p, m_q+1} & s_{p, m_q+1} & a_{p0} b_{p0} \\
 \vdots & \vdots & \vdots \\
 a_{p, m_q+r-1} & s_{p, m_q+r-1} & a_{p0} b_{p0} \\
 a_{p, n_q-m_q} & b_{p, n_q-m_q} & \sum_{i=0}^{n_q-2} a_{pi} b_{pi} & b_{p0} & 0 \\
 \end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_{m_q} \\
x_{m_q+1} \\
\vdots \\
x_{m_q+r-1} \\
\end{bmatrix}
= \begin{bmatrix} 0 \\
0 \\
\vdots \\
0 \\
0 \\
\vdots \\
0 \\
\end{bmatrix}
\]

(83)

for the indeterminate vector-column \(\|x_1 \ x_3 \| \). They are written using the coefficients of the decomposition (69) and (70) for some root \(\alpha_q \in \mathbf{M}_1 \) such that \(m_q < n_q \). If \(2m_q \geq n_q \), then the condition (1) implies that (83) has nonzero solution \(\|1 \ -c \ s_{12}\| \). Moreover this solution does not depend on the choice of the root \(\alpha_q \in \mathbf{M}_1 \) such that \(m_q < n_q \). If \(2m_q < n_q \), then by Lemma 5 both these equations (83) and (84) have the common nonzero solution. Evidently, those first rows of the
matrices of these equations are linearly independent and any other of their rows are linear combination of these rows. Since
\[
\begin{bmatrix}
 a_{p0} & b_{p0} & 0 \\
 a_{p,m} & b_{p,m} & a_{p0}b_{p0}
\end{bmatrix}
\begin{bmatrix}
 1 \\
 (cb_{p,m} - a_{p,m}) (a_{p0}b_{p0})^{-1}
\end{bmatrix}
= \bar{\alpha}_i,
\]
this means that
\[
\begin{bmatrix}
 x_1 & x_3 & x_3
\end{bmatrix}^T
= \begin{bmatrix}
 1 & -c & (cb_{p,m} - a_{p,m}) (a_{p0}b_{p0})^{-1}
\end{bmatrix}^T
\]
is the common nonzero solution of (83) and (84).

From the condition (2) we deduce the relation
\[
(cb_{k,m_k} - a_{k,m_k}) (a_{q0}b_{q0})^{-1} = (cb_{q,m_i} - a_{q,m_i}) (a_{q0}b_{q0})^{-1}
\]
(87)
for arbitrary pair of the roots \(\alpha, \alpha \in M\) such that \(2m_k < n_k\), \(2m_i < n_i\). This means that the solution (86) does not depend on the choice of the root \(\alpha \in M\) satisfying the condition (1). Hence it can be written the congruence
\[
a(x) - cb(x) - c_1 a(x) b(x) \equiv 0
\]
(88)
where
\[
c_1 = (a_{p,m_p} - cb_{p,m_p}) (a_{p0}b_{p0})^{-1}
\]
(89)
for every root \(\alpha_p \in M_1\). Clearly, here are included also the roots \(\alpha \in M_1\) for which \(m_i \geq n_i\) (if such exist).

Let the equality (66) hold true for some root \(\alpha_q \in M\) such that \(\alpha_q \notin M_1\), and \(m_q < n_q\). The fulfillment of these equalities for \(s_q = 0\) means that \(c_{a_q}/c_q = b_{q0}/b_q^2\). Note that the relations (80) follow from the equality (66) for \(s_q = 1, \ldots, n_q - m_q - 1\). Therefore by Lemma 6 the equation
\[
\begin{bmatrix}
 F & G & H
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix}
= \bar{\alpha}_i
\]
(90)
where \(F, G, \) and \(H\) are defined as in (78) and (79), has nonzero solution. Since the first two rows of the matrix of (90) are linearly independent and
\[
\begin{bmatrix}
 a_q & b_q & a_q b_q \\
 a_{q0} & b_{q0} & a_{q0}b_{q0} + a_q b_q (cb_q - a_q) (a_q b_q)^{-1}
\end{bmatrix}
\begin{bmatrix}
 1 \\
 (cb_q - a_q) (a_q b_q)^{-1}
\end{bmatrix}
= \bar{\alpha}_i
\]
(91)
then the column
\[
\begin{bmatrix}
 x_1 & x_3 & x_3
\end{bmatrix}^T
= \begin{bmatrix}
 1 & -c & (cb_q - a_q) (a_q b_q)^{-1}
\end{bmatrix}^T
\]
(92)
is the solution of (90).

From the condition (4) it follows that the relation
\[
(cb_q - a_q) (a_q b_q)^{-1} = (cb_{q} - a_{q}) (a_{q} b_{q})^{-1}
\]
holds true for every pair of the roots \(\alpha, \alpha \in M\) such that \(\alpha_q, \alpha_q \notin M_1\). For this reason the solution (92) does not depend on the choice of the root \(\alpha_q \in M\) such that \(\alpha_q \notin M_1\). This means that the congruence
\[
a(x) - cb(x) - c_1 a(x) b(x) \equiv 0
\]
(94)
holds for every root \(\alpha_q \in M_1\), including the roots \(\alpha \notin M_1\) such that \(m_i \geq n_i\), if such exist.

From the condition (5) of Theorem can be easily obtained the relation
\[
(a_{p,m_p} - cb_{p,m_p}) (a_{p0}b_{p0})^{-1} = (a_{q} - cb_q) (a_q b_q)^{-1}
\]
(96)
for every pair of the roots \(\alpha, \alpha \in M\) such that \(\alpha_p \in M_1, 2m_p < n_p\), and \(\alpha_q \notin M_1\). This means that the coefficients \(c_1\) and \(c_2\) in the congruences (88) and (94) coincide. This makes it possible to write the congruence (15), where \(s_{q1} = c, s_{q2} = 1, s_{q3} = c_1 = c_2\).

The conclusion of the proof of Theorem can be fulfilled in the same way as of the Theorem 3. The Theorem is proved.

\[\square\]

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

References

