
1
Genetic and Evolutionary Computation
for Image Processing and Analysis

Stefano Cagnoni, Evelyne Lutton, and Gustavo Olague

1.1. What is this book about?

After a long incubation in academia and in very specialized industrial environ-
ments, in the last ten to fifteen years research and development of image processing
and computer vision applications have become mainstream industrial activities.
Apart from the entertainment industry, where video games and special effects for
movies are a billionaire business, in most production environments automated
visual inspection tools have a relevant role in optimizing cost and quality of the
production chain as well.

However, such pervasiveness of image processing and computer vision appli-
cations in the real world does not mean that solutions to all possible problems
in those fields are available at all. Designing a computer application to whatever
field implies solving a number of problems, mostly deriving from the variability
which typically characterizes instances of the same real-world problem. Whenever
the description of a problem is dimensionally large, having one or more of its
attributes out of the “normality” range becomes almost inevitable. Real-world ap-
plications therefore usually have to deal with high-dimensional data, characterized
by a high degree of uncertainty. In response to this, real-world applications need
to be complex enough to be able to deal with large datasets, while also being robust
enough to deal with data variability. This is particularly true for image processing
and computer vision applications.

A rather wide range of well-established and well-explored image processing
and computer vision tools is actually available, which provides effective solutions
to rather specific problems in limited domains, such as industrial inspection in
controlled environments. However, even for those problems, the design and tun-
ing of image processing or computer vision systems is still a rather lengthy pro-
cess, which goes through empirical trial-and-error stages, and whose effectiveness
is mostly based on the skills and experience of the designer in the specific field of
application. The situation is made even worse by the number of parameters which
typically need to be tuned to optimize the performance of a vision system.



2 Genetic and Evolutionary Computation

The techniques which are comprised under the term “soft computing”
(namely, neural networks, genetic and evolutionary computation, fuzzy logic, and
probabilistic networks) provide effective tools which deal specifically with the
aforementioned problems. In this book, we focus on genetic and evolutionary
computation (GEC) and try to offer a comprehensive view of how the techniques it
encompasses can solve some of the problems which have to be tackled in designing
image processing and computer vision applications to real-world problems.

In the rest of this chapter, we will offer a brief overview of the contents of
the book. First, we will provide a quick introduction to the main EC paradigms,
in order to allow subsequent chapters to concentrate more specifically on the de-
scription of each application and on the peculiarities of the approach they describe
rather than on the basic approaches. Then, we will illustrate how the book, which
does not necessarily require sequential reading, has been organized, to make it
easier for readers to navigate through it and to find the topics which are more
interesting to them.

1.2. When and how can genetic and evolutionary computation help?

From the point of view of artificial intelligence (AI), which focuses on mimicking
the high-level “intelligent” processes which characterize living beings, genetic and
evolutionary computation, as the other soft computing paradigms, is a way to pro-
vide computers with natural skills (self-improvement, learning, generalization, ro-
bustness to variability, adaptivity, etc.) based on nature-inspired paradigms. This
point of view might seem too utopian to many, who might look upon natural pro-
cesses, and even more on their imitation, as ill-defined and hardly deterministic
process, which could be only partially kept under control by their users. However,
things might look more convincing to a more down-to-earth audience, even if
much less “romantic” and fascinating to others, if we turn to a more “mathemat-
ical” point of view stating that evolutionary computation comprises a wide set of
powerful search and optimization methods, loosely inspired by the evolutionary
processes which can be observed in nature. A third, intermediate, and very prac-
tical point of view, which is the one by which this book is addressing the topic, is
an “engineering” point of view: GEC provides designers with a useful set of tools,
inspired by natural evolution, which can help designing or refining the design of
solutions to hard real-world problems.

Several factors are involved in the design of good solution to practical projects;
the most important of which is definitely having extended “a priori” knowledge on
the domain of interest. If one had full knowledge about the domain of interest, de-
signing a solution would “just” require that the laws regulating its phenomenon
be modeled in some manageable way. However, this is virtually never the case. As
measurement theory teaches us, even the most indirect interaction with a phe-
nomenon we are measuring is somehow able to alter the measure we are making.
Therefore, having full knowledge of a problem domain means at least taking into
account such perturbations. However, in general, the problem is by far more com-
plicated. The representation we adopt is almost inevitably incomplete, as what we



Stefano Cagnoni et al. 3

actually observe derives from the overlap of several other concurrent events, most
of which are unknown or unpredictable, with the phenomenon with which we are
dealing. To make things worse, many problems do not allow for precise mathe-
matical models to be defined, but they can be described only through extremely
general concepts, whose instances are characterized by high variability.

In such situations (virtually always), there is no hope of finding a solution
which will be equally good for all instances of the problem. Therefore, the actual
skill of a designer is to find a good compromise which will be “good enough” in
all or in most situations. This means being able to find the best solution, not only
based on knowledge of the problem, but also relying on experimental clues which
can be derived from observations, for the part of the problem for which knowledge
is too limited or unavailable. These are typically skills that humans possess, at least
as far as the domain of the problem is of limited extension, or subject to possible
partial simplifications based (again) on knowledge.

When this is not the case, or when a nonexpert is facing such problems, the
so-called meta-heuristics can provide effective help. Such a term refers to search
methods which operate at a higher level of abstraction with respect to the prob-
lem under consideration, and can therefore be applied to a variety of tasks with-
out requiring explicit knowledge (or requiring very limited knowledge) about the
problem domain. Most often, these methods fit a general model to a dataset which
describes the problem, by minimizing an error function or maximizing some score
related to the quality of the solution they are searching, based on the performance
of candidate solutions on a set of instances of the problem to be solved. This can
be interpreted as “inductive learning,” if one feels more comfortable with the AI
point of view, or as “function optimization,” if one prefers to use a more math-
ematical point of view. Among meta-heuristics, GEC techniques have attracted
growing interest from several scientific communities. There are several reasons for
that interest, which would require a ponderous book to be discussed extensively. In
this section, we will just give a very general justification, which, however, is already
by itself a good reason to approach such techniques.

In exploring a search space, that is, the domain of a function for which we
are seeking some “interesting” points, such as the global maximum or minimum,
there are two “extreme” strategies which can be adopted: blind/random search and
greedy search. In the former, one explores the search space by randomly moving
from one point to another relying just on luck. In the latter, one moves to the
best point, which is accessible from the last visited one. In fact, resorting to some
search method implies that we can only have knowledge about a limited portion of
the search space at one time, which is typically a neighborhood of the last visited
point. In random search, therefore, no sort of domain knowledge is exploited,
and the space is just “explored,” while in greedy search, search is exclusively based
on the exploitation of some, previously acquired or presently accessible (local)
knowledge. For this reason, the problem of devising a good search strategy is often
referred to as the “exploitation versus exploration dilemma.”

On the one hand, random search is the only way of exploring domains in
which randomness is dominating and no assumptions can be made on the location



4 Genetic and Evolutionary Computation

of good points based on local information. On the other hand, as soon as the
search domain presents some regularities, exploiting local information can be cru-
cial for success.

