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Preface

The tradition of the Czechoslovak EQUADIFF conferences dates back to
1962 when EQUADIFF 1 was organized in Prague. In addition to 160 local par-
ticipants it was attended by 75 foreign mathematicians. Subsequent conferences
held in Bratislava (1966, 1981, 1993), Brno (1972, 1985) and Prague (1977, 1989)
turned EQUADIFF into the world’s oldest series of comprehensive conferences
on differential equations. EQUADIFF is at present one of the most important
and biggest conferences of this kind.

The Conference on Differential Equations and Their Applications EQUA-
DIFF 9 was held in Brno, August 25–29, 1997. It was organized by the Masaryk
University, Brno in cooperation with Mathematical Institute of the Academy of
Sciences, Technical University Brno, Union of Czech Mathematicians and Physi-
cists, Union of Slovak Mathematicians and Physicists and other Czech scientific
institutions with support of the International Mathematical Union. EQUADIFF
9 was attended by 269 participants from 32 countries and more than 50 accom-
panying persons and other guests.

EQUADIFF 9 was prepared by the Organizing Committee presided by F. Neu-
man, chairman, J. Vosmanský, executive secretary, Z. Došlá, head of the Equadiff
Office, and other members J. Dibĺık, O. Došlý, J. Franc̊u, J. Kalas, J. Kuben,
Z. Posṕı̌sil and J. Šimša.

The scientific program was prepared by the Scientific Committee. It consisted
of the following Czech and Slovak mathematicians: P. Drábek, J. Haslinger,
J. Jaroš, J. Kačur, J. Milota, J. Nečas, F. Neuman (chairman) and †M. Zlámal.
The invited speakers have been proposed by the international Honorary and Ad-
visory Board, consisted of R. P. Agarwal, I. Babuška, V. E. Barbu, P. Brunovský,
W. N. Everitt, A. Friedman, J.K. Hale, W. Jäger, I. T. Kiguradze, K. Kirschgäs-
sner, J. Kurzweil (honorary chairman), V. Lakshmikantham, I. Marek, J. Maw-
hin, J. Nečas, M. Ráb, K. Rektorys, M. Švec, R. Temam, W. L. Wendland and
†M. Zlámal.

The scientific program comprised 8 plenary lectures and 34 main lectures in
the following sections:

1. Ordinary differential equations,
2. Partial differential equations,
3. Numerical methods and applications.

In addition 208 papers were presented

a) as communications in simultaneous subsections (112),
b) at the poster session (31),
c) in the form of enlarged abstracts (65).

http://www.muni.cz
http://www.muni.cz
http://www.math.cas.cz
http://www.vutbr.cz
http://elib.zib-berlin.de/IMU


Besides the scientific program the participants could enjoy a rich social pro-
gram (e.g. Welcome Party at the Brno castle Špilberk, Glass of wine and Concert,
Audience with Mayor of Brno, Trips and Farewell Party in wine cellar Queen
Elǐska).

This volume contains 12 survey papers mainly by the plenary speakers.

Together with this Proceedings the following EQUADIFF 9 publications have
been prepared:

• EQUADIFF 9 issue of Archivum mathematicum (Tomus 34, 1998, No. 1,
232 pp.) containing 20 papers by invited speakers (published in May 1998),

• CD ROM containing, in electronic form, an Equadiff 9 issue of Archivum
mathematicum, the Proceedings and 31 other papers submitted by the par-
ticipants of the conference as well as other conference material (e.g. Ab-
stracts, List of participants, and Program).

Brno, May 1998 Editors

ii

http://www.emis.de/journals/AM/
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André Vanderbauwhede (University of Gent)

PDE’s in Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Simon Shaw and J. R. Whiteman (BICOM, Brunel University)

The Use of Semiregular Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
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Compactness Condition for Boundary

Value Problems

Ravi P. Agarwal

Department of Mathematics
National University of Singapore

10 Kent Ridge Crescent, Singapore 119260
Email: MATRAVIP@leonis.nus.sg

Dedicated to Professor Lloyd K. Jackson

Abstract. In existence and uniqueness theory of boundary value prob-
lems for ordinary differential equations Compactness Condition plays an
important role. It has been a long standing problem whether other condi-
tions imposed on the differential equations imply this compactness con-
dition. In this lecture we shall survey known results on this problem,
including its complete unpublished proof essentially due to L. Jackson
and K. Schrader. We shall also discuss some related problems.

AMS Subject Classification. 34B15, 34C10

Keywords. Boundary value problem, Kamke convergence theorem, Ba-
nach indicatrix theorem, Helly selection theorem, total variation

1 Introduction

In this lecture we shall consider the following n (≥ 2)th order nonlinear differ-
ential equation

y(n) = f(x, y, y′, . . . , y(q)), 0 ≤ q ≤ n− 1, but fixed. (1.1.aga)

With respect to (1.1.aga) we shall assume that

(A) f(x, u0, u1, . . . , uq) : (a, b)× Rq+1 → R is continuous.
(B) Solutions of initial value problems for (1.1.aga) are unique.
(C) Solutions of (1.1.aga) extend to (a, b).
(Dn) For any a < a1 < a2 < · · · < an < b and any solutions y(x) and z(x)
of (1.1.aga), it follows that y(ai) = z(ai), 1 ≤ i ≤ n implies y(x) ≡ z(x), i.e., the
differential equation (1.1.aga) is n-point disconjugate on (a, b).

In the study of boundary value problems for the differential equation (1.1.aga),
one of the Propositions which has attracted several Mathematicians and has led



2 Ravi P. Agarwal

to substantially new mathematics is whether conditions (A) – (Dn) imply the
following compactness condition:

(E) If [c, d] is a compact subinterval of (a, b) and {ym(x)} is a sequence of
solutions of (1.1.aga) which is uniformly bounded, i.e., |ym(x)| ≤ M on [c, d] for
some M > 0 and all m = 1, 2, . . . , then there is a subsequence {ym(j)(x)} such
that {y(i)

m(j)(x)} converges uniformly on [c, d] for each 0 ≤ i ≤ n− 1.

In this lecture we shall survey most of the known results on this Proposition,
and touch on some related topics.

2 Preliminary Results

We shall need the following version of Kamke’s convergence theorem.

Theorem 2.1. ([5, p. 14]) Assume that for the differential equation (1.1.aga) the
conditions (A) and (C) are satisfied. Then, if {ym(x)} is a sequence of solutions
of (1.1.aga) such that there exists a sequence {xm} ⊂ (a, b) with limm→∞ xm = x0 ∈
(a, b), limm→∞ y

(i)
m (xm) = yi, 0 ≤ i ≤ n − 1. Then, there is a solution y(x) of

the differential equation (1.1.aga) satisfying the initial conditions y(i)(x0) = yi, 0 ≤
i ≤ n−1, and a subsequence {ym(j)(x)} of {ym(x)} such that limj→∞ y

(i)
m(j)(x) =

y(i)(x), 0 ≤ i ≤ n− 1, uniformly on each compact subinterval of (a, b).

Lemma 2.2. Let y(x) ∈ C(n)[a1, ar], satisfying

y(ai) = y′(ai) = · · · = y(ki)(ai) = 0, 1 ≤ i ≤ r (≥ 2)

a < a1 < a2 < · · · < ar < b, ki ≥ 0,

r∑
i=1

ki + r = n.
(2.1.aga)

Then, there exist constants Cn,k, 0 ≤ k ≤ n− 1, such that

|y(k)(x)| ≤ Cn,k(ar − a1)n−k max
a1≤x≤ar

|y(n)(x)|. (2.2.aga)

The problem of finding the best possible constants Cn,k in (2.2.aga) is one of the
most outstanding problems in polynomial interpolation theory [1,2].

Inequalities (2.2.aga) will be used now to prove local existence of solutions of the
differential equation (1.1.aga) satisfying the r-point conjugate boundary conditions

y(ai) = A1,i, y′(ai) = A2,i, . . . , y
(ki)(ai) = Aki+1,i, 1 ≤ i ≤ r. (2.3.aga)

Theorem 2.3 ([1]). Assume that for the differential equation (1.1.aga) the condi-
tion (A) is satisfied. Further, assume that
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(i) Ki > 0, 0 ≤ i ≤ q are given real numbers and let Q be the maximum of
|f(x, u0, u1, . . . , uq)| on the compact set [a1, ar]×D0, where

D0 = {(u0, u1, . . . , uq) : |ui| ≤ 2Ki, 0 ≤ i ≤ q},

(ii) max
a1≤x≤ar

|p(i)(x)| ≤ Ki, 0 ≤ i ≤ q, where p(x) is the Hermite interpolating

polynomial

p(x) =
r∑

i=1

ki∑
j=0

ki−j∑
`=0

1
j!`!

[
(x − ai)ki+1

Ω(x)

](`)

x=ai

Ω(x)
(x− ai)ki+1−j−`

Aj+1,i

and

Ω(x) =
r∏

i=1

(x− ai)ki+1,

(iii) (ar − a1) ≤
(

Ki

QCn,i

)1/(n−i)

, 0 ≤ i ≤ q.

Then, the boundary value problem (1.1.aga), (2.3.aga) has a solution in D0.

Proof. The set

B[a1, ar] =
{

y(x) ∈ C(q)[a1, ar] : ‖y(i)‖ ≤ 2Ki, 0 ≤ i ≤ q
}

,

where
‖y(i)‖ = max

a1≤x≤ar

|y(i)(x)|

is a closed convex subset of the Banach space C(q)[a1, ar]. Consider an operator
T : C(q)[a1, ar]→ C(n)[a1, ar] as follows

(Ty)(x) = p(x) +
∫ ar

a1

g(x, t)f(t, y(t), y′(t), . . . , y(q)(t))dt, (2.4.aga)

where g(x, t) is the Green’s function of the boundary value problem y(n) = 0,
(2.1.aga). Obviously, any fixed point of (2.4.aga) is a solution of (1.1.aga), (2.3.aga).

We note that (Ty)(x)− p(x) satisfies the conditions of Lemma 2.2, and

(Ty)(n)(x) − p(n)(x) = (Ty)(n)(x) = f(x, y(x), y′(x), . . . , y(q)(x)).

Thus, for all y(x) ∈ B[a1, ar], ‖(Ty)(n)‖ ≤ Q, and

‖(Ty)(i) − p(i)‖ ≤ Cn,iQ(ar − a1)n−i, 0 ≤ i ≤ q

which also implies that

‖(Ty)(i)‖ ≤ ‖p(i)‖+ Cn,iQ(ar − a1)n−i ≤ Ki + Ki = 2Ki, 0 ≤ i ≤ q. (2.5.aga)
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Thus, the operator T maps B[a1, ar] into itself. Further, the inequalities (2.5.aga)
imply that the sets {(Ty)(i)(x) : y(x) ∈ B[a1, ar]}, 0 ≤ i ≤ q are uniformly
bounded and equicontinuous on [a1, ar]. Hence, TB[a1, ar] is compact follows
from the Ascoli-Arzela theorem. The Schauder fixed point theorem is applicable
and a fixed point of (2.4.aga) in D0 exits.

Corollary 2.4. Assume that for the differential equation (1.1.aga) the condition
(A) is satisfied. Further, assume that there exist constants Ni ≥ 0, 0 ≤ i ≤ q
such that maxa1≤x≤ar |p(i)(x)| ≤ Ni, 0 ≤ i ≤ q. Then, there exists a δ =
δ(N0, N1, . . . , Nq) > 0 such that if ar − a1 ≤ δ, the boundary value problem
(1.1.aga), (2.3.aga) has a solution y(x). Furthermore,

|y(i)(x)| ≤ Ni + 1, 0 ≤ i ≤ q on [a1, ar].

Theorem 2.5. Assume that for the differential equation (1.1.aga) the condition (A)
is satisfied. Further, assume that the conditions (i) and (iii) of Theorem 2.3
are satisfied. Then, for any g(x) ∈ C(n−1)[a1, ar] the differential equation (1.1.aga)
together with

y(j)(ai) = g(j)(ai), 0 ≤ j ≤ ki, 1 ≤ i ≤ r (2.6.aga)

has a solution, if

n−1∑
j=i

Mj(ar − a1)j−i ≤ Ki, 0 ≤ i ≤ q

where
Mj = max

a1≤x≤ar

|g(j)(x)|, 0 ≤ j ≤ n− 1.

Proof. We need to verify that the condition (ii) of Theorem 2.3 is satisfied. For
this, in p(x) we take Aj+1,i = g(j)(ai), 0 ≤ j ≤ ki, 1 ≤ i ≤ r. Then, the function
φ(x) = g(x) − p(x) has n zeros in [a1, ar]. Thus, from the generalized Rolle’s
theorem φ(k)(x), 1 ≤ k ≤ n − 1 vanishes at least n − k times in (a1, ar). Let
xk ∈ (a1, ar) be any zero of φ(k)(x), then∣∣∣p(n−1)(x)

∣∣∣ =
∣∣∣p(n−1)(xn−1)

∣∣∣ =
∣∣∣g(n−1)(xn−1)

∣∣∣ ≤ max
a1≤x≤ar

∣∣∣g(n−1)(x)
∣∣∣ = Mn−1

and ∣∣∣p(n−2)(x)
∣∣∣ ≤ ∣∣∣p(n−2)(xn−2)

∣∣∣ +

∣∣∣∣∣
∫ x

xn−2

∣∣∣p(n−1)(t)
∣∣∣ dt

∣∣∣∣∣
=

∣∣∣g(n−2)(xn−2)
∣∣∣ +

∣∣∣∣∣
∫ x

xn−2

∣∣∣g(n−1)(xn−1)
∣∣∣ dt

∣∣∣∣∣
≤Mn−2 + Mn−1(ar − a1).
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Using the same argument repeatedly, we obtain

∣∣∣p(i)(x)
∣∣∣ ≤ n−1∑

j=i

Mj(ar − a1)j−i.

Corollary 2.6. Assume that for the differential equation (1.1.aga) the condition
(A) is satisfied. Then, for any g(x) ∈ C(n−1)[a1, ar] there exist constants δ > 0,
Ni ≥ 0, 0 ≤ i ≤ q, all depending on g(x) such that the boundary value problem
(1.1.aga), (2.6.aga) has a solution y(x), provided ar − a1 ≤ δ. Furthermore, |y(i)(x)| ≤
Ni + 1, 0 ≤ i ≤ q on [a1, ar].

Corollary 2.7. Assume that for the differential equation (1.1.aga) the condition
(A) is satisfied. Further, assume that there exist constants Ni ≥ 0, 0 ≤ i ≤
q such that maxa1≤x≤ar |p(i)(x)| ≤ Ni, 0 ≤ i ≤ q. Then, there exist a δ =
δ(N0, N1, . . . , Nq) > 0, and an ε = ε(a1, . . . , ar) such that for ar − a1 ≤ δ, the
boundary value problem (1.1.aga),

y(ai) = A1,i+ε1,i, y′(ai) = A2,i+ε2,i, . . . , y
(ki)(ai) = Aki+1,i+εki+1,i, 1 ≤ i ≤ r

has a solution yε(x), provided |εj,i| ≤ ε, 0 ≤ j ≤ ki, 1 ≤ i ≤ r. Furthermore,
|y(i)

ε (x)| ≤ Ni + 1, 0 ≤ i ≤ q on [a1, ar].

3 The Case n = 2

For the second order differential equation (1.1.aga) only conditions (A) and (C)
imply (E). We shall prove this in the following:

Theorem 3.1. If the differential equation (1.1.aga) is of second order and satisfies
conditions (A) and (C), then (1.1.aga) also satisfies condition (E).

Proof. If {ym(x)} is a sequence of solutions of (1.1.aga) with |ym(x)| ≤M on [c, d] ⊂
(a, b) for some M > 0, and each m ≥ 1, then for each m there is a xm ∈ (c, d)
such that

|y′m(xm)| = |ym(d)− ym(c)|
d− c

≤ 2M

d− c
.

Consequently, {xm}, {ym(xm)} and {y′m(xm)} are bounded sequences. By tak-
ing subsequences in succession which converge, we conclude that there exist
values x0, y0, y′0 such that xm(1) → x0, ym(1)(xm(1)) → y0 y′m(1)(xm(1)) → y′0,

where {m(1)} is some subsequence of {m}. Thus, by Theorem 2.1 there is a
subsequence {ym(2)(x)} of {ym(1)(x)} and a solution y(x) of (1.1.aga) satisfying
y(x0) = y0, y′(x0) = y′0 such that limm→∞ y

(i)
m(2)(x) = y(i)(x), i = 0, 1, uni-

formly on [c, d].
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4 Case n = 3

If the differential equation (1.1.aga) is of third order, then conditions (A) and (C)
are not enough for (E). In fact, the equation y′′′ = −[y′]3 satisfies (A) and (C)
on R4, but the sequence {ym(x)} of solutions of the initial value problem

y′′′ = −[y′]3, y(0) = y′(0) = 0, y′′(0) = m

for m = 1, 2, . . . , is uniformly bounded on R and does not contain a subsequence
satisfying (E) on any compact subinterval of R. Here, we shall show that condi-
tions (A), (C) and (D3) do imply (E). However, for this an immediate appeal to
Theorem 2.1 is not possible and we shall need the following lemmas.

Lemma 4.1. Assume that the differential equation (1.1.aga) is of third order and
satisfies the condition (A). Then, given any compact subinterval [c, d] ⊂ (a, b)
and any fixed M > 0, there is a δ(M) > 0 such that for any [a1, a2] ⊂ [c, d] with
a2−a1 ≤ δ(M), and any real α with |α| ≤M, (1.1.aga) has solutions satisfying each
of the boundary conditions

y(a1) = y(a2) = α, y′(a1) = 0 and y(a1) = y(a2) = α, y′(a2) = 0.

Furthermore, for any such solution |y′(x)| ≤ 1 and |y′′(x)| ≤ 1 on [a1, a2].

Proof. This is a particular case of Corollary 2.4.

Lemma 4.2 ([11]). Assume that the differential equation (1.1.aga) is of third order
and satisfies the condition (A). Let φ(x), ψ(x) be of class C(2) on [a1 − τ, a1 +
τ ] ⊂ (a, b) with φ(a1) = ψ(a1), φ′(a1) = ψ′(a1) and φ′′(a1) < ψ′′(a1). Then,
there is a δ, 0 < δ ≤ τ, such that all solutions y(x) of (1.1.aga) with the initial
conditions y(a1) = y0 = φ(a1), y′(a1) = y1 = φ′(a1), and y′′(a1) = y2 =
1
2 [φ′′(a1) + ψ′′(a1)] exist on [a1 − δ, a1 + δ] and satisfy φ(x) < y(x) < ψ(x) for
0 < |x− a1| ≤ δ.

Proof. Let 8ρ = ψ′′(a1) − φ′′(a1) and choose δ0, 0 < δ0 ≤ τ such that |φ′′(x) −
φ′′(a1)| ≤ ρ and |ψ′′(x) − ψ′′(a1)| ≤ ρ for |x− a1| ≤ δ0. Let M > 0 be a bound
for f(x, y, y′, y′′) on the compact set

{(x, y, y′, y′′) : |x− a1| ≤ δ0, |y − y0| ≤ 1, |y′ − y1| ≤ 1, |y′′ − y2| ≤ 1} .

Then, it follows from the relations

y(x) = y0 +
∫ x

a1

y′(t)dt, y′(x) = y1 +
∫ x

a1

y′′(t)dt

y′′(x) = y2 +
∫ x

a1

f(t, y(t), y′(t), y′′(t))dt
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that all solutions of the stated initial value problem exist on the closed interval
[a1 − δ1, a1 + δ1], where

δ1 = min
{

δ0,
1
M

,
1

1 + |y2|
,

1
1 + |y1|

}
.

Thus, if δ = min{δ1, ρ/M}, it follows that for all solutions y(x) of the initial
value problem |y′′(x) − y2| ≤ ρ for |x − a1| ≤ δ. Hence, for all solutions y(x) of
the initial value problem

y′′(x) − φ′′(x) ≥ 2ρ and ψ′′(x)− y′′(x) ≥ 2ρ

on [a1 − δ, a1 + δ].

Lemma 4.3 ([11]). Assume that the differential equation (1.1.aga) is of third order
and satisfies the conditions (A), (C) and (D3). Then, solutions of two point
boundary value problems for (1.1.aga) are unique, i.e., the following condition (D2)
holds:

(D2) If a < a1 < a2 < b, and y(x), z(x) are both solutions of (1.1.aga) satisfying
y(a1) = z(a1), y′(a1) = z′(a1), y(a2) = z(a2), or y(a1) = z(a1), y(a2) =
z(a2), y′(a2) = z′(a2), then it follows that y(x) ≡ z(x) on [a1, a2].

Proof. We shall consider only the case where y(a1) = z(a1), y′(a1) = z′(a1),
y(a2) = z(a2). We first assume that y′′(a1) 6= z′′(a1), and to be specific assume
that y′′(a1) > z′′(a1). Then, by Lemma 4.2 there is a δ > 0 with a < a1 − δ <
a1 + δ < a2 such that all solutions w(x) of the initial value problem for (1.1.aga)
with the initial conditions

w(a1) = y0 = z(a1), w′(a1) = y1 = z′(a1), w′′(a1) = y2 =
1
2

[y′′(a1) + z′′(a1)]

(4.1.aga)

satisfy z(x) < w(x) < y(x) for 0 < |x − a1| ≤ δ. Let {εm} be a monotone
decreasing sequence of positive numbers converging to zero, and let zm(x) be a
solution of (1.1.aga) with the initial conditions

zm(a1) = y0, z′m(a1) = y1 + εm, z′′m(a1) = y2. (4.2.aga)

Then, {zm(x)} contains a subsequence converging uniformly on [a1 − δ, a1 + δ]
to a solution of (1.1.aga), (4.1.aga). Hence, for sufficiently large m, there is a solution
zm(x) of (1.1.aga), (4.2.aga) such that

z(a1 − δ) < zm(a1 − δ) < y(a1 − δ) and z(a1 + δ) < zm(a1 + δ) < y(a1 + δ).

Since zm(a1) = y(a1) = z(a1) and z′m(a1) = y1 + εm > y′(a1) = z′(a1), it
follows that there are x1, x2 with a1 − δ < x1 < a1 < x2 < a1 + δ such that
zm(x1) = z(x1), and zm(x2) = y(x2). Since y(a1) = z(a1) at a2 > a1 + δ,
it follows that any extension of zm(x) intersects either y(x) or z(x) again on
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[a1 + δ, b). Since zm(x) 6≡ z(x) on [x1, a1] and zm(x) 6≡ y(x) on [a1, x2], this
contradicts condition (D3).

Thus, if y(x) 6≡ z(x) on [a1, a2], then y(i)(a1) = z(i)(a1) for i = 0, 1, 2.
However, if y(i)(a1) = z(i)(a1) for i = 0, 1, 2 and y(x) 6≡ z(x) on [a1, a2], then for
a < x3 < a1, u(x) and v(x) defined by

u(x) = v(x) = y(x) on [x3, a1], u(x) = y(x) on (a1, a2],
and v(x) = z(x) on (a1, a2]

will be solutions on [x3, a2] which again contradicts condition (D3). Thus, we
conclude that y(x) ≡ z(x) on [a1, a2].

Lemma 4.4 ([12]). Let y(x) ∈ C(2)[α, β] and assume that |y(x)| ≤M on [α, β].
There is a K > 0 depending on M and β−α such that if, max{|y′(x)|, |y′′(x)|} >
K for all α ≤ x ≤ β, then y′(x0) = 0 for some x0 with α < x0 < β.

Proof. Assume that the conclusion is false. We shall determine N > 0 so that
the following inequality holds

|y′(x)| + |y′′(x)| ≥ N +
2M

β − α
+ 1 on [α, β]. (4.3.aga)

For this, by the Mean value theorem there exists a x1 ∈ (α, β) such that

|y′(x1)| =
∣∣∣∣y(β)− y(α)

β − α

∣∣∣∣ ≤ 2M

β − α
.

There are now two possible cases, however, since both are similar, we shall
consider only the case

0 < y′(x1) ≤
2M

β − α
and α < x1 ≤

α + β

2
.

If y(x1) = M, then y′(x1) = 0 and the proof is finished. So, we assume that
y(x1) 6= M. (It is clear that we are assuming y′(x1) 6= 0.) We define η = (β−α)/8.
Now to complete the proof we need to consider the following two subcases:

Case (i). Assume that y′′(x1) ≤ 0. Then, in order (4.3.aga) holds, it is necessary
that y′′(x1) ≤ −N. Thus, y′(x) is decreasing on a right neighborhood of x = x1.
In fact, if 0 ≤ y′(x) ≤ (2M/(β − α)), then it will follow that y′′(x) ≤ −N on
[x1, β]. However, then by Taylor’s formula, we have

y(β) = y(x1) + (x1 − β)y′(x1) +
(x1 − β)2

2
y′′(ξ), ξ ∈ (x1, β)

< M +
2M(β − α)

β − α
− (β − α)2

4
N

≤ −M
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provided

N ≥ 32M

(β − α)2
=

M

2η2
.

But, this implies that |y(β)| > M, which is a contradiction. Thus, there exists a
point x1 ≤ x0 < β such that y′(x0) = 0.

Case (ii). Assume that y′′(x1) > 0, (we shall work across [α, β] on subintervals
of length η.) Then, from (4.3.aga) it follows that y′′(x1) > N. We assume that
y′′(x) ≥ N/2 on [x1, x1 + η]. Again, by Taylor’s formula, we have

y(x1 + η) = y(x1) + ηy′(x1) +
1
2
η2y′′(ξ), ξ ∈ (x1, x1 + η).

As in Case (i), we find y(x1 + η) > −M + Nη2/4 ≥M, provided N ≥ (8M/η2),
which is a contradiction.

From this contradiction, we conclude that there exists a x1 < x2 < x1 + η
such that y′′(x2) = N/2. Since, y′′(x) is positive up to x2, we can assume that
x2 is the first point such that y′′(x2) = N/2. Thus,

y′(x2) >
1
2
N +

2M

β − α
on [x1, x2).

Now assume that

y′(x) ≥ 1
2
N +

2M

β − α
on [x2, x2 + η).

Then, it follows that

y(x2 + η) = y(x2) + ηy′(ξ), ξ ∈ (x2, x2 + η)

> −M +
1
2
ηN + η

2M

β − α

= −M +
1
2
ηN +

1
4
M

≥M,

provided N ≥ (7M/2η). But, this implies y(x2 + η) > M, which is a contradic-
tion.

From this contradiction, there exists a x2 < x3 < x2 + η such that

y′(x3) =
1
2
N +

2M

β − α
,

and we take x3 to be the first such point, i.e.,

y′(x) >
1
2
N +

2M

β − α
, on [x2, x3).
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So, y′(x) is decreasing on [x2, x3). Thus, y′′(x3) < −N/2. This implies that in a
right neighborhood of x3, y′′(x) < −N/2 and y′(x) is decreasing. Assume that

0 < y′(x) ≤ 1
2
N +

2M

β − α
on [x3, β).

Then, by Taylor’s formula

y(x3) = y(β) + (x3 − β)y′(β) +
(x3 − β)2

2
y′′(ξ), ξ ∈ (x3, β).

Since in the above relation the second term in the right side is nonpositive, in
view of (β − x3) ≥ (β − α)/4, it follows that

y(x3) < M − 1
4
(β − α)2N ≤ −M

provided N ≥M/η2. But, this leads to the contradiction that |y(x3)| > M.
From this construction we conclude that

0 < y′(x) ≤ 1
2
N +

2M

β − α
on [x3, β)

is false. Thus, in conclusion y′(x0) = 0, for some x3 < x0 < β.

Theorem 4.5 ([12]). If the differential equation (1.1.aga) is of third order and
satisfies conditions (A), (C) and (D3), then (1.1.aga) also satisfies condition (E).

Proof. Suppose that the result is not true. Then, since |ym(x)| ≤ M on [c, d]
for n ≥ 1, it follows from Theorem 2.1 that |y′m(x)| + |y′′m(x)| → ∞ uniformly
on [c, d]. Let c ≤ a1 < a2 < a3 < a4 ≤ d be such that a4 − a1 ≤ δ(M), where
δ(M) is as defined in Lemma 4.1. By Lemma 4.4 there is a K > 0 such that, if
max{|y′m(x)|, |y′′m(x)|} > K for each x ∈ [c, d], then y′m(x) has a zero on (a1, a2),
on (a2, a3) and on (a3, a4). Furthermore, we can assume that K > 1. Now from
the fact that |y′m(x)| + |y′′m(x)| → ∞ uniformly on [c, d] we can conclude that
there is a positive integer m0 such that max{|y′m0

(x)|, |y′′m0
(x)|} > K on [c, d].

Let a1 < x1 < a2 < x2 < a3 < x3 < a4 be such that y′m0
(xi) = 0 for i = 1, 2, 3.

Then, |y′′m0
(xi)| > K > 1 for i = 1, 2, 3. Now we need to consider the following

two cases:
If ym0(xi) = ym0(xj) with xi < xj , then ym0(x) is the solution of the differ-

ential equation (1.1.aga) together with the two-point boundary conditions y(xi) =
y(xj) = ym0(xi), y′(xi) = 0. However, since xj − xi < δ(M), it follows from
Lemma 4.1 that |y′m0

(x)| ≤ 1 and |y′′m0
(x)| ≤ 1 on [xi, xj ], which is a contradic-

tion to |y′′m0
(xi)| > K > 1.

If ym0(xi) 6= ym0(xj) for xi 6= xj , then it suffices to assume that ym0(x1) <
ym0(x2) < ym0(x3). In fact, the same argument applies to the other orderings
of the values of ym0(xi), i = 1, 2, 3. If y′′m0

(x2) > K, there is a t1, x1 < t1 < x2,
such that ym0(t1) = ym0(x2). If y′′m0

(x2) < −K, there is a t2, x2 < t2 < x3, such
that ym0(t2) = ym0(x2). In either case Lemma 4.1 is again applied to obtain a
contradiction.

Hence, the sequence {ym(x)} contains a subsequence converging uniformly
on [c, d] along with its first and second order derivative sequences.



Compactness Condition for Boundary Value Problems 11

5 Weak Compactness Condition

It seems very difficult, if not impossible, to extend the method of Theorem 4.5 to
equations of higher orders. Here, we shall show that for equation (1.1.aga) of arbitrary
order n, conditions (A), (C) and (Dn) do imply a weaker type of compactness
condition for the solutions of (1.1.aga). For this we shall need the following:

Theorem 5.1. (Banach Indicatrix Theorem, [9, p. 271]) If h ∈ C[c, d] ∩
BV [c, d], then

V d
c (h) =

∫ ∞
−∞

Nh(α)dα,

where

Nh(α) =


Card{x ∈ [c, d] : h(x) = α}, if this set is finite,

+∞, if the above set is infinite,

and where the above integral is in the Lebesgue sense.

Theorem 5.2 ([16]). Assume that the differential equation (1.1.aga) satisfies the
conditions (A), (C), and (Dn). Further, assume that [c, d] is a compact subinter-
val of (a, b) and {ym(x)} is a sequence of solutions of (1.1.aga) which is uniformly
bounded on [c, d]. Then, the sequence

{
V d

c (ym)
}

of total variations of the func-
tions ym(x) on [c, d] is bounded, i.e., there exists an N > 0 such that V d

c (ym) ≤ N
for all m.

Proof. Assume the assertion is false. Then there is a sequence of solutions
{ym(x)} of (1.1.aga), a compact interval [c, d] ⊂ (a, b), and an M > 0 such that
|ym(x)| ≤M on [c, d] for all m, but such that V d

c (ym)→∞, as m→∞.

We claim that
∑n−1

i=0 |y
(i)
m (x)| → ∞ on [c, d] as m → ∞, i.e., given R > 0,

there exists a L > 0 such that
∑n−1

i=0 |y
(i)
m (x)| > R, on [c, d] for all m ≥ L. If the

claim is false, then there exists a β > 0 and a subsequence {ym(j)(x)} such that∑n−1
i=0 |y

(i)
m(j)(xj)| ≤ β, for all j ≥ 1, and where {xj} ⊂ [c, d]. Now by choosing

successive subsequences and relabeling, we obtain points {xp} and solutions
{yp(x)} such that {xp} and {y(i)

p (xp)}, 0 ≤ i ≤ n − 1 all converge. Thus, by
Theorem 2.1 there exists a further subsequence {yp(j)(x)} such that {y(i)

p(j)(x)}
converges uniformly on [c, d], 0 ≤ i ≤ n − 1. This implies that {y′p(j)(x)} is
a uniformly bounded sequence on [c, d]. Now since each y′p(j)(x) is absolutely
continuous, it follows that

V d
c (yp(j)) =

∫ d

c

|y′p(j)(x)|dx.

Hence, the sequence {V d
c (yp(j))} is a bounded sequence, which is a contradiction.

Thus,
∑n−1

i=0 |y
(i)
m (x)| → ∞ on [c, d] as m→∞.
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We shall now apply Corollary 2.4 with N0 = M and N0 = 0, 1 ≤ i ≤ n− 1,
so that there exists a δ(M) > 0 such that for any α with |α| ≤ M and any
points c ≤ a1 < · · · < an ≤ d with an − a1 ≤ δ, and with w(x) ≡ α so that
w(i)(x) ≡ 0, 1 ≤ i ≤ n − 1, the boundary value problem for (1.1.aga) satisfying
y(ai) = α, 1 ≤ i ≤ n has a solution y(x) with |y(i)(x)| ≤ Ni + 1 on [a1, an] for
0 ≤ i ≤ n − 1. In particular, the boundary value problem has a solution y(x)
with |y(x)| ≤ M + 1, and |y(i)(x)| ≤ 1, 1 ≤ i ≤ n − 1 on [a1, an]. Further, for
such a solution, we have

∑n−1
i=0 |y(i)(x)| ≤M + n on [a1, an].

Now let L0 be such that
∑n−1

i=0 |y
(i)
m (x)| > M + n on [c, d] for all m ≥ L0. It

follows that given m ≥ L0 and α, with |α| ≤ M the solution ym(x) intersects
the line y = α at most n − 1 times in any closed subinterval of [c, d] of length
less than δ. For if, there are points c ≤ x1 < · · · < xn ≤ d, xn − x1 ≤ δ such
that ym(xi) = α, 1 ≤ i ≤ n where |α| ≤M and m ≥ L0, there is also the above
mentioned solution y(x) by Corollary 2.4 satisfying y(xi) = α, 1 ≤ i ≤ n. By
(Dn), ym(x) ≡ y(x) on [x1, xn]. But, then

∑n−1
i=0 |y(i)(x)| ≤M +n on [a1, an] and∑n−1

i=0 |y
(i)
m (x)| > M+n on [a1, an] is not possible. Thus, for every m ≥ L0, ym(x)

intersects each line y = α, |α| ≤M at most n−1 times in any closed subinterval
of [c, d] of length less than δ. So, for all m ≥ L0,

Nym(α) ≤ (n− 1)
([

d− c

δ

]
+ 1

)
, if |α| ≤M

and Nym(α) = 0, if |α| > M. Thus, by the Banach Indicatrix Theorem it follows
that for m ≥ L0,

V d
c (ym) =

∫ M

−M

Nym(α)dα

≤
∫ M

−M

(n− 1)
([

d− c

δ

]
+ 1

)
dα

= 2M(n− 1)
([

d− c

δ

]
+ 1

)
.

But, this contradicts V d
c (ym)→∞, as m→ ∞. Hence, {V d

c (ym)} is a bounded
sequence.

Theorem 5.3. (Helly’s Selection (or Choice) Theorem, [22, p. 398]) If
{ym(x)} is a sequence of functions on [c, d] such that for some M, |ym(x)| ≤M
on [c, d] for all m ≥ 1, and such that |V d

c (ym)| ≤ H, for all m ≥ 1, and some
H > 0, then there exists a subsequence {ym(j)(x)} which converges point-wise on
[c, d]. Moreover, the limit function is of bounded variation on [c, d].

Corollary 5.4. Assume that the differential equation (1.1.aga) satisfies the condi-
tions (A), (C) and (Dn). Then, if [c, d] is a compact subinterval of (a, b) and
if {ym(x)} is a sequence of solutions of (1.1.aga) which is uniformly bounded on
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[c, d], there is a subsequence {ym(j)(x)} which converges point-wise on [c, d] and
z(x) = limj→∞ ym(j)(x) is of bounded variation on [c, d] (as a consequence z(x)
has finite derivative almost everywhere, and also

∫ d

c z(x)dx exists).

Proof. The result follows from Theorems 5.2 and 5.3.

Remark 5.1. In conjunction with Corollary 5.4 we remark that Schrader [19,20]
has proven that, if {ym(x)} is a uniformly bounded sequence of functions on a
compact interval [c, d], and if the functions ym(x) satisfy only the uniqueness
condition (Dn) on [c, d], then there is a subsequence of {ym(x)} which converges
point-wise on [c, d].

6 Generalized Solutions

To prove the Proposition now we shall follow another possible approach. For this,
if the differential equation (1.1.aga) satisfies (A) – (Dn), then it is straightforward
to show that the compactness condition (E) is equivalent to the following:

(E∗) If {ym(x)} is a sequence of solutions of (1.1.aga) which is monotone and
bounded on some compact subinterval [c, d] ⊂ (a, b), then limm→∞ ym(x) is a
solution of (1.1.aga) on [c, d].

Thus, to prove the Proposition it suffices to show that the conditions (A) –
(Dn) imply that the limit of a bounded monotone sequence of solutions of (1.1.aga)
is also a solution.

Definition 6.1. A function φ(x) defined on an interval J ⊂ (a, b) is said to be a
generalized solution of (1.1.aga) on J if for each set of points a1 < a2 < · · · < an con-
tained in J and any solution y(x) of (1.1.aga), the inequalities (−1)n+i [y(ai)− φ(ai)]
< 0, 1 ≤ i ≤ n imply that y(x) < φ(x) on J∩[an, b) and (−1)n+1[y(x)−φ(x)] < 0
on J ∩ (a, a1], and the inequalities (−1)n+i [y(ai)− φ(ai)] > 0, 1 ≤ i ≤ n imply
y(x) > φ(x) on J ∩ [an, b) and (−1)n+1[y(x) − φ(x)] > 0 on J ∩ (a, a1].

Theorem 6.1 ([13,17]). Assume that the differential equation (1.1.aga) satisfies
conditions (A) – (Dn), and that limm→∞ ym(x) = φ(x) on J ⊂ (a, b), where
{ym(x)} is a sequence of solutions of (1.1.aga). Then, φ(x) is a generalized solution
of (1.1.aga) on J.

Proof. Assume that for a1 < a2 < · · · < an contained in J there is a solution
y(x) of (1.1.aga) such that (−1)n+i [y(ai)− φ(ai)] < 0 for 1 ≤ i ≤ n, but that
also y(a0) > φ(a0) for some a0 > an in J. Then, since limm→∞ ym(x) = φ(x),
there is a solution ym(x) of (1.1.aga) such that (−1)n+i [y(ai)− ym(ai)] < 0 for 1 ≤
i ≤ n and y(a0) > ym(a0). This contradicts the condition (Dn). The remaining
inequalities can be proved in a similar way.

Thus, the limit of a bounded monotone sequence of solutions {ym(x)} of
(1.1.aga) satisfying (A) – (Dn) is a generalized solution.
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Lemma 6.2. Assume that the differential equation (1.1.aga) satisfies condition (A)
and that φ(x) ∈ C(n−1)[c, d], where [c, d] is a compact subinterval of (a, b). As-
sume that M > 0 is such that |φ(j)(x)| ≤ M on [c, d] for 0 ≤ j ≤ n − 1.
Then, there exists a δ > 0 such that, for any c ≤ a1 < a2 < · · · < an ≤ d
with an − a1 ≤ δ, (1.1.aga) has a solution y(x) with y(ai) = φ(ai), 1 ≤ i ≤ n and
|y(j)(x)| ≤ 2M on [a1, an] for 0 ≤ j ≤ n−1. Furthermore, δ can be chosen in such
a way that, for each fixed set a1 < a2 < · · · < an satisfying the above conditions,
there is an ε > 0 such that for any yi, 1 ≤ i ≤ n with |yi−φ(ai)| < ε, 1 ≤ i ≤ n,
(1.1.aga) has a solution y(x) satisfying y(ai) = yi, 1 ≤ i ≤ n, and |y(j)(x)| ≤ 3M
on [a1, an] for 0 ≤ j ≤ n− 1.

Proof. The proof follows from Corollary 2.7.

Theorem 6.3 ([13,17]). Assume that the differential equation (1.1.aga) satisfies
conditions (A) and (Dn), and that limm→∞ ym(x) = φ(x) on [c, d] ⊂ (a, b),
where {ym(x)} is a sequence of solutions of (1.1.aga). Then, if φ(x) ∈ C(n−1)[c, d],
φ(x) is a solution of (1.1.aga) on [c, d] and limm→∞ y

(j)
m (x) = φ(j)(x) uniformly on

[c, d] for each 0 ≤ j ≤ n− 1.

Proof. Let M > 0 be such that |φ(j)(x)| ≤ M on [c, d] for 0 ≤ j ≤ n − 1. By
Lemma 6.2 there is a δ > 0 such that, if c ≤ a1 < a2 < · · · < an ≤ d is a
fixed set of points with an − a1 ≤ δ, there is an ε > 0 with the property that
|yi − φ(ai)| < ε, 1 ≤ i ≤ n implies that (1.1.aga) has a solution y(x) satisfying
y(ai) = yi, 1 ≤ i ≤ n and |y(j)(x)| ≤ 3M on [a1, an] for 0 ≤ j ≤ n− 1. It follows
that there is an N > 0 such that m ≥ N implies |ym(ai)−φ(ai)| < ε, 1 ≤ i ≤ n.

Hence, by condition (Dn) and the choice of ε, |y(j)
m (x)| ≤ 3M on [a1, an] for

0 ≤ j ≤ n− 1 and all m ≥ N. From this the conclusion follows.

Now let φ(x) be a real valued function defined on (c, d). At a point x0 ∈ (c, d)
where φ(x) has a finite right limit φ(x0 + 0), we define

D1φ(x0 + 0) = lim
x→x+

0

φ(x) − φ(x0 + 0)
x− x0

provided the limit exists. The left derivative D1φ(x0 − 0) is similarly defined.
Likewise, if φ(x0 + 0) and D1φ(x0 + 0) exist and are finite, we define

D2φ(x0 + 0) = lim
x→x+

0

{
2

(x − x0)2
[
φ(x) − φ(x0 + 0)−D1φ(x0 + 0)(x− x0)

]}
provided the limit exists. In general, if the limits defining φ(x0+0) and Djφ(x0+
0), 1 ≤ j ≤ k − 1 exist and are finite, we define

Dkφ(x0 + 0) =

lim
x→x+

0

{
k!

(x− x0)k

[
φ(x) − φ(x0 + 0)−

k−1∑
j=1

Djφ(x0 + 0)(x− x0)j

j!

]}
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provided the limit exists. The left derivatives Djφ(x0 − 0) are defined corre-
spondingly.

Theorem 6.4 ([13,17]). Assume that the differential equation (1.1.aga) satisfies
conditions (A) and (Dn), and that φ(x) is a bounded generalized solution of
(1.1.aga) on (c, d) ⊂ (a, b). Then, φ(x) has right and left limits at each point of (c, d)
and D1φ(x0 − 0) and D1φ(x0 + 0) exist in the extended reals for all x0 ∈ (c, d).
Furthermore, if at a point x0 ∈ (c, d), Djφ(x0 + 0) exists and is finite for each
1 ≤ j ≤ k− 1 ≤ n− 2, then the limit defining Dkφ(x0 +0) exists in the extended
reals. The same assertion applies to the left derivative Dkφ(x0 − 0).

Proof. Assume that for some x0 ∈ (c, d), lim infx→x+
0

φ(x) < lim supx→x+
0

φ(x)
and choose a real number r such that lim infx→x+

0
φ(x) < r < lim supx→x+

0
φ(x).

Then, there exist sequences {tm} and {xm} in (c, d) such that lim tm = lim xm =
x0, x0 < tm+1 < xm < tm for each m ≥ 1, lim φ(tm) = lim supx→x+

0
φ(x), and

lim φ(xm) = lim infx→x+
0

φ(x). let y(x) be a solution of (1.1.aga) satisfying the initial
conditions y(x0) = r and y(j)(x0) = 0, 1 ≤ j ≤ n − 1. This solution exists on
[x0, x0 + δ] for some δ > 0, and since limx→x0 y(x) = r, there is an N > 0
such that m ≥ N implies that x0 < tm < x0 + δ and φ(tm) > y(tm), φ(xm) <
y(xm). This contradicts the fact that φ(x) is a generalized solution on (c, d). The
existence of φ(x0 − 0) can be proved similarly.

Now assume that for some x0 ∈ (c, d) the limit defining D1φ(x0 + 0) does
not exist in the extended reals. Then, choose the real number r such that

lim inf
x→x+

0

φ(x)− φ(x0 + 0)
x− x0

< r < lim sup
x→x+

0

φ(x) − φ(x0 + 0)
x− x0

.

If y(x) is a solution of (1.1.aga) satisfying the initial conditions y(x0) = φ(x0 +
0), y′(x0) = r, and y(j)(x0) = 0, 2 ≤ j ≤ n − 1, again sequences {tm} and
{xm} can be chosen so that lim tm = lim xm = x0, x0 < tm+1 < xm < tm for
each m ≥ 1, and φ(tm) > y(tm), φ(xm) < y(xm) for all sufficiently large m.
This again contradicts φ(x) being a generalized solution. Thus, D1φ(x0 +0) and
D1φ(x0 − 0) exist in the extended reals for all x0 ∈ (c, d).

Finally, if we assume that for some x0 ∈ (c, d), Djφ(x0 + 0) exists and is
finite for each 1 ≤ j ≤ k − 1 ≤ n − 2, then by considering a solution of (1.1.aga)
satisfying the initial conditions y(x0) = φ(x0 + 0), y(j)(x0) = Djφ(x0 + 0) for
1 ≤ j ≤ k − 1, y(k)(x0) = r, and y(j)(x0) = 0 for k + 1 ≤ j ≤ n− 1, we can as
above prove that the limit defining Dkφ(x0 + 0) exists in the extended reals.

Corollary 6.5. Assume that the differential equation (1.1.aga) satisfies conditions
(A) and (Dn), and that φ(x) is a bounded generalized solution of (1.1.aga) on (c, d) ⊂
(a, b). Then, φ(x) has a finite derivative φ′(x) almost everywhere on (c, d).

Theorem 6.6 ([13,17]). Assume that the differential equation (1.1.aga) satisfies
conditions (A) – (Dn). Let {ym(x)} be a sequence of solutions of (1.1.aga) on (c, d) ⊂
(a, b) such that {ym(x)} is uniformly bounded on (c, d) and lim ym(x) = φ(x) on
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(c, d). Then, if for some x0 ∈ (c, d) the derivatives Djφ(x0 +0), 1 ≤ j ≤ n−1 all
exist and are finite, or the derivatives Djφ(x0 − 0), 1 ≤ j ≤ n− 1 all exist and
are finite, it follows that there is a subsequence {ym(j)(x)} such that {y(i)

m(j)(x)}
converges uniformly on each compact subinterval of (a, b) for each 0 ≤ i ≤ n−1.

Proof. Assume that for some x0 ∈ (c, d) the derivatives Djφ(x0 + 0), 1 ≤ j ≤
n− 1 exist and are finite. Let p(x) be the polynomial

p(x) = φ(x0 + 0) +
n−1∑
j=1

Djφ(x0 + 0)(x− x0)j

j!

then, it follows from the definition of Dn−1φ(x0 + 0) that given any ε > 0 there
is a δ > 0 such that x0 + δ < d, and

|p(x)− φ(x)| < ε(x− x0)n−1

(n− 1)!

for x0 < x ≤ x0 + δ. Let d0 be a fixed number satisfying x0 < d0 < d. By
Lemma 6.2 there is a δ0 > 0 such that for x0 < x1 < x2 < · · · < xn ≤ d0

with xi − xi−1 = η ≤ δ0 for each 1 ≤ i ≤ n, (1.1.aga) has a solution y(x) with
y(xi) = p(xi) for 1 ≤ i ≤ n and |y(j)(x)| ≤ 2M on [x1, xn] for 0 ≤ j ≤ n − 1
where |p(j)(x)| ≤M on [x0, d0] for 0 ≤ j ≤ n−1. Furthermore, there is an ε0 > 0
such that, if |yi − p(xi)| < ε0 for 1 ≤ i ≤ n, then (1.1.aga) has a solution y(x) with
y(xi) = yi for 1 ≤ i ≤ n and |y(j)(x)| ≤ 3M on [x1, xn] for 0 ≤ j ≤ n − 1. It is
not difficult to show that with equal spacing η between the x′is a suitable ε0 has
the form ε0 = Mhnηn−1, where hn is a fixed constant depending on n. Now as
noted above, if we choose ε = Mhn/(2nn−1), there is a η, 0 < η ≤ δ0 such that
x0 < x < x0 + nη implies

|p(x)− φ(x)| < ε(x− x0)n−1

(n− 1)!
≤ ε0

2(n− 1)!
≤ ε0

2
.

For such a choice of η > 0, we have |p(xi) − φ(xi)| ≤ ε0/2 for 1 ≤ i ≤ n where
xi − xi−1 = η for 1 ≤ i ≤ n. Consequently, if N > 0 is such that m ≥ N
implies |ym(xi) − φ(xi)| < ε0/2 for 1 ≤ i ≤ n, then |p(xi) − ym(xi)| < ε0 for
m ≥ N and 1 ≤ i ≤ n. It follows from our construction and condition (Dn) that
|y(j)

m (x)| ≤ 3M on [x1, xn] for 0 ≤ j ≤ n− 1 and all m ≥ N. The conclusion of
the theorem now follows.

Thus, we see that, in order to prove that conditions (A) – (Dn) imply the
compactness condition (E), it is sufficient to prove that, if φ(x) is the point-
wise limit of a bounded sequence of solutions of (1.1.aga) on (c, d) ⊂ (a, b), then
there is at least one x0 ∈ (c, d) at which either Djφ(x0 + 0), 1 ≤ j ≤ n − 1 or
Djφ(x0 − 0), 1 ≤ j ≤ n− 1 are finite.
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7 The Case q = 0

As we have remarked in Section 6 for the differential equation (1.1.aga) the com-
pactness condition (E), under the assumptions (A) – (Dn), is equivalent to (E∗).
This observation is used in the following result to establish the Proposition for
the case q = 0.

Theorem 7.1 ([17]). If the differential equation (1.1.aga) with q = 0 satisfies con-
ditions (A) – (Dn), then (1.1.aga) with q = 0 also satisfies condition (E∗).

Proof. Let {ym(x)} be a monotone, bounded sequence of solutions of (1.1.aga) with
q = 0 which converges point-wise to a function φ(x) on [c, d] ⊂ (a, b). Let
c = a1 < a2 < · · · < an = d and pm(x) be the unique polynomial of degree n− 1
such that pm(ai) = ym(ai), 1 ≤ i ≤ n and m = 1, 2, . . . . Then, pm(x) converges
uniformly to p(x), where p(x) is the unique polynomial of degree n−1 such that
p(ai) = limm→∞ ym(ai), 1 ≤ i ≤ n. Now, since ym(x) are uniformly bounded on
[c, d], it is clear that M = sup{|f(x, ym(x))| : c ≤ x ≤ d, m ≥ 1} exists. Further,
from the properties of the Green’s function g(x, t), it follows that ∂g/∂x exists
and is continuous on [c, d] × [c, d], and hence |∂g/∂x| ≤ K for all x, t ∈ [c, d].
Thus, if x 6= t from the integral representation

ym(x) = pm(x) +
∫ d

c

g(x, t)f(t, ym(t))dt, (7.1.aga)

which is the same

ωm(x) ≡ ym(x)− pm(x) =
∫ d

c

g(x, t)f(t, ym(t))dt

we find

|ωm(x)− ωm(s)| ≤
∫ d

c

|g(x, t)− g(s, t)||g(t, ym(t))|dt

≤MK|x− s|(d− c).

Hence, {ωm(x)} is uniformly bounded and equicontinuous on [c, d]. Thus, a sub-
sequence and by monotonicity the whole sequence {ym(x)} converges uniformly
to φ(x) on [c, d]. Finally, taking limits through (7.1.aga) yields that φ(x) is a solution
of (1.1.aga) with q = 0 on [c, d], and hence the condition (E∗) is satisfied.

8 The Uniform Convergence

In [8] Henderson and Jackson in there closing remarks have mentioned the va-
lidity of the Proposition for fourth order differential equations. To prove the
Proposition for arbitrary order differential equations we let Pn denote the set of
all real-valued polynomials of degree at most n.
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Definition 8.1 ([3]). Given S ⊂ [c, d], x0 is a bilateral accumulation point of
S, in case x0 is an accumulation point of both S ∩ [c, x0] and S ∩ [x0, d].

Definition 8.2. A function g(x) : I → R, I an interval, is said to be n-convex
(n-concave), on I in case for any distinct points x0, x1, . . . , xn in I,

n∑
i=0

g(xi)
ω′(xi)

≥ 0, (≤ 0),

where

ω(x) =
n∏

i=0

(x− xi), so that ω′(xj) =
n∏

i=0,i6=j

(xj − xi).

The following results for n-convex functions are well known.

Lemma 8.1. Suppose g(x) ∈ C(n)(I). Then, g(x) is n-convex on I, if and only
if, g(n)(x) ≥ 0 on I.

Lemma 8.2. The function g(x) is n-convex, if and only if, g(x) ∈ C(n−2)(I)
and g(n−2)(x) is convex.

Remark 8.1. In Lemmas 8.1 and 8.2, ‘convex’ can be replaced by ‘concave’.

Lemma 8.3 ([3]). Let g(x) ∈ C[c, d] and assume that, for each p(x) ∈ Pn, the
set {x : p(x) = g(x)} does not have a bilateral accumulation point in (c, d).
Then, there exists a subinterval I ⊆ [c, d] on which g(x) is either (n + 1)-convex
or (n + 1)-concave.

Theorem 8.4 ([21]). Assume that the differential equation (1.1.aga) satisfies the
conditions (A) – (Dn). Then, (1.1.aga) also satisfies condition (E).

Proof. Let {ym(x)} be a sequence of solutions of (1.1.aga) which is uniformly bound-
ed on some subinterval [c, d] ⊂ (a, b). Then, by Corollary 5.4 there exists a
subsequence {ym(j)(x)} and a function z(x)∈BV [c, d] such that limj→∞ ym(j)(x)
= z(x) point-wise on [c, d]. Thus, z′(x) exists a.e. on [c, d] and

∫ d

c z(x)dx exists.
We set

Z(x) =
∫ x

c

z(t)dt.

Then, Z ∈ C[c, d], and by Lemma 8.3, either one of the following holds.

(i) Z(x) is (n + 2)-convex or (n + 2)-concave on some [c1, d1] ⊆ [c, d], or

(ii) there exists a p(x) ∈ Pn+1 such that {x : p(x) = Z(x)} has a bilateral
accumulation point in (c, d).

Case (i). Let us relabel the sequence {ym(j)(x)} as {ym(x)}. By Lemma
8.2, Z(x) ∈ C(n)[c1, d1] and Z(n)(x) is convex, (or concave). Thus, Z ′(x) ∈



Compactness Condition for Boundary Value Problems 19

C(n−1)[c1, d1] and Z ′(x) = z(x) a.e. on [c1, d1]. Thus, as a consequence of Corol-
laries 2.6 and 2.7 there exists a δ = δ(Z ′, d1 − c1) > 0 such that, for fixed
c1 ≤ a1 < a2 < · · · < an ≤ d1, with an− a1 ≤ δ, there exists an ε0 > 0 such that
the boundary value problem for (1.1.aga) satisfying y(aj) = Z ′(aj) + εj , 1 ≤ j ≤ n,
where |εj | ≤ ε0, 1 ≤ j ≤ n, has a solution y(x). Furthermore, the first n − 1
derivatives of this solution are bounded, with bounds depending on Z ′ and
d1 − c1. We call these bounds as N0 + 1, . . . , Nn−1 + 1.

Let us now choose points c1 ≤ a1 < a2 < · · · < an ≤ d1, with an − a1 ≤ δ
and such that Z ′(aj) = z(aj), 1 ≤ j ≤ n. Then, there exists an M such that
|ym(aj)− z(aj)| ≤ ε0, 1 ≤ j ≤ n for all m ≥M. Now for m ≥M and 1 ≤ j ≤ n,
let εm(j) = ym(aj)− z(aj). Then, for m ≥M,

ym(aj) = z(aj) + εm(j) = Z ′(aj) + εm(j), 1 ≤ j ≤ n

and it follows from condition (Dn) that ym(x) is the solution referred to above
resulting from Corollaries 2.6 and 2.7. As a consequence, we have for m ≥ M,

|y(i)
m (x)| ≤ Ni + 1 on [a1, an] for each 0 ≤ i ≤ n− 1. Now we can apply Theorem

2.1 to obtain a further subsequence {ym(`)(x)} such that {y(i)
m(`)(x)} converges

uniformly on each compact subinterval of (a, b) for each 0 ≤ i ≤ n− 1.

Case (ii). Assume that {xm} ↓ x0 is such that p(xm) = Z(xm), for all m ≥ 1.
Thus, if on some subinterval [xj+1, xj ], Z ′(x) = z(x) ≥ p′(x) a.e., then we have

Z(xj)− Z(xj+1) =
∫ xj

xj+1

z(t)dt

≥
∫ xj

xj+1

p′(t)dt

= p(xj)− p(xj+1) = Z(xj)− Z(xj+1),

so that the inequality is in fact an equality. However, from z(x)− p′(x) ≥ 0, a.e.
on [xj+1, xj ], we have

∫ xj

xj+1
(z(t)−p′(t))dt = 0, we conclude that z(x)−p′(x) = 0

a.e. on [xj+1, xj ]. In particular,

Z ′(x) = z(x) = p′(x) a.e. on [xj+1, xj ].

Similarly, if we assume that on some subinterval [xj+1, xj ], Z ′(x) = z(x) ≤ p′(x)
a.e., then we would arrive at Z ′(x) = z(x) = p′(x) a.e. on [xj+1, xj ].

Now that p′(x) ∈ C(n−1)[c, d], by Corollaries 2.6 and 2.7 there exists a δ =
δ(p′, d − c) > 0 such that for fixed c ≤ a1 < a2 < · · · < an ≤ d, an − a1 ≤ δ,
there exists an ε0 > 0 such that the boundary value problem for (1.1.aga) satisfying
y(aj) = p′(aj) + εj, 1 ≤ j ≤ n, where |εj| ≤ ε0, 1 ≤ j ≤ n, has a solution y(x).
As in Case (i) this solution has bounds on its first n− 1 derivatives depending
only on p′ and d− c; again we call these bounds as N0 + 1, . . . , Nn−1 + 1.

Let us choose points x`+n < x`+n−1 < · · · < x` from {xm} such that x` −
x`+n ≤ δ. We need to consider two subcases:
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Case (a). For some 1 ≤ r ≤ n, on [x`+r, x`+r−1] we have z(x) ≥ p′(x) a.e., or
z(x) ≤ p′(x) a.e. From the above arguments we, however, have z(x) = p′(x) a.e.
on [x`+r, x`+r−1]. We repeat the arguments of Case (i). Choose points x`+r ≤
a1 < · · · < an ≤ x`+r−1 such that z(aj) = p′(aj), 1 ≤ j ≤ n. Then, there exists
an M such that |ym(aj) − z(aj)| ≤ ε0, 1 ≤ j ≤ n, m ≥ M. For m ≥ M and
1 ≤ j ≤ n let εm(j) = ym(aj)− z(aj). Then, for m ≥M,

ym(aj) = z(aj) + εm(j) = p′(aj) + εm(j), 1 ≤ j ≤ n

and it follows that, from condition (Dn), ym(x) is the solution referred to the
above problem arising from the Corollaries 2.6 and 2.7. Thus, for all m ≥M,

|y(i)
m (x)| ≤ Ni + 1 on [a1, an]

for each 0 ≤ i ≤ n − 1. Then, by Theorem 2.1 there exists a further subse-
quence {ym(s)(x)} such that {y(i)

m(s)(x)} converges uniformly on each compact
subinterval of (a, b), for each 0 ≤ i ≤ n− 1.

Case (b). For each 1 ≤ r ≤ n, there exist sets Ar, Br ⊂ [x`+r, x`+r−1], each
having positive Lebesgue measure, and z(x) > p′(x) on Ar, and z(x) < p′(x) on
Br. However, since limm→∞ ym(x) = z(x), and so there exists a M such that
for m ≥ M, ym(x) > p′(x), for some Ar, and ym(x) < p′(x), for some x ∈ Br.
By continuity, for all 1 ≤ r ≤ n, there exists ar ∈ (x`+r, x`+r−1) such that
ym(ar) = p′(ar).

In particular, there are points x`+n ≤ ã1 < · · · < ãn ≤ x` (ãn − ã1 ≤ δ), so
that, for some M ′ ≥M,

ym(ãj) = p′(ãj) + εm(j), 1 ≤ j ≤ n

where |εm(j)| ≤ ε0, 1 ≤ j ≤ n and all m ≥M ′.

It follows from condition (Dn) that ym(x) is the solution referred to before
Case (a) arising from Corollaries 2.6 and 2.7. Thus, for all k ≥M ′,

|y(i)
m (x)| ≤ Ni + 1 on [ã1, ãn],

for each 0 ≤ i ≤ n − 1. Now an application of Theorem 2.1 leads to a subse-
quence {ym(j)(x)} such that {y(i)

m(j)(x)} converges uniformly on each compact
subinterval of (a, b), for each 0 ≤ i ≤ n− 1.

9 Problems and Comments

The establishment of Theorem 8.4 implies that in the known results on conjugate
boundary value problems the condition (E) is, in fact, superfluous. As an example
we state an important result, which was independently proved by Hartman [6]
and Klassen [17] with the additional condition (E).
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Theorem 9.1. Assume that for the differential equation (1.1.aga) conditions (A)
– (Dn) are satisfied. Then, each r point boundary value problem, i.e., for any
a < a1 < a2 · · · < ar < b and any Aj+1,i, 0 ≤ j ≤ ki, 1 ≤ i ≤ r the problem
(1.1.aga), (2.3.aga) has a unique solution.

Problem 1. For the third order differential equations in Theorem 4.5 we have
proved that conditions (A), (C) and (D3) imply condition (E). It will be inter-
esting to extend this result to equations of arbitrary order, i.e., whether it is
possible to prove Theorem 8.4 without the assumption (B).

In [16] Jackson has indicated that for n-point boundary value problems,
Klassen has used a result he established in [18] to prove the existence of solutions
under the assumptions (A), (C), (Dn) and (E). Thus, if the answer to Problem 1
is affirmative, then for r = n, Theorem 9.1 holds without the assumption (B).

Let 2 ≤ r ≤ n and let mi, 1 ≤ i ≤ r, be positive integers such that
∑r

i=1 mi =
n. Let s0 = 0 and for 1 ≤ k ≤ r, let sk =

∑k
i=1 mi. A boundary value problem

for (1.1.aga) with the boundary conditions

y(i)(ak) = yi,k, sk−1 ≤ i ≤ sk − 1, 1 ≤ k ≤ r (9.1.aga)

where a < a1 < a2 < · · · < ar < b is called a right (m1, . . . , mr)-focal point
boundary value problem for (1.1.aga) on (a, b).

With respect to the boundary conditions (9.1.aga) we replace the condition (Dn)
by the following:

(Drf
n ) For any a < a1 < a2 < · · · < an < b and any solutions y(x) and z(x) of

(1.1.aga), it follows that y(i−1)(ai) = z(i−1)(ai), 1 ≤ i ≤ n implies y(x) ≡ z(x), i.e.,
the differential equation (1.1.aga) is right (1, 1, . . . , 1) disfocal on (a, b).

As an application of Rolle’s theorem it follows that condition (Drf
n ) implies

the condition (Dn). Thus, in Theorem 8.4 condition (Dn) can be replaced by
(Drf

n ). We state this observation in the following result.

