Letter to the Editor

Comment on “Some Congruence Properties of a Restricted Bipartition Function \(c_N(n) \)”

Qing Zou

Department of Mathematics, The University of Iowa, Iowa City, IA 52242-1419, USA

Correspondence should be addressed to Qing Zou; zou-qing@uiowa.edu

Received 9 January 2017; Accepted 12 June 2017; Published 13 July 2017

Academic Editor: Ahmed Zayed

Copyright © 2017 Qing Zou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

This commentary is intended to correct the errors that happened in [1]. Recall that a partition of a positive integer \(n \) is a nonincreasing sequence of positive integers whose sum is \(n \). A bipartition \((\lambda, \mu)\) of a positive integer \(n \) is a pair of partitions \((\lambda, \mu)\) such that the sum of all the parts is \(n \). Let \(p_2(n) \) be the number of bipartitions of \(n \). This function has some beautiful arithmetic properties (see, e.g., [2]). Recently, there is more and more research on the bipartitions with certain restrictions on each partition, for example, [3–7]. In this short review, we consider the number of bipartitions \((\lambda, \mu)\) with the restriction that each part of \(\mu \) is divisible by \(N \).

Let \(c_N(n) \) denote the number of bipartitions \((\lambda, \mu)\) of \(n \) such that part of \(\mu \) is divisible by \(N \). The generating function for \(c_N(n) \) is given by [8]

\[
\sum_{n=0}^{\infty} c_N(n) q^n = \frac{1}{(q; q)_\infty (q^N; q^N)_\infty},
\]

where

\[
(a; q)_\infty = \prod_{n=0}^{\infty} (1 - aq^n).
\]

We will mainly focus on the case when \(N = 5\ell \), where \(\ell \) is any positive integer. In [1], the discussion on congruence identities for \(c_{5\ell}(n) \) was based on an incorrect lemma. We will point out all the incorrect points in that paper in the next section.

2. Comments on the Results of Saikia and Boruah

In [1], Saikia and Boruah considered the congruence identities for \(c_{5\ell}(n) \) by employing the following lemma.

Lemma 13 of [1]

\[
\frac{1}{(q; q)_\infty} = \left(\frac{q^{25}; q^{25}}{(q^5; q^5)} \right) F(q^5) + q \left(F \left(q^5 \right) + q^2 F(q^5) \right)
+ 2q^2 F^2(q^5) + 3q^3 F(q^5) + 5q^4 - 3q^5 F^{-1}(q^5)
+ 2q^6 F^{-2}(q^5) - q^7 F^{-3}(q^5) + q^8 F^{-4}(q^5),
\]

where

\[
R(q) = \frac{q^{1/5}}{1 + \frac{q}{q^{1/5}}} \quad |q| < 1
\]

is the Rogers-Ramanujan continued fraction and

\[
F(q) := q^{-1/5} R(q).
\]

However, the lemma of this version is wrong. The correct version should be as follows.
Lemma 1. Let $F(q)$ be defined as above:

$$
\frac{1}{(q; q)_{\infty}} = \frac{(q^5; q^5)_{\infty}^5}{(q^3; q^3)_{\infty}^6} \left(\frac{1}{F^4(q^5)} + \frac{q}{F^3(q^5)} + \frac{2q^3}{F^2(q^5)} \right)
+ \frac{3q^3}{F^4(q^5)} \cdot 5q^4 - 3q^2 F(q^5) + 2q^6 F^3(q^5)
+ q^7 F^3(q^5) + q^8 F^4(q^5) .
$$

(6)

There are several proofs of this famous identity (see, e.g., [9, 10]).

In [1], all the discussion in Section 5 was based on Lemma 13 of [1] which has been shown above.
Since Lemma 13 of [1] is not correct, the discussion in Section 5 is not correct.
First, we can say that the conclusion shown in Theorem 24 of [1], which says
$$
c_5(5n + 4) \equiv 0 \pmod{5},
$$
is correct. However, in the course of the proof, there is one mistake. The equation
$$
\sum_{n=0}^{\infty} c_5(5n + 4) q^n = 5 \cdot \frac{(q^5; q^5)_{\infty}^6}{(q^3; q^3)_{\infty}^6} .
$$
is equation (79) of [1], is not correct. It should be
$$
\sum_{n=0}^{\infty} c_5(5n + 4) q^n = 5 \cdot \frac{(q^5; q^5)_{\infty}^5}{(q^3; q^3)_{\infty}^5} .
$$

(9)

The first result of Theorem 25 of [1] is also correct, but the proof has a problem. In the course of the proof, equation (81) of [1] should be
$$
\sum_{n=0}^{\infty} c_{15}(5n + 4) q^n = 5 \cdot \frac{(q^5; q^5)_{\infty}^5}{(q^3; q^3)_{\infty}^5} .
$$
rather than
$$
\sum_{n=0}^{\infty} c_{15}(5n + 4) q^n = 5 \cdot \frac{(q^5; q^5)_{\infty}^6}{(q^3; q^3)_{\infty}^6} .
$$