As will be shown in the next section, in which the main GEC paradigms
will be described, each of these has both exploration (random) and exploitation
(knowledge-based) components, associated to specific user-defined parameters
which the user can set. This makes GEC paradigms particularly flexible, as they
allow users to balance exploitation and exploration as needed.1 This translates
into highly effective and efficient searches by which good solutions can be found
quickly.

The paradigms covered in the next sections are a nonexhaustive sample of
GEC techniques, but wide enough to let the reader understand their basic princi-
ples and the algorithm variants which have been sometimes used by the authors of
the following chapters.

1.3. A quick overview of genetic and evolutionary
computation paradigms

The transposition into computers of the famous Darwin’s theory consists of
roughly imitating with programs the capability of a population of living organ-
isms to adapt to its environment with selection/reproduction mechanisms. In the
last forty years, various stochastic optimization methods have been based on this
principle. Artificial Darwinism or evolutionary algorithms is a common name for
these techniques, among which the reader may be more familiar with genetic algo-
rithms, evolution strategies, or genetic programming.

The common components of these techniques are populations (that represent
sample points of a search space) that evolve under the action of stochastic oper-
ators. Evolution is usually organized into generations and copies in a very simple
way the natural genetics. The engine of this evolution is made of

(i) selection, linked to a measurement of the quality of an individual with
respect to the problem to be solved,

(ii) genetic operators, usually mutation and crossover or recombination, that
produce individuals of a new generation.

The efficiency of an evolutionary algorithm strongly depends on the param-
eter setting: successive populations (generations) have to converge toward what
is wished, that is, most often the global optimum of a performance function. A
large part of theoretical research on evolutionary algorithms is devoted to this
delicate problem of convergence, as well as to trying to figure out what prob-
lem is easy or difficult for an evolutionary algorithm. Theoretical answers exist;
these algorithms converge [2, 12, 26, 40, 55]; but other important practical ques-
tions, like convergence speed, remain open. One can therefore say that the inter-
est into evolutionary techniques is reasonably funded theoretically, which justifies
forty years of successful experimental developments.

1On the actual meaning of “as needed” in the case of genetic and evolutionary search, much can
be debated, but let us keep our discussion as general as possible.



Stefano Cagnoni et al. 5

Moreover, evolutionary techniques are zero-order stochastic optimization
methods, that is, no continuity nor derivability properties are needed: the only in-
formation which is required is the value of the function to be optimized at the sam-
ple points (sometimes, even an approximation can be used). These methods are
thus particularly adapted to very irregular, complex, or badly conditioned func-
tions. Their computation time, however, can be long.

Evolutionary techniques are usually recommended when other more classical
and rapid methods fail (for very large search spaces, mixed variables, when there
are many local optima, or when functions are too irregular). Other problems, like
dynamic or interactive problems, can also be addressed with evolutionary algo-
rithms; and finally, these methods can be successfully hybridized with classical op-
timization methods (e.g., gradient descent, tabu search).

Despite the attractive simplicity of an evolutionary process, building an effi-
cient evolutionary algorithm is a difficult task, as an evolutionary stochastic pro-
cess is very sensitive to parameter and algorithm setting. The elaboration of an
efficient evolutionary algorithm is based on a good knowledge of the problem to
be solved, as well as on a good understanding of the evolution mechanisms. A
“black box” approach is definitely not recommended.

Industrial “success-stories” are numerous and various,2 also in the domain of
image analysis and robot vision.

1.4. Basic concepts of artificial evolution

Evolutionary algorithms have borrowed (and considerably simplified!) some prin-
ciples of natural genetics. We thus talk about individuals that represent solutions
or points of a search space, also called environment. On this environment, a maxi-
mum of a fitness function or evaluation function is then searched.

Individuals are usually represented as codes (real, binary, of fixed or vari-
able size, simple or complex), they are chromosomes or genomes, that is, genotypes.
The corresponding solutions (i.e., the vectors of the search space) are phenotypes.
An evolutionary algorithm evolves its population in a way that makes individuals
more and more adapted to the environment. In other terms, the fitness function is
maximized.

What is described below is a basic canvas; a “canonic” evolutionary algorithm.
Real-life applications are of course much more complex, with the main problem
being to adapt, or even create, operators that correspond to the problem at hand.

1.4.1. The evolution loop

The first element is a generation loop of populations of individuals, with each
individual corresponding to a potential solution to the considered problem (see
Figure 1.1 and [17, 5, 11, 16, 38]).

2See [17, pages 126–129] for examples of applications developed before 1989, and on http://
evonet.lri.fr or [1, 10, 21, 29, 43, 54] for more recent applications.

http://evonet.lri.fr
http://evonet.lri.fr


6 Genetic and Evolutionary Computation

Selection

Elitism

Parents

Crossover
mutation

Extraction
of the solution

Initialization
of the population

Offspring

Figure 1.1. Organigram of a simple evolutionary algorithm.

Initialization is usually random (other strategies are sometimes used, partic-
ularly in complex or high-dimensional search spaces). Initial solutions (obtained,
e.g., using a classical optimization technique) can also be integrated into the ini-
tial population. If the initial population content has theoretically no importance
(the limit distribution of such a stochastic process is always the same), it is no-
ticed experimentally that initialization has a big influence on variance of the results
and speed of convergence. It is often very efficient to inject “a priori” information
about the problem at the initialization stage.

Selection decides which individuals of the current population are going to
reproduce. It is based on the notion of “quality” of an individual, embedded in the
fitness function.

The main parameter of selection is the selective pressure, usually defined as
the quotient of the probability of selecting the best individual over the probability
of selecting an average individual. The selective pressure has a strong influence
on the genetic diversity of the population, and consequently on the efficiency of
the whole algorithm. For instance, an excessive selection pressure may produce a
rapid concentration of the population in the vicinity of its best individuals, with a
risk of premature convergence toward a local optimum.

The simplest selection is the proportional selection, implemented with a biased
random shot, where the probability of selecting an individual is directly propor-
tional to its fitness value:

P(i) = fitness(i)(∑PopSize
k=1 fitness(k)

) . (1.1)

This scheme does not allow to control the selective pressure. Other—and more
efficient—selection schemes are, for example,

(i) scaling, that linearly scales the fitness function at each generation in or-
der to get a maximal fitness that is C times the average fitness of the
current population. C measures the selective pressure, usually fixed be-
tween 1.2 and 2 [17];



Stefano Cagnoni et al. 7

(ii) ranking, that allocates to each individual a probability that is propor-
tional to its rank in a sorted list according to fitness;

(iii) tournament, that randomly selects T individuals in the population (in-
dependently to their fitness values) and chooses the best. The selective
pressure is linked to the size T of the tournament.

Reproduction generates offspring. In the canonic scheme “à la Goldberg”
[17], 2 parents produce 2 children; a number of parents equal to the desired num-
ber of offspring is thus selected. Of course, many other less-conventional schemes
can be programmed (2 parents for 1 child, n parents for p children, etc.).

The two main variation operators are crossover, or recombination, that recom-
bines genes of parents, and mutation, that slightly perturbs the genome. These op-
erations are randomly applied, based on two parameters: crossover probability pc
and mutation probability pm.