Theorem 9.2. Assume that the differential equation (1.1.aga) satisfies conditions
(A) – (C) and (Drf

n ). Then, (1.1.aga) also satisfies condition (E).

Of course, in Theorem 8.4, we can always replace condition (Dn) by a stronger
condition. The point is now whether it is possible to replace condition (Dn) by
some other condition which does not imply (Dn). The first ‘round about’ result
in this direction is the following:

Theorem 9.3. If the differential equation (1.1.aga) is of third order and satisfies
conditions (A), (C) and (D2), then (1.1.aga) also satisfies condition (E).

Proof. The proof is similar to that of Theorems 4.5.

Problem 2. A result similar to that of Theorem 9.3 for arbitrary order differ-
ential equations (1.1.aga) remains undecided, i.e., does conditions (A), (C) and (Dr)
imply condition (E).
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For arbitrary order differential equations (1.1.aga) Jackson [14] has established
that conditions (A), (B) and (Dn) imply (Dr). A converse of this result for third
order differential equations (1.1.aga) is that the conditions (A), (C) and (D2) imply
(D3). Jackson’s proof [15] of this converse result uses Theorem 9.3, i.e., under
the assumptions, condition (E) is implied, and then this fact is used to prove
(D3). Thus, if we accept Jackson’s converse result without looking at its proof,
then we can argue that conditions (A), (C) and (D2) imply (D3), and therefore
Theorem 4.5 gives condition (E).

Problem 3. The question for arbitrary order differential equations (1.1.aga) which
remains open is whether conditions (A), (C) and (Dr) imply condition (Dn).

Finally, we state one more result which is similar in nature to that of Theorem
9.3.

Theorem 9.4 ([7]). If the differential equation (1.1.aga) is of third order and sat-
isfies conditions (A), (C) and

(Drf
2 ) each right (2, 1)-focal point boundary value problem for (1.1.aga) on (a, b)

has at most one solution,

then (1.1.aga) also satisfies condition (E).

Problem 4. A result similar to that of Theorem 9.4 for arbitrary order differ-
ential equations (1.1.aga) is not known.

The author is grateful to Professor Johnny Henderson for his help in the
preparation of this lecture.
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1.1 Singular Parabolic Equations

Let β(·) be a maximal monotone graph in R×R and consider parabolic inclusions
of the type

∂

∂t
β(u)− div A(x, t, u,∇u) + B(x, t, u,∇u) 3 0 in ΩT , (1.1.dib)

where Ω is a domain in RN and ∇ denotes the gradient with respect to the space
variables only. Also, for T > 0 we have set ΩT ≡ Ω× (0, T ]. We assume that the
graph β(·) is coercive, i.e., there exists a positive constant γo, such that for all
pairs of real numbers (s1, s2) and all selections w1 ∈ β(s1) and w2 ∈ β(s2),

w1 − w2 ≥ γo(s1 − s2). (1.2.dib)

We also assume that β(·) is bounded for bounded values of its argument, i.e.,

for every M > 0, sup
|s|<M

sup
w∈β(s)

|w| <∞. (1.3.dib)

No further condition is formulated on the behavior of β(·). In particular in any
finite interval (−M, M), the graph β(·) might exhibit countably many jumps or
might become vertical countably many times, exponentially fast or faster. If a
graph β(·) exhibits this behavior we call it a singular graph and refer to (1.1.dib)
as singular parabolic equations. Examples of such a β(·) are

β(s) ≡


s if s < 0,

[0, 1] if s = 0,

1 + s if s > 0;
β(s) ≡



2 + s if s > 1,

[2, 3] if s = 1,

1 + s if 0 < s < 1,

[0, 1] if s = 0,

s if s < 0;

(i)

β(s) ≡ |s| 1
m sign s, m > 1;

β(s) ≡ 1 + sα1 − (1− s)α2 ,

{
s ∈ [0, 1],
αi ∈ (0, 1), i = 1, 2.

(ii)

The first of (i) is the enthalphy function in the weak formulation of a Stefan-like
problem modeling a water-ice transition of phase.1 The second might serve as
a prototype of the enthalpy in a double transition of phase. The first of (ii) is
the graph arising from the classical porous media equation, modeling the flows
1 There exists a vast literature on each of the several aspects of the classical Stefan

problem. For a summary of the main results we refer to the monograph of Meirmanov
[42], the review article of Danilyuk [13] as well as the Proceedings [8,26,30] and
the references therein. Here we review only those aspects connected with the local
continuity of weak solutions of (1.1.dib) with β(·) exhibiting multiple singularities.
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of a single fluid in a porous matrix.2 The second, is a first approximation for a
model of two immiscible fluids moving within a porous matrix.3 The simplest
example of (1.1.dib) is,

∂

∂t
β(u)−∆u 3 0 in ΩT . (1.1′.dib)

The diffusion field A and the forcing term B in (1.1.dib), are real valued and mea-
surable over ΩT × R× RN , and satisfy the structure conditions,

A(x, t, η, ξ) · ξ ≥ µo |ξ|2 − ϕo(x, t);
|A(x, t, η, ξ)| ≤ µ1 |ξ| − ϕ1(x, t);

|B(x, t, η, ξ)| ≤ µ2 |ξ|2 − ϕ2(x, t),

(1.4.dib)

for a.e. (x, t, η, ξ) ∈ ΩT × R × RN . Here µi, i = 0, 1, 2 are prescribed positive
numbers and ϕi, i = 0, 2 are prescribed nonnegative functions defined a.e. in
ΩT , satisfying

ϕo + ϕ2
1 + ϕ2 ∈ Lq,r

loc(ΩT ). (1.5.dib)

The numbers q and r are positive, are linked by

1
r

+
N

q
= 1− κ, κ ∈ (0, 1), (1.6.dib)

and can be taken out of their admissible range

q ∈
[

N
2(1−κ) , ∞

]
, r ∈

[
1

1−κ , ∞
]
, 0 < κ < 1, for N ≥ 2;

(1.7.dib)
q ∈ (1 , ∞), r ∈

[
1

1−κ , 1
1−2κ

]
, 0 < κ < 1

2 , for N = 1.

The inclusion in (1.1.dib) is meant weakly and in the sense of graphs. Precisely, a
function

u ∈ L2
loc

{
0, T ; W 1,2

loc (Ω)
}

, (1.8.dib)

is a local weak solution to (1.1.dib) if there exists a measurable selection w ⊂ β(u),
such that

t→ w(·, t) is weakly continuous in L2
loc(Ω), (1.9.dib)

2 Also the porous medium equation has been widely investigated in the literature and
we refer to the same Proceedings [8,26,30] and their references, for an overview. An
overview of the main results regarding the local regularity of the solutions, is in the
Bibliographical Notes of the monograph [22].

3 A 1-dimensional model in hydrology is investigated by Van Duijn and Zhang in
[15], and numerically by Hoff [29]. Most of the models of multiphase flows in
porous medium are multidimensional. For such models we refer to the monographs
[6,7,11,12,49].
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and in addition,∫
Ω

w(x, t)ϕ(x, τ) dx

∣∣∣∣τ=t2

τ=t1

+
∫ t2

t1

∫
Ω

{
− w(x, τ)ϕt + A(x, τ, u,∇u) ·Dϕ

}
dxdτ

+
∫ t2

t1

∫
Ω

B(x, τ, u,∇u)ϕdxdτ = 0, (1.10.dib)

for all testing functions

ϕ ∈W 1,2
loc

{
0, T ; L2

loc(Ω)
}
∩ L2

loc

{
0, T ; W 1,2

o (Ω)
}

, (1.11.dib)

and for all intervals (t1, t2) ⊂ (0, T ].

2 The Problem of Continuity of Weak Solutions

It is natural to ask whether locally bounded weak solutions to (1.1.dib) are continuous
in ΩT and whether one can estimate quantitatively their modulus of continuity.
To simplify the setting of the problem, we assume that u is a solution of (1.1.dib)
bounded in the whole ΩT and set,

‖u‖∞,ΩT ≡M. (2.1.dib)

This is not restrictive, by regarding ΩT as a subset of the domain of definition
of u. By the same token we also assume that the integrability requirement in
(1.5.dib) holds in ΩT and set, ∥∥ϕo + ϕ2

1 + ϕ2

∥∥
q,r;ΩT

≡ Φ. (2.2.dib)

We refer to the numbers,

N, γo, M, Φ, µi, i = 0, 1, 2,

as the data. For a constant C or γ, or a continuous function ω(·) we say

C ≡ C(data), γ ≡ γ(data), ω(·) = ωdata(·),

if they can be determined a priori only in terms of the indicated parameters.
Having fixed an arbitrary subset K ⊂ ΩT , one can ask whether u is continuous
in K with a modulus of continuity ωdata(·) depending only upon the data and
the distance from K to the parabolic boundary of ΩT .

Remark 2.1. If β(·) ≡ I, then locally bounded solutions of (1.1.dib) are locally
Hölder continuous in ΩT , and the assumptions (1.5.dib)–(1.7.dib) are optimal for this
to occur.4 Thus the issue at hand is to investigate to what extend the singularity
of β(·) might affect the continuity of u.
4 For a general account of the theory of local regularity of solutions of non-singular

parabolic equations with measurable coefficients, we refer to the monograph [39],
and in particular Chap. I, §3,4; Chap. II, §6,7; Chap. V, §1,2.
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Remark 2.2. The assumption that u be locally bounded is essential. Indeed even
if β(·) ≡ I, weak solutions of (1.1.dib) need not be bounded. This is due to the critical
growth of the forcing term B(x, t, u,∇u) with respect to |∇u| as indicated in the
last of (1.4.dib). We refer Stampacchia [51] for counterexamples even in the elliptic
case.5 If the last of (1.4.dib) were replaced with

|B(x, t, η, ξ)| ≤ µ2 |ξ|+ ϕ2(x, t), (1.4′.dib)

then weak solutions of (1.1.dib), for any coercive β(·) as in (1.2.dib)–(1.3.dib) would be
locally bounded. This would follow from a simple adaptation of the methods of
[39].6

In what follows we will assume in addition that the local solution u can be
constructed as the limit in the topology of (1.8.dib), of a sequence of smooth local
solutions of (1.1.dib) for smooth β(·). This assumption is formulated only to justify
some of the calculations.7 We stress that the modulus of continuity of u must be
independent of any approximating procedure and must depend only upon the
data.

3 Some Degenerate Parabolic Equations

The full generality indicated in (1.4.dib)–(1.6.dib) seems to be natural in physical mod-
els, such as the simultaneous flow of two immiscible fluids in a porous matrix.8

These models typically lead to degenerate parabolic equations of the type,9

vt − div a (x, t, v,∇v) + b (x, t, v,∇v) = 0 in ΩT . (3.1.dib)
5 Thus (1.1.dib) even with β(·) = I might have unbounded solutions. However if one

had some a priori qualitative knowledge of the boundedness of the solution, such a
qualitative bound could be turned into a quantitative one. See for example Vespri
[53] and references therein.

6 Indeed a slightly faster growth is allowed; for example |∇u|q where 0 ≤ q < N+4
N+2

.
See [39] Chap. V, §1.

7 If the forcing term B(x, t, u,∇u) has at most a linear growth with respect to |∇u|,
then questions of existence and uniqueness are well understood. We refer for ex-
ample to the monographs [27,39,41] and the Proceedings [8,26,30] and references
therein. Here we only remark that a modulus of continuity uniform with respect to
the approximating procedure, would supply the necessary compactness to establish
existence of solutions.

8 For these models we refer to the monographs of J. Bear [6] (Chap. 9) and [7]
(Chap. 6), R. E. Collins [12] (Chap. 6), and A.E. Scheidegger [49] (Chap. 10), and the
article of Leverett [40]. These models consist of a system of two parabolic equations,
written in terms of the saturations and pressures of each of the two fluids.

9 The transformation of Kruzkov-Sukorjanski [37], transforms the physical models of
[6,7,12,40,49] into a system of one parabolic equation like (3.1.dib) in terms of the sat-
uration v of only one of the two fluids, and another degenerate-elliptic equation in
terms of a mean pressure. In such a formulation, the term b(x, t, v,∇v) in (3.1.dib) would
depend on such a mean pressure. The local continuity for the saturations was first
raised in [1] and [21]. The analysis of [1,21] permits to reduce the question of the
continuity of the saturations to the continuity of solutions to (3.1.dib).
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The leading vector field a and the forcing term b, are measurable and satisfy,

a(x, t, v,∇v) · ∇v ≥ Coϕ(v)|∇v|2 − ϕo(x, t);
|a(x, t, v,∇v)| ≤ C1ϕ(v)|∇v| − ϕ1(x, t);

|b(x, t, v,∇v)| ≤ C2ϕ(v)|∇v|2 − ϕ2(x, t),

(3.2.dib)

for a.e. (x, t) ∈ ΩT and all smooth functions (x, t) → v(x, t) defined in ΩT .
Because of the physical origin of the p.d.e., it is natural to assume that the
solutions are bounded, say for example v ∈ [0, 1].10 The equation is degenerate
in the sense that ϕ(·) is permitted to vanish. Precisely we assume that v → ϕ(v)
is continuous, non-negative and vanishes at the extreme values of its argument,
i.e.,

ϕ(v) > 0 for v ∈ (0, 1) and ϕ(0) = ϕ(1) = 0. (3.3.dib)

The functions ϕi, i = 0, 1, 2 satisfy the assumptions (1.5.dib)–(1.7.dib). A notion of
solution to (3.1.dib) is introduced along the lines of (1.8.dib)–(1.11.dib), by requiring that
t→ v(·, t) satisfies (1.9.dib) and that

∇ϕ(v) ∈ L2
loc(ΩT ).

The main difficulty in establishing the local continuity of v resides in the double
degeneracy of ϕ(·) and, more importantly, in the lack of precise quantitative
and/or qualitative information on its modulus of continuity. Such a limited in-
formation on the nature of the degeneracy is typical of the physical models of
flows of a mixture of fluids in a porous medium.11 Thus in particular ϕ(·) might
degenerate at v = 0 and v = 1 at different rates, and perhaps exponentially
fast or faster.12 The problem of continuity of weak solutions to (3.1.dib) consists
in showing that v is continuous whatever the nature of the degeneracy of ϕ(·),
provided (3.3.dib) is satisfied.

Let u ∈ [0, 1] be a solution of (1.1.dib) with β(·) ∈ C(0, 1) and singular at the
extreme values u = 0 and u = 1 of its argument, i.e. for example

lim
u↘0

β′(u) = lim
u↗1

β′(u) = +∞.

10 The function (x, t)→ v(x, t) is the local relative saturation of one of the two fluids.
Thus v ∈ [0, 1]. See for example [1,6,7,12,37,49].

11 The function ϕ(·) is related to the permeability of both fluids. The permeability of
one of the fluids vanishes as the fluid is displaced by the other (i.e., either v = 0 or
v = 1). This is the physical origin of the degeneracy of ϕ(·). The behaviour of the
permeabilities as functions of the saturations are derived from hydrostatic (rather
than dynamic) experiments, [6,7,12,49], dimensional analysis [40], and heuristic ar-
guments. For this reason the information on their rate of vanishing is rather limited.

12 In fact, because of the phenomenon of the connate water it might be even completely
flat in a small right neighborhood of zero or a left interval of 1, or both. See Bear [6]
Chap. 9, §2.3 and 2.4; Collins [12] Chap. 2, §24, and Chap.6, §10; Scheidegger [49]
Chap. 3, §4 and Chap.10, §6.
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Then by setting v ≡ β(u) and ϕ(·) ≡ β−1′(·) the singular p.d.e. in (1.1.dib), in terms
of u, can be recast as the degenerate p.d.e. in (3.1.dib), in terms of v, and one checks
that the conditions (1.4.dib) yield (3.2.dib). For this reason, the methods introduced in
the context of (1.1.dib) and those connected to (3.1.dib) bear a considerable similarity
and/or overlap. Starting now from (3.1.dib) one might set

u ≡
∫ v

ϕ(s) ds, β(u) = v,

and attempt to recast the degenerate p.d.e. (3.1.dib) as the singular equation (1.1.dib).
One verifies that the resulting leading coefficients A would satisfy the first two
of (1.4.dib). The resulting free term B however might not satisfy the last (1.4.dib), due
to its faster than linear growth with respect to |∇v|.13 In what follows we will
outline the analogies and point to the main differences.

4 The Classical Approach to Continuity

For positive ρ, let Kρ and Qρ denote respectively the cube of wedge 2ρ centered
at the origin of RN , and the parabolic cylinder with “vertex” at the origin of
RN+1, with cross sections Kρ, i.e.,

Kρ ≡ {x ∈ RN | max
1≤i≤N

|xi| < ρ}, Qρ ≡ Kρ × (−ρ2, 0). (4.1.dib)

A cube centered at some xo ∈ RN\{0} and congruent to Kρ will be denoted by
{xo + Kρ} and a parabolic cylinder with “vertex” at some (xo, to) ∈ RN+1 and
congruent to Qρ, will be denoted by {(xo, to) + Qρ}. In what follows we will fix
a point (xo, to) ∈ ΩT and let ρo be the largest radius so that {(xo, to) + Qρo}
is contained in ΩT . Also for a constant δ ∈ (0, 1) we consider the sequence of
decreasing radii,

ρn ≡ δn ρo, n = 0, 1, 2. . . . , (4.2.dib)

and the family of nested shrinking cylinders, with the same vertex at (xo, to),

{(xo, to) + Qρn} , n = 0, 1, 2, . . . .

4.1 Non Singular Parabolic Equations

Suppose for the moment that in (1.1.dib), the graph β(·) is the identity, i.e., that
(1.1.dib) is a quasilinear, non-singular , parabolic equation with measurable coeffi-
cients. If u is a weak solution to such an equation, we set

µ+
n ≡ ess sup

{(xo,to)+Qρn}
u, µ−n ≡ ess inf

{(xo,to)+Qρn}
u, ωn≡ ess osc

{(xo,to)+Qρ}
u.

13 One verifies this for the equation vt − ∆v2 = v|∇v|2. The equivalence of the two
formulations would hold if B had a linear growth with respect to |∇u|. Equations
such as (3.1.dib) arising from the flow of immiscible fluids in a porous medium bear
lower order terms with a behavior technically similar to a super-linear growth with
respect to |∇v|. See [1], §3–6.
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Proposition 4.1. Let u be a weak solution of (1.1.dib) with β(·) ≡ I. Then there
exists constants C > 1 and δ, η ∈

(
0, 1

2

)
that can be determined a priori only in

terms of the data, such that for every (xo, to) ∈ ΩT ,

ωn+1 ≤ (1− η)ωn + Cρλ
n, n = 0, 1, 2, . . . . (4.3.dib)

Here λ ∈ (0, 1) is a number determined only in terms of the integrability condi-
tions (1.5.dib)–(1.7.dib) and is independent of δ and η. As a consequence u is locally
Hölder continuous in ΩT .

Proof of Hölder continuity assuming (4.3.dib). Having fixed (xo, to) ∈ ΩT , from (4.3.dib)
by iteration we derive,

ωn ≤ (1− η)nωo +
C

δλ

∑n

i=1

(
1− η

δλ

)n

, ∀n ∈ N. (4.4.dib)

The two numbers (1− η) and δ can be related by

(1− η) = δα, where α =
ln(1− η)

ln δ
∈ (0, 1).

Moreover without loss of generality we may assume that ρo ∈ (0, 1). Then,
having determined δ and η, the iterative inequalities (4.3.dib) continue to hold if λ
is replaced by a smaller number. We will choose it so that (1− η)δ−λ < 1. This
way the sum on the right hand side of (4.4.dib) can be majorized with a convergent
series. Therefore from (4.4.dib) and the definition (4.2.dib) of the sequence ρn, it follows
that,

ωn ≤ ωo

(
ρn

ρo

)α

+ γ(data; η, δ)ρλ
n, ∀n ∈ N. (4.5.dib)

Since (xo, to) ∈ ΩT is arbitrary, this implies that u is locally Hölder continuous
in ΩT , with Hölder exponent min{α; λ}. ut

Remark 4.1. Having fixed (xo, to) ∈ ΩT , the starting cylinder {(xo, to) + Qρo}
must be contained in ΩT . Thus from the form of (4.5.dib) it follows that the Hölder
continuity can be claimed only within compact subsets K of ΩT and that the
Hölder constant ωoρ

−α
o deteriorates as (xo, to) approaches the parabolic bound-

ary of ΩT .

Remark 4.2. The constant C appearing on the right hand side of (4.3.dib) is due
only to the functions ϕi in the structure conditions (1.4.dib) and it would be zero
for the prototype equation (1.1′.dib), with β(·) ≡ I.

This is the parabolic version of the classical DeGiorgi’s approach to continu-
ity introduced in the context of elliptic equations with measurable coefficients
[14]. The adaptation to parabolic equations is far from simple and it appears in
the book [39]. The same point of view of reducing the oscillation of u in a family
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of shrinking cylinders has influenced, one way or another, most of the litera-
ture on the subject, including Moser [43,44], Trudinger [52], Kruzkov [34,35,36],
Aronson-Serrin [5] and Krylov-Safonov [38]. The reduction of the oscillation (4.3.dib)
is realized by the following Proposition that can be regarded as some sort of a
weak maximum principle.14

Proposition 4.2. Let u be a weak solution of (1.1.dib) with β(·) ≡ I. Then there
exists constants C > 1 and δ, η ∈

(
0, 1

2

)
, that can be determined a priori only

in terms of the data, such that for every (xo, to) ∈ ΩT and every n ∈ N, either
ωn < Cρλ

n, or at least one of the following two inequalities holds,

u(x, t) ≤ µ+
n − ηωn,

u(x, t) ≥ µ−n + ηωn,
for a.e. (x, t) ∈

{
(xo, to) + Qρn+1

}
. (4.6.dib)

Proof of (4.3.dib) assuming (4.6.dib). Fix (xo, to) ∈ ΩT and n ∈ N. If the first of (4.6.dib)
holds true, then

ess sup
{(xo,to)+Qρn+1}

u = µ+
n+1 ≤ µ+

n − ηωn.

Subtracting µ−n+1 from the left hand side and µ−n from the right hand side, gives

ωn+1 = µ+
n+1 − µ−n+1 ≤ µ+

n − µ−n − ηωn = (1− η)ωn.

A similar argument proves the claim if the second of (4.6.dib) holds. ut
The proof of this Proposition is in [39] and is a parabolic version of a similar

elliptic Proposition proved by DeGiorgi [14].

5 Parabolic Equations with One-Point Singularity

We consider now (1.1.dib) where β(·) is singular at only one point . This would
include the Stefan graph indicated in the first of (i) and the porous medium
graph indicated in the first of (ii).

The first regularity results for weak solutions of these equations with such a
β(·), appear in [9,18,19,47,48,55]. In all these contributions, the basic approach
to continuity is analogous to that of Propositions 4.1–4.2. The proofs differ es-
sentially from the technical ways of establishing an alternative similar to that
in Proposition 4.2. The singularity of β(·) affects Proposition 4.2 in two ways,
i.e., the reduction factor δ that determines the sequence of radii ρn in (4.2.dib), and
the number η that determines the reduction of the oscillation in (4.3.dib), are both
functions of the oscillation itself. Given two continuous, monotone increasing
functions

(0, 2M ] 3 s→ δ(s), η(s) ∈ (0, 1), such that δ(0) = η(0) = 0, (5.1.dib)

14 Suppose the first of (4.4.dib) holds and assume without loss of generality that (xo, to)
coincides with the origin of RN+1. Then the supu over the smaller cylinder Qρn+1 is
strictly less than the sup u over the larger and coaxial cylinder Qρn . Thus the supu
over the larger cylinder can only be achieved in the parabolic shell Qρn\Qρn+1 . This
can be regarded as some sort of parabolic boundary for the larger box.
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we construct inductively, the decreasing sequences of numbers

ωo = max
{
2M ; Cρλ

o

}
,

ρn+1 = δ(ωn) ρn,

ωn+1 = max
{(

1− η(ωn)
)
ωn; Cρλ

n

} ∀n ∈ N, (5.2.dib)

and the corresponding family of shrinking nested cylinders {(xo, to)+Qρn}, with
the same “vertex” at (xo, to). Here C > 1 and λ ∈ (0, 1) are two given constants.

Lemma 5.1. {ωn} → 0 as n→∞.

Proof. From the definition it follows that the sequences {ρn} and {ωn} are non-
increasing, so that their limits as n↗∞ exist. Since δ(·) ∈ (0, 1), it is apparent
that {ρn} ↘ 0. If

lim
n→∞

ωn = ω∞ > 0,

then, using the monotonicity of η(·), we derive from (5.2.dib),

ωn+1 ≤ max
{(

1− η(ω∞)
)
ωn; Cδλn(ω∞)ρλ

}
, ∀n ∈ N.

Thus {ωn} ↘ 0 against the contradiction assumption. ut

Proposition 5.1. Let u be a weak solution of (1.1.dib) with β(·) either of Stefan-
type (i.e., the first of (i)) or of the type of porous media (i.e., the first of (ii)).
Then there exist constants C > 1 and λ ∈ (0, 1), and two continuous increasing
functions δ(·) and η(·) as in (5.2.dib), that can be determined a priori only in terms
of the data, such that for every (xo, to) ∈ ΩT ,

ess osc
{(xo,to)+Qρn}

u ≤ ωn n = 0, 1, 2, . . . . (5.3.dib)

Here λ ∈ (0, 1) is a number determined only in terms of the integrability condi-
tions (1.5.dib)–(1.7.dib) and is independent of δ and η. As a consequence u is locally
continuous in ΩT .

Remark 5.1. The constants C and λ in (5.2.dib), depend only upon the functions
ϕi, i = 0, 1, 2 in the structure conditions (1.4.dib) and can be taken to be zero for
the prototype equation (1.1′.dib).

Remark 5.2. While Proposition 4.1 implies a precise Hölder modulus of conti-
nuity, this is not longer the case for Proposition 5.1. The sequences (5.2.dib) and
the recursive bound (5.3.dib) supply a quantitative but not explicit modulus of con-
tinuity for u.15

15 In the case of graphs of Stefan-type the functions s → δ(s), η(s) have the explicit
form K−h/s where K and h are large constants (see [18]). It would be of interest to
generate an explicit modulus of continuity for u, in terms of K and h.
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The contributions in [9,18,19,47,48,55] all establish recursive inequalities sim-
ilar to those of Proposition 5.1, even though with technically different points of
view. In [18,19] the Proposition was established by means of DeGiorgi-type iter-
ations, in the parabolic setting of [39]. The proof of [55] follows the Harnack-type
techniques of Moser, as appearing in [43,44,5,52]. The results of [9] make use of
local representations in terms of heat potentials, and for this reason are limited
to the prototype equations (1.1′.dib). The results of [47,48] are also limited to (1.1′.dib),
being based on the non-divergence structure shrinking technique of Krylov and
Safonov [38].

Whatever the approach however, it is essential that β(·) be singular at only
one point , say for example at u = 0.

All these proofs have a common pattern, i.e., having fixed a cylinder {(xo, to)
+ Qρ}, either the singularity occupies a small portion of such a box or a large
one. The first case is a favorable, in the sense that the singularity plays a neg-
ligible role. If the second case occurs, then since off the singular set the partial
differential equation (1.1.dib) is uniformly parabolic, the solution cannot grow too
fast and remains “close” to a fixed value, for example µ+, and it does not os-
cillate too much. This supplies a control on the oscillation which in turn can be
rephrased as in Proposition 5.1.

Technically, the solution u remains “close” to µ+ within {(xo, to) + Qρ}, if
the functions

(u − k)+ ≡ max{u− k; 0}, 0 < k < µ+,

are subsolutions of a uniformly parabolic equation. This in turn is possible if, for
u ≥ k > 0, the graph β(·) does not suffer any other singularity. By working with
the infimum µ− a similar argument indicates that β(·) cannot have a singularity
for u < 0. Thus the only singularity permitted is at a single point. This is the
main limitation of these proofs.

6 Power-Like One Point Singularity

Consider now (1.1.dib) with β(·) given by the first of (ii). In such a case we rewrite
the p.d.e. as

|u|
1−m

m ut − div A(x, t, u,∇u) + B(x, t, u,∇u) = 0 in ΩT . (6.1.dib)

If the coefficient of ut were constant, one might perform a change of the time vari-
able to transform (6.1.dib) into a non-singular , uniformly parabolic equation. Fol-
lowing this remark, one might introduce an intrinsic time scale in the parabolic
cylinders {(xo, to) + Qρ}, with respect to which (6.1.dib) would exhibits proper-
ties typical of uniformly parabolic equations. This idea has been introduced and
implemented in [23]. The new intrinsic geometry is constructed as follows. For
ω > 0 let Qρ(ω) denote the cylindrical domain with “vertex” at the origin of
RN+1,

Qρ(ω) ≡ Kρ × {−ρ2ω
1−m

m , 0}. (6.2.dib)
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For (xo, to) ∈ ΩT , we let {(xo, to) + Qρ(ω)} denote the cylinder congruent to
Qρ(ω) and with “vertex” at (xo, to). Having fixed (xo, to) ∈ ΩT and ω > 0, we
will choose ρ > 0 so that {(xo, to) + Qρ(ω)} ⊂ ΩT . Let us fix two constants
δ, η ∈

(
0, 1

2

)
satisfying

δ < (1− η)
m−1

m , (6.3.dib)

and construct, inductively, sequences {ωn}, {ρn} and a family of nested and
shrinking cylinders as follows.

ωo = 2M, ρo such that {(xo, to) + Qρo(ωo)} ⊂ ΩT ;

ωn+1 = (1− η)ωn + Cρλ
n, ρn+1 = δnρo, ∀n ∈ N;

{(xo, to) + Qρn(ωn)} .

(6.4.dib)

Here C > 1 and λ ∈ (0, 1) are fixed constants. These cylinders all have the same
“vertex”. Therefore, to verify that they are nested it suffices to verify that

ρ2
n+1ω

1−m
m

n+1 < ρ2
nω

1−m
m

n .

By making use of the definitions of ρn and ωn, this is verified if (6.3.dib) holds.

Proposition 6.1. Let u be a weak solution of (1.1.dib) with β(·) of the type of
porous media (i.e., the first of (ii)). Then there exist constants δ, η ∈ (0, 1)
that can be determined a priori only in terms of the data, such that for every
(xo, to) ∈ ΩT ,

ess osc
{(xo,to)+Qρn (ωn)}

u ≤ ωn n = 0, 1, 2, . . . . (6.5.dib)

Here C > 1 and λ ∈ (0, 1) are numbers determined only in terms of the integra-
bility conditions (1.5.dib)–(1.7.dib) and are independent of δ and η. As a consequence
u is locally Hölder continuous in ΩT .

Remark 6.1. The Hölder modulus of continuity can be derived as in the proof of
Proposition 4.1, since the “shrinking” numbers δ and η are independent of the
solution.16

Remark 6.2. It is natural to ask whether the same idea of working with intrin-
sically rescaled cylinders could be used for graphs of the Stefan-type. In such
a case β′(·) is the Dirac mass at the origin. As a consequence the time should
be intrinsically rescaled into another which, loosely speaking, would remain con-
stant on the transition set [u = 0].17 We do not know of a general technical way
of operating such a rescaling. However in [20] we have devised a variant of it, in
the context of the boundary regularity of weak solutions of (1.1.dib).
16 The same idea of introducing an intrinsic geometry, can be applied to doubly non

linear parabolic equations, as long as the singularities and/or degeneracies are power-
like. We refer to Ivanov [31,32], Porzio-Vespri [46] and Vespri [54] for the main points
of the theory.

17 Presumably, a technical implementation of this idea, if at all possible, would require
some preliminary information on the relative size of the singular set [u = 0].
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6.1 Remarks on Boundary Regularity

Suppose that continuous Dirichlet data are prescribed on the lateral part

ST ≡
⋃

t∈(0,T ]
∂Ω × {t},

of the parabolic boundary of ΩT . The boundary data on ST are taken in the
sense of the traces of the functions u(·, t) ∈W 1,1(Ω). In such a case we establish
in [20] that weak solutions of (1.1.dib) are continuous up to ST , both for Stefan-type
graphs and for graphs of the type of porous media. We introduce a time scale
which becomes progressively small as as the essential oscillation of u decreases to
zero. The method however could be implemented only because of the information
contained in the boundary data.

7 Parabolic Equations with Multiple Singularities

Equations with β(·) exhibiting multiple singularities arise naturally from the
flows of two immiscible fluids in a porous medium. The model example is (3.1.dib)
which, as indicated in §3, presents difficulties of similar nature as (1.1.dib). The first
attempt to establish the local continuity of solutions of (3.1.dib) is in [1] under some
assumption on the nature of the degeneracy of the function ϕ(·) introduced in
(3.3.dib), near at least one of the degeneracy points v = 0 and v = 1. For example
ϕ(·) could degenerate at any unrestricted rate near v = 1, provided near v = 0
it degenerates no faster than logarithmically. The result was improved in [21]
by allowing the second degeneracy to be power-like, with no restriction on the
power. This last work employs a “one sided” intrinsic geometry, of the type
discussed in §6, by introducing, roughly speaking, two parabolic scales. When
working near the unrestricted degeneracy, say for example v = 1, we employ the
standard parabolic cylinders {(xo, to) + Qρ}, as in (4.1.dib). This is because, due to
the lack of information on the nature of the degeneracy, no natural rescaling is
available. When working near v = 0, if the degeneracy is power-like, we work
with cylinders coaxial with {(xo, to) + Qρ}, with the same “vertex” at (xo, to)
and whose time scale is of the form (6.2.dib).

Because on the restriction placed on the degeneracy of ϕ(·), both contribu-
tions [1,21] leave open the main issue of local continuity of solutions, as outlined
in §3. The restriction imposed in [1,21], are used to exploit the parabolic nature
of (1.1.dib) on some side of a point of singularity of β(·).

However for general graphs β(·), the equation in (1.1.dib) is not uniformly
parabolic on either side of a singular point. For this reason, any continuity result
for weak solutions of (1.1.dib) with general β(·), would require a “non-parabolic”
approach.

The first approach in this direction appears in [25], where the role played
by (1.1.dib) is reduced essentially to some energy estimates and a major role is
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played instead, by some novel measure-theoretical facts.18 The results of [25] are
optimal in space-dimension N = 2. For N ≥ 3 they are still not complete. We
will state these results and point out the main open problems regarding N ≥ 3.

Theorem 7.1 (N = 2). Let u be a locally bounded weak solution to (1.1.dib), in the
sense of (1.8.dib)–(1.11.dib), where β(·) is any maximal monotone graph satisfying the
coercivity and boundedness conditions (1.2.dib)–(1.3.dib). Assume moreover that N = 2
and that the structure conditions (1.4.dib)–(1.7.dib) are satisfied for N = 2. Then u
is locally continuous in ΩT . Moreover, for every compact subset K ⊂ ΩT , there
exists a continuous, non-negative, increasing function

s −→ ωdata(s), ωdata(0) = 0, (7.1.dib)

that can be determined a priori only in terms of the data and the distance from
K to the parabolic boundary of ΩT , such that

|u(x1, t1)− u(x2, t2)| ≤ ωdata

(
|x1 − x2|+ |t1 − t2|

1
2

)
, (7.2.dib)

for every pair of points (xi, ti) ∈ K, i = 1, 2.

Remark 7.1. The result is optimal in that no restrictions are placed on the sin-
gularities of β(·), and the parabolic equations is permitted to bear the full quasi-
linear structure (1.1.dib)–(1.7.dib). For N ≥ 3 on the other hand, while no restrictions
are placed on β(·), the p.d.e. in (1.1.dib) is required to have a limited structure.

Theorem 7.1 (N ≥ 3). Let u be a locally bounded weak solution to (1.1′.dib),
where β(·) is any maximal monotone graph satisfying the coercivity and bounded-
ness conditions (1.2.dib)–(1.3.dib). Then u is locally continuous in ΩT , with a modulus
of continuity that can be determined quantitatively, a priori only in terms of the
data as in (7.1.dib)–(7.2.dib).

8 Main Ideas of the Proof

In outlining the main points of the proof, we let u be a weak solution of (1.1.dib)
with the full quasilinear structure (1.1.dib)–(1.7.dib) in any number of dimensions, and
will point out later the differences between N = 2 and N ≥ 3. To establish
Proposition 5.1, we fix (xo, to) ∈ ΩT and assume, after a translation, that it
coincides with the origin. We will work with the cubes Kρ and the cylinders Qρ

introduced in (4.1.dib). The numbers µ± and ω are defined as in Section 4.1.

Proposition 8.1. Let δ ∈
(
0, 1

4

)
be a parameter to be chosen and assume that

there exists a time level t̃ ∈ (−ρ2,−δ2ρ2), such that

u
(
x, t̃

)
≤ µ+ − 1

4ω, ∀x ∈ K2δρ. (8.1+.dib)

18 The main one these is stated in Section 11 and is independent of partial differential
equations. For this reason we feel that it might be applicable to other branches of
Analysis.
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Then there exist numbers η ∈ (0, 1) and C > 1, λ ∈ (0, 1), depending upon the
data and δ, but independent of ω and ρ, such that either ω ≤ Cρλ or,

u(x, t) ≤ µ+ − ηω ∀(x, t) ∈ Qδρ ≡ Kδρ ×
(
−δ2ρ2, 0

)
. (8.2+.dib)

Likewise if for some t̃ ∈ (−ρ2,−δ2ρ2), there holds,

u
(
x, t̃

)
≥ µ− + 1

4ω, ∀x ∈ K2δρ, (8.1−.dib)

then either ω ≤ Cρλ, or

u(x, t) ≥ µ− + ηω, ∀(x, t) ∈ Qδρ ≡ Kδρ ×
(
−δ2ρ2, 0

)
, (8.2−.dib)

for the same constants η, C, λ.

The constants C > 1 and λ ∈ (0, 1) depend only on the various parameters
appearing in the structure conditions (1.5.dib)–(1.7.dib) and are independent of ω and
the singularities of β(·). From now on we will consider them fixed.

As indicated in the proof of Proposition 4.2, either one of (8.2+.dib), (8.2−.dib)
implies that going down from Qρ to the smaller cylinder Qδρ, the oscillation of
u decreases of a factor (1− η).

The proof of Proposition 8.1 hinges upon recursive inequalities based on the
logarithmic estimates introduced in [18]. Due to the “initial conditions” (8.1+.dib),
(8.1−.dib) these logarithmic estimates are analogous to those one would derive for
solutions of non-singular equations.19 Another feature of Proposition 8.1 is that
the number η depends upon δ but not upon the oscillation ω. This is precisely
the parameter dependence of Proposition 4.1.

Thus, the starting point of the proof is that if one had some information,
such as (8.1+.dib), (8.1−.dib) on the status of the system at some “initial” time t = t̃,
then the p.d.e. in (1.1.dib) would behave like a quasilinear non-singular parabolic
equation.

To achieve an information of the type (8.1+.dib), (8.1−.dib) we consider cylinders,
coaxial with Qρ, with “vertex” at (0, t̃) and congruent to Q4δρ, i.e.,{

(0, t̃) + Q4δρ

}
≡ K4δρ ×

{
t̃− (4δρ)2 , t̃

}
.

As the time level t̃ ranges over{
−

(
1− 16δ2

)
ρ2 , −16δ2 ρ2

}
, (8.3.dib)

the cylinders {(0, t̃)+Q4δρ}, move inside Qρ remaining coaxial with it. By moving
them in the indicated range, we seek to locate some position of t̃ where one could
derive some “initial” information of the type of (8.1+.dib), (8.1−.dib). Precisely, we will
look for those positions of t̃, where the subset of {(0, t̃) + Q4δρ} where u is

19 The proof of Proposition 8.1 results from combining the logarithmic estimates of §4
of [25] with Propositions 3.2±. We refer to [25] for full proofs.
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close either to µ+ or µ− is small, i.e., for which either one of the following two
inequalities holds,

meas
{

(x, t) ∈ {(0, t̃) + Q4δρ}
∣∣∣∣ u(x, t) ≥ µ+ − 1

2ω

}
≤ ν |Q4δρ| ;

meas
{

(x, t) ∈ {(0, t̃) + Q4δρ}
∣∣∣∣ u(x, t) ≥ µ− + 1

2ω

}
≤ ν |Q4δρ| ,

(8.4±)

for some ν ∈ (0, 1) to be determined in terms of the data.

Proposition 8.2. There exists a number ν ∈ (0, 1), that can be determined a
priori only in terms of the data and ω, such that if (8.4+) holds for some t̃ in
the range (8.3.dib), then either ω ≤ Cρλ or,

u(x, t) ≤ µ+ − 1
4ω ∀(x, t) ∈ {(0, t̃) + Q2δρ}. (8.5+.dib)

Analogously, if (8.4−) holds for some t̃, then either ω ≤ Cρλ or,

u(x, t) ≥ µ− + 1
4ω ∀(x, t) ∈ {(0, t̃) + Q2δρ}. (8.5−.dib)

The proof is based on iterative inequalities starting from energy estimates, sim-
ilar to those one would obtain for quasilinear, non-singular equations. The sin-
gularity of β(·) contributes to these energy estimates with a large constant de-
pending upon the data and ω. For this reason the number ν, in (8.4±) has to be
chosen to depend upon ω.20

A consequence of Proposition 8.2 is that if either one of (8.4±) is verified for
some time level t̃ in the indicated range, then at least one of (8.2+.dib), (8.2−.dib) would
hold true, and the proof could be concluded as indicated in Proposition 4.2.

Therefore the unfavorable case is when both (8.4±) are violated for every
time level t̃ in the range (8.3.dib). The parameter δ introduced in Proposition 8.1 is
still to be chosen. We will choose it in such a way that if the unfavorable case
occurs for all t̃ in the range (8.3.dib) and for arbitrarily small valued of δ, then this
would imply a contradiction.

Consider any one of the cylinders {(0, t̃) + Q4δρ}. If (8.4±) are both violated
for arbitrarily small δ, then near the axis of Qρ, at the time level t̃, there is a
relatively large set where the solution u is close to µ and another relatively large
set where u is close to µ−. Since δ is arbitrarily small and t̃ is arbitrary in the
range (8.3.dib), these two sets are arbitrarily close to each other. Therefore the space
gradient ∇u must be large on a relatively large set. Since however ∇u ∈ L2(Qρ),
this would create a contradiction.

9 Identifying Regions of Concentration of the Energy

The technical implementation of this idea requires that we locate those regions
within {(0, t̃) + Q4δρ} where the energy is sufficiently large. For this we identify
20 Proposition 8.2 corresponds to Propositions 3.1± of [25] to which we refer for a full

proof and further details.
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two sub-cylinders

{(yi, t̃) + Qδ2ρ} ⊂ {(0, t̃) + Q4δρ}, i = 1, 2, (9.1.dib)

where

u(x, t) ≥ 1
4µ+ ∀(x, t) ∈ {(x1, t̃) + Qδ2ρ};

u(x, t) ≤ 1
4µ− ∀(x, t) ∈ {(x2, t̃) + Qδ2ρ}.

(9.2.dib)

At first these two cylinders are found within {(0, t̃) + Q4δρ}. Then by using the
arbitrariness of t̃ we identify them has having their “vertices” at (yi, t̃), i.e., at
the same time level t̃. Also, using the arbitrariness of δ we may insure that their
cross sections are mutually separated by a distance of at least δ2ρ.21

It is in this process that the new Lemma on measure theory plays a role.
Assume for the moment that (8.4+) is violated so that the set where u is close
to µ+ is relatively large. The Lemma asserts that u must be close to µ+ in
some sufficiently small box within {(0, t̃)+Q4δρ}, i.e., the set where u is close to
µ+, even though it might be scattered in {(0, t̃) + Q4δρ}, it must have, loosely
speaking, some concentration regions within it. We will state and discuss this
Lemma in Section 11. Here we observe that (9.2.dib) implies

1
4ω ≤ u(x1, t)− u(x2, t) ∀xi ∈

{
yi + Kδ2ρ

}
, i = 1, 2, (9.3.dib)

for all the time levels

t ∈
(
t̃− δ4ρ2, t̃

)
. (9.3′.dib)

For t fixed in the indicated range, we first integrate (9.3.dib) over a path, piecewise
parallel to the coordinate axes and joining

x1 ∈
{
y1 + Kδ2ρ

}
and x2 ∈

{
y2 + Kδ2ρ

}
.

Then using the arbitrariness of these points within their ranges, we integrate the
resulting segment-integrals, over the remaining (N − 1) variables, and then over
the time in the range (9.3′.dib). This yields

γ(ω) (δρ)N ≤
∫ t̃

t̃−δ2ρ2

∫
Kδρ\Kδ2ρ

|∇u|2dxdτ, (9.4.dib)

where γ(ω) is a constant depending upon the data and ω. This inequality has
been derived for all t̃ in the range (8.3.dib) for which (8.4±) are both violated. We
observe that, for t̃ in such a range, the number of disjoint cylinders of the type
{(0, t̃) + Q4δρ} is of the order of δ−2. Thus adding (9.4.dib) over the corresponding
boxes, gives

γ(ω) δN−2ρN ≤
∫ 0

−ρ2

∫
Kδρ\Kδ2ρ

|∇u|2dxdτ, (9.4′.dib)

21 The proof of these assertions is in §5–8 of [25].
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The argument can now be repeated with δ replaced by δ2, since δ can be chosen
to be arbitrarily small. Therefore we conclude that for all n ∈ N,

γ(ω)δn(N−2)ρN ≤
∫ 0

−ρ2

∫
Kδnρ\Kδn+1ρ

|∇u|2dxdτ, (9.4n.dib)

On the other hand, a standard energy estimate, gives∫∫
Qρ

|∇u|2dxdτ ≤ (const)ρN . (9.5.dib)

We seek to derive a contradiction by iterating and adding (9.4n.dib) and comparing
the resulting integral with (9.5.dib).22

9.1 The case N = 2

Adding (9.4n.dib) for n = 1, 2, . . . , no, and taking into account (9.5.dib) implies that,

γ(ω)no ≤ (const).

This is a contradiction if no is sufficiently large depending on the data and ω.
It follows that at least one of (8.4±) must hold for t̃ in the range (8.3.dib) and for
some radius ρo ∈ [ρ, δnoρ]. In view of Propositions 8.2 and 8.1 this would imply
the result.

Remark 9.1. The same argument could be applied whenever one has information
that essentially reduce the space dimension N to 1 or 2. This for example would
occur for radial solutions of (1.1.dib).

10 The Case N ≥ 3

The key observation here is that, even though the previous argument fails if
N > 2, an information of the type of (9.4.dib) continues to hold within any sub-
cylinder of Qρ not necessarily coaxial with it. With the number δ to be chosen,
we assume, without loss of generality that (4δ)−1 is an integer, say for example
m, and partition the original cube Kρ, up to a set of measure zero, into mN

pairwise disjoint sub-cubes of wedge (8δρ) and centered at points x` ∈ Kρ, i.e.,

{x` + K4δρ} ⊂ Kρ, ` = 1, 2, . . . , mN ;
{x` + K4δρ} ∩ {xj + K4δρ} = ∅ if ` 6= j;

Kρ =
⋃mN

`=1
{x` + K4δρ}.

22 These inequalities are proved in Sections 9–12 of [25].
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Then we partition the original cylinder Qρ, up to a set of measure zero, into
mN+2 pairwise disjoint sub-cylinders with vertices at (x`, th) and all congruent
to Q4δρ, i.e.,

{(x`, th) + Q4δρ} ` = 1, 2, . . . , mN ; h = 1, 2, . . . , m2;
{(x`, th) + Q4δρ} ∩ {(xj , tk) + Q4δρ} = ∅ if ` 6= j or h 6= k;

Qρ =
⋃mN

`=1

⋃m2

h=1
{(x`, th) + Q4δρ}.

(10.1.dib)

Returning to (8.4±), we claim that at least one of them must be satisfied, for at
least one of the cylinders {(x`, th)+Q4δρ} making up the partition of Qρ. Indeed
if both of (8.4±) are violated for all these cylinders, then inequality (9.4.dib) must
hold for all of them. We rewrite such inequalities in a sightly different form, i.e.,

γ(ω) (δρ)N ≤
∫ th

th−δ2ρ2

∫
{x`+Kδρ}

|∇u|2dxdτ,
` = 1, 2, . . . , mN ;

h = 1, 2, . . . , m2.

Adding these inequalities over the indicated indices and taking into account (9.5.dib)
gives,

γ(ω)m2(mδ)N ≤ (const) =⇒ δ−2 ≤ γdata(ω).

This is a contradiction for δ sufficiently small, depending on ω. It follows that at
least one of (8.4±) must hold for at least one of the cylinders (10.1.dib) making up
the partition of Qρ. Suppose for example that (8.4−) holds true for the cylinder
{(x`, th) + Q4δρ}. Then, by Proposition 8.2,

u(x, t) ≥ µ− + 1
4ω ∀(x, t) ∈ {(x`, th) + Q2δρ}. (8.5−(`,h))

If x` ≡ 0, then the cylinder {(x`, th) + Q4δρ} would be coaxial with Qρ, and
the proof could be concluded as indicated in Proposition 8.1. Thus the main
point of the proof for N ≥ 3 is to establish that a version of (8.5−(`,h)) actually
holds for a cylinder coaxial with Qρ. Alternatively we seek to establish that some
bound below for u, within a region, would yield a bound below in a larger region.
Estimates of this kind are typical of solutions of quasilinear parabolic equations
and are contained for example in [44,38,52]. The difficulty here is the presence
of the singularity of β(·).

In our proof such space propagation of a bound below , is technically realized
by means of a suitable comparison function. To construct such a comparison
function as well as to make full use of the comparison principle, the p.d.e. in
(1.1.dib) is required to have the restricted structure (1.1′.dib).

10.1 Open Problems

We omit here the presentation of such a construction as we feel that the space
extension of positivity should hold for equations with the full quasilinear struc-
ture (1.4.dib) and it should be independent of the comparison principle. What seems
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to be missing is some sort of weak form of the Harnack inequality ([44,52]), for
solutions of singular parabolic equations.

We feel that an understanding of this point would permit one also to establish
a, still missing, regularity Theorem up to the parabolic boundary of ΩT .

11 A Lemma of Measure Theory

For r > 0 let Kr be a cube of wedge 2r and centered at the origin, as in (4.1.dib).
Let v ∈ W 1,p(Kr), p > 1 satisfy∫

Kr

|∇v|pdx ≤ γ rN−p. (11.1.dib)

Inequalities of this type are satisfied by harmonic functions in a domain Ω con-
taining Kr, or more generally by solutions of quasilinear elliptic equations in
divergence form.

Lemma 11.1. Suppose that for some α ∈ (0, 1) there holds

meas
{
x ∈ Kr

∣∣ v(x) < 1
}
≥ α|Kr|. (11.2.dib)

Then for every ε ∈ (0, 1) and θ > 1, there exists some x∗ ∈ Kr and a number
δ ∈ (0, 1) that can be determined a priori only in terms of N, α, ε, θ, such that

meas
{
x ∈ {x∗ + Kδ r}

∣∣ v(x) < θ
}
≥ (1− ε)|Kδr|. (11.3.dib)

If v were continuous in Kr, then by the Theorem of the permanence of positivity,
the Lemma would be trivial. However a function v ∈W 1,p(Kr), has some regu-
larity. Thus the Lemma can be regarded as some sort of permanence of positivity
for functions in W 1,p(Kr). It asserts that if the set where (v − 1) is negative,
is quantitatively non negligible, then the set where (v − θ) is negative, mighty
be partly scattered within Kr, provided some of it is concentrated within a full
cube {x∗ + Kδ r}.

11.1 An Open Question

The proof is independent of (1.1.dib) or any partial differential equations and makes
only use of measure-theoretical arguments, starting from (11.1.dib). The number δ
deteriorates as either ε↘ 0 or θ ↘ 1.

The proof also uses in an essential way that v ∈ W 1,p(Kr) for p > 1. It would
be of interest to investigate it when p = 1.

11.2 Use of the Lemma in the Context of (1.1.dib)

The Lemma is applied to a solution u of (1.1.dib) in the following manner. Suppose
for example that (8.4−) is violated for some t̃ in the range (8.3.dib). Then for some
time level

t ∈ (t̃− 16r2, t̃), where r = δρ, (11.4.dib)
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there holds,

meas
{
x ∈ Kr

∣∣ u(x, t) > µ− + 1
2ω

}
> ν|Kr|. (11.5.dib)

By setting

v(x, t) =
2 {u(x, t)− µ−}

ω
,

we rewrite (11.5.dib) as

meas
{
x ∈ Kr

∣∣ v(x, t) < 1
}
≥ ν|Kr|. (11.2t.dib)

Then, by possibly modifying the positive number ν into a new quantifiable posi-
tive number α ∈ (0, ν), we establish the existence of a time τ in the range (11.4.dib)
such that the following two inequalities both hold,

meas
{
x ∈ Kr

∣∣ v(x, t) < 1
}
≥ α|Kr|,∫

Kr

|∇v(x, τ)|2dx ≤ γdata(ω) rN−2,

for a constant γdata(ω) depending only upon the data and ω, and independent
of τ . Therefore by Lemma 11.1, having fixed ε ∈ (0, 1) and θ = 3

2 there exists a
number δ ∈ (0, 1) and a cube {x∗ + Kδr} ⊂ Kr, such that

meas
{

x ∈ {x∗ + Kδr}
∣∣ u(x, τ) < µ− +

1 + σ

2
ω

}
≥ (1− ε)|Kδr|.

It follows that one has

u(x, τ) ≤ µ− + 3
4ω

= µ+ − µ+ + 3
4 (µ+ − µ−)

= µ+ − 1
4ω,

(11.6.dib)

everywhere in {x∗+ Kδr} except at most a set of measure less than ε|Kδr|. The
information in (11.6.dib) is similar to (8.1+.dib) where some information is available at
some “initial” time t̃. Here the time is τ and the information is not as complete
since out of {x∗ + Kδr} one has to remove a set of measure less than ε|Kδr|.
However since ε ∈ (0, 1) is arbitrary, we establish that ε can be chosen so small
that (11.6.dib) is sufficient to apply a version of Proposition 8.1.
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Ondřej Došlý
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1 Introduction

The aim of this contribution is to present a survey of the recent results on trans-
formations and oscillatory behaviour of solutions of linear Hamiltonian systems
— both differential and difference – and to suggest some directions for the further
investigation.

We consider the differential Hamiltonian system

x′ = A(t)x + B(t)u, u′ = C(t)x −AT (t)u, (1.1.dos)

and its difference (= discrete) counterpart

∆xk = Akxk+1 + Bkuk, ∆uk = Ckxk+1 −AT
k uk. (1.2.dos)

We suppose that t ∈ I ⊆ R, k ∈ [0, N ] ∩ N, N ∈ N, both in continuous and
discrete case A, B, C are n × n matrices, B, C are symmetric, i. e. B = BT ,
C = CT . Moreover, in the continuous case we suppose that the matrix B is non-
negative definite and in the discrete case that the matrix (I−Ak) is nonsingular,
its inverse we denote by Ãk.

Linear Hamiltonian systems cover a large variety of linear equations. For
example, the even order, self-adjoint, differential equation

n∑
ν=0

(−1)ν
(
rν(t)y(ν)

)(ν)

= 0 (1.3.dos)
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can be written as LHS (1.1.dos) using the substitution

x =


y
y′

...
y(n−1)

 , u =


(−1)n−1(rny(n))(n−1) + · · ·+ r1y

′

...
−(rny(n))′ + rn−1y

(n−1)

rny(n)

 .

Then (x, u) solves (1.1.dos) with A, B, C given by

B(t) = diag{0, . . . , 0, r−1
n (t)}, C(t) = diag{r0(t), . . . , rn−1(t)},

A = Aij =
{

1, if j = i + 1, i = 1, . . . , n− 1,
0, elsewhere.

Another example is the second order system

[R(t)x′ + Q(t)x]′ −
[
QT (t)x′ + P (t)x

]
= 0 (1.4.dos)

with n × n matrices P, Q, R, whereby P, R are symmetric and R nonsingular.
Putting u = R(t)x′ + Q(t)x, the pair of n-vectors (x, u) solves (1.1.dos) with B =
R−1, A = −R−1Q, C = P −QT R−1Q. Discrete analogies of (1.3.dos) and (1.4.dos) can
be written in the form (1.2.dos) using essentially the same substitutions as in the
continuous case.

Investigation of oscillatory properties of continuous system (1.1.dos) has a rela-
tively long history and was initiated by the paper of Morse [17] from 1930. Since
that time oscillation theory of (1.1.dos) attracted a considerable attention and the
results of this investigation up to seventies of this century can be found in the
monograph of Reid [18]. In 1995 Kratz [16] published another comprehensive
monograph which in addition to the classical results contains also the results
achieved in the period 1980–95.

In contrast to the continuous case, oscillation theory of discrete systems (1.2.dos)
is much less developed and the fundamental result of this theory, a discrete
version of the so-called Roundabout Theorem, was established only very recently
by Bohner [8]. This paper accomplished the effort of several mathematicians in
the last decade to prove the discrete Roundabout Theorem in its full generality,
see [4].

Here we concentrate our attention to the investigation of oscillatory prop-
erties and transformations of Hamiltonian systems (1.1.dos) and (1.2.dos). The paper
is organized as follows. In the next section we present basic facts of oscillation
and transformation theory of continuous systems (1.1.dos), in particular, we for-
mulate trigonometric transformation and reciprocity principle for these systems.
Section 3 is devoted to some aspects of transformation theory of Hamiltonian dif-
ference systems (1.2.dos) and we give here essentially discrete versions of statements
of Section 2. In the last section we discuss some aspects of unified approach
to continuous and discrete systems via theory of differential equations on the
so-called time scales.



Linear Hamiltonian Systems 51

2 Continuous Hamiltonian Systems

We start with basic concepts of oscillation theory of (1.1.dos).

Definition 1. Two points t1, t2 are said to be conjugate relative to (1.1.dos) if
there exists a solution (x, u) such that x(t1) = 0 = x(t2) and x(t) 6≡ 0 in [t1, t2].
System (1.1.dos) is said to be conjugate in an interval [a, b] if there exist t1, t2 ∈ [a, b]
which are conjugate relative to (1.1.dos), in the opposite case (1.1.dos) is said to be
disconjugate. System (1.1.dos) is said to be oscillatory if for every c ∈ R this system
is conjugate in [c,∞), in the opposite case (1.1.dos) is said to be nonoscillatory.

As mentioned in the previous section, principal statement concerning oscilla-
tory properties of (1.1.dos) is the so-called Reid Roundabout Theorem [18]. Before
formulating it, we recall some very elementary properties of solutions of Hamil-
tonian systems (1.1.dos).

Simultaneously with (1.1.dos) we consider its matrix analogy

X ′ = A(t)X + B(t)U, U ′ = C(t)X −AT (t)U, (2.1.dos)

where X, U are n× n matrices. If (X, U), (X̃, Ũ) are two solutions of (2.1.dos) then
the “Wronskian-type” identity XT Ũ − UT X̃ ≡ K holds, where K is a constant
n × n matrix. A solution (X, U) of (2.1.dos) is said to be conjoined if XT U is
symmetric and it is said to be conjoined basis if, moreover, rank (XT , UT ) = n.
Recall also that (1.1.dos) is said to be controllable in an interval I whenever the
trivial solution (x, u) ≡ (0, 0) is the only solution of (1.1.dos) for which x(t) ≡ 0 on
some nondegenerate subinterval I0 ⊆ I.

Proposition 1 (Reid [18]). Suppose that the matrix B(t) is nonnegative in
the interval [a, b] and that (1.1.dos) is controllable in this interval. Then the following
statements are equivalent:

(i) System (1.1.dos) is disconjugate in the interval [a, b].
(ii) The quadratic functional

F(x, u) =
∫ b

a

[uT (t)B(t)u(t) + xT (t)C(t)x(t)]dt

is positive for every nontrivial (x, u) satisfying x′ = A(t)x + B(t)u and
x(a) = 0 = x(b).

(iii) The solution (X, U) of (2.1.dos) given by the initial condition X(a) = 0, U(a) =
I satisfies detX(t) 6= 0, t ∈ (a, b].

(iv) There exists a conjoined basis (X, U) of (2.1.dos) such that X(t) is nonsingular
for t ∈ [a, b].

(v) There exists a symmetric matrix Q which for t ∈ [a, b] solves the Riccati
matrix differential equation

Q′ − C(t) + AT (t)Q + QA(t) + QB(t)Q = 0 (2.2.dos)

related to (2.1.dos) by the substitution Q = UX−1.
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For a better understanding of this statement we suggest the reader to see
(1.1.dos) as a rewritten second order equation and to compare this statement with
the well known results of oscillation theory of second order equations, see e.g.
Swanson [20].

Now we state some results concerning transformations of LHS. A 2n × 2n

matrix R is said to be symplectic if RTJR = J , where J =
(

0 I
−I 0

)
, I being

the n×n identity matrix. If R =
(

H K
M N

)
, where H, K, M, N are n×n matrices

then R is symplectic if and only if

HT K = KT H, MT N = NT M, HT N −KT M = I. (2.3.dos)

Consider the transformation(
x

u

)
= R(t)

(
y

z

)
, where R(t) =

(
H(t) M(t)
K(t) N(t)

)
(2.4.dos)

is symplectic and continuously differentiable. Then the new variables y, z satisfy
the LHS

y′ = Ā(t)y + B̄(t)z, z′ = C̄(t)y − ĀT (t)z, (2.5.dos)

where

Ā = NT [−H ′ + AH + BK]−MT [−K ′ + CH −AT K],
B̄ = NT [−M ′ + AM + BN ]−MT [−N ′ + CM −AT N ],
C̄ = −KT [−H ′ + AH + BK] + HT [−N ′ + CM −AT N ].

Observe that in the case M(t) ≡ 0 transformation (2.4.dos) preserves oscillatory
properties of transformed systems since then H(t) is nonsingular (compare (2.3.dos)),
hence t1, t2 are conjugate relative to (1.1.dos) if and only if they are conjugate relative
to (2.5.dos). Consequently, transformation (2.4.dos) with M(t) ≡ 0 is the powerful tool
for the investigation of oscillatory properties of (1.1.dos). This system is transformed
into an “easier” system and from oscillatory properties of this “easy” system we
deduce oscillatory properties of (1.1.dos). One of such “easy systems” is the so-called
trigonometric system.

Theorem 1 (Došlý [10]). There exist continuously differentiable n×n matri-
ces H, K such that H is nonsingular, HT K ≡ KT H and the transformation(

x

u

)
=

(
H(t) 0
K(t) (HT (t))−1

) (
y

z

)
(2.6.dos)

transforms (1.1.dos) into the trigonometric system

y′ = Q(t)z, z′ = −Q(t)y, (2.7.dos)

where Q is a nonnegative definite symmetric n× n matrix.
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The trigonometric system was introduced in [7] in connection with the Prüfer-
type transformation for (1.1.dos) and the terminology trigonometric system is jus-
tified by the fact that in the scalar case, i.e. when y, z, q are scalar quantities,
then

(y1, z1) = (sin
∫ t

q(s) ds, cos
∫ t

q(s) ds),

(y2, z2) = (cos
∫ t

q(s) ds,− sin
∫ t

q(s) ds)

form the basis of the solution space of (2.7.dos). In the n-dimensional case system
(2.7.dos) cannot be in general solved explicitly, but it may be proved that its solu-
tions have many properties which in the scalar case reduce to the well-known
trigonometric identities and these properties we may use to study properties of
(1.1.dos). For example, (2.7.dos) is oscillatory if and only if∫ ∞

Tr Q(t) dt =∞,

where Tr stands for the trace, i.e. the sum of the diagonal entries of the matrix
indicated.

