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Abstract. 
It is well known that the sum of points of the period-five cycle of the quadratic polynomial  is generally not one-valued. In this paper we will show that the sum of cycle points of the curves of period five is at most three-valued on a new coordinate plane and that this result is essentially the best possible. The method of our proof relies on a implementing Gröbner-bases and especially extension theory from the theory of polynomial algebra.



1. Introduction
The dynamics of quadratic polynomials is commonly studied by using the family of maps , where  and . In the article [1] we presented the corresponding iterating system on a new coordinate plane using the change of variablesto the -plane model (see [2]). In this new -plane model, equations of periodic curves are of remarkably lower degree than in earlier models. Now the dynamics of the -plane is determined by the iteration of the functionwhich is a two-dimensional quadratic polynomial map defined in the complex -space . The new iteration system is defined recursively as follows:whereand . Now  is fixed , so , if and only if . The set of such points is the union of all orbits, whose period divides , and the set of periodic points of period  are the points with exact period dividing .
In complex dynamics, the sum of period cycle points has been a commonly used parameter in many connections (see, e.g., [2–6]). In the article [5] Giarrusso and Fisher used it for the parameterization of the period  hyperbolic components of the Mandelbrot set. Later, in the article [2], Erkama studied the case of the period  hyperbolic components of the Mandelbrot set on the -plane and completely solved both cases.
Moreover, Erkama [2] has shown that the sum of periodic orbit pointsis unique when  or . Conversely, the sum of cyclic points of periods three and four determines these orbits uniquely. In the period-five case this situation changes and the sum of the cycle points is no longer unique. We can see this property in the articles [3, 6], in which Brown and Morton have formed the so called trace formulas in the cases of periods five and six using  and the sum of period cycle points as parameters. In this paper we will show that, by implementing the change of variables (1), we obtain a new coordinate plane where the sum of period-five cycle points is at most three-valued and show that no better result is obtainable in this coordinate plane. This is done by applying methods of polynomial algebra (without the classical trace formula), as our proof relies on the use of the elimination theory and especially the extension theorem [7]. The extension theorem tells us the best possible result (which the trace formula does not necessarily do) due to the use of Gröbner-basis. In the next section we present the most central tools and constructions related to these theorems.
2. A Brief Introduction to the Elimination Theorem
We start with the Hilbert basis theorem: Every ideal  has a finite generating set. That is,  for some . Hence  is the ideal generated by the elements ; in other words  is the basis of the ideal. The so called Gröbner-basis has proved to be especially useful in many connections [7], for example, in kinematic analysis of mechanisms (see [8, 9]). In order to introduce this basis we need the following constructions.
Let  be the polynomial given bywhere , , and  is a monomial. Then the multidegree of  isthe leading coefficient of  isthe leading monomial of  isand the leading term of  is
To calculate a Gröbner-basis of an ideal we need to order terms of polynomials by using a monomial ordering. A Gröbner-basis can be calculated by using any monomial ordering, but differences in the number of operations can be very significant. An effective tool to calculate the Gröbner-basis is the software Singular, which has been especially designed for operating with polynomial equations. Next we will define a monomial ordering of nonlinear polynomials.
Relation  is the linear ordering in the set , if , , or  for all . A monomial ordering in the set  is a relation  if(1) is linear ordering,(2)implication  holds for all ,(3).
 To compute elimination ideals we need product orderings. Let  be an ordering for the variable , and let  be ordering for the variable  in the ring . Now we can define the product ordering as follows:There are several monomial orders but we need only the lexicographic order  in the elimination theory. Let . Then we say that  if  and . One of the most important tools in the elimination theory is the Gröbner-basis of an ideal: Fix a monomial order. A finite subsetof an ideal  is said to be a Gröbner-basis (or standard basis) ifBased on the Hilbert basis theorem we know that every ideal  has a Gröbner-basis  so that
It is essential to construct also an affine variety corresponding to the ideal. Let  be polynomials in the ring . Then we setand we call  as the affine variety defined by . Now if ,  and naturally we obtain the variety of the ideal as the variety of its Gröbner-basis: .
When we consider ideals and their algebraic varieties we are sometimes just interested about polynomials , which belong to the original ideal  but contain only certain variables of the ring variables of . For this purpose we need elimination ideals. Let . The :th elimination ideal  is the ideal of  defined byNext we give an important elimination theorem which we use in our proof.
