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Preface

The topic of singular boundary value problems has been of substantial and rapidly grow-
ing interest for many scientists and engineers. This book is devoted to singular bound-
ary value problems for ordinary differential equations. It presents existence theory for
a variety of problems having unbounded nonlinearities in regions where their solutions
are searched for. The importance of thorough investigation of analytical solvability is
emphasized by the fact that numerical simulations of solutions to such problems usually
break down near singular points.

The contents of the monograph is mainly based on results obtained by the authors
during the last few years. Nevertheless, most of the more advanced results achieved to
date in this field can be found here. Besides, some known results are presented in a new
way. The selection of topics reflects the particular interests of the authors.

The book is addressed to researchers in related areas, to graduate students or advan-
ced undergraduates, and, in particular, to those interested in singular and nonlinear
boundary value problems. It can serve as a reference book on the existence theory for
singular boundary value problems of ordinary differential equations as well as a textbook
for graduate or undergraduate classes. The readers need basic knowledge of real analysis,
linear and nonlinear functional analysis, theory of Lebesgue measure and integral, theory
of ordinary differential equations (including the Carathédory theory and boundary value
problems) on the graduate level.

The monograph deals with boundary value problems which are considered in the
frame of the Carathéodory theory. If nonlinearities in differential equations fulfil the
Carathéodory conditions, the boundary value problems are called regular, while, if the
Carathéodory conditions are not fulfilled on the whole region, the problems are called
singular. Two types of singularities are distinguished—time and space ones. For singular
boundary value problems, we introduce notions of a solution and of a w-solution. Solu-
tions of nth-order differential equations are understood as functions having absolutely
continuous derivatives up to order n − 1 on the whole basic compact interval. On the
other hand, w-solutions have these derivatives only locally absolutely continuous on a
noncompact subset of the basic interval. The main attention is paid to the existence
of solutions of singular problems. The proofs are mostly based on regularization and
sequential technique. The impact of our theoretical results is demonstrated by illustrative
examples.

Essentially, the book is divided into two parts and four appendices.

Part I consists of 6 chapters and is devoted to scalar higher-order singular boundary
value problems. In Chapter 1, time and space singularities are defined, three existence
principles for problems with time singularities and two for problems with space singular-
ities are formulated and proved. Chapter 2 presents existence results for focal problems
with a time singularity and for focal problems having space singularities in all variables.
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Chapters 3–6 investigate other higher-order boundary value problems having only space
singularities which appear most frequently in literature. They provide existence results for
(n, p)-problems, conjugate problems, Sturm-Liouville problems, and Lidstone problems.

Part II consists of Chapters 7–11 and deals with scalar second-order singular bound-
ary value problems with one-dimensional φ-Laplacian. The exposition is focused mainly
on Dirichlet and periodic problems which are considered in Chapters 7 and 8, respec-
tively. Section 7.1 is fundamental for further investigation. The operator representation
of the regular Dirichlet problem with φ-Laplacian is derived here and the methods of
a priori estimates and lower and upper functions are developed. In Sections 7.2–7.4,
three existence principles are presented. These principles together with the principles
of Chapter 1 are then specialized to important particular cases and existence theorems
and criteria extending and supplementing earlier results are obtained. Section 7.2 deals
with time singularities, Section 7.3 with space singularities, and Section 7.4 with mixed
singularities, that is, both time and space ones. In Chapter 8, we consider the existence of
periodic solutions. We start with the method of lower and upper functions and with its
relationship to the Leray-Schauder degree in Section 8.1. Section 8.2 is devoted to prob-
lems with a nonlinearity having an attractive singularity in its first space variable. Sec-
tions 8.3 and 8.4 deal with problems with strong and weak repulsive space singularities,
respectively. An existence theorem for periodic problems with time singularities is given
in the last section of Chapter 8. In Chapter 9, we study two singular mixed boundary
value problems. The latter arises in the theory of shallow membrane caps and we discuss
its solvability in dependence on parameters which appear in the differential equation. In
Chapter 10, we treat problems which may have singularities in space variables. Boundary
conditions under discussion are generally nonlinear and nonlocal. We present general
principles for solvability of regular and singular nonlocal problems and show some of
their applications. Chapter 11 is devoted to a class of problems having singularities in
space variables. Implementation of a parameter into the equation enables us to prove
solvability of problems with three independent (generally nonlocal) boundary condi-
tions. We deliver an existence principle and its specialization to the problem with given
maximal values for positive solutions.