Now turn our attention to the reciprocity principle for LHS. We start with
the following elementary example. Consider the second order equation

(r(t)y′)′ + p(t)y = 0 (2.8.dos)

with positive coefficients r, p. If we denote z = r(t)y′ then this function verifies
the so-called reciprocal equation(

1
p(t)

z′
)′

+
1

r(t)
z = 0. (2.9.dos)

Using an elementary argument it is easy to see that a solution y of (2.8.dos) oscillates
if and only if its derivatives y′ oscillates, i.e. (2.8.dos) is oscillatory if and only if (2.9.dos)
is oscillatory. These equations may be written in the form of Hamiltonian system
(1.1.dos)

y′ =
1

r(t)
z, z′ = −p(t)y (2.10.dos)

and

ỹ′ = p(t)z̃, z̃′ = − 1
r(t)

ỹ (2.11.dos)

and these systems are related by the transformation(
y

z

)
=

(
0 1
−1 0

) (
ỹ

z̃

)
. (2.12.dos)
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The statement concerning relation between oscillatory behaviour of these sys-
tems may be now formulated as follows: If the functions r, p are positive then
transformation (2.12.dos) preserves oscillation properties of transformed 2 × 2 sys-
tems, i.e. (2.10.dos) is oscillatory if and only (2.11.dos) is oscillatory.

Reciprocity principle concerns extension of this statement to Hamiltonian
system (1.1.dos).

Theorem 2 (Ahlbrandt [2]). Suppose that B(t) ≥ 0, C(t) ≤ 0 (this means
that B is nonnegative definite and C nonpositive definite) for large t and both
system (1.1.dos) and its reciprocal system

y′ = −AT (t)y − C(t)z, z′ = −B(t)y + A(t)z (2.13.dos)

are eventually controllable (i.e., the trivial solution (x, u) = (0, 0) is the only
solution of (1.1.dos) for which one of the components x, u is eventually vanishing).
Then (1.1.dos) is oscillatory if and only if (2.13.dos) is oscillatory.

Obviously, this statement is a generalization of the relationship between
(2.10.dos) and (2.11.dos) and claims, roughly speaking, that (1.1.dos) is oscillatory with
respect to the first component x if and only if it is oscillatory with respect to the
second component u (compare Definition 1). Indeed, (2.13.dos) results from (1.1.dos)
upon the transformation(

x

u

)
=

(
0 I
−I 0

) (
y

z

)
= J

(
y

z

)
(2.14.dos)

which essentially only reverses the order of equations in (1.1.dos). In another words,
under definiteness assumption on the matrices B, C, transformation (2.14.dos) pre-
serves oscillatory properties of transformed systems.

The above mentioned reciprocity principle may be easily shown to be a par-
ticular case of the following general statement concerning transformations of
(1.1.dos) preserving oscillatory behaviour of transformed systems.

Theorem 3 (Došlý [11]). Consider Hamiltonian systems (1.1.dos) and (2.5.dos) re-
lated by transformation (2.4.dos) and suppose that matrices B(t), B̄(t) in these sys-
tems are nonnegative definite for large t. Then (1.1.dos) is oscillatory if and only if
(2.5.dos) is oscillatory.

This statement is proved using the trigonometric transformation given in
Theorem 1. Systems (1.1.dos) and (2.5.dos) are transformed into trigonometric systems
(using transformation of the form (2.6.dos) which preserves oscillatory properties)
with matrices Q and Q̄ and then it is shown that

∫∞TrQ(t) dt =∞ if and only
if

∫∞Tr Q̄(t) dt = ∞. This means that these trigonometric systems and hence
also systems (1.1.dos), (2.5.dos) are simultaneously oscillatory or nonoscillatory.
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3 Discrete Hamiltonian Systems

Similar to the continuous case, we start with the definition of basic concepts.

Definition 2. We say that an interval (k, k + 1], k ∈ N, contains a generalized
zero of a solution (x, u) of (1.2.dos) if xk 6= 0 and there exists c ∈ Rn such that

xk+1 = ÃkBkc, and xT
k B†k(I −Ak)xk+1 ≤ 0.

System (1.2.dos) is said to be disconjugate in an interval [n, m] if any solution of
(1.2.dos) has at most one generalized zero in [n, m + 1] and, moreover, any solution
satisfying xn = 0 has no generalized zero in (n, m+1], in the opposite case (1.2.dos)
is said to be conjugate in [n, m]. System (1.2.dos) is said to be nonoscillatory if there
exists n ∈ N such that (1.2.dos) is disconjugate on [n, m] for every m > n, in the
opposite case (1.2.dos) is said to be oscillatory.

In the above definition † denotes the Moore-Penrose generalized inverse ma-
trix, for an n×n matrix V its generalized inverse V † is the (unique) n×n matrix
such that V V †, V †V are symmetric and V †V V † = V †, V V †V = V .

Basic oscillatory properties of discrete Hamiltonian systems are summarized
in the discrete version of Roundabout Theorem.

Proposition 2 (Bohner [8]). The following statements are equivalent:

(i) System (1.2.dos) is disconjugate in the interval [0, N ], N ∈ N.

(ii) The discrete quadratic functional

F(x, u) =
N∑

k=0

{
uT

k Bkuk + xT
k+1Ckxk+1

}
is positive for every (x, u) satisfying ∆xk = Akxk+1 + Bkuk with x0 = 0 =
xN+1 and x 6≡ 0.

(iii) The matrix solution (X, U) of (1.2.dos) given by the initial condition X0 = 0,
U0 = I satisfies

KerXk+1 ⊆ KerXk and XkX†k+1ÃkBk ≥ 0, k = 1, . . . , N.

(iv) There exists a conjoined basis (X, U) of (1.2.dos) (this is defined in the same
way as for (1.1.dos)) such that Xk are nonsingular and XkX−1

k+1ÃkBk ≥ 0, k =
0, . . . , N.

(v) There exist symmetric matrices Qk such that (I + BkQk) are nonsingu-
lar, (I + BkQk)−1Bk ≥ 0, and verify the discrete Riccati matrix difference
equation

Qk+1 = Ck + (I −AT
k )Qk(I + BkQk)−1(I −Ak), (3.1.dos)

k = 0, . . . , N .
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Concerning transformations of discrete LHS (1.2.dos), the situation is not so easy
as in the continuous case. In the discrete case it is supposed that the matrices
(I −Ak) are nonsingular and this assumption must satisfy also the system re-
sulting after a transformation. To ensure this, we need an extra assumption as
shows the next theorem.

Theorem 4 (Došlý [12]). Let Rk be a 2n × 2n symplectic matrix consisting

of n× n matrices Rk =
(

Hk Mk

Kk Nk

)
such that the matrix

(
Hk + BkKk (I −Ak)Mk+1

(I −AT
k )Kk Nk+1 − CkMk+1

)
(3.2.dos)

is nonsingular and denote
(

Dk Fk

Ek Gk

)
its inverse. The transformation

(
x

u

)
= Rk

(
y

z

)
(3.3.dos)

transforms (1.2.dos) into the system

∆yk = Ākyk+1 + B̄kzk, ∆zk = C̄kyk+1 − ĀT
k zk, (3.4.dos)

where

Āk = Dk(−∆Hk + AkHk+1 + BkKk) + Fk(−∆Kk + CkHk+1 −AT
k Kk),

B̄k = Dk(−∆Mk + AkMk+1 + BkNk) + Fk(−∆Nk + CkMk+1 −AT
k Nk),

C̄k = Ek(−∆Hk + AkHk+1 + BkKk) + Gk(−∆Kk + CkHk+1 −AT
k Kk),

in particular, the matrices B̄k, C̄k are symmetric and (I − Āk) are nonsingular,
i.e. (3.4.dos) is again a difference LHS.

Having now in disposal the above given statements, we may try to extend the
reciprocity principle and trigonometric transformation to discrete systems. Let us
start with the reciprocity principle. If we apply transformation (3.3.dos) with R = J
to (1.2.dos) (this transformation relates (1.1.dos) and (2.13.dos) in the continuous case), it
is easy to see that the assumption of Theorem 4 concerning nonsingularity of
the matrix in (3.2.dos) is not generally satisfied, i.e. the resulting (reciprocal) system

∆yk = −AT
k yk − Ckzk+1, ∆zk = −Bkyk + Akzk+1 (3.5.dos)

is the system of a different kind than (1.2.dos). In fact, the variable x which defines
oscillatory properties of (1.2.dos) appears in the right-hand-sides of this system with
indices k + 1, whereas the variable y which should define oscillations of (3.5.dos)
appears there with indices k. For this reason, Definition 2 and Proposition 2
do not apply to (3.5.dos). However, as suggests the equivalence between oscillatory
properties of the pair of second order equations ∆(rk∆xk) + pkxk+1 = 0 and
∆(p−1

k ∆zk) + r−1
k+1zk+1 = 0 with positive rk, pk, which follows using the same
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argument as in the continuous case, one can expect some kind of similarity
between oscillatory properties of (1.2.dos) and (3.5.dos).

In studying the relationship between (1.2.dos) and (3.5.dos), the principal role play
the so-called symplectic systems, i.e. systems of the form(

xk+1

uk+1

)
= Sk

(
xk

uk

)
, Sk =

(
Ak Bk

Ck Dk

)
, (3.6.dos)

where Sk are symplectic 2n×2n matrices. Expanding forward differences in (1.2.dos)
and (3.5.dos), it is not difficult to see that these systems are symplectic systems.
Oscillation theory of symplectic systems was established in [9] and fundamental
definition is the following:

Definition 3. We say that the interval (k, k + 1] contains the generalized zero
of a solution (x, u) of (3.6.dos) if xk 6= 0, there exists c ∈ Rn such that

xk+1 = Bkc and xT
k+1B

†
kxk ≤ 0.

Oscillation and nonoscillation of symplectic systems are defined via generalized
zeros in the same way as for Hamiltonian systems. Applying these definitions to
(1.2.dos) and (3.5.dos) we get the following discrete version of the reciprocity principle.

Theorem 5 (Došlý-Bohner [9]). Suppose that both systems (1.2.dos) and (3.5.dos)
are eventually controllable. If Ck ≤ 0 for large k and (1.2.dos) is nonoscillatory,
then reciprocal system (3.5.dos) is also nonoscillatory. Conversely, if Bk ≥ 0 for
large k and (3.5.dos) is nonoscillatory then (1.2.dos) is also nonoscillatory.

Essentially the same difficulty as in the the case of the reciprocity principle
we meet when trying to extend the trigonometric transformation to difference
Hamiltonian systems (1.2.dos). Trigonometric system (2.7.dos) may be characterized
as a Hamiltonian system which complies with its reciprocal system. Since the
reciprocity transformation does not preserve the Hamiltonian structure of trans-
formed difference systems, also in this case we have to pass to symplectic systems.
By a direct computation one may verify that the transformation

(
x
u

)
= J

(
x̃
ũ

)
transforms (3.6.dos) into itself if and only if D = A, C = −B. A symplectic system
(3.6.dos) having this property we will call self-reciprocal and such system may be
regarded as a discrete analogue of the trigonometric differential system (2.7.dos).
However, it is an open problem whether any symplectic system may be trans-
formed (by a transformation preserving oscillatory properties, i.e. by (3.3.dos) with
M ≡ 0) into a self-reciprocal system. Moreover, in contrast to trigonometric
systems, till now no necessary and sufficient condition for oscillation of self-
reciprocal symplectic systems is known.

We finish this section with discrete version of Theorem 5. To introduce this
statement, consider the transformation of symplectic system (3.6.dos)(

x

u

)
= Rk

(
x̃

ũ

)
, Rk =

(
Hk Mk

Kk Nk

)
(3.7.dos)
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with a symplectic 2n× 2n matrix R. Directly one can verify that this transfor-
mation transforms (2.7.dos) into another symplectic system(

x̃k+1

ũk+1

)
= S̃k

(
x̃k

ũk

)
, S̃k =

(
Ãk B̃k

C̃k D̃k

)
. (3.8.dos)

The n × n matrices Ã, B̃, C̃, D̃ can be expressed via matrices H, K, M, N in a
similar way as in Theorem 4 but we will not need these formulas.

Theorem 6 (Došlý - Hilscher [13]). Suppose that systems (3.6.dos) and (3.8.dos)
are related by transformation (3.7.dos) with a symplectic matrix R and consider
the following hypotheses:

(i) Both systems (3.6.dos) and (3.8.dos) are eventually controllable;
(ii) The matrices M and AM + BN are eventually nonsingular;
(iii) Eventually, R(NM−1) ≥ 0, where R(·) is given by

R(Q)k ≡ Qk+1 − (Ck +DkQk)(Ak + BkQk)−1.

(iv) Eventually, R̃(−M−1H) ≥ 0, where

R̃(Q̃) := −Q̃k + (−Q̃k+1B̃k + D̃k)−1(Q̃k+1Ãk − C̃k).

If the assumptions (i), (ii), (iii) hold and (3.6.dos) is eventually disconjugate then
(3.8.dos) is also eventually disconjugate. Conversely, if (i), (ii), (iv) hold and (3.8.dos)
is eventually disconjugate then (3.6.dos) is eventually disconjugate.

Obviously, if R = J , i.e. H = 0 = N , −K = I = M and (3.6.dos) corresponds
to (1.2.dos), i.e.

S =
(

Ã ÃB

CÃ CÃB + I + AT

)
,

then this statement reduces to reciprocity principle given in Theorem 6.

4 Hamiltonian Systems on Time Scales

In this section we discuss briefly possibilities of a unified approach to the inves-
tigation of discrete and continuous Hamiltonian systems. One of such possibili-
ties consists in transforming both (1.1.dos) and (1.2.dos) into an integral equation with
Riemann-Stiltjes integrals. This approach has been offered by Reid in [19], where
the Roundabout Theorem for these generalized systems is presented. However,
as pointed out in [5], this method when applied to difference systems (1.2.dos) re-
quires the matrix B to be nonnegative definite and as shows the Roundabout
Theorem for difference systems (Proposition 2) this assumption is not needed
there.

Another unified approach to continuous and discrete systems is based on the
theory of equations on the so-called time scales. A time scale T is defined to be
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any closed subset of real numbers R (an alternative terminology for time scale
is measure chain [14]). On this set there are defined operators σ, ρ : T→ T

σ(t) := inf{s ∈ T, s > t}, ρ(t) := sup{s ∈ T, s < t}.

A point t ∈ T is said to be left-dense (l-d) if ρ(t) = t, right-dense (r-d) if
σ(t) = t, left-scattered (l-s) if ρ(t) < t, right-scattered (r-s) if σ(t) > t and it is
said to be dense if it is r-d or l-d. The graininess µ of a time scale T is defined
by µ(t) := σ(t)− t. For a function f : T→ R (the range R of f may be actually
replaced by any Banach space) it is defined the generalized derivative

f∆(t) = lim
s→t

f(σ(t))− f(s)
σ(t)− s

, where s ∈ T\{σ(t)}.

As a basic reference concerning the differential and integral calculus on time
scales we suggest the monograph [6] and the paper [14]. In particular cases T = R
and T = Z the generalized derivative f∆(t) reduces to the usual derivative f ′(t)
and to the usual forward difference ∆f(t) = f(t + 1)− f(t), respectively.

Linear Hamiltonian system on a time scale T is the system

x∆(t) = A(t)x(σ(t)) + B(t)u(t), u∆(t) = C(t)x(σ(t)) −AT (t)u(t),

where it is supposed that A, B, C : T → Rn×n, B, C are symmetric and Ã =
(I−µA)−1 exists. The corresponding quadratic functional and the Riccati matrix
equation are of the form

F(x, u) =
∫ b

a

{
uT (t)B(t)u(t) + xT (σ(t))C(t)x(σ(t))

}
∆t (4.1.dos)

and

Q∆(t)− C(t) + AT (t)Q + (Q(σ(t)) − µ(t)C(t))Ã(t)(A(t) + B(t)Q(t)) = 0.
(4.2.dos)

respectively. Concerning the definition of the integral over a subset of a time
scale appearing in (4.1.dos), we will not specify explicitly this definition and we note
only that this integral reduces to the usual Riemann integral in case T = R
and to the usual sum if T = Z, the exact definition of this integral is given e.g.
in [6]. Substituting µ ≡ 0 (continuous case) in (4.2.dos) we get equation (2.2.dos) and
substituting µ ≡ 1 (discrete case) we have (3.1.dos). As a basic reference concerning
qualitative theory of Hamiltonian systems on time scales may be regarded the
recent papers of Agarwal and Bohner [1] and of Hilscher [15]. Here the main result
is the “Partly Roundabout Theorem”, relating positivity of the functional (4.1.dos),
existence of a symmetric solution of (4.2.dos) and the existence of a self-conjoined
basis of the matrix system

X∆(t) = A(t)X(σ(t)) + B(t)U(t), U∆(t) = C(t)X(σ(t)) −AT (t)U(t) (4.3.dos)
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without focal points (the conjoined basis of (4.3.dos) is defined in the same way as for
(1.1.dos) and (1.2.dos)). The word “partly” in the name of this statement is motivated
by the fact that the proofs of some implications with respect to the “classical”
Roundabout Theorem are still missing and these proofs are subject of the present
investigation.

The advantages of the time scale approach to Hamiltonian systems well il-
lustrates the explanation why in the discrete oscillation theory no assumption
concerning definiteness of the matrix B and controllability of (1.2.dos) is needed,
whereas in the continuous oscillation theory controllability of (1.1.dos) it is neces-
sary (at least for the formulation of the Roundabout Theorem in the form given
here) and the assumption B(t) ≥ 0 plays there a crucial role here — in the cal-
culus of variations it is known as the Legendre necessary condition for positivity
of the functional F given in Proposition 1.

Following [15], a conjoined basis (X, U) of (4.3.dos) has no focal point in an
interval I := (a, b] ∩ T provided X(t) is invertible in all dense points of I,

KerX(σ(t)) ⊆ KerX(t) and D(t) := X(t)(X(σ(t))†Ã(t)B(t) ≥ 0 (4.4.dos)

in this interval. Consequently, I contains a focal point whenever one of the
following conditions holds:

(i) There exists s ∈ I such that KerX(σ(t)) 6⊆ KerX(t), or
(ii) KerX(σ(t)) ⊆ KerX(t) on I and X is singular at some dense point s ∈ I,

or
(iii) For every t ∈ I we have KerX(σ(t)) ⊆ KerX(t), X is nonsingular in all

dense points of I, but D(s) := X(s)X†(σ(s))Ã(s)B(s) 6≥ 0 at some s ∈ I.

Nonexistence of a focal point of the matrix solution (X, U) of (4.3.dos) given
by the initial condition X(a) = 0, U(a) = I is sufficient for positivity of the
functional (4.1.dos) in the class of n-dimensional pairs (x, u) satisfying x∆(t) =
A(t)x(σ(t))+B(t)u(t) and x(a) = 0 = x(b), see [15]. The proof of this statements
is based on the generalized Picone identity where the quantity D(t) defined in
(4.4.dos) plays a crucial role.

In the continuous case T = R, controllability of (1.1.dos) implies that singularities
of X are isolated, in particular, that X is nonsingular in some right neighbour-
hood of t = a. Since σ(t) = t, µ(t) ≡ 0, we have D(t) = B(t) and focal points
of X are singularities of X or points where B fails to be nonnegative definite.
However, the last possibility is eliminated by the apriori assumption B ≥ 0 and
focal points of X are just singularities of this matrix as it is usual in oscillation
theory of differential systems. In the discrete case T = Z all points are automat-
ically isolated and this explains why controllability assumption is not needed in
this case.

Finally, one may also easily see why the assumption of invertibility of the
matrix (I−Ak) (supposed in the discrete case) has no continuous analogue. This
is a particular case of the general assumption of invertibility of (I − µ(t)A(t))
which is in the continuous case µ(t) ≡ 0 trivially satisfied.
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Abstract. There is a large interest, from both mathematical [4], [5], [14],
[15] and physical [20], [3] point of view, in the motion of self-propelling
bodies in a viscous fluid. This latter means that the body B, say, moves
without the action of an external force (like gravity, for instance), but
just because of the interaction between its boundary Σ, say, and the fluid.
Therefore, Σ serves as the “driver” of B and the distribution of velocity
on Σ as its “thrust”. In this paper we shall consider steady, translational
self-propelled motion of a body in a Navier-Stokes fluid. In particular,
we show the existence of a space T (B) of velocity distributions on S with
the property that for any given translational velocity V of B there is one
and only one element in T (B) which can move the body with velocity
V . T (B) depends only on the geometric properties of B such as size or
shape. In particular, it is independent of the orientation of B and on the
fluid property.

AMS Subject Classification. 35Q, 76C

Keywords. Steady-state Navier-Stokes equations, self-propelled body,
existence and uniqueness

1 Introduction

A body B moving in an infinite viscous fluid F undergoes a self-propelled motion
if the net total force and torque, external to B and F , acting on B are identically
zero. Examples of self-propelled motions can be those performed by rockets, sub-
marines, fishes, microorganisms, etc. This type of motion is possible because of
the interaction between the boundary of the body Σ, say, and the fluid. There-
fore, Σ serves as the “driver” of B and and the distribution of velocity on Σ as
its “thrust”.

Since the pioneering work of G. I. Taylor [20] on the propulsion of microscopic
organisms, these problems have attracted the attention of many scientists, par-
ticularly with the objective of giving a fluid mechanical interpretation of the
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self-motion of ciliated and flagellated organisms, see, e.g. [3], [19], [2] and the
bibliography cited therein. It should also be noticed that most of these results
are derived under the assumption of zero Reynolds number, that is, Stokes ap-
proximation.

In this paper we shall consider steady, translational self-propelled motion of
a body B in a Navier-Stokes fluid F . By this we mean that B moves in F by
purely translational motion, with constant velocity −ξ 6= 0, and that the motion
of F , as seen by an observer attached to B, is independent of time. The shape of
B is, of course, independent of time as well. Our goal is to investigate the class
of velocity distributions on Σ (the “thrust”) which makes B move with the given
velocity −ξ. It is simple to see that this problem admits an infinite number of
solutions corresponding to the same ξ; see Section 2. The objective of this work
is to characterize a class of boundary velocities for which the problem admits one
and only one solution. We shall show, among other things, that there exists a
six-dimensional subspace T (B) of the space L2(Σ) with the following properties.
T (B) depends only on the geometric properties of B such as size or shape and
for any given ξ, there exists one and only one element of T (B) moving B with
prescribed velocity −ξ. We thus give a general answer to a question which was
addressed and/or partially solved by several authors. In this regard, we recall
the paper of Lugovtsov & Lugovtsov [12] where particular examples are given
of flow past a self-propelled body and to the contributions of Sennitskii [16],
[17] who, by the method of matched asymptotic expansion, has constructed, for
sufficiently small values of the Reynolds number an approximate solution in the
case when B is a cylinder or a sphere, under different prescriptions of boundary
velocity.1 A similar type of question (momentumless flow) for B of arbitrary
shape has been investigated and solved by Pukhnachev [14], [15] within the
Stokes approximation. Recently, I have given a general existence and uniqueness
theory for the full nonlinear problem, in the particular case when B has rotational
symmetry [6].2

The paper is organized as follows. In Section 2 we formulate the problem and
introduce some notation. In Section 3, we study the linearized version of the self-
motion of B within the Stokes approximation and furnish, in particular, necessary
and sufficient conditions on the distribution of velocity on Σ in order that B
performs a steady, translational flow. These results contain, as a particular case,
those of [14], [15] and are of fundamental importance in the investigation of the
nonlinear problem which is the object of Section 4. There, we shall show that for
any translational motion of B with velocity -ξ, there exists a uniquely determined
velocity distribution on Σ, which lies in a six-dimensional “control” space T (B),
provided |ξ| is not “too large”. T (B) depends only on B. Furthermore, the set

1 See also [18] for a dynamical counterpart of these problems.
2 We would like to mention also a series of works aimed at investigating the asymptotic

behaviour of the velocity field of the fluid within the wake behind B. We refer, in
particular, to the work of Birkhoff and Zarantonello [4], Finn [5] and, more recently,
Pukhnachev [13], Kozono and Sohr [10], and Kozono, Sohr and Yamazaki [11].
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of all translational motions of B is set in a one-to-one correspondence with a
subspace T ′(B) of T (B).

An interesting question we leave open is that of the uniqueness of the space
T ′(B). In other words, assume there is another space T̃ (B) with the property
that any translational motion of B determines and is determined by a unique
element of T̃ (B). The question is if and how T ′(B) and T̃ (B) are related to each
other.

Acknowledgment. This paper is part of a keynote lecture I gave at the Confer-

ence Equadiff 9, held in Brno in August 1997. I am particularly grateful to Professors

F. Neuman and J. Vosmanský for their kind invitation and warm hospitality.

2 Formulation of the Problem

Assume a body B moves of translational motion, with constant velocity −ξ in a
Navier-Stokes fluid. We denote byD the region occupied by the fluid (the exterior
of B) and by Σ the boundary of B. If the fluid performs a time-independent flow,
the relevant equations, written in a frame S attached to B and in dimensionless
form, become3

∆v = λv · ∇v +∇p

div v = 0

}
in D

v = v∗ on Σ

lim
|x|→∞

v(x) = ξ.

(2.1.gal)

Here v, p are velocity and pressure field, respectively, associated to the particles
of the fluid. Moreover, λ is the dimensionless Reynolds number which has the
form LU/ν, where L is a characteristic length (the diameter of B, for example),
U is a characteristic speed (the speed of B, in which case ξ is of modulus one)
and ν is the kinematical viscosity coefficient of the fluid. We shall now append to
these equations the conditions describing that B is self-propelling. Since B moves
at steady pace, these latter are expressed by the requirement that, relative to an
inertial frame, the total momentum flux and moment of momentum flux through
Σ balance the total force and total moment of force exerted by the fluid on B,
respectively; see [20] pp. 448–449. Reformulating these conditions in the moving
frame S, we then obtain∫

Σ

[−T (v, p) · n + λ(v∗ − ξ)v∗ · n] = 0 (2.2.gal)

and ∫
Σ

x× [−T (v, p) · n + λ(v∗ − ξ)v∗ · n] = 0, (2.3.gal)

3 We suppose that there is no body force acting on the fluid.
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where n is the unit inward normal to B and T = T (v, p) is the stress tensor
whose components are given by

Tij(v, p) =
∂vi

∂xj
+

∂vj

∂xi
− p δij , i, j = 1, 2, 3.

The main goal of this paper is to investigate the following Problem P : Given
ξ 6= 0, find a solution to problem (2.1.gal)–(2.3.gal).

Notice that, unlike the “classical” formulation of the exterior problem, the
value of the velocity field at Σ is not prescribed.

As stated, it becomes clear that Problem P always admits the trivial solution
v = ξ, p = const and that, in general, it admits an infinite number of solutions
corresponding to the same ξ. Actually, assume B is a body of revolution around
the x1−axis (say) and let Φ be any harmonic function in D approaching ξ · x at
large distances and satisfying the following parity condition

Φ(x1, x2, x3) = Φ(x1,−x2, x3) = Φ(x1, x2,−x3).

Set v = ∇Φ, p = 1
2 (∇Φ)2. By a straightforward calculation, one shows that v, p

is a solution to (2.1.gal), with v∗ = ∇Φ |Σ . Moreover, using the parity requirements
it is obvious that also condition (2.3.gal) is satisfied. Also, integrating (2.1.gal)1 on the
subdomain of D delimited by the surface Σ and by the surface ΣR of a ball of
radius R centered in B, we find∫

Σ

(T (v, p) · n− λ(v∗ − ξ)v∗ · n) =
∫

ΣR

(T (v, p) · n− λ(v − ξ)v · n). (2.4.gal)

Thus, taking into account that DσΦ(x) = O(|x|−1−|σ|), |σ| = 1, 2, we let R→∞
in (2.4.gal), to deduce that also condition (2.2.gal) holds.

This example shows that, in order to preserve uniqueness for Problem P , we
must impose some other restrictions on the class of solutions. We shall therefore
require that the trace v∗ of v at Σ belongs to a suitable “control” space T . Our
objective is to determine T in such a way that Problem P admits (one and) only
one solution. We shall show that this is always the case, provided λ|ξ| is not too
large.

We shall briefly recall the main notation used in this paper.
R3 is the three-dimensional Euclidean space and (e1, e2, e3) the canonical

orthonormal basis.
Unless otherwise explicitly stated, we shall assume D sufficiently regular, for

instance, of class C2.
For β = (β1, β2, β3), βi ≥ 0, we set

Dβ =
∂|β|

∂xβ1
1 ∂xβ2

2 ∂xβ3
3

, |β| = β1 + β2 + β3.
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If u = {ui} is a vector function, by D(u) = {Dij(u)} we denote the symmetric

part of ∇u =
{

∂ui

∂xj

}
, that is

Dij(u) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

We shall use standard notations for function spaces, see [1]. So, for instance,
Lq(A), Wm,q(A), etc., will denote the usual Lebesgue and Sobolev spaces on the
domain A, with norms ‖ · ‖q,A and ‖ · ‖m,q,A, respectively. Whenever confusion
will not arise, we shall omit the subscript A. The trace space on ∂A for functions
from Wm,q(A) will be denoted by Wm−1/q,q(∂A) and its norm by ‖ ·‖m−1/q,q,∂A.
For other notation we follow [1].

3 The Stokes Approximation

We shall begin to consider the limiting situation of λ → 0 of Problem P . If
we formally take λ = 0 into equations (2.1.gal), (2.2.gal), (2.3.gal) we get the following
problem

∆v0 = ∇p0

div v0 = 0

}
in D

v0 = v0∗ on Σ

lim
|x|→∞

v0(x) = ξ

∫
Σ

T (v0, p0) · n = 0∫
Σ

x× T (v0, p0) · n = 0.

(3.1.gal)

We shall show that for any ξ 6= 0 there is a unique solution to (3.1.gal) with v0∗ in
a suitable “control” space, see (3.17.gal)

To prove this, we introduce some auxiliary fields, see [9] Chapter 5, [6]. Let
{hi, pi}, {Hi, Pi}, i = 1, 2, 3, be the solutions to the following Stokes problems

∆h(i) = ∇p(i)

div h(i) = 0

 in D

h(i) = ei on Σ

lim
|x|→∞

h(i)(x) = 0,

(3.2.gal)
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and

∆H(i) = ∇P (i)

div H(i) = 0

 in D

H(i) = ei × x on Σ

lim
|x|→∞

H(i)(x) = 0.

(3.3.gal)

We also set

g(i) := T (h(i), p(i)) · n |Σ , i = 1, 2, 3,

G(i) := T (H(i), P (i)) · n |Σ , i = 1, 2, 3.
(3.4.gal)

The vector functions g(i) = g(i)(x) and G(i) = G(i)(x) depend only on the geo-
metric properties of B such as size or shape. In particular, they do not depend on
the orientation of B and on the fluid property. These functions g(i) = g(i)(x) and
G(i) = G(i)(x) will play an important role and, in particular, we are interested
in their linear independence properties. In this regard, we have.

Lemma 3.1. The system of vector functions

S = {g(i), G(i)}

is linearly independent.

Proof. Assume there are scalars γi, δi, i = 1, 2, 3 such that

γig
(i)(x) + δiG

(i)(x) = 0, for all x ∈ Σ. (3.5.gal)

Setting

H = γih
(i) + δiH

(i), P = γip
(i) + δiP

(i), (3.6.gal)

from (3.2.gal), (3.3.gal) we immediately deduce that H, P satisfy the following problem

∆H = ∇P

div H = 0

}
in D

lim
|x|→∞

H(x) = 0

H(x) = γ + δ × x, x ∈ Σ.

(3.7.gal)

Moreover, condition (3.5.gal) gives

T (H, P ) · n = 0 at Σ. (3.8.gal)
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Multiplying (3.7.gal)1 by H , integrating by parts over D, and and using well-known
asymptotic properties of solutions to the Stokes problem, [7] Chapter V, we
obtain ∫

D
|D(H)|2 =

∫
Σ

(γ + δ × x) · T (H, P ) · n.

In view of (3.8.gal) we then deduce H(x) = γ + δ× x, for all x ∈ D, and since H(x)
vanishes for |x| → ∞ we conclude γ = δ = 0, proving the assertion. ut

We shall next furnish necessary and sufficient conditions in order that B per-
forms a steady, translational self-propelled motion within the Stokes approxima-
tion with prescribed translational velocity; see (3.15.gal). To this end, we multiply
(3.1.gal)1 by h(i) and integrate by parts over D to find

ei ·
∫

Σ

T (v0, p0) · n = 2
∫
D

D(h(i)) : D(v0), i = 1, 2, 3.

Likewise, multiplying (3.2.gal)1 by v0 + V0 and integrating by parts over D, we
obtain ∫

Σ

(v0∗ − ξ) · g(i) = 2
∫
D

D(h(i)) : D(v0), i = 1, 2, 3. (3.9.gal)

These two displayed relations then imply∫
Σ

(v0∗ − ξ) · g(i) = ei ·
∫

Σ

T (v0, p0) · n. (3.10.gal)

In a similar fashion, multiplying (3.1.gal)1 by H(i) and (3.3.gal) by v0− ξ, respectively,
and integrating by parts over D we find

ei ·
∫

Σ

x× T (v0, p0) · n = 2
∫
D

D(H(i)) : D(v0), i = 1, 2, 3.

and ∫
Σ

(v0∗ − ξ) ·G(i) = 2
∫
D

D(H(i)) : D(v0), i = 1, 2, 3 (3.11.gal)

which in turn give∫
Σ

(v0∗ − ξ) ·G(i) = ei ·
∫

Σ

x× T (v0, p0) · n. (3.12.gal)

Let us consider the matrices (i, j = 1, 2, 3), see [9] Chapter 54

Kij = −
∫

Σ

g
(i)
j , Cij = −

∫
Σ

(
x× g(i)

)
j
, (3.13.gal)

4 Notice that, in general, the matrix C depends on the origin of the axis.
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and the vectors

Vi =
∫

Σ

v0∗ · g(i), Wi =
∫

Σ

v0∗ ·G(i), i = 1, 2, 3, (3.14.gal)

from (3.10.gal), (3.12.gal) we find that v0∗ generates a steady, translational self-propelled
motion if and only if the following condition holds

V = K · ξ0

W = C† · ξ0.
(3.15.gal)

In view of the linear independence of the system S = {g(i), G(i)}, see Lemma 3.1,
we have that, setting

Mij =
∫

Σ

g(i) · g(j), Nij =
∫

Σ

g(i) ·G(j), Oij =
∫

Σ

G(i) ·G(j),

the 6× 6 matrix (
M N

N † O

)
(3.16.gal)

is invertible. Therefore, for any ξ ∈ R3 there exists a vector field v0∗ = αig
(i) +

βiG
(i) with uniquely determined α, β satisfying (3.15.gal), (3.14.gal). However, it is

also clear from (3.15.gal) that in general it is not true that all vectors of the form
(3.14.gal) will generate a steady translational flow. This will happen only if certain
compatibility conditions are satisfied. For example, if B has spherical symmetry,
then one proves [9] Chapter 5, that C† ≡ 0. Consequently, from (3.15.gal)2 it follows
that one must prescribe v∗ in such a way that W = 0. More generally, (3.15.gal)
will admit a solution ξ0, if the data V and W satisfy the compatibility condition
W = C†K−1V .5An arbitrary prescription of V and W will, in general, produce
also a rotation for B, a possibility which is not considered in this paper, and this
will be the object of future research.

To state the main results obtained above, it is convenient to introduce the
following 6-dimensional subspace of L2(Σ)

T (B) =
{
u ∈ L2(Σ) : u = αig

(i) + βiG
(i), for some α, β ∈ R3

}
. (3.17.gal)

As we noticed, T (B) depends only on the geometric properties of B such as size
or shape. In particular, it is independent of the orientation of B and on the fluid
property.

Taking into account classical existence and uniqueness theorems for the ex-
terior Stokes problem, see [7] Chapter V, we may then summarize the results
obtained thus far in the following.

Theorem 3.1. Let B have a locally lipschitzian boundary Σ. Then, for any ξ ∈
R3 there exists a unique solution v0, p0 to problem (3.1.gal)1,2,4,5,6 such that the
restriction v0∗ of v0 to Σ belongs to T (B).
5 The matrix K is always invertible [9] Chapter 5.
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4 Existence and Uniqueness for Problem P

To solve Problem P , we shall put it into an equivalent form. For a given ξ 6= 0,
we set

v = u + ξ,

and find that (2.1.gal)1,2,4 is equivalent to

∆u + λξ · ∇u = λdiv F (u) +∇p

div u = 0

}
in D

lim
|x|→∞

u(x) = 0

(4.1.gal)

while the self-propelling conditions (2.2.gal), (2.3.gal) become∫
Σ

u · g(i) = λ

∫
D

F : ∇h(i) + λξ ·
∫
D
∇h(i) · u, i = 1, 2, 3∫

Σ

u ·G(i) = λ

∫
D

F : ∇H(i) + λξ ·
∫
D
∇H(i) · u, i = 1, 2, 3.

(4.2.gal)

In (4.1.gal), (4.2.gal) we set

F (u) := u⊗ u, (4.3.gal)

and the vectors g(i), G(i) defined in (3.4.gal). The identities (4.2.gal) are obtained by
multiplying first (4.1.gal)1 by h(i) and H(i), then (3.2.gal), (3.3.gal) by u, integrating by
parts and proceeding as in the proof given for the case of the Stokes approxima-
tion (see (3.10.gal), (3.12.gal)). If the value of u at the boundary Σ is requested to be
in the class T (B), (4.2.gal) becomes

αjMij + βjNij = λ

∫
D

F (u) : ∇h(i) + λξ ·
∫
D
∇h(i) · u, i = 1, 2, 3

αjNji + βjOij = λ

∫
D

F (u) : ∇H(i) + λξ ·
∫
D
∇H(i) · u, i = 1, 2, 3.

(4.4.gal)

for some α, β ∈ R3.
A solution to (4.1.gal), (4.3.gal) and (4.4.gal) will be obtained as a fixed point in a

suitable Banach space. To this end, for q ∈ (1, 3/2) we put

〈〈u〉〉λ,q := (λ|ξ|)1/2‖u‖2q/(2−q) + (λ|ξ|)1/4‖u‖4 +

‖u‖3q/(3−2q) + ‖D2u‖2,q + ‖∇u‖2, (4.5.gal)

and set
X q =

{
ϕ ∈ L1

loc : 〈〈u〉〉λ,q <∞
}

.

Clearly, X q is a Banach space. We shall denote by X q
δ the ball of radius δ in X q.
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We next consider the following map

N : ϕ ∈ X q
δ → (α, β)→ u

where α, β satisfy the following conditions

αjMij + βjNij = λ

∫
D

F (ϕ) : ∇h(i) + λξ ·
∫
D
∇h(i) · ϕ, i = 1, 2, 3

αjNji + βjOij = λ

∫
D

F (ϕ) : ∇H(i) + λξ ·
∫
D
∇H(i) · ϕ, i = 1, 2, 3.

(4.6.gal)

while u satisfies

∆u + λξ · ∇u = λdiv F (ϕ) +∇p

div u = 0

}
in D

u = αjg
(j) + βjG

(j) at Σ

lim
|x|→∞

u(x) = 0.

(4.7.gal)

We have the following.

Lemma 4.1. There is a positive constant C = C(B, q) such that if λ|ξ| < C,
the map N is a contraction on X q

δ , for δ = |ξ|.

Proof. Applying Theorems VII.7.1 and VII.7.2 of [7] to (4.7.gal), we obtain

〈〈u〉〉λ,q + ‖∇p‖q ≤ cλ [‖ div F (ϕ)‖q + ‖F (ϕ)‖2 + (|α|+ |β|) /λ] . (4.8.gal)

Using the Hölder and Sobolev inequalities, we readily deduce

‖ div F (ϕ)‖q ≤ c‖ϕ‖2q/(2−q)‖∇ϕ‖2 ≤ c(λ|ξ|)−1/2〈〈ϕ〉〉2λ,q

‖F (ϕ)‖2 ≤ c‖ϕ‖24 ≤ c(λ|ξ|)−1/2〈〈ϕ〉〉2λ,q .
(4.9.gal)

The constant c in (4.9.gal) depends only on B, q and C0 whenever λ|ξ| ≤ C0.
Replacing (4.9.gal) into (4.8.gal), we obtain

〈〈u〉〉λ,q + ‖∇p‖q ≤ c
(
λ1/2|ξ|−1/2〈〈ϕ〉〉2λ,q + |α|+ |β|

)
. (4.10.gal)

Furthermore, recalling that (see [7] Chapter V)

∇h(i),∇H(i) ∈ Ls′(D), all s′ > 3/2,

by the Hölder inequality we deduce, with Z(i) denoting either h(i) or H(i), i =
1, 2, 3,∣∣∣∣∫

D

F (ϕ) : ∇Z(i)

∣∣∣∣ +
∣∣∣∣ξ · ∫

D

∇Z(i) · ϕ
∣∣∣∣≤c

(
(λ|ξ|)−1/2〈〈ϕ〉〉2λ,q +|ξ|‖∇Z(i)‖s′‖ϕ‖s

)
,
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Assume 1 < q < 6/5, and choose s′ = 2q/(3q − 2). We then find∣∣∣∣∫
D

F (ϕ) : ∇Z(i)

∣∣∣∣ +
∣∣∣∣ξ · ∫

D

∇Z(i) · ϕ
∣∣∣∣ ≤

c
(
(λ|ξ|)−1/2〈〈ϕ〉〉2λ,q + λ−1/2|ξ|1/2〈〈ϕ〉〉λ,q

)
. (4.11.gal)

Using this latter inequality into (4.6.gal), and recalling that the matrix (3.16.gal) is
nonsingular (see Lemma 3.1), we infer for λ|ξ| ≤ c

|α|+ |β| ≤ C
(
λ1/2|ξ|−1/2〈〈ϕ〉〉2λ,q + λ1/2|ξ|1/2〈〈ϕ〉〉λ,q

)
, (4.12.gal)

where C = C(B, q). Collecting (4.8.gal) and (4.12.gal), we arrive at the following in-
equality

〈〈u〉〉λ,q + ‖∇p‖q ≤ c
(
λ1/2|ξ|−1/2〈〈ϕ〉〉2λ,q + λ1/2|ξ|1/2〈〈ϕ〉〉λ,q

)
. (4.13.gal)

If ϕ ∈ Xq
δ , from (4.13.gal) we obtain

〈〈u〉〉λ,q + ‖∇p‖q ≤ δc
(
λ1/2|ξ|−1/2δ + λ1/2|ξ|1/2

)
,

and so, if

λ|ξ| < (1/2c)2, (4.14.gal)

we may choose

δ = |ξ|, (4.15.gal)

and we prove that N transforms Xq
δ into itself. Once this has been established,

it is easy to show that N is, in fact, a contraction. Actually, setting φ = ϕ2−ϕ1,
ϕ1, ϕ2 ∈ Xq

δ , from (4.3.gal) and (4.13.gal)2 we obtain

‖ div (F (ϕ2)− F (ϕ1)) ‖q ≤ c
(
‖ϕ1‖2q/(2−q)‖∇φ‖2 + ‖φ‖2q/(2−q)‖∇ϕ2‖2

)
≤ c(λ|ξ|)−1/2δ〈〈φ〉〉λ,q

‖F (ϕ2)− F (ϕ1)‖2 ≤ c ((‖ϕ2‖4 + ‖ϕ1‖4) ‖φ‖4 ≤ c(λ|ξ|)−1/2δ〈〈φ〉〉λ,q .

(4.16.gal)

Thus, setting w = u2 − u1 ≡ N (ϕ2) − N (ϕ2), π = p2 − p1, A = α2 − α1,
B = β2 − β1 (with the obvious meaning for the symbols), from (4.7.gal), (4.16.gal) and
Theorems VII.7.1 and VII.7.2 of [7], we find

〈〈w〉〉λ,q + ‖∇π‖q ≤ c
(
λ1/2|ξ|−1/2δ〈〈φ〉〉λ,q + |A|+ |B|

)
. (4.17.gal)

Moreover, from (4.6.gal), by an argument similar to that leading to (4.12.gal), we obtain

|A|+ |B| ≤ cλ1/2|ξ|−1/2δ〈〈ϕ〉〉2λ,q (4.18.gal)
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which, once replaced into (4.17.gal), furnishes

〈〈w〉〉λ,q ≤ cλ1/2|ξ|−1/2δ〈〈w〉〉λ,q .

Therefore, with the choice (4.15.gal), if λ and ξ satisfy conditions of the type (4.14.gal),
this latter inequality implies that N is a contraction on X q

δ , and the lemma is
proved. ut

From the previous lemma, we can obtain an existence result for Problem P .
To this end, for w ∈ T (B), we set

‖w‖T =:
3∑

i=1

(|αi|+ |βi|) ,

where
αi =

∫
Σ

w · g(i), βi =
∫

Σ

w ·G(i), i = 1, 2, 3.

We have.

Theorem 4.1. Let ξ 6= 0, be given and let 1 < q < 6/5. Then, there exists
C = C(B, q) > 0, such that if λ|ξ| ≤ C, Problem P admits at least one solution
v, p, with v∗ ∈ T (B) and such that v, p ∈ C∞(D),

(v − ξ) ∈ L2q/(2−q)(D), ∇v ∈ L4q/(4−q)(D) ∩ L2(D), D2v ∈ Lq(D)

p ∈ L3q/(3−q)(D),∇p ∈ Lq(D).

Moreover, the following estimates hold

〈〈v − ξ〉〉λ,q + ‖∇p‖q ≤ c1|ξ|

|ξ| ≤ c2‖v∗‖T ≤ c3|ξ|
(4.19.gal)

where 〈〈 〉〉λ,q is defined in (4.5.gal), and ci = ci(B, q), i = 1, 2, 3.

Proof. The smoothness of v, p comes from known results on the regularity of
solutions to the Navier-Stokes equations in exterior domains, [8] Theorem IX.1.1.
Thus, in view of Lemma 4.1, to prove the result completely, it remains to show
the second inequality in (4.19.gal). Multiplying (3.2.gal)1 by v − ξ and integrating by
parts over D, we find∫

Σ

(v∗ − ξ) · g(i) = 2
∫
D

D(h(i)) : D(v), i = 1, 2, 3. (4.20.gal)

The matrix (3.16.gal) is not singular and so, from (4.20.gal) we find

‖v∗‖T ≤ c (|ξ|+ ‖∇v‖2) ,

which in conjunction with (4.19.gal)1 allows us to conclude

‖v∗‖T ≤ c|ξ|.



Self-propelled Motion of a Body in a Fluid 75

Let us now prove the reverse inequality. Since the matrix K defined in (3.13.gal) is
nonsingular, [9] Chapter 5, recalling that u = v − ξ, from (4.2.gal) we find

|ξ| ≤ c

(
‖v∗‖T + λmax

i

∣∣∣∣∫
D

F (v − ξ) : ∇h(i) + ξ ·
∫

D

∇h(i) · (v − ξ)
∣∣∣∣) .

Using (4.11.gal) in this inequality we deduce

|ξ| ≤ c
(
‖v∗‖T + λ1/2|ξ|−1/2〈〈v − ξ〉〉2λ,q + λ1/2|ξ|1/2〈〈v − ξ〉〉λ,q

)
and so, with the help of (4.19.gal)1, from this latter relation we conclude

|ξ| ≤ c
(
‖v∗‖T + λ1/2|ξ|3/2

)
.

Choosing λ1/2|ξ|1/2c < 1 we obtain

|ξ| ≤ c‖v∗‖T

and the proof of the theorem is completed. ut

Our next objective is to investigate uniqueness for Problem P . In this regard,
we propose the following result whose proof is similar to Theorem 4.2 of [6] and
therefore it will be omitted.

Lemma 4.2. Let v, p be a solution to (2.1.gal), with ∇v ∈ L2(D), corresponding
to ξ 6= 0 and v∗ ∈ W 2−1/q0,q0(Σ), q0 > 3. Furthermore, let q ∈ (1, 3/2). Then,
there exists a positive constant λ1 = λ1(B, q, q0) such that, if

λ(‖v∗‖2−1/q0,q0(Σ) + |ξ|) ≤ λ1,

we have

(v − ξ) ∈ L2q/(2−q)(D), (v − ξ)(1 + |x|) ∈ L∞(D), ∇v ∈ L4q/(4−q)(D)

and the following estimate holds

(λ|ξ|)1/2‖v − ξ‖2q/(2−q) + (λ|ξ|)1/4‖∇v‖4q/(4−q)

+ ‖∇v‖2 + ‖(v − ξ)(1 + |x|)‖∞ ≤ c(‖v∗‖2−1/q0,q0,Σ + |ξ|).

with c = c(B, q, q0).

We are now in a position to prove the following uniqueness result.

Theorem 4.2. Let Sξ be the class of solutions v, p to (2.1.gal)–(2.3.gal) corresponding
to a given ξ 6= 0, such that

(i) ∇v ∈ L2(D);
(ii) v∗ ∈ T (B);
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(iii) ‖v∗‖T ≤ C0|ξ| for some C0 > 0.

Then, there exists C = C(B, C0) > 0 such that if λ|ξ| < C, Sξ is constituted by
at most one element.

Proof. Let v, p and u, p1 be two elements of Sξ and let

U = u− v, π = p1 − p.

From (2.1.gal) and (4.2.gal) we obtain

∆U − λξ · ∇U = λ [U · ∇u + (v − ξ) · ∇U ] +∇π

div U = 0

}
in D

lim
|x|→∞

U(x) = 0

(4.21.gal)

and (i = 1, 2, 3)∫
Σ

U∗ · g(i) = λ

∫
D

[
(v − ξ) · ∇h(i) · U + U · ∇h(i) · (u− ξ)

]
+ λξ ·

∫
D

∇h(i) · U∫
Σ

U∗ ·G(i) = λ

∫
D

[
(v − ξ) · ∇H(i) · U + U · ∇H(i) · (u− ξ)

]
+ λξ ·

∫
D

∇H(i) · U.

(4.22.gal)

where U∗ is the restriction of U at Σ. Set

〈U〉λ,q ≡ (λ|ξ|)1/2‖U‖2q/(2−q) + ‖U‖3q/(3−2q) + ‖∇U‖2.

Applying Theorem VII.7.1 of [7] to (4.21.gal), and using the Hölder inequality,
Lemma 4.2 and the assumptions (i)–(iii), we find

〈U〉λ,q ≤ c(λ‖U · ∇u + (v − ξ) · ∇U‖q + ‖U∗‖T )

≤ c
(
λ‖U‖2q/(2−q)‖∇u‖2 + λ‖v − ξ‖2q/(2−q)‖∇U‖2 + ‖U∗‖T

)
≤ c

(
λ1/2|ξ|1/2〈U〉λ,q + ‖U∗‖T

)
.

(4.23.gal)

Furthermore, from (4.22.gal) we obtain, with Z(i) = h(i), H(i),∣∣∣∣∫
Σ

U∗ · Z(i)

∣∣∣∣ ≤ λ‖∇Z(i)‖6q/(13q−12)‖U‖3q/(3−2q)(‖u− ξ‖2q/(2−q) +

‖v − ξ‖2q/(2−q)) + λ|ξ| ‖∇Z(i)‖2q/(3q−2)‖U‖2q/(2−q). (4.24.gal)

Recalling that ∇Z(i) ∈ Lr(D) for all r > 3/2, [7], we choose q ∈ (1, 12/9) and
obtain from (4.24.gal) the following inequality

‖U∗‖T ≤ cλ1/2|ξ|1/2〈U〉λ,q. (4.25.gal)

Replacing (4.25.gal) into (4.23.gal), and taking λ|ξ| less than a suitable constant de-
pending only on B and C0, we prove uniqueness. ut
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Remark 4.1. Theorem 4.1 ensures that for any ξ 6= 0, the class Sξ defined in
Theorem 4.2 is not empty.

Theorems 4.1 and 4.2 prove the existence of a map M from the space T of
translational motions of B onto a subspace T ′(B) of T (B). We know from the
linear theory of Section 3 that T ′(B) is expected to be strictly contained into
T (B), due to the fact that a velocity distribution in T (B)/T ′(B) will produce,
in general, also a rotation for B. However, we shall show in the next theorem
that the map M is in fact one-to-one on T ′(B).

Theorem 4.3. Let v, p and v1, p1 be two solutions to Problem P, as given in
Theorem 4.1, corresponding to ξ and ξ1, respectively, with ξ 6= ξ1. Let v∗ and
v1∗ be their restrictions at Σ. Then, there exists a positive constant C = C(B)
such that if

λ|ξ| < C, (4.26.gal)

necessarily v∗ 6≡ v1∗

Proof. Assume, by contradiction, v∗ ≡ v1∗, and let

u = v − ξ, u1 = v1 − ξ1, µ = ξ − ξ1

U = u− u1, π = p− p1

We then obtain

∆U − λξ · ∇U = λ (µ · ∇u1 + U · ∇u + u1 · ∇U) +∇π

div U = 0

}
in D

U = −µ on Σ

lim
|x|→∞

U(x) = 0.

(4.27.gal)

Moreover, from (4.1.gal)1, we find that

µ ·
∫

Σ

g(i) = λ

∫
D

U · ∇h(i) · u + λ

∫
D

u1 · ∇h(i) · U

+ λξ ·
∫
D
∇U · h(i) + λµ ·

∫
D
∇h(i) · u1, i = 1, 2, 3. (4.28.gal)

Applying Theorem VII.7.1 of [7] to (4.27.gal) we find for q ∈ (1, 3/2)

λ‖ξ · ∇U‖q + (λ|ξ|)1/2‖U‖2q/(2−q) + (λ|ξ|)1/4‖∇U‖4q/(4−q) + ‖∇U‖3q/(3−q)

≤ cλ

(
|µ|‖∇u1‖q + ‖U‖2q/(2−q)‖∇u‖2 + ‖u1‖4‖∇U‖4q/(4−q) +

|µ|
λ

)
. (4.29.gal)
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From Lemma 4.2 and (4.19.gal)2, we have

‖u1‖4 + ‖∇u‖2 ≤ c‖v∗‖T ,

and, for q ∈ (4/3, 3/2),

‖∇u1‖q ≤ c(λ‖v∗‖T )−1/4‖v∗‖T .

Thus, from (4.29.gal) and (4.19.gal)2 we recover the following inequality

λ‖ξ · ∇U‖q + (λ‖v∗‖T )1/2‖U‖2q/(2−q) + (λ‖v∗‖T )1/4‖∇U‖4q/(4−q) +

‖∇U‖3q/(3−q) ≤ cλ
[
|µ|(λ‖v∗‖T )−1/4‖v∗‖T +

‖v∗‖T
(
‖U‖2q/(2−q) + ‖∇U‖4q/(4−q)

)
+ |µ|/λ

]
. (4.30.gal)

Moreover, from the Hölder inequality, we also obtain∣∣∣∣∫
D

U · ∇h(i) · u
∣∣∣∣ +

∣∣∣∣∫
D

u1 · ∇h(i) · U
∣∣∣∣ ≤

‖U‖2q/(2−q)‖∇h(i)‖2
(
‖u1‖q/(q−1) + ‖u‖q/(q−1)

)
and, since by Lemma 4.2 and (4.19.gal)2, for q < 3/2 it is

‖u1‖q/(q−1) + ‖u‖q/(q−1) ≤ c (‖u1(1 + |x|)‖∞ + ‖u(1 + |x|)‖∞) ≤ c‖v∗‖T ,

we obtain∣∣∣∣∫
D

U · ∇h(i) · u
∣∣∣∣ +

∣∣∣∣∫
D

u1 · ∇h(i) · U
∣∣∣∣ ≤ c‖U‖2q/(2−q)‖v∗‖T (4.31.gal)

Also, again from Lemma 4.2 and (4.19.gal)2, for s ∈ (2, 3) we find

λ

∣∣∣∣µ · ∫
D
∇h(i) · u1

∣∣∣∣ ≤ cλ|µ|‖u‖s‖∇h(i)‖s/(s−1) ≤ c|µ|(λ‖v∗‖T )1/2. (4.32.gal)

Finally, for q < q1 < 3/2 we have∣∣∣∣∫
D

ξ · ∇U · h(i)

∣∣∣∣ ≤ ‖ξ · ∇U‖q1‖h(i)‖q1/(q1−1) ≤ C‖ξ · ∇U‖q1 ,

and, by the convexity inequality,

‖ξ · ∇U‖q1 ≤ ‖ξ · ∇U‖θq‖ξ · ∇U‖1−θ
3q/(3−q), θ ∈ (0, 1).

Thus, by (4.19.gal)2 and Young’s inequality we deduce

λ

∣∣∣∣∫
D

ξ · ∇U · h(i)

∣∣∣∣ ≤ c(λ|ξ|)1−θ
(
λθ‖ξ · ∇U‖θq‖∇U‖1−θ

3q/(3−q

)
≤ c(λ‖v∗‖T )1−θ

(
λ‖ξ · ∇U‖q + ‖∇U‖3q/(3−q)

)
.

(4.33.gal)
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Collecting (4.31.gal)–(4.33.gal) and using (4.28.gal), we find that there exists a constant
C = C(B) > 0 such that if (4.26.gal) holds then

|µ| ≤ c
[
λ‖v∗‖T ‖U‖2q/(2−q) + (λ‖v∗‖T )1−θ

(
λ‖ξ · ∇U‖q + ‖∇U‖3q/(3−q)

)]
.

Replacing this inequality into (4.30.gal), it is immediate to show that there exists a
positive constant C depending only on B such that if (4.26.gal) is satisfied, we then
get

(λ‖v∗‖T )1/2‖U‖2q/(2−q) + (λ‖v∗‖T )1/4‖∇U‖4q/(4−q) ≤ 0,

which implies, in particular, ξ = ξ1, which contradicts the assumption. The
theorem is completely proved. ut
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Abstract. We present a thermodynamically consistent description of
the uniaxial behavior of thermovisco-elastoplastic materials for which
the total stress σ contains, in addition to elastic, viscous and thermic
contributions, a plastic component σp(x, t) = P [ε(x, ·), θ(x, t)](t). Here,
ε and θ are the fields of strain and absolute temperature, respectively,
and {P [·, θ]}θ>0 denotes a family of (rate-independent) hysteresis op-
erators of Prandtl-Ishlinskii type, parametrized by the absolute tem-
perature. The momentum and energy balance equations governing the
space-time evolution of the material form a system of two highly nonlin-
early coupled partial differential equations involving partial derivatives
of hysteretic nonlinearities at different places. It is shown that under
no external forcing, the unique global strong solution of a corresponding
initial-boundary value problem remains bounded in the energy norm and
the velocity asymptotically vanishes for large times.
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1 Introduction

For many materials the stress-strain (σ - ε) relations measured in uniaxial load-
deformation experiments strongly depend on the absolute (Kelvin) temperature
θ and, at the same time, exhibit a strong plastic behavior witnessed by the oc-
currence of rate-independent hysteresis loops. Figure 1 shows a typical diagram,
where the elasticity modulus and the yield limit depend on temperature.

Among the materials exhibiting temperature-dependent, but rate-independ-
ent hysteretic effects are shape memory alloys (see, for instance, Chapter 5 in
[1]) and even, although to a smaller extent, quite ordinary steels.

If the σ - ε relation exhibits a hysteresis, it can no longer be expressed in
terms of simple single-valued functions since the latter are certainly not able to

http://www.wias-berlin.de
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give a correct account of the inherent memory structures that are responsible
for the complicated loopings in the interior of experimentally observed hysteresis
loops.

To avoid these difficulties, a different approach to thermoelastoplastic hys-
teresis based on the notion of hysteresis operators introduced by the Russian
group around M. A. Krasnoselskii in the seventies (see [5]) has been proposed
by the authors in [7]. The temperature-dependent plastic stress σp has been
assumed in the form of an operator equation with a temperature-dependent hys-
teretic constitutive operator P of Prandtl-Ishlinskii type, namely

σp = P [ε, θ] :=
∫ ∞

0

ϕ(r, θ) sr[ε] dr . (1.1.kre)

In this connection, sr denotes the so-called stop operator or elastic-plastic ele-
ment with threshold r > 0 (to be defined in the next section), and ϕ(·, θ) ≥ 0
is a density function with respect to r > 0 , parameterized by the absolute
temperature θ . The integral formula (1.1.kre) corresponds to an infinite rheological
combination in parallel of elements sr.

O ε

σp

θ = θ1

θ = θ2

Fig. 1: Strain – plastic stress diagrams at constant temperatures θ1 6= θ2.

The advantage of this approach is that an operator equation like (1.1.kre) is
suited much better than a simple functional relation to keep track of memory
effects imprinted on the material in the past history; in fact, the output at any
time t ∈ [0, T ] may depend on the whole evolution of the input in the time
interval [0, t]. Observe that the requirement of rate-independence implies that P
cannot be expressed in terms of an integral operator of convolution type, i. e. we
are not dealing with a model with fading memory.

In the isothermal case, i. e. if P is independent of θ, the space-time evolution
is governed by the equation of motion which is of hyperbolic type, see e. g. [6]. In
the temperature-dependent case, the equation of motion has to be complemented
by a field equation representing the balance law of internal energy, and the second
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principle of thermodynamics in form of the Clausius-Duhem inequality must be
obeyed. The first problem then consists in a correct definition of thermodynamic
state functions like the densities of free energy, internal energy and entropy. It
is natural to expect that they will be given in the form of operators rather than
of functions .

A corresponding construction has been carried out in [7,8]. It turns out,
however, that we are no longer able to solve the hyperbolic case, and a further
regularization is necessary. While [7] is devoted to the case when the total stress
σ is composed of a plastic stress σp of the form (1.1.kre) and a so-called couple
stress , [7] deals with the situation when σ comprises, in addition to the plastic
stress (1.1.kre), (nonlinear) elastic, (linear) viscous, and (linear) thermic contribu-
tions σe, σv and σd, respectively; that is, we assume a constitutive law of the
form

σ = σp + σe + σv + σd , (1.2.kre)

with σp given as in (1.1.kre).
It should be mentioned at this place that hysteretic relations can usually

not be described in an explicit form and, as a rule, enjoy only very restricted
smoothness properties. Therefore, the classical techniques of one-dimensional
thermovisco-elasticity developed for cases in which the stress-strain relation is
given through a simple (possibly nonconvex, but differentiable) function (we only
refer to the fundamental papers [2,3]) apply only partially, and new techniques
tailored to deal with the specific behavior of hysteretic nonlinearities need to be
employed.

The paper is organized as follows. In Section 2, the field equations governing
the space-time evolution in thermovisco-elastoplastic materials with the consti-
tutive law (1.2.kre) are derived. We obtain a system of nonlinearly coupled partial
differential equations involving partial derivatives of hysteretic nonlinearities at
different places, even in derivatives of highest order. Section 3 contains a sum-
mary of results of [8] on existence, uniqueness and thermodynamic consistency
of solutions and their continuous dependence on given data. In Section 4, we
present a new result on weak asymptotic stabilization. Section 5 is an appendix,
where we derive an auxiliary convergence theorem.

2 Thermoelastoplastic constitutive laws

The stop operator sr : W 1,1(0, T )→ W 1,1(0, T ) in the equation (1.1.kre) is defined
as the solution operator σr = sr[ε] of the variational inequality

|σr(t)| ≤ r, (ε̇(t)− σ̇r(t))(σr(t)− σ̃) ≥ 0 for a.e. t ∈ ]0, T [ , ∀σ̃ ∈ [−r, r],
(2.1.kre)

with initial condition

σr(0) = sign(ε(0))min {r, |ε(0)|} (2.2.kre)
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which describes the strain-stress law of Prandtl’s model for elastic-perfectly plas-
tic materials with a unit elasticity modulus and yield point r, see Fig. 2.

The density function ϕ in (1.1.kre) is assumed to be given. It can be identified
from the isothermal initial loading curves σ = Φ(ε, θ) obtained experimentally
by letting ε monotonically increase for each fixed temperature θ starting from
the origin. The corresponding formula reads (see [6])

Φ(ε, θ) =
∫ ε

0

∫ ∞
s

ϕ(r, θ) dr ds. (2.3.kre)

We consider here only the case when ϕ is nonnegative, i.e. the initial loading
curves at each constant temperature are concave and nondecreasing as on Fig. 1.