Intuitively, selection and crossover tend to concentrate the population near
“good” individuals (information exploitation). On the contrary, mutation limits
the attraction of the best individuals in order to let the population explore other
areas of the search space.

Evaluation computes (or estimates) the quality of new individuals. This oper-
ator is the only one that uses the function to be optimized. No hypothesis is made
on this function, except for the fact that it must be used to define a probability or
at least a rank for each solution.

Replacement controls the composition of generation n + 1. Elitism is often
recommended for optimization tasks in order to keep the best individuals from a
population into the next one. Usual strategies directly transmit a given percentage
of the best individual in the next population (e.g., generation gap of [27]). Evolu-
tion strategies (μ, λ) and (μ + λ) [4, 22, 23] produce λ offspring of a population of
μ individuals. The “ , ” strategy controls elitism via the difference μ− λ (the μ− λ
best individuals are kept and completed by λ offspring), while the “+” strategy is
more adaptive: from an intermediate population of size μ+ λ, made of the current
population of size μ and λ offspring, the μ best individuals are selected for the next
generation.

In the case of parallel implementations, it is sometimes useful to use another
scheme instead of the one based on generations: the steady state scheme adds di-
rectly each new individual in the current population via a replacement operator
(reverse selection) that replaces bad individuals of the current population by new
ones.

Stopping the evolution process at the right moment is crucial from a prac-
tical viewpoint; but if little or no information is available about the value of the
searched optimum, it is difficult to know when to stop. A usual strategy is to stop
evolution after a fixed number of generations, or when stagnation occurs. It is also
possible to test the dispersion of the population. A good control of the stopping
criterion obviously influences the efficiency of the algorithm, and is as important
as a good setting of evolution parameters (population size, crossover and mutation
probabilities, selective pressure, replacement percentage, etc.).



8 Genetic and Evolutionary Computation

Offspring

Offspring

Offspring

Parents

Parents

Parents

1

2

1

2

1

2

1 point crossover

2 points crossover

Uniform crossover

Figure 1.2. Binary crossover.

An evolutionary algorithm (EA) is a partially blind search algorithm, whose
blind/random component has to be cleverly tuned, as a function of what is known
as “a priori” about the problem to be solved: too much randomness is time con-
suming, and too little may let the process be blocked in a local optimum.

1.4.2. Representations and operators

Genetic operators directly depend on the choice of the representation, which, for
example, makes the difference between genetic algorithms, evolution strategies,
genetic programming, and grammatical evolution. We quickly present below the
most usual representations, operators, selection and replacement schemes. Many
other schemes for nonstandard search spaces can be found in the literature as for
instance, list or graph spaces.

1.4.2.1. Discrete representation

Genetic Algorithms are based on the use of a binary representation of solutions,
extended later to discrete representations.3

Each individual of the population is represented by a fixed-size string, with
the characters (genes) being chosen from a finite alphabet. This representation is
obviously suitable for discrete combinatorial problems, but continuous problems
can be addressed this way thanks to a sampling of the search space. In this case, the
sampling precision (related to the chromosome length) is an important parameter
of the method [34].

The most classical crossover operators used in optimization tasks are
described in Figure 1.2. The one-point crossover randomly chooses a position on
the chromosome and then exchanges chain parts around this point. The two-point
crossover also exchanges portions of chromosomes, but selects two points for the
exchange. Finally, the uniform crossover is a multipoint generalization of the previ-
ous one: each gene of an offspring is randomly chosen between the parents’ genes

3Even if there exists now real encoded genetic algorithms, the discrete encoding is the historical
characteristic of the “genetic algorithms trend.”



Stefano Cagnoni et al. 9

010011010011101001111011110 010010010011101001111011110

Parent Offspring

Figure 1.3. Binary mutation.

at the same position. Other specialized crossovers exist, like in the case of travelling
salesman problems or scheduling problems, which take into account the specific
structure of the gene encoding.

The classical binary mutation flips each bit of the chromosome with a prob-
ability pm (see Figure 1.3). The mutation probability pm is usually very low and
constant along the evolution, but some schemes exist where the mutation proba-
bility decreases along generations.4

1.4.2.2. Continuous representation

The continuous representation, or real representation, is historically related to
evolution strategies. This approach performs a search in Rn or in a part of it. The
associated genetic operators are either extensions to continuous space of discrete
operators, or directly continuous operators.

The discrete crossover is a mixing of real genes of a chromosome, without
change of their content. The previous binary crossover operators (one point, two
points, uniform) can thus be adapted in a straightforward manner.

The benefit of continuous representation is surely better exploited with spe-
cialized operators, that is, continuous crossover that mixes more intimately the
components of the parents vectors to produce new individuals. The barycentric
crossover, also called arithmetic, produces an offspring x′ from a couple (x, y) of
Rn thanks to a uniform random shot of a constant α in [0, 1] (or [−ε, 1 + ε] for
the BLX-ε crossover) such that

∀i ∈ 1, . . . ,n, x′i = αxi + (1− α)yi. (1.2)

The constant α can be chosen once for all coordinates of x′, or independently for
each coordinate.

The generalization to a crossover of more than 2 parents, or even the entire
population set (“global” crossover) is straightforward [45].

Many mutation operators have been proposed for the real representation. The
most classical is the Gaussian mutation, that adds a Gaussian noise to the compo-
nents of the individual. It requires that an additional parameter, σ , the standard
deviation of the noise, be tuned:

∀i ∈ 1, . . . ,n, x′i = xi +N(0, σ). (1.3)

4It has been theoretically proved that a mutation-only genetic algorithm converges towards the
global optimum of the search space only if pm decreases according to a logarithmic rate [12].



10 Genetic and Evolutionary Computation

++

∗

x1 x∗cos

y2x

Figure 1.4. Example of a tree representation of the function ((cos(x) + 2∗ y)∗ (1 + x)).

Tuning σ is relatively complex (too small, it slows down evolution; too large, it
affects negatively the convergence of the algorithm). Various strategies that make
σ vary along evolution have been tested: σ as a function of time or fitness value, as
a function of the direction of search (anisotropic mutations), or even self-adaptive
(i.e., with σ being considered an additional parameter, i.e., evolved by the algo-
rithm). Other studies have been performed on the use of non-Gaussian noise.

1.4.2.3. Trees representations

Genetic programming (GP) corresponds to a representation of variable-length
structures as trees. GP has been initially designed to handle LISP programs [29], in
order to create programs able to solve problems for which they were not explicitly
programmed. The richness and versatility of the variable-size tree representation
(see Figure 1.4) are at the origin of the success of GP. Many optimization, com-
mand or control problems can be formulated as a program induction problem.
Recently in the computer vision domain, genetic programming has been shown to
achieve human competitive results [53].

A GP algorithm explores a search space of recursive programs made of ele-
ments of a function set, of a variable set, and of a terminal set (data, constants).5

Individuals of the population are programs that, when executed, produce the so-
lution to the problem at hand.