Appendices give an overview of some basic classical theorems and assertions which
are used in Chapters 1–11. Appendix A presents several criteria for uniform integrability
or equicontinuity. Some convergence theorems are given in Appendix B. In particular,
we recall the Lebesgue dominated convergence theorem, the Fatou lemma, the Vitali
convergence theorem for integrable functions, and the Arzelà-Ascoli theorem and the
diagonalization theorem for differentiable functions. Appendix C contains the Schauder
fixed point theorem, the Leray-Schauder degree theorem, the Borsuk antipodal theorem,
and the Fredholm-type existence theorem. Appendix D collects some useful facts from
half-linear analysis which are needed in Chapter 8.
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List of notation

Let J ⊂ R, [a, b] ⊂ R, k ∈ N, p ∈ (1,∞), M ⊂ Rk. Then we will write

(i) L∞(J) for the set of functions essentially bounded and (Lebesgue) measurable
on J ; the corresponding norm is

‖u‖∞ = sup ess
{∣∣u(t)

∣
∣ : t ∈ J

}
;

(ii) L1(J) for the set of functions (Lebesgue) integrable on J ; the corresponding
norm is ‖u‖1 =

∫
J |u(t)|dt;

(iii) Lloc(J) for the set of functions (Lebesgue) integrable on each compact interval
I ⊂ J ;

(iv) Lp(J) for the set of functions whose pth powers of modulus are integrable on
J ; the corresponding norm is ‖u‖p = (

∫
J |u(t)|p dt)1/p;

(v) C(J) andCk(J) for the sets of functions continuous on J and having continuous
kth derivatives on J , respectively;

(vi) AC(J) and ACk(J) for the sets of functions absolutely continuous on J and
having absolutely continuous kth derivatives on J , respectively;

(vii) ACloc(J) and ACkloc(J) for the sets of functions absolutely continuous on each
compact interval I ⊂ J and having absolutely continuous kth derivatives on
each compact interval I ⊂ J , respectively;

(viii) Car([a, b]×M) for the set of functions satisfying the Carathéodory conditions
on [a, b]×M.

If J ⊂ [a, b] and J �= J , then f ∈ Car(J ×M) will denote that f ∈ Car(I ×M) for each
compact interval I ⊂ J .

If J = [a, b], we will simply write C[a, b] instead of C([a, b]) and similarly for other
types of intervals and other functional sets defined above.

If u∈L∞[a, b] ∩ C[a, b], then max{|u(t)| : t∈[a, b]} = sup ess{|u(t)| : t ∈ [a, b]}.
Therefore, the norms in C[a, b] and Ck[a, b] will be denoted by

‖u‖∞ = max
{∣∣u(t)

∣
∣ : t ∈ [a, b]

}
, ‖u‖Ck =

k∑

i=0

∥
∥u(i)

∥
∥∞,

respectively.
M will denote the closure of M, ∂M the boundary of M, and meas(M) the Lebesgue

measure of M.
The symbol deg(I−F ,Ω) stands for the Leray-Schauder degree of I−F with respect

to Ω, where I denotes the identity operator.
We will say that some property holds for a.e. t ∈ J (a.e. on J) if it is fulfilled for each

t ∈ J \ J0, where meas(J0) = 0.



x List of notation

Throughout this text we exploit the following basic theorems listed in appendices.

(i) Lebesgue dominated convergence theorem (Theorem B.1).
(ii) Fatou lemma (Theorem B.2).

(iii) Vitali convergence theorem (Theorem B.3).
(iv) Arzelà-Ascoli theorem (Theorem B.5).
(v) Diagonalization theorem (Theorem B.6).