O
ε

σr

r

−r

Fig. 2: Prandtl’s normalized elastic-perfectly plastic element

The operator sr has following properties (for a proof, see [1], [6]).

Proposition 1. Let r > 0 be given. Then it holds:

(i) For every ε ∈W 1,1(0, T ), we have(
d

dt
sr[ε]

)2

= ε̇
d

dt
sr[ε] a.e. in ]0, T [. (2.4.kre)

(ii) For every ε1, ε2 ∈W 1,1(0, T ), we have

1
2

d

dt
(sr[ε1]− sr[ε2])

2 ≤ (ε̇1 − ε̇2)(sr[ε1]− sr[ε2]) a.e. in ]0, T [, (2.5.kre)

∫ T

0

∣∣∣∣ d

dt
(sr[ε1]− sr[ε2])

∣∣∣∣ (t) dt ≤ |ε1(0)− ε2(0)|+ 2
∫ T

0

|ε̇1 − ε̇2| (t) dt, (2.6.kre)

|(sr[ε1]− sr[ε2])(t)| ≤ 2 max
0≤τ≤t

|ε1(τ)− ε2(τ)| ∀t ∈ [0, T ]. (2.7.kre)

(iii) For every r, q > 0 and ε ∈ W 1,1(0, T ), we have

|(sr[ε]− sq[ε])(t)| ≤ |r − q| ∀t ∈ [0, T ]. (2.8.kre)
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The inequalities (2.6.kre), (2.7.kre) entail that the stop operator sr is Lipschitz con-
tinuous in W 1,1(0, T ) and admits a Lipschitz continuous extension onto C([0, T ]).
Moreover, we immediately see by definition that sr is a causal operator, that is,
we have the implication

ε1(τ) = ε2(τ) ∀τ ∈ [0, t] ⇒ sr[ε1](t) = sr[ε2](t) (2.9.kre)

for every t ∈ [0, T ], which means that the output values at time t depend only on
past values of the input. This enables us to consider sr as a family of operators
acting in the spaces C([0, t]) for all t ∈ ]0, T ].

From inequality (2.5.kre) it immediately follows:

Corollary 2. For all ε, ε1, ε2 ∈ W 1,1(0, T ), we have

sr[ε]
(

ε̇− d

dt
sr[ε]

)
≥ 0 a.e. in ]0, T [ (energy inequality) , (2.10.kre)

|(sr[ε1]− sr[ε2])(t)| ≤ |ε1(0)− ε2(0)|+
∫ t

0

|ε̇1 − ε̇2|(τ) dτ ∀t ∈ [0, T ]. (2.11.kre)

In this paper we consider the one-dimensional equation of motion

ρ utt = σx + f, (2.12.kre)

where ρ > 0 is a constant referential density, u is the displacement, σ is the total
unaxial stress and f is the volume force density.

We assume that σ can be decomposed into the sum

σ = σp + σe + σv + σd, (2.13.kre)

where

σe = γ(ε), (2.14.kre)

with a given nondecreasing Lipschitz continuous function γ : R1 → R1, γ(0) = 0,
is the (nonlinear) kinematic hardening component,

σv = µε̇ (2.15.kre)

with a constant µ > 0 is the viscous component,

σd = −βθ (2.16.kre)

with a constant β ∈ R1 is the thermic dilation component and σp is the thermo-
plastic component given by (1.1.kre). Equation (2.13.kre) can be interpreted rheologi-
cally as a combination in parallel of the above components (see [9]). The stop
operator sr is assumed to act on functions of x and t according to the formula

sr[ε](x, t) := sr[ε(x, ·)](t), (2.17.kre)
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i.e. x plays the role of a parameter. The equation of motion (2.12.kre) has to be
coupled with the energy balance equation

Ut = σεt − qx + g, (2.18.kre)

where U is the total internal energy, q is the heat flux and g is the heat source
density. The model is thermodynamically consistent provided the temperature
θ and the entropy S satisfy the inequalities

θ > 0, (2.19.kre)

St ≥
g

θ
−

( q

θ

)
x

(Clausius-Duhem inequality), (2.20.kre)

in an appropriate sense.
In [7] we derived the following expressions for thermoplastic parts of internal

energy Up and entropy Sp in operator form corresponding to the constitutive
law (1.1.kre),

Up = V [ε, θ] :=
1
2

∫ ∞
0

(ϕ(r, θ) − θϕθ(r, θ)) s
2
r[ε] dr, (2.21.kre)

Sp = S[ε, θ] := −1
2

∫ ∞
0

ϕθ(r, θ) s
2
r[ε] dr. (2.22.kre)

In accordance with (2.13.kre), (2.21.kre), (2.22.kre), we put

U := CV θ + V [ε, θ] + Γ (ε) + V0, (2.23.kre)

S := CV log θ + S[ε, θ] + βε, (2.24.kre)

where CV > 0, the purely caloric part of the specific heat, is a constant, V0 > 0 is
a constant which is chosen in order to ensure that U ≥ 0 according to Hypothesis
(H2) below, and Γ (ε) :=

∫ ε

0 γ(s)ds. For the heat flux we assume Fourier’s law

q = −κθx (2.25.kre)

with a constant heat conduction coefficient κ > 0. We complete the system
(2.12.kre), (2.18.kre) with the small deformation hypothesis

ε = ux (2.26.kre)

and rewrite it in the form

ρutt − (γ(ux) + P [ux, θ] + µuxt − βθ)x = f, (2.27.kre)

(CV θ + V [ux, θ])t − κθxx = (P [ux, θ] + µuxt − βθ) uxt + g. (2.28.kre)
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3 Existence, uniqueness and thermodynamic consistency

We consider a model problem for a system of the form (2.27.kre), (2.28.kre), namely

utt −
(
γ(ux)

)
x
− (P [ux, θ])x − µuxxt + βθx = f(θ, x, t), (3.1.kre)

(CV θ + V [ux, θ])t − θxx = P [ux, θ]uxt + µu2
xt − βθuxt + g(θ, x, t), (3.2.kre)

for x ∈ ]0, 1[, t ∈ [0, T ], where T > 0, µ > 0, CV > 0, β ∈ R1 are fixed constants,
γ : R1 → R1, f, g : ]0,∞[× ]0, 1[× [0, T ] → R1 are given functions, and P , V
are the operators defined by (1.1.kre), (2.21.kre) with a given distribution function
ϕ : (]0,∞[)2 → [0,∞[ satisfying Hypothesis (H2) below.

In other words, we assume in (2.27.kre), (2.28.kre) that the volume force and heat
source densities are given functions of x and t which may also depend on the
instantaneous value of θ, and we rescale the units in such a way that ρ ≡ κ ≡ 1.
The system (3.1.kre), (3.2.kre) is coupled with boundary and initial conditions which
are chosen in the following simple form.

u(0, t) = u(1, t) = θx(0, t) = θx(1, t) = 0, (3.3.kre)

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x). (3.4.kre)

The data are assumed to satisfy the following hypotheses.

Hypothesis (H1).

(i) u0, u1 ∈W 2,2(0, 1)∩
◦

W1,2(0, 1), θ0 ∈W 1,2(0, 1), and there exists a constant
δ > 0 such that

θ0(x) ≥ δ ∀x ∈ [0, 1]. (3.5.kre)

(ii) γ : R1 → R1 is an absolutely continuous function, γ(0) = 0, and there exists
a constant γ0 > 0 such that

0 ≤ dγ(ε)
dε

≤ γ0 a.e. in R1. (3.6.kre)

(iii) The functions f, g are measurable, f(·, x, t), g(·, x, t) are absolutely contin-
uous in [0,∞[ for a.e. (x, t) ∈ ]0, 1[×]0, T [. Moreover, there exist a constant
K > 0 and functions f0, g0 ∈ L2(]0, 1[×]0, T [) such that

g(0, x, t) = g0(x, t) ≥ 0 a.e., (3.7.kre)

|f(θ, x, t)|+ |ft(θ, x, t)| ≤ f0(x, t) a.e., (3.8.kre)

|fθ(θ, x, t)| + |gθ(θ, x, t)| ≤ K a.e. . (3.9.kre)
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Hypothesis (H2).
The function ϕ : (]0,∞[)2 → [0,∞[ is measurable, ϕ(r, ·), ϕθ(r, ·) are abso-

lutely continuous for a.e. r > 0, and there exist constants L > 0, V0 > 0 such
that for a.e. θ > 0 the following inequalities hold.∫ ∞

0

ϕ(r, θ) dr ≤ L, (3.10.kre)

∫ ∞
0

|ϕθ(r, θ)| r dr ≤ L, (3.11.kre)

∫ ∞
0

θ |ϕθθ(r, θ)| r2 dr ≤ CV , (3.12.kre)

where CV is the constant introduced in (2.23.kre),

1
2

∫ ∞
0

|ϕ(r, θ) − θϕθ(r, θ)| (1 + r2) dr ≤ V0. (3.13.kre)

Example 3. A typical function ϕ satisfying Hypothesis (H2) can be chosen as

ϕ(r, θ) = Ē(θ) c(r − r̄(θ)), (3.14.kre)

where c ∈ D(]−m, m[) is a mollifier such that∫ m

−m

c(s) ds = 1, c ≥ 0, (3.15.kre)

with a (small) constant m > 0, and Ē, r̄ are given functions such that Ē(θ) ≤ L,
m ≤ r̄(θ) ≤ R, for some constant R ≥ m, with (1+θ)

(
|Ē′(θ)|+ |r̄′(θ)|

)
bounded

and θ
(
|Ē′′(θ)|+ |r̄′′(θ)| +Ē

′2(θ) + r̄
′2(θ)

)
small, uniformly with respect to θ.

The existence result in [8] is stated as follows.

Theorem 4. Let Hypotheses (H1), (H2) hold. Then there exists a unique solu-
tion (u, θ) to the problem (3.1.kre)–(3.4.kre) such that

utt, uxx, uxxt, θx ∈ L∞(0, T ; L2(0, 1)), (3.16.kre)

uxtt, θt, θxx ∈ L2(]0, 1[× ]0, T [), (3.17.kre)

θ, u, ux, ut, uxt ∈ C([0, 1]× [0, T ]). (3.18.kre)

In addition, there exists a constant c0 > 0 depending only on the given data such
that for all t ∈ [0, T ] and x ∈ [0, 1] we have

θ(x, t) ≥ δe−c0t > 0, (3.19.kre)

and (3.1.kre)–(3.4.kre) are satisfied almost everywhere.
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We first check that the model is thermodynamically consistent according to
(2.19.kre), (2.20.kre).

Corollary 5. The solution from Theorem 4 satisfies the Clausius-Duhem in-
equality (2.20.kre) with S defined by (2.24.kre), (2.22.kre) almost everywhere in ]0, 1[×]0, T [.

Proof of Corollary 5. For a.e. x and t we have

θSt + θ
(q

θ

)
x
− g (3.20.kre)

= CV θt + θ (S[ux, θ])t + βθuxt − θxx − g +
1
θ
θ2

x

= − (V [ux, θ])t + θ (S[ux, θ])t + P [ux, θ] uxt + µu2
xt +

1
θ
θ2

x

=
∫ ∞

0

ϕ(r, θ) sr[ux] (ux − sr[ux])t dr + µu2
xt +

1
θ
θ2

x,

and the assertion follows from (2.10.kre). ut
The solutions to (3.1.kre)–(3.4.kre) are unique and depend continuously on the data

in the following way, see [8].

Theorem 6. Let Hypotheses (H1) (ii), (H2) hold, let (u0, u1, θ0, f, g), (u′0, u′1,
θ′

0
, f ′, g′) be two sets of given functions satisfying Hypothesis (H1), and let (u, θ),

(u′, θ′) be solutions of (3.1.kre) – (3.4.kre) corresponding to these data, respectively,
which satisfy (3.16.kre) – (3.19.kre). Assume moreover that there exist a constant K̃ > 0
and functions df , dg ∈ L2(]0, 1[× ]0, T [) such that

|f(θ1, x, t)− f ′(θ2, x, t)| ≤ K̃|θ1 − θ2|+ df (x, t), (3.21.kre)

|g(θ1, x, t)− g′(θ2, x, t)| ≤ K̃|θ1 − θ2|+ dg(x, t), (3.22.kre)

holds for all θ1, θ2 ∈ R+ and a.e. (x, t) ∈ ]0, 1[× ]0, T [.
Then there exists a constant C depending only on the size of the data in their

respective spaces such that for all t ∈ [0, T ] the differences ū = u−u′, θ̄ = θ−θ′,
satisfy

||ūt(t)||2 +
∫ t

0

(
||θ̄||2 + ||ūxt||2

)
(τ) dτ (3.23.kre)

≤ C

(
||ūt(0)||2 + ||ūx(0)||2 + ||θ̄(0)||2 +

∫ t

0

∫ 1

0

(d2
f + d2

g) dx dt

)
.

The proofs of the above theorems depend substantially on the following prop-
erties of the hysteresis operators P and V .

Proposition 7. Let Hypothesis (H2) hold. Then the operators P ,V are causal
and have the following properties.
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(i) For every ε, θ ∈W 1,1(0, T ), θ > 0, we have

|P [ε, θ](t)| ≤ V0, |V [ε, θ](t)| ≤ V0, (3.24.kre)∣∣∣∣ d

dt
P [ε, θ](t)

∣∣∣∣ ≤ L
(
|ε̇(t)|+ |θ̇(t)|

)
, a.e. in ]0, T [. (3.25.kre)

(ii) For every ε, ε2, θ1, θ2 ∈ W 1,1(0, T ), θ1 > 0, θ2 > 0 and for every t ∈ [0, T ],
we have

|P [ε1, θ1]− P [ε2, θ2]| (t) ≤ L

(
|θ1 − θ2|(t) + 2 max

0≤τ≤t
|ε1 − ε2|(τ)

)
, (3.26.kre)

|V [ε1, θ1]− V [ε2, θ2]| (t) ≤
CV

2
|θ1 − θ2|(t) + 2V0 max

0≤τ≤t
|ε1 − ε2|(τ). (3.27.kre)

4 Asymptotic behavior

The system (3.1.kre)–(3.4.kre) exhibits multiple sources of energy dissipation (plasticity,
viscosity, heat conduction) and it is quite justified to expect that under vanishing
external forcing, that is f ≡ g ≡ 0, the velocity and the temperature gradient
should asymptotically vanish as t → ∞. This will certainly not be true for
the strain because of the existence of remanent plastic deformations, cf. Section
III.2 of [6] for the temperature-independent case. It turns out however that, here
again, the problem is more difficult than in the case without hysteresis, due to
the lack of smoothness of hysteresis operators. Below we prove that in fact, the
velocity tends to 0 in L2 as t→∞, but no asymptotics is known for the velocity
gradient and for the temperature. The exact result reads as follows.

Theorem 8. Let the hypotheses of Theorem 4 be satisfied. Assume moreover
that γ(ε) = γ0 ε for some γ0 ≥ 0 and that f(θ, x, t) = g(θ, x, t) = 0 for all θ > 0
and (a.e.) x ∈ ]0, 1[, t > 0. Then the solution (u, θ) of (3.1.kre)–(3.4.kre) satisfies

lim
t→∞

∫ 1

0

u2
t (x, t) dx = 0. (4.1.kre)

Proof. In the sequel, we denote by C1, C2, . . . constants depending only on the
initial conditions.

Step 1. Multiply (3.1.kre) by ut, add the result to (3.2.kre) and integrate with respect
to x over ]0, 1[ . This yields the global energy balance identity

d

dt

∫ 1

0

(1
2
u2

t +
γ0

2
u2

x + CV θ + V [ux, θ]
)
(x, t) dx = 0. (4.2.kre)

Step 2. Let us multiply (3.2.kre) by −1/θ. We rewrite the result in the form(
−CV log θ +

1
2

∫ ∞
0

ϕθ(r, θ) s
2
r[ux] dr

)
t

+
1
θ

(
θxx + µ u2

xt

)
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+
1
θ

∫ ∞
0

ϕ(r, θ) sr[ux]
(
ux − sr[ux]

)
t
dr + β uxt = 0, (4.3.kre)

and integrating with respect to x and t we obtain from (2.10.kre) that∫ 1

0

(
−CV log θ +

1
2

∫ ∞
0

ϕθ(r, θ) s
2
r[ux] dr

)
(x, t) dx

+
∫ t

0

∫ 1

0

(
θ2

x

θ2
+ µ

u2
xt

θ

)
dx dt ≤ C1. (4.4.kre)

The left-hand side can be estimated using the relations∫ ∞
0

ϕθ(r, θ) s
2
r[ux] dr =

∫ ∞
0

[(
ϕθ(r, θ)− ϕθ(r, 1)

)
+

(
ϕθ(r, 1)− ϕ(r, 1)

)
+ ϕ(r, 1)

]
s
2
r[ux] dr

≥ −
∫ ∞

0

[∣∣ϕθ(r, θ) − ϕθ(r, 1)
∣∣ +

∣∣ϕθ(r, 1)− ϕ(r, 1)
∣∣] r2 dr. (4.5.kre)

From Hypothesis (H2) it follows that∫ ∞
0

∣∣ϕθ(r, 1)− ϕ(r, 1)
∣∣ r2 dr ≤ 2V0, (4.6.kre)

∫ ∞
0

∣∣ϕθ(r, θ)− ϕθ(r, 1)
∣∣ r2 dr ≤

∣∣∣∣∣
∫ θ

1

∫ ∞
0

|ϕθθ(r, θ′)| dr dθ′

∣∣∣∣∣ ≤ CV | log θ|.

(4.7.kre)

Using the trivial inequality

| log θ| ≤ max{θ,− log θ}, (4.8.kre)

and the estimate ∫ 1

0

θ(x, t) dx ≤ C2, (4.9.kre)

which follows from (4.2.kre), we conclude that∫ 1

0

∣∣ log θ(x, t)
∣∣ dx +

∫ t

0

∫ 1

0

(
θ2

x

θ2
+

u2
xt

θ

)
dx dt ≤ C3. (4.10.kre)

Step 3. For every x and t we have

|ut(x, t)| ≤
∫ 1

0

|uxt(ξ, t)| dξ ≤
∫ 1

0

|uxt|√
θ

√
θ dξ ≤

√
C2

(∫ 1

0

u2
xt

θ
dξ

)1/2

,

(4.11.kre)
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hence ∫ t

0

max
x
|ut(x, τ)|2 dτ ≤ C4. (4.12.kre)

Step 4. Analogously, for every x, y and t we have√
θ(x, t) ≤

√
θ(y, t) +

1
2

∫ 1

0

|θx|√
θ

(ξ, t) dξ

≤
√

θ(y, t) +
1
2

(
C2

∫ 1

0

θ2
x

θ2
(ξ, t) dξ

)1/2

, (4.13.kre)

hence

max
x

θ(x, t) ≤ C5

(
1 +

∫ 1

0

θ2
x

θ2
(ξ, t) dξ

)
. (4.14.kre)

Step 5. Multiply (3.1.kre) by ut and integrate over x. We obtain from (3.24.kre)

1
2

d

dt

∫ 1

0

u2
t (x, t) dx + µ

∫ 1

0

u2
xt(x, t) dx ≤

∫ 1

0

(
V0 + |β| θ + γ0 |ux|

)
|uxt|(x, t) dx,

(4.15.kre)

and Hölder’s inequality together with (4.2.kre), (4.14.kre) leads to the estimate

d

dt

∫ 1

0

u2
t (x, t) dx +

∫ 1

0

u2
xt(x, t) dx ≤ C6

(
1 +

∫ 1

0

θ2(x, t) dx

)
≤ C7

(
1 + max

x
θ(x, t)

)
≤ C8

(
1 +

∫ 1

0

θ2
x

θ2
(x, t) dx

)
. (4.16.kre)

Step 6. For t > 0 put

y(t) :=
∫ 1

0

u2
t (x, t) dx, h(t) := C8

∫ 1

0

θ2
x

θ2
(x, t) dx. (4.17.kre)

By (4.12.kre), (4.10.kre) we have∫ t

0

y(τ) dτ ≤ C4,

∫ t

0

h(τ) dτ ≤ C8 C3, (4.18.kre)

and (4.16.kre) can be rewritten in the form

ẏ(t) + y(t) ≤ C8 + h(t) a.e. (4.19.kre)

To complete the proof of Theorem 8, it suffices to use Theorem 9 below. ut
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5 Appendix: A differential inequality

We prove here the following general convergence result for differential inequalities
which extends Lemma 3.1 of [12].

Theorem 9. Let a nondecreasing function f : [0,∞[→ ]0,∞[, an absolutely
continuous function y : [0,∞[→ [0,∞[ and a function h ∈ L1(0,∞), h ≥ 0 a.e.
be given. Assume that∫ ∞

0

y(t) dt = Y <∞,

∫ ∞
0

h(t) dt = H <∞, (5.1.kre)

ẏ(t) ≤ f(y(t)) + h(t) a.e., (5.2.kre)

where the dot denotes derivative with respect to t. Then lim
t→∞

y(t) = 0.

If moreover there exist constants A, B ≥ 0 such that f(y) ≤ Ay2 + B for
every y ≥ 0, then

y(t) ≤
{

eAY (y(0) + H + B) for t < 1,
eAY (Y + H + B/2) for t ≥ 1.

(5.3.kre)

The following example shows that we cannot expect any a priori pointwise
bound for y(t) if f(y) grows faster than y2.

Example 10. Let ε ∈ ]0, 1[ be given. For n > 1 put

yn(t) =


|t− 1|ε−1 for t ∈ [0, 2] \ ]1− 1/n, 1 + 1/n[,
n1−ε for t ∈ [1− 1/n, 1 + 1/n],
e2−t for t > 2.

(5.4.kre)

Then yn are absolutely continuous,
∫∞
0 yn(t) dt ≤ 1 + 2/ε, yn(0) = 1, ẏn(t) ≤

(1 − ε)y2+ε/(1−ε)
n (t) a.e., and the sequence {yn(1)} is unbounded.

Proof of Theorem 9. Assume that there exists α > 0 and a sequence tn ↑ ∞ such
that

y(tn) ≥ 2α ∀n ∈ N. (5.5.kre)

We may assume (selecting a subsequence, if necessary) that the inequality

tn+1 − tn >
2Y

α
+ β, (5.6.kre)

holds for every n ∈ N, where

β :=
α

2f(2α)
, t1 >

Y

α
. (5.7.kre)
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By (5.1.kre), the sets

An := {t ∈ ]tn −
Y

α
, tn[ : y(t) < α} (5.8.kre)

are nonempty and we may put for all n ∈ N

an := sup An, (5.9.kre)

and similarly

bn := inf{t ∈ ]tn, tn +
Y

α
[ : y(t) < α}, (5.10.kre)

sn := min{t ∈ [an, bn] : y(t) ≥ 2α}. (5.11.kre)

By construction we have for all n ∈ N

an < sn ≤ tn < bn < an+1, (5.12.kre)

an+1 − bn > β, (5.13.kre)

y(an) = y(bn) = α, y(sn) = 2α, y(t) ≥ α ∀t ∈ [an, bn]. (5.14.kre)

We now define an auxiliary function z by the formula

z(t) :=

y(t)− α for t ∈
∞⋃

n=1
[an, bn],

0 otherwise.
(5.15.kre)

Then z is nonnegative, absolutely continuous, and for a.e. t > 0 we have

ż(t) ≤ f(z(t) + α) + h(t), z(t) ≤ y(t). (5.16.kre)

Moreover, for t ∈ [sn − β, sn] we have

z(t) ≤ α, (5.17.kre)

and integrating (5.16.kre) from t to sn we obtain

α− z(t) ≤
∫ sn

t

(
f(z(τ) + α) + h(τ)

)
dτ

≤ βf(2α) +
∫ sn

sn−β

h(τ) dτ. (5.18.kre)

For all t ∈ [sn − β, sn] we therefore have

α

2
≤ z(t) +

∫ sn

sn−β

h(τ) dτ, (5.19.kre)
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and integrating once more we conclude that

1
2
αβ ≤

∫ sn

sn−β

(
z(τ) + βh(τ)

)
dτ ∀n ∈ N, (5.20.kre)

which is a contradiction, since both z and h are integrable and the intervals
]sn − β, sn[ are pairwise disjoint.

To prove (5.3.kre), it suffices to rewrite (5.2.kre) in the form

d

dt

(
y(t)e−A

∫
t
0 y(τ)dτ

)
≤

(
B + h(t)

)
e−A

∫
t
0 y(τ) dτ , (5.21.kre)

hence for every 0 ≤ s < t we have

y(t) ≤ y(s)eA
∫

t
s

y(τ) dτ +
∫ t

s

(
B + h(τ)

)
eA
∫

t
τ

y(σ) dσdτ

≤ eAY
(
y(s) + H + B(t− s)

)
. (5.22.kre)

For t ≤ 1 we simply put s = 0, for t ≥ 1 we integrate (5.22.kre) with respect to s
from t− 1 to t. ut
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14. M. Šilhavý: The mechanics and thermodynamics of continuous media. Springer,
Berlin – Heidelberg, 1996.



EQUADIFF 9 CD ROM, Brno 1997 PROCEEDINGS

Masaryk University pp. 97–113

Some Global Bifurcation Problems for

Variational Inequalities

Vy Khoi Le1 and Klaus Schmitt2

1 Department of Mathematics and Statistics
University of Missouri - Rolla
Rolla, Missouri, 65409, USA

Email: vy@umr.edu
2 Department of Mathematics

University of Utah
Salt Lake City, Utah 84112, USA
Email: schmitt@math.utah.edu

Abstract. The paper presents several examples of bifurcation problems
for variational inequalities and discusses an abstract framework for treat-
ing such problems. This abstract framework is applied to analyze some
of the problems stated.

AMS Subject Classification. 35J85, 35R35, 49J40, 49R99, 73V25

Keywords. Variational inequalities, unilateral problems, topological de-
gree, bifurcation problems

1 Introduction

This paper is based on a lecture presented by the second author at Equadiff 9
held during the last week of August, 1997 in Brno, Czech Republic. The purpose
of the lecture was to present several illustrations of global bifurcation phenomena
in variational inequalities and to present some general framework for the analysis
of such problems. Thus we present and discuss several examples and show how
the global bifurcation results derived in [9] may be applied.

We first present examples of bifurcation problems which may be formulated
as variational inequalities, then provide an abstract setting for these problems
and state and sketch a proof of a global bifurcation theorem which will apply
in these situations and finally provide a (partial) bifurcation analysis for the
examples given.

When studying buckling phenomena of constrained elastic systems, one is
led in a very natural way to bifurcation problems for variational inequalities.
For example, the problem of the buckling of a slender column (beam) that is
constrained by some obstacles leads to a problem for variational inequalities,
simply because one searches for extremal points of an energy functional in a
space of possible displacements determined by the obstacles, and hence these
extremal points, which in the absence of constraints result in the Euler-Lagrange
differential equations, now will be characterized as solutions of inequalities.
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2 Some examples

In this section we present several examples of bifurcation problems which may
be formulated as bifurcation problems for variational inequalities.

2.1 A unilateral problem

Consider the following ordinary differential equation

−u′′ + u = λ(u + u3), t ∈ (0, π), (2.1.sch)

subject to the unilateral constraints
0 ≤ u(0), 0 ≤ u(π)

u′(0) ≤ 0 ≤ u′(π)

u(0)u′(0) = 0 = u(π)u′(π).

(2.2.sch)

Since nontrivial solutions of (2.1.sch) may not have multiple zeros, we see that the
above problem includes four different types of boundary value problems, namely
problems subject to the following conditions:

1. Dirichlet boundary conditions:

u(0) = 0 = u(π), (2.3.sch)

where, however λ must be restricted so that the second of the unilateral
conditions (2.2.sch) hold, i.e.

u′(0) < 0 < u′(π). (2.4.sch)

Thus, for example, the problem may not have any solutions u, with u(t) > 0,
t ∈ (0, π), nor any solutions u with u(t) > 0 for t in a neighborhood of 0
and u(t) < 0 for t in a neighborhood of π. Thus, imitating the bifurcation
analysis for nonlinear Sturm-Liouville problems, we would surmise that the
values

λ = n2 + 1, n = 1, 3, · · · (2.5.sch)

are bifurcation points, whereas the values

λ = n2 + 1, n = 2, 4, · · · (2.6.sch)

are not. Furthermore, changing the sign of a solution will no longer yield a
solution. Solutions must have an even number of zeros interior to (0, π).
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2. Neumann boundary conditions:

u′(0) = 0 = u′(π), (2.7.sch)

where, however λ must be restricted so that the first of the unilateral con-
ditions (2.2.sch) hold, i.e.

u(0), u(π) > 0. (2.8.sch)

Again, using the bifurcation analysis for nonlinear Sturm-Liouville problems,
we find that the values

λ = n2 + 1, n = 0, 2, 4, · · · (2.9.sch)

are bifurcation points, whereas the values

λ = n2 + 1, n = 1, 3, · · · (2.10.sch)

are not. Again, changing the sign of a solution will no longer yield a solution
and solutions must have an even number of zeros interior to (0, π).

3. Mixed Dirichlet and Neumann boundary conditions:

u(0) = 0 = u′(π), (2.11.sch)

where, however λ must be restricted so that the first and the second of the
unilateral conditions (2.2.sch) hold, i.e.

u′(0) < 0, u(π) > 0. (2.12.sch)

As above, we compute that the values

λ =
(

2n− 1
2

)2

+ 1, n = 1, 3, 5, · · · (2.13.sch)

are bifurcation points, whereas the values

λ =
(

2n− 1
2

)2

+ 1, n = 2, 4, 6, · · · (2.14.sch)

are not. Changing the sign of a solution will no longer yield a solution and
these solutions must have an odd number of simple zeros interior to (0, π).

4. Mixed Neumann and Dirichlet boundary conditions:

u′(0) = 0 = u(π), (2.15.sch)

where, however λ must be restricted so that the first and the second of the
unilateral conditions (2.2.sch) hold, i.e.

u(0) > 0, u′(π) > 0. (2.16.sch)

In this case we obtain the set of bifurcation points as for the other set of
mixed boundary conditions considered above.
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Let us formulate the above problem as an equivalent bifurcation problem for
a variational inequality. To this end we consider the Sobolev space H1(0, π) (of
all L2(0, π) functions with a square integrable first distributional derivative) and
let the (closed and convex) set K be defined by

K = {u ∈ H1(0, π) : u(0) ≥ 0, u(π) ≥ 0}.

Then, if u solves (2.2.sch), u will be in H2(0, π) and hence u ∈ C1[0, π]. Therefore
if u also satisfies the boundary constraints (2.3.sch), we may multiply (2.1.sch) by an
arbitrary v ∈ K and an integration by parts and the boundary constraints yield

∫ π

0

u′(v − u)′ + u(v − u)− λ(u + u3)(v − u) ≥ 0, ∀v ∈ K,

u ∈ K,

(2.17.sch)

which is a variational inequality. Conversely, if u solves the variational inequality
(2.17.sch), using the density of C∞0 (0, π) in K, we easily conclude that u actually
solves (2.1.sch), (2.2.sch).

If we denote by IK , the indicator function of the set K, i.e.

IK(u) =

0, u ∈ K

∞, u /∈ K,

then we see that the variational inequality (2.17.sch) is equivalent to the variational
inequality

∫ π

0

u′(v − u)′ + u(v − u)− λ(u + u3)(v − u) + IK(v)− IK(u) ≥ 0

∀v ∈ H1(0, π)

u ∈ H1(0, π).

(2.18.sch)

We note here, that because of the convexity and closedness of K, the functional
IK is a lower semicontinuous convex functional on the (Hilbert) space H1(0, π).

2.2 A unilateral problem for a semilinear elliptic equation

A higher dimensional analogue of the problem discussed above in section 2.1
is the following unilateral problem. Let Ω be a bounded smooth domain in
RN , N ≥ 2, and consider the semilinear elliptic equation

−∆u + u = λ(u + g(u)), x ∈ Ω, (2.19.sch)

where g : R → R is a smooth odd function with g′(0) = 0 and |g(u)| ≤ a +
b|u|s, 1 ≤ s < N+2

N−2 . Let the following unilateral constraints be imposedu(x) ≥ 0, ∂u
∂ν ≥ 0, x ∈ ∂Ω

u(x)∂u
∂ν = 0, x ∈ ∂Ω,

(2.20.sch)
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where ν is the unit normal vector field to ∂Ω.
In this case, if we consider the Sobolev space H1(Ω) and let

K = {u ∈ H1(Ω) : u(x) ≥ 0, x ∈ ∂Ω ( in the sense of traces)},

then the above unilateral problem is equivalent to the variational inequality

∫
Ω

∇u∇(v − u) + u(v − u)− λ(u + g(u))(v − u) + IK(v) − IK(u) ≥ 0,

∀v ∈ H1(Ω),

u ∈ H1(Ω).
(2.21.sch)

It is again apparent that the special Dirichlet problem, i.e. equation (2.19.sch) sub-
ject to the boundary condition

u = 0, x ∈ ∂Ω,

and the Neumann problem, i.e. equation (2.19.sch) subject to

∂u

∂ν
= 0, x ∈ ∂Ω

will yield some of the bifurcation points for problem (2.21.sch). However, one very
quickly sees that much more is needed to detect other bifurcation points.

2.3 A simply supported, or clamped, slender beam subject to
elastic obstacles

In this example, we consider a bifurcation problem for a beam resting between
two foundations (one above and one below, with partial contact along its length)
with nonlinear elastic laws. This problem can be modeled by the following vari-
ational inequality:



∫ a

0

u′′(v − u)′′ − λ

∫ a

0

u′√
1 + u′2

(v − u)′

+
[∫

I1

k1(v−)γ +
∫

I2

k2(v+)β

]
−

[∫
I1

k1(u−)γ +
∫

I2

k2(u+)β

]
≥ 0, ∀v ∈ E,

u ∈ E.

(2.22.sch)

Here, [0, a] (a > 0) is the interval occupied by the beam, and E = H2
0 (0, a),

or E = H2(0, a) ∩ H1
0 (0, a) depending on whether the beam is clamped or is

simply supported at the ends 0 and a. I1, I2 ⊂ (0, a), |I1|, |I2| > 0 are closed,
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disjoint sets representing the domain of possible contact between the beam and
the foundations.

We refer to [12], [13], and [14], for the physical motivation in deriving such
a model.

Because u 7→ u+, u−, u ∈ R are nonnegative and convex, we see that the
functional j, given by

j(u) =
∫

I1

k1(u−)γ +
∫

I2

k2(u+)β ,

is well defined, with values in [0,∞]. Moreover, j is convex and nonnegative, and
j(0) = 0. Using Fatou’s lemma, we find that j is lower semicontinuous on V .

2.4 Bifurcation problems for Navier-Stokes flows

We consider here bifurcation problems for some (nonlinear) variational inequal-
ities associated with the Navier-Stokes equation, subject to different types of
unilateral constraints (cf. [10]). Let Ω be a bounded domain in R3 with smooth
boundary. We are concerned with variational inequalities of the form:

ν

∫
Ω

Du : D(v − u) + b(u, u, v − u) + j(v)− j(u)

≥
∫

Ω

g(x, u, λ) · (v − u), ∀v ∈ E

u ∈ E.

(2.23.sch)

Here E = {v ∈ [H1
0 (Ω)]3 : divv = 0 a.e. in Ω}. E is a (Hilbert) subspace of

[H1
0 (Ω)]3 with the restricted norm and scalar product. We also denote Du =

[∂iuj ]1≤i,j≤3 and assume that ν > 0 is the viscosity constant.
Let b be the trilinear form defined on [H1

0 (Ω)]3 by

b(u, v, w) =
∫

Ω

3∑
i,j=1

ui(∂ivj)wjdx

=
∫

Ω

uT (Du)wdx,

for all u, v, w ∈ [H1
0 (Ω)]3.

We also assume that j : V → [0,∞] is a convex, lower semicontinuous func-
tional such that j(0) = 0, and g : Ω×R3×R→ R3, (x, u, λ) 7→ g(x, u, λ) satisfies
the Carathéodory condition (i.e. gi satisfies this condition for each i = 1, 2, 3).
We assume that g is differentiable with respect to u and g, Dug satisfies the
usual growth condition: |g(x, u, λ)| ≤ A(λ) + B(λ)|u|s−1

|Dug(x, u, λ)| ≤ A(λ) + B(λ)|u|s−2,
(2.24.sch)
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for a.e. x ∈ Ω, all u, λ ∈ R, with A, B ∈ L∞loc(R), 1 < s < 6(= 2∗).
Here u is the velocity of the fluid, b is the usual trilinear form in the Navier-

Stokes equation, and g is the outer force acting on the fluid. g depends on u (in
a nonlinear manner) and on λ, which usually represents the magnitude of the
force. We assume that

g(x, 0, λ) = 0 for a.e. x ∈ Ω, all λ ∈ R,

i.e., we have no external force at points with zero velocity. Here j is some kind of
constraint imposed on the velocity. In many cases, j is of the form j = IK , where
K is a closed, convex subset of V , representing the set of admissible velocity fields
of the fluid. For example, interesting choices of K are the following:

K = {u ∈ E : u1(x) ≥ −c, u2(x) ≥ −d, c, d ≥ 0},

K = {u ∈ E : |∇ × u| ≤ c, c ≥ 0},

K = {u ∈ E : |
∫

S

u · ndS| ≤ c, c ≥ 0}.

In the case j = 0, the variational inequality (2.23.sch) becomes the equation:
ν

∫
Ω

Du : Dv + b(u, u, v) =
∫

Ω

g(x, u, λ) · v, ∀v ∈ E

u ∈ E,
(2.25.sch)

which is the usual variational form of the Navier-Stokes equation (cf. [11], [16],
or [17]).

Other interesting choices for the functional j (the case of visco plastic Bing-
ham fluids, cf. [11]) are:

j(u) =
∫

Ω

µ(x)|Du|γ ,

j(u) =
∫

Ω

µ(x)|
∑

ε2ij(u)|γ ,

where
εij(u) =

1
2
(∂iuj + ∂jui)

and µ is a nonnegative locally integrable function.

2.5 Bifurcation problems associated with the p-Laplace operator

In this example, we consider bifurcation problems for the following variational
inequality:

∫
Ω

|∇u|p−2∇u∇(v − u)−
∫

Ω

[λ|u|p−2u + g(x, u, λ)](v − u) + j(v)− j(u)

≥ 0, ∀v ∈ E,

u ∈ E.

(2.26.sch)
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Here p > 1, Ω is a bounded domain in RN (N ≥ 1) with a smooth boundary,

E = {u ∈W 1,p(Ω) : v = 0 on Γ},

where Γ is a (relatively) open subset of ∂Ω with positive measure. W 1,p(Ω) is
the usual Sobolev space, equipped with the norm,

‖u‖W 1,p(Ω) =
[∫

Ω

(|u|p + |∇u|p)
]1/p

, u ∈ W 1,p(Ω).

(E, ‖ · ‖W 1,p(Ω)) is a closed (Banach) subspace of W 1,p(Ω). By Poincaré’s in-
equality, we know that

‖u‖ =
(∫

Ω

|∇u|p
)1/p

, u ∈ E,

defines a norm on E, equivalent to ‖ · ‖W 1,p(Ω). In the sequel, we will always
consider E with this norm. We also define the pairing between E and E∗ by
〈·, ·〉. We assume that

g : Ω × R× R→ R

is a Carathéodory function, such that

g(x, u, λ) = o(|u|p−1), (2.27.sch)

as u→ 0, uniformly a.e. with respect to x ∈ Ω and uniformly with respect to λ
on bounded intervals, and, moreover, g satisfies the growth condition

|g(x, u, λ)| ≤ C(λ)[m(x) + M |u|p−1], (2.28.sch)

for a.e. x ∈ Ω, all u, λ ∈ R, where C(λ) ≥ 0 is bounded on bounded sets,
m ∈ L

p
p−1 (Ω), and M > 0 is a constant.

As a particular choice for the functional j we shall take

j(u) =
∫

∂Ω

|u|dS, u ∈ V. (2.29.sch)

Other choices of j will also be considered.

3 The abstract setting

In this section we shall provide an abstract framework for a bifurcation analysis
for the types of problems introduced in the previous section, section 2. The
setting will be variational inequalities in reflexive Banach spaces.
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3.1 Notation and definitions

Throughout we shall denote by E a reflexive Banach space and by E∗ its dual.
The norm in E will be denoted by ‖ · ‖ and that in E∗ by ‖ · ‖∗. The pairing
between E∗ and E shall be given by 〈·, ·〉, i.e. if f ∈ E∗ and u ∈ E, then
f(u) = 〈f, u〉.

We shall assume that:

–

j, J : E → R+ ∪ {∞}

are convex and lower semicontinuous functionals with

j(0) = J(0) = 0.

–

A, α : E → E∗

are continuous and bounded operators with

A(0) = α(0) = 0,

which are strictly monotone, coercive and belong to class (S), i.e:

• A is strictly monotone:

〈A(u)−A(v), u − v〉 > 0, whenever u 6= v.

• A is coercive: There exist constants c > 0 and p > 1 such that

〈A(u), u〉 ≥ c‖u‖p, ∀u ∈ E.

• A belongs to class (S) : For all weakly convergent sequences {vn}, vn ⇀
v, with

lim〈A(vn), vn − v〉 = 0,

it must hold that

vn → v.

–

B, f : R× E → E∗

are completely continuous operators with

B(λ, 0) = 0 = f(λ, 0), ∀λ ∈ R.
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3.2 Homogenizations

The following relationships between the operators introduced above (section 3.1)
will be assumed:

– For all sequences {vn}, vn → v, and all sequences of positive numbers
σn, σn → 0+,

lim
1

σp−1
n

A(σnvn) = α(v).

– For all weakly convergent sequences {vn}, vn ⇀ v, and all sequences of
positive numbers σn, σn → 0+, all sequences {λn}, λn → λ,

lim
1

σp−1
n

B(λn, σnvn) = f(λ, v).

– For all weakly convergent sequences {vn}, vn ⇀ v, and all sequences of
positive numbers σn, σn → 0+,

lim inf
1
σp

n
j(σnvn) ≥ J(v),

further, for all v ∈ E, and all sequences of positive numbers σn, σn → 0+,
there exists a sequence {vn}, vn → v, such that

lim
1
σp

n
j(σnvn) = J(v).

3.3 Equivalent operator equations

Consider, for g ∈ E∗, the variational inequality 〈A(u)− g, v − u〉+ j(v)− j(u) ≥ 0, ∀v ∈ E

u ∈ E.
(3.1.sch)

It follows from classical results (see e.g. [7], [11]), that this problem is uniquely
solvable, hence defines an operator

TA,j : E∗ → E (3.2.sch)

by
TA,j(g) = u,

where u is the unique solution of (3.1.sch). This operator is also continuous (cf. [9]).
Therefore, if we consider the variational inequality 〈A(u)−B(λ, u), v − u〉+ j(v)− j(u) ≥ 0, ∀v ∈ E,

u ∈ E,
(3.3.sch)
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then u solves (3.3.sch) if and only if u solves

TA,jB(λ, u) = u. (3.4.sch)

And similarly if we consider the variational inequality 〈α(u)− f(λ, u), v − u〉+ J(v)− J(u) ≥ 0, ∀v ∈ E,

u ∈ E,
(3.5.sch)

then u solves (3.5.sch) if and only if u solves

Tα,Jf(λ, u) = u. (3.6.sch)

It follows from the relationships between A and α, B and f and j and J,
that if u solves (3.5.sch) then so does σu for any σ(> 0) ∈ R.

3.4 Global bifurcation

Let us assume that (λ0, 0) ∈ R × E is a bifurcation point for (3.3.sch), then it
follows that (3.5.sch) and hence also (3.6.sch) will have a nontrivial solution for λ = λ0.
Therefore, if a ∈ R is such that (3.5.sch) has only the trivial solution for λ = a, it
will follow that for r > 0, sufficiently small, the Leray-Schauder degree

d(id− Tα,Jf(a, ·), Br(0), 0)

is defined (here Br(0) is the open ball of radius r in E centered at 0) and we
obtain

d(id− Tα,Jf(a, ·), Br(0), 0) = d(id− TA,jB(a, ·), Br(0), 0)

(see e.g. [9]). We hence may employ the homotopy invariance principle of the
Leray-Schauder degree, to conclude that if a, b ∈ R, a < b are such that (3.5.sch)
has only the trivial solution for λ = a, b and if

d(id− Tα,Jf(a, ·), Br(0), 0) 6= d(id− Tα,Jf(b, ·), Br(0), 0) (3.7.sch)

then [a, b]×{0} will contain a bifurcation point for (3.4.sch) and hence for (3.3.sch) (cf.
[8]). In fact, we may employ the global bifurcation result of Rabinowitz [15] to
conclude that global bifurcation takes place in the sense of that theorem.

Thus in bifurcation problems of the type (3.3.sch), in order to be able to apply the
above considerations we need to compute the operators α and f, the functional
J. Further one needs to find values a, b ∈ R, a < b such that (3.7.sch) holds for λ
values a and b (by no means an easy task, in general). This we shall do for some
of the examples considered in section 2 and refer the interested reader to many
additional examples in [9].



108 Vy Khoi Le and Klaus Schmitt

4 Examples revisited

In this section we shall employ the abstract setting discussed in section 3 to
discuss the existence of some bifurcation points for examples related to those in-
troduced in section 2. We shall not dwell on the first example, since this problem
is equivalent to the existence of bifurcation branches (in K) of four different non-
linear Sturm-Liouville problems, those problems being completely understood.

Before turning to the discussion of some of the other examples, we present
some other abstract features common to some of them.

4.1 Semilinear problems

Let us assume
a : E × E → R

is a continuous, coercive and bilinear form and let

A : E → E∗

be defined by
〈A(u), v〉 = a(u, v).

Furthermore assume that

B(λ, u) = λBu + R(u), R(u) = o(‖u‖), as u→ 0,

with B compact linear and that

j = IK ,

where K is a closed convex subset of E with 0 ∈ K.
In this case one easily computes that p = 2, α = A, f(λu) = λBu and

J = IK0 , where K0 is the support cone of K, i.e

K0 = ∪t>0tK.

If it is the case that K0 is a subspace of E, then the variational inequality (3.5.sch)
becomes  〈α(u)− f(λ, u), v − u〉+ IK0(v)− IK0(u) ≥ 0, ∀v ∈ E,

u ∈ E,
(4.1.sch)

which is equivalent to 〈α(u)− f(λ, u), v − u〉 ≥ 0, ∀v ∈ K0

u ∈ K0,
(4.2.sch)
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and, since K0 is a subspace, the latter is equivalent to 〈α(u) − f(λ, u), v〉 = 0, ∀v ∈ K0

u ∈ K0.
(4.3.sch)

From this we see (recall the comment at the end of section 3.3) that the solution
operator Tα,J is a bounded linear operator and equation (3.6.sch) becomes

u = λTα,JBu. (4.4.sch)

Hence the possible bifurcation points for (3.3.sch) are to be sought among the count-
able set {(λi, 0)}, where λi is a characteristic value of the compact linear operator
Tα,JB. And each characteristic value of odd multiplicity will yield a bifurcation
point. We note here that what has just been said is true as long as J is the
indicator function of a subspace, irregardless whether j = IK for some closed
convex set K.

4.2 A semilinear elliptic problem

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω, and let Γ ⊂ ∂Ω
be a relatively open subset of positive measure.

Let
E = {u ∈ H1(Ω) : u = 0, a.e. on Γ}.

Let
a : E × E → R

be given by

a(u, v) =
∫

Ω

∇u · ∇v,

then (because of Poincaré’s inequality) a is a continuous, coercive and bilinear
form. Let g : R→ R be a continuous function with g(u) = o(|u|) as u→ 0, and
define B(λ, u) by

〈B(λ, u), v〉 =
∫

Ω

λuv + g(u)v,

then

〈f(λ, u), v〉 =
∫

Ω

λuv.

Let us define the functional j by

j(u) =
∫

∂Ω

µ|u|γ ,

where µ, γ are positive constants with 1 ≤ γ < 2.
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Embedding theorems (see [1], [6]) tell us that the mapping

H1(Ω) ↪→ Lq(∂Ω)

u 7→ u|∂Ω

are compact for

1 ≤ q < p̄ =


2(N−1)

N−2 , N > 2

∞, N = 1, 2.

It hence will follow that j is convex and lower semicontinuous and (since p = 2
and 1 ≤ γ < 2) that

J(u) = IH1
0 (Ω).

It hence follows from the results above, i.e. the results in section 4.1, that (3.5.sch)
is equivalent to the problem∫

Ω

∇u · ∇v − λ

∫
Ω

uv = 0, ∀v ∈ H1
0 (Ω), u ∈ H1

0 (Ω), (4.5.sch)

which is equivalent to the eigenvalue problem

∆u + λu = 0, u ∈ H1
0 (Ω). (4.6.sch)

We hence conclude that all eigenvalues of (4.6.sch) which are of odd multiplicity
yield bifurcation points.

4.3 An inequality involving the p-Laplacian

A situation, similar to the above, arises, if we consider the example presented in
section 2.5. There we let

E = {u ∈W 1,p(Ω) : u = 0, a.e. on Γ}

and let
A : E → E∗

be given by

〈A(u), v〉 =
∫

Ω

|∇u|p−2∇u · ∇v.

Let g : R→ R be a continuous function with g(u) = o(|u|p−1) as u→ 0, and
define B(λ, u) by

〈B(λ, u), v〉 =
∫

Ω

λ|u|p−2uv + g(u)v,

then
〈f(λ, u), v〉 =

∫
Ω

λ|u|p−2uv.
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Let us define the functional j by

j(u) =
∫

∂Ω

µ|u|,

where µ is a positive constant.
Again, using embedding theorems (see [1]) we see that the mapping

W 1,p(Ω) ↪→ L1(∂Ω)

u 7→ u|∂Ω

is compact.
It hence will follow that j is convex and lower semicontinuous and that

J(u) = IW 1,p
0 (Ω).

It hence follows from the results above, i.e. the results in section 4.1, that (3.5.sch)
is equivalent to the problem∫

Ω

|∇u|p−2∇u · ∇v − λ

∫
Ω

|u|p−2uv = 0, ∀v ∈W 1,p
0 Ω, (4.7.sch)

which is equivalent to the eigenvalue problem

div(|∇u|p−2∇u) + λ|u|p−2u = 0, u ∈W 1,p
0 (Ω). (4.8.sch)

This eigenvalue problem has received much attention during recent years and
several results about eigenvalues and the the computation of the Leray-Schauder
degree of the associated completely continuous perturbation of the identity in
a neighborhood of such eigenvalues have become available (see e.g. [2], [3], [4],
[5]).

4.4 Stationary Navier-Stokes flows

In this section we consider the example discussed in section 2.4 and refer to this
section for the statement of the problem and the notation.

Again the operator A is given by a continuous, coercive and bilinear form,
hence A = α. Also it easily follows that

〈f(λ, u), v〉 = λ

∫
Ω

Dug(x, 0)u · v.

To hence obtain the homogeneous variational inequality (3.5.sch) we must com-
pute the functional J. To this end, we observe that if j = IK , where K is any
of the choices given in section 2.4, then J = IE , since the support cone of K in
any of the cases is the whole space.



112 Vy Khoi Le and Klaus Schmitt

We hence obtain that, in these cases, (3.5.sch) is given by
ν

∫
Ω

Du : Dv + λ

∫
Ω

Dug(x, 0)u · v = 0, ∀v ∈ E,

u ∈ E,
(4.9.sch)

which is the eigenvalue problem for the Stokes equation. Its eigenvalues of odd
multiplicity hence yield global bifurcation points for (2.23.sch).

Let us now consider the case that j is given by

j(u) =
∫

Ω

µ(x)|Du|γ ,

where µ ∈ L∞(Ω) and γ ≥ 1. We observe that the effective domain of j is given
by

D(j) = {u : j(u) <∞} =

E, 1 ≤ γ ≤ 2

{u ∈ E : µ|Du|γ ∈ L1(Ω)}, γ > 2

Using these facts one may now compute

J =


IW , 1 ≤ γ < 2

j, γ = 2

IE , γ > 2,

where
W = {u ∈ E : Du = 0, a.e. on Ω \Ω0},

and
Ω0 = {x ∈ Ω : µ(x) = 0}.
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4. M. A. del Pino and R. F. Manásevich: Global bifurcation from the eigenvalues

of the p-Laplacian, J. Diff. Equa., 92 (1991), pp. 226–251.
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Linéaires, Dunod, Paris, 1969.

12. J. Oden and J. Martins: Models and computational methods for dynamics fric-
tion phenomena, Comp. Methods Appl. Mech. Eng., 52 (1985), pp. 527–634.

13. P. Rabier and J. Oden: Solution to Signorini-like contact problems through in-
terface models, I, preliminaries and formulation of a variational inequality, Nonl.
Anal., TMA, 11 (1987), pp. 1325–1350.

14. P. Rabier and J. Oden: Solution to Signorini-like contact problems through inter-
face models, II, existence and uniqueness theorems, Nonl. Anal., TMA, 12 (1988),
pp. 1–17.

15. P. Rabinowitz: Some aspects of nonlinear eigenvalue problems, Rocky Mtn. J.
Math., 3 (1973), 162–202.

16. R. Temam: Navier-Stokes Equations, North-Holland, New York, 1977.
17. E. Zeidler: Nonlinear Functional Analysis and its Applications, Vol.4: Applica-

tions to Mathematical Physics, Springer, Berlin, 1988.





EQUADIFF 9 CD ROM, Brno 1997 PROCEEDINGS

Masaryk University pp. 115–145

Seventy-Five Years of Global Analysis around

the Forced Pendulum Equation

Jean Mawhin
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Description of the set P of f for which the equation u′′ + sin u = f(t)
has a T -periodic solution seems to remain a terra incognita.
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Abstract. We survey the recent progress made in the study of har-
monic, subharmonic and other solutions of the forced pendulum equa-
tion

u′′ + cu′ + a sin u = h(t)

when the forcing term h is periodic, almost periodic or bounded. The
results depend upon various methods of nonlinear functional analysis,
critical point theory and dynamical systems.
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Keywords. Forced pendulum equation, periodic solutions, almost pe-
riodic solutions, Lagrange stability

1 Introduction

Seventy-five year ago, in a paper published in 1922 in the special issue of the
Mathematische Annalen dedicated to Hilbert’s sixtieth birthday anniversary
[86], Hamel, one of his former students, has provided the first general existence
results for the periodic solutions of the periodically forced pendulum equation

y′′ + a sin y = b sin t. (1.1.maw)
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This equation had been the central topics of a monograph published four years
earlier by Duffing [55], who had restricted his study to the approximate determi-
nation of the periodic solutions for the following approximation of equation (1.1.maw)

y′′ + ay − cy3 = b sin t,

which still bears his name today.
Hamel’s paper starts by an existence result for a 2π-periodic solution of

equation (1.1.maw) by using the direct method of the calculus of variations made
rigorous by Hilbert at the beginning of the century. He shows indeed that the
action integral

A(y) :=
∫ 2π

0

(
y′2(t)

2
+ a cos y(t) + by(t) sin t

)
dt

has a minimum on the space of 2π-periodic functions of class C1. His argument
extends easily to the more general case where b sin t is replaced by any 2π-
periodic function with mean value zero, a fact rediscovered independently, in
the easier framework of Sobolev spaces, some sixty years later [179,47], and
rapidly followed by the proof of the existence of a second 2π-periodic solution
[124] through the use of more sophisticated tools of critical point theory. In the
second section of [86], Hamel uses the Ritz method to find a first approximation of
the amplitude of the periodic solution found in the previous section. In Section 4,
Hamel observes that the symmetries of the equation imply that any solution of
equation (1.1.maw) such that

y(0) = y(π) = 0 (1.2.maw)

can be extended as an odd 2π-periodic solution. He then reduces the problem
(1.1.maw)–(1.2.maw) to the integral equation

y(t) = −a

∫ 2π

0

K(t, τ) sin y(τ) dτ − b sin t := F (y)(t), (1.3.maw)

where K(t, τ) is the Green function of its linear part, and shows that the corre-
sponding method of successive approximations

yn+1 = F (yn), y0(t) = −b sin t,

converges. His argument is equivalent to showing the existence of a sufficiently
large integer m, for which the mth iterate Fm of F is a contraction in the space
of C[0, π]. Observe that this is published the very same year where Banach pub-
lishes his version of the contraction mapping theorem! Notice also that this part
of Hamel’s paper will inspire Hammerstein’s famous researches on nonlinear inte-
gral equations. Hamel uses not only the equivalent integral equation for existence
and uniqueness conclusions, but also to obtain approximations to the solutions.
For this, Hamel relies upon Schmidt’s version of the Lyapunov-Schmidt’s method.
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This short description clearly shows that Hamel’s paper anticipates or uses sev-
eral of the fundamental methods of nonlinear analysis, and that the opening
sentence of his paper, recalled in exergue of this work, is fully justified.

The survey papers [110,111] describe the contributions to the forced pendu-
lum equation in the fifty-five years following Hamel’s work. An important role
in renewing the interest to the forced pendulum equation was played in the late
seventies by Fučik, who wrote, in the Introduction of Chapter 26 of his mono-
graph [72] : Finally we shall present here one attempt to obtain the existence of
a T -periodic solution of the mathematical pendulum equation

− u′′(x) + sin u(x) = f(x). (1.4.maw)

The result is not final since the necessary and sufficient condition obtained for
T -periodic solvability of (1.4.maw) is not useful. After describing very partial results
in this direction and mentioning extensions personally communicated by Dancer,
Fučik concluded with the sentence mentioned in exergue of this paper.

Motivated by Fučik’s remarks, but unaware of the existence of Hamel’s pa-
per, Castro [38], Dancer [47] and Willem [179], reintroduced in the early eight-
ies the use of variational methods in the study of the forced pendulum. The
time was ripe for the obtention, more than sixty years after the first one, of
a second periodic solution, using a version of the mountain pass lemma [124].
The survey papers [110,111,114,117,118,121,183], as well as to the monographs
[112,126,40,79,98,151] provide a description of the state of the art till the early
nineties for the global results on the existence and multiplicity of periodic solu-
tions.

At the same time, the forced pendulum equation also became a paradigm for
the theory of chaos, and appeared in the description of Josephson type junctions.
According to Baker and Gollub [13]: Now 400 years after Galileo’s initial work,
the pendulum has again become an object of research as a chaotic system. We
shall not develope this viewpoint here and refer to a nice survey of Chenciner [42]
and to the papers or monographs [13,22,25,26,29,49,54,80,81,82,87,88,89,94,95]
[96,97,100,101,104,127,152,160,168,150,170] and their references.

Despite its fundamental role in the development of the qualitative theory of
nonlinear differential equations and its applications to engineering, we shall not
discuss here the special case of the pendulum equation with a constant torque

y′′ + cy′ + a sin y = b,

initiated by Tricomi [175,176] and widely developed since (see e.g. [10,15,85,105]
[154,153,163,164] and their references).

Moreover, to keep the size of the paper reasonable and make more easy the
comparaison between results obtained through different methods, we shall only
state the theorems for the special case of the standard forced pendulum equation

y′′ + cy′ + a sin y = h(t).

Most of the assertions remain valid if a sin y is replaced by an arbitrary contin-
uous function g(y) which is S-periodic for some S > 0 and of mean value zero.
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There are even recent results which depend upon the fact that a sin y is replaced
by a S-periodic function whose Fourier series contains higher harmonics [93].
Also, some conclusions survive when the friction term cy′ is replaced by a more
general one of Liénard type f(y)y′ or of Rayleigh type f(y′) (see e.g. [124,83]).

For the same reason, we shall not describe the possible generalizations to
systems of equations of the pendulum-type, and in particular to the equations of
the forced multiple pendulum, and to higher order pendulum-type equations. The
reader can consult the original papers [125,36,53,66,149,64,119,40,62,171,173]
[174,56,57,128,63,58,67,21]. Some of those results are related to the famous solu-
tion by Conley and Zehnder [44] of a conjecture of Arnold in symplectic geometry.
See also, for example, [45,189,190,61,106]. We shall not describe the results deal-
ing with symmetric forcing terms h(t), which have been recently considered in
[161,162,155,16,136]. Also we shall leave aside the existence of forced oscillations
for the spherical pendulum (which depend upon methods of a quite different na-
ture, and have been the object of a sequence of papers by Furi, Pera and Spadini
[73,74,75,76,77]), for some pendulum-type equations describing the libration of
satellites (see [17,99,113,116,147,84]), and for delay-differential equations of the
pendulum type like the sunflower equation [37].

Let us mention also that the corresponding problem for the case of Dirichlet
boundary conditions, namely

y′′ + y + a sin y = h(t), y(0) = 0 = y(π),

and its analog for partial differential equations, has been the object, since the
pioneering paper of Ward [178], of a number of studies based upon various meth-
ods. See [169,107,156,157,158,159,46,11,31,32,33,34]. This problem has both deep
analogies and strong differences with the periodic boundary value problem for
the forced pendulum.

Finally, let us warn the reader that, despite of its substantial size, the given
bibliography is undoubtly far to be complete, but its size is sufficient to show how
stimulating has been the study of the forced pendulum equation in the recent
development of nonlinear and global analysis, and of the theory of dynamical
systems.

2 Periodic forcing

2.1 The problems

We consider the (possibly dissipative) periodically forced pendulum equation

y′′ + cy′ + a sin y = h(t), (2.1.maw)

where, without loss of generality, c ≥ 0, a > 0, and h is T -periodic, for some
period T > 0, and corresponding frequency ω := 2π

T . For the simplicity of ex-
position, we shall assume that h is continuous. Most results hold under weaker
regularity conditions.
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A T -periodic solution of equation (2.1.maw) is a solution y : R → R such that
y(t + T ) = y(t) for all t ∈ R. By integrating equation (2.1.maw) over [0, T ], we
immediately see that a necessary condition for the existence of a T -periodic
solution to equation (2.1.maw) is that∣∣∣∣∣ 1

T

∫ T

0

h(t) dt

∣∣∣∣∣ ≤ a.

The main questions which can be raised about the T -periodic problem for
equation (2.1.maw) are the following ones:

1. Determine the nature and the properties of the set

R = R(c, a, T )

of T -periodic forcings h such that equation (2.1.maw) has at least one T -periodic
solution, i.e. the range of the nonlinear operator

d2

dt2
+ c

d

dt
+ a sin(·)

over the space of T -periodic functions of class C2.
2. For h ∈ R, discuss the multiplicity of the T -periodic solutions.
3. For h ∈ R, discuss the stability of the T -periodic solutions.
4. Discuss the existence of other solutions and properties of the set of all solu-

tions.

Concerning the multiplicity, it is clear that if y is a T -periodic solution of
equation (2.1.maw), then the same is true for y + 2kπ, k ∈ Z. Consequently, we shall
say that y1 and y2 are distinct T -periodic solutions of (2.1.maw) if they do not differ
by a multiple of 2π.

In the sequel of the paper, we shall use the following notations.

Lp
T = {h ∈ Lp

loc(R) : h(t + T ) = h(t) for a.e. t ∈ R}

CT = {h ∈ C(R) : h(t + T ) = h(t) for all t ∈ R}

H1
T = {h ∈ ACloc(R) : h′ ∈ L2}

‖h‖p =

(
1
T

∫ T

0

|h(t)|p dt

)1/p

, ‖h‖∞ = max
t∈[0,T ]

|h(t)|,

‖h‖H1 =
(
‖h‖22 + ‖h′‖22

)1/2

h =
1
T

∫ T

0

h(t) dt, h̃(t) = h(t)− h

(∫ T

0

h̃(t) dt = 0

)

L̃p
T = {h ∈ Lp

T : h = 0}, C̃T = {h ∈ CT : h = 0}
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Consequently,
Lp

T = R⊕ L̃p
T , CT = R⊕ C̃T ,

with the corresponding decomposition y = y + ỹ.
We shall also use an interesting equivalent formulation of the problem of

T -periodic solutions for equation (2.1.maw).

