Research Article

Bounded Subsets of Smirnov and Privalov Classes on the Upper Half Plane

Yasuo Iida

Department of Mathematics, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan

Correspondence should be addressed to Yasuo Iida; yiida@kanazawa-med.ac.jp

Received 30 August 2017; Accepted 13 November 2017; Published 19 December 2017

Academic Editor: Ahmed Zayed

Copyright © 2017 Yasuo Iida. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Some characterizations of boundedness in $N^*(D)$ and $N^p(D)$ ($1 < p < \infty$) will be described, where $N^*(D)$ denote the Smirnov class and $N^p(D)$ the Privalov class on the upper half plane $D = \{z \in \mathbb{C} | \text{Im} z > 0\}$, respectively.

1. Introduction

Let U and T denote the unit disk and the unit circle in \mathbb{C}, respectively. The Privalov class $N^p(U), 1 < p < \infty$, is defined as the set of all holomorphic functions f on U, satisfying

$$\sup_{0<\rho<1} \int_T (\log(1 + |f(\rho \zeta)|))^p \, d\sigma(\zeta) < +\infty,$$

where $d\sigma$ denotes normalized Lebesgue measure on T. The notion of $N^p(U)$ was introduced by Privalov [1] and has been explored by several authors (see [2–4]). Letting $p = 1$, we have the Nevanlinna class $N(U)$. It is well-known that each function f in $N(U)$ has the nontangential limit $f^*(\zeta) = \lim_{\rho \to 1-} f(\rho \zeta)$ (a.e. $\zeta \in T$) and that $\log(1 + |f|)$ (and, hence, $(\log(1 + |f|))^p$ for $p > 1$) is subharmonic if f is holomorphic. Define a metric

$$d_{N(U)}(f, g) = \int_T (\log(1 + |f^*(\zeta) - g^*(\zeta)|))^p \, d\sigma(\zeta),$$

for $f, g \in N^p(U)$. With the metric $d_{N(U)}(\cdot, \cdot)$ $N^p(U)$ becomes an F-algebra [2]. Recall that an F-algebra is a topological algebra in which the topology arises from a complete metric.

We denote the Smirnov class by $N_s(U)$, which consists of all holomorphic functions f on U such that $\log(1 + |f(z)|) \leq Q(\phi)(z)$ ($z \in U$) for some $\phi \in L^1(T), \phi \geq 0$, where the right side denotes the Poisson integral of ϕ on U. It is known that if $f \in N(U), \ f$ belongs to $N_s(U)$ if and only if

$$\lim_{\rho \to 1-} \int_T \log(1 + |f(\rho \zeta)|) \, d\sigma(\zeta) = \int_T \log(1 + |f^*(\zeta)|) \, d\sigma(\zeta).$$

Under the metric $d_{N_s(U)}(f, g) = \int_T (\log(1 + |f^*(\zeta) - g^*(\zeta)|))^p \, d\sigma(\zeta)$ for $f, g \in N_s(U)$, the class is also an F-algebra (see [5]).

For $0 < p < \infty$, the class $M^p(U)$ is defined as the set of all holomorphic functions f on U such that

$$\int_T (\log(1 + Mf(\zeta)))^p \, d\sigma(\zeta) < +\infty,$$

where $Mf(\zeta) = \sup_{0<\rho<1} |f(\rho \zeta)|$ is the maximal function. The class $M^1(U)$ was introduced by Kim in [6]. As for $p > 0$, the class was considered in [7, 8]. For $f, g \in M^p(U)$, define a metric

$$d_{M^p(U)}(f, g) = \left\{ \int_T (\log(1 + M(f - g)(\zeta)))^p \, d\sigma(\zeta) \right\}^{\alpha_p},$$

where $\alpha_p = \min(1, p)$. With this metric $M^p(U)$ is also an F-algebra (see [9]).