(vi) Schauder fixed point theorem (Theorem C.1).
(vii) Leray-Schauder degree theorem (Theorem C.2).

(viii) Borsuk antipodal theorem (Theorem C.3).
(ix) Fredholm-type existence theorem (Theorem C.5).
(x) Sharp Poincaré inequality (Lemma D.2).
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Consider the boundary value problem

u(n) = f
(
t,u, . . . ,u(n−1)), u ∈ B, (BVP)

where n ∈ N, [0,T] ⊂ R, and B ⊂ C[0,T]. In what follows, we will investigate the
solvability of problem (BVP) on the set [0,T] ×A, where A is a closed subset of Rn. If
we impose some additional conditions on solutions of (BVP), for example, if we search
for positive or for monotonous solutions, we express this requirement in terms of the set
A �= Rn and prove the existence of a solution u such that (u(t), . . . ,u(n−1)(t)) ∈ A for
t ∈ [0,T]. On the other hand, if there are no additional requirements on solutions, we
can assume A = Rn.

Let M⊂Rn. We say that a function f satisfies the Carathéodory conditions on the set
[a, b]×M ( f ∈ Car([a, b]×M)) if

(i) f (·, x0, . . . , xn−1) : [a, b]→R is measurable for all (x0, . . . , xn−1)∈M,
(ii) f (t, ·, . . . , ·) : M → R is continuous for a.e. t ∈ [a, b],

(iii) for each compact set K ⊂ M, there is a function mK ∈ L1[a, b] such that
| f (t, x0, . . . , xn−1)

∣
∣ ≤ mK(t) for a.e. t ∈ [a, b] and all (x0, . . . , xn−1) ∈K .

If J ⊂ [a, b] and J �= J , then f ∈ Car(J × M) means that f ∈ Car(I × M) for each
compact interval I ⊂ J .

The classical existence results are based on the assumption

f ∈ Car
(
[0,T]×A

)
.

In this case, we will say that problem (BVP) is regular on [0,T]×A. If f /∈ Car([0,T]×A),
we will say that problem (BVP) is singular on [0,T]×A. The research of singular prob-
lems was essentially initiated by Kiguradze in [116, 117]. For further development see, for
example, the monographs Agarwal [2], Agarwal and O’Regan [12], Agarwal, O’Regan,
and Wong [21], O’Regan [150], Kiguradze [118], Kiguradze and Shekhter [120], Mawhin
[137], Rachůnková, Staněk, and Tvrdý [165], and references therein.

Example 1. In certain problems in fluid dynamics and boundary layer theory (see, e.g.,
Callegari and Friedman [53], Callegari and Nachman [54, 55]) the second-order
differential equation

u′′ +
ψ(t)
uλ

= 0

arose. Here λ ∈ (0,∞) and ψ ∈ C(0, 1), ψ /∈ L1[0, 1]. This equation is known as the gen-
eralized Emden-Fowler equation. Its solvability with the Dirichlet boundary conditions

u(0) = u(1) = 0

was investigated by Taliaferro [192] in 1979 and subsequently by many other authors.
Since solutions positive on (0, 1) have been searched for, this Dirichlet problem has been
studied on the set [0, 1] ×A with A = [0,∞). We can see that f (t, x) = ψ(t)x−λ does
not fulfil conditions (ii) and (iii) with [a, b] = [0, 1] and M = [0,∞). Hence the above
problem is singular on [0, 1]× [0,∞).
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Example 2. Consider the fourth-order degenerate parabolic equation

Ut +
(|U|μUyyy

)
y = 0,

which arises in droplets and thin viscous flows models (see, e.g., Bernis, Peletier, and
Williams [39] and Bertozzi, Brenner, Dupont, and Kadanoff [40]). The source-type solu-
tions of this equation have the form

U(y, t) = t−bu
(
yt−b

)
, b = 1

μ + 4
,

which leads to the study of the third-order ordinary differential equation

u′′′ = btu1−μ

on [−1, 1]. We see that f (t, x) = btx1−μ is singular on [−1, 1]× [0,∞) if μ > 1.