Crossovers are often subtree exchanges. Mutations are more complex, and
several mutations have to be used, producing different types of perturbations on
the genome structure: suppression/addition of a node, modification of the content
of a node, mutation of the constants (continuous values), and mutation of discrete
variables.

Applications of genetic programming are numerous, for example, in optimal
control, in trajectory and action planning in robotics, or in symbolic regression
(search for a mathematical formula that approximates a finite set of samples).

5A current problem of GP is the so-called bloat, that is, the saturation of the memory space due to
a disproportionate growth of the trees sizes along evolution. A good way to avoid this effect is to limit
genome sizes [32, 48].



Stefano Cagnoni et al. 11

1.5. Doing more than optimization

Evolving a population on a search space according to the previous principles allows
not only to localize the global optimum of a complex function (theoretical proofs
exist, see [2, 12, 26, 40, 55]), but also to gain more information on the function
and its search space.

For instance, if the function to be optimized is multimodal, slight modifica-
tions of the evolution loop allow to make the population converge into subpop-
ulations localized on “niches” corresponding to each optimum. These methods
control the diversity of the population, or implement a resource-sharing mech-
anism between neighbor individuals [17, 18] to favor the emergence of distinct
species. The definition of an interchromosomes distance is then necessary.

It is also possible to consider a problem as a collective learning task, with the
searched solution being built from the whole set of individuals of an evolved pop-
ulation, and not only from its single best individual. The most famous techniques
of this type are classifier systems [7], the Parisian approach [9, 41], cooperative
coevolution [42], and techniques based on social insect colonies, like ant colony
algorithms (ACO) [13, 14].

The Parisian approach has, for example, produced applications in text re-
trieval [30, 31], in art and design [8, 15], or even real-time applications (stereo
vision using the “fly algorithm” [36]), which is noticeable for algorithms that have
the reputation of being big CPU time consumers!

Moreover, in some applications, the precise identification of quantities to be
optimized is sometimes difficult, especially in cases where there exist several judg-
ment criteria, possibly contradictory (e.g., maximize the resistance of a mechan-
ical part, while minimizing its weight and its cost). These optimizations are even
more complex to handle if there is no way of estimating the relative importance of
each criterion. One thus consider multicriterion optimization, without giving any
priority to the various criteria. The solution to a multicriterion problem is thus
a set, the Pareto front, of optimal compromises. The idea of using evolutionary
techniques to find the Pareto front of a multicriterion problem is quite natural,
and based on a small modification of the classical evolutionary scheme. More pre-
cisely, the selection operator is adapted in order to push the population toward the
Pareto front, while maintaining diversity to provide a good sampling of the front.
Once again, diversity control is a key point. A comparative study of evolutionary
methods for multicriteria optimization can be found in [56].

Finally, if what we wish to optimize is not measurable with a mathematical
function or a computer procedure (e.g., the simple notion of “being satisfied”),
one has to put a human in the evolutionary loop, that is, consider interactive evo-
lutionary algorithms. The first studies in this domain [3, 46, 47, 51] were oriented
toward artistic design (e.g., numerical images or 3D shapes synthesis). Much work
concerns now various application domains, where quantities to be optimized are
linked to subjective rating (visual or auditive). Characteristic work are, for in-
stance, [50] for adapting hearing aids, [28] for the control of robot arm to pro-
vide smooth and human-like movements, or [39] for the design of HTML pages.
A review of this broad topic can be found in [49] or in [44].



12 Genetic and Evolutionary Computation

1.6. Contents

In this section, we briefly introduce the contents of the book, according to the
logical subdivision of the volume into three main sections, which are dedicated to
low-level, midlevel, and high-level visions, respectively.

1.6.1. Low-level vision

Early stages of image processing—low-level vision tasks—have been largely in-
vestigated for many years. Typical tasks are image filtering, smoothing, enhance-
ment or denoising, lightness computation, edge and singular point detection, re-
sampling, quantization, and compression. Low-level processing usually takes into
account close neighborhood relations in images, morphologic properties, or even
3D geometry (including problems of camera distortion and partial occlusion).

This topic remains, however, a source of challenging problems, as the quality
of outputs is crucial for the whole computer vision chain. Sophisticated mathe-
matical theories and statistical methods have been developed in recent years, that
are a source of complex optimization problems. Additionally, new constraints for
embedded, real-time computer vision systems necessitate robust and flexible as
well as cost-effective algorithms.

In this section of the book, various examples show the benefit of using artifi-
cial evolution techniques to tackle complex low-level tasks, impossible to address
with classical optimization techniques, improving versatility, precision, and ro-
bustness of results. We will see also in the sequel that real-time or quasireal-time
processing can be attained with evolutionary techniques, in spite of the computa-
tion time-gluttony reputation of these techniques.

The first chapter, entitled “Evolutionary multifractal signal/image denoising”
by Lutton and Levy Vehel, deals with enhancement or denoising of complex signals
and images, based on the analysis of local Hölder regularity (multifractal denois-
ing). This method is adapted to irregular signals that are very difficult to handle
with classical filtering techniques. Once again, the problem of denoising has been
turned into an optimization one: searching for a signal with a prescribed regularity
that is as near as possible to the original (noisy) one. Two strategies are considered:
using evolution as a pure stochastic optimizer, or using interactive evolution for a
metaoptimization task. Both strategies are complementary as they allow to address
different aspects of signal/image denoising.

The second chapter, entitled “Submachine-code genetic programming for bi-
nary image analysis” by Cagnoni, Mordonini, and Adorni, addresses issues re-
lated to quasireal-time image processing. The authors present a solution that ex-
ploits in a clever way the intrinsic parallelism of bitwise instructions of sequen-
tial CPUs in traditional computer architectures. In other words, genetic program-
ming is used to optimize a set of binary functions, that are used as binary classi-
fiers (submachine-code genetic programming, SmcGP). The application consid-
ered is license-plate recognition, which is composed of two tasks: license-plate lo-
calization in the image (region-based segmentation), and low-resolution character
recognition. Both are formulated as classification tasks. GP-based techniques are



Stefano Cagnoni et al. 13

compared to neural net techniques for the same tasks. SmcGP classifiers are almost
as precise as the LVQ neural net used as reference classifier, but with processing
times that are about 10 times faster. Using SmcGP in the preprocessing stage of a
license-plate recognition system has also been proved to improve robustness. Ad-
ditionally, the functions evolved with SmcGP can be easily integrated in embedded
systems, as Boolean classification functions as those evolved by SmcGP can be di-
rectly implemented in digital hardware.

The third chapter, entitled “Halftone image generation using evolutionary
computation” by Tanaka and Aguirre, investigates the problem of generating half-
tone images. Using a genetic algorithm has been proven to be beneficial. However,
as this technique is computationally expensive, it is necessary to build improved
GA schemes for practical implementations. Compromises have to be found in
order to be able to use GA-based techniques in practical implementations. This
chapter is a good example of an adaptation of the genetic operators and evolution
scheme to specificities of the genome (image blocks specialized operators, fine de-
sign of the functions to be optimized, and multiobjective approach).