(10)

However, the second conclusion and the third conclusion of Theorem 25 of [1] are not correct. The proof of Theorem 5 (ii, iii) of [1] relies on the claim that
$$
(q^5; q^5)_{\infty}^6 \equiv (q^{15}; q^{15})_{\infty}^5 \pmod{3} .
$$

(12)

However, as we have pointed out above, we do not have the factor $(q^5; q^5)_{\infty}^6$ in $\sum_{n=0}^{\infty} c_{15}(5n + 4) q^n$. This is the reason why the second conclusion and the third conclusion of Theorem 25 of [1] cannot hold.
Actually, we do have some 3-dissection formulas to find how $\sum_{n=0}^{\infty} c_{15}(15n + 9) q^n$ and $\sum_{n=0}^{\infty} c_{15}(15n + 14) q^n$ modulo-3 look like. Let us show them now.

Thanks to [11], we have
$$
(q^5; q^5)_{\infty}^2 (q; q)_{\infty}^2 = (q^3; q^3)_{\infty}^4
+ q (q^5; q^5)_{\infty}^2 (q^{15}; q^{15})_{\infty}^2
- q^2 (q^{15}; q^{15})_{\infty}^4 \pmod{3} .
$$

(13)

$$
\therefore \quad (q; q)_{\infty} = J_{1,227} - J_{6,27} - q^2 J_{3,27} ,
$$

(14)

where
$$
J_{a,b} = (q^5; q^5)_{\infty}^3 (q^a - q^b)_{\infty} (q^3; q^3)_{\infty} .
$$

(15)

According to these two formulas, we get that

$$
\sum_{n=0}^{\infty} c_{15}(5n + 4) q^n \equiv 5 \cdot \frac{(q^5; q^5)_{\infty}^6}{(q^3; q^3)_{\infty}^6} \equiv 2
\cdot \frac{(q^5; q^5)_{\infty}^3 (q^5; q^5)_{\infty}^2}{(q^3; q^3)_{\infty}^2} \equiv 2
\cdot \frac{(q^{15}; q^{15})_{\infty}^3}{(q^3; q^3)_{\infty}^3} \equiv 2
\cdot \left[\frac{(q^{15}; q^{15})_{\infty}^3}{(q^3; q^3)_{\infty}^3} \right] \qquad (16)
\times (J_{1,227} - J_{6,27} - q^2 J_{3,27}) \equiv 2
\cdot \left[J_{1,227} (q^{15}; q^{15})_{\infty} + q J_{1,227} (q^{15}; q^{15})_{\infty}^3
- q^2 J_{6,27} (q^{15}; q^{15})_{\infty}^5
- q^2 J_{6,27} (q^{15}; q^{15})_{\infty}^5
- q^2 J_{6,27} (q^{15}; q^{15})_{\infty}^5
+ q^4 J_{3,27} (q^{15}; q^{15})_{\infty}^5 \right] \pmod{3} .
$$

When extracting terms involving q^{3n+1}, dividing by q and replacing q^3 by q, we obtain
\[
\sum_{n=0}^{\infty} c_{15} (15n + 9) q^n \equiv 2 \cdot \left[I_{2,9} \left(\frac{q^5 : q^5}{(q : q)_\infty} \right) - J_{2,9} \left(\frac{q^5 : q^5}{(q : q)_\infty} \right) + qJ_{1,9} \left(\frac{q^5 : q^5}{(q : q)_\infty} \right) \right] (\text{mod } 3).
\]

When extracting terms involving q^{3n+2}, dividing by q^2 and replacing q^3 by q, we obtain
\[
\sum_{n=0}^{\infty} c_{15} (15n + 14) q^n \equiv -2 \cdot \left[I_{4,9} \left(\frac{q^5 : q^5}{(q : q)_\infty} \right) + J_{2,9} \left(\frac{q^5 : q^5}{(q : q)_\infty} \right) + J_{1,9} \left(\frac{q^5 : q^5}{(q : q)_\infty} \right) \right] (\text{mod } 3).
\]

Up to now, we have obtained the forms of $\sum_{n=0}^{\infty} c_{15} (15n + 9) q^n$ and $\sum_{n=0}^{\infty} c_{15} (15n + 14) q^n$ modulo-3. However, we cannot get any congruence properties of $c_{15}(15n + 9)$ or $c_{15}(15n + 14)$ by the forms of $\sum_{n=0}^{\infty} c_{15} (15n + 9) q^n$ and $\sum_{n=0}^{\infty} c_{15} (15n + 14) q^n$ modulo-3 above.

Conflicts of Interest

The author declares no conflicts of interest.

References