Example 3. Similar to the previous example, the sixth-order degenerate equation

Ut −
(|U|μUyyyyy

)
y = 0,

which arises in semiconductor models (Bernis [37, 38]), leads to the fifth-order ordinary
differential equation

−u(5) = t

uλ

which is singular for λ > 0.

Example 4. Consider the nonlinear elliptic partial differential equation

Δu + g(r,u) = 0 on Ω, u|Γ = 0,

where Δ is the Laplace operator, Ω is the open unit disk in Rn centered at the origin, Γ
is its boundary, and r is the radial distance from the origin. When searching for positive
radially symmetric solutions to this problem, we get the singular problem of the form

u′′ +
n− 1
t

u′ + g(t,u) = 0, u′(0) = 0, u(1) = 0.

(See Berestycki, Lions, and Peletier [36] or Gidas, Ni, and Nirenberg [98].)

Example 5. Assume f ∈ Car([0,∞)×R) and consider the regular boundary value prob-
lem

u′′ = f (t,u), u(1) = 0, u(∞) = 0

on the infinite interval [1,∞). We can transform this problem to a finite interval, for
example, on [0, 1]. Then we get the singular problem of the form

v′′ +
2
t
v′ = 1

t4
f
(

1
t

, v
)

, v(0) = v(1) = 0.



1 Existence principles for
singular problems

1.1. Formulation of the problem

For n ∈ N, [0,T] ⊂ R, i ∈ {0, 1, . . . ,n − 1}, and a closed set B ⊂ Ci[0,T], consider the
boundary value problem

u(n) = f
(
t,u, . . . ,u(n−1)), (1.1)

u ∈ B. (1.2)

A decision concerning solvability for singular boundary value problems requires
an exact definition of a solution to such problems. Here, we will work with the same
definition of a solution both for the regular problems and for the singular ones.

Definition 1.1. A function u ∈ ACn−1[0,T]∩B is called a solution of problem (1.1), (1.2)
if it satisfies the equality

u(n)(t) = f
(
t,u(t), . . . ,u(n−1)(t)

)
for a.e. t ∈ [0,T].

If problem (1.1), (1.2) is investigated on [0,T] × A, where A �= Rn, then (u(t), . . . ,
u(n−1)(t)) ∈A for t ∈ [0,T] is required.

In literature, an alternative approach to solvability of singular problems can be found.
In that approach, authors search for solutions which are defined as functions whose (n−
1)st derivatives can have discontinuities at some points in [0,T]. Here, we will call them
w-solutions. According to Kiguradze [117] or Agarwal and O’Regan [12], we define them
as follows. In contrast to our starting setting, to definew-solutions we assume (in general)
that B is a closed subset in Ci[0,T], where i ∈ {0, 1, . . . ,n− 2}.

Definition 1.2. A function u ∈ Cn−2[0,T] is a w-solution of problem (1.1), (1.2) if there
exists a finite number of points tν ∈ [0,T], ν = 1, 2, . . . , r, such that if J = [0,T]\{tν}rν=1,
then u ∈ ACn−1

loc (J)∩B, and

u(n)(t) = f
(
t,u(t), . . . ,u(n−1)(t)

)
for a.e. t ∈ [0,T].

If A �= Rn, (u(t), . . . ,u(n−1)(t)) ∈A for t ∈ J is required.
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Clearly, each solution is aw-solution and eachw-solution which belongs toACn−1[0,
T] is a solution. While only the existence of w-solutions was proved in the works cited
above, our main goal is to prove the existence of solutions. However, in some cases, we
first find w-solutions and then prove that they are also solutions.

When studying the singular problem (1.1), (1.2), we will focus our attention on two
types of singularities of the function f .

Let J ⊂ [0,T]. We say that f : J ×A → R has singularities in its time variable t if
J �= J = [0,T] and

f ∈ Car(J ×A), f /∈ Car
(
[0,T]×A

)
. (1.3)

Let D ⊂ A. We say that f : [0,T] × D → R has singularities in its space variables
x0, x1, . . . , xn−1, if D �=D =A and

f ∈ Car
(
[0,T]×D

)
, f /∈ Car

(
[0,T]×A

)
. (1.4)

We will study particular cases of (1.3) and (1.4), which will be described in Section 1.2
and Section 1.3, respectively.