Lemma 1. If H̃(t) = H̃c,T (t) denotes the unique T -periodic solution in C̃T of

y′′ + cy′ = h̃,

then y(t) is a T -periodic solution of equation (2.1.maw) if and only x(t) = y(t)− H̃(t)
is a T -periodic solution of equation

x′′ + cx′ + a sin(x + H̃(t)) = h. (2.2.maw)

2.2 The methods

Various methods have been used in the study of the T -periodic solutions of
equation (2.1.maw) or (2.2.maw). For the reader’s convenience, we shall give a brief survey
of the ones directly involved in the results described in this survey.

2.2.1 Poincaré’s method

Let y(t; u) be the solution of equation (2.1.maw) such that

y(0, u) = u1, y′(0; u) = u2,

and let
P : R2 → R2, u 7→ [y(T ; u), y′(T ; u)].

Then y(t; u) is a T -periodic solution of equation (2.1.maw) if and only if u is a fixed
point of P. P is called the Poincaré’s operator.

If c = 0, P is area-preserving, and one can then use various twist theorems.
Take polar coordinates (r, θ) in the plane, and denote by A the annulus [a, b]×S1.
A first useful result is Poincaré-Birkhoff’s twist theorem [148,23].

Lemma 2. Every area-preserving homeomorphism φ : A→ A with lift

(r, θ) 7→ (f(r, θ), θ + g(r, θ)), (2.3.maw)

rotating the two boundaries in opposite directions, i.e. such that

g(a, θ)g(b, θ) < 0, θ ∈ R,

possesses at least two fixed points in the interior .

A second one is Moser’s twist theorem [129].
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Lemma 3. Let l ≥ 5, α ∈ C5(R) be such that |α′(r)| ≥ ν > 0 for all r ∈ [a, b],
and let ε > 0. Then there exists δ = δ(ε, l, α) > 0 such that any area-preserving
mapping (2.3.maw) of A into R2 with f, g ∈ Cl such that

|f − r|Cl + |g − α|Cl < νδ,

possesses an invariant curve of the form

r = c + u(ξ), θ = ξ + v(ξ),

in A, where u, v are of class C1, 2π-periodic, such that |u|C1 + |v|C1 < ε, and
c ∈ ]a, b[ is constant. Moreover, the induced mapping on this curve is given by
ξ → ξ + ω, where ω is incommensurable with 2π, and satisfies infinitely many
conditions ∣∣∣∣ ω

2π
− p

q

∣∣∣∣ ≥ γq−τ ,

with some positive γ, τ, for all integers q > 0, and p. In fact, each choice of ω
in the range of α satisfying the above Diophantine inequalities gives rise to such
an invariant curve.

Call φ : A→ A a monotone twist homeomorphism if it preserves orientation,
preserves boundary components of A and if for a lift F (r, θ) = (f(r, θ), g(r, θ)),
the function g(·, θ) is a strictly monotone function for each θ. For definiteness,
we assume this function to be strictly increasing. Let F j(r, θ) = (rj , θj), and

αr(φ) = lim
j→∞

θj

j

be its rotation number. The twist interval of φ is the interval [αa(φ), αb(φ)]. It
is defined up to an integral translation. If φq(z) = z, then F q(r, θ) = T p(r, θ),
for some integer p determined up to a multiple of q, and T (r, θ) = (r, θ + 2π). p

q

is called the rotation number of z. One calls such a point z = (r, θ) a Birkhoff
point of type (p,q) if there exists a sequence (rn, θn)n∈Z such that (r0, θ0) = (r, θ),
θn+1 > θn, (n ∈ N), (rn+q, θn+q) = (rn+q, θn + 2π), (rn+q, θn+q) = F (rn, θn).

One then has the Birkhoff’s twist theorem [24].

Lemma 4. Let φ : A → A be an area-preserving monotone twist homeomor-
phism and

p

q
∈ [αa(φ), αb(φ)]

be a rational number with p, q relatively prime. Then there exist two Birkhoff
periodic orbits of type (p, q) for φ.

A Mather set of rotation number α for F is a closed invariant set for F with
representation u = u(θ), v = v(θ) where u is monotone increasing, u− Id and v
are 2π-periodic (not necessarily continuous!), and u(θ+α) = φ1(u, v), v(θ+α) =
φ2(u, v).

The following result is the Aubry-Mather’s twist theorem [12,109].
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Lemma 5. Let φ : A → A be an area-preserving monotone twist homeomor-
phism and let α ∈ [αa(φ), αb(φ)]. Then there exists an invariant Mather set Γα

with rotation number α. Furthermore, Γα is a subset of a closed curve y = w(x)
where w is 2π-periodic and Lipschitz continuous, i.e. v(θ) = w(u(θ). For rational
α = p

q , this theorem provides orbits (rj , θj) satisfying θj+q = θj +2pπ, rj+q = r0

for j ∈ Z.

For some surveys on the Aubry-Mather’s twist theorem, see [14,43,92].

2.2.2 Lyapunov-Schmidt’s method

The Lyapunov-Schmidt’s method (see e.g. [78]) is based upon the following ele-
mentary fact.

Lemma 6. y = y + ỹ is a T -periodic solution of equation (2.1.maw) if and only if it
is a solution of the system

ỹ′′ + cỹ′ + a sin(y + ỹ) = a sin(y + ỹ) + h̃(t), a sin(y + ỹ) = h (2.4.maw)

In the classical Lyapunov-Schmidt’s method, the first equation in (2.4.maw) is
solved with respect to ỹ for fixed y (using a fixed point or implicit function
theorem, or critical point theory) and this solution is introduced in the second
equation, which then becomes the (one-dimensional) bifurcation equation. One
can also study directly the equivalent system (2.4.maw) by degree theory or critical
point theory.

2.2.3 Upper and lower solutions
The method of upper and lower solutions for the periodic solutions of equation
(5) (see e.g. [112]) consists in the following statement.

Lemma 7. If α and β are of class C2, T -periodic and such that, for all t ∈ R,
i) α(t) ≤ β(t)
ii) α′′(t) + cα′(t) + a sin α(t) ≥ h(t) ≥ β′′(t) + cβ′(t) + a sin β(t),
then (2.1.maw) has at least one T -periodic solution y such that α(t) ≤ y(t) ≤ β(t).

The reader will easily state the analogous statement for the periodic solutions
of (2.2.maw).

2.2.4 Critical point theory

The starting point of the use of a variational method or of critical point theory
to the periodic solutions of the forced pendulum equation without dissipation is
the following classical observation.

Lemma 8. y is a T -periodic solution of

y′′ + a sin y = h(t) (2.5.maw)
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if and only if y is a critical point of the action functional

Ah : H1
T → R, y 7→

∫ T

0

(
y′2(t)

2
+ a cos y(t) + h(t)y(t)

)
dt. (2.6.maw)

Various tools of critical point theory like minimization, mountain pass lem-
ma, Lyusternik-Schnirelmann theory, Morse theory (see e.g. [124]) can be applied
to (2.5.maw) or to its equivalent form (2.2.maw). Notice that a semi-variational method
has been used in [1] to study the dissipative forced pendulum.

2.3 Results valid for all c, a, T, h

Rewrite equation (2.1.maw) as

y′′ + cy′ + a sin y = h + h̃(t) (2.7.maw)

The following results are now classical and can be found in [124,68,112]. Their
proof uses Lyapunov-Schmidt’s argument, topological degree, upper and lower
solutions. Some of them can already been found in [47] and some have been
reobtained in [91].

Theorem 1. For each h̃ ∈ L1
T , there exists

mh̃ = mh̃(c, a, T ) ≤Mh̃ = Mh̃(c, a, T )

such that the following hold.

1. −a ≤ mh̃ ≤Mh̃ ≤ a et −a = m0 < M0 = a.

2. mh̃k
→ mh̃ and Mh̃k

→Mh̃ if H̃k → H̃ uniformly on R.

3. Equation (2.7.maw) has at least one T -periodic solution if and only if h ∈ [mh̃, Mh̃].

4. Equation (2.7.maw) has at least two distinct T -periodic solutions if h ∈ ]mh̃, Mh̃[.
5. If mh̃ = Mh̃, equation (2.7.maw) has, for each ξ ∈ R, at least one T -periodic

solution y with y = ξ.

In particular, R(c, a, T ) is closed and

R(c, a, T ) =
⋃

h̃∈C̃T

[mh̃, Mh̃]× {h̃} ⊂ [−a, a]× C̃T .

2.4 Open problems and partial solutions.

Some important questions are left open by the results of Theorem 1, and are
only partially solved.
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2.4.1 Find an explicit element in [mh̃, Mh̃]

Theorem 2. When c = 0, then 0 ∈ [mh̃, Mh̃].

This is shown by proving the existence of a global minimum for the action
functional Ah ([86,179,180,47]). The reason of the success of the minimization
method is that Ah(y + 2π) = Ah(y) if and only if h = 0. This property together
with the coercivity of Ah with respect to ỹ allows easily to obtain a bounded
minimizing sequence for Ah. The periodicity property of Ah when h = 0 allows
also the use of a Lusternik-Schnirelmann type argument to prove directly that
Ah has two distinct critical points (see [119,40,149]). Another proof of this fact
has been given in [71] using a generalized Poincaré-Birkhoff theorem. No proof
based upon degree theory is known at this day.

Theorem 3. When c
T > 1

π
√

3
‖h̃‖2, then 0 ∈ ]mh̃, Mh̃[.

This is proved by topological degree arguments ([124]).

The question was then raised to know if 0 ∈ [mh̃, Mh̃] for each c > 0. A
negative answer was first given by a counterexample of Ortega [140], recently
improved by another one of Alonso [2] showing that for each c > 0, there exists
T0 = T0(a, c) such that for each T > T0, 0 6∈ [mh̃, Mh̃]. The idea of Alonso’s
counterexample consists in constructing a forcing term close to a piecewise con-
stant function h(t) taking a large positive value p in the interval [0, τ ] and a
small negative value −q in the interval [τ, T ], where pτ − q(T − τ) = 0.

2.4.2 Prove or disprove the existence of some h̃ such that mh̃ = Mh̃

This problem remains open. Here is some known partial information.

Theorem 4. The set {h̃ ∈ C̃T : mh̃ < Mh̃} is open and dense.

This has been proved using various arguments [124,112,108], and in partic-
ular a generalized Sard-Smale’s theorem. Thus, generically, [mh̃, Mh̃] is a non
degenerate interval.

Theorem 5. For c = 0,

{h̃ ∈ C̃T : lim
|λ|→∞

m(λh̃) = lim
|λ|→∞

M(λh̃) = 0}

contains an open and dense subset of C̃T .

This has been proved by Kannan and Ortega [91], who also gave an exam-
ple showing that this set is not open. The proof makes use of some Riemann-
Lebesgue lemma and asymptotic analysis techniques.
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2.5 The conservative case c = 0

We shall now concentrate on some results which hold for the conservative case
c = 0. Recall the a regular value for a continuously differentiable mapping f
between two smooth Banach manifolds is the image by f of a point c such that
f ′c is onto.

Theorem 6. The set G of regular values for y′′ + a sin y is open and dense in
C̃T , and, for every g ∈ G, there exists ε > 0 such that, if ‖h − g‖∞ ≤ ε, then
equation (2.5.maw) has a T -periodic solution.

This has been proved [108] using a generalized Sard-Smale lemma.

Recently, using techniques of critical point theory (a suitable minimax me-
thod), Serra, Tarallo and Terracini [167] have introduced a new condition in order
that mh̃ < Mh̃.

Theorem 7. If h = 0, and if c0 = infH1
T

Ah, then mh̃ < Mh̃ if and only if the
following condition

(K0) K(ξ) := {y ∈ H1
T : Ah(y) = c0, y = ξ} = ∅ for some ξ ∈ R

holds. Moreover, if (K0) does not hold, then, for each ξ ∈ R, K(ξ) = {yξ}, with
ξ → yξ continuous and yξ1(t) < yξ2(t) for all t ∈ R whenever ξ1 < ξ2, and
equation (2.5.maw) has no other periodic solutions.

In a subsequent paper [166], Serra and Tarallo have introduced a new reduc-
tion method of Lyapunov-Schmidt’s type, which sheds some light on some of the
unsolved problems for the conservative forced pendulum equation.

Theorem 8. For each ξ ∈ R, let

ϕh(ξ) := min
y=ξ

Ah(y), Mh(ξ) = {y ∈ H1
T : y = ξ, Ah(y) = ϕh(y)},

and let
Mh =

⋃
ξ∈R

Mh(ξ) = {u ∈ H1
T : Ah(u) = ϕh(u)}.

Then the following results hold.

1. ϕh is defined and locally Lipschitz continuous on R.
2. Mh(ξ) 6= ∅ and compact for each ξ ∈ R and Mh : R → 2H1

T upper semi-
continuous.

3. If y ∈ M and y is a local minimum for ϕh, then y is a local minimum for
Ah.

4. ϕh is differentiable at ξ if and only if y 7→
∫ T

0 (a sin y(t)−h(t)) dt is constant
on Mh(ξ).

5. If ϕh has a critical point, then Ah has a critical point.
6. If ϕh is not strictly monotone, then Ah has a critical point.
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It is interesting to compare this approach to the classical method of Lya-
punov-Schmidt. In this case, one proves (by critical point theory if c = 0 and
Schauder’s fixed point theorem in all cases) that, for each ξ ∈ R, the set

Kh(ξ) = {y ∈ CT : y = ξ and ỹ solves the first equation in (2.4.maw)}

is not empty, and then the problem is reduced to find the elements of the set
Kh =

⋃
ξ∈RKh(ξ) such that a sin y = h. In the Serra-Tarallo’s approach, on each

slice ξ + H̃1
T of H1

T , one considers only the elements of Kh(ξ) which minimize
the restriction of Ah on this slice, which provides the subset Mh(ξ) ⊂ Kh(ξ),
and then, instead of trying to solve the second equation of (2.4.maw) on this set,
one concentrates on the reduced functional ϕh and relates its critical points to
those of Ah. Hence the spirit is more variational than in the earlier approaches
combining a Lyapunov-Schmidt argument with some variational method, in that
the emphasis, at each step, remains on the functional instead of on its gradient.
Because the minimization is made on each slice on the function space, one can
imitate the type of humor which has led from the name Klein-Gordon equation
for utt−∆u+u = 0 to the name Sine-Gordon equation for utt−∆u+sinu = 0,
and call the Serra-Tarallo’s approach a Lyapunov-Schnitt’s method.

Notice that one of the main features of this approach is that, in contrast to
most other ones, it applies when a sin y is replaced by a more general almost
periodic function.

2.6 The case where c = 0 and a < ω2

In the conservative case, more precise results can be obtained when the following
condition

a < ω2 (2.8.maw)

holds.
Using global analysis and singularity theory, Donati [51] has proved the fol-

lowing result about the multiplicity of solutions.

Theorem 9. If (2.8.maw) holds and h ∈ [mh̃, Mh̃], then equation (2.5.maw) has at most
finitely many distinct T -periodic solutions when [mh̃, Mh̃] 6= {0}. Otherwise,
equation (2.5.maw) has an analytic unbounded curve of solutions.

Serra and Tarallo [166] have used their Lyapunov-Schnitt’s method to obtain
more precise information.

Theorem 10. Assume that (2.8.maw) holds. Then

1. If ϕh is constant, then Mh(ξ) = {yξ}, and if y is a periodic solution of
equation (2.5.maw), then h = 0 and y = yξ for some ξ ∈ R.

2. ϕh is not constant if and only if there exists ε0 > 0 such that equation (2.5.maw)
has at least one T -periodic solution for each |h| < ε0.
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3. [mh̃, Mh̃] = {0} if and only if ϕh is constant.
4. {h̃ ∈ C̃T : ϕh̃ is not constant} is open and dense in C̃T .

5. If ϕh is constant and h 6= 0, then equation (2.5.maw) has no bounded solution.

The same approach has also been used by Calanchi and Tarallo [30] to show
the following result.

Theorem 11. There exists K = K(a, T ) > 0 such that if ‖h‖2 < K, each
critical point of Ah over H1

T is a local minimum or a point of mountain pass
type.

2.7 Stability of the T -periodic solutions

2.7.1 The dissipative case c > 0
By imposing some restrictions upon c, a, and T, it is possible to obtain on one
hand exact multiplicity results for the T -periodic solutions, and, on the other
hand, informations upon their Lyapunov stability. The pioneering work in the
first direction is due to Tarantello [172] (using a Lyapunov-Schmidt approach)
and, in the second direction, to Ortega [141,142,143] (using some relations be-
tween stability and the Brouwer degree of Poincaré’s operator). A recent paper
of Čepička, Drábek and Jenšiková [39] provides the sharpest known conditions.

Theorem 12. If

c > 0, a < max
{

c2

4
+ ω2, ω

√
c2 + ω2

}
then equation (2.7.maw) has :

1. exactly one T -periodic solution if either h = mh̃ or h = Mh̃.

2. exactly two T -periodic solutions if h ∈ ]mh̃, Mh̃[.

If

c > 0, a < max

{
c2 + ω2

4
,
ω

2

√
c2 +

ω2

4

}
,

then the conclusions (1.-2.) remain true and the periodic solution obtained in
(1.) is unstable while one solution obtained in (2.) is asymptotically stable and
the other unstable.

The proof of the exact multiplicity results in Theorem 5 is based upon the
Lyapunov-Schmidt’s reduction method together with the real analytic version of
the implicit function theorem to analyze the bifurcation equation. The unique-
ness in the solution of the first equation in (2.4.maw) is deduced from some preliminary
assertions on the T -periodic solutions of linear equations of the type

y′′ + cy′ + g(t)y = 0,

with g T -periodic. The stability conclusion is obtained in the same way as in
Ortega’s papers.
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2.7.2 The conservative case c = 0
The difficulty in analyzing the stability in the conservative case is that asymp-
totic stability can no more be expected. In a recent paper, Dancer and Ortega
[48] have proved the following proposition.

Lemma 9. A stable isolated fixed point of an orientation preserving local home-
omorphism on R2 has fixed point index equal to one.

The proof of this result depends upon a variant of Brouwer’s lemma on
translation arcs. One of the given applications is the following result.

Lemma 10. If y is an isolated T -periodic solution of the second order equation,
with continuous right-hand member T -periodic with respect to t,

y′′ =
∂V

∂y
(t, y), (2.9.maw)

and y reaches a local minimum on H1
T of the action functional

f(y) =
∫ T

0

(
y′2(t)

2
+ V (t, y(t))

)
dt,

then y is unstable.

This result is proved by showing first, through a result of Amann on the
computation of degree of gradient mappings and a relatedness principle of Kras-
nosel’skii-Zabreiko, that the index of y is equal to minus one. The result then
follows from the previous one.

An immediate consequence for the pendulum equation is the following one.

Theorem 13. If h = 0, and if a T -periodic solution minimizing Ah̃ is isolated,
then it is unstable.

One can then raise the question to known if the above results still hold
without the assumption that the T -periodic solution is isolated. Ortega [145]
has proved the following interesting result.

Lemma 11. If D ⊂ R is a domain and F : D ⊂ R2 → R2 is real analytical and
not the identity on D, its Jacobian is equal to 1 on D, and if p is a stable fixed
point of F, then p is isolated in the fixed points set of F.

The delicate proof of this result uses Brouwer’s plane translation theorem.

As an application, the following unstability result is proved in [145].

Lemma 12. If V is T -periodic with respect to t and real analytic, and y is a
T -periodic solution of equation (2.9.maw) such that y reaches a local minimal of f on
H1

T , then y is unstable.
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An immediate consequence for the forced pendulum equation is the following
one.

Theorem 14. If h is analytical and h = 0, then, given N ∈ Z, the number of
T -periodic solutions of equation (2.5.maw) that are stable and geometrically different
is finite.

2.8 Existence of more than two T -periodic solutions

In [50], Donati proved that given a > 0 and T > 0, there exists some h∗ ∈ CT

with h∗ = 0 and a neighborhoud V of h∗ such that for each h ∈ V, equation
(2.5.maw) has at least four distinct T -periodic solutions. The proof is based upon a
classification of singularities of the nonlinear Fredholm operator d2

dt2 + a sin(·).
Applying to (2.2.maw) a classical perturbation method as used for example by Loud for
Duffing’s equation, Ortega [146] has recently improved this result by replacing
4 by any even number.

Theorem 15. Given a > 0 and an integer N ≥ 1, there exists h∗ ∈ CT sat-
isfying h∗ = 0 and such that equation (2.5.maw) with h replaced by h∗ has at least
2N distinct T -periodic solutions. In addition, there exists δ > 0 such that if h
satisfies h = 0 and ‖h− h∗‖L1 < δ, then the conclusion also holds for equation
(2.5.maw).

The idea of the proof consists in considering the equation

y′′ + a sin (y + P0(t)) = 0, (2.10.maw)

where

P0(t) = 2π

(
t

T
−

[
t

T

])
,

which has a continuum (yc)c∈R of T -periodic solutions, and in considering a
perturbation of equation (2.10.maw)

y′′ + a sin (y + P0(t) + Ψ(t, ε)) = 0, (2.11.maw)

with conditions upon Ψ insuring that P0(t) +Ψ(t, ε) is smooth and that one has
at least 2N periodic simultaneous bifurcations for ε = 0.

To motivate a further multiplicity result of perturbation type, let us recall
that for the undamped free pendulum equation

y′′ + a sin y = 0 (2.12.maw)

it is known that the period T (A) of the periodic solutions of (2.12.maw) as a function
of their amplitude A > 0 is an increasing function such that

lim
A→0+

T (A) =
2π√

a
, lim

A→π−
T (A) = +∞.
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Consequently, given any positive integer N, then, if a > 4π2N2

T 2 , equation (2.12.maw)
has a closed orbit with least period T

k for each k = 1, 2, . . . , N. Using a perturba-
tion argument and W. Ding’s generalization of the Poincaré-Birkhoff fixed point
theorem for area-preserving twist mappings of an annulus, Fonda and Zanolin
[65] have proved the following result for the forced case.

Theorem 16. Given any positive integer N, there exists a constant a0 > 0
such that, for any a ≥ a0, equation (2.5.maw) has at least N periodic solutions with
minimal period T, which can be chosen to have exactly 2j simple crossings with
0 in the interval [0, T [, with j = 1, 2, . . . , N.

2.9 Subharmonic solutions in the conservative case c = 0

Let us first recall that, if k ≥ 2 is an integer, a subharmonic solution of order
k of (2.1.maw) is a periodic solution of equation (2.1.maw) with minimal period kT. The
first existence results for the subharmonic solutions of equation (2.5.maw) with h = 0
have been obtained by Fonda and Willem [64] (see also Offin [137] for a close
result based upon an index theory for periodic extremals and a variant of the
mountain pass lemma).

Theorem 17. Suppose that the T -periodic solutions of equation (2.5.maw) are iso-
lated and that every T -periodic solution of equation (2.5.maw) having Morse index
equal to zero is nondegenerate. Then there exists k0 ≥ 2 such that, for every
prime integer k ≥ k0, there is a periodic solution of equation (2.5.maw) with minimal
period kT. If moreover the kT -periodic solutions of equation (2.5.maw) are nondegen-
erate for k = 1 and every prime integer k, then there exists a k0 ≥ 3 such that,
for every prime integer k ≥ k0, there are two periodic solutions of equation (2.5.maw)
with minimal period kT.

To prove this result, Fonda and Willem consider the critical points of the
functional

Ah,k =
∫ kT

0

(
y′2(t)

2
+ a cos y(t) + h(t)y(t)

)
dt,

over the Sobolev space H1
kT . Then, by assumption and an easy reasoning, Ah,1 =

Ah has a finite number of critical points y0, y1, . . . , yn, which, of course, are also
critical points of Ah,k for any k ≥ 2. The first ingredient of the proof consists in
showing the existence of some integer k0 such that, for k ≥ k0 and 0 ≤ i ≤ n,
either the Morse index J(yi, kT, 1) of yi is equal to 0 and yi is nondegenerate,
or J(yi, kT, 1) ≥ 2. This is done using an iteration formula for the Morse index
due to Bott. Now, let k ≥ k0 be a prime number, so that the critical points of
Ah,k have minimal period T or kT. Assuming by contradiction that y0, . . . , yn

are the only critical points of Ah,k, one is led to a contradiction in the Morse
inequalities of Morse theory (see e.g. [126]) applied to Ah,k. The proof of the
second part of Theorem 17 is similar.

Combining the Fonda-Willem’s theorem with the generic results of [108], one
gets the generic existence of subharmonic solutions.
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Theorem 18. There exists an open dense subset G of C̃T such that for every
h ∈ G, there exists a k0 ≥ 2 such that, for every prime integer k ≥ k0, equation
(2.5.maw) has a periodic solution with minimal period kT.

As shown in [167], the Lyapunov-Schnitt’s reduction method also provides
some information about subharmonic solutions, by relating their existence to
the properties of ϕh.

Theorem 19. Equation (2.5.maw) with h = 0 has subharmonics of infinitely many
distinct levels if and only if ϕh is not constant. If cT

0 := minH1
T

Ah is isolated in
the set of critical levels of Ah, then equation (2.5.maw) with h = 0 admits subharmon-
ics of arbitrary large minimal period if and only if ϕh is not constant. Finally,
the isolatedness assumption in the previous statement can be dropped if a < ω2.

Finally, the Fonda-Zanolin multiplicity result [65] has a counterpart for sub-
harmonic solutions, proved using the same technique.

Theorem 20. Given any two positive integers M, N, there exists a constant
a0 > 0 such that, for any a ≥ a0, equation (2.5.maw) has, for each k = 1, 2, . . . , M,
at least N periodic solutions with minimal period kT.

2.10 Rotating solutions in the conservative case c = 0

Besides periodic solutions, the free pendulum has also rotating solutions which
are the sum of a linear function of t and of a periodic term. Under some condi-
tions, the conservative forced pendulum (2.5.maw) can also admit such solutions. Most
of the results in this case are obtained via combination of Poincaré’s method and
some theorem for twist mappings.

The following results have been proved by Levi [103] using Moser’s twist
theorem. The basic idea is that, for large velocities x = y′, the forced pendulum
equation has solutions which are close to those of the integrable system y′′ = 0.

Theorem 21. For any ω ∈ ]0, 2π[ satisfying, for some c0 > 0 and µ > 0, the
set of inequalities ∣∣∣ ω

2π
− m

n

∣∣∣ >
c0

n2+µ
,

for all m, n ∈ Z with n 6= 0, there exists an integer k0 = k0(c0, µ) such that the
Poincaré’s mapping associated to (2.5.maw) possesses, for all integers k with |k| ≥ k0,
a countable set of invariant curves y = f ω

2π +k(x) ≡ f ω
2π +k(x + 1). For any real

number α, equation (2.5.maw) has a Birkhoff orbit with that rotation number. For any
rational α = p

q there exists at least two solutions satisfying y(t+qT ) = y(t)+2pπ.

A similar result was proved independently by Moser [130], using a variational
method which can be traced to Percival and Mather (see [131]).

Theorem 22. If h = 0, then, for some sufficiently large irrational α (satisfying
a Diophantine condition), equation (2.5.maw) has solutions of the form y(t) = U(t, αt)
such that U(t, θ) − θ is continuous, T -periodic in t and 2π-periodic in θ, and
∂θU > 0.
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Physically, the above result means that there exists a motion with any average
angular velocity (see also Dovbysh [52]).

The following result of You [185] is also proved using Moser’s twist theorem.

Theorem 23. Equation (2.5.maw) admits an infinite number of invariant tori, and
thus an infinite number of almost periodic solutions, when h = 0, and no invari-
ant torus when h 6= 0.

In the case of an analytic h, Ortega’s approach described in Section 2.7.2
provides some information about the number and stability of rotating solutions
[145].

Theorem 24. If h is analytic and h = 0, then, given N ∈ Z, the number of
stable and distinct T -periodic solutions with winding number N (i.e. solution
such that y(t + T ) = y(t) + 2Nπ) of equation (2.5.maw) is finite.

Finally, the change of variable y(t) = kωt+v(t), and the use of direct methods
of the calculus of variations to the transformed equation allows a very simple
proof of the following special case of Theorem 13 [121].

Theorem 25. For each a > 0, T > 0, k ∈ Z \ {0}, and each h with h = 0,
equation (2.5.maw) has at least one solution of the form y(t) = kωt + v(t) with v
T -periodic.

2.11 Lagrange stability

2.11.1 The conservative case c = 0

Equation (2.5.maw) is called Lagrange stable if any solution of (2.1.maw) is bounded over R
in the phase cylinder {(y mod 2π, y′)}. Physically, this means that any solution
of (2.1.maw) has angular velocity bounded over R.

The problem of the Lagrange stability of equation (2.5.maw) was raised by Moser
in the Introduction of [129]. Its positive solution is a consequence of the results
of Levi, Moser and You described in the previous section.

Theorem 26. If h = 0, then for any sufficiently large N > 0, there exists
M = M(N) such that any solution y(t) of equation (2.5.maw) with |y′(0)| ≤ M
satisfies |y′(t)| ≤ N for all t ∈ R.

As shown by You [185], the conditions that the mean value of h is zero is
necessary and sufficient for the Lagrange stability.

Theorem 27. If a > 0, then equation (2.5.maw) is Lagrange stable if and only if
h = 0.
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2.11.2 The dissipative case c > 0
Some results for Lagrange stability in the dissipative case have been obtained
by Andres [4,5] and Andres-Staněk [9] using Lyapunov function techniques. See
also [6,7,8] for further discussions and problems.

Here, Lagrange stability of (2.1.maw) has to be understood as the boundedness
over R+ of any solution in the phase cylinder {ymod 2π, y′}. Physically, that
means that any solution of (2.1.maw) has angular velocity bounded in the future.

Theorem 28. The equation (2.1.maw) is Lagrange stable provided h = 0 and

c >
(a + ‖h‖∞)

{
‖H‖∞ +

[
‖H‖2∞ + 4(2a + π(a + ‖h‖∞))

]1/2
}

2(2a + π(c + ‖h‖∞))
,

where H(t) =
∫ t

0 h(s) ds.

3 Bounded or almost periodic forcing

3.1 Bounded forcing

Using a version of the method of upper and lower solutions for solutions bounded
over R going back to to Opial [138] (see also [122]), one can prove the following
result, which is the one dimensional case of a result for elliptic partial differential
equations due to Fournier, Szulkin et Willem [69]. Consider the dissipative forced
pendulum-type equation

y′′ + cy′ + a sin y = h(t), (3.1.maw)

where a > 0, c ≥ 0, and h : R→ R is continuous and bounded.

Theorem 29. If c ≥ 0 and if h : R→ R continuous is such that

− a ≤ h(t) ≤ a, (3.2.maw)

for all t ∈ R, then equation (3.1.maw) has at least one solution y such that

π

2
≤ y(t) ≤ 3π

2

for all t ∈ R. If condition (3.2.maw) is restricted to

‖h‖∞ < a, (3.3.maw)

then there exists ε > 0 such that equation (3.1.maw) has a unique solution y such that

π

2
+ ε ≤ y(t) ≤ 3π

2
− ε (3.4.maw)

for all t ∈ R.
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Using the equivalent formulation for the forced pendulum problem together
with some results of Ortega on bounded solutions of second order linear equations
[144] (see also [122]), one can prove in a similar way the following existence and
uniqueness theorem [123].

Theorem 30. If c > 0, h = h∗+h∗∗ where h∗∗ is bounded and h∗ has a bounded
primitive over R, and if inequalities

oscRH
∗
c ≤ π,

and

‖h∗∗‖∞ ≤ a cos
(

oscRH
∗
c

2

)
,

hold, where H∗c is the unique bounded solution of y′′+ cy′ = h∗(t), then equation
(3.1.maw) has at least one solution y such that

π

2
+ H∗c (t) ≤ y(t) ≤ 3π

2
+ H∗c (t),

for all t ∈ R. If the inequalities above are strenghtened to

oscRH
∗
c <

π

2
, (3.5.maw)

‖h∗∗‖∞ ≤
a
√

2
2

[
sin

(
oscRH

∗
c

2

)
+ cos

(
oscRH

∗
c

2

)]
, (3.6.maw)

then there exists ε > 0 such that equation (3.1.maw) has a unique solution y satisfying
the inequality

π

2
+ ε ≤ y(t) ≤ 3π

2
− ε, (3.7.maw)

for all t ∈ R. When c = 0, the above results hold if h∗∗ = 0, h = h∗ has a second
primitive H1 bounded over R and H∗c is replaced by H1 in (3.5.maw).

3.2 Particular almost periodic forcings

3.2.1 A class of almost periodic functions
The following classes of almost periodic functions was introduced by Belley,
Fournier and Saadi Drissi [19,20,21]. Given a countable set Γ ⊂ R, symmetric
with respect to the origin, put

CΓ =
( ∑

λ∈Γ\{0}

1
λ2

)1/2

.

Let PΓ (R) denote the class of all (real-valued) trigonometric polynomials p(t) =∑
λ∈Γ αλeiλt where all but finitely many of the coefficients αλ vanish, and α−λ
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is the complex conjugate of αλ. On PΓ (R) one can put the uniform norm ‖ · ‖∞
and the norm ‖ · ‖2 associated with the inner product

〈p, q〉 = lim
T→∞

1
T

∫ T

0

p(t)q(t) dt.

Let APΓ (R) and B2
Γ (R) denote the completion of PΓ (R) with respect to the

norms ‖ · ‖∞ and ‖ · ‖2 respectively. The operation 〈·, ·〉 can be extended to
B2
R(R) by defining it to be the inner product on B2

R(R) associated with the
norm ‖ · ‖2.

For any x ∈ APR(R), define x̂ : R→ C by

x̂(λ) = 〈x(t), e−iλt〉 = lim
T→∞

1
T

∫ T

0

x(t)e−iλ dt.

This notation can be extended to x ∈ B2
R(R) by x̂(λ) = limn→∞ p̂n(λ) for any

sequence {pn} in PR(R) such that ‖pn − x‖2 → 0. For any subset X of B2
Γ (R),

let X̃ : {x ∈ X : x̂(0) = 0.} One often writes

x = x̂(0) = lim
T→∞

1
T

∫ T

0

x(t) dt,

and x̃(t) = x(t) − x.

If x ∈ B2
Γ (R) and y ∈ B̃2

Γ (R) are such that

〈x, p′〉 = −〈y, p〉

for all p ∈ PΓ (R), then y is said to be the weak derivative of x. Note that y is
necessarily unique in B̃2

Γ (R), and we write y = x′.

3.2.2 The results
Consider first the dissipative forced pendulum-type equation

y′′ + cy′ + a sin y = h(t), (3.8.maw)

where a > 0, c ≥ 0, and h almost periodic.
The following result is due to Belley-Fournier-Saadi Drissi [20], and proved

using a Lyapunov-Schmidt’s argument modeled on that of [62].

Theorem 31. Let e ∈ B2
Γ (R) be fixed and assume that the following conditions

hold.

1. CΓ < +∞.
2. c > 0 and a < c

CΓ
.

3. β := CΓ (C−2
Γ + c2)−1/2a ≤ δ(ẽ), where

δ(ẽ) =
[(

cos Ẽ
)2

+
(
sin Ẽ

)2
]1/2

,

and Ẽ(t) is the unique weak almost periodic solution of equation y′′ + cy′ =
ẽ(t).
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4. |e| ≤ (δ(ẽ)− β)A.

Then there exists some Ỹ in the orthogonal supplement of B2(Γ ) in B2(R) such
that equation (3.8.maw) with h = e+ Ỹ has at least one weak almost periodic solution
y ∈ APΓ (R) such that y′ ∈ ÃPΓ (R) and y′′ ∈ B̃2

Γ (R).

Consider now the conservative forced pendulum equation

y′′ + a sin y = h(t), (3.9.maw)

where a > 0, and h almost periodic.
The following result was proved by Belley-Fournier-Saadi Drissi [19] and

Belley-Fournier-Hayes [18] using a Lyapunov-Schmidt’s argument modeled on
that of [62].

Theorem 32. If CΓ < ∞, then given ξ ∈ R, and ẽ ∈ B̃2
Γ (R), there exists a

function γ ∈ B2
R(R)	 B̃2

Γ (R) such that the equation

z′′ + a sin(ξ + z) = γ(t) + ẽ(t),

holds in B̃2
Γ (R) for some z ∈ ÃPΓ (R) for which the weak derivative z′ ∈ B̃2

Γ (R)
exists and admits a weak derivative z′′ ∈ B̃2

Γ (R). Furthermore, if a < C−2
Γ , this

solution z is unique.

3.3 General almost periodic forcing

Combining some results on the existence and uniqueness of bounded solutions
over R with Amerio’s criterion on the existence of almost periodic solutions (see
e.g. [60]), Fink [59] has given in 1968 some partial extension of the method of
upper and lower solutions to almost periodic solutions. A special case of his
results is the following proposition.

Lemma 13. Let c ∈ R, g ∈ C1(R,R) and h continuous and almost periodic.
Assume that there exist a < b and λ ∈ R such that g′(x) > 0 for all x ∈ [a, b],
and

g(a) + h(t) ≤ 0 ≤ g(b) + h(t)

for all t ∈ R. Then equation

y′′ + cy′ = g(y) + h(t)

has a unique almost periodic solution y such that a ≤ y(t) ≤ b for all t ∈ R.

This result implies the following existence theorem, also proved indepen-
dently by Fournier-Szulkin-Willem [69] as a special case of a more general result
for elliptic partial differential equations.

Theorem 33. For each c ≥ 0 and each h ∈ AP (R) such that ‖h‖∞ < a,
equation (3.8.maw) has a unique solution y ∈ AP (R) such that π/2 < y(t) < 3π/2.
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Indeed, the condition upon ‖h‖∞ implies the existence of ε > 0 such that
a = π

2 + ε and b = 3π
2 − ε satisfy the conditions of Lemma 13. The result

with c = 0 generalizes an earlier approximate solvability result of Blot [27] for
equation (3.9.maw), based upon variational techniques and convex analysis, which
provides the existence for a dense subset of forcing functions h only.

Similar arguments applied to the equivalent formulation of the forced pen-
dulum equation provide the following existence theorem [123].

Theorem 34. If c > 0, h = h∗ + h∗∗ where h∗∗ is almost periodic and h∗ has
an almost periodic primitive, and if conditions (3.5.maw) and (3.6.maw) are satisfied, then
there exists ε > 0 such that equation (3.8.maw) has a unique almost periodic solution
verifying inequality (3.7.maw). If c = 0, and h ∈ C has an almost periodic second
primitive H1 satisfying (3.5.maw) with H∗c replaced by H1, then the same conclusion
holds.

This result when c = 0 generalizes an earlier approximate solvability result
of Blot [28] for equation (3.9.maw), based upon variational techniques and convex
analysis, which gives existence for a dense subset of forcing functions h only.
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1 Introduction

When we study the boundary value problems for the second order differential
equation

x′′ = f(t, x, x′), (1.1.rac)

with certain linear or nonlinear boundary conditions on the compact interval
J = [a, b] ⊂ R we often use the properties of lower and upper solutions for (1.1.rac).
Let us remind the definition.

Let f be continuous on J ×R2 (or let f satisfy the Carathéodory conditions
on J × R2 ). The functions σ1, σ2 ∈ C2(J) (or AC1(J) ) are called lower and
upper solutions for (1.1.rac), if they satisfy

σ′′1 (t) ≥ f(t, σ1(t), σ′1(t)),
σ′′2 (t) ≤ f(t, σ2(t), σ′2(t)),

(1.2.rac)
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for all t ∈ J ( for a.e. t ∈ J). If the inequalities in (1.2.rac) are strict, then σ1, σ2

are called strict lower and upper solutions.
We distinguish two basic cases:
1. The functions σ1, σ2 are well ordered, i.e.

σ1(t) ≤ σ2(t) for all t ∈ J. (1.3.rac)

2. The functions σ1, σ2 are not well ordered, i.e. the condition (1.3.rac) falls.
The most existence results concern the first case, but there are the existence

results for the second case, as well. We can refer to the papers [7], [3] or [4].
Here, we want to present the existence and multiplicity results for (1.1.rac) (with

various boundary conditions) in the first case and also in the second case where
σ1, σ2 have the opposite order, i.e.

σ2(t) ≤ σ1(t) for all t ∈ J. (1.4.rac)

Our results are based on the relation between the topological degree of the
operator corresponding to the boundary value problem and strict lower and
upper solutions fulfilling (1.3.rac) or (1.4.rac) (in the strict sense).

For getting the existence and multiplicity results we need a priori estimates
of solutions of the original boundary value problem or of solutions of proper
auxiliary boundary value problems. Working with σ1, σ2, we want to estimate
the solutions just by σ1, σ2. For the estimation at the endpoints a, b of J we
use certain connection between σ1, σ2 and the boundary conditions. It is well
known that for the classical two-point boundary conditions such connection has
the form:

– for the periodic conditions

x(a) = x(b), x′(a) = x′(b), (1.5.rac)

we suppose

σi(a) = σi(b),
(
σ′i(b)− σ′i(a)

)
(−1)i ≥ 0, i = 1, 2; (1.6.rac)

– for the Neumann conditions

x′(a) = 0, x′(b) = 0, (1.7.rac)

we assume

σ′i(a)(−1)i ≤ 0, σ′i(b)(−1)i ≥ 0, i = 1, 2. (1.8.rac)

Similarly,

– for the four-point conditions

x(a) = x(c), x(d) = x(b), a < c ≤ d < b, (1.9.rac)

σ1, σ2 have to satisfy (
σi(c)− σi(a)

)
(−1)i ≤ 0,(

σi(b)− σi(d)
)
(−1)i ≥ 0, i = 1, 2,

(1.10.rac)
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– for the nonlinear conditions

g1

(
x(a), x′(a)

)
= 0, g2

(
x(b), x′(b)

)
= 0, (1.11.rac)

where g1, g2 ∈ C(R2) are increasing in the second argument and g1 is non-
increasing and g2 nondecreasing in the first argument, we can impose on
σ1, σ2

g1

(
σi(a), σ′i(a)

)
(−1)i ≤ 0,

g2

(
σi(b), σ′i(b)

)
(−1)i ≥ 0, i = 1, 2.

(1.12.rac)

Let us note that for more general nonlinear two-point boundary conditions
the compatibility of the boundary conditions with σ1, σ2 was introduced in [14].
For the special cases of the conditions (1.5.rac), (1.7.rac) and (1.11.rac) this notion leads
just to the assumptions (1.6.rac), (1.8.rac) and (1.12.rac).

In this paper we will study the boundary value problems (1.1.rac), (k), and we will
assume the existence of lower and upper solutions σ1, σ2 of (1.1.rac) with the prop-
erty (k+.1), k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. The problem (1.1.rac), (k), k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac},
can be written in the form of the operator equation

(L + N)x = 0, (1.13.rac)

where L : domL→ Y is a linear operator and it is a Fredholm map of index 0,
and N : C1(J) → Y is, in general, nonlinear and it is L-compact on any open
bounded set Ω ⊂ C1(J). The form of L and N and the choice of the spaces domL
and Y depend on the type of boundary value problems. Let us suppose that f is
continuous on J ×R2. Then we put for k∈{1.5.rac,1.7.rac,1.9.rac} dom L = {x ∈ C2(J) : x
satisfies (k)}, Y = C(J), L : x 7−→ x′′, N : x 7−→ −f(·, x(·), x′(·)); for the
boundary condition (1.11.rac) we put domL = C2(J), Y = C(J) × R2, L : x 7−→
(x′′, 0, 0), N : x 7−→ (−f(·, x(·), x′(·)), g1(x(a), x′(a)), g2(x(b), x′(b))) . For more
details see [2], [8], [9].

If the equation (1.13.rac) has no solution on the boundary of Ω then there exists
the degree of the map L + N in Ω with respect to L

dL(L + N, Ω).

In [6], the relation between the degree and strict lower and upper solutions
satisfying (1.3.rac) (in the strict sense) is shown. In the following section we will
formulate this relation for the above boundary value problems.

2 Topological degree for f bounded

First, let us suppose that f ∈ C(J ×R2) is bounded:

∃M ∈ (0,∞) : |f(t, x, y)| < M for ∀(t, x, y) ∈ J ×R2. (2.1.rac)

For f unbounded we will use the method of a priori estimates and replace the
condition (2.1.rac) by the conditions of the growth or sign types in the next sections.
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Theorem 1. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled, (1.13.rac) be the
operator equation corresponding to the problem(1.1.rac), (k) and let σ1, σ2 be strict
lower and upper solutions of (1.1.rac), (k) with

σ1(t) < σ2(t) for all t ∈ J.

Then

dL(L + N, Ω1) = 1 (mod 2), (2.2.rac)

with

Ω1 ={x ∈ C1(J) : σ1(t) < x(t) < σ2(t), |x′(t)| < c for all t ∈ J},
where c ≥ (2M + r + 1)(b− a) for k ∈ {1.5.rac, 1.7.rac, 1.9.rac}
and c ≥ (2M + r + 1)(b− a) + 2(r + 1)/(b− a) for k=1.11.rac,
r = ‖ σ1 ‖max + ‖ σ2 ‖max .

Theorem 1 concerns the case of well ordered σ1, σ2. the case where σ1, σ2 are
ordered by the opposite way is described in Theorem 2.

Theorem 2. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled, (1.13.rac) be the
operator equation corresponding to the problem (1.1.rac), (k) and let σ1, σ2 be strict
lower and upper solutions of (1.1.rac), (k) satisfying

σ2(t) < σ1(t) for all t ∈ J.

Then

dL(L + N, Ω2) = 1 (mod 2), (2.3.rac)

where

Ω2 = {x ∈ C1(J) : ‖x‖max < A, ‖x′‖max < B,

∃tx ∈ J : σ2(tx) < x(tx) < σ1(tx)},

with B ≥ 2(b− a)M, A ≥ ‖σ1‖max + ‖σ2‖max +2(b− a)2M for k ∈{1.5.rac,1.7.rac,1.9.rac},
B ≥ 2(b− a)M + ‖σ′2‖max, A ≥ ‖σ1‖max + ‖σ2‖max + (b− a)B for k=1.11.rac.

Corollary 3. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. If σ1, σ2 in Theorem 1 (2) are not
strict, then either the problem (1.1.rac), (k) has a solution on ∂Ω1 (∂Ω2) or the
condition (2.2.rac) ( (2.3.rac) ) is valid.

3 Existence and multiplicity for f bounded

As the direct consequence of Corollary 3, using a limiting process, we obtain the
following existence results for the problems (1.1.rac), (k), k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}.
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Theorem 4. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled and let σ1, σ2

be lower and upper solutions of (1.1.rac), (k) with

σ1(t) ≤ σ2(t) for all t ∈ J.

Then the problem (1.1.rac), (k) has at least one solution in Ω1, where Ω1 is the set
from Theorem 1.

Remark 5. The assumption about the monotonicity of g1, g2 can be omitted in
Theorem 1 and 4. The existence results of Theorem 4 are known and they are
presented here for the completeness, only.

Theorem 6. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled and let σ1, σ2

be lower and upper solutions of (1.1.rac), (k) with

σ2(t) ≤ σ1(t) for all t ∈ J.

Then the problem (1.1.rac), (k) has at least one solution in Ω2, where Ω2 is the set
from Theorem 2.

Remark 7. For k∈{1.5.rac,1.7.rac} the similar existence results are proven in [3], [4], [7].

Theorems 1 and 2 are a tool for proving multiplicity results for (1.1.rac), (k),
both for the linear two-point (k∈{1.5.rac,1.7.rac}) or multipoint boundary conditions
(k=1.9.rac) and for the nonlinear boundary condition (k=1.11.rac).

Theorem 8. Suppose k∈{1.5.rac,1.7.rac,1.9.rac,1.11.rac}. Let (2.1.rac) be fulfilled and let σ1, σ2,
σ3 be strict lower, upper and lower solutions of (1.1.rac), (k) with

σ1(t) < σ2(t) < σ3(t) for all t ∈ J. (3.1.rac)

Then (1.1.rac), (k) has at least two different solutions u, v satisfying

σ1(t) < u(t) < σ2(t), σ1(t) < v(t) for all t ∈ J,

σ2(tv) < v(tv) < σ3(tv) for a tv ∈ J.

The dual situation is described in Theorem 9.

Theorem 9. Let all assumptions of Theorem 8 be fulfilled with the exception
that now σ1, σ2, σ3 are strict lower, upper and upper solutions with

σ3(t) < σ1(t) < σ2(t) for all t ∈ J (3.2.rac)

Then (1.1.rac), (k) has at least two different solutions u, v satisfying

σ1(t) < u(t) < σ2(t), v(t) < σ2(t) for all t ∈ J,

σ3(tv) < v(tv) < σ1(tv) for a tv ∈ J.

For constant lower and upper solutions we get the multiplicity result of the
Ambrosetti-Prodi type.
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Theorem 10. Suppose k∈{1.5.rac,1.7.rac,1.9.rac}. Let (2.1.rac) be fulfilled and let n ∈ N,
n ≥ 2, s1, r1, . . . , rn+1 ∈ R be such that

r1 < r2 < · · · < rn+1 (3.3.rac)

and (
f(t, ri, 0)− s1

)
(−1)i < 0 for all t ∈ J, i ∈ {1, . . . , n}. (3.4.rac)

Then there exist s2, s3 ∈ (−M, s1), s3 ≤ s2, such that the problem

x′′ + f(t, x, x′) = s, (k) (3.5.rac)

has:

(i) at least n different solutions greater than r1 for s ∈ (s2, s1];
(ii) at least n+1

2 (n
2 ) solutions greater than r1 for s = s2 and n odd (even);

(iii) provided s3 < s2 at least one solution greater then r1 for s ∈ [s3, s2);
(iv) no solution for s < s3.

4 Topological degree for f unbounded

In this section we suppose that k∈ {1.5.rac, 1.7.rac, 1.11.rac}, that (1.13.rac) is the operator
equation corresponding to the problem (1.1.rac), (k) and that σ1, σ2 are strict lower
and upper solutions of (1.1.rac), (k).

Using the method of a priori estimates we can replace the condition (2.1.rac) in
Theorem 1 by the Nagumo-Knobloch-Schmitt condition with bounding functions
ϕ1, ϕ2 :

∃ϕ1, ϕ2 ∈ C1(K) : ϕ1(t, σi(t)) ≤ σ′i(t), ϕ2(t, σi(t)) ≥ σ′i(t),

f(t, x, ϕ1(t, x) < ∂ϕ1(t,x)
∂t + ∂ϕ1(t,x)

∂x ϕ1(t, x),

f(t, x, ϕ2(t, x) > ∂ϕ2(t,x)
∂t + ∂ϕ2(t,x)

∂x ϕ2(t, x),

for i ∈ {1, 2} and for all (t, x) ∈ K = J × [σ1(t), σ2(t)].

(4.1.rac)

Theorem 11. Let (4.1.rac) be fulfilled and let

σ1(t) < σ2(t) for all t ∈ J.

Further suppose that for k=1.5.rac

(ϕi(b, x)− ϕi(a, x))(−1)i ≥ 0,

for k=1.7.rac

(ϕi(b, x)− σ′i(b))(−1)i > 0,
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and for k=1.11.rac

g2(x, ϕi(b, x))(−1)i > 0,

with i = 1, 2, x ∈ [σ1(t), σ2(t)].
Then

dL(L + N, Ω3) = 1 (mod 2),

where

Ω3 = {x ∈ C1(J) : σ1(t) < x(t) < σ2(t), ϕ1(t, x) < x′(t) < ϕ2(t, x) on K}.

For the constant functions σ1, σ2, ϕ1, ϕ2 Theorem 11 implies

Corollary 12. Suppose that there exist real numbers r1 < r2, c1 < 0 < c2, such
that

f(t, r1, 0) < 0, f(t, r2, 0) > 0, (4.2.rac)
f(t, x, c1) < 0, f(t, x, c2) > 0, (4.3.rac)

for all (t, x) ∈ J × [r1, r2].
If k=1.11.racwe suppose moreover that for x ∈ [r1, r2]

g1(r1, 0) ≥ 0, g1(r2, 0) ≤ 0,

g2(r1, 0) ≤ 0, g2(r2, 0) ≥ 0,
(4.4.rac)

g2(x, ci)(−1)i > 0, i = 1, 2. (4.5.rac)

Then

dL(L + N, Ω4) = 1 (mod 2),

where

Ω4 = {x ∈ C1(J) : r1 < x(t) < r2, c1 < x′(t) < c2, ∀ t ∈ J.}

Now, let us consider the special case of bounding functions depending on t
only:

∃β1, β2 ∈ C1(J): β1(t) ≤ σ′i(t), β2(t) ≥ σ′i(t),
f(t, x, β1(t)) < β′1(t), f(t, x, β2(t)) > β′2(t),

(4.6.rac)

for all (t, x) ∈ J × [s2, s1], where s2 = min{σ2(t) : t ∈ J} −
∫ b

a γ(t)dt, s1 =
max{σ1(t) : t ∈ J}+

∫ b

a
γ(t)dt, γ(t) = max{|β1(t)|, |β2(t)|}.
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Theorem 13. Let (4.6.rac) be fulfilled and let

σ2(t) < σ1(t) for all t ∈ J.

Further suppose that for k=1.5.rac

(βi(b)− βi(a))(−1)i ≥ 0, (4.7.rac)

for k=1.7.rac

(βi(b)− σ′i(b))(−1)i > 0, (4.8.rac)

and for k=1.11.rac

g2(x, βi(b))(−1)i > 0, (4.9.rac)

with i ∈ {1, 2}, x ∈ [s2, s1].
Then

dL(L + N, Ω5) = 1 (mod 2),

where

Ω5 = {x ∈ C1(J) : s2 < x(t) < s1, β1(t) < x′(t) < β2(t) for all t ∈ J,

∃tx ∈ J : σ2(tx) < x(tx) < σ1(tx)}.

Corollary 14. Suppose that there exist real numbers r1 > r2, c1 < 0 < c2, such
that (4.2.rac) and (4.3.rac) are satisfied for all (t, x) ∈ J× [r2 + c1(b−a), r1 + c2(b−a)].
If k=1.11.rac, we suppose that (4.4.rac), (4.5.rac) are satisfied for x ∈ [r2 + c1(b− a), r1 +
c2(b− a)].
Then

dL(L + N, Ω6) = 1 (mod 2),

where

Ω6 = {x ∈ C1(J) : r2 + c1(b− a) < x(t) < r1 + c2(b− a),
c1 < x′(t) < c2, ∀ t ∈ J.}

Example 15. Suppose f1, f2, f3 ∈ C(J), k, m ∈ N. The function

f(t, x, y) = f1(t)x2k+1 + f2(t)y2m+1 + f3(t)

satisfies the conditions of Corollary 12, if f1, f2 > 0 on J, and it satisfies the
conditions of Corollary 14, if f1 < 0, f2 > 0 on J and either m > k or m = k,
f2(t) > ‖f1‖max(b− a)2k+1 for all t ∈ J.



Multiple solutions 155

Other type of conditions which can be used instead of (2.1.rac) in Theorem 1
and Theorem 2 are one-sided growth conditions which were used by Kiguradze
[5] in some existence theorems.

1. The one-sided Bernstein-Nagumo condition:

∃ω ∈ C(R+), ω positive,
∫ ∞

0

ds

ω(s)
=∞ and

f(t, x, y) ≤ ω(|y|) · (1 + |y|) (4.10.rac)
∀(t, x) ∈ J × [σ1(t), σ2(t)]×R.

2. The one-sided linear growth condition:

∃a1, a2 ∈ (0,∞), ρ ∈ C(J ×R), non-negative and non-decreasing
in the second argument such that

f(t, x, y) ≤ a1|x|+ a2|y|+ ρ(t, |x|+ |y|) (4.11.rac)

∀(t, x, y) ∈ J ×R2,

where

a1(b− a)2 + a2(b− a) < 1

and

lim
z→∞

1
z

∫ b

a

ρ(t, z)dt = 0.

Note 16. Let us remember that if f satisfies (4.11.rac) it satisfies (4.10.rac) as well.

For the proof of the following theorems we need lemmas on a priori estimates
for solutions of the problems (1.1.rac), (k), k∈ {1.5.rac, 1.7.rac, 1.11.rac}.

Lemma 17. Suppose

σ1(t) < σ2(t) for all t ∈ J.

Let (4.10.rac) be satisfied. If k=1.11.rac, suppose moreover

lim
y→∞

g1(r2, y) > 0, lim
y→−∞

g2(r2, y) < 0, (4.12.rac)

r1 = min {σ1(t) : t ∈ J}, r2 = max{σ2(t) : t ∈ J}.
Then there exists µ∗ ∈ (0,∞) such that for any solution u of the problem (1.1.rac),
(k), the implication

σ1(t) < u(t) < σ2(t) on J =⇒ ‖u′‖max < µ∗

is valid.
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Lemma 18. Let r1, r2 ∈ R, r1 < r2 and let (4.11.rac) be satisfied. If k=1.11.rac,
suppose moreover

lim
y→∞

g1(x, y) > 0, lim
y→−∞

g2(x, y) < 0, (4.13.rac)

uniformly for x ∈ R+.
Then there exists ν∗ ∈ (0,∞) such that for any solution u of the problem (1.1.rac),
(k), the implication

∃tu ∈ J : r1 < u(tu) < r2 =⇒ ‖u′‖max < ν∗

is valid.

Theorem 19. Let (4.10.rac) be fulfilled and let

σ1(t) < σ2(t) for all t ∈ J.

If k=1.11.rac, suppose moreover (4.12.rac).
Then there exists r∗ ∈ (0,∞) such that

dL(L + N, Ω6) = 1 (mod 2),

where

Ω6 = {x ∈ C1(J) : σ1(t) < x(t) < σ2(t) ∀t ∈ J, ‖x′‖max < r∗}.

Theorem 20. Let (4.11.rac) be fulfilled and let

σ2(t) < σ1(t) for all t ∈ J.

If k=1.11.rac, suppose moreover (4.13.rac).
Then there exists r∗ ∈ (0,∞) such that

dL(L + N, Ω7) = 1 (mod 2),

where

Ω7 = {x ∈ C1(J) : ‖x‖max + ‖x′‖max < r∗, ∃tx ∈ J : σ2(tx) < x(tx) < σ1(tx)}.

5 Multiplicity results for f unbounded

We can extend the results of the Section 3 onto differential equations with an
unbounded right-hand side f ∈ C(J ×R2). We will present here such extension
of some multiplicity results.

Let us suppose that σ1, σ2 and σ3 are strict lower, upper and lower solutions
of (1.1.rac), (k), k∈{1.5.rac,1.7.rac,1.11.rac}. Using Theorem 11 and Theorem 13 we get the
following multiplicity result:
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Theorem 21. Suppose that (3.1.rac), (4.6.rac) and, according to k, the condition (4.7.rac)
or (4.8.rac) or (4.9.rac) are fulfilled for all (t, x) ∈ J×[σ1(t), s3], where s3 = max{σ3(t) :
t ∈ J} +

∫ b

a γ(t) dt.
Then the assertion of Theorem 8 is valid.

Similarly, by means of Theorem 19 and Theorem 20 and the fact that (4.11.rac)
and (4.13.rac) are the special cases of (4.10.rac) and (4.12.rac), we get:

Theorem 22. Let us suppose that (3.1.rac) and (4.11.rac) are fulfilled and, for k=1.11.rac,
suppose moreover (4.13.rac). Then the assertion of Theorem 8 is valid.

Now, let us consider the dual situation, where σ3 is an upper solution of
(1.1.rac), (k).

Theorem 23. Suppose that (3.2.rac), (4.6.rac) and, according to k, the condition (4.7.rac)
or (4.8.rac) or (4.9.rac) are fulfilled for all (t, x) ∈ J×[b3, σ2(t)], where b3 = min{σ3(t) :
t ∈ J} −

∫ b

a γ(t) dt.
Then the assertion of Theorem 9 is valid.

Theorem 24. Let us suppose that (3.2.rac) and (4.11.rac) are fulfilled and, for k=1.11.rac,
suppose moreover (4.13.rac). Then the assertion of Theorem 9 is valid.

For constant lower and upper solutions we can generalize the theorems from
[11], concerning the multiplicity results of the Ambrosetti-Prodi type for the
periodic problem.

Theorem 25. Suppose k∈{1.5.rac,1.7.rac}. Let n ∈ N, n ≥ 2, c1, c2, s1, r1, . . . , rn+1 ∈
R, c1 < 0 < c2, satisfy (3.3.rac), (3.4.rac), (4.3.rac) for all (t, x) ∈ J × [r1, r

∗], where

r∗ =

{
rn+1 for n odd
rn+1 + max{|c1|, c2}(b− a) for n even.

(5.1.rac)

Then there exist s2, s3 ∈ (−∞, s1), s3 ≤ s2, such that the problem (3.5.rac) has:

(i) at least n different solutions ui, i = 1, .., n, satisfying

r1 < ui(t) < r∗ for all t ∈ J, i ∈ {1, . . . , n}; (5.2.rac)

(ii) at least n+1
2 (n

2 ) solutions satisfying (5.2.rac) for s = s2 and n odd (even);
(iii) provided s3 < s2 at least one solution satisfying (5.2.rac) for s ∈ [s3, s2);
(iv) no solution satisfying (5.2.rac) for s < s3.

Theorem 26. Suppose k∈{1.5.rac,1.7.rac}. Let n ∈ N, n > 2, be odd and let further
s1, r1, . . . , rn+1 ∈ R satisfy (3.3.rac) and (3.4.rac). Further, let (4.10.rac) be fulfilled.
Then there exists r∗ ≥ rn+1 such that (i)–(iv) of Theorem 25 are valid.

Theorem 27. Suppose k∈{1.5.rac,1.7.rac}. Let n ∈ N, n ≥ 2, be even and let further
s1, r1, . . . , rn+1 ∈ R satisfy (3.3.rac) and (3.4.rac). Further let (4.11.rac) be fulfilled.
Then there exists r∗ ≥ rn+1 such that (i)–(iv) of Theorem 25 are valid.
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Note 28. Close results concerning the existence of two or three solutions of the
periodic problem can be found also in [1] and [13].
For f satisfying the Carathéodory conditions on J×R2 the results of Corollary 3,
Theorem 4 and Theorem 6 can be proven as well. The multiplicity results of the
Theorems 8–10 and the theorems for f unbounded of the Sections 4 and 5 have
to be a little modified because in the Carathéodory case solutions can interact
strict lower and upper solutions.
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1 Introduction

The purpose of this paper is to survey some recent results in the theory of non-
linear differential equations in unbounded domains. Solutions of these equations
will be found as critical points of an associated Euler-Lagrange functional Φ in
a suitable Hilbert space. We consider three different problems whose common
feature is that Φ has the so-called linking geometry and the Palais-Smale con-
dition is not satisfied. To be more specific, in Section 2 we will be concerned
with the problem of existence of a nontrivial solution of the Schrödinger equa-
tion −∆u + V (x)u = f(x, u) in RN in a situation when 0 is in a gap of the
spectrum of the operator −∆ + V and the nonlinearity f is superlinear at u = 0
and |u| = ∞. In Section 3 the existence of homoclinic solutions of a Hamilto-
nian system in R2N is considered, and in Section 4 we turn our attention to the
problem of existence of time-periodic solutions for an infinite chain of particles
with nearest neighbour interaction (the so-called Fermi-Pasta-Ulam model). The
arguments presented here are very sketchy. Complete proofs may be found in the
original work to which the reader is referred.

Our starting point is the following generalized linking theorem:
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Theorem 1. Let E be a separable real Hilbert space and suppose that Φ ∈
C1(E,R) satisfies the following hypotheses:
(i) Φ(u) = 1

2 〈Lu, u〉 − ψ(u), where L is a bounded selfadjoint linear operator,
ψ is bounded below, weakly sequentially lower semicontinuous and ∇ψ is weakly
sequentially continuous.
(ii) E = Y ⊕ Z, where Y, Z are L-invariant and the quadratic form 〈Lu, u〉 is
negative definite on Y and positive definite on Z.
(iii) There are constants b, ρ > 0 such that Φ|∂Bρ∩Z ≥ b, where Bρ := {u ∈ E :
‖u‖ < ρ}.
(iv) There is z0 ∈ Z, ‖z0‖ = 1, and R > ρ such that Φ|∂M ≤ 0, where
M := {u = y + λz0 : y ∈ Y, ‖u‖ ≤ R, λ ≥ 0}.
Then there exists a sequence (un) such that ∇Φ(un) → 0 and Φ(un) → c for
some c ∈ [b, supM Φ].