The fourth chapter, entitled “Evolving image operators directly in hardware”
by Sekanina and Martinek, considers the problem of automatic designing of im-
age filters based on an evolvable hardware system (FPGA). The idea is to be able
to automatically design filters when corrupted, and original images are supplied
by the user. The learning problem is turned into an optimization problem, that is
to find the filter that minimizes the difference between the corrupted and origi-
nal images of the training set. The filters are combined from elementary compo-
nents (minimum, maximum, average, and other logic functions over two pixels)
using Cartesian genetic programming. Examples are provided for noise removal
and edge detection tasks. The originality of this work is that everything is im-
plemented on hardware, that is, the filters as well as the evolutionary algorithm
itself. The advantage of such an implementation is the performance (a filter can
be evolved in 20 seconds on an FPGA operating a 100 MHz!), and for some ap-
plications it is thus possible to approach real-time evolutionary design. A precise
analysis of the influence of parameters setting on quality and generality of filters
and on the time of evolution is also presented.

The fifth chapter, entitled “Variable-length compositional genetic algorithms
for the efficient implementation of morphological filters in an embedded image
processor” by Sillitoe and Magnusson, is also related to high-speed binary image
processing and embedded vision systems. This chapter describes the implementa-
tion of morphological image filters using a variable-length steady-state GA on a
high-speed image processor. A specific mechanism to maintain diversity has been
developed to cope with the rugged fitness landscape induced by the processor ar-
chitecture. The aim of the optimization procedure is to map the original filter
specification into a reduced sequence of machine-specific operators and connec-
tives. This chapter addresses an interesting point about variable-length genomes:
the so-called “compositional operator” is applied only when a stagnation is de-
tected, which has a consequence that evolution of genome content has the priority
over structure evolution. In the fitness evaluation, there is also an additional term



14 Genetic and Evolutionary Computation

that promotes individuals which implement elements of the solution not com-
monly found in the current population.

The sixth chapter, entitled “Autonomous model-based corner detection us-
ing affine evolutionary algorithms” by Olague and Hernández, is an example of
an approach based on a versatile nonlinear corner model whose parameters are
estimated via an optimization procedure (resolution of an inverse problem) based
on an EA. Additionally, new genetic operators based on homogeneous matrix rep-
resentations have been designed according to the specific corner model. Compar-
isons have been done with other optimization methods proving that EA provides
a more robust estimation technique. This is an example of the capability of EA
to handle nonlinear models, which allow to cope with more complex photogram-
metric models.

1.6.2. Midlevel vision

Midlevel vision algorithms, as the name suggests, provide the necessary connec-
tion between low-level algorithms and high-level ones. The former are aimed at
emulating the innate specificity of human perception, which includes processing
tasks occurring mostly at an unconscious level, while the latter, which can be re-
lated to cognitive tasks rather than to perceptual ones, implement the conscious
interpretation of the scene under observation, based not only on information ex-
tracted by perceptual elements, but mainly on knowledge-based processes based
on the observer’s own experience.

The aim of midlevel tasks is, therefore, to translate perceptual representation
of the image into a symbolic representation on which high-level reasoning pro-
cesses can operate to achieve full understanding of the contents of the scene repre-
sented within the image.

Image segmentation is definitely the most relevant and recurring task within
midlevel algorithms, and can almost be identified with the whole class, if its def-
inition as “grouping of perceptual information according to some uniformity/
classification criterion” is given the slightly more flexible interpretation as “inte-
gration of basic image elements into “more meaningful” and complex structures
to which a symbolic meaning can be attached.” Another popular application of
midlevel vision is image registration.

The chapters in this section describe several ways in which the design of mi-
dlevel vision algorithms can be supported by different EC techniques, in different
domains of application. They show how problems can be tackled by computer
vision-centered approaches, in which EC techniques are used essentially as opti-
mization tools, as well as by EC-centered approaches in which problems are ob-
served from a substantially different point of view, directly induced by the features
of the EC technique which is adopted.

In the chapter entitled “Evolution of an abstract image representation by a
population of feature detectors,” Bocchi presents an artificial life-inspired
approach based on an evolutionary network of entities which identify and track
“key” points in the image. Each entity “learns” to localize one of the features which



Stefano Cagnoni et al. 15

are present in the image, and coordinates with neighboring entities to describe the
spatial relationships among the features. The population implements both a short-
term migration of the units to dislocate on an unknown image, and a long-term
adaptation to improve the fitness of the population to the environment which is
present on all images in the data set. Once adaptation is complete, the feature vec-
tors associated to each entity represent the features which have been identified in
the image set, and the topological relations among those features in the image are
mirrored in the neighborhood relations among the corresponding individuals. A
sample toy problem is used to show the basic properties of the population, where
the population learns to reproduce a hand-written letter, while an application to
the biomedical domain (identification of bones in a hand radiogram) measures
the performances of the architecture in a real-world problem.

The chapter by Ballerini, entitled “Genetic snakes: active contour models by
genetic algorithms,” reviews and extends the definition of “genetic snakes,” active
contour models optimized with a procedure based on genetic algorithms. Orig-
inally developed for application to problems in computer vision and computer
graphics, snakes have been extensively applied in medical image analysis in prob-
lems including segmentation, shape representation, matching, and motion track-
ing, and have achieved considerable popularity. However, the application of snakes
to extract region of interest suffers from some limitations. In fact, a snake is an
energy-minimizing spline, and the classical model employs variational calculus to
iteratively minimize the energy. There may be a number of problems associated
with this approach such as algorithm initialization, existence of local minima, and
selection of model parameters. “Genetic snakes” have been shown to be able to
overcome some limits of the classical snakes and have been successfully applied
to segment different kinds of images. In the chapter under consideration, new
problem-specific energy functionals are used in the fitness function driving the
evolution of snakes. Experimental results on synthetic images as well as on real
images are conducted with encouraging results.

Ciesielski, Song, and Lam, in the chapter entitled “Visual texture classification
and segmentation by genetic programming,” show that genetic programming can
be used for texture classification in three ways: (a) as a classification technique for
feature vectors generated by conventional feature extraction algorithms, (b) as a
one-step method that bypasses feature extraction and generates classifiers directly
from image pixels, and (c) as a method of generating novel feature extraction pro-
grams. All of the above approaches have been tested on a number of difficult prob-
lems drawn from the Brodatz texture library. Authors show, in particular, how the
one-step classifiers can be used for fast, accurate texture segmentation. In doing so,
they show that the use of the genetic programming techniques can overcome some
of the drawbacks, which are briefly listed here, affecting the application of tradi-
tional texture analysis techniques. Firstly, it is impossible to define a universal set
of optimal texture features, which causes the need for a trial- and error-process for
each new texture classification/segmentation task, to find a feature set that works
well. Secondly, some of the approaches generate an enormous number of features
which calls for effective techniques for dimensionality reduction in feature space.



16 Genetic and Evolutionary Computation

Thirdly, most of the texture feature extraction algorithms are computationally ex-
pensive and require the generation of Fourier-type transforms or other complex
intermediate data structures and then additional computation on these structures.