1.2. Singularities in time variable

A function f has a singularity in its time variable t (in short a time singularity) if, roughly
speaking, f is not integrable on [0,T]. Let us define it more precisely. Let k ∈ N, ti ∈
[0,T], i = 1, . . . , k, J = [0,T] \ {t1, t2 . . . , tk} and let f ∈ Car(J ×A). Assume that for
each i ∈ {1, . . . , k}, there exists (x0, . . . , xn−1) ∈A such that

∫ ti+ε

ti

∣
∣ f
(
t, x0, . . . , xn−1

)∣∣dt = ∞ or
∫ ti

ti−ε

∣
∣ f
(
t, x0, . . . , xn−1

)∣∣dt = ∞ (1.5)

for any sufficiently small ε > 0. Then f /∈ Car ([0,T] ×A) and f has singularities in its
time variable t, namely, at the values t = t1, . . . , tk. We will call t1, . . . , tk singular points
of f .

Example 1.3. Let fi : Rn → R, i = 1, 2, . . . , k, be continuous. Then the function

f
(
t, x0, . . . , xn−1

) =
k∑

i=1

1
t − ti fi

(
x0, . . . , xn−1

)
,

has singular points t1, t2, . . . , tk.

To establish the existence of a solution of a singular problem, we usually introduce a
sequence of approximate regular problems which are solvable. Solutions of these regular
problems are called approximate solutions. Then, we pass to the limit of the sequence of
approximate solutions to get a solution of the original singular problem. Here, we provide
existence principles which contain main rules for the construction of such sequences to
get either w-solutions or solutions.
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Consider problem (1.1), (1.2) on [0,T]×A. For the sake of simplicity, assume that
f has only one time singularity at t = t0, t0 ∈ [0,T]. Thus,

J = [0,T] \ {t0
}

, f ∈ Car(J ×A) satisfies one of the conditions:

(i)
∫ t0

t0−ε

∣
∣ f
(
t, x0, . . . , xn−1

)∣∣dt = ∞, t0 ∈ (0,T],

(ii)
∫ t0+ε

t0

∣
∣ f
(
t, x0, . . . , xn−1

)∣∣dt = ∞, t0 ∈ [0,T),

(1.6)

for some (x0, . . . , xn−1) ∈A and each sufficiently small ε > 0.
Further, consider a sequence of regular problems:

u(n)(t) = fk
(
t,u(t), . . . ,u(n−1)(t)

)
, u ∈ B, (1.7)

where fk ∈ Car([0,T] × Rn), k ∈ N. Solutions of problem (1.7) are understood in the
sense of Definition 1.1. The following two theorems deal with the case

B is a closed subset in Cn−2[0,T]. (1.8)

Theorem 1.4 (first principle for time singularities). Let (1.6) and (1.8) hold. Assume that
the conditions

for each k ∈ N and each
(
x0, . . . , xn−1

) ∈A,

fk
(
t, x0, . . . , xn−1

) = f
(
t, x0, . . . , xn−1

)
a.e. on [0,T]\Δk,

where Δk =
(
t0 − 1

k
, t0 +

1
k

)
∩ [0,T];

(1.9)

there exists a bounded set Ω ⊂ Cn−1[0,T] such that
for each k ∈ N, the regular problem (1.7) has a solution

uk ∈ Ω,
(
uk(t), . . . ,u(n−1)

k (t)
) ∈A for t ∈ [0,T]

(1.10)

are fulfilled.
Then,

there exist a function u ∈ Cn−2[0,T] and a subsequence
{
uk�
} ⊂ {

uk
}

such that lim�→∞
∥
∥uk� − u

∥
∥
Cn−2 = 0;

(1.11)

lim�→∞ u
(n−1)
k�

(t) = u(n−1)(t) locally uniformly on J

and
(
u(t), . . . ,u(n−1)(t)