The above result extends linking theorems of Rabinowitz [21,22] and Benci-
Rabinowitz [9,22] (in the first of them Y is assumed to be finite-dimensional,
in the second ∇ψ is compact). Theorem 1 may be found in [19], see also [34].
We would like to emphasize that in the problems considered in the next sections
both Y and Z are infinite-dimensional and ∇ψ is not compact.

2 Schrödinger equation

Consider the semilinear Schrödinger equation{
−∆u + V (x)u = f(x, u), x ∈ RN

u(x)→ 0 as |x| → ∞,
(2.1)

where V and f are continuous and 1-periodic with respect to xj , 1 ≤ j ≤ N .
It is known [23, Theorem XIII.100] that under such conditions the operator
−∆ + V in L2(RN ) has purely continuous spectrum which is bounded below
(but not above) and consists of closed disjoint intervals. Intervals (a, b) such that
σ(−∆+V )∩ [a, b] = {a, b} will be called spectral gaps of −∆+V . Let F (x, u) :=∫ u

0 f(x, ξ) dξ and suppose that f and V satisfy the following hypotheses:

(A1) V is 1-periodic in xj , 1 ≤ j ≤ N , continuous, and 0 lies in a gap of the
spectrum of −∆ + V .

(A2) f is 1-periodic in xj , 1 ≤ j ≤ N , and continuous.
(A3) f(x, u)/u→ 0 uniformly in x as u→ 0.
(A4) There are c > 0 and p ∈ (2, 2∗) such that |f(x, u)| ≤ c(1 + |u|p−1), where

2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := +∞ if N = 1 or 2.
(A5) There is γ > 2 such that 0 < γF (x, u) ≤ uf(x, u) whenever u 6= 0.

Since f(x, 0) = 0 according to (A3), it is clear that (2.1) has the trivial
solution u = 0.

Theorem 2. If the hypotheses (A1)–(A5) are satisfied, then (2.1) has at least
one nontrivial solution.
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For the proof, we consider the functional

Φ(u) :=
1
2

∫
RN

(|∇u|2 + V (x)u2) dx −
∫
RN

F (x, u) dx

=
1
2
〈Lu, u〉 − ψ(u)

on the (real) Sobolev space E := H1(RN ). Since

|f(x, u)| ≤ c0(|u|+ |u|p−1) (2.2)

according to (A3)–(A4), Φ ∈ C1(E,R) [34, Lemma 3.10] and it is easy to see
that ∇Φ(u) = 0 if and only if u is a (weak) solution of the equation in (2.1).
Moreover, it can be shown that u ∈ E and ∇Φ(u) = 0 imply u(x) → 0 as
|x| → ∞.

To verify (i) of Theorem 1 we observe that ψ ≥ 0 and ψ is weakly sequentially
lower semicontinuous according to Fatou’s lemma. Moreover,

〈∇ψ(u), v〉 =
∫
RN

f(x, u)v dx,

and weak sequential continuity of ∇ψ follows from (2.2) since if un ⇀ u, then
un → u in L2

loc(RN ) and Lp
loc(RN ).

Since 0 is in a gap of the spectrum of −∆ + V , E decomposes as a direct
sum of two infinite-dimensional L-invariant subspaces Y, Z such that 〈Lu, u〉 is
negative definite on Y and positive definite on Z (cf. [28, Section 9]). Hence (ii) of
Theorem 1. The quadratic form 〈Lu, u〉 is positive definite on Z and, according
to (A3), ψ(u) = o(‖u‖2) as u → 0; therefore Φ(u) ≥ b > 0 for u ∈ ∂Bρ ∩ Z
provided ρ is small enough. This gives (iii). Since 〈Lu, u〉 is negative definite on
Y and ψ ≥ 0, Φ|Y ≤ 0. Using the fact that p > 2 one can show that Φ ≤ 0 on the
set {u ∈M : ‖u‖ = R} whenever R is large enough. Hence also (iv) is satisfied.

Now it follows from Theorem 1 that there exists a sequence (un) such that
Φ(un) → c > 0 and ∇Φ(un) → 0. Furthermore, it can be shown that (un)
is bounded, so un ⇀ ū after passing to a subsequence. Since ∇Φ is weakly
sequentially continuous, ∇Φ(ū) = 0. If ū 6= 0, the proof is complete. So assume
ū = 0. According to a lemma due to P.L. Lions (see [12, Lemma 2.18], [20,
Lemma I.1] or [34, Lemma 1.21]), if (un) is bounded and there exists r > 0 such
that

lim
n→∞

sup
a∈RN

∫
|x−a|<r

u2
n dx = 0, (2.3)

then un → 0 in Ls(RN ) for all s ∈ (2, 2∗). Hence either un → 0 in Lp(RN ) or
there exists a sequence (an) ⊂ ZN and r, δ > 0 such that∫

|x−an|<r

u2
n dx ≥ δ
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for almost all n. In the first case one shows that un → 0 in E which is impossible
since Φ(un) → c > 0. In the second one vn(x) := un(x + an) ⇀ v̄ 6= 0 after
taking a subsequence. Since Φ is invariant with respect to the action of ZN given
by

(a ∗ u)(x) = u(x + a), u ∈ E, a ∈ ZN , (2.4)

we have Φ(vn) = Φ(un) and ∇Φ(vn)→ 0, so v̄ is the nontrivial solution we were
looking for.

Theorem 2 and its proof are taken from [19], see also [34]. Earlier versions of
this result, under the assumption that the function F is strictly convex, have been
obtained by Alama and Li [1], and Buffoni, Jeanjean and Stuart [10]. Although
the techniques in [1] and in [10] are very different, in both papers the problem is
eventually reduced to that of finding a critical point of a functional having the
mountain pass geometry. The hypothesis that F is convex has been removed,
first by Troestler and Willem [33], and then by Kryszewski and Szulkin [19]. An
extension of Theorem 2 has been recently found by Bartsch and Ding [8]. They
considered the situation where 0 is a left endpoint of a gap in the spectrum of
−∆ + V , i.e. [0, β] ∩ σ(−∆ + V ) = {0} for some β > 0.

We would also like to mention the work of Heinz, Küpper and Stuart, see
[16,28] and the references there, and that of Troestler [32], on bifurcation into
spectral gaps for (2.1) with V (x) replaced by V (x)− λ.

It follows immediately from the periodicity assumptions on V and f that if
u is a solution of (2.1), then so is a ∗ u (cf. (2.4)) for any a ∈ ZN . Two solutions
u1 and u2 are said to be geometrically distinct if a∗u1 6= u2 for any a ∈ ZN . The
problem of finding the number of geometrically distinct solutions of (2.1) has
been studied by several authors. If σ(−∆+V ) ⊂ (0,∞) (i.e. if the quadratic form
〈Lu, u〉 is positive definite), it has been shown by Coti Zelati and Rabinowitz
[12] that there are infinitely many such solutions. The same result remains true
if 0 is in a spectral gap of −∆ + V and f(x, u) = W (x)|u|p−2u, where W > 0
and 2 < p < 2∗ [2]. For nonconvex F it has been shown in [8,19] that (2.1) has
infinitely many geometrically distinct solutions under the additional assumption
that f is odd in u. It seems to be an open problem to decide whether oddness
of f is really needed here.

3 Hamiltonian systems

Let

J =
(

0 −I
I 0

)
be the standard symplectic 2N×2N - matrix. In this section we will be concerned
with the question of existence of homoclinic solutions for the Hamiltonian system

ż = JHz(z, t), z ∈ R2N . (3.1)
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Recall that a solution z of (3.1) is said to be homoclinic (to 0) if z 6≡ 0 and
z(t) → 0 as |t| → ∞. Suppose that H(z, t) = 1

2Az · z + F (z, t) satisfies the
following assumptions:

(B1) A is a constant symmetric 2N × 2N -matrix and σ(JA) ∩ iR = ∅.
(B2) F and Fz are 1-periodic in t and continuous.
(B3) Fz(z, t)/|z| → 0 uniformly in t as z → 0.
(B4) There exists γ > 2 such that 0 < γF (z, t) ≤ z · Fz(z, t) for all z 6= 0.
(B5) There exist c, r > 0 such that |Fz(z, t)|2 ≤ cz · Fz(z, t) for all |z| ≤ r.
(B6) There exist c, R > 0 and q ∈ (1, 2) such that |Fz(z, t)|q ≤ cz · Fz(z, t) for

all |z| ≥ R.

It follows from (B6) that

|Fz(z, t)| ≤ c̃(1 + |z|p−1) (3.2)

for some c̃ > 0 and p = q/(q − 1).

Theorem 3. If the hypotheses (B1)–(B6) are satisfied, then (3.1) has at least
one homoclinic solution.

Let E := H1/2(R,R2N ) be the Sobolev space of functions z ∈ L2(R,R2N )
such that their Fourier transform ẑ satisfies∫

R
(1 + |ξ|2)1/2|ẑ(ξ)|2 dξ <∞.

Then E is a Hilbert space and

〈z, v〉 :=
∫
R
(1 + |ξ|2)1/2ẑ(ξ) · v̂(ξ) dξ

is an inner product in E. Consider the functional

Φ(z) :=
1
2

∫
R
(−Jż −Az) · z dt−

∫
R

F (z, t) dt

=
1
2
〈Lz, z〉 − ψ(z).

According to (3.2) and (B3), |Fz(z, t)| ≤ c0(|z| + |z|p−1). Hence using the ar-
gument of [34, Lemma 3.10] and the fact that E is continuously embedded in
Ls(R,R2N ) for each s ≥ 2 (see e.g. [28, Lemma 10.4]) it is easy to show that
Φ ∈ C1(E,R) and ∇Φ(z) = 0 if and only if z is a solution of (3.1). More-
over, Fz(z(.), .) ∈ L2(R,R2N ) for such z. It follows therefore from (3.1) that
z ∈ H1(R,R2N ), so z(t) → 0 as |t| → ∞. Hence critical points z 6= 0 of Φ are
homoclinic solutions of (3.1).

According to (B1), −iξJ − A is an invertible matrix and (−iξJ − A)−1 is
uniformly bounded with respect to ξ ∈ R. Hence it follows from Plancherel’s
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formula that L is bounded, selfadjoint and has a bounded inverse. So E decom-
poses as in (ii) of Theorem 1. See [28, Section 10] for more details. In particular,
it is shown in [28] that the spectrum of −J d

dt − A is unbounded, from above
and below, in H1(R,R2N ). Therefore 〈Lz, z〉 is positive and negative definite on
subspaces of infinite dimension.

Other hypotheses of Theorem 1 are verified in the same way as in the pre-
ceding section. Hence we obtain a sequence (zn) such that Φ(zn) → c > 0 and
∇Φ(zn) → 0. Moreover, (zn) can be shown to be bounded. The argument is
the same as for the Schrödinger equation and may be found in [7]. The proof
of boundedness makes essential use of (B4)–(B6). Finally, since Φ is invariant
with respect to the action of Z given by (a ∗ z)(t) = z(t + a) (z ∈ E, a ∈ Z), cf.
(2.4), an application of P. L. Lions’ lemma gives a solution z̄ 6= 0. Here a remark
is in order: in [12, Lemma 2.18] and [34, Lemma 1.21] the space is H1(RN );
however, a simple adaptation of the argument in [12,34] shows that if (zn) is
bounded in H1/2(R,R2N ) and (2.3) is satisfied, then zn → 0 in Ls(R,R2N ) for
all s ∈ (2, +∞).

Theorem 3 for Hamiltonian systems with strictly convex F is due to Coti
Zelati, Ekeland and Séré [11]. They reformulated the problem in terms of a dual
functional which has the mountain pass geometry. The convexity assumption
has been removed by Hofer and Wysocki [17] and Tanaka [29]. The proof in [29]
is obtained by constructing a sequence of subharmonic solutions of (3.1) and
passing to the limit. A truncation argument is also used there in order to weaken
some of the hypotheses (in particular, in [29] it is assumed that q = 1 in (B6), so
F need not satisfy any growth restriction like (3.2)). An extension of Theorem 3
in a similar spirit as in [8] has been obtained by Ding and Willem [14]. They
allowed A to be t-dependent, 1-periodic and such that [0, β]∩σ(−J d

dt−A) = {0}
for some β > 0.

It has been shown by Séré [25,26] that if F is strictly convex, then (3.1) has
infinitely many geometrically distinct homoclinic solutions. Recently Ding and
Girardi [13] have obtained a result on the existence of infinitely many homoclinics
for F which is even in z but not necessarily convex. In [7] it will be shown that
the same result remains valid for F invariant with respect to an action of a more
general symmetry group. Also for Hamiltonian systems it seems to be unknown
whether such invariance condition can be removed if F is nonconvex.

4 Infinite chain of particles

Consider a chain of particles arranged linearly in a doubly infinite sequence.
Assume that each particle has unit mass and that it interacts only with its
nearest neighbours. Denote the displacement of the i-th particle from its original
position by qi and let φ denote the potential of interaction. Then the equations
of motion for this chain are

q̈i = φ′(qi−1 − qi)− φ′(qi − qi+1), i ∈ Z. (4.1)
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If φ(x) = 1
2βx2, β > 0, the system is linear and it is possible to explicitly find

normal mode solutions of (4.1), see [31].
Nonlinear systems of this kind (for a finite number of particles) were consid-

ered for the first time by Fermi, Pasta and Ulam in [15]. They wanted to verify
numerically the conjecture that while there is no exchange of energy between
different modes when the system is linear, already a perturbation by a small
nonlinear term causes the energy to be gradually shared by the modes. Contrary
to what they expected, they found that only little energy was shared and the
system returned periodically to the initial state. In a subsequent research Toda
has found that if the force of interaction is exponential, then the system (4.1)
is integrable and there exist both periodic solutions of finite energy and soliton
solutions. See [31] and the references there for more information.

Suppose now that φ(x) = 1
2βx2 + V (x) and β, V satisfy the following condi-

tions:

(C1) β > 0.
(C2) V is continuously differentiable.
(C3) V ′(x)/x→ 0 as x→ 0.
(C4) There is γ > 2 such that 0 < γV (x) ≤ V ′(x)x whenever x 6= 0.

Note that since φ′(x) has the same sign as x, the potential φ is purely at-
tractive.

Theorem 4. If the hypotheses (C1)–(C4) are satisfied, then (4.1) has a non-
trivial T -periodic solution of finite energy for each T > 0.

Let q := {qi}i∈Z, S1 := [0, T ]/{0, T},

〈q, p〉 :=
∑

i

∫ T

0

(q̇i(t)ṗi(t) + (qi(t)− qi+1(t))(pi(t)− pi+1(t))) dt,

‖q‖2 = 〈q, q〉 and

E :=

{
q ∈ H1(S1,R)Z :

∫ T

0

q0(t) dt = 0, ‖q‖ <∞
}

.

Then E is a Hilbert space and

Φ(q) :=
∑

i

1
2

∫ T

0

(
q̇2
i − β(qi − qi+1)2

)
dt−

∑
i

∫ T

0

V (qi − qi+1) dt

=
1
2
〈Lq, q〉 − ψ(q)

is defined on E. Moreover, Φ ∈ C1(E,R) and critical points of Φ are T -periodic
solutions of (4.1) [6]. Note that if q = {qi} is a solution of (4.1), so is q̃ = {qi+σ}
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for any constant σ ∈ R. Therefore the condition that
∫ T

0
q0(t) dt = 0 which

appears in the definition of E is a way of normalizing (4.1) by dividing out the
constants.

Let T ∈ (0, π/
√

β) be fixed. Then it can be shown that Φ satisfies all hypothe-
ses of Theorem 1. The proof is similar to that in Section 2 but more technical.
Here we only show how the decomposition E = Y ⊕ Z is obtained and refer to
[6] for the other parts.

We first make a side remark that 〈Lq, q〉 is negative definite if β < 0, Lq = 0
for all constant sequences q if β = 0 and it has been shown in [6] that L has no
bounded inverse if β ≥ π2/T 2.

Let Y := {q ∈ E : qi = const. for all i} and Z := Y ⊥. Suppose T ∈
(0, π/

√
β); then 0 < β < π2/T 2 and a simple computation using Wirtinger’s

inequality shows that 〈Lq, q〉 is positive definite on Z. Clearly, 〈Lq, q〉 is nega-
tive definite on Y . Hence by Theorem 1 there exists a sequence (q(n)) such that
Φ(q(n))→ c > 0 and ∇Φ(q(n))→ 0. Moreover, it can be shown (q(n)) is bounded,
so we may assume it is weakly convergent. If q(n) ⇀ q̄ 6= 0, we are done. Other-
wise one shows there is a sequence (in) of integers such that if q̃

(n)
i := q

(n)
i+in

+σ(n),

then q̃(n) ⇀ q̃ 6= 0 (σ(n) is chosen in order to have
∫ T

0 q̃
(n)
0 (t) dt = 0). Since Φ is

invariant with respect to the action of Z given by (k ∗ qi)(t) = qi+k(t) + σk, a
familiar argument shows that q̃ is a T -periodic solution of (4.1). Moreover, the
energy 1

2 〈Lq̃, q̃〉+ ψ(q̃) is finite.
Suppose T ≥ π/

√
β; then we can find an integer k such that T/k < π/

√
β.

So (4.1) has a T/k-periodic solution which of course is T -periodic as well.
The special role played by the number T0 := π/

√
β raises the question of

the behaviour of solutions as T ↗ T0. A partial answer may be found in [6]
where it has been shown that if there exist c > 0 and p ∈ (2, 4) such that
V (x) ≥ c|x|p, then nontrivial solutions of (4.1) bifurcate at T0. More precisely,
there exist nontrivial solutions of arbitrarily small energy and L∞-norm, with a
period arbitrarily close to T0.

The study of chains of particles by variational methods has been initiated by
Ruf and Srikanth in [24]. They considered finite chains with different kinds of
(nonlinear) potential. In a series of papers Arioli, Gazzola and Terracini consid-
ered the infinite chain (4.1) with β < 0 [3,5] (potential repulsive for small and
attractive for large displacements) and β = 0 [4]. Theorem 4 here is a special
case of a more general result contained in [6]. Finally, let us also mention two
papers, by Smets and Willem [27], and by Tarallo and Terracini [30], on solitary
waves for systems of equations like (4.1).
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1 Introduction

One of the characteristic properties of Hamiltonian and reversible systems is that
(symmetric) periodic orbits of such systems typically appear in one-parameter
families, in contrast to periodic orbits of general systems which are typically
limit cycles, i.e. they are isolated. Starting from this observation one can raise a
number of questions, such as (1) how do branches of periodic orbits originate or
terminate? (2) is there any “branching”, i.e. can one branch of periodic orbits
bifurcate from another such branch? and (3) how does this branching process
change when parameters in the system are changed? In this paper we survey
a number of results on these issues which we obtained in recent years in col-
laboration with Bernold Fiedler, Jan-Cees van der Meer, Jürgen Knobloch and
Maria-Cristina Ciocci.

We will consider two different types of systems, namely Hamiltonian systems
from one side, and reversible systems from the other side. Although in practice
many Hamiltonian systems are also reversible, the two classes do not coincide,
and we will treat them here strictly separated. Some of the results which we quote
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for Hamiltonian systems remain valid for the much larger class of conservative
systems, i.e. for systems which have a first integral. Also, some of the results are
for fixed systems, while others require one or more external parameters.

The Hamiltonian systems which we will consider have the form

ẋ = XH(x, λ) := J∇xH(x, λ), (1.1.van)

where x ∈ R2n, λ ∈ Rm, H : R2n × Rm → R is a smooth function (the
Hamiltonian), and J ∈ L(R2n) is the standard symplectic matrix defined by
J(y, z) := (z,−y) for all y, z ∈ Rn. It is immediate to see that H(·, λ) is a first
integral for (1.1.van)λ. We also consider reversible systems of the form

ẋ = f(x, λ), (1.2.van)

again with x ∈ R2n and λ ∈ Rm, and with f : R2n × Rm → R2n a smooth
parameter-dependent vectorfield such that

f(Rx, λ) = −Rf(x, λ) (1.3.van)

for some linear operator R ∈ L(R2n) satisfying R2 = I (i.e. R is a linear in-
volution on R2n) and dim Fix(R) = n. If x̃(t) is a solution of (1.2.van) then so is
ỹ(t) := Rx̃(−t); a (maximal) solution of (1.2.van) with orbit γ is called symmetric
if Rγ = γ.

We first show why periodic orbits of (1.1.van) or (1.2.van) appear typically in one-
parameter families (at fixed values of the parameter λ). Let γ0 be a periodic
orbit of a Hamiltonian vectorfield XH , let Σ be a transversal section to γ0 at
a point x0 ∈ γ0, and let P : Σ → Σ be the corresponding Poincaré mapping.
For each h ∈ R near h0 := H(x0) we set Eh := {x ∈ R2n | H(x) = h} and
Σh := Σ ∩Eh. Since H is a first integral for XH it follows that P leaves each Σh

invariant, which allows us to define Ph : Σh → Σh as the restriction of P to Σh.
Clearly x0 is a fixed point of Ph0 , and if 1 is not an eigenvalue of DPh0 (which is
typically the case) this fixed point persists for all nearby values of h. Hence we
obtain a 1-parameter family of periodic orbits parametrized by the “energy” h.
In the reversible case we use the property that a nontrivial orbit γ is symmetric
and periodic if and only if γ intersects Fix (R) in exactly two points; the period
then equals twice the time needed to travel along γ between these two points.
Now suppose that γ0 is a symmetric periodic orbit for a reversible vectorfield
f(x), with minimal period T0 > 0, and let x0 and y0 be the two intersection
points of γ0 and Fix (R). Then x0 and y0 also belong to the intersection of
Fix (R) with φT0/2(Fix (R)) (where φt(x) denotes the flow of f ), and generically
this intersection will be transversal. If this is the case then the two intersection
points will persist for nearby values of T , i.e. for each T near T0 the intersection
of Fix (R) with φT/2(Fix (R)) will contain two points xT and yT which generate a
symmetric T -periodic orbit of f . We conclude that typically symmetric periodic
orbits of reversible vectorfields appear in one-parameter families parametrized
by the period T .
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In the main part of this paper we will discuss how branches of (symmetric)
periodic orbits can originate at equilibria (Section 2) or terminate at homoclinics
(Section 3); we will also show how the bifurcation of subharmonic solutions leads
to “branching” (Section 4). Finally we will very briefly discuss the phenomenon
of subharmonic cascades (Section 5).

2 Branches originating at equilibria

The simplest conditions under which a branch of periodic orbits can originate
from an equilibrium are given by the classical Liapunov Center Theorem. In the
Hamiltonian case this theorem reads as follows.

Theorem 1. Consider a Hamiltonian vectorfield XH and let x0 ∈ R2n be such
that:

(i) XH(x0) = 0;
(ii) A0 := DXH(x0) has a pair of simple purely imaginary eigenvalues ± iω0

(with ω0 > 0);
(iii) (nonresonance condition) A0 has no other eigenvalues of the form ± ikω0,

with k ∈ Z, k 6= ±1.

Then the vectorfield XH has a smooth 2-dimensional locally invariant manifold
containing x0 and foliated by periodic orbits surrounding x0. As one moves along
this 1-parameter family of periodic orbits towards x0 the minimal period tends
to T0 := 2π/ω0. �

In the reversible case a similar result holds:

Theorem 2. Let f be a reversible vectorfield, and let x0 ∈ Fix (R) be a sym-
metric equilibrium of f such that the linearization A0 := Df(x0) has a pair
of simple purely imaginary eigenvalues ± i ω0 (ω0 > 0) and no other eigenval-
ues of the form ± ikω0 (k ∈ Z, k 6= ±1). Then the vectorfield f has a smooth
R-invariant 2-dimensional locally invariant manifold containing x0 and foliated
by a 1-parameter family of symmetric periodic orbits. As one moves along this
family of periodic orbits towards the equilibrium the minimal period tends to
T0 := 2π/ω0. �

The situations described by the theorems 1 and 2 are robust under perturbations:
if in a parametrized family of Hamiltonian (respectively reversible) vectorfields
the conditions of Theorem 1 (respectively Theorem 2) are satisfied for a certain
value λ0 of the parameter then they remain satisfied for all nearby values of the
parameter. The reason for this is that if µ0 ∈ C is an eigenvalue of A0 then so is
−µ0; as a consequence the simple purely imaginary eigenvalues whose existence
was assumed in the foregoing theorems cannot move off the imaginary axis when
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the system is perturbed. However, in parametrized families of Hamiltonian or
reversible systems it is possible to find in a generic way equilibria for which the
linearization has a pair of purely imaginary eigenvalues for which the conditions
of Theorems 1 and 2 are not satisfied, because either these eigenvalues are not
simple, or because the nonresonance condition is not satisfied, or both. A well
known example is that of a so-called Krein instability (also called a 1:1-resonance
or a Hamiltonian Hopf bifurcation) in a one-parameter family of Hamiltonian
systems: in their simplest form the hypotheses are that there is an equilibrium
(say at x = 0) at which the linearization Aλ := DxXH(0, λ) has for small λ < 0
two pairs of simple purely imaginary eigenvalues close to each other which merge
for λ = 0 into a single pair of non-semisimple purely imaginary eigenvalues and
split off the imaginary axis for λ > 0. An application of Theorem 1 shows that
for fixed small λ < 0 the system has two one-parameter families of periodic
orbits emanating from the equilibrium x = 0; the question arises what happens
to these periodic orbits as λ passes through zero and becomes positive.

The answer to these question depends on some third order coefficient in the
normal form of the vectorfield XH(·, 0), i.e. on some fourth order coefficient in
the normal form of the Hamiltonian H(·, 0). Generically (when considering one-
parameter problems as described above) this coefficient is non-zero; depending
on its sign we have either an elliptic or a hyperbolic bifurcation. In the elliptic
case the two families of periodic orbits which emanate from the equilibrium for
λ < 0 are connected and form one single branch which at both sides tends to the
equilibrium; we call this a local branch. As λ increases towards zero this local
branch shrinks and is absorbed by the equilibrium for λ = 0. For λ ≥ 0 there
are no nontrivial periodic orbits nearby the equilibrium. In the hyperbolic case
we have the following scenario. For λ < 0 the two families of periodic orbits
emanating from the equilibrium are not connected to each other (at least not
locally); we say that we have two global branches. For λ = 0 these two global
branches become at the equilibrium tangent to each other; for λ > 0 they detach
from the equilibrium and merge into one single branch of periodic orbits which
no longer contains the equilibrium. A complete analysis of this Hamiltonian Hopf
bifurcation can be found in [20].

The same bifurcation scenario as described above also appears at generic 1 :1 -
resonances in one-parameter families of conservative or reversible systems (see
respectively [6] and [7]). The result can be extended to equivariant conservative
or equivariant reversible systems (see [14] and [8]). It is also possible to consider
situations where k > 2 pairs of purely imaginary eigenvalues come together and
split off the imaginary axis under a change of parameters; such situations appear
generically in k− 1-parameter families of conservative or reversible systems. An
analysis of the bifurcation of periodic orbits at such k-fold resonances can be
found in [6] and [7].

A further question which arises in the context of such resonances is about
the stability of the periodic orbits appearing in these bifurcation scenario’s. It is
important to notice that if µ ∈ C is a characteristic multiplier of a periodic orbit
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in a Hamiltonian or reversible system, then so is 1/µ; consequently a periodic
orbit is called stable if all its multipliers are on the unit circle, and unstable if
there are some multipliers off the unit circle. Taking into account only the crit-
ical multipliers it can be shown for the Hamiltonian Hopf bifurcation described
above (see [20]) that in the hyperbolic case all periodic orbits appearing in the
bifurcation scenario are stable; in the elliptic case the local branch which exists
for λ < 0 is divided into three parts: the periodic solutions along the middle
part are unstable, those along the two outer parts (adjacent to the equilibrium)
are stable. The same result also holds at a 1 : 1-resonance in reversible systems
(see [4] and [9]); here the transition points between stable and unstable solutions
along the local branch in the elliptic case are sometimes called Eckhaus points .
At these Eckhaus points there can be secondary bifurcations, in particular of
orbits homoclinic to periodic orbits (again, see [4]). Finally, the stability of pe-
riodic orbits near a 3-fold resonance in reversible systems will be discussed in
some forthcoming paper [9].

There are several tools available for studying the bifurcation of periodic orbits
at resonances in Hamiltonian or reversible systems; the most popular ones are the
Liapunov-Schmidt reduction and normal form theory. We conclude this section
by describing a general type of reduction result which can (and has) been used
for analyzing the type of resonances considered here. More details and proofs
can be found in [17] and [5]. These proofs are based on a combined use of normal
form theory and the Liapunov-Schmidt reduction; however, the reduction result
can be used directly, without going into the details of either of these methods
(see [6] and [7] for some examples).

Consider a system

ẋ = f(x, λ), (2.1.van)

where the vectorfield f : R2n × Rm → R2n is either Hamiltonian or reversible,
and satisfies f(0, λ) = 0 for all λ. We are then interested in solving the following
problem:

(P) Find, for all (λ, T ) near a given (λ0, T0) ∈ Rm×]0,∞[, all sufficiently
small T -periodic solutions of (2.1.van)λ.

Let A0 := Dxf(0, λ0) be the linearization of f(·, λ0) at the equilibrium in the
origin, and assume that A0 is nonsingular, such that there is no bifurcation of
equilibria at λ = λ0. Let A0 = S0 + N0 be the Jordan decomposition of A0

into its semisimple and nilpotent parts (i.e. S0 is semisimple, N0 is nilpotent,
and S0N0 = N0S0). Next we introduce the so-called reduced phase space for our
problem; this is a subspace of R2n defined by

U := ker
(
eS0T0 − I

)
. (2.2.van)

There exists a natural S1-action on U , generated by S := S0|U and explicitly
given by

ϕ ∈ S1 ∼= R/T0Z 7−→ eSϕ ∈ L(U). (2.3.van)
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Also, the space U is even-dimensional and invariant under J or R depending on
whether f is Hamiltonian or reversible; therefore it makes sense to talk about a
Hamiltonian (respectively reversible) vectorfield on U .

We have then the following reduction result.

Theorem 3. Under the foregoing conditions there exists for each (λ, T ) near
(λ0, T0) a one-to-one correspondence between the small T -periodic solutions of
(2.1.van)λ and the small T -periodic solutions of a reduced equation

u̇ = fr(u, λ), (2.4.van)

where the reduced vectorfield fr : U ×Rm → U has the following properties:

(1) fr(0, λ) = 0 for all λ, and Dufr(0, λ0) = S + N , where N := N0|U ;
(2) fr is Hamiltonian or reversible, depending on whether f is Hamiltonian

or reversible;
(3) fr is S1-equivariant, i.e. we have

fr(eSϕu, λ) = eSϕfr(u, λ), ∀ϕ ∈ S1; (2.5.van)

Moreover, all small T -periodic solutions of (2.4.van)λ have the form

ũ(t) = e(1+σ)Stu (2.6.van)

with u ∈ U small and T = T0/(1 + σ). �

An analogous result holds for conservative systems, under appropriate non-
degeneracy conditions for the first integral. The last conclusion of Theorem 3
combined with the S1-equivariance of fr shows that in order to obtain the bifur-
cation picture for our problem (P) we have to study the determining equation

(1 + σ)Su = fr(u, λ) (2.7.van)

for (u, λ, σ) near (0, λ0, 0). It is shown in [17] and [5] how the reduced vectorfield
fr can be calculated or approximated by bringing the original vectorfield f into
normal form. It should be emphasized that although (2.7.van) is a finite-dimensional
equation it is in general not yet the bifurcation equation for our problem (P)
since its linearization at (u, λ, σ) = (0, λ0, 0) is not identically zero but gives the
equation Nu = 0; however, when the nilpotent operator N is known it is fairly
simple to deduce the bifurcation equations from (2.7.van).

3 Branches terminating at homoclinics

When moving along a branch of periodic orbits in a Hamiltonian, conservative
or reversible system it is possible that the period tends to infinity while the
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orbit itself remains bounded; the limiting orbit may then for example be a ho-
moclinic orbit. Examples of such homoclinic period blow-up are well known for
one-degree-of-freedom Hamiltonian systems, i.e. when n = 1 in (1.1.van). Consider
for example the phase portrait for the Hamiltonian system with Hamiltonian
H(y, z) = 1/2z2 + y3− y2; this system has two equilibria, a center and a saddle;
the periodic orbits which originate at the center terminate in a period blow-up at
an orbit homoclinic to the saddle. In [15] it is shown that this type of behavior is
typical near (symmetric) homoclinic orbits in conservative or reversible systems,
whatever their dimension. In this section we briefly describe the main result of
[15].

We consider a system

ẋ = f(x). (3.1.van)

In the conservative case we assume that x ∈ Rn, that f : Rn → Rn is smooth,
and that there exists a smooth function H : Rn → R such that DH(x) ·f(x) = 0
for all x ∈ Rn; moreover it is assumed that:

(C) (i) there exists an orbit γ0 of (3.1.van) which is homoclinic to a hyperbolic
equilibrium x0 ∈ Rn;

(ii) the homoclinic orbit γ0 is non-degenerate, i.e.

dim (TyW s(x0) ∩ TyW
u(x0)) = 1, ∀y ∈ γ0, (3.2.van)

where W s(x0) and Wu(x0) denote the stable (respectively unstable)
manifold of x0;

(iii) DH(y0) 6= 0 for some y0 ∈ γ0.

These hypotheses are robust under perturbations and imply a period blow-up
at γ0; more precisely:

Theorem 4. Under the assumptions (C) we have that γ0∪{x0} forms the limit
of a one-parameter family of periodic orbits along which the minimal period T
tends to infinity as one approaches the homoclinic orbit. �

When the system (3.1.van) is reversible (see Section 1) one has to assume that the
homoclinic orbit is symmetric, and then necessarily also the limiting equilib-
rium is symmetric. Such symmetric homoclinic orbits have a unique intersection
point with Fix (R). Also, if x0 ∈ Fix (R) is a symmetric and hyperbolic equilib-
rium, then both the stable manifold W s(x0) and the unstable manifold Wu(x0)
have dimension n, since W u(x0) = R(W s(x0)). This allows us to formulate our
hypotheses for the reversible case as follows:

(R) (i) the system (3.1.van) is reversible and has a symmetric orbit γ0 (i.e. R(γ0)=
γ0) which is homoclinic to a symmetric and hyperbolic equilibrium
x0 ∈ Fix (R);
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(ii) γ0 is an elementary homoclinic orbit, which means that W s(x0) and
Fix (R) intersect transversely at the unique intersection point of γ0

and Fix (R).

Again these hypotheses are robust under perturbations, and they imply a ho-
moclinic period blow-up along a family of symmetric periodic orbits.

Theorem 5. Under the assumptions (R) we have that γ0∪{x0} forms the limit
of a one-parameter family of symmetric periodic orbits along which the minimal
period T tends to infinity as one approaches the homoclinic orbit. �

The proofs of these theorems as given in [15] is based on a simplified form of
Lin’s method (see [10]); this method has recently become quite popular for the
study of bifurcations near homoclinics (see e.g. the recent work of B. Sandstede).

4 Subharmonic branching

In the foregoing sections we have seen how branches of periodic orbits in Hamilto-
nian or reversible systems can originate at equilibria or terminate at homoclinics.
In this section we discuss some elementary “branching phenomena” which can
occur along branches of periodic orbits; we also describe a reduction result for
mappings (analogous to Theorem 3) which can be used to study such branchings.
For the sake of simplicity we will restrict here to Hamiltonian systems, although
most of the results have analogues for reversible systems (see e.g. [16] for a study
of subharmonic branching in reversible systems).

To start consider a Hamiltonian system

ẋ = XH(x) = J∇xH(x), (4.1.van)

with x ∈ R2n and H : R2n → R smooth. Let γ0 be a given (nontrivial) periodic
orbit of (4.1.van), x0 ∈ γ0 and h0 := H(x0). As described in the Introduction we can
then construct a one-parameter family of (restricted) Poincaré maps

Ph : Σh −→ Σh, (4.2.van)

well defined for h ∈ R close to h0 (see Section 1 for the notations). Fixed points
of Ph correspond to periodic orbits of (4.1.van) close to γ0, periodic orbits of Ph

correspond to so-called subharmonic solutions of (4.1.van), i.e. periodic solutions
whose orbit remains in a neighborhood of γ0 but whose minimal period is close
to an integer multiple of of γ0. So the study of periodic orbits near γ0 leads
to an analysis of the bifurcation of fixed points and periodic points from the
fixed point x0 of Ph0 . The following properties of Σh and Ph are crucial for this
analysis.

Lemma 6. We have for each h near h0 that Σh is a 2(n − 1)-dimensional
symplectic submanifold of R2n, and Ph is a symplectic diffeomorphism. �
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For a proof see e.g. [13] or [19]. Using the classical Darboux theorem (see [1]
or [19]) this Lemma implies that the family of mappings Ph (h ∈ R) can be
identified with a one-parameter family of symplectic diffeomorphisms on a fixed
symplectic vectorspace (V, J) with dim V = 2(n−1); this means that J ∈ L(V ) is
anti-symmetric with respect to some scalar product on V and satisfies J2 = −IV ,
while the diffeomorphisms Ph : V → V are such that

DPh(x)T JDPh(x) = J, ∀x ∈ V. (4.3.van)

In this identification the base point x0 at which we constructed the Poincaré
map corresponds to the origin of V ; hence we have Ph0(0) = 0. The eigenvalues
of DPh0(0) are the nontrivial characteristic multipliers of the periodic orbit;
observe that because of the symplectic structure 1 will always be a multiplier
with at least multiplicity 2. Generically 1 will be a multiplier with multiplicity
equal to 2, and in that case 1 will not be an eigenvalue of DPh0(0) and the fixed
point of Ph0 will persist for nearby values of h. Therefore we can (possibly after
an appropriate translation) assume that

Ph(0) = 0, ∀h ∈ R. (4.4.van)

The fixed point set {(0, h) | h ∈ Rm} corresponds to the branch of periodic
solutions of (4.1.van) which we discussed in Section 1.

Now let us consider the eigenvalues of DPh(0) ∈ L(V ). Setting x = 0 in (4.3.van)
it is easy to show that if µ ∈ C is an eigenvalue of DPh(0) then so are 1/µ, µ̄
and 1/µ̄. It follows that if DPh0(0) has a pair of simple eigenvalues {µ, µ̄} on the
unit circle (i.e. |µ| = 1 and µ 6= ±1), then the continuation of these eigenvalues
stays on the unit circle for all h near h0. Hence we expect to see many values of
h for which DPh(0) has a pair of simple eigenvalues which are roots of unity, i.e.
of the form exp(±2πip/q), with 0 < p < q and gcd (p, q) = 1. This means that
the linearization DPh(0) has q-periodic points, and hence there is a possibility
that in the family of diffeomorphisms Ph we see a bifurcation of q-periodic points
from the fixed point at 0. This in turn would mean that we have bifurcation of
subharmonic solutions near γ0 for our original Hamiltonian system (4.1.van).

We now describe a general reduction result which is very useful in studying
the bifurcation of periodic points from fixed points in families of symplectic map-
pings and which forms an analogy for mappings of what we found in Theorem 3
for vectorfields. The proof can be found in [2], and a similar result for reversible
mappings will be given in [3].

Let (V, J) be a symplectic vectorspace and Φ : V ×Rm → V a parametrized
family of symplectic diffeomorphisms, i.e. we have

DΦλ(x)T JDΦλ(x) = J, ∀x ∈ V, ∀λ ∈ Rm, (4.5.van)

with Φλ := Φ(·, λ) for λ ∈ Rm. We also assume that Φλ(0) = 0 for all λ, and
(taking λ = 0 as a critical parameter value) we set A0 := DΦ0(0). Given an
integer q ≥ 1 we then consider the following problem:
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(Pq) Find, for all small λ, all small q-periodic points of Φλ.

To solve (Pq) we have to solve the equation

Φq
λ(x) = x (4.6.van)

for all (x, λ) near (0, 0). We notice that this equation has an implicit Zq-sym-
metry: if, for a given λ, x ∈ V is a solution of (4.6.van), then so are Φλ(x), Φ2

λ(x),
. . . , Φq−1

λ (x) and Φq
λ(x) = x. The result which follows will make this implicit

symmetry explicit, so that in applications it can be used to simplify the equa-
tions. Let A0 = S0 + N0 be the Jordan decomposition of A0 into its semisimple
part S0 and its nilpotent part N0, and define the reduced phase space U by

U := ker (Sq
0 − I) (4.7.van)

One can then show that S0 is a symplectic linear operator on V , that U is
a symplectic subspace of V , and that S := S0|U ∈ L(U) generates a natural
symplectic Zq-action on U .

Theorem 7. For each sufficiently small λ there exists a one-to-one correspon-
dence between the small q-periodic points of Φλ and the small q-periodic points
of a reduced mapping Φr,λ , where

Φr : U × Rm −→ U

has the following properties:

(i) Φr(0, λ) = 0 for all λ, and DuΦr(0, 0) = S + N , where N := N0|U ;
(ii) Φr,λ is a symplectic diffeomorphism on U , for each λ;
(iii) Φr is Zq-equivariant, i.e. we have

Φr(Su, λ) = SΦr(u, λ). (4.8.van)

Moreover, all small q-periodic orbits of Φr,λ are also Zq-orbits, i.e. they can be
found by solving the Zq-equivariant determining equation

Φr(u, λ) = Su. (4.9.van)

Finally, the reduced mapping Φr can be approximated up to any finite order by
bringing the original mapping Φ into normal form. �

We conclude this section with a brief indication on how the reduction result of
Theorem 7 can be used to prove a classical result of Meyer [11] on the bifurcation
of periodic points in symplectic mappings. Again the details of our approach can
be found in [2]. We take m = 1 in the foregoing and fix some q ≥ 3. We also
assume the following:

(a) A0 has a pair of simple eigenvalues exp(±2πip/q), with 0 < p < q and
gcd(p, q) = 1;
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(b) A0 has no other eigenvalues µ such that µq = 1.

Then dim U = 2 and we can identify U with the complex plane, such that the
reduced mapping Φr given by Theorem 7 now becomes a mapping from C × R
into C. The Zq-equivariance (4.7.van) then takes the form

Φr(e2πip/qz, λ) = e2πip/qΦr(z, λ), ∀(z, λ) ∈ C× R, (4.10.van)

while the determining equation (4.9.van) becomes

Φr(z, λ) = e2πip/qz. (4.11.van)

It was shown in [18] that (4.10.van) implies that Φr must have the form

Φr(z, λ) = φ1(z, λ) z + φ2(z, λ) z̄q−1, (4.12.van)

with the functions φi : C× R→ C (i = 1, 2) such that

φi(e2πip/qz, λ) = φi(z, λ) = φi(z̄, λ), ∀(z, λ) ∈ C× R, i = 1, 2. (4.13.van)

Since Φr is symplectic it is also area-preserving, which in combination with (4.12.van)
and (4.13.van) implies that

|φ1(z, λ)| = 1 + O(|zq|).

Using polar coordinates and assuming some generically satisfied conditions one
can then solve the determining equation (4.11.van). The result is that (4.11.van) has 2q
branches of nontrivial solutions, each parametrized by the amplitude ρ of z, and
of the form

{(ρei(θ∗i (ρ)+2πjp/q), λ∗i (ρ)) | 0 < ρ < ρ0}, (0 ≤ j ≤ q − 1, i = 1, 2)

with θ∗2(0) = θ∗1(0)+π/q, λ∗i (ρ) = O(ρ2) (i = 1, 2) and λ∗2(ρ) = λ∗1(ρ)+O(ρq−2).
So there are two branches of periodic orbits which bifurcate at λ = 0 from the
fixed point at the origin in the family of symplectic diffeomorphisms Φλ (λ ∈ R).

When we apply the foregoing result to the family Ph (h ∈ R) of Poincaré maps
discussed in the beginning of this section we conclude the following: when at some
point along a one-parameter branch of periodic orbits of (4.1.van) the nontrivial
characteristic multipliers satisfy the conditions (a) and (b) (for some q ≥ 3)
then at that point two branches of subharmonic solutions will bifurcate from
the first branch. The higher the value of q, the closer to each other these two
branches will be. The bifurcating subharmonic solutions will (next to the double
multiplier 1) have two multipliers close to 1; along one of the two branches these
“critical multipliers” are on the real axis, along the other branch they are on the
unit circle.
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5 Subharmonic cascades

In this last section we briefly indicate an interesting but still largely open prob-
lem. Consider again, as in the foregoing section, a one-parameter branch of
periodic orbits of the Hamiltonian system (4.1.van). Assume that along part of this
branch there are some simple multipliers on the unit circle. Then there will
generically be an infinite number of points along the branch where some multi-
pliers are roots of unity and where we will have bifurcation of two branches of
subharmonic solutions. At most of these bifurcation points the value of q will
be high, and hence the bifurcating subharmonics will have large periods. Now
concentrate on one such branching point; as indicated at the end of Section 4
the multipliers along one of the two bifurcating branches will be on the unit
circle and close to 1. Hence, applying again the same results, we will find along
this secondary branch an infinite number of points where two branches of sub-
harmonics bifurcate; since the critical multipliers along the secondary branch
are close to 1 the subharmonics bifurcating from this branch will have very high
periods (corresponding to very large values of q). Iterating this argument we
obtain a cascade of subharmonic branchings, all in the same fixed Hamiltonian
system (4.1.van). A similar argument can be given for reversible systems. It leads to
a very rich and complicated structure for the set of periodic orbits of Hamilto-
nian or reversible systems, and it would certainly be interesting to understand
this structure in a more global way.

The methods described in the foregoing sections do not allow such global
study since they are local (near each of the branching points) and they concen-
trate on solutions with a given (approximate) period. One will need a different
approach to answer such questions as: (i) is there any self-similarity in such
cascades? (ii) can one use renormalization techniques? (iii) are there any univer-
sal constants? In some very particular cases (mainly concentrating on period-
doubling) some of these questions have been answered by a number of authors
such as M. Feigenbaum and R. MacKay. In the reversible case there is some
recent contribution by J. Roberts and J. Lamb ([12]). But to a large extend the
problem remains open.
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Diff. Eqns. and Their Appl., Vol. 19 (1996) 155–170.

7. J. Knobloch and A. Vanderbauwhede. Hopf bifurcation at k-fold resonances in
reversible systems. Preprint T. U. Ilmenau, 1995.

8. J. Knobloch and A. Vanderbauwhede. Hopf bifurcation at k-fold resonances in
equivariant reversible systems. In: P. Chossat (Ed.), Dynamics, Bifurcation and
Symmetry. New Trends and New Tools, NATO ASI Series C, Vol. 437, Kluwer
Academic, Dordrecht (1994) 167–179.

9. J. Kobloch and A. Vanderbauwhede. Stability of periodic orbits bifurcating at
k-fold resonances in reversible systems. In preparation.

10. X.-B. Lin. Using Melnikov’s method to solve Silnikov’s problems. Proc. Royal So-
ciety of Edinburgh 116A (1990) 295–325.

11. K.R. Meyer. Generic bifurcation of periodic points. Trans. Amer. Math. Soc. 149
(1970) 95–107.

12. J. Roberts and J. Lamb. Self-similarity of period-doubling branching in 3-D re-
versible mappings. Physica D 82 (1995) 317–332.

13. F. Takens. Hamiltonian systems: generic properties of closed orbits and local per-
turbations. Math. Ann. 188 (1970) 304–312.

14. A. Vanderbauwhede Hopf bifurcation for equivariant conservative and time-
reversible systems. Proc. Royal Society of Edinburgh 116A (1990) 103–128.

15. A. Vanderbauwhede and B. Fiedler. Homoclinic period blow-up in reversible and
conservative systems. Zeitschrift für Angew. Math. Phys. (ZAMP) 43 (1992) 292–
318.

16. A. Vanderbauwhede. Branching of periodic solutions in time-reversible systems.
In: H. Broer and F. Takens (Eds.), Geometry and Analysis in Non-Linear Dynam-
ics. Pitman Res. Notes in Math. 222 (1992) 97–113.

17. A. Vanderbauwhede and J.-C. van der Meer. A general reduction method for peri-
odic solutions near equilibria in Hamiltonian systems. In: W.F. Langford and W.
Nagata (Eds.), Normal Forms and Homoclinic Chaos, Fields Institute Communi-
cations, A.M.S. Providence (1995) 273–294.

18. A. Vanderbauwhede. Subharmonic bifurcation at multiple resonances. Preprint
University of Gent, 1996. To appear in the Proceedings of the 2nd Marrakesh
International Conference on Differential Equations.

19. A. Vanderbauwhede. A short tutorial on Hamiltonian systems and their reduction
near a periodic orbit. Preprint University of Gent, 1997.

20. J.-C. van der Meer. The Hamiltonian Hopf Bifurcation. Lect. Notes in Math. 1160,
Springer-Verlag, Berlin, 1986.





EQUADIFF 9 CD ROM, Brno 1997 PROCEEDINGS

Masaryk University pp. 183–200

Some Partial Differential Volterra Equation

Problems Arising in Viscoelasticity

Simon Shaw and J. R. Whiteman

BICOM, Brunel University, Uxbridge, Middlesex, UB8 3PH, England
Email: simon.shaw@brunel.ac.uk

john.whiteman@brunel.ac.uk

WWW: http://www.brunel.ac.uk/~icsrbicm

Abstract. The constitutive law relating stress to strain for viscoelas-
tic materials can be written as a Volterra equation of the second kind.
This results in the mathematical models of viscoelastic behaviour taking
the form of partial differential equations with memory. In this article
we illustrate how the memory terms arise in these equations and also
summarize the various partial differential Volterra equations used when
modelling problems of quasistatic and dynamic viscoelasticity, and non-
Fickian diffusion in polymers. We also indicate some of the numerical
analysis work that has been carried out for these problems.

AMS Subject Classification. 73F15, 45D05, 45K05, 65M15

Keywords. Volterra equation, viscoelasticity, finite element method, er-
ror estimates

1 Introduction

This paper is concerned with the modelling of problems involving viscoelastic
materials which, even in their simplest form, exhibit behaviour characteristic
of both classical Hookean solids and Newtonian fluids. The resulting effects are
important when the material is deforming under an applied load. This load could,
for example, be due to externally applied forces; internal deformation caused by
a diffusing penetrant; or, constrained thermal expansion caused by temperature
gradients. See for example [21,6,28]. Moreover, the material somehow keeps a
record of its response history and, for this reason, viscoelastic materials are said
to possess memory. This memory is manifest in the constitutive relationship
between the stress and strain tensors, σ and ε, and as a result mathematical
models of viscoelastic behaviour take the form of partial differential Volterra
(pdv) equation problems. The canonical forms of these equations are: the elliptic
Volterra problem,

Au(t) = f(t) +
∫ t

0

B(t, s)u(s) ds; (1.1.whi)

http://www.brunel.ac.uk/~icsrbicm
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the parabolic Volterra problem,

u′(t) + Au(t) = f(t) +
∫ t

0

B(t, s)u(s) ds; (1.2.whi)

and, the hyperbolic Volterra problem,

u′′(t) + Au(t) = f(t) +
∫ t

0

B(t, s)u(s) ds. (1.3.whi)

These are supplied with initial and/or boundary data as appropriate, and the
dependence on the space variable x is suppressed. In these problems we use A
and B(t, s) to represent partial differential operators (acting only in the space
variables) where, for example, we could have

A := −∇2 and B(t, s) := −∇ · φ(t, s)∇,

although for (1.1.whi) and (1.3.whi) the appropriate form for A is the linear elasticity
operator—with B(t, s) “similar”.

The purpose of this article is to illustrate how the memory terms arise in
these equations and also to summarize the various pdv equations used when
modelling problems of quasistatic and dynamic viscoelasticity, and non-Fickian
diffusion in polymers. We also indicate some of the numerical analysis work that
has been carried out for these problems (but we do not claim to be exhaustive,
for a fuller account see [39]).

Throughout, the positive real number T will denote a final time and we
use J := [0, T ] and I := (0, T ] to denote time intervals. Also, for n = 1, 2
or 3 we consider Ω ⊂ Rn to be an open bounded domain with boundary ∂Ω.
Furthermore, we consider ∂Ω in the form

∂Ω := ΓD ∪ ΓN with ΓD ∩ ΓN = ∅,

where the closed set ΓD ⊆ ∂Ω is called the Dirichlet boundary and is of positive
measure so that ∫

ΓD

dΓ > 0.

We call the (possibly empty) open set ΓN ⊂ ∂Ω the Neumann boundary. The
reason for this terminology is the obvious one where we refer to the type of
boundary condition specified on these subsets. We indicate vector-valued quan-
tities with boldface so that, for example, we use x := (xi)n

i=1 to indicate a point
in Rn. Tensors are indicated by a further underlining: σ = (σij)n

i,j=1.

2 Hereditary constitutive relationships

Suppose that the interior of a compressible viscoelastic body G occupies Ω and
that its surface coincides with ∂Ω. If at a time t this body is subjected to
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a system of body forces f := (fi(x, t))n
i=1, for x ∈ Ω, and surface tractions

g := (gi(x, t))n
i=1, for x ∈ ΓN , then the body G will deform from its equilibrium

configuration. A material particle originally at the point x will move to the new
time dependent location x+u(x, t) where u := (ui)n

i=1 denotes the displacement
vector. In the linear theory these displacements define the symmetric strain
tensor ε := (εij)n

i,j=1 by the relationships:

εij(u) :=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2.1.whi)

In addition to this strain field there will also be induced in G a stress field
described by the symmetric stress tensor σ := (σij)n

i,j=1. This stress field ra-
tionalizes the internal force field which is set up within G to resist the external
forces f and g.

The stress field can be related to u, f and g by Newton’s second law of
motion (see later in equation (3.1.whi)) and so it is of interest to derive a constitutive
relationship linking σ and u, or in practice, linking the tensors σ and ε.

In classical linear elasticity theory this relationship is provided by Hooke’s
law:

σij = Dijklεkl or σ = D ε,

where D is a positive-definite fourth-order tensor of elastic coefficients satisfying
the symmetries

Dijkl = Djikl , Dijkl = Dijlk, and Dijkl = Dklij .

The first two of these are implied by the symmetry of σ and ε while the third
follows from energy considerations. However, in viscoelasticity the third of these
only applies when the material is isotropic, see [21, Equations (1.10) and (2.62)].

One way of deriving a constitutive relationship for viscoelastic materials is
to assume that a Boltzmann superposition of stress increments can be applied
where these stress increments are related by Hooke’s law to corresponding strain
increments. For example, suppose that G is quiescent for t < 0 so that ε(t) ≡ 0
for t < 0, and that at t = 0 the body undergoes a strain ε(0). Then for t ≥ 0
the resulting stress is assumed to be given by

σ0(t) = D(t)ε(0),

where a time dependence has been introduced into the Hooke’s tensor D. Phys-
ically we expect D to be a smooth monotone decreasing function of t since it
is unrealistic to expect σ to grow over time for the fixed strain ε(0). (Where
would the strain energy come from?) In fact experiments on polymers show that
D does in fact decrease and this phenomena is known as stress relaxation.

Now, let ∆t be a small time interval and set ti := i∆t. We approximate the
strain evolution by the step function

ε̃(t) := ε(ti) in [ti, ti+1) for i = 0, 1, 2, . . . ,
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and then each strain increment,

∆ε(ti+1) := ε(ti+1)− ε(ti),

induces a stress increment according to Hooke’s law:

∆σj(ti) := D(ti − tj)∆ε(tj) for 1 ≤ j ≤ i.

Notice that each of these stress increments will also relax according to the time
dependence of D. The total stress at time ti is now given by superposition:

σ(ti) := σ0(ti) +
i∑

j=1

∆σj(ti),

= D(ti)ε(0) +
i∑

j=1

D(ti − tj)∆ε(tj),

and by taking an appropriate limit we get the hereditary constitutive law as

σ(x, t) = D(t)ε(u(x, 0)) +
∫ t

0

D(t− s)ε(u′(x, s)) ds. (2.2.whi)

Since we are assuming that D(t) is smooth we can arrive at an alternate form
by partial integration,

σ(x, t) = D(0)ε(u(x, t))−
∫ t

0

Ds(t− s)ε(u(x, s)) ds, (2.3.whi)

where the subscript s indicates partial differentiation with respect to the history
variable s. Either of these may be used as the constitutive relationship, and each
demonstrates clearly the role of memory in viscoelastic modelling.

To get a feel for the form of the time dependence of the stress relaxation
tensor D we can also quote a perhaps more intuitive method for deriving these
constitutive relationships.

We start with the physical observation that viscoelastic materials display the
characteristics of both elastic solids and viscous fluids. The kinetics of these type
of substances are modelled respectively by the spring and the dashpot.

Fig. 1. A Hookean (linear) spring: σ = Eε; E is the spring stiffness

E
ε, σ = Eε
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Fig. 2. A Newtonian (linear) dashpot: σ = η
dε

dt
; η is the viscosity

η

ε, σ = η
dε

dt

In these models the stress carried by the spring is proportional to the strain in the
spring and is given by Hooke’s law: σ = Eε. The stress carried in the dashpot is
proportional to the strain rate and is given by Newton’s law of viscosity: σ = ηε′.

One then models a viscoelastic material by considering a notional system
of springs and dashpots with independent stiffness and viscosity parameters.
There are essentially two ways to connect a spring to a dashpot: in series and
in parallel. These are the building blocks and are named the “Maxwell” and
“Voigt” models.

The Maxwell model

The Maxwell model is a series connection of a spring and dashpot.

Fig. 3. The Maxwell model

E
εS, σS

η εD, σD

ε, σ

In this model εS and σS denote the strain and stress in the spring alone, and εD,
σD denote those in the dashpot alone. The total stress is given by σ = σS = σD

and the total strain by ε = εS + εD. Differentiating and using Hooke’s and
Newton’s laws yield

dε

dt
=

1
E

dσS

dt
+

σD

η
=⇒ dσ

dt
+

σ

τ
= E

dε

dt
, (2.4.whi)

where τ := η/E is the so-called relaxation time. Using σ(0) = Eε(0) this ODE
is easily solved to give

σ(t) = Ee−t/τε(0) + E

∫ t

0

e−(t−s)/τε′(s) ds,

and this is essentially (2.2.whi) with the scalar analogue of D given by D(t) =
Ee−t/τ .
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The Voigt model

Connecting the spring and dashpot in parallel yields the Voigt model. This time
εS = εD = ε and equilibrium demands that σ = σS + σD, hence

Fig. 4. The Voigt model

η σD, εD

E
σS , εS

ε, σ

η
dε

dt
+ Eε = σ =⇒ dε

dt
+

ε

τ
=

σ

η
.

This gives the constitutive law in hereditary form as

ε(t) = e−t/τε(0) +
1
η

∫ t

0

e−(t−s)/τσ(s) ds.

The Maxwell solid

In his internal variable formulation A. Johnson, in for example [20], uses these
basic building blocks in the Maxwell solid. Here E0 and E1 are spring stiffnesses
and σ∗, ε∗ are internal stress and strain variables. This time σ∗ = E1ε

∗, εD =
ε− ε∗ and σS = E0εS . Also σ∗ = σD and this gives

E1ε
∗ = η

d

dt
(ε− ε∗) =⇒ dε∗

dt
+

ε∗

τ
=

dε

dt
,

where now τ := η/E1. Solving this we get

ε∗(t) = e−t/τε(0) +
∫ t

0

e−(t−s)/τε′(s) ds. (2.5.whi)

Now, defining the stress relaxation function

D(t) := E0 + E1e
−t/τ
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Fig. 5. The Maxwell solid
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σ∗, ε∗ η σD, εD
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as the scalar analogue to the tensor D(t) in (2.2.whi) and (2.3.whi), and using this in
(2.5.whi) along with the relation

σ = σS + σ∗ = E0ε + E1ε
∗ (since εS = ε),

gives

σ(t) = E0ε(t) + E1e
−t/τε(0) +

∫ t

0

E1e
−(t−s)/τε′(s) ds,

= D(0)ε(t)−
∫ t

0

Ds(t− s)ε(s) ds.

This is the scalar analogue of equation (2.3.whi) and suggests that we model D with
the Dirichlet-Prony series,

D(t) = ϕ(t)D(0) (2.6.whi)

where ϕ(t) is a generic stress relaxation function given by

ϕ(t) = ϕ0 +
N∑

i=1

ϕie
−αit. (2.7.whi)

Here the (possibly x dependent) coefficients {ϕi}Ni=0 are non-negative and nor-
malized so that ϕ(0) = 1, and the (possibly x dependent) {αi}Ni=1 are non-
negative. More generally one could of course write

Dijkl(t) := (Dijkl)0 +
Nijkl∑
m=1

(Dijkl)m exp(−(αijkl)mt).

The Dirichlet-Prony series is an extremely convenient form to take for large scale
computational approximations to problems (1.1.whi), (1.2.whi) and (1.3.whi) since if

ψ(t) := e−αt,
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then one can exploit the simple recurrence

ψ(t + k) = e−αkψ(t)

to update the history term arising from a discretization of the Volterra integral.
For general Volterra problems one must usually store the entire solution history
as the computation advances through the time levels and moreover, at each
time level this history needs to be summed to approximate the integral. For
such methods the number of operations required at time level N is of the order
O(N2). The Dirichlet-Prony series provides a very useful short cut around this
“N2 problem”. (In certain special cases one can also overcome this difficulty
using other means, see for example [19,16]).

We now return to the Maxwell solid and generalize the conceptual spring and
dashpot model in order to motivate the choice of the Dirichlet-Prony series for
the relaxation function as given in (2.7.whi). To begin with we assume again a state
of uniaxial stress and strain.

The generalized Maxwell solid, shown in Figure 6, consists of a Hookean
spring connected in parallel to a sequence of N spring-dashpot components. In
this model

ε0 = ε, σ0 = E0ε, and σ∗i = Eiε
∗
i .

Balancing the stresses carried by each of the spring-dashpot pairs we get for each
i ∈ {1, . . . , N} that

dε∗i
dt

+
ε∗i
τi

=
dε

dt
,

=⇒ ε∗i (t) = e−t/τiε(0) +
∫ t

0

e−(t−s)/τiε′(s) ds,

where now we have set τi := Ei/ηi. The total stress carried by the assemblage
is therefore given by:

σ(t) = σ0(t) + σ1(t) + · · ·+ σN (t),
= E0ε(t) + E1ε

∗
1(t) + · · ·+ ENε∗N (t),

= E0ε(0) + E0(ε(t)− ε(0))

+
N∑

i=1

(
Eie
−t/τiε(0) +

∫ t

0

Eie
−(t−s)/τiε′(s) ds

)
,

= E(t)ε(0) +
∫ t

0

E(t− s)ε′(s) ds, (2.8.whi)

where

E(t) := E0 +
N∑

i=1

Eie
−t/τi .



PDE’s in Viscoelasticity 191

Fig. 6. The generalized Maxwell solid.
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The constitutive relationship (2.8.whi) is the scalar analogue of (2.2.whi) with the ana-
logue of D(t− s) given by E(t− s), which itself is an example of the Dirichlet-
Prony series given in (2.7.whi). Note that if we set E0 := 0 then this generalized
Maxwell solid actually models a fluid since lim E(t) = 0.