Another evolutionary approach to texture classification is presented by Koep-
pen and Garcia, in the chapter entitled “A framework for the adaptation of im-
age operators.” The chapter describes a framework, which allows for the design of
texture filters for fault detection. The framework is based on the 2D-lookup algo-
rithm, where two filter output images and a 2D-lookup matrix are used as inputs.
The algorithm runs through all pixel positions in both images, and takes the gray
value pair at the corresponding position as coordinates in the matrix. The value
stored in this matrix position is used as the return value in the result image at the
actual position. Having n operators available, there are n∗(n− 1)/2 possible ways
to select a pair of operators, and this number grows even more if the operation
allows for internal parameter settings. An evolutionary procedure is used to se-
lect the best operation pair. The chapter also introduces a generic design method
which builds more complex operators from simple ones, which is based on genetic
programming, the best established procedure so far to allow for such an optimiza-
tion as well. The framework can be extended in various ways; two of which are also
presented in the chapter.

In the chapter entitled “A practical review on the applicability of different
evolutionary algorithms to 3D feature-based image registration,” Cordón, Damas,
and Santamarı́a introduce image registration (IR), the process of finding the opti-
mal spatial transformation (e.g., rigid, similarity, affine, etc.) achieving the best
fitting/overlaying between two (or more) different images related by the latter
transformation, measured by a similarity metric function. IR is presently a very
active research area in the computer vision community. The chapter discusses the
basic problem and its components, and addresses the recent interest on applying
evolutionary algorithms to image registration, considering different approaches
to the problem and describing the most relevant applications. A practical review
focusing on feature-based IR considering both evolutionary and nonevolutionary
approaches is also developed. The review is supported by a broad experimentation
of those IR methods on the registration of some magnetic resonance images of hu-
man brains. To the best of our knowledge, this is the first review which compares
different evolutionary and nonevolutionary techniques reporting results obtained
on the same test images.

The chapter by Duarte, Sánchez, Fernández, and Montemayor, entitled “Im-
age segmentation hybridizing variable neighborhood search and memetic algo-
rithms,” introduces a new hybrid evolutionary algorithm as a graph-based im-
age segmentation technique to improve quality results. The method proposed in
this chapter can be considered as region-based, resulting in a k-region decompo-
sition of the scene. The underlying model and approach to solving image seg-
mentation as a graph-partitioning problem is related to Shi and Malik’s work.
They use a computational technique based on a generalized eigenvalue problem
for computing the segmentation regions. This algorithm combines oversegmented
regions using a low-level hybridization between a variable neighborhood search



Stefano Cagnoni et al. 17

and a memetic algorithm. An oversegmented version of an original image is repre-
sented as an undirected weighted graph. In this graph, nodes are the image regions
and the arcs together with their associated weights are defined using local informa-
tion. The graph construction is modeled as an alternative region adjacency graph;
here called modified region adjacency graph.

Finally, Jean Louchet, in the chapter entitled “Model-based image analysis us-
ing evolutionary computation,” shows how evolution strategies can actually widen
the scope of Hough transform generalizations and how some of their variants and
extensions, in particular the Parisian approach, can efficiently solve real-time com-
puter vision, sensor fusion, and robotics problems with little reference to more
traditional methods. In the first part of this chapter, the author shows, through
several example problems, that evolution strategies give a new life to model-based
image analysis, thanks to their ability to efficiently explore complex model param-
eter spaces. In the second part, the Parisian variant of evolution strategies is con-
sidered, showing, through an application to stereo vision (the “fly algorithm”),
that it provides fast and efficient algorithms with interesting real-time and asyn-
chronous properties, specially valuable in autonomous robotics applications and
image analysis in changing environments.

1.6.3. High-level vision

High-level vision is devoted to the study of how the cognitive approach is im-
plemented in the computer. Several tasks are related to cognitive or mental tasks
such as content-based image retrieval, recognition, identification, 3D scene analy-
sis, and design.

This last stage of the computer vision chain is as the two previous ones a rich
source of challenging problems, in which evolutionary algorithms achieve success-
ful applications with innovative solutions.

In this section of the book, seven chapters have been included to illustrate how
evolutionary algorithms could be applied to solve complex high-level vision tasks.
The applications are centered on recognition, detection, design of photogram-
metric networks, and classification tasks. These chapters show a general balance
between the use of computer vision and evolutionary computation knowledge.

The first chapter, entitled “Evolutionary feature synthesis for image databas-
es,” by Dong et al., describes a genetic programming approach used in synthe-
sizing feature vectors in order to improve the performance of content-based im-
age retrieval. The advantage of dimensionality reduction, as well as the fact that
the genetic programming approach does not assume any class distribution in the
original feature space, gives distinct advantage over the linear transformation and
the support vector machine approaches. Results over several image datasets have
demonstrated the effectiveness of genetic programming in improving image re-
trieval performance.

The second chapter, by Quirin and Korczac, entitled “Discovering of clas-
sification rules from hyperspectral images,” presents a learning classifier system



18 Genetic and Evolutionary Computation

applied to remote sensing images in order to find the best set of rules without hu-
man intervention. The proposed system has been validated with a comparison to
other approaches such as neural networks and supports vector machines. Finally,
the results have shown the potential of applying learning classifier systems to the
discovery of rules in remote sensing images.

The third chapter, entitled “Genetic programming techniques for multiclass
object recognition,” by Zhang, proposes the use of dynamic class boundary detec-
tion methods to improve the static method that was previously applied in the do-
main of multiclass object detection using genetic programming. The results con-
firm that a dynamic approach could classify better the objects if the classes are
arranged in an arbitrary order or when the classification problems become more
difficult.

The fourth chapter, entitled “Classification by evolved digital hardware,” by
Tørresen, presents an evolvable hardware approach based on a divide-and-conquer
strategy called incremental evolution, which aims to improve the solution by di-
viding the problem domain while incrementally evolving the hardware system.
This is also called “increased-complexity evolution.” Thus, the evolution is under-
taken individually on a set of small systems in order to spend less effort than for
evolving a single big system. Examples are provided to show how to evolve both a
prosthetic hand controller circuit and for classifying numbers on speed limit signs.
The results illustrate that this is a promising approach for evolving systems in the
case of complex real-world problems.

The fifth chapter, by Olague and Dunn, entitled “Evolutionary photogram-
metric network design,” addresses the problem of configuring an optimal pho-
togrammetric network in order to measure a complex object with high accuracy.
The fitness function is implemented through an analytical uncertainty analysis,
as well as the classical bundle adjustment. The optical and environmental con-
straints are incorporated in the evolutionary process. The strategy proposed here
has shown how human-competitive designs could be achieved in the case of a
large number of cameras, considering multiple competing constraints until the
best acceptable configuration is found. A number of experiments are provided to
illustrate the applicability of the simulator.

The sixth chapter, by Zhang, entitled “Genetic algorithms and neural net-
works for object detection,” describes a domain-independent approach to multiple
class object detection based on training a neural network classifier on cutouts of
the objects of interest and then refining the network weights using a genetic al-
gorithm. The results show promising results for the case of retinal pathologies in
which the proposed technique is competitive with statistical and neural networks
approaches.