Hindawi
International Journal of Analysis
Volume 2017, Article ID 9134768, 4 pages
https://doi.org/10.1155/2017/9134768
It is well-known that $H^p(U) \subset N^p(U) \subset M^1(U) \subset N_s(U) \subset N(U)$ ($0 < q \leq \infty$, $p > 1$), where $H^p(U)$ denotes the Hardy space on U. Moreover, it is known that $N(U) \subset M^p(U)$ ($0 < p < 1$) [6].

Mochizuki [10] introduced the Nevanlinna class $N_s(D)$ and the Smirnov class $N_s(D)$ on the upper half plane $D = \{z \in \mathbb{C} | \text{Im} z > 0\}$; the class $N_s(D)$ is the set of all holomorphic functions f on D satisfying

$$\sup_{y \to 0} \int_{\mathbb{R}} (\log (1 + |f(x + iy)|)) \, dx < +\infty$$

and $N_s(D)$ the set of all holomorphic functions f on D satisfying log$(1 + |f(z)|) \leq P(\phi)(z)$ ($z \in D$) for some $\phi \in L^1(\mathbb{R})$, $\phi \geq 0$, where the right side denotes the Poisson integral of ϕ on D. It is well-known that each function f in $N_s(D)$ has the nontangential limit $f^*(x) = \lim_{y \to 0^+} f(x+iy)$ (a.e. $x \in \mathbb{R}$). Let $f \in N_s(D)$. Then $f \in N_s(D)$ if and only if

$$\lim_{y \to 0^+} \int_{\mathbb{R}} \log (1 + |f(x + iy)|) \, dx$$

(see [10]). Moreover, under the metric

$$d_{N_s(D)} (f, g) = \int_{\mathbb{R}} (\log (1 + |f^*(x) - g^*(x)|)) \, dx,$$

the class $N_s(D)$ becomes an F-algebra [10].

The class $M^p(D)$ ($0 < p < \infty$) is defined as the set of all holomorphic functions f on D such that

$$\int_{\mathbb{R}} (\log (1 + Mf(x)))^p \, dx < +\infty,$$

where $Mf(x) = \sup_{y \to 0} |f(x + iy)|$. The class $M^p(\mathbb{X})$ with $p = 1$ was introduced by Ganzhula in [11]. As for $p > 1$, Efimov and Subbotin investigated this class [12]. For $f, g \in M^p(D)$, define a metric

$$d_{M^p(D)} (f, g) = \left\{ \int_{\mathbb{R}} (\log (1 + M(f - g)(x)))^p \, dx \right\}^{1/p},$$

(11)

where $\alpha_p = \min(1, p)$. With this metric $M^p(D)$ is also an F-algebra (see [11, 12]).

In [13], the class $N^p(D)$ was introduced, analogous to $N^p(\mathbb{X})$; that is, we denote by $N^p(D)$ ($p > 1$) the set of all holomorphic functions f on D such that

$$\sup_{y \to 0} \int_{\mathbb{R}} (\log (1 + |f(x + iy)|))^p \, dx < +\infty.$$

(12)

Each $f \in N^p(D)$ has the nontangential limit $f^*(x)$ for a.e. $x \in \mathbb{R}$, and under the metric,

$$d_{N^p(D)} (f, g) = \left\{ \int_{\mathbb{R}} (\log (1 + |f^*(x) - g^*(x)|))^p \, dx \right\}^{1/p},$$

(13)

the class $N^p(D)$ becomes an F-algebra [13].

A subset L of a linear topological space A is said to be bounded if for any neighborhood U of zero in A there exists a real number α, $0 < \alpha < 1$, such that $\alpha L = \{\alpha f; f \in L\} \subset U$. Yanagihara characterized bounded subsets of $N_s(U)$ [14]. As for $M^p(D)$ with $p = 1$, Kim described some characterizations of boundedness (see [6]). For $p > 1$, these characterizations were considered by Meštrović [15]. As for $M^p(D)$ with $p = 1$, Ganzhula investigated the properties of boundedness [11] and Efimov characterized bounded subsets of $M^p(D)$ in the case $0 < p < \infty$ [16]. In recent paper [17], the author described bounded subsets of $M^p(U)$ in the case $0 < p < 1$.