) ∈A for t ∈ J ;
(1.12)

u ∈ ACn−1
loc (J), u is a w-solution of problem (1.1), (1.2). (1.13)
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Assume, moreover, that

there exist ψ ∈ L1[0,T],η > 0, �0 ∈ N, and λ1, λ2 ∈ {−1, 1}
such that

λ1 fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
) ≥ ψ(t)

for each � ∈ N, � ≥ �0, and for a.e. t ∈ [
t0 − η, t0

) ⊂ [0,T]

provided (1.6)(i) holds

and

λ2 fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
) ≥ ψ(t)

for each � ∈ N, � ≥ �0, and for a.e. t ∈ (
t0, t0 + η

] ⊂ [0,T]

provided (1.6)(ii) is true.

(1.14)

Then u ∈ ACn−1[0,T], u is a solution of problem (1.1), (1.2) and

(
u(t), . . . ,u(n−1)(t)

) ∈A for t ∈ [0,T].

Proof

Step 1. Convergence of the sequence of approximate solutions.

Condition (1.10) implies that the sequences {u(i)
k }, 0 ≤ i ≤ n − 2, are bounded and

equicontinuous on [0,T]. By the Arzelà-Ascoli theorem, we see that assertion (1.11) is

true and u ∈ B ⊂ Cn−2[0,T]. Let t0 �= 0. Since {u(n−1)
k } is bounded on [0,T], we get, due

to (1.9), that for each τ ∈ [0, t0) there exist kτ ∈ N and hτ ∈ L1[0,T] such that for each
k ≥ kτ ,

∣
∣ fk

(
s,uk(s), . . . ,u(n−1)

k (s)
)∣∣ ≤ hτ(s) for a.e. s ∈ [0, τ]. (1.15)

Hence, by virtue of (1.7), for k ≥ kτ , t1, t2 ∈ [0, τ], we have

∣
∣u(n−1)

k

(
t2
)− u(n−1)

k

(
t1
)∣∣ ≤

∣
∣
∣
∣

∫ t2

t1
hτ(s)ds

∣
∣
∣
∣,

which implies that the sequence {u(n−1)
k } is equicontinuous on [0, τ]. The same holds

on [τ,T] if τ ∈ (t0,T] and t0 �= T . The Arzelà-Ascoli theorem implies that for each
compact subset K ⊂ J = [0,T]\{t0}, a subsequence of {u(n−1)

k } uniformly converging to
u(n−1) on K can be chosen. Therefore, using the diagonalization theorem, we can choose
a subsequence {uk�} satisfying both (1.11) and (1.12).

Step 2. Convergence of the sequence of approximate nonlinearities.
Let V1 be the set of all t ∈ [0,T] such that f (t, ·, . . . , ·) : Rn → R is not continuous

and let V2 be the set of all t ∈ [0,T] such that (1.9) is not satisfied. Then meas(V1∪V2) =
0. Choose an arbitrary τ ∈ [0,T]\(V1∪V2). Then there exists �0 ∈ N such that for � ≥ �0,

fk�
(
τ,uk� (τ), . . . ,u(n−1)

k�
(τ)

) = f
(
τ,uk� (τ), . . . ,u(n−1)

k�
(τ)

)
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and, by (1.11) and (1.12),

lim
�→∞

fk�
(
τ,uk� (τ), . . . ,u(n−1)

k�
(τ)

) = f
(
τ,u(τ), . . . ,u(n−1)(τ)

)
.

Hence,

lim
�→∞

fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
) = f

(
t,u(t), . . . ,u(n−1)(t)

)
for a.e. t ∈ [0,T]. (1.16)

Step 3. The function u is a w-solution of problem (1.1), (1.2).
Let t0 �= 0 and � ∈ N. Choose an arbitrary τ ∈ [0, t0) and integrate the equality

u(n)
k�

(t) = fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
)

for a.e. t ∈ [0,T].

We get

u(n−1)
k�

(τ) = u(n−1)
k�

(0) +
∫ τ

0
fk�
(
s,uk� (s), . . . ,u(n−1)

k�
(s)
)
ds.