Finally, the seventh chapter, entitled “An evolutionary approach for design-
ing multitarget tracking video systems,” proposes the use of evolution strategies
for the development of an aircraft surveillance system. The proposed methodol-
ogy apply the concept of partial evaluation using aggregation operators to build
the evaluation function. This analogy is the base for stating the problem in terms
of optimization in order to give an appropriate output of the video surveillance



Stefano Cagnoni et al. 19

system under different situations. Several experiments are provided to illustrate
the applicability of the proposed technique with respect to real situations.

Bibliography

[1] J. Albert, F. Ferri, J. Domingo, and M. Vincens, “An approach to natural scene segmentation by
means of genetic algoritms with fuzzy data,” in Proceedings of the 4th National Symposium in
Pattern Recognition and Image Analysis, P. de la Blanca, Ed., pp. 97–113, Singapore, September
1992.

[2] L. Altenberg, “Evolutionary computation models from population genetics. part 2: a historical
toolbox,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’00), San Diego,
Calif, USA, July 2000.

[3] P. J. Angeline, “Evolving fractal movies,” in Proceedings of the 1st Annual Conference on Genetic
Programming, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., pp. 503–511, MIT
Press, Cambridge, Mass, USA, 1996.

[4] T. Bäck and H. P. Schwefel, “An overview of evolutionary algorithms for parameter optimization,”
Tech. Rep., University of Dortmund, Dortmund, Germany, 1992.

[5] W. Banzhaf, “Interactive evolution,” in Handbook of Evolutionary Computation, Oxford University
Press, Oxford, UK, 1997.

[6] A. Boumaza and J. Louchet, “Dynamic flies: using real-time parisian evolution in robotics,” in
Applications of Evolutionary Computing, EvoWorkshops: EvoCOP, EvoFlight, EvoIASP, EvoLearn,
and EvoSTIM, E. J. W. Boers, J. Gottlieb, P. L. Lanzi, et al., Eds., vol. 2037 of Lecture Notes in
Computer Science, pp. 288–297, Springer, Como, Italy, April 2001.

[7] L. Bull and T. C. Fogarty, “Co-evolving communicating classifier systems for tracking,” in Artifi-
cial Neural Networks and Genetic Algorithms, pp. 522–527, Springer, Wien, Austria, 1993.

[8] J. Chapuis and E. Lutton, “ArtiE-fract: interactive evolution of fractals,” in Proceedings of the 4th
International Conference on Generative Art (GA ’01), Milano, Italy, December 2001.

[9] P. Collet, E. Lutton, F. Raynal, and M. Schoenauer, “Polar IFS + parisian genetic programming =
efficient IFS inverse problem solving,” Genetic Programming and Evolvable Machines, vol. 1, no. 4,
pp. 339–361, 2000.

[10] Y. Davidor, Genetic Algorithms and Robotics: A Heuristic Strategy for Optimization, vol. 1 of World
Scientific Series in Robotics and Automated Systems, World Scientific, Teaneck, NJ, USA, 1991.

[11] L. Davis, Genetic Algorithms and Simulated Annealing, Pittman, London, UK, 1987.

[12] T. E. Davis and J. C. Principe, “A simulated annealing like convergence theory for the sim-
ple genetic algorithm,” in Proceedings of the 4th International Conference on Genetic Algorithms
(ICGA ’91), pp. 174–181, San Diego, Calif, USA, July 1991.

[13] M. Dorigo and G. Di Caro, “The ant colony optimization meta-heuristic,” in New Ideas in Opti-
mization, D. Corne, M. Dorigo, and F. Glover, Eds., pp. 11–32, McGraw-Hill, New York, NY, USA,
1999.

[14] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization,” Arti-
ficial Life, vol. 5, no. 2, pp. 137–172, 1999.

[15] E. Dunn, G. Olague, and E. Lutton, “Parisian camera placement for vision metrology,” Pattern
Recognition Letters, vol. 27, no. 11, pp. 1209–1219, 2006.

[16] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, Natural Computing Series,
Springer, New York, NY, USA, 2003.

[17] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley, Reading, Mass, USA, 1989.

[18] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multimodal function
optimization,” in Genetic Algorithms and Their Applications, J. J. Grefenstette, Ed., pp. 41–49,
Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1987.



20 Genetic and Evolutionary Computation

[19] D. E. Goldberg and R. E. Smith, “Nonstationary function optimization using genetic algorithm
with dominance and diploidy,” in Proceedings of the 2nd International Conference on Genetic Al-
gorithms on Genetic Algorithms and Their Application, pp. 59–68, Lawrence Erlbaum Associates,
Cambridge, Mass, USA, July 1987.

[20] H. Hamda, F. Jouve, E. Lutton, M. Schoenauer, and M. Sebag, “Compact unstructured represen-
tations for evolutionary design,” Applied Intelligence, vol. 16, no. 2, pp. 139–155, 2002.

[21] A. Hill and C. J. Taylor, “Model-based image interpretation using genetic algorithms,” Image and
Vision Computing, vol. 10, no. 5, pp. 295–300, 1992.

[22] F. Hoffmeister and T. Bäck, “Genetic algorithms and evolution strategies—similarities and dif-
ferences,” in Proccedings of the 1st Workshop on Parallel Problem Solving from Nature (PPSN ’90),
vol. 496 of Lecture Notes in Computer Science, pp. 455–469, Dortmund, Germany, October 1991.

[23] F. Hoffmeister and T. Baeck, “Genetic algorithms and evolution strategies: similarities and differ-
ences,” Tech. Rep. SYS-1/92, University of Dortmund, Dortmund, Germany, February 1992.

[24] J. H. Holland, “Outline for a logical theory of adaptive systems,” Journal of the Association for
Computing Machinery, vol. 9, no. 3, pp. 297–314, 1962.

[25] J. H. Holland, Adaptation in Natural and Artificial System, University of Michigan Press, Ann
Arbor, Mich, USA, 1975.

[26] J. Horn, “Finite Markov chain analysis of genetic algorithms with niching,” IlliGAL Report 93002,
University of Illinois at Urbana Champaign, Urbana, Ill, USA, February 1993.

[27] K. A. De Jong, Analysis of the behavior of a class of genetic adaptive systems, Ph.D. thesis, University
of Michigan, Ann Arbor, Mich, USA, 1975.

[28] S. Kamohara, H. Takagi, and T. Takeda, “Control rule acquisition for an arm wrestling robot,”
in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp.
4227–4231, Orlando, Fla, USA, October 1997.

[29] J. R. Koza, Genetic Programming, MIT Press, Cambridge, Mass, USA, 1992.

[30] Y. Landrin-Schweitzer, P. Collet, and E. Lutton, “Interactive GP for data retrieval in medical
databases,” in Proceedings of the 6th European Conference on Genetic Programming (EuroGP ’03),
vol. 2610 of Lecture Notes in Computer Science, pp. 93–106, Essex, UK, April 2003.

[31] Y. Landrin-Schweitzer, P. Collet, E. Lutton, and T. Prost, “Introducing lateral thinking in search
engines with interactive evolutionary algorithms,” in Proceedings of the Annual ACM Symposium
on Applied Computing (SAC ’03), pp. 214–219, Melbourne, Fla, USA, March 2003, special track
on computer applications in health care.