In this paper, we consider some characterizations of boundedness in $N_s(D)$ and $N^p(D)$ ($p > 1$).

2. The Results

Theorem 1. Let $p > 1$. $L \subset N^p(D)$ is bounded if and only if

(i) there exists a $K < \infty$ such that

$$\int_{\mathbb{R}} (\log (1 + |f^*(x)|))^p \, dx < K$$

(14)

for all $f \in L$;

(ii) for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\int_{E} (\log (1 + |f^*(x)|))^p \, dx < \epsilon, \quad \forall f \in L,$$

(15)

for any measurable set $E \subset \mathbb{R}$ with the Lebesgue measure $|E| < \delta$.

Proof. We follow [16, Theorem 1].

Necessity. Let L be a bounded subset of $N^p(D)$.

(i) For any number $\eta > 0$ there exists $\alpha > 0$, $0 < \alpha < 1$, such that

$$\int_{\mathbb{R}} (\log (1 + |f(x)|))^p \, dx < \eta^p$$

(16)

for all $f \in L$. Utilizing the inequality $(1 + x)\alpha \leq 1 + \alpha x$ ($0 < \alpha < 1, \ x \geq 0$), it follows that, from (16),

$$\int_{\mathbb{R}} (\log (1 + |f^*(x)|))^p \, dx$$

$$\leq \int_{\mathbb{R}} \left(\log (1 + \alpha |f^*(x)|)^{1/\alpha} \right)^p \, dx$$

(17)

$$= \frac{1}{\alpha^p} \int_{\mathbb{R}} (\log (1 + \alpha |f^*(x)|))^p \, dx < \left(\frac{n}{\alpha} \right)^p = K$$

$$= \text{constant}$$

for all $f \in L$. Therefore, condition (i) holds.

(ii) For any number $\epsilon > 0$, we take $\eta = \epsilon^{1/p}/2$. Choose a number $\alpha = \alpha(\epsilon)$, $0 < \alpha < 1$, such that equality (16) holds for all $f \in L$. Then for any measurable set $E \subset \mathbb{R}$, using Minkowski's inequality, we have the estimate

$$\int_{E} (\log (1 + |f^*(x)|))^p \, dx$$

$$< \int_{E} \left(\log \left(\frac{1}{\alpha} + |f^*(x)| \right) \right)^p \, dx$$

$$< \int_{E} \left(\log \left(\frac{1}{\alpha} + |f^*(x)| \right) \right)^p \, dx$$
If we take \(\delta > 0 \) as \(\delta < \varepsilon / (2^p(\log(1/\alpha))^p) \), then
\[
\int_E (\log(1 + |f^*(x)|))^p \, dx < \left(\frac{\varepsilon^{1/p} - \varepsilon/2}{2} \right)^p = \varepsilon
\]
for all \(f \in L \) and any measurable set \(E \subset \mathbb{R} \), \(|E| < \delta \). Thus condition (ii) holds.