So much for uniaxial states of stress and strain. In fact it can be shown
that for each relaxation mode (i.e. each spring-dashpot pair) there is an ODE
governing the evolution of each of the internal strain tensor components. Thus
we have

d(εij)∗n
dt

+
(εij)∗n

τn
=

dεij

dt
,

and for the details we refer to [20]. The significance of these internal variable
formulations for the viscoelastic constitutive behaviour lies in the fact that it
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is possible to solve some kinds of viscoelasticity problems, when the relaxation
functions are in the form of a Dirichlet-Prony series (2.7.whi), using only a linear
elasticity solver and an ODE solver. This obviates the need to create special
software for quasistatic viscoelasticity problems. For more on this we refer again
to [20] and also to [33]

The Dirichlet-Prony series is not however the only form used to model the
stress relaxation functions, for example the authors of [1] use the stretched re-
laxation function

ϕ(t) = ϕ0 exp(−(αt)p) for p ∈ (0, 1]. (2.9.whi)

Obviously no simple recurrence exists for this form. Another popular choice for
ϕ is the power law where

ϕ(t) = ϕ0t
−p for p ∈ (0, 1), (2.10.whi)

although from either of (2.2.whi) or (2.3.whi) this implies that either ε(0) is zero irre-
spective of the magnitude of the load, or σ(0) is infinite. Neither of these are
physically realistic and so we would prefer to modify this law to

ϕ(t) = ϕ0(t + ϕ1)−p for p ∈ (0, 1), (2.11.whi)

where ϕ1 > 0 in order to remove the non-physical behaviour. Nonetheless, it is
instructive to see how one might “derive” the power law, and for this we borrow
heavily from Chern’s thesis [3] which exploits the fractional calculus.

The formulation is based on the observed fact that viscoelastic materials be-
have in a way intermediate to that of solids and fluids. Interpreting this literally
yields a constitutive law that contains fractional derivatives. Unfortunately we
are unable here to give this interpretation the depth it deserves and instead try
only to illustrate the main point. Recall that the stress in a solid is proportional
to the strain while the stress in a fluid is proportional to the strain rate. Ac-
cepting the intermediate nature of viscoelastic materials the idea is to define the
viscoelastic constitutive law as:

σ(t) = D(0)ε(t) + D(1)∂α
t ε(t), (2.12.whi)

for constant fourth order tensors D(0) and D(1), and where α ∈ [0, 1). The
fractional derivative operator may be defined as:

∂α
t ε(t) :=

∂

∂t

(
1

Γ (1− α)

∫ t

0

(t− s)−αε(s) ds

)
, for α ∈ [0, 1). (2.13.whi)

(Note that α can be irrational, even though the word “fractional” is always
used.) By firstly integrating by parts in (2.13.whi) and then taking the differentiation
through, Chern arrives at a constitutive law which is suitable for use within
the standard finite element framework. Two solution schemes are considered: a
solution in the Laplace transform domain and a direct time domain solution.
However, in this case there is no efficient history storage and so the operation
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counts and computer memory requirement grow without bound as the time step
is diminished.

The “justification” for the power law is as follows. Carrying out this integra-
tion-differentiation process gives

∂α
t ε(t) =

t−α

Γ (1− α)
ε(0) +

1
Γ (1− α)

∫ t

0

(t− s)−αε′(s) ds, (2.14.whi)

and using this in the scalar analogue of equation (2.12.whi) we now arrive at the
constitutive law:

σ(t) = E0ε(t) +
E1t
−α

Γ (1− α)
ε(0) +

E1

Γ (1− α)

∫ t

0

(t− s)−αε′(s) ds. (2.15.whi)

This seems to combine (2.2.whi) and (2.3.whi) when ϕ(t) is given by the power law,
(2.10.whi).

We now have several candidates for the constitutive law and these may be
used to generate a variety of differential equation problems. In the following pages
we do just this and demonstrate how concrete forms of the abstract problems
(1.1.whi), (1.2.whi) and (1.3.whi), as well as some non-standard variants, can be derived to
model viscoelastic behaviour.

3 Viscodynamics

To obtain the governing equations for the dynamic response of a viscoelastic
body one uses Newton’s second law to relate the stress field σ and the forces f
and g to the acceleration, or inertia, of the body G. This process is familiar from
linear elasticity theory and gives, with boundary and initial data, the following.
For i = 1, . . . , n:

%u′′i − σij,j = fi in Ω × I,
ui = 0 in ΓD × I,

σij n̂j = gi in ΓN × I,
ui(x, 0) = ui0 in Ω,

u′i(x, 0) = ui1 in Ω.


(3.1.whi)

Here: repeated indices imply summation; % is the mass-density of G; and, n̂ :=
(n̂i)n

i=1 is the unit outward directed normal to ΓN .
Using (2.3.whi) to substitute for the stress one arrives at the pdv problem: find

u such that

%u′′i (t)−
(
Dijkl(0)εkl(u(t))

)
,j

= fi(t)−
∫ t

0

(
∂Dijkl(t− s)

∂s
εkl(u(s))

)
,j

ds,

in Ω×I with the indicated initial-boundary data. With an appropriate definition
of A and B(t, s) this is clearly a realization of the abstract problem (1.3.whi). Note
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that it is “safe” to use the Dirichlet-Prony series (2.7.whi) or modified power law
(2.11.whi) in this problem, but we may not use the power law (2.10.whi) directly because
we cannot then interpret D(0).

In terms of existence, uniqueness and stability of solutions this problem has
been studied in [9,10,24]. Numerical schemes are given in [12,45,29,32].

One could also use the fractional calculus model to substitute for σ in New-
ton’s second law. This will yield a pdv equation of the form

%u′′i (t)−
(
D

(0)
ijklεkl(u(t))

)
,j

= fi(t) +
D

(1)
ijkl

Γ (1− α)
∂

∂t

∫ t

0

(t− s)−αεkl(u(s)) ds.

On the other hand one could use (2.2.whi) and then arrive at

%u′′i (t)−
(
Dijkl(t)εkl(u(0))

)
,j

= fi(t) +
∫ t

0

(
Dijkl(t− s)εkl(u′(s))

)
,j

ds.

Note that u does not occur as a natural “unknown” in this problem and so it is
possible to replace u with u′ and arrive at the alternative problem: find u such
that

%u′i(t) +
∫ t

0

(
Dijkl(t− s)εkl(u(s))

)
,j

ds = fi(t)−
(
Dijkl(t)εkl(u0)

)
,j
,

which makes sense if u0 is smooth enough. The initial datum for this problem is
now u(0) = u1. Properties of the solution of these type of problems are studied
in [10,24] and numerical analysis is given in [25,23].

However, one must resist the temptation to interpret this as a parabolic
problem for, in general, it is not. To see this use the power law (2.10.whi) with (2.6.whi)
to obtain (with % = 1 and D not x dependent for simplicity):

u′i(t) + Dijkl

∫ t

0

(t− s)−p(εkl(u(s)),j ds = f̃i(t), (3.2.whi)

where f̃ now incorporates the additional term in u0. In the case p = 1
2 we find

that the operator I defined by,

Iw(t) :=
1√
π

∫ t

0

(t− s)−
1
2 w(s) ds

has the property,

I2w(t) ≡ I(Iw)(t) =
∫ t

0

w(s) ds,

and so may be regarded as the square root of the definite integral operator.
Applying ∂

1
2
t to both sides of (3.2.whi) in the case p = 1

2 we arrive at(
∂

∂t

) 3
2

ui(t) +
√

πDijkl(εkl(u(t)),j = ∂
1
2
t f̃i(t).
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This equation is half way between being parabolic and hyperbolic. Similar ma-
nipulations are also possible in the case p 6= 1

2 , with the final time derivative
being of order between 1 and 2. Numerical methods for fractional order differ-
ential equations are studied in [31,22,11].

For more detail on these type of problems see [27], as well as the other papers
in that collection.

4 Viscostatics

Recall that the classical linear elasticity equations are “derived” from Newton’s
second law (3.1.whi) by dropping the inertia term %u′′. This corresponds to modelling
the problem at times long after the load has been applied when the transient
response has died out, and results in a very well-known elliptic problem. A
similar approach can be adopted for viscoelastic response although this time it
is a true approximation since the resulting problem is not time independent due
to the persistence of the Volterra term. It seems that this approximation can
be useful when the inertia term is negligible, which may occur when the load is
smoothly and slowly applied (and non-oscillatory), or when it is the long-time
creep response that is of interest. Since the time dependence persists we refer to
the resulting problems as modelling quasistatic viscoelastic response.

The governing equations for these type of problem are obtained from (3.1.whi)
by setting %u′′(t) := 0 and discarding the initial data. Thus, for i = 1, . . . , n we
have

−σij,j = fi in Ω × J ,

ui = 0 in ΓD × J ,

σij n̂j = gi in ΓN × J ,

 (4.1.whi)

which are turned into differential equation problems for u by substituting for the
stress using either of (2.2.whi) or (2.3.whi). These give respectively the pdv problems:
find u such that for each i ∈ {1, . . . , n},

−
∫ t

0

(
Dijkl(t− s)εkl(u′(s))

)
,j

ds = fi(t) +
(
Dijkl(t)εkl(u(0))

)
,j
,

and

−
(
Dijkl(0)εkl(u(t))

)
,j

= fi(t)−
∫ t

0

(
∂Dijkl(t− s)

∂s
εkl(u(s))

)
,j

ds.

The first of these is essentially a Volterra first-kind equation for u′, while the
second is a second-kind equation for u. In both cases one obtains u(0) by solving
a linear elasticity problem.

Numerical schemes and a priori error estimates were first provided for both of
these problems in [35]. Later and for the second-kind problem only, the estimates
were improved (in terms of the size of the error constant) in [34]. These results
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depend on by-passing Gronwall’s inequality and using more sensitive comparison
results to obtain sharp data-stability estimates. These estimates have now been
generalized in [40]. Also for the second-kind problem, a posteriori error estimates
for a space-time finite element discretization of a model problem have been given
in [38] and [42]. These results are based on the error estimates in [37] and are
currently being generalized to the multidimensional problem described above in
[41].

5 Non-Fickian diffusion

In classical diffusion theory the gradient of the concentration u of an active agent
(the penetrant) diffusing through a carrier medium is related to the mass flux
by Fick’s law: J = −λ∇u, where λ is the diffusivity of the carrier substance.
Conservation of mass then demands that u′ = −∇ · J which yields the familiar
heat equation,

u′(t) = ∇ · λ∇u.

If we define M(t) as the total mass of penetrant absorbed by the carrier per unit
area at time t then it is well known (from similarity solutions) that M(t) ∼ t

1
2

for Fickian diffusion.
Diffusion in rubbery polymers, those well above their glass transition tem-

perature (GTT), is according to Durning in [13] adequately described by Fick’s
law, but the situation is much more complicated for glassy polymers, those near
but above their GTT. As the penetrant moves through the polymer it can force
a phase change and so leave behind it the polymer carrier in its rubbery state.
The stiffness and relaxation properties of the polymer change abruptly by orders
of magnitude across this phase change (see for example [15]), and as a result a
differential stress is set up across the penetrant boundary. Moreover, because
the carrier is viscoelastic this stress is described by a hereditary constitutive law
and this behaviour provides a mechanism for the observed non-Fickian effects.
Workers in the field make the following very rough classification.

Case I diffusion: standard Fickian diffusion where M(t) ∼ t
1
2 , applies to poly-

mers in the rubbery state high above the GTT.
Case II diffusion: non-Fickian diffusion, M(t) ∼ tα where 1

2 < α ≤ 1, applies
to glassy polymers near to but above the GTT.

There is also a “Super Case II” category corresponding to α > 1, see [5]. For
Case II sharp fronts (rather like shocks) may appear as the penetrant diffuses
through the carrier. This front moves initially at a constant speed and then slows
down, [7], and this explains why M(t) is almost linear, and thus M ′(t)—the rate
of absorbtion—is almost constant. By contrast M ′(t) for Case I is, in the words
of Cox in [7], “delta-function-like”, and this property of glassy polymers has an
interesting application in the area of controlled drug delivery products. Cox gives
a nice example.
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An active agent (the drug) is embedded into a polymer through which it
cannot diffuse. This may for example be a tablet which is to be swallowed.
When the carrier is invaded by a solvent, such as digestive fluid, the drug can
then diffuse out of the polymer through the solvent in a non-Fickian way. Since
M ′(t) is almost constant, this allows a controlled, constant-rate delivery of the
drug to the body for several hours.

The polymer doesn’t have to be a tablet. In fact, according to Cohen and
White in [5] (who also describe other applications of non-Fickian diffusion), such
“smart” pharmaceutical products can be designed to be “swallowed, smelled,
surgically implanted, rubbed on, taped on, strapped on”, and can in effect be
applied to any part of the body. There is an extensive literature on this science
and in addition to those already cited we refer also to [17,6,14].

To get a flavour of the mathematical modelling that these people employ
we borrow from [4] and consider the modelling of one-space dimensional diffu-
sion through a glassy polymer. Our development yields a linear model, but it
is unlikely that this will reproduce the sharp fronts characteristic of polymer
diffusion. The references cited deal with realistic nonlinear models.

To account for the differential stress set up at the penetrant front Fick’s law
is modified to include a stress dependence in the following way:

J = −(λux + κσx).

Here u is the concentration, λ the usual (Fickian) diffusion constant, and κ is
a proportionality constant. Conservation of mass again demands that u′ = −Jx

and this gives

u′ = λuxx + κσxx.

The stress is viscoelastic and the usual approach is to adopt the Maxwell model,
given earlier in (2.4.whi), with the assumption that u depends linearly on strain rate
ε′ (in order to get true Case II behaviour—see [8]). Thus

∂σ

∂t
+

σ

τ
= µu,

where µ is a proportionality constant. In the nonlinear theory the dependence
of τ on u is crucial, but here we shall assume that τ is constant. Integrating we
get

σ(t) = µe−t/τu(0) + µ

∫ t

0

e−(t−s)/τu(s) ds.

Eliminating the stress from the transport equation and using mass conservation
gives the single differential-Volterra equation,

u′(t) = λuxx + κµe−t/τuxx(0) + κµ

∫ t

0

e−(t−s)/τuxx(s) ds.
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Assuming for simplicity that u(0) = 0 we can generalize this to a multidimen-
sional model and obtain the pdv equation,

u′(t) = ∇ · λ∇u +∇ ·
(

κ∇
∫ t

0

µe−(t−s)/τu(s) ds

)
.

This is a concrete realization of the abstract problem (1.2.whi).
Equations of this nature have been studied in [26] and [18], and some nu-

merical analysis is given in [45,2,43,30,44]. Also, a priori and a posteriori error
estimates for a finite element discretization of a scalar prototype ODE with
memory, of the type that arises after spatial finite element semi-discretization of
this problem, are provided in [36].
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1 Triangular and quadrilateral elements of the Lagrange
type

First interpolation estimates which can be used in the finite element theory were
derived by Synge in the year 1957 (see [14, pp. 209–213]). His a little improved
result can be formulated in the following theorem:

Theorem 1.1. Let u be a function continuous on a closed triangle T with
bounded second partial derivatives in its interior T ,∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣ ≤M2,

and let p(x1, x2) be a linear polynomial satisfying

p(Pi) = u(Pi) (i = 1, 2, 3)

with P1, P2, P3 the vertices of T . Then it holds on T∣∣∣∣ ∂u

∂xi
− ∂p

∂xi

∣∣∣∣ ≤ 2M2h

cos(γ/2)
(i = 1, 2) (1.1.zen)

|u− p| ≤ 2M2h
2

cos(γ/2)
(1.2.zen)

Result (1.2.zen) was obtained by means of (1.1.zen). Another independent consid-
eration (where we first estimate the difference g = u − p on P2P3 and then on
P1P

′ with P ′ ∈ P2P3 an arbitrary point) gives us

|u− p| ≤ 1
2
M2h

2. (1.3.zen)

This result implies a question whether estimate (1.1.zen) cannot be improved, as far
as the geometry is concerned. An example showing that the answer is negative
was presented in [15]. Here is its simplified version: Let us consider a set of
triangles with vertices

P1(−h/2, 0), P2(h/2, 0), P3(0, y0),

where h is fixed and y0 (0 < y0 <
√

3h/2) is variable, and a function u(x1, x2) =
x2

1. Its first degree interpolant has the form

p(x1, x2) =
h2

4

(
1− x2

y0

)
.

Hence ∣∣∣∣ ∂u

∂x2
− ∂p

∂x2

∣∣∣∣ =
∣∣∣∣ ∂p

∂x2

∣∣∣∣ =
h2

4y0
=

h

2
cotα =

h

2
tan(γ/2), (1.4.zen)
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where α and γ are the minimum and maximum angles of T , respectively. If
y0 → 0 then α→ 0, γ → π and∣∣∣∣ ∂u

∂x2
− ∂p

∂x2

∣∣∣∣→∞.

Zlámal knew both estimate (1.1.zen) and result (1.4.zen) when he started to work
on his paper “On the finite element method” (see [24]). Nevertheless, instead of
the maximum angle condition

γT ≤ γ0 < π ∀T ∈ Th, ∀h ∈ (0, h0) (1.5.zen)

where Th denotes a triangulation of a given (polygonal) domain, he introduced
the minimum angle condition

ϑT ≥ ϑ0 > 0 ∀T ∈ Th, ∀h ∈ (0, h0) (1.6.zen)

where ϑT is the minimum angle of T . Reading Zlámal’s papers one sees that
the finite element theory is relatively easy under condition (1.6.zen). Also other
mathematicians started to use condition (1.6.zen) and when it was used in Ciarlet’s
1978-book [3] it has become a standard finite element condition.

However, there are situations where the minimum angle condition (1.6.zen) is
too restrictive because it forbids to use triangles with one small angle. Such
triangles are permitted according to the maximum angle condition. Thus it is
quite natural to try to generalize the standard finite element theory to the case
of condition (1.5.zen).

We start with the interpolation theorems and first we remind Jamet’s result
[5].

For a better understanding we introduce from [5] only a special situation
which is for applications quite sufficient. Let L(X, Y ) denote the set of all linear
bounded operators from a normed space X into a normed space Y . Let

Π ∈ L(W k,p(T ), W 1,p(T )),

where k is a positive integer and p ∈ [1,∞], be an operator satisfying the fol-
lowing hypotheses:

(H.1) We have
Πu = u ∀u ∈ Pk,2 ,

where Pk,n denotes the set of all polynomials in n variables of degree not greater
than k.

(H.2) There exists a unit vector ξ such that

∂u

∂ξ
(P ) = 0 ∀P ∈ T ⇒ ∂(Πu)

∂ξ
(P ) = 0 ∀P ∈ T.

(We restrict ourselves to this special type of (H.2) because we are interested only
in estimates of type (1.7.zen).)
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Theorem 1.2. Let T be a closed triangle with the interior T and vertices P1,
P2, P3 and let αT , βT and γT be the angles at P1, P2 and P3, respectively.
Let the vertices be denoted in such a way that αT ≤ βT ≤ γT . Let s1 and s2

be the unit vectors parallel to the sides P3P2 and P3P1, respectively. Let Π ∈
L(W k,p(T ), W 1,p(T )) be an operator satisfying hypotheses (H.1) and (H.2) for
ξ = s1 and ξ = s2. Let u ∈ W k+1,p(T ). Then we have for m = 0 and m = 1

|u−Πu|m,p,T ≤ C
hk+1−m

T

(cos(γT /2))m
|u|k+1,p,T , (1.7.zen)

where hT = dist (P1, P2) and C is a constant not depending on u and T.

Proof. The assertion is a special case of [5, Theorem 2.2]. ut

In [5] Theorem 1.2 is applied on compatible triangular finite elements of the
Lagrange type for arbitrary k. (For k = 1, p = ∞ estimates (1.7.zen) are identical
with Synge’s result.) This means that the operator Π is defined by the relations

(Πu)(Pi) = u(Pi) (i = 1, . . . , N, N := (n + 1)(n + 2)/2),

where P1, . . . , PN are the nodal points which are situated on T as the first
N integers in the Pascal triangle (see Fig. 1 where the black circles denote
prescribed function values).

However, in the case k = 1 estimates (1.7.zen) hold only for p ∈ (2,∞]. The
important case p = 2 is treated in [2] for k ≥ 1. A further generalization in the
case k = 1 is given in [6]. The interpolation result proved in [6] can be formulated
as follows.

Theorem 1.3. Let T be the same triangle as in Theorem 1.2 and let p ∈ (1,∞).
Let u ∈ W 2,p(T ) and let Ihu be the linear function satisfying (Ihu)(Pi) = u(Pi)
(i = 1, 2, 3). Then we have

|u− Ihu|m,p,T ≤ C
h2−m

T

(sin γT )m
|u|2,p,T (m = 0, 1), (1.8.zen)

where C is a constant independent of u and T .

Theorem 1.3 will be useful in our further considerations.

Now we introduce interpolation results in the case of semiregular (i.e., nar-
row) convex four-node quadrilateral isoparametric finite elements. In [1] such
elements are called anisotropic. However, in [1] the error of the interpolation is
estimated on rectangular elements; quadrilaterals are not considered.

The symbol K0 will denote the closed square in the (ξ, η)-plane with vertices
M̂1(1, 0), M̂2(1, 1), M̂3(0, 1), M̂4(0, 0). The functions ϕ̂(i) : (ξ, η)→ R1 with

ϕ̂(1)(ξ, η) = ξ(1 − η), ϕ̂(2)(ξ, η) = ξη,

ϕ̂(3)(ξ, η) = (1 − ξ)η, ϕ̂(4)(ξ, η) = (1− ξ)(1 − η)
(1.9.zen)
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n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

Fig. 1. Triangular finite elements of the Lagrange type.

are called bilinear basis functions; they have the property

ϕ̂(i)(M̂j) = δij .

Let K be a closed convex quadrilateral in the (x, y)-plane. Let two sides of
K be much greater than the remaining two ones. Let us consider first the case
that these two longer sides are parallel. (Such quadrilaterals are important, for
example, in modelling a gap between rotor and stator in an electrical machine.)
Let αK be the smallest angle of K and let us denote by M1 the vertex of K at
the angle αK . (If K has two or four angles which can be denoted by αK then,
of course, we have two or four choices.) One short side and one long side of K
meet at M1. The second end-point of the long one will be denoted by M2 and
the second end-point of the short one by M4. The numbering of the vertices of
K is thus either anticlockwise, or clockwise.

In applications the local numbering of the vertices of K obeys a different rule
which is usually anticlockwise; let N1, . . . , N4 denote the vertices of K according
to this different rule, let (for simplicity) the numbering of M1, . . . , M4 be also
anticlockwise and let

M1 = Nj+1, M2 = Nj+2, M3 = Nj+3, M4 = Nj ,

where Nj+i ≡ Nj+i−4 if j + i ≥ 5. As Ni corresponds by definition to M̂i the
isoparametric transformation of K0 onto K has the form

x = xK(ξ, η) :=
4∑

i=1

xiϕ̂
(j+i)(ξ, η),

y = yK(ξ, η) :=
4∑

i=1

yiϕ̂
(j+i)(ξ, η),

(1.10.zen)

where xi, yi are the coordinates of Mi (i = 1, . . . , 4) and where the indices
j + i (0 ≤ j ≤ 3 fixed, i = 1, . . . , 4) are considered modulo 4. (In the case
when the numbering of M1, . . . , M4 is clockwise the corresponding isoparametric
transformation of K0 onto K has again the form of (1.10.zen).) As K is convex,
transformation (1.10.zen) maps K0 one-to-one onto K.
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Let

ξ = ξK(x, y), η = ηK(x, y) (1.11.zen)

denote the inverse transformation to transformation (1.10.zen). We set

ϕ(i)(x, y) := ϕ̂(i)(ξK(x, y), yK(x, y)) (i = 1, . . . , 4). (1.12.zen)

If u ∈ C(K), then we define the isoparametric interpolation of u on K by

(Qu)(x, y) =
4∑

i=1

u(Mi)ϕ(j+i)(x, y). (1.13.zen)

Theorem 1.4. Let K be a narrow quadrilateral with parallel long sides which
satisfy the assumption

dist (M1, M4) ≤
1
12

dist (M1, M2). (1.14.zen)

Let u ∈ H2(K). Then we have

‖u−Qu‖0,K ≤
(

C1 +
C2εK

hK sin βK

)
h2

K |u|2,K , (1.15.zen)

|u−Qu|1,K ≤
(

C3 +
C4

sin αK

)
hK

sin βK
|u|2,K , (1.16.zen)

where Qu is defined in (1.13.zen), εK=dist (M1, M4)<hK=dist (M1, M2), αK≤ βK ,
αK and βK being the angles at M1 and M2, respectively, and the constants C1,
C2, C3, C4 satisfy

C1 = 55.019093, C2 = 21.658241, C3 = 12.801823, C4 = 19.47235264.

For the proof see [22].

Remark 1.5. Using the more standard approach with the bilinear isoparametric
mapping of K0 onto K we obtain (by means of the sharp form of the Bramble-
Hilbert lemma) the estimate ‖u−Qu‖0,K ≤ Ch2

K |u|2,K which does not depend
on the geometry of K. However, this approach completely fails in estimating
|u−Qu|1,K where we loose all powers of hK .

Remark 1.6. It can be shown by an example that the dependence of the estimate
of |u − Qu|1,K on sin−1 αK is essential (see [23]). The dependence on sin−1 βK

in both (1.15.zen) and (1.16.zen) is a cosmetic defect which is a consequence of the
approach used in [22].

Remark 1.7. If we change assumption (1.14.zen) to

dist (M1, M4) ≤
1
2n

dist (M1, M2), n ≥ 6,

then the numerical constants in Theorem 1.4 will be smaller. (In more detail see
[22].)
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Theorem 1.4 can be generalized to the case that the long sides are not parallel.
We again assume that K is a convex quadrilateral. Moreover, we assume that
the long sides do not have any common vertex.

Our considerations are based on the following simple fact: Let K be an arbi-
trary convex quadrilateral. Then there exists a parallelogram D which has three
vertices common with K and is such that K ⊂ D.

Let us denote these three vertices by M1, M2, M3 in such a way that M1M2

and M2M3 are sides of K with the property

dist (M2, M3) < dist (M1, M2). (1.17.zen)

We shall denote

hK := dist (M1, M2), aK := dist (M2, M3). (1.18.zen)

Of course it may happen that hK is not the length of the greatest side of K
and that the numbering of M1, M2, M3, M4 is not anticlockwise.

We shall assume that

aK ≤
1
2n

hK , εK ≤
1
2n

hK , (1.19.zen)

1
2
≤ dist (M4, p)

dist (M3, p)
≤ 1, (1.20.zen)

where n ≥ 6 is a given integer, εK := dist (M1, M4) and p denotes the straight-
line passing through M1 and M2.

In applications we usually have

π

4
≤ αK ≤

3π

4
,

π

4
≤ βK ≤

3π

4
.

The interpolation theorem has in this more general case the following form
(see [22]).

Theorem 1.8. Let K be a quadrilateral satisfying assumptions (1.17.zen)–(1.20.zen)
and let u ∈ H2(K). Then we have

‖u−Qu‖0,K ≤
(

Ĉ1(n) +
Ĉ2(n)

√
εKaK

hK

√
sinβK sin αK

)
h2

K |u|2,K , (1.21.zen)

|u−Qu|1,K ≤
(

Ĉ3(n) +
Ĉ4(n)

√
εK√

aK sin βK sin αK

)
hK

sin βK
|u|2,K , (1.22.zen)

where Q is an interpolation operator of type (1.13.zen), aK = dist (M2, M3) and
εK = dist (M1, M4) satisfy (1.19.zen), αK and βK are the angles at M1 and M2,
respectively, and the positive constants Ĉ1(n), Ĉ2(n), Ĉ3(n) and Ĉ4(n) are de-
creasing when n is increasing, n being the integer which appears in (1.19.zen).



208 Alexander Žeńı̌sek

2 Triangular elements of the Hermite type

Let us define Πu ∈ P3,2, where u ∈ C1(T ) and T is the same as in Theorem 1.2,
by the relations

(DαΠu)(Pi) = Dαu(Pi) |α| ≤ 1 (i = 1, 2, 3),
∂(Πu)

∂s2
(Q1) =

∂u

∂s2
(Q1),

(2.1.zen)

where Q1 is the mid-point of the side P2P3.

Theorem 2.1. The polynomial Πu is uniquely determined by relations (2.1.zen).
We have

Π ∈ L(W 3,p(T ), W 1,p(T )), p ∈ [1,∞]

and the operator Π satisfies hypotheses (H.1) and (H.2) for ξ = s1 and ξ = s2.
Hence estimates (1.7.zen) hold for k = 3, p ∈ [1,∞] and m = 0, 1:

|u−Πu|m,p,T ≤ C
h4−m

T

(cos(γT /2))m
|u|4,p,T .

Proof. The unique determination will be proved in Remark 2.10. The property
Π ∈ L(W 3,p(T ), W 1,p(T )) follows for p > 1 from the Sobolev imbedding theorem
and for p = 1 from the fact that W 2,1(T ) ⊂ C(T ). Hypothesis (H.1) is obvious
and hypothesis (H.2) is proved in [19]. ut

Remark 2.2. The tenth parameter (∂(Πu)/∂s2)(Q1) has no influence on the
global smoothness of a global finite element function defined in a given triangu-
lation; thus it can be different in two adjacent triangles with a common shortest
side.

Now we introduce a triangular finite element of the Hermite type which
does not satisfy Jamet’s hypothesis (H.2); nevertheless, it satisfies estimates not
depending on the minimum angle of T .

Theorem 2.3. Let T be the same triangle as in Theorem 1.2 and let a =
dist (P2, P3), b = dist (P1, P3), c ≡ hT = dist (P1, P2). Let ϕ ∈ C1(T ) and
let

|Dαϕ(P )| ≤M4 ∀|α| = 4, ∀P ∈ T , (2.2.zen)

Dαϕ(Pj) = 0 ∀|α| ≤ 1 (j = 1, 2, 3),
∂ϕ

∂na
(Q1) = 0 (2.3.zen)

where Q1 is the mid-point of the side P2P3 and na the unit normal to P2P3.
Then we have for all P ∈ T

|ϕ(P )| ≤ 1
96

(
1 + 4

(a

c

)3
)

M4 c4 , (2.4.zen)∣∣∣∣ ∂ϕ

∂xj
(P )

∣∣∣∣ ≤ 4
15

(
1 + 5

(a

c

)2
)

1
sin βT

M4 c3 (j = 1, 2). (2.5.zen)
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Proof. Theorem 2.3 is proved in [19]. Nevertheless, we reproduce this proof be-
cause it is surprisingly short. We restrict our considerations to the case

|Diϕ(P )| ≤M4 ∀|i| = 4 , ∀P ∈ T . (2.6.zen)

In the case (2.2.zen) we can use the trick with an inscribed triangle T
′ ⊂ T in the

same way as in [24]. The proof is based on the following four lemmas.

Lemma 2.4. Let s1, s2 be two noncollinear directions making an angle ω. Let
∂ϕ
∂sj

(P ) = kj (j = 1, 2), P being a point of the (x1, x2)-plane. Then∣∣∣∣ ∂ϕ

∂xj
(P )

∣∣∣∣ ≤ |k1|+ |k2|
| sin ω| (j = 1, 2) .

Further, let s1 and s2 be two directions orthogonal to one another. If | ∂ψ
∂si

(P)| ≤ ki

(i = 1, 2) then we have for an arbitrary direction s∣∣∣∣∂ψ

∂s
(P )

∣∣∣∣ ≤ |k1|+ |k2|.

Lemma 2.5. Let g(0) = η1, g(l) = η2, g′(0) = k1, g′(l) = k2 and |g(4)(s)| ≤ K4

in (0, l). Then for s ∈ [0, l]

|g(s)| ≤ max |ηj |+
4 l

27
(|k1|+ |k2|) +

K4

16 · 24
l4, (2.7.zen)

|g′(s)| ≤ 3
2 l

(|η1|+ |η2|) + max |kj |+
K4

24
l3 (2.8.zen)

Further, if g(0) = g(l) = g′(0) = g′(l) = 0 then

|g′′(s)| ≤ 1
2
K4l

2. (2.9.zen)

Lemma 2.6. Let g(0) = η1, g(l/2) = η2, g(l) = η3 and |g(3)(s)| ≤ K3 in (0, l).
Then for s ∈ [0, l]

|g(s)| ≤ 5
4

max |ηj |+
√

3
63

K3l
3 , (2.10.zen)

|g′(s)| ≤ 8
l

max |ηj |+
1
4
K3l

2. (2.11.zen)

Lemma 2.7. Let g(0) = η1, g(l) = η2, g′(l) = k1 and |g(3)(s)| ≤ K3 in (0, l).
Then for s ∈ [0, l]

|g(s)| ≤ max |ηi|+
l

4
|k1|+

2
81

K3l
3. (2.12.zen)
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Lemmas 2.4–2.7 are taken from [24] with a modification in (2.7.zen) and im-
provements in (2.8.zen) and (2.12.zen).

We have by Lemma 2.5 (with g = ϕ|P2P3) and assumptions (2.3.zen) and (2.6.zen)∣∣∣(ϕ


P2P3

)∣∣∣ ≤ 1
16 · 24

· 4 M4a
4 =

1
96

M4a
4 , (2.13.zen)∣∣∣∣(∂ϕ

∂a


P2P3

)∣∣∣∣ ≤ 1
24
· 4 M4a

3 =
1
6

M4a
3 , (2.14.zen)

where ∂/∂a denotes the derivative in the direction of P2P3. Similarly, Lemma
2.6 with g = ∂ϕ/∂na|P2P3 yields∣∣∣∣( ∂ϕ

∂na


P2P3

)∣∣∣∣ ≤ 4
√

3
63

M4a
3 . (2.15.zen)

Using estimates (2.14.zen), (2.15.zen) and Lemma 2.4 we find for an arbitrary direction s∣∣∣∣(∂ϕ

∂s


P2P3

)∣∣∣∣ ≤ 43
63

M4a
3 . (2.16.zen)

Let P ∈ T , P 6= P1 and let B be the point of the segment P2P3 which lies on the
straight line determined by P1 and P . Setting l = dist (B, P1) and considering
the function g = ϕ


P1B

we obtain by means of Lemma 2.5 and (2.3.zen), (2.6.zen),
(2.13.zen), (2.16.zen)

|ϕ(P )| ≤ 1
96

M4a
4 +

4 l

27
43
63

M4a
3 +

1
16 · 24

· 4M4l
4, (2.17.zen)∣∣∣∣∂ϕ

∂s
(P )

∣∣∣∣ ≤ 3
2 · 96

M4
a4

l
+

43
63

M4a
3 +

1
6
M4l

3. (2.18.zen)

Estimate (2.17.zen) implies (2.4.zen). Estimate (2.18.zen) will be used in deriving (2.5.zen).
Relation (2.9.zen) from Lemma 2.5 with g = ϕ|P2P3 and relation (2.11.zen) from

Lemma 2.6 with g = ∂ϕ/∂na|P2P3 together with assumption (2.3.zen) yield∣∣∣∣∂2ϕ

∂a2
(B)

∣∣∣∣ ≤ 2M4a
2,

∣∣∣∣ ∂2ϕ

∂a∂na
(B)

∣∣∣∣ ≤M4a
2.

Hence, according to the second part of Lemma 2.4 where we set ψ = ∂ϕ/∂a,∣∣∣∣ ∂2ϕ

∂a∂s
(B)

∣∣∣∣ ≤ 3M4a
2. (2.19.zen)

Using Lemma 2.7 with g = ∂ϕ/∂a|P1B and taking into account relations (2.3.zen),
(2.14.zen), (2.19.zen) we find∣∣∣∣∂ϕ

∂a
(P )

∣∣∣∣ ≤ 1
6
M4a

3 +
3
4
M4a

2l +
8
81

M4l
3. (2.20.zen)

Inequalities (2.18.zen) and (2.20.zen) together with Lemma 2.4 imply (2.5.zen). ut
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Now we introduce some consequences of Theorem 2.3.

Theorem 2.8. A polynomial p ∈ P3,2 is uniquely determined by its ten values

Dαp(Pj) |α| ≤ 1, (j = 1, 2, 3);
∂p

∂na
(Q1) , (2.21.zen)

where the meaning of the symbols Pi, Q1 and na is the same as in Theorem 2.3.

Proof. It is sufficient to prove the uniqueness. Let us assume that the values
(2.21.zen) are equal to zero. Setting ϕ(x1, x2) = p(x1, x2) in Theorem 2.3 we have
M4 = 0 and estimate (2.4.zen) implies p(x1, x2) ≡ 0. ut

Theorem 2.9. Let u ∈ C1(T ) and let

|Dαu(P )| ≤M4 ∀|α| = 4, ∀P ∈ T.

Let p ∈ P3,2 satisfies the relations

Dαp(Pj) = Dαu(Pj), |α| ≤ 1 (j = 1, 2, 3),
∂p

∂na
(Q1) =

∂u

∂na
(Q1) .

(2.22.zen)

Then the function

ϕ(x1, x2) ≡ u(x1, x2)− p(x1, x2) (2.23.zen)

satisfies relations (2.4.zen) and (2.5.zen).

Proof. It follows from the assumptions of Theorem 2.9 that function (2.23.zen) sat-
isfies all conditions of Theorem 2.3. ut

Remark 2.10. We return to the first part of the proof or Theorem 2.1: If the
right-hand sides of (2.1.zen) are equal to zero, then also (∂Πu/∂na)(Q1) = 0 and
(Πu)(x, y) ≡ 0, according to Theorem 2.8. ut

It follows from Theorem 2.9 that triangular finite elements with polynomials
p ∈ P3,2 uniquely determined by parameters (2.21.zen) can be used in triangulations
satisfying the maximum angle condition: Estimate (2.5.zen) requires the next-to-
smallest angles of all triangles to be bounded away from zero. This requirement
(we call it the second angle condition) is equivalent with the maximum angle
condition.

Some triangular finite elements of the Hermite type are sketched in Fig. 2.
The black circle denotes the function value, the arrows and double arrows denote
the first and second normal derivatives, respectively, and the circled integers k
denote the values Dαp(Pi), |α| ≤ k, where Pi is the centre of the circle.



212 Alexander Žeńı̌sek

1 1

1

n = 3

2 2

2

n = 5

1 1

1

n = 3

2 2

2

n = 5

Fig. 2. Triangular finite elements of the Hermite type.

Remark 2.11. The method of the proof of Theorem 2.3 does not work success-
fully in the case of the classical Hermite triangular finite element of third degree
where the last condition (2.3.zen) is substituted by ϕ(P0) = 0, P0 being the center
of gravity of T , because we obtain only

|(∂2ϕ/∂a∂na|P2P3)| ≤ KM4l
3/a (l = dist (P1Q1))

and l/a→∞ with a→ 0.
The hypothesis (H.2) is not also satisfied. This can be proved by the following

example: Let u(x, y) = y4 and let the triangle T have the vertices P1(0, 0),
P2(1, 0), P3(0, 1). Then the polynomial of third degree satisfying the first nine
conditions (2.22.zen) and condition p(P0) = u(P0), where P0 is the center of gravity
of T , has the form

p(x, y) =
4
3

(
xy − 3

4
y2 − x2y − xy2 +

3
2
y3

)
.

We see that ∂u/∂x ≡ 0 while ∂p/∂x 6= 0 in T . Thus hypothesis (H.2) is not
satisfied and we cannot apply Jamet’s theory on this finite element.

Remark 2.12. In [2, p. 222] the parameters

Dαp(Pj) |α| ≤ 1 (j = 1, 2, 3);
∫∫

T

∂2p

∂x∂y
dxdy (2.24.zen)

were considered in connection with the maximum angle condition for a cubic
triangular finite element on a right triangle with the sides P1P2 and P2P3 lying
on the axes x and y, respectively. However, parameters (2.24.zen) do not determine
in a general case a polynomial p ∈ P3,2 uniquely. To prove it let us consider a
triangle with vertices Pi(xi, yi) (i = 1, 2, 3) and let T0 be the triangle lying in
the ξ, η-plane with vertices P ∗1 (0, 0), P ∗2 (1, 0), P ∗3 (0, 1). The transformation

x = x(ξ, η) ≡ x1 + x2ξ + x3η, y = y(ξ, η) ≡ y1 + y2ξ + x3η, (2.25.zen)

where

xj = xj − x1, yj = yj − y1 (j = 2, 3), (2.26.zen)
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maps the triangle T 0 one-to-one onto T . Let us set

p∗(ξ, η) = p(x(ξ, η), y(ξ, η)). (2.27.zen)

If all ten parameters (2.24.zen) are equal to zero then

Dαp∗(P ∗j ) = 0 |α| ≤ 1 (j = 1, 2, 3), (2.28.zen)∫∫
T0

{
−x3y3

∂2p∗

∂ξ2
+ (x2y3 + x3y2)

∂2p∗

∂ξ∂η
− x2y2

∂2p∗

∂η2

}
dξdη = 0. (2.29.zen)

Relations (2.28.zen) imply

p∗(ξ, η) = Kξη(1− ξ − η). (2.30.zen)

Inserting (2.30.zen) into (2.29.zen) we obtain

K{2(x2y2 + x3y3)− (x2y3 + x3y2)} = 0. (2.31.zen)

If the difference standing in braces is different from zero then (2.31.zen) implies
K = 0 and parameters (2.24.zen) determine uniquely p ∈ P3,2. However, if

2(x2y2 + x3y3) = x2y3 + x3y2 , (2.32.zen)

then (2.31.zen) is satisfied with K 6= 0 and p(x, y) 6= 0, according to (2.30.zen) and
(2.27.zen).

Let us describe these situations. It cannot be simultaneously x2 = x3 = 0
(and similarly y2 = y3 = 0). Let x2 6= 0. If y2 = 0 then (2.32.zen) gives x3 = x2/2
with arbitrary y3 6= 0. Conversely, if x3 = x2/2 then (2.32.zen) implies y2 = 0. In
other cases

y3 =
(2x2 − x3)y2

x2 − 2x3
(y2 6= 0, x2 6= 2x3).

The situation x3 6= 0 can be treated similarly with the same results. ut

Now we mention briefly some higher-degree polynomials. We shall modify
the family of triangular finite elements introduced by Koukal in [7] and [8].

Theorem 2.13. Let u ∈ Ck(T ) (k ≥ 1). A polynomial p ∈ P2k+1,2 is uniquely
determined by conditions

Dαp(Pj) = Dαu(Pj), |α| ≤ k (j = 1, 2, 3), (2.33.zen)
∂rp

∂nr
a

(Q(r)
j ) =

∂ru

∂nr
a

(Q(r)
j ) (j = 1, . . . , r; r = 1, . . . , k) , (2.34.zen)

where the symbol ∂/∂na has the meaning as in Theorem 2.3 and Q
(r)
1 , . . . , Q

(r)
r

(1 ≤ r ≤ k) are the points dividing the side P2P3 into r + 1 parts of the same
length.
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Theorem 2.14. Let u ∈ Ck(T ) (k ≥ 1). A polynomial Πu ∈ P2k+1,2 is uniquely
determined by the conditions

Dα(Πu)(Pj) = Dαu(Pj), |α| ≤ 1 (j = 1, 2, 3), (2.35.zen)
∂r(Πu)

∂sr
2

(Q(r)
j ) =

∂ru

∂sr
2

(Q(r)
j ) (j = 1, . . . , r; r = 1, . . . , k) , (2.36.zen)

where ∂/∂s2 denotes the derivative in the direction of the side P3P1.

For k = 1 the assertions of both theorems are contained in Theorems 2.1 and
2.8. In the case k ≥ 2 the proof is a modification of the proof of [18, Theorem
17.1].

Generalizing a little the preceding considerations we can prove:

Theorem 2.15. Let u ∈ W 2k+2,p(T ), where k ≥ 1 and p ∈ [1,∞], and let the
operator Π be defined by (2.35.zen), (2.36.zen). Then we have for m = 0, 1

|u−Πu|m,p,T ≤ C
h2k+1

T

cos(γT /2)
|u|2k+2,p,T . (2.37.zen)

Remark 2.16. A generalization of Theorem 2.3 to the case of interpolation poly-
nomials introduced in Theorem 2.13 is possible. Instead of special Lemmas 2.5–
2.7 we can use [16, Theorem 2]. We obtain the estimates

|ϕ(P )| ≤ C M2k+2c
2k+2,

∣∣∣∣ ∂ϕ

∂xj
(P )

∣∣∣∣ ≤ C

sin β
M2k+2c

2k+1,

where P ∈ T and j = 1, 2.

Remark 2.17. The construction of finite elements introduced in Theorem 2.13
implies the following conjecture: It is impossible to construct a triangular finite
C1-element which satisfies the maximum angle condition.

3 Variational crimes and semiregular finite elements in
the case of smooth solutions

3.A Formulation of the problem

We shall consider the boundary value problem

−
2∑

i=1

∂

∂xi

(
ki(x)

∂u

∂xi

)
= f(x), x ∈ Ω, (3.1.zen)

u = 0 on Γ1, (3.2.zen)
2∑

i=1

ki
∂u

∂xi
ni(Ω) = q on Γ2, (3.3.zen)
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where Ω is a two-dimensional bounded domain with the boundary ∂Ω = Γ1∪Γ2,
Γ1 and Γ2 being the circles with radii R1 and R2 = R1 + %, respectively. We
assume that the circles Γ1, Γ2 have the same center S0 and that

R1 � %. (3.4.zen)

The symbols ni(G) (i = 1, 2) denote the components of the unit outward normal
to ∂G.

Fig. 3.

A weak solution of problem (3.1.zen)–(3.3.zen) is a solution of the following vari-
ational problem (which can be obtained from (3.1.zen)–(3.3.zen) by means of Green’s
theorem in a standard way).

Problem 3.1. Let Ω be a bounded domain with a Lipschitz continuous bound-
ary ∂Ω = Γ1 ∪ Γ2. Let

V = {v ∈ H1(Ω) : v = 0 on Γ1}, (3.5.zen)

a(w, v) =
2∑

i=1

∫∫
Ω

ki(x)
∂w

∂xi

∂v

∂xi
dx1dx2, (3.6.zen)

L(v) = LΩ(v) + LΓ (v) =
∫∫

Ω

vf dx1dx2 +
∫

Γ2

vq ds , (3.7.zen)

where

ki ∈W 1,∞(Ω), f ∈W 1,∞(Ω),

q = Q


Γ2
, Q ∈ C2(U),

(3.8.zen)

ki(x) ≥ µ0 > 0, (3.9.zen)
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U being a neighbourhood of Γ2 (i.e., a domain containing Γ2). Find u ∈ V such
that

a(u, v) = L(v) ∀v ∈ V. (3.10.zen)

Assumptions (3.8.zen)–(3.9.zen) guarantee that the symmetric bilinear form (3.6.zen) is
bounded and strongly coercive and that the linear form (3.7.zen) is continuous. (Of
course, this also holds when f ∈ L2(Ω) and q ∈ L2(Γ2). We assume (3.8.zen) because
of numerical integration.)

Lemma 3.2. Let a solution u ∈ V of Problem 3.1 satisfy u ∈ H2(Ω). Then
relation (3.1.zen) holds almost everywhere in Ω and relation (3.3.zen) holds almost ev-
erywhere on Γ2.

The proof is omitted. Also the following lemma is well-known:

Lemma 3.3. If (3.9.zen) holds then Problem 3.1 has a unique solution.

We shall solve Problem 3.1 approximately by the finite element method. To this
end let us approximate Γ2 by a regular polygon Γ2h with vertices Q1, . . . , Qn

such that every segment QiQi+1 has no common point with Γ1. Let the vertices
P1, . . . , Pn of the polygon Γ1h approximating Γ1 be obtained in the following
way: Pi is the intersection of the segment S0Qi with Γ1. The symbol Ωh will
denote the polygonal domain with the boundary ∂Ωh = Γ1h ∪ Γ2h.

We divide each segment PiQi by the points Ai
1, A

i
2, . . . , A

i
m−1 into m parts

of the same length in such a way that we have formally Ai
0 = Pi, Ai

m = Qi. The
points Ai

j are the vertices of quadrilaterals into which the domain Ωh is divided.
Such a division of Ωh will be denoted DK

h . If we divide each quadrilateral of DK
h

into two triangles we obtain a division DT
h (see Fig. 4). We shall also consider

an auxiliary division DA
h which will be constructed from DK

h by dividing each
quadrilateral Ai

m−1A
i+1
m−1QiQi+1 into two triangles.

We admit to use narrow quadrilaterals and narrow triangles. This means that
we shall have

%

m
� h (3.11.zen)

in our considerations, where h is the length of the greatest segment in the division
of Ωh.

We shall assume that ki ∈ W 1,∞(Ω̃), f ∈ W 1,∞(Ω̃), where Ω̃ is such that
Ωh ⊂ Ω̃ for sufficiently small h. When we consider the functions ki and f in Ωh

we shall use symbols k̃i and f̃ . In the opposite case the original symbols ki and
f will be used.

The discrete problem is now formulated in an almost standard way. (The
expression “almost” concerns the approximation of the term LΓ (v) which needs
some space.) Let Dh denote one of the three divisions DK

h , DT
h , DA

h . We define
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Fig. 4.

spaces

Xh = {v ∈ C(Ωh) : v


K
= a four-node isoparametric function ∀K ∈ Dh,

v


T
= a linear polynomial ∀T ∈ Dh}

(3.12.zen)

and

Vh = {v ∈ Xh : v = 0 on Γ1h}. (3.13.zen)

We set for all v, w ∈ H1(Ωh)

ãh(v, w) =
2∑

i=1

∫∫
Ωh

k̃i
∂v

∂xi

∂w

∂xi
dx1dx2 (3.14.zen)

and

L̃Ω
h (v) =

∫∫
Ωh

vf̃ dx1dx2 ∀v ∈ Xh. (3.15.zen)

To define L̃Γ
h (v) is more complicated. Therefore, we omit it and refer only to

[21].
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The symbols ah(v, w), LΩ
h (v) and LΓ

h (v), where v, w ∈ Xh, will denote the
approximations of ãh(v, w), L̃Ω

h (v) and L̃Γ
h (v), respectively, when using numerical

integration. For example, in the case of DT
h we have for all v, w ∈ Xh

ah(v, w) =
∑

T∈DT
h

2∑
i=1

NT∑
j=1

2ωT0,j k̃i(xT,j)
∂v

∂xi

∣∣∣∣
T

∂w

∂xi

∣∣∣∣
T

mes2T,

where xT,j are the integration points on a triangle T and ωT0,j the corresponding
coefficients of the given integration formulas (prescribed on the reference triangle
T 0).

Now we can define the approximate problem:

Problem 3.4. Find uh ∈ Vh such that

ah(uh, v) = Lh(v) ∀v ∈ Vh. (3.16.zen)

3.B An abstract error estimate

Definition 3.5. Let u ∈ H2(Ω). We define Qhu ∈ Xh by

Qhu


K∈Dh
= QKu = the four-node isoparametric interpolant of u,

Qhu


T∈Dh
= IT u = the linear interpolant of u,

where Dh is one of the divisions DK
h , DT

h , DA
h .

Lemma 3.6. Let Γ0 be the circle with a center S0 and radius R0 = R1−%. Let Ω̃
be a bounded domain such that ∂Ω̃ = Γ0 ∪Γ2. There exists a linear and bounded
extension operator E : Hk(Ω) → Hk(Ω̃) such that the constant C appearing in
the inequality

‖E(v)‖k,Ω̃ ≤ C‖v‖k,Ω ∀v ∈ Hk(Ω)

does not depend on R1/% and v. The operator E is also a linear and bounded
extension operator from Hk−i(Ω) into Hk−i(Ω̃) (1 ≤ i ≤ k).

Lemma 3.6 follows from the considerations introduced in [13, pp. 20–22].

Theorem 3.7. Let u ∈ H2(Ω), ũ := E(u) and let the condition

‖v‖21,Ωh
≤ Cah(v, v) ∀v ∈ Vh, ∀h ∈ (0, h0) (3.17.zen)

be satisfied, where the constant C does not depend on v and h and where h0 is
sufficiently small. Then Problem 3.4 has a unique solution uh ∈ Vh and there
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exists a positive constant C0 independent of u ∈ H2(Ω) and w ∈ Vh such that

C−1
0 ‖ũ− uh‖1,Ωh

≤ ‖Qhu− ũ‖1,Ωh
+ sup

w∈Vh
w 6=0

|ah(Qhu, w)− ãh(Qhu, w)|
‖w‖1,Ωh

+

+ sup
w∈Vh
w 6=0

|L̃Ω
h (w) − LΩ

h (w)|
‖w‖1,Ωh

+ sup
w∈Vh
w 6=0

|L̃Γ
h (w) − LΓ

h (w)|
‖w‖1,Ωh

+ sup
w∈Vh
w 6=0

|ãh(ũ, w)− L̃h(w)|
‖w‖1,Ωh

.

(3.18.zen)

Theorem 3.7 is proved in [21]. Our first aim is to prove that condition (3.17.zen)
is satisfied. This will be done in subsection 3.D, where we also give estimates of
the second, third and fourth terms appearing on the right-hand side of (3.18.zen).
These terms express the error of numerical integration.

The estimate of the first term, which expresses the interpolation error, is
introduced in subsection 3.C. This estimate follows from the known interpolation
theorems. The fifth term, which expresses the error due to the approximation of
the boundary, will be estimated in subsection 3.E.

3.C The interpolation error

The estimate of the first term appearing on the right-hand side of (3.18.zen) follows
from Theorems 1.3 and 1.4:

Theorem 3.8. We have

‖Qhu− ũ‖1,Ωh
≤ Ch‖u‖2,Ω,

where the constant C is independent of h, u and the division Dh.

3.D The effect of numerical integration

The effect of numerical integration must be analyzed more carefully than in the
case of regular elements. In the case of triangles the result is that the numerical
integration does not depend on the geometry of triangles and that the degrees of
precision of quadrature formulas sufficient for the rate of convergence O(h) are
the same as in the regular case (except for the integration along the boundary
Γ2h – see Theorem 3.18). The proofs of the assertions presented in this subsection
can be found in [21].

First we mention the analysis of the numerical integration on quadrilaterals.
Let K be a quadrilateral whose greatest side lies on the axis x1 and let it have
the vertices

P1(h, 0), P2(0, 0), P3(δ cosβ, δ sin β), P4(h− ε cosα, ε sinα)

where ε = dist (P1, P4), δ = dist (P2, P3) and α and β are the angles at P1 and
P2, respectively. As each quadrilateral belonging to Dh has parallel long sides
we have

b :=
%

m
= ε sinα = δ sin β.
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Let K0 be the reference square lying in the coordinate system ξ1, ξ2 and having
the vertices P ∗1 (1, 0), P ∗2 (0, 0), P ∗3 (0, 1), P ∗4 (1, 1). If we denote

ε3 = δ cosβ, ε4 = ε cosα, ε∗ = ε3 + ε4,

then the one-to-one mapping of K0 onto K has the form

x1 = hξ1 + ε3ξ2 − ε∗ξ1ξ2, x2 = bξ2. (3.19.zen)

If the side P1P2 makes an angle ϕ with the axis x1 and the vertex P2 has
coordinates x10, x20 then (3.19.zen) is substituted by the mapping

x1 = xK
1 (ξ1, ξ2) ≡ x10 + (hξ1 + ε3ξ2 − ε∗ξ1ξ2) cos ϕ− bξ2 sin ϕ,

x2 = xK
2 (ξ1, ξ2) ≡ x20 + (hξ1 + ε3ξ2 − ε∗ξ1ξ2) sin ϕ + bξ2 cosϕ.

(3.20.zen)

Both transformations (3.19.zen) and (3.20.zen) have the same Jacobian

JK = (h− ε∗ξ2)b.

It should be noted that for n� 1 we have

εi ≈
1
2n

(2π(R1 +∆+
%

m
)−2π(R1 +∆)) =

π%

nm
(i = 3, 4; 0 ≤ ∆ ≤ %(1−1/m)).

Further

h ≈ 2πR1

n
.

The last two relations imply in this case

εi = σib, σi ≤ Ch (i = 3, 4). (3.21.zen)

Let us denote

(1) := 2, (2) := 1, κij = (−1)i+j . (3.22.zen)

Then we can write (omitting the subscript K at J)

∂ξi

∂xj
= κij

1
J

∂x(j)

∂ξ(i)
(i, j = 1, 2) (3.23.zen)

and the theorem on transformation of an integral yields

EK

( 2∑
i=1

k̃i
∂v

∂xi

∂w

∂xi

)
= EK0

( 2∑
i,r,s=1

k̃∗i χirs
∂v∗

∂ξr

∂w∗

∂ξs

)
(3.24.zen)
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where

EK(F ) :=
∫∫

K

F (x1, x2) dx1dx2 −
NK∑
j=1

ωK0,jF (xK,j)|JK(ξ1j , ξ2j)|, (3.25.zen)

F ∗(ξ1, ξ2) := F (x1(ξ1, ξ2), x2(ξ1, ξ2)),

EK0(F ) :=
∫∫

K0

F ∗(ξ1, ξ2)dξ1dξ2 −
NK∑
j=1

ωK0,jF
∗(ξ1j , ξ2j), (3.26.zen)

χirs = κirκis
1
J

∂x(i)

∂ξ(r)

∂x(i)

∂ξ(s)

with [ξ1j , ξ2j ] the integration points on K0.

Theorem 3.9. Let
EK0(p) = 0 ∀p ∈ P2,

where Pk denotes the set of polynomials in two variables of degree not greater
than k. Then we have∣∣∣∣∣EK

(
2∑

i=1

k̃i
∂v

∂xi

∂w

∂xi

)∣∣∣∣∣ ≤ Ch max
i=1,2

‖k̃i‖1,∞,K |v|1,K |w|1,K ∀v, w ∈ Xh.

As the Jacobian J of both transformations (3.19.zen) and (3.20.zen) is the same the
proof in both cases is very similar.

Remark 3.10. In the cases when relation (3.21.zen) is not satisfied (however, the
long sides are parallel) the assertion of Theorem 3.9 can be proved provided

EK0(p) = 0 ∀p ∈ P4.

Remark 3.11. The case of a quadrilateral K with parallel long sides is a special
case of quadrilaterals K satisfying the condition

|ε sinα− δ sin β| ≤ Cbh. (3.27.zen)

It can be proved that the results of Theorem 3.9 and Remark 3.10 can be ex-
tended to the case (3.27.zen).

The effect of numerical integration in the case of narrow triangles must be
analyzed more carefully than in the case of regular triangles. Let T be an arbi-
trary triangle lying in the plane x1, x2 and let T 0 be the reference triangle with
vertices (0, 0), (1, 0), (0, 1) lying in the plane ξ1, ξ2. Let

x1 = x1(ξ1, ξ2), x2 = x2(ξ1, ξ2) (3.28.zen)

be the linear transformation which maps T 0 one-to-one onto T (for its form see,
for example, (2.25.zen), (2.26.zen)) and let ξ1 = ξ1(x1, x2), ξ2 = ξ2(x1, x2) be its inverse.
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Lemma 3.12. Let v ∈ C1(T ) and let

v∗(ξ1, ξ2) = v(x1(ξ1, ξ2), x2(ξ1, ξ2)).

Then we have ∥∥∥∥∥
2∑

r=1

∂v∗

∂ξr

∂ξr

∂xi

∥∥∥∥∥
0,T0

≤ C|J |−1/2|v|1,T ,

where J is the Jacobian of (3.28.zen).

The error functionals ET and ET0 on a triangle T and the reference triangle
T 0, respectively, are defined in a similar way as EK and EK0 (see (3.25.zen) and
(3.26.zen)), their expression is only simpler. Using Lemma 3.12 we can prove the
following theorem.

Theorem 3.13. Let T be an arbitrary triangle (not necessarily satisfying the
maximum angle condition). Let

ET0(p) = 0 ∀p ∈ P0.

Then we have∣∣∣∣ET

( 2∑
i=1

k̃i
∂v

∂xi

∂w

∂xi

)∣∣∣∣ ≤ Ch max
i=1,2

|k̃i|1,∞,T |v|1,T |w|1,T ∀v, w ∈ Xh.

For v, w ∈ Vh we have

ah(v, w) = ãh(v, w) − {ãh(v, w) − ah(v, w)},

ãh(v, w) − ah(v, w) =
∑

K∈Dh

EK

( 2∑
i=1

k̃i
∂v

∂xi

∂w

∂xi

)
+

∑
T∈Dh

ET

( 2∑
i=1

k̃i
∂v

∂xi

∂w

∂xi

)
.

Using these relations we obtain from Theorems 3.9 and 3.13 (details are
similar as in the proof of [18, Theorem 11.8]; we use in addition the discrete
Friedrichs’ inequality of the type [18, (29.1)] (for its proof see Appendix) which
together with (3.9.zen) implies ‖v‖21,Ωh

≤ Cãh(v, v) ∀v ∈ Vh):

Corollary 3.14. If the forms ah(v, w), where v, w ∈ Xh, are computed from
ãh(v, w) by means of quadrature formulas required in Theorems 3.9 and 3.13,
then condition (3.17.zen) is satisfied.

Theorem 3.15. Let

EK0(p) = 0 ∀p ∈ P2, ET0(p) = 0 ∀p ∈ P0.

Then we have for u ∈ H2(Ω)

sup
w∈Vh
w 6=0

|ah(Qhu, w)− ãh(Qhu, w)|
‖w‖1,Ωh

≤ Ch max
i=1,2

‖k̃i‖1,∞,Ω̃‖u‖2,Ω , (3.29.zen)

where the constant C does not depend on u, k̃i, and h.



The Use of Semiregular Finite Elements 223

Proof. Relation (3.29.zen) follows from Theorems 3.9, 3.13 and 1.3, 1.4. Details are
the same as in the proof of [18, Theorem 11.12]. ut

Theorem 3.16. Let

EK0(p) = 0 ∀p ∈ P2 (or ∀p ∈ Q1),
ET0(p) = 0 ∀p ∈ P0 ,

where Q1 is the set of all bilinear polynomials. Then we have

sup
w∈Vh
w 6=0

|L̃Ω
h (w) − LΩ

h (w)|
‖w‖1,Ωh

≤ Ch‖f̃‖1,∞,Ω̃

√
mes2Ω,

where the constant C does not depend on f̃ and h.

In order to estimate the effect of numerical integration along Γ2 we introduce
the following error functionals:

Er(F ) :=
∫ lr

0

F (ξr)dξr −
Nr∑
j=1

lrβr,jF (sr,j),

E0(F ∗) :=
∫ 1

0

F ∗(t)dt−
Nr∑
j=1

βr,jF
∗(tj),

where sr,j are integration points on [0, lr], βr,j the corresponding coefficients of
the given integration formula and

F ∗(t) := F (lrt), t ∈ I ≡ [0, 1].

Hence
Er(F ) = lrE0(F ∗).

When considering the line integrals we need also the trace inequalities which
are introduced in the following lemma.

Lemma 3.17. We have

‖v‖0,∂Ω ≤
C
√

%
‖v‖1,Ω ∀v ∈ H1(Ω), (3.30.zen)

‖v‖0,∂Ωh
≤ C
√

%
‖v‖1,Ωh

∀v ∈ H1(Ωh), (3.31.zen)

where the constant C does not depend on v, h and %.

The proofs of (3.30.zen) and (3.31.zen) are similar to [12, pp. 15–16]).
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Theorem 3.18. Let
E0(p) = 0 ∀p ∈ P2.

Then we have

sup
w∈Vh
w 6=0

|L̃Γ
h (w) − LΓ

h (w)|
‖w‖1,Ωh

≤ C
√

%
h2M2(q)

√
mes1Γ2,

where the constant C does not depend on q, % and h and where M2(q) depends
on the first and second derivatives of the function Q at the points of Γ2 (as to
the relation between q and Q see (3.8.zen)).

3.E The error of the approximation of the boundary

The estimate of the last term in (3.18.zen) will be divided into several lemmas.

Notation 3.19. We denote

τh = Ωh −Ω, ωh = Ω −Ωh. (3.32.zen)

Further, let w ∈ Xh. The symbol w is called the natural extension of w and
denotes the function w : Ωh ∪Ω → R1 such that w = w on Ωh and

w


T id−T
= p


T id−T

,

where p ∈ P1 satisfies p


T
= w


T

. (T id ⊂ Ω is the curved triangle which is
approximated by T .)