[32] W. B. Langdon and W. Banzhaf, “Genetic programming bloat without semantics,” in Proceedings
of the 6th International Conference Parallel Problem Solving from Nature (PPSN ’00), vol. 1917 of
Lecture Notes in Computer Science, pp. 201–210, Paris, France, September 2000.

[33] R. Leriche and R. T. Haftka, “Optimization of laminate stacking sequence for buckling load max-
imization by genetic algorithm,” AIAA Journal, vol. 31, no. 5, pp. 951–969, 1993.

[34] J. Lévy Véhel and E. Lutton, “Optimization of fractal functions using genetic algorithms,” in Frac-
tals in the Natural and Applied SciencesIFIP Transactions A—Computer Science and Technology, M.
M. Novak, Ed., vol. 41, pp. 275–288, Elsevier B.V., Atlanta, Ga, USA, 1993.

[35] J. Lévy Véhel and E. Lutton, “Evolutionary signal enhancement based on Hölder regularity anal-
ysis,” in Proceedings of Applications of Evolutionary Computing: EvoWorkshops: EvoCOP, EvoFlight,
EvoIASP, EvoLearn, and EvoSTIM, E. J. W. Boers, J. Gottlieb, P. L. Lanzi, et al., Eds., vol. 2037 of
Lecture Notes in Computer Science, pp. 325–334, Como, Italy, April 2001.

[36] J. Louchet, M. Guyon, M.-J. Lesot, and A. Boumaza, “Dynamic flies: a new pattern recognition
tool applied to stereo sequence processing,” Pattern Recognition Letters, vol. 23, no. 1–3, pp. 335–
345, 2002.

[37] E. Lutton, P. Collet, and J. Louchet, “EASEA comparisons on test functions: GAlib versus EO,”
in Proceedings of the 5th International Conference on Evolution Artificielle (EA ’01), P. Collet, C.
Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer, Eds., vol. 2310 of Lecture Notes in Computer
Science, pp. 219–230, Springer, Le Creusot, France, October 2002.



Stefano Cagnoni et al. 21

[38] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, New York,
NY, USA, 1992.

[39] N. Monmarche, G. Nocent, G. Venturini, and P. Santini, “On generating HTML style sheets with
an interactive genetic algorithm based on gene frequencies,” in Proceedings of the 4th European
Conference on Artificial Evolution (AE ’99), C. Fonlupt, J. K. Hao, E. Lutton, M. Schoenauer, and
E. Ronald, Eds., vol. 1829 of Lecture Notes in Computer Science, pp. 99–110, Springer, Dunkerque,
France, November 1999.

[40] A. E. Nix and M. D. Vose, “Modeling genetic algorithms with Markov chains,” Annals of Mathe-
matics and Artificial Intelligence, vol. 5, no. 1, pp. 79–88, 1992.

[41] G. Olague and C. Puente, “Parisian evolution with honeybees for three-dimensional recon-
struction,” in Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference
(GECCO ’06), vol. 1, pp. 191–198, Seattle, Wash, USA, July 2006.

[42] M. A. Potter and K. A. De Jong, “Cooperative coevolution: an architecture for evolving coadapted
subcomponents,” Evolutionary Computation, vol. 8, no. 1, pp. 1–29, 2000.

[43] G. Roth and M. D. Levine, “Geometric primitive extraction using a genetic algorithm,” in Proceed-
ings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’92),
pp. 640–643, Champaign, Ill, USA, June 1992.

[44] F. Rothlauf, J. Branke, S. Cagnoni, et al., Eds., “Applications of Evolutionary Computing,
EvoWorkshops: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART,
and EvoSTOC,” vol. 3907 of Lecture Notes in Computer Science, Springer, Budapest, Hungary,
April 2006.

[45] H.-P. Schwefel, Numerical Optimization of Computer Models, John Wiley & Sons, New York, NY,
USA, 2nd edition, 1995.

[46] K. Sims, “Interactive evolution of dynamical systems,” in Proceedings of the 1st European Confer-
ence on Artificial Life (ECAL ’91), pp. 171–178, Paris, France, 1991.

[47] K. Sims, “Artificial evolution for computer graphics,” Computer Graphics, vol. 25, no. 4, pp. 319–
328, 1991.

[48] T. Soule, J. A. Foster, and J. Dickinson, “Code growth in genetic programming,” in Proceedings of
the 1st Annual Conference Genetic Programming, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, Eds., pp. 215–223, MIT Press, Cambridge, Mass, USA, July 1996.

[49] H. Takagi, “Interactive evolutionary computation: system optimisation based on human subjec-
tive evaluation,” in Proceedings of IEEE International Conference on Intelligent Engineering Systems
(INES ’98), pp. 1–6, Vienna, Austria, 1998.

[50] H. Takagi and M. Ohsaki, “IEC-based hearing aid fitting,” in Proceedings of IEEE International
Conference on System, Man and Cybernetics (SMC ’99), vol. 3, pp. 657–662, Tokyo, Japan, October
1999.

[51] S. J. P. Todd and W. Latham, Evolutionary Art and Computers, Academic Press, Amsterdam, The
Netherlands, 1992.

[52] P. Trompette, J. L. Marcelin, and C. Schmelding, “Optimal damping of viscoelastic constrained
beams or plates by use of a genetic algotithm,” in Proceedings of International Union of Theoretical
and Applied Mechanics (IUTAM ’93), Zakopane, Poland, August-September 1993.

[53] L. Trujillo and G. Olague, “Synthesis of interest point detectors through genetic programming,” in
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO ’06),
pp. 887–894, Seattle, Wash, USA, July 2006.

[54] S. Truvé, “Using a genetic algorithm to solve constraint satisfation problems generated by an
image interpreter,” in Proceedings of the 7th Scandinavian Conference on Image Analysis on Theory
and Applications of Image Analysis, pp. 378–386, Aalborg, Denmark, August 1991.

[55] M. Vose, “Modeling simple genetic algorithms,” in Proceedings of Foundations of Genetic Algo-
rithms (FOGA ’92), pp. 24–29, Vail, Colo, USA, July 1992.



22 Genetic and Evolutionary Computation

[56] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: empir-
ical results,” Evolutionary Computation, vol. 8, no. 2, pp. 173–195, 2000.

Stefano Cagnoni: Dipartimento di Ingegneria dell’Informazione, Università di Parma,
Viale Usberti 181a, 43100 Parma, Italy

Email: cagnoni@ce.unipr.it

Evelyne Lutton: APIS team, INRIA Futurs, Parc Orsay Università, 4 rue Jacques Monod,
91893 Orsay Cedex, France

Email: evelyne.lutton@inria.fr

Gustavo Olague: EvoVision Project, Computer Science Department, CICESE Research Center,
Km. 107 Carretera Tijuana-Ensenada, 22860 Ensenada, Mexico

Email: olague@cicese.mx

mailto:cagnoni@ce.unipr.it
mailto:evelyne.lutton@inria.fr
mailto:olague@cicese.mx