Sufficiency. Let conditions (i) and (ii) hold for a subset \(L \) of \(N_\mathbb{R}^P(D) \), \(p > 1 \). Consider a neighborhood
\[
V = \{ g \in N_\mathbb{R}^P (D) : d_{N(D)}(g, 0) < \eta \}.
\]
Take \(\varepsilon > 0 \) as \(\varepsilon < \eta^p/3 \). According to (ii), there exists a number \(\delta > 0 \) such that
\[
\int_E (\log(1 + |f^*(x)|))^p \, dx < \varepsilon < \frac{\eta^p}{3}
\]
for all \(f \in L \) and any measurable set \(E \subset \mathbb{R} \), \(|E| < \delta \). Next there exists a finite constant \(K > 0 \) such that condition (i) holds for all \(f \in L \). Applying Chebyshev’s inequality to the Lebesgue measure of the set \(\mathcal{E}_f = \{ x \in \mathbb{R} \mid (\log(1 + |f^*(x)|))^p > K/\delta \} \) for \(f \in L \), the following estimate is valid:
\[
|\mathcal{E}_f| \leq \frac{\delta}{K} \int_\mathbb{R} (\log(1 + |f^*(x)|))^p \, dx < \delta.
\]
Then we may assume \(E = \mathcal{E}_f \) and \(f^*(x) > \exp(K/\delta)^{1/p} - 1 = C \) in inequality (24); that is, \(|f^*(x)|/C < 1 \) for all \(x \in \mathbb{R} \setminus \mathcal{E}_f \). Therefore, for any number \(\alpha \) (0 < \(\alpha < 1 \)) and all \(f \in L \), we have the following:
\[
\int_\mathbb{R} (\log(1 + \alpha |f^*(x)|))^p \, dx
\]
\[
= \int_{\mathcal{E}_f} (\log(1 + \alpha |f^*(x)|))^p \, dx
\]
\[
+ \int_{\mathbb{R} \setminus \mathcal{E}_f} (\log(1 + \alpha |f^*(x)|))^p \, dx
\]
\[
< \int_{\mathcal{E}_f} (\log(1 + |f^*(x)|))^p \, dx
\]
\[
+ \int_{\mathcal{E}_f} (\log(1 + \alpha |f^*(x)|))^p \, dx
\]
\[
+ \int_{\mathbb{R} \setminus \mathcal{E}_f} (\log(1 + \alpha |f^*(x)|))^p \, dx,
\]
where \(\mathbb{R} |E| = E_1 \cup E_2, E_1 = \{ x \in \mathbb{R} \mid |f^*(x)| < 1 \}, \) and \(E_2 = \{ x \in \mathbb{R} \mid 1 \leq |f^*(x)| < C \} \). By using the elementary inequality \(1 + \beta t \leq (1 + t)^{2\beta} \) (0 \(\leq t < 1 \), 0 \(< \beta < 1/2 \)) to the second integral in (23), using (21) and taking
\[
\alpha = \min \left(\frac{1}{2}, \frac{1}{2}, \frac{\eta^p}{3K}, \frac{1}{C} \left(\frac{2^{p/2}(1 + \alpha)}{3K} - 1 \right) \right),
\]
we have the following estimate
\[
\int_\mathbb{R} (\log(1 + \alpha |f^*(x)|))^p \, dx
\]
\[
< \frac{\eta^p}{3} + (2\alpha)^p K + \frac{\eta^p}{3K} \int_{E_1} (\log(1 + 1))^p \, dx
\]
\[
\leq \frac{\eta^p}{3} + \frac{\eta^p}{3}
\]
\[
\int_\mathbb{R} (\log(1 + |f^*(x)|))^p \, dx < \eta^p.
\]
Therefore, \(\alpha L \subset V \) and the set \(L \) is bounded in \(N_\mathbb{R}^P (D) \) by definition.

The proof of the theorem is complete. \(\square \)

Next we consider some characterizations of boundedness in \(N_\mathbb{R}^P (D) \). Proof of the following theorem can be obtained by taking \(p = 1 \) in the whole proof of Theorem 1; therefore, this proof may be omitted.

Theorem 2. \(L \subset N_\mathbb{R}^P (D) \) is bounded if and only if
(i) there exists \(K < \infty \) such that
\[
\int_\mathbb{R} (\log(1 + f^*(x))) \, dx < K
\]
for all \(f \in L \);
(ii) for each \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that
\[
\int_E (\log(1 + f^*(x))) \, dx < \varepsilon, \quad \forall f \in L,
\]
for any measurable set \(E \subset \mathbb{R} \) with the Lebesgue measure \(|E| < \delta \).

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The author is partly supported by the Grant for Assist KAKEN from Kanazawa Medical University (K2017-6).
References