Lemma 3.20. Let u ∈ H2(Ω). Then we have for w ∈ Vh

|ãh(ũ, w)− L̃h(w)| ≤ |LΓ (w)− L̃Γ
h (w)|+

+
∣∣∣∣∫∫

ωh

2∑
i=1

∂

∂xi

(
ki

∂u

∂xi

)
w dx1dx2

∣∣∣∣ +

+
∣∣∣∣∫∫

ωh

2∑
i=1

ki
∂u

∂xi

∂w

∂xi
dx1dx2

∣∣∣∣ +

+
∣∣∣∣∫∫

τh

( 2∑
i=1

∂

∂xi

(
k̃i

∂ũ

∂xi

)
+ f̃

)
w dx1dx2

∣∣∣∣. (3.33.zen)

Proof. Using the definitions of ãh(ũ, w), L̃h(w) and Green’s theorem we obtain

ãh(ũ, w)− L̃h(w) =
∫∫

Ωh

2∑
i=1

k̃i
∂ũ

∂xi

∂w

∂xi
dx1dx2 −

− L̃Ω
h (w)− L̃Γ

h (w) =
∫

Γ2h

2∑
i=1

k̃i
∂ũ

∂xi
ni(Ωh)w ds−

−
∫∫

Ωh

( 2∑
i=1

∂

∂xi

(
k̃i

∂ũ

∂xi

)
+ f̃

)
w dx1dx2 − L̃Γ

h (w).



The Use of Semiregular Finite Elements 225

To the right-hand side let us add zero in the form

−
∫

Γ2

2∑
i=1

ki
∂u

∂xi
ni(Ω)w ds + LΓ (w) = 0.

If we denote ∆ = T id − T and use Lemma 3.2 then we can write

ãh(ũ, w)− L̃h(w) = −
∑

∆⊂ωh

∫
∂∆

2∑
i=1

ki
∂u

∂xi
ni(∆)w ds−

−
∫∫

τh

( 2∑
i=1

∂

∂xi

(
k̃i

∂ũ

∂xi

)
+ f̃

)
w dx1dx2 + LΓ (w)− L̃Γ

h (w).

Transforming the first term on the right-hand side by means of Green’s theorem
we obtain (3.33.zen). ut

The third term on the right-hand side is most disagreeable. It is estimated
in the following lemma:

Lemma 3.21. Let u ∈ H2(Ω) and k̃i ∈W 1,∞(Ω) (i = 1, 2). Then∣∣∣∣∫∫
ωh

2∑
i=1

ki
∂u

∂xi

∂w

∂xi
dx1dx2

∣∣∣∣ ≤ Ch2

√
m

%
max
i=1,2

‖ki‖1,∞,Ω‖u‖2,Ω‖w‖1,Ωh
. (3.34.zen)

If in addition

u ∈ H2(Ω) ∩W 1,∞(Ω), (3.35.zen)

then∣∣∣∣∫∫
ωh

2∑
i=1

ki
∂u

∂xi

∂w

∂xi
dx1dx2

∣∣∣∣ ≤ Ch2

√
m

%
max
i=1,2

‖ki‖1,∞,Ω‖u‖1,∞,Ω‖w‖1,Ωh
.

(3.36.zen)

Proof. We have∣∣∣∣∫∫
ωh

2∑
i=1

ki
∂u

∂xi

∂w

∂xi
dx1dx2

∣∣∣∣ ≤ max
i=1,2

‖ki‖1,∞,Ω|u|1,ωh
|w|1,ωh

. (3.37.zen)

Assumption (3.35.zen) gives

|u|1,ωh
≤ Ch|u|1,∞,Ω. (3.38.zen)

Let us denote ∆ = T id − T . Then

|w|21,ωh
=

∑
∆⊂ωh

mes2∆|(∇w


T
)|2 ≤ C

∑
∆⊂ωh

h3
T |(∇w


T
)|2 =

= C
m

%

∑
∆⊂ωh

h3
T

%

m
|(∇w


T
)|2 ≤ C

m

%
h2

∑
∆⊂ωh

|w|21,T ≤ C
m

%
h2|w|21,Ωh
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because
%

m
hT |(∇w


T
)|2 ≤ C|w|21,T .

Hence

|w|1,ωh
≤ Ch

√
m

%
|w|1,Ωh

. (3.39.zen)

Combining (3.37.zen)–(3.39.zen) we obtain (3.36.zen). For the proof of (3.34.zen) see [21]. ut

Estimate (3.36.zen) cannot be improved. Thus, if we want to obtain the rate of
convergence O(h) we must assume that

C1h
2 ≤ %

m
(C1 > 0). (3.40.zen)

Assumption (3.40.zen) is also necessary in estimating the first term on the right-
hand side of (3.33.zen) if we want to obtain in it the rate of convergence O(h) (see
[21]).

3.F The final result

All preceding results yield the following theorem:

Theorem 3.22. Let us consider a division DT
h (or DA

h ). Let u ∈ H2(Ω), f̃ ∈
W 1,∞(Ω̃), k̃i ∈ W 1,∞(Ω̃) (i = 1, 2). Let assumptions (3.8.zen)3,4, (3.9.zen), (3.40.zen) and
assumptions concerning the degrees of precision of the quadrature formulas (see
Theorems 3.9, 3.13, 3.15, 3.16 and 3.18) be satisfied. Then

‖ũ− uh‖1,Ωh
≤ C
√

%
h , (3.41.zen)

where the constant C does not depend on u, %, m, h and the division DT
h (or

DA
h ).

If in addition u ∈ W 1,∞(Ω) (see (3.35.zen)) then

‖ũ− uh‖1,Ωh
≤ Ch , (3.42.zen)

where again the constant C does not depend on u, %, m, h and the division DT
h

(or DA
h ).

Theorem 3.23. If we use divisions DK
h for the definition of the spaces Xh then

the assertions of Theorem 3.22 remain without changes.

For the proof see [21, pp. 390–392].

Now we mention results in the case of the boundary value problem of equation
(3.1.zen) with boundary conditions opposite to conditions (3.2.zen) and (3.3.zen):

u = 0 on Γ2, (3.43.zen)
2∑

i=1

ki
∂u

∂xi
ni(Ω) = q on Γ1. (3.44.zen)
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In this case Problem 3.4 and all results up to relation (3.32.zen) inclusive remain
without changes, except for Lemma 3.2, where (3.3.zen) is replaced by (3.44.zen), and
except for the definition of DA

h : we divide into two triangles each quadrilateral
PiPi+1A

i
1A

i+1
1 . Doing some additional considerations (see [21, pp. 393–397]) we

obtain the following theorems:

Theorem 3.24. Let the assumptions of Theorem 3.22 be satisfied except for the
additional assumption u ∈W 1,∞(Ω) which is substituted by ũ ∈W 1,∞(Ω̃). Then
estimates (3.41.zen) and (3.42.zen) are again valid.

Theorem 3.25. If we use divisions DK
h for the definition of the spaces Xh then

the assertions of Theorem 3.24 remain without changes.

Remark 3.26. Modifying considerations of [12, Chapter 4] we can prove the
following regularity results: Let j ≥ 1. If ki ∈ Cj−1,1(Ω), f ∈ W j−1

2 (Ω),
q ∈ Cj−1,1(Γr) (r = 1 or 2) then u ∈ Hj+1(Ω). This means that the assumption
guaranteeing (3.42.zen) can be satisfied.

4 Composite domains in magnetostatical problems

In this section we restrict ourselves for a greater simplicity to triangular elements.
We shall study the situation indicated in Fig. 5, where the circle consists of three
subdomains, the middle one being very narrow. We shall see that in such a case
requirement (3.40.zen) can be omitted.

Problem 4.1. Let Ω be a simply connected domain with a Lipschitz continuous
boundary ∂Ω such that

Ω = Ω
R ∪Ω

A ∪Ω
S

where R, S and A stand for rotor, stator and air, respectively, and ΩR, ΩS and
ΩA are domains with Lipschitz continuous boundaries. Let

V = {v ∈ H1(Ω) : v = 0 on Γ1}, (4.1.zen)

a(w, v) =
2∑

i=1

∫∫
Ω

ν(|∇w|2) ∂w

∂xi

∂v

∂xi
dx1dx2,

ν ≡ ν0 in ΩA, ν ≡ ν0ν
R
r in ΩR, ν ≡ ν0ν

S
r in ΩS ,

 (4.2.zen)

L(v) = LΩ(v) + LΓ (v) =
∫∫

Ω

vf dx1dx2 +
∫

Γ2

vq ds , (4.3.zen)

where f ∈ L2(Ω), q ∈ L2(Γ2). Find u ∈ H1(Ω) such that

u− z ∈ V, (4.4.zen)
a(u, v) = L(v) ∀v ∈ V, (4.5.zen)

where z ∈ W 1,p(Ω) (p > 2) satisfies tr z = u on Γ1. (We note that as usual
∂Ω = Γ 1 ∪ Γ 2, Γ1 ∩ Γ2 = ∅, mes1Γ1 > 0.) ut
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Fig. 5.

Problem 4.1 corresponds to a two-dimensional magnetostatical problem; its con-
nection with Maxwell’s equations is explained, for example, in [20] — here we
only note that u = u(x, y) has the physical meaning of the z-component of the
magnetic potential vector −→A = (0, 0, u), the positive function ν = ν(s) is the
magnetic reluctivity, f = f(x, y) is the z-component of the external current den-
sity vector −→Je = (0, 0, f) and u and q are functions appearing on the right-hand
sides of the Dirichlet and Neumann boundary conditions, respectively.

We have νM
r ∈ C∞([0,∞)). Using the expression for νM

r , which is introduced,
e.g., in [10], [11], we can prove (similarly as in [18, Example 33.3]) that there
exist positive constants βM

1 , βM
2 (M = R, S) such that

βM
1 ≤

d
ds

(sνM
r (s2)) ≤ βM

2 ∀s ∈ [0,∞), M = R, S. (4.6.zen)

Property (4.6.zen) has an important consequence: if we integrate (4.6.zen) in [0, t]
(t > 0) then we obtain

βM
1 ≤ νM

r (t2) ≤ βM
2 ∀t ∈ (0,∞).

This result and the continuity of νM
r give

βM
1 ≤ νM

r (s2) ≤ βM
2 ∀s ∈ [0,∞). (4.7.zen)



The Use of Semiregular Finite Elements 229

Making use of (4.6.zen), (4.7.zen) we can prove that Problem 4.1 has a unique solution
u ∈ H1(Ω) (see [20, Lemma 2 and Theorem 3]).

In order to obtain a discrete solution of Problem 4.1 by the finite element
method we triangulate the closed domain Ω in such a way that the triangulation
Th of Ω is a union of triangulations T R

h , T S
h and T A

h of Ω
R
, Ω

S
and Ω

A
, respec-

tively. On the contrary to the standard theories we assume that the minimum
angle condition

ϑM
h := min

T∈TM
h

ϑT ≥ ϑ0 > 0 ∀h ∈ (0, h0), (4.8.zen)

where ϑT is the magnitude of the minimum angle of T , is satisfied only for
M = R, S. As the domain ΩA is very narrow the triangulations T A

h are supposed
to satisfy the maximum angle condition

γT ≤ γ0 < π ∀T ∈ T A
h , ∀h ∈ (0, h0), (4.9.zen)

where γT is the magnitude of the maximum angle of T .

Assumption 4.2. In order to simplify our considerations we shall assume that
ΩS , ΩA and ΩR are such that ∂ΩS = ∂K1 ∪ ∂K2, ∂ΩA = ∂K2 ∪ ∂K3 and
∂ΩR = ∂K3, where ∂K1, ∂K2 and ∂K3 are circles with the same center S0 and
radii R1, R2 and R3, respectively, which satisfy the relations

R1 > R2 > R3 > 0, R3 = R2 − %, R1 −R2 � %, R3 � %

where % > 0 is fixed (see Fig. 5). ut
The discrete problem is formulated in a standard way. We define the spaces

Xh = {v ∈ C(Ωh) : v


T
= a linear polynomial ∀T ∈ Th}, (4.10.zen)

Vh = {v ∈ Xh : v = 0 on Γ 1h} (4.11.zen)

and the set

Wh = {v ∈ Xh : v(Pi) = u(Pi) ∀Pi ∈ σh ∩ Γ 1} , (4.12.zen)

where Ωh is the union of the closed triangles T ∈ Th, Γ 1h is the part of ∂Ωh

approximating Γ 1 and σh is the set of all nodes of Th. Further we set

ah(v, w) =
∑

M=R,A,S

2∑
i=1

∫∫
ΩM

h

νM (|∇v|2) ∂v

∂xi

∂w

∂xi
dx1dx2 ∀v, w ∈ H1(Ωh),

(4.13.zen)

which gives

ah(v, w) =
∑

M=R,S

∑
T∈TM

h

2∑
i=1

ν0ν
M
r (|∇(v


T
)|2) ∂v

∂xi

∣∣∣∣
T

∂w

∂xi

∣∣∣∣
T

mes2T +

+
∑

T∈T A
h

2∑
i=1

ν0
∂v

∂xi

∣∣∣∣
T

∂w

∂xi

∣∣∣∣
T

mes2T ∀v, w ∈ Xh. (4.14.zen)
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Finally, we set

Lh(v) = LΩ
h (v) + LΓ

h (v) ∀v ∈ Xh , (4.15.zen)

where LΩ
h (v) and LΓ

h (v) are the approximations of the forms

L̃Ω
h (v) =

∫∫
Ωh

vf dx1dx2 , L̃Γ
h (v) =

∫
Γ2h

qhv ds (4.16.zen)

by means of quadrature formulas of first degree of precision. (Details and the
definition of the function qh are introduced in [4], [18] and [21].) Using (4.10.zen)–
(4.15.zen) we define:

Problem 4.3. Find uh ∈ Wh such that

ah(uh, v) = Lh(v) ∀v ∈ Vh. (4.17.zen)

It can be proved similarly as in [4], [17] or [18] that every discrete problem
has a unique solution uh. The main result of this section is the following theorem.

Theorem 4.4. Let the solution u ∈ H1(Ω) of Problem 4.1 satisfy

uM ∈ H2(ΩM ) (M = R, S, A), (4.18.zen)

where uM := u


ΩM . Let f ∈ W 1,∞(Ω) and q ∈ C1(Γ 2). Then we have for all
h ∈ (0, h0)

‖uh − u‖1,Ωh
≤ C h , (4.19.zen)

where u ∈ H1(Ω) is the solution of Problem 4.1, ‖ · ‖1,Ωh
is the norm in the

space H1(Ωh) and C is a constant independent of h := max
T∈Th

hT and %.

Assumption (4.18.zen) is guaranteed if Γ2 = ∅ and u is sufficiently smooth.

The proof of Theorem 4.4 is based on the following abstract error estimate
which can be proved in the same way as [4, Theorem 3.3.1] or [18, Theorem
38.5]:

‖u− uh‖1,Ωh
≤ C

{
inf

v∈Wh

‖u− v‖1,Ωh
+ sup

w∈Vh
w 6=0

|ah(u, w)− Lh(w)|
‖w‖1,Ωh

}
, (4.20.zen)

where the constant C does not depend on h and %. The two terms on the right-
hand side of (4.20.zen) will be estimated in Theorems 4.8 and 4.13.

The following lemma is a reformulation of Lemma 3.6:
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Lemma 4.5. Let ∂K4 be the circle with the center S0 and radius R4 = R2−2%,
where % is the same as in Assumption 4.2. Let Ω̃S , Ω̃A be bounded domains such
that ∂Ω̃S = ∂K1 ∪ ∂K4, ∂Ω̃A = ∂K2 ∪ ∂K4. There exist linear and bounded ex-
tension operators EM : H2(ΩM )→ H2(Ω̃M ) (M = S, A) such that the constant
CM appearing in the inequality

‖EM (v)‖2,Ω̃M ≤ CM‖v‖2,ΩM ∀v ∈ H2(ΩM )

does not depend on R2/% and v.

Remark 4.6. As Lemma 4.5 is used in the proof of Theorem 4.8 the polygonal
domains ΩA

h must be situated between the circles ∂K2 and ∂K4. We derive now
the expression for the minimum number of vertices of such a polygonal domain
in the case %/R2 < 10−1.

Let A1 be an arbitrary point of the circle ∂K2 and let t be one of the two
tangents to the circle ∂K3 which pass through the point A1. Let B = t ∩ ∂K3,
A2 = {t∩∂K2}−{A1}. If %/R2 < 10−1 then we can neglect the terms depending
on %3 and find

d1 = dist (A1, B) = (2%R2 − %2)1/2, d2 = dist (A1, A2) = 2d1.

Let us approximate ∂K2 by a regular polygon with vertices P1, . . . , Pn where

n = n2 =
[
2πR2

d2

]
+ 1 =

[
πR2

(2%R2 − %2)1/2

]
+ 1.

Let the vertices Q1, . . . , Qn of the polygon ∂Kh
3 approximating ∂K3 be obtained

in the following way: Qi is the intersection of the segment S0Pi with ∂K3.
For example, if % = 1 mm and R2 = 50 mm then n2 = 16. This is a surpris-

ingly small number. Of course, it is better to use the relation

n = n1 =
[
2πR2

d1

]
+ 1.

In the case % = 1 mm, R2 = 50 mm we have n1 = 32.
If we divide every quadrilateral PiPi+1QiQi+1 into two triangles we obtain a

triangulation which satisfies (from a practical point of view) the maximum angle
condition only: For n = n1 the minimum angle is less than 6 degrees and for
n = n2 less than 3 degrees. ut

Lemma 4.7. If the solution u ∈ H1(Ω) of Problem 4.1 satisfies assumption
(4.18.zen) then

NM
i (u) := νM (|∇uM |2)

∂uM

∂xi
∈ H1(ΩM ) (M = R, S, A). (4.21.zen)
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Consequently,

2∑
i=1

∂

∂xi

(
νM (|∇uM |2)

∂uM

∂xi

)
+ fM = 0 a.e. in ΩM (M = R, S, A), (4.22.zen)

q =
2∑

i=1

νS(|∇uS |2)
∂uS

∂xi
ni(ΩS) a.e. on Γ2, (4.23.zen)

where fM = f |ΩM and the symbols ni(G) (i = 1, 2) denote the components of
the unit outward normal to ∂G. Finally,

νM
r

∂uM

∂n

∣∣∣∣
∂Kj

=
∂uA

∂n

∣∣∣∣
∂Kj

a.e. on ∂Kj (M = R, S), (4.24.zen)

where j = 2 for M = S and j = 3 for M = R and ∂/∂n is the normal derivative
(the orientation of n can be chosen arbitrarily).

Theorem 4.8. Under the assumptions of Theorem 4.4 we have

inf
v∈Wh

‖u− v‖1,Ωh
≤ C h

{ ∑
M=R,S

(1 + sup |νM
r |)‖uM‖2,ΩM + ‖uA‖2,ΩA

}
, (4.25.zen)

where the constant C does not depend on both h and %.

For the proofs of Lemma 4.7 and Theorem 4.8 see [20, Lemma 12 and The-
orem 13].

Notation 4.9. a) We denote

ωM
h := ΩM −Ω

M

h , τM
h := ΩM

h −Ω
M

.

b) The natural extension wM of wM := w


ΩM
h

from Ω
M

h onto Ω
M

h ∪Ω
M

is

the function wM : Ω
M

h ∪Ω
M → R1 satisfying wM = wM on Ω

M

h and

wM


T id = p


T id on T id ⊃ T,

where p is the polynomial of first degree satisfying p


T
= w


T

and T id is
the ideal curved triangle associated with T (it is also called the exact curved
triangle). (For more detail see [18] or [4].)

c) The natural extension w of w ∈ Xh is the function w : Ω → R1 such that
w = w on Ωh and w = wS on ωS

h .

Lemma 4.10. We have

‖v‖0,τM
h
≤ C(h‖v‖0,∂Ki+1 + h2|v|1,τM

h
) ∀v ∈ H1(τM

h ) (M = S, A),

where i = 1 and i = 2 for M = S and M = A, respectively, and where the
constant C does not depend on both h and %.
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Lemma 4.10 follows from the proof of [18, Lemma 28.3].

Lemma 4.11. We have for all w ∈ Xh

‖wM‖0,εM
h
≤ C h‖w‖1,Ωh

(ε = τ, ω; M = R, S), (4.26.zen)

|wM |1,εM
h
≤ C h1/2|w|1,Ωh

(ε = τ, ω; M = R, S). (4.27.zen)

Proof. As T R
h , T S

h satisfy the minimum angle condition estimates (4.26.zen), (4.27.zen)
follow from [4, Lemma 3.3.12].

Lemma 4.12. We have for all w ∈ Xh

|LΩ
h (w) − L̃Ω

h (w)| ≤ C h‖f‖1,∞,Ω‖w‖1,Ωh
, (4.28.zen)

|LΓ
h (w)− L̃Γ

h (w)| ≤ C h(mes1Γ2)1/2|q|1,∞,Γ2‖w‖1,Ωh
, (4.29.zen)

|L̃Γ
h (w)− LΓ (w)| ≤ C h3/2‖q‖0,Γ2‖w‖1,Ωh

. (4.30.zen)

For the proof of (4.28.zen), (4.29.zen) and (4.30.zen) see, for example, [3, Theorem 4.5.1],
[18, Lemma 30.1] and [4, Lemma 3.3.13], respectively.

Theorem 4.13. Under the assumptions of Theorem 4.4 we have for all w ∈ Vh

|ah(u, w)− Lh(w)| ≤ C h{‖f‖1,∞,Ω + (mes1Γ2)1/2‖q‖1,∞,Γ2 +

+ (1 + sup |νS
r |)‖uS‖2,ΩS +

∑
M=A,R

‖uM‖2,ΩM +

+
2∑

i=1

∥∥∂NS
i (u)/∂xi

∥∥
0,ΩS}‖w‖1,Ωh

, (4.31.zen)

where NS
i (u) is defined in (4.21.zen).

Proof. Instead of S, A and R we shall write 1, 2 and 3, respectively. We have

|ah(u, w)− Lh(w)| ≤ |ah(u, w)− L̃h(w)| + |L̃h(w)− Lh(w)|, (4.32.zen)

where

L̃h(w) = L̃Ω
h (w) + L̃Γ

h (w). (4.33.zen)

After a longer computation we obtain (see [20, pp. 413–415])

ah(u, w)− L̃h(w) = D1 +
2∑

j=1

(D(j,j)
2 −D

(j+1,j)
2 )−D3 −D4 , (4.34.zen)
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where

D1 = LΓ (w)− L̃Γ
h (w),

D
(k,j)
2 =

2∑
i=1

∫∫
τ j

h

νk(|∇uj+1|2)
∂uj+1

∂xi

∂w

∂xi
dx1dx2,

D3 =
2∑

i=1

∫∫
ω1

h(2)

w
∂

∂xi

(
ν1(|∇u1|2)

∂u1

∂xi

)
dx1dx2,

D4 =
2∑

i=1

∫∫
ω1

h(2)

ν1(|∇u1|2)
∂u1

∂xi

∂w

∂xi
dx1dx2,

where ω1
h(2) denotes the part of ω1

h which is adjacent to Γ2.
The estimate of |D1| is given in (4.30.zen). The term D

(k,j)
2 is of the same type

as the term appearing in Lemma 3.21. However, the presence of the domains
ΩR ≡ Ω3, ΩS ≡ Ω1 enable us to avoid requirement (3.40.zen). It follows from (4.7.zen)
that

|D(k,j)
2 | ≤ K|uj+1|1,τ j

h
|w|1,τ j

h
. (4.35.zen)

As uj+1 ∈ H2(Ωj+1) we have by Lemma 4.10

|uj+1|1,τ j
h
≤ C

2∑
i=1

(
h

∥∥∥∥∂uj+1

∂xi

∥∥∥∥
0,∂Kj+1

+ h2

∣∣∣∣∂uj+1

∂xi

∣∣∣∣
1,τ j

h

)
. (4.36.zen)

The trace theorem yields ∥∥∥∥∂u3

∂xi

∥∥∥∥
0,∂K3

≤ C‖u3‖2,Ω3 . (4.37.zen)

Owing to the fact that u ∈ C(Ω) we have

u1


∂K2

= u2


∂K2

.

This relation implies that

∂u1

∂t
=

∂u2

∂t
a.e. on ∂K2,

where ∂/∂t is the tangential derivative. Combining this result with (4.24.zen) (where
j = 2) and using the trace theorem on Ω1 we derive∥∥∥∥∂u2

∂xi

∥∥∥∥
0,∂K2

≤ C(1 + sup |ν1
r |)‖u1‖2,Ω1 . (4.38.zen)

Estimates (4.35.zen)–(4.38.zen) give

2∑
j=1

(|D(j,j)
2 |+ |D(j+1,j)

2 |) ≤ Ch
{
(1 + sup |ν1

r |)‖u1‖2,Ω1 +
3∑

j=2

‖uj‖2,Ωj

}
|w|1,Ωh

.

(4.39.zen)
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Relation (4.21.zen), the Schwarz inequality and Lemma 4.11 imply

|D3| ≤ C h

( 2∑
i=1

∥∥∥∥ ∂

∂xi

(
ν1(|∇u1|2)

∂u1

∂xi

)∥∥∥∥
0,Ω1

)
‖w‖1,Ωh

. (4.40.zen)

Finally, as T 1
h satisfies the minimum angle condition and u1 ∈ H2(Ω1) (see

(4.18.zen)) we have by (4.7.zen), (4.27.zen), Lemma 4.10 (which holds also for ω1
h with ∂K1

instead of ∂Ki+1) and the trace inequality

|D4| ≤ K|u1|1,ω1
h
|w|1,ω1

h
≤ C h3/2‖u1‖2,Ω1‖w‖1,Ωh

. (4.41.zen)

Relations (4.34.zen), (4.30.zen), (4.39.zen)–(4.41.zen) give the bound of the first term on the
right-hand side of (4.32.zen). The estimate of the second term on the right-hand side
of (4.32.zen) follows from Lemma 4.12. Hence we obtain (4.31.zen). ut

Theorem 4.4 follows now from (4.20.zen) and Theorems 4.8 and 4.13.

5 General convergence theorem

On the contrary to Section 3 we shall assume u ∈ H1(Ω) only and we shall prove
the convergence (without any rate of convergence) under a stronger assumption
than (3.40.zen):

C1h
2−δ ≤ %

m
≤ C2h

2−δ , (5.1.zen)

where

0 < δ < 1 (5.2.zen)

is a given number which can be arbitrarily small and C1[m1−δ], C2[m1−δ] are
positive constants. The abstract error estimate has in the case u ∈ H1(Ω) the
form:

Theorem 5.1. Let condition (3.17.zen) be satisfied. Then Problem 3.4 has a unique
solution uh ∈ Vh and we have

C−1
0 ‖ũ− uh‖1,Ωh

≤ inf
v∈Vh

(
‖v − ũ‖1,Ωh

+ sup
w∈Vh
w 6=0

|ah(v, w)− ãh(v, w)|
‖w‖1,Ωh

)
+

+ sup
w∈Vh
w 6=0

|L̃Ω
h (w)− LΩ

h (w)|
‖w‖1,Ωh

+ sup
w∈Vh
w 6=0

|L̃Γ
h (w) − LΓ

h (w)|
‖w‖1,Ωh

+ sup
w∈Vh
w 6=0

|ãh(ũ, w) − L̃h(w)|
‖w‖1,Ωh

,

(5.3.zen)

where C0 is a positive constant, u ∈ H1(Ω) is the solution of Problem 3.1 and
ũ = E(u) with E : H1(Ω)→ H1(Ω̃) (see Lemma 3.6 where k = 1).
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In what follows we restrict ourselves to the case of triangular elements with
linear polynomials. First we generalize interpolation results for Zlámal’s simplest
ideal triangular finite element (see [25] and also [18]).

Let T ∈ DT
h be an arbitrary triangle with two vertices lying on ∂Ω. We shall

denote them by P2(x
(2)
1 , x

(2)
2 ), P3(x

(3)
1 , x

(3)
2 ) in such a way that

dist (P1, P2) =
%

m
, (5.4.zen)

P1(x
(1)
1 , x

(1)
2 ) being the vertex lying in Ω. Thus the smallest angle αT of T ,

which tends to zero with h→ 0, lies at P3. The angles lying at P1 and P2 will be
denoted by βT and γT , respectively. Both these angles tend to π/2 with h→ 0.

Setting

x2 = x
(2)
1 − x

(1)
1 , x3 = x

(3)
1 − x

(1)
1 , y2 = x

(2)
2 − x

(1)
2 , y3 = x

(3)
2 − x

(1)
2

we can write the transformation, which maps the triangle T 0 with vertices
R1(0, 0), R2(1, 0) and R3(0, 1) one-to-one onto T , in the form

x1 = x
(0)
1 (ξ1, ξ2) ≡ x

(1)
1 + x2ξ1 + x3ξ2,

x2 = x
(0)
2 (ξ1, ξ2) ≡ x

(1)
2 + y2ξ1 + y3ξ2.

(5.5.zen)

We have for the triangles lying along ∂Ω

2mes2T = dist (P1, P2) dist (P2, P3) sin γT .

From here, from (5.1.zen), (5.4.zen) and from the maximum angle condition we easily
obtain

C3h
3−δ
T ≤ mes2T ≤ C4h

3−δ
T , (5.6.zen)

hT being the length of the greatest side of T and C3, C4 positive constants.
Now we remind some results introduced in [18, Section 22]. Let λh and λ be

the segment P2P3 and the part of ∂Ω approximated by P2P3, respectively. Let

x1 = ϕλ(ξ2), x2 = ψλ(ξ2), ξ2 ∈ [0, 1], (5.7.zen)

be a parametric representation of λ defined on [0, 1] with the property

ϕλ(0) = x
(2)
1 , ϕλ(1) = x

(3)
1 , ψλ(0) = x

(2)
2 , ψλ(1) = x

(3)
2 .

We define the functions Φλ(ξ2), Ψ(ξ2) on [0, 1] by

Φλ(ξ2) = [ϕλ(ξ2)− x
(2)
1 − x32ξ2]/(1− ξ2), ξ2 ∈ [0, 1),

Φλ(1) = −ϕ′λ(1) + x32, Φ
(j)
λ (1) = − 1

j + 1
ϕ

(j+1)
λ (1),

Ψλ(ξ2) = [ψλ(ξ2)− x
(2)
2 − y32ξ2]/(1− ξ2), ξ2 ∈ [0, 1),

Ψλ(1) = −ψ′λ(1) + y32, Ψ
(j)
λ (1) = − 1

j + 1
ψ

(j+1)
λ (1),
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where x32 = x
(3)
1 − x

(2)
1 , y32 = x

(3)
2 − x

(2)
2 . If ϕλ, ψλ ∈ C(n+1)([0, 1]) then,

according to [18, Section 22], Φλ, Ψλ ∈ Cn([0, 1]) and

Φλ(ξ2) = O(h2
T ), Φ

(j)
λ (ξ2) = O(hj+1

T ), ξ2 ∈ [0, 1],

Ψλ(ξ2) = O(h2
T ), Ψ

(j)
λ (ξ2) = O(hj+1

T ), ξ2 ∈ [0, 1],
(5.8.zen)

where j = 1, . . . , n. The symbol T id
λ will denote the curved triangle with two

straight sides P1P2, P1P3 and the curved side λ.

Theorem 5.2. Let the boundary ∂Ω of the domain Ω be piecewise of class Ck+1.
Then for h ∈ (0, h0), where h0 is sufficiently small, we have:

a) The transformation

x1 = xλ
1 (ξ1, ξ2) ≡ x

(1)
1 + x2ξ1 + x3ξ2 + ξ1Φλ(ξ2),

x2 = xλ
2 (ξ1, ξ2) ≡ x

(1)
2 + y2ξ1 + y3ξ2 + ξ1Ψλ(ξ2)

(5.9.zen)

maps one-to-one the reference triangle T 0, which lies in the ξ1, ξ2-plane and
has the vertices R1(0, 0), R2(1, 0), R3(0, 1), onto the ideal triangle T id

λ with
vertices Pi(x

(i)
1 , x

(i)
2 ) (i = 1, 2, 3 - a local notation) and curved side λ, which has

parametric equations (5.7.zen), in such a way that

Ri ↔ Pi (i = 1, 2, 3), R1Rj ↔ P1Pj (j = 2, 3), R2R3 ↔ λ (5.10.zen)

and T0 ≡ intT 0 ↔ intT id
λ ≡ T id

λ .
b) The Jacobian Jλ(ξ1, ξ2) of transformation (5.9.zen) is different from zero on

T 0 and it holds for (ξ1, ξ2) ∈ T 0:

C5h
3−δ
T ≤ |Jλ(ξ1, ξ2)| ≤ C6h

3−δ
T (Ci = const > 0). (5.11.zen)

c) Both mapping (5.9.zen) and its inverse mapping are of class Ck and for
(ξ1, ξ2) ∈ T 0 we have

∂xλ
i

∂ξ1
= O(h2−δ

T ),
∂xλ

i

∂ξ2
= O(hT ) (i = 1, 2), (5.12.zen)

∂2xλ
i

∂ξj∂ξk
= O(h2

T ) (i, j, k = 1, 2), (5.13.zen)

∂ξλ
1

∂xi
= O(h−2+δ

T ),
∂ξλ

2

∂xi
= O(h−1

T ) (i = 1, 2), (5.14.zen)

where

ξ1 = ξλ
1 (x1, x2), ξ2 = ξλ

2 (x1, x2) (5.15.zen)

is the inverse mapping to mapping (5.9.zen).
d) Let S̃1, S̃2 be arbitrary points of T 0 and S1, S2 their images in trans-

formation (5.9.zen). Let ε be the distance between S̃1, S̃2 and let η be the distance
between S1, S2. Then

C7εh
2−δ
T ≤ η ≤ C8εhT , (5.16.zen)

where C7, C8 are positive constants independent of ε and hT .
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Proof. A) First we prove assertions concerning J(ξ1, ξ2). Using the relations

|x2| = O(h2−δ
T ), |y2| = O(h2−δ

T ), |x3| = O(hT ), |y3| = O(hT ), (5.17.zen)

we obtain from (5.9.zen) and (5.8.zen)

Jλ(ξ1, ξ2) = [x2 + Φλ(ξ2)][y3 + ξ1Ψ
′
λ(ξ2)]−

− [x3 + ξ1Φ
′
λ(ξ2)][y2 + Ψλ(ξ2)] = 2mes2T + O(h3

T ).

This result together with (5.6.zen) imply both Jλ(ξ1, ξ2) 6= 0 on T 0 and estimates
(5.11.zen).

B) The proof of inequalities (5.16.zen) follows the same lines as part (c) of the
proof of [18, Theorem 22.4]. Instead of [18, Lemma 22.2] we use the fact that at
least one of the estimates

|α1x2 + α2x3| ≥ Ch2−δ
T , |α1y2 + α2x3| ≥ Ch2−δ

T (5.18.zen)

holds, where α1, α2 are real numbers satisfying

α2
1 + α2

2 = 1. (5.19.zen)

If α1 = 0 or α2 = 0 then assertion (5.18.zen) is evident. Let α1 6= 0, α2 6= 0.
First we consider the case

signα1 = signα2. (5.20.zen)

Then the expression

V1 =
1

|α1 + α2|
[(α1x2 + α2x3)2 + (α1y2 + α2y3)

2]1/2

is the length of the segment P1P23, where

P23 =
(
(|α1|x(2)

1 + |α2|x(3)
1 )/|α1 + α2|, (|α1|x(2)

2 + |α2|x(3)
2 )/|α1 + α2|

)
is a point of the segment P2P3. If βT ≤ π/2 then V1 > P1P2. As P1P2 ≥ Ch2−δ

T ,
according to (5.1.zen), assertion (5.18.zen) follows because by (5.19.zen) and (5.20.zen) we have
|α1 + α2| > 1.

If βT > π/2 then βT = ωT where ωT is the maximum angle of T . We have
V1 ≥ d where d is the distance of the vertex P1 from the segment P2P3. As αT

is small the angle made by P1P2 and the segment of the length d is less than
ωT /2. Hence d > P1P2 cos(ωT /2) and assertion (5.18.zen) follows, according to the
maximum angle condition.

Now let

signα1 = −signα2 (5.21.zen)
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and let the point P ∗ be such that P1 = 1
2 (P3 + P ∗). This gives P ∗ = (x∗1, x

∗
2) =

2P1 − P3 = (2x
(1)
1 − x

(3)
1 , 2x

(1)
2 − x

(3)
2 ) and

V2 =
1

|α1|+ |α2|
[(|α1|x2 − |α2|x3)2 + (|α1|y2 − |α2|y3)

2]1/2

is the length of the segment P1P
∗
23, where

P ∗23 =
(
(|α1|x(2)

1 + |α2|x∗1)/(|α1|+ |α2|), (|α1|x(2)
2 + |α2|x∗2)/(|α1|+ |α2|)

)
is a point of the segment P2P

∗. Let T ∗ be the triangle with vertices P1, P2, P ∗. In
T ∗ the angle at P1 is equal to π−βT . If π−βT ≤ π/2, then V2 ≥ P1P2 ≥ Ch2−δ

T .
If π − βT > π/2 then π − βT = ωT + αT , where ωT = γT . We have V2 ≥ d∗

with d∗ the distance of the vertex P1 from the segment P2P
∗. As the angle α∗T

at P ∗ is small, we have d∗ > P1P2 cos(ωT /2+αT /2) and assertion (5.18.zen) follows,
according to the maximum angle condition, because αT is small and βT is not
small.

C) Setting ξ2 = 0 in (5.9.zen) we obtain a parametric representation of P1P2:

x1 = x
(1)
1 + x2ξ1, x2 = x

(1)
2 + y2ξ1, ξ1 ∈ [0, 1].

Setting ξ1 = 0 in (5.9.zen) we obtain a parametric representation of P1P3:

x1 = x
(1)
1 + x3ξ2, x2 = x

(1)
2 + y3ξ2, ξ2 ∈ [0, 1].

Thus segments P1P2 and P1P3 are images of segments R1R2 and R1R3, respec-
tively, in transformation (5.9.zen).

Relations ξ1 = 1 − t, ξ2 = t (t ∈ [0, 1]) form a parametric representation of
the segment R2R3. In this case we obtain from (5.9.zen) and the definitions of the
functions Φλ, Ψλ:

x1 = xλ
1 (1− t, t) = ϕ(t), x2 = xλ

2 (1− t, t) = ψ(t), t ∈ [0, 1].

This means that the arc λ is the image of the segment R2R3 in transformation
(5.9.zen).

Consequently, the Jordan curve ∂T id
λ is the image of the Jordan curve ∂T0

in transformation (5.9.zen).
Owing to inequalities (5.16.zen) mapping (5.9.zen) is injective. As (5.9.zen) is also con-

tinuous on T 0 it is a homeomorphism. A homeomorphism maps the interior of
the Jordan curve onto the interior of its image.

If f is a homeomorphism then f is bijective and f−1 is continuous. Thus
relations (5.10.zen) and int T 0 ↔ intT id

λ hold and mapping (5.15.zen) is continuous.
D) Owing to [18, Lemma 22.1] mapping (5.9.zen) is of class Ck. The validity of

relations (5.12.zen), (5.13.zen) follows immediately from (5.9.zen), (5.8.zen) and (5.17.zen).
It remains to prove the assertions concerning the inverse mapping (5.15.zen). In

part C we proved that ξλ
i (x1, x2) are continuous on T id

λ .
Using (3.22.zen), (3.23.zen) together with (5.11.zen) and (5.12.zen) we obtain (5.14.zen) and the

continuity of the first derivatives. The continuity of higher derivatives can be
proved similarly as in [18, p. 184]. ut
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Theorem 5.3. Let the boundary ∂Ω be piecewise of class C3. Let the polynomial
w∗(ξ1, ξ2) of degree not greater than one be uniquely determined by the conditions

w∗(Ri) = gi (i = 1, 2, 3).

Then the function w̃ : T id
λ → R1 defined by the relations

w̃(x1, x2) := w∗(ξλ
1 (x1, x2), ξλ

2 (x1, x2)), (x1, x2) ∈ T id
λ ,

where ξλ
i (x1, x2) are the functions from (5.15.zen), has the following properties:

a) it satisfies the relation

w∗(ξ1, ξ2) = w̃(xλ
1 (ξ1, ξ2), xλ

2 (ξ1, ξ2)), (ξ1, ξ2) ∈ T 0

and is uniquely determined by the conditions

w̃(Pi) = gi (i = 1, 2, 3); (5.22.zen)

b) w̃ ∈ C2(T id
λ );

c) the function values on both straight sides P1Pj are polynomials in one
variable of degree not greater than one uniquely determined by the parameters
g1 and gj prescribed at P1 and Pj, respectively;

d) if both parameters g2, g3 prescribed at P2, P3 ∈ λ are equal to zero then
w̃(x1, x2) = 0 for all (x1, x2) ∈ λ.

The proof is the same as the proof of [18, Theorem 23.1].

Definition 5.4. The function w̃ : T id
λ → R1 from Theorem 5.3 is called the ideal

triangular finite C0-element of the type (L, 1) (where L stands for Lagrange)
belonging to T id

λ and is uniquely determined by conditions (5.22.zen). The set of all
such finite elements is briefly denoted by (T id

λ , L, 1).

Theorem 5.5. Let the boundary ∂Ω be piecewise of class C3. Let u ∈ H2(T id
λ ),

where the curved side λ of T id
λ is not approximated by the shortest side of T , and

let uI ∈ (T id
λ , L, 1) be the ideal triangular finite C0-element uniquely determined

by the conditions

uI(Pj) = u(Pj) (j = 1, 2, 3). (5.23.zen)

Then

‖uI − u‖0,T id
λ
≤ Ch2‖u‖0,T id

λ
, |uI − u|1,T id

λ
≤ Chδ

T ‖u‖2,T id
λ

, (5.24.zen)

where C is a constant independent of hT , T id
λ and u.

Proof. We have, according to the theorem on transformation of an integral and
Theorem 5.2,

‖u− uI‖20,T id
λ
≤ Ch3−δ

T ‖u∗ − u∗I‖20,T0
. (5.25.zen)
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Considering in the same way as in the proof of [18, Theorem 10.5] we obtain (cf.
[18, (10.12)])

‖u∗ − u∗I‖20,T0
≤ |u∗|22,T0

. (5.26.zen)

Using again Theorem 5.2 and the theorem on transformation of an integral we
find that ∣∣∣∣∂u∗

∂ξi

∣∣∣∣2
1,T0

≤ C

h3−δ
T

h4
T ‖u‖22,T id

λ
(i = 1, 2). (5.27.zen)

Combining (5.25.zen)–(5.27.zen) we obtain (5.24.zen)1.
Further,

|uI − u|21,T id
λ

=
∫∫

T id
λ

{(
∂

∂x1
(uI − u)

)2

+
(

∂

∂x2
(uI − u)

)2}
dx1dx2 ≤

≤ Ch3−δ
T

(
h−4+2δ

T

∥∥∥∥ ∂

∂ξ1
(u∗I − u∗)

∥∥∥∥2

0,T0

+ h−2
T

∥∥∥∥ ∂

∂ξ2
(u∗I − u∗)

∥∥∥∥2

0,T0

)
. (5.28.zen)

Similarly as in [6]∥∥∥∥ ∂

∂ξi
(u∗I − u∗)

∥∥∥∥2

0,T0

≤ C

∣∣∣∣∂u∗

∂ξi

∣∣∣∣2
1,T0

(i = 1, 2). (5.29.zen)

Combining (5.28.zen), (5.29.zen) and (5.27.zen) we obtain (5.24.zen)2. ut

Remark 5.6. In the case of the minimum angle condition we have δ = 1 and
Theorem 5.5 is identical with [18, Theorem 25.3] where n = 1.

Remark 5.7. If the curved side λ of T id
λ is approximated by the shortest side of

T then hδ
T , which appears on the right-hand side of (5.24.zen)2, is substituted by hT .

Definition 5.8. a) Let T id
h be the ideal triangulation of Ω corresponding to the

triangulation DT
h . (We obtain T id

h by replacing the triangles T ∈ DT
h lying along

∂Ω by corresponding ideal triangles.) The symbol Mh denotes the set of ideal
triangles T id

λ ∈ T id
h lying along the part of ∂Ω where the homogeneous Dirichlet

condition is prescribed.
b) The function ŵ ∈ H1(Ω) is said to be associated with a given function

w ∈ Xh if:
(i) ŵ ∈ C(Ω);
(ii) ŵ(Pi) = w(Pi) at all nodal points Pi of DT

h ;
(iii) ŵ is linear on each triangle T ∈ DT

h ∩ T id
h and on each ideal triangle

T id
λ /∈Mh;

(iv) if T id
λ ∈Mh, then

ŵ


T id
λ

= w̃


T id
λ

,

where w̃ is defined in Definition 5.4.

Now we are prepared to estimate the fifth term appearing on the right-hand
side of (5.3.zen) in the case when u ∈ H1(Ω) only.
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Lemma 5.9. For all w ∈ Vh and U ∈ H1(Ω̃) satisfying U = u in Ω we have

|L̃h(w) − ãh(U, w)| ≤ |L̃Γ
h (w) − LΓ (w)|+

+
∑

T id
λ ∈Mh

∣∣∣∣∫∫
T id

λ

{
(w − ŵ)f +

2∑
i=1

ki
∂u

∂xi

∂(ŵ − w)
∂xi

}
dx1dx2

∣∣∣∣ +

+
∣∣∣∣∫∫

τh

{
−

2∑
i=1

k̃i
∂U

∂xi

∂w

∂xi
+ wf̃

}
dx1dx2

∣∣∣∣ +

+
∣∣∣∣∫∫

ωh

{ 2∑
i=1

ki
∂u

∂xi

∂w

∂xi
− wf

}
dx1dx2

∣∣∣∣. (5.30.zen)

Proof. We have

L̃h(w) = (L̃Ω
h (w) − LΩ(ŵ)) + (L̃Γ

h (w)− LΓ (ŵ)) + L(ŵ),

where ŵ ∈ V is associated with w ∈ Vh in the sense of Definition 5.8. It holds
a(u, ŵ) = L(ŵ). Hence

−ãh(U, w) = (a(u, ŵ)− ãh(U, w)) − L(ŵ).

The rest of the proof is straightforward (see, for example, the proof of [18,
Theorem 38.9]). ut

Theorem 5.10. We have

|L̃h(w) − ãh(ũ, w)| ≤ Chδ/2‖w‖1,Ωh
∀w ∈ Vh , (5.31.zen)

where the constant C does not depend on h and w and where the extension ũ of
u has the same meaning as in Theorem 5.1.

Proof. A) Let us denote the terms appearing on the right-hand side of (5.30.zen) by
D1,. . . ,D4. By [21, Lemmas 29, 37] and assumption (5.1.zen) we have

D1 ≤ Ch‖q‖0,Γ1‖w‖1,Ωh
. (5.32.zen)

Now we estimate D2. Let Bh be the union of triangles of DT
h lying along the part

Γj of ∂Ω on which the homogeneous Dirichlet boundary condition is prescribed.
Using this notation we have in the case j = 1, according to the Cauchy inequality,

D2 ≤
(
‖f‖0,Bh−τh

+ max
i=1,2

‖k̃i‖0,∞,Ω̃|u|1,Bh−τh

) ( ∑
T id

λ ∈Mh

‖ŵ − w‖21,T id
λ

)1/2

(5.33.zen)

and in the case j = 2

D2 ≤
(
‖f‖0,Bh∪ωh

+ max
i=1,2

‖k̃i‖0,∞,Ω̃|u|1,Bh∪ωh

) ( ∑
T id

λ ∈Mh

‖ŵ − w‖21,T id
λ

)1/2

.

(5.34.zen)
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The function ŵ


T id
λ

, where T id
λ ∈Mh, interpolates the function w


T id

λ

on T id
λ .

Thus Theorem 5.5 and the linearity of w


T id
λ

give

‖ŵ − w‖1,T id
λ
≤ Chδ

T ‖w‖2,T id
λ

= Chδ
T ‖w‖1,T id

λ
.

Hence in the case j = 2 (i.e., in the case u = 0 on Γ2)∑
T id

λ
∈Mh

‖ŵ − w‖21,T id
λ
≤ Ch2δ

∑
T id

λ
∈Mh

‖w‖21,T id
λ
≤ Ch2δ‖w‖21,Ω ≤

≤ Ch2δ{‖w‖21,Ωh
+ ‖w‖21,ωh

} (5.35.zen)

and in the case j = 1 ∑
T id

λ ∈Mh

‖ŵ − w‖21,T id
λ
≤ Ch2δ‖w‖21,Ωh

. (5.36.zen)

If j = 2, then relations [21, (74), (75)] and w = 0 on Γ2h yield

‖w‖1,ωh
≤ Ch

√
m

%
|w|1,Ωh

.

Using (5.1.zen) we obtain √
m

%
≤ Chδ/2−1. (5.37.zen)

Hence
‖w‖21,ωh

≤ Chδ|w|21,Ωh

and (5.35.zen) implies that also in the case j = 2 estimate (5.36.zen) holds. Thus for
j = 1, 2, according to (5.33.zen), (5.34.zen),

D2 ≤ Chδ‖w‖1,Ωh
, (5.38.zen)

where
C ≤ ‖f‖0,Ω + max

i=1,2
‖k̃i‖0,∞,Ω̃|u|1,Ω.

As to the estimate of D3 we start from the expression, which follows from
the third term on the right-hand side of (5.30.zen) with U = ũ:

D3 ≤ max
i=1,2

‖k̃i‖0,∞,Ω̃|ũ|1,τh
|w|1,τh

+ ‖f̃‖0,τh
‖w‖0,τh

. (5.39.zen)

Using (5.37.zen) and considering similarly as in part B of the proof of [21, Lemma
25] we can derive

|w|1,τh
≤ Chδ/2|w|1,Ωh

. (5.40.zen)
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Further

‖w‖20,τh
≤ Ch2

(
‖w‖20,Γ1h

+ Ch2|w|21,τh

)
≤ C

h2

%
‖w‖21,Ωh

. (5.41.zen)

The first inequality follows from the proof of [18, Lemma 28.3] and the second
from (3.31.zen) and (5.40.zen). Finally,

‖f̃‖0,τh
≤ ‖f̃‖0,∞,Ω̃

√
mes2τh ≤ Ch‖f̃‖0,∞,Ω̃

√
mes1Γ1. (5.42.zen)

Combining (5.39.zen)–(5.42.zen) we find that

D3 ≤ Chδ/2‖w‖1,Ωh
, (5.43.zen)

where the constant C does not depend on h and w. Similarly,

D4 ≤ Chδ/2‖w‖1,Ωh
. (5.44.zen)

Relations (5.32.zen), (5.38.zen), (5.43.zen), (5.44.zen) together with Lemma 5.9 yield estimate
(5.31.zen). ut

Now we shall analyze the first term on the right-hand side of (5.3.zen). We start
with the following finite element density theorem.

Lemma 5.11. Let V = {w ∈ H1(Ω) : trw = 0 on Γj}. For every pair ε > 0,
w ∈ V we can find wε ∈ C∞(Ω)∩ V and hε,w > 0 such that for all h ∈ (0, h)ε,w

we have

‖w̃ − Ihwε‖1,Ωh
< ε (5.45.zen)

where ṽ ∈ Hk(Ω̃) is the extension of v ∈ Hk(Ω) according to Lemma 3.6 and
Ihv ∈ Xh ≡ {w ∈ C(Ωh) : w


T
∈ (T, L, 1) ∀T ∈ Th} is the interpolant of

v ∈ C(Ω) defined by (Ihv)(Pi) = v(Pi) ∀Pi.

Proof. By [18, Theorem P .92] the set C∞(Ω) ∩ V is dense in V . Hence, there
exists a function wε ∈ C∞(Ω) ∩ V such that

‖w − wε‖1,Ω < ε/(2C1) (5.46.zen)

where C1 is the constant from the inequality

‖ṽ‖1,Ω̃ ≤ C1‖v‖1,Ω ∀v ∈ H1(Ω). (5.47.zen)

We shall consider w̃ in H1(Ω̃) and w̃ε in H2(Ω̃). As the extension w̃ε is equal
to the extension of wε from H1(Ω) (see Lemma 3.6), we have, according to the
linearity of extension operators, w̃ − w̃ε = (w − wε)∼; thus (5.46.zen) and (5.47.zen)
yield

‖w̃ − w̃ε‖1,Ω̃ < ε/2. (5.48.zen)
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The triangular inequality gives

‖w̃ − Ihwε‖1,Ωh
≤ ‖w̃ − w̃ε‖1,Ωh

+ ‖w̃ε − Ihwε‖1,Ωh
. (5.49.zen)

Now we estimate the terms on the right-hand side of (5.49.zen). By (5.48.zen) we have

‖w̃ − w̃ε‖1,Ωh
< ε/2. (5.50.zen)

As to the second term, we have

Ihwε = Ihw̃ε

because Ω ⊂ Ω̃. This fact, the interpolation theorem for semiregular triangular
linear elements (see Theorem 1.3) and the extension theorem (see Lemma 3.6 )
yield

‖w̃ε − Ihwε‖1,Ωh
≤ Ch‖w̃ε‖2,Ωh

≤ C2Ch‖wε‖2,Ω.

Thus there exists such an hε,w that

‖w̃ε − Ihwε‖1,Ωh
< ε/2 ∀h ∈ (0, hε,w). (5.51.zen)

Combining relations (5.49.zen)–(5.51.zen) we obtain (5.45.zen). ut

Theorem 5.12. We have

lim
h→0

{
inf

v∈Vh

‖v − ũ‖1,Ωh

}
= 0. (5.52.zen)

Proof. By Lemma 5.11, for a given ε > 0 we can find uε ∈ C∞(Ω) ∩ V and
hε,u > 0 such that

‖ũ− Ihuε‖1,Ωh
< ε ∀h ∈ (0, hε,u).

As Ihuε ∈ Vh we have

inf
v∈Vh

‖v − ũ‖1,Ωh
≤ ‖ũ− Ihuε‖1,Ωh

.

Both inequalities imply (5.52.zen). ut

Theorem 5.13. We have for all h ∈ (0, h0)

IS := inf
v∈Vh

sup
w∈Vh
w 6=0

|ah(v, w) − ãh(v, w)|
‖w‖1,Ωh

≤ Ch(1 + ‖u‖1,Ω),

where u ∈ H1(Ω) is the solution of the continuous variational problem and the
constant C does not depend on h and u.
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Proof. Let ε = 1 and let us set

v = Ihuε ∈ Vh , (5.53.zen)

where, according to Lemma 5.11,

‖ũ− Ihuε‖1,Ωh
< ε = 1 ∀h ∈ (0, hε,u). (5.54.zen)

Using (5.53.zen) and Theorem 3.13 we find

IS ≤ Ch‖Ihuε‖1,Ωh
. (5.55.zen)

Triangular inequality, extension theorem and relation (5.54.zen) imply

‖Ihuε‖1,Ωh
≤ ‖ũ‖1,Ωh

+ ‖ũ− Ihuε‖1,Ωh
≤ ‖ũ‖1,Ω̃ + 1 ≤ C‖u‖1,Ω + 1.

Combining this result with (5.55.zen) we obtain the assertion of Theorem 5.13. ut

The third and fourth terms appearing on the right-hand side of (5.3.zen) are
estimated in Theorems 3.16 and 3.18, respectively. Thus using the preceding
results we obtain

Theorem 5.14. Let us consider the set of divisions {DT
h } (h ∈ (0, h0)) intro-

duced in Section 3. Let assumptions of Problem 3.1 and assumptions concerning
the degrees of precision of quadrature formulas on a triangle and its side (see
Theorems 3.13 and 3.18) be satisfied. If inequalities (5.1.zen) hold then

lim
h→0
‖ũ− uh‖1,Ωh

= 0

where uh is the solution of Problem 3.4 belonging to DT
h , u ∈ H1(Ω) is the

solution of Problem 3.1 and ũ = E(u) ∈ H1(Ω̃) its extension in the sense of
Lemma 3.6 with k = 1.

6 Appendix: Discrete Friedrichs’ inequality

In [21] the inequality

‖v‖1,Ωh
≤ C|v|1,Ωh

∀v ∈ Vh ∀h < h0 (6.1.zen)

was used without proof. As the proof differs from the proof, which was presented
in [18] in the case of regular finite elements, we introduce the following lemma
which is sufficient for the considerations in [21] and this paper.

Lemma 6.1. Let Ω be a domain considered in Sections 3 and 5 and let (3.40.zen)
be satisfied, i.e. let

C1h
2 ≤ %

m
(C1 > 0).

Then inequality (6.1.zen) holds.
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Proof. a) The case of the Dirichlet boundary condition (3.2.zen). In this case

Vh = {v ∈ Xh : v = 0 on Γ1h}.

Let v be the natural extension of v and let Ω̃ be the bounded domain with
boundary ∂Ω̃ = Γ2 ∪ Γ3 where Γ3 is the circle with the centre S0 and radius
R3 < R1. We set v ≡ 0 in the bounded set Uh with the boundary ∂Uh = Γ3∪Γ1h.
According to the Friedrichs inequality

‖v‖2
0,Ω̃
≤ C|v|2

1,Ω̃
. (6.2.zen)

As Ωh ∈ Ω̃ we have

‖v‖20,Ωh
≤ ‖v‖2

0,Ω̃
. (6.3.zen)

It remains to prove

|v|2
1,Ω̃
≤ C|v|21,Ωh

. (6.4.zen)

We have

|v|2
1,Ω̃

= |v|21,Ωh
+ |v|21,ωh

. (6.5.zen)

First we consider the case of the division DT
h . (For the definition of DT

h and
other types of divisions see the text following Lemma 3.3.) Let λh ⊂ Γ2h be the
segment QjQj+1 which approximates the arc λ ⊂ Γ2. Similarly as in the proof
of [21, Lemma 33] we can prove that

dist (Q∗j , Γ2) ≤
1
8

%

m
≡ 1

8
b,

where Q∗j is the mid-point of λh. Thus

mes2Ph ≤
1
4
mes2T,

where Ph is the bounded domain with the boundary ∂Ph = λ ∪ λh and T the
triangle adjacent to Ph. As v is piecewise linear we have

|v|21,Ph
≤ 1

4
|v|21,T .

Hence
|v|21,ωh

≤ 1
4
|v|21,Ωh

.

Inserting this result into (6.5.zen) we obtain estimate (6.4.zen) with C = 5/4. The same
result can be obtained in the case of the division DA

h .
In the case of the division DK

h we use the result for DA
h and estimate [21,

(91)].
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Combining (6.2.zen)–(6.4.zen) we arrive at

‖v‖20,Ωh
≤ C|v|21,Ωh

∀v ∈ Vh.

Hence (6.1.zen) follows.

b) The case of the Dirichlet boundary condition v = 0 on Γ2. In this case

Vh = {v ∈ Xh : v = 0 on Γ2h}

and we define the quasinatural extension v of v ∈ Vh by

v = v on Ωh, v = 0 on ωh. (6.6.zen)

The Friedrichs inequality gives

‖v‖20,Ω ≤ C|v|21,Ω. (6.7.zen)

Relations (6.6.zen) imply

|v|21,Ω ≤ |v|21,Ωh
. (6.8.zen)

If we prove

‖v‖20,Ω ≥ C‖v‖20,Ωh
(C > 0) , (6.9.zen)

then (6.1.zen) follows from (6.7.zen)–(6.9.zen).
Let us consider the case of DK

h . Transformation (3.20.zen) maps one-to-one the
reference square K0 with vertices P ∗1 (1, 0), P ∗2 (0, 0), P ∗3 (0, 1), P ∗4 (1, 1) onto the
quadrilateral K with vertices P1, P2, P3, P4 where P1, P2 lie on Γ1 and P3P4 is
parallel to P1P2. Let S1 ∈ P1P4, S2 ∈ P2P3, let S1S2 be parallel to P1P2 and let

dist (P1P2, S1S2) =
1
8
b.

Then, according to [21, Lemma 33], the arc λ ⊂ Γ1 which is approximated by
λh = P1P2 lies in ∆, where ∆ denotes the quadrilateral with vertices P1, P2, S2,
S1. Let us assume that we proved

‖v‖20,∆ ≤
3
4
‖v‖20,K . (6.10.zen)

Then
‖v‖20,K−Ph

≥ ‖v‖20,K−∆ = ‖v‖20,K − ‖v‖20,∆ =
1
4
‖v‖20,K ,

where Ph is the bounded domain with the boundary ∂Ph = λ ∪ λh. Hence (6.9.zen)
follows with C = 1

4 .
Let us prove (6.10.zen). According to the definition, the function v(x, y) is on

every quadrilateral K such that

ṽ(ξ, η) ≡ v(xK(ξ, η), yK(ξ, η)) =
4∑

i=1

Bipi(ξ, η),
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where
p1 = ξ(1− η), p2 = (ξ − 1)(η − 1), p3 = (1− ξ)η, p4 = ξη

and Bi = v(Pi) (i = 1, . . . , 4). The functions xK(ξ, η), yK(ξ, η) are the right-
hand sides of transformation (3.20.zen).

The quadrilateral ∆ is the image of the rectangle ∆0 with vertices P ∗1 , P ∗2 ,
S∗2 , S∗1 in transformation (3.20.zen), where S∗1 = [1, 1

8 ], S∗2 = [0, 1
8 ]. First we prove∫∫

∆0

[ṽ(ξ, η)]2 dξdη ≤ 1
2

∫∫
K0

[ṽ(ξ, η)]2 dξdη. (6.11.zen)

Let us express the integrals

J1 =
∫∫

K0

[ṽ(ξ, η)]2 dξdη =
∫ 1

0

{∫ 1

0

( 4∑
i=1

Bipi(ξ, η)
)2

dη

}
dξ,

J2 =
∫∫

∆0

[ṽ(ξ, η)]2 dξdη =
∫ 1

0

{∫ 1/8

0

( 4∑
i=1

Bipi(ξ, η)
)2

dη

}
dξ

as the quadratic forms of B1, . . . , B4. Let us denote A = B2, B = B1, C = B4,
D = B3. Then

4608(J1 − 2J2) =

= (174A + 87B + 117C + 134D)2/174 + (130, 5B + 175, 5C)2/130, 5 +

+ (195, 31035C + 97, 655175D)2/195, 31035 + 146, 48277D2 ,

from which estimate (6.11.zen) follows.
The Jacobian J of transformation (3.20.zen) is of the form

J = (h− ε∗η)b ,

where, according to (3.21.zen) and (3.40.zen), b = O(h2), ε∗ = O(h3). Thus using (6.11.zen)
and the relation∫∫

K0

[ṽ(ξ, η)]2η dξdη = η0

∫∫
K0

[ṽ(ξ, η)]2 dξdη (0 < η0 < 1),

which is a consequence of the mean-value theorem, we obtain

‖v‖20,∆ =
∫∫

∆0

[ṽ(ξ, η)]2(h− ε∗η)b dξdη ≤

≤
∫∫

∆0

[ṽ(ξ, η)]2hb dξdη ≤ 1
2

∫∫
K0

[ṽ(ξ, η)]2hb dξdη ≤

≤ 3
4

{∫∫
K0

[ṽ(ξ, η)]2hb dξdη −
∫∫

K0

[ṽ(ξ, η)]2ε∗η0b dξdη

}
=

=
3
4

∫∫
K0

[ṽ(ξ, η)]2(h− ε∗η)b dξdη =
3
4
‖v‖20,K ,
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which proves (6.10.zen).
In the case of division DT

h the proof of (6.9.zen) is similar but simpler: Let T be a
triangle with vertices P1, P2 lying on Γ1 and let Q1 and Q2 be the mid-points of
the sides P1P3 and P2P3, respectively. Let T ∗ denote the triangle with vertices
Q1, Q2, P3. Then

‖v‖20,T−Ph
≥ ‖v‖20,T∗

and it is relatively easy to compute that

‖v‖20,T∗ ≥
1
64
‖v‖20,T .

The last two inequalities imply (6.9.zen) with C = 1/64. ut

Acknowledgement. The work was supported by the grant No. 201/97/0153
of the Grant Agency of the Czech Republic. This support is gratefully acknowl-
edged.

References

1. T. Apel, and M. Dobrowolski, Anisotropic interpolation with applications to the
finite element method, Computing, 47 (1992), 277–293
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