According to (1.15), (1.16), and the Lebesgue dominated convergence theorem on [0, τ],
we can deduce (having in mind that τ is arbitrary) that if t0 �= 0 the limit u solves the
equation

u(n−1)(t) = u(n−1)(0) +
∫ t

0
f
(
s,u(s), . . . ,u(n−1)(s)

)
ds for t ∈ [

0, t0
)
. (1.17)

Similarly, if t0 �= T , the limit u solves the equation

u(n−1)(t) = u(n−1)(T)−
∫ T

t
f
(
s,u(s), . . . ,u(n−1)(s)

)
ds for t ∈ (

t0,T
]
. (1.18)

The equalities (1.17) and (1.18) immediately yield (1.13).

Step 4. The function u is a solution of problem (1.1), (1.2).
Assume, moreover, that (1.14) and (1.6)(i) hold. Since

u(n−1)
k�

(t)− u(n−1)
k�

(
t0 − η

) =
∫ t

t0−η
fk�
(
s,uk� (s), . . . ,u(n−1)

k�
(s)
)
ds

for t ∈ (0, t0), we get, due to (1.10), that there is a c ∈ (0,∞) such that

λ1

∫ t0

t0−η
fk�
(
s,uk� (s), . . . ,u(n−1)

k�
(s)
)
ds ≤ c (1.19)

for each � ∈ N. By the Fatou lemma, using conditions (1.16), (1.14), and (1.19), we
deduce that

f
(
t,u(t), . . . ,u(n−1)(t)

) ∈ L1
[
t0 − η, t0

]
.

Similarly, if condition (1.6)(ii) holds, we deduce that

f
(
t,u(t), . . . ,u(n−1)(t)

) ∈ L1
[
t0, t0 + η

]
.
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Hence,

f
(
t,u(t), . . . ,u(n−1)(t)

) ∈ L1
([
t0 − η, t0 + η

]∩ [0,T]
)
.

Recall that, by (1.12), we have (u(t), . . . ,u(n−1)(t)) ∈ A for t ∈ J and, by (1.6), f ∈
Car(J × A). Further, by virtue of (1.10) and (1.11), the functions u,u′, . . . ,u(n−2) are
bounded on [0,T] and (1.10), (1.12) imply that u(n−1) is bounded on [0,T]\(t0−η, t0+η).
Hence,

f
(
t,u(t), . . . ,u(n−1)(t)

) ∈ L1
(
[0,T] \ (t0 − η, t0 + η

))
,

which together with the above arguments yields

f
(
t,u(t), . . . ,u(n−1)(t)

) ∈ L1[0,T].

Therefore, due to (1.17) and (1.18), we have that u ∈ ACn−1[0,T], that is, u is a solution
of problem (1.1), (1.2). Finally, since A is closed, we get

lim
t→t0

(
u(t), . . . ,u(n−1)(t)

) = (
u
(
t0
)
, . . . ,u(n−1)(t0

)) ∈A.
�

Theorem 1.5 (second principle for time singularities). Let (1.6), (1.8), (1.9), and (1.10)
hold. Assume that

there exist ψ ∈ L1[0,T], η > 0, and λ1, λ2 ∈ {−1, 1} such that

λ1 fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
)
signu(n−1)

k�
(t) ≥ ψ(t)

for each � ∈ N and for a.e. t ∈ [
t0 − η, t0

) ⊂ [0,T] if (1.6)(i) holds
and

λ2 fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
)
signu(n−1)

k�
(t) ≥ ψ(t)

for each � ∈ N and for a.e. t ∈ (
t0, t0 + η

] ⊂ [0,T] if (1.6)(ii) is true.

(1.20)

Then, there exists a function u ∈ ACn−1[0,T] satisfying (1.11) and (1.12) which is a
solution of problem (1.1), (1.2), and (u(t), . . . ,u(n−1)(t)) ∈A for t ∈ [0,T].

Proof . Steps 1–3 are the same as in the proof of Theorem 1.4 and guarantee