Theorem 1 (the elimination theorem).  Let  be an ideal and let  be a Gröbner-basis of  with respect to lexicographic order, where . Then, for every , the setis a Gröbner-basis of the :th elimination ideal .
The elimination theorem is closely related to the extension theorem, which tells us the correspondence between varieties of the original ideal and the elimination ideal. In other words, if we apply this theorem to a system of equations we see whether the partial solution  of the system of equations is also a solution of the whole system .
Theorem 2 (the extension theorem).  Let  and let  be the first elimination ideal of . For each  write  in the formwhere  and , . Suppose that we have a partial solution . If , then there exists  such that .
3. On Properties of Points Sums of Periods 3–5 Cycles
In this section we first prove the uniqueness properties of points sums of cycles of period three and four by using methods from polynomial algebra in a new way. After this we concentrate on the period-five case and show that the sum of period-five cycle points is at most three-valued. The next result shows the relation between the sums of cycle points of the -plane [2] and the -plane [1].
Theorem 3.  Let  be the period- orbit points. Ifthen by transformation of (1) and (3)where
Proof.  By writing out both components we obtainand similarly
3.1. The Uniqueness of Cycle Points Sums of Periods Three and Four Orbits
The sums of points of the periods three and four cycles is obtained in [2] as
According to Theorem 3 and by using the formula (3) we obtain on the -planeBased on article [1], the equations of periodic orbits of period three and four are  and , whereNow we form polynomials  and  based on formulas (25) asBased on the previous equations we can form the pair of equationsand obtain the idealsWe eliminate from these ideals the variable  and obtain the Gröbner-basis of the eliminated ideals  and  to calculate the Gröbner-basis of the ideals  and  using the Singular program ([10]). Gröbner-bases of the ideals  and , by using the ordering , where  and , arewhereandwhereThus  and  depend only on the variables  and . Based on the elimination Theorem 1 the setis the Gröbner-basis of the elimination ideal  and so . At the same way the setis the Gröbner-basis of the elimination ideal  and so . In the case  it follows thatIf  we haveAs we can see, in both cases the sum of the points of cycles of the given period is unique. In other words, the orbit sums  and  uniquely determine the orbit. If we eliminate in the first case the variable  instead of the variable , we obtain the Gröbner-basiswhich gives the same result as (36). However, the same procedure in the period four case produces the Gröbner-basisand this is of higher degree than (37).
3.2. On the Uniqueness of the Cycle Points Sum of Period-Five Orbits
Next we prove that, in the case of period-five cycles, the sum of period-five points is at most three-valued. We use in this proof the Gröbner-basis of an ideal, like before in periods three and four cases, which produce for us the Gröbner-basis of the elimination ideal. Because this method relies on bases, the following result is optimal.
Theorem 4.  The sum of period-five cycle points is at most three-valued.
Proof.  By article [1], the equation for period-five orbit on the -plane is of the form , whereAccording to the Theorem 3, the sumof the period-five points satisfies and based on the formula (3) we obtainon the -plane. We form from this the polynomialNow we can form the pair of equationsand the two polynomials  and  form an idealwhereWe eliminate from this the variable  by forming the Gröbner-basis  of the elimination ideal  in order to calculate the Gröbner-basis  of the ideal  using Singular program. We obtain the Gröbner-basis of the ideal  asusing ordering , where . Here , , , , and  depend on the variables , , and , and  depends only on the variables  and . By the elimination theorem the setis the Gröbner-basis of the elimination ideal  and so . Now the Gröbner-basis of the elimination ideal  is of the formwhereBy (50)  is formed as a product of three terms. We denote the last of these terms in (50) by . Now we obtain the variety  of the elimination ideal as the union of three varieties corresponding to the factors of  as follows:Note that  is of degree  with respect to the variable  and of degree  with respect to the variable . We denote, according to the extension theorem,whereThe corresponding varieties aresoIn other words for all  and  we have  and in that case by the extension theorem then there exists  so that , so all partial solutions  extend as solutions of the original system (45). Since the term  is of degree  with respect to the variable , it follows by the fundamental theorem of algebra that the equation  has at most  different roots. For example, for the value  we obtain the Gröbner-basis of the elimination polynomial for which the variety  includes  different values. From these five are real and the rest ten are complex numbers. According to the extension theorem, for every pair of points  we find the corresponding value of the variable  so that . Consequently the sum of period-five cycle points attains the same value at most three times.
We obtain also the same result if we eliminate the variable  from the pair of equations (45) using the ordering , where .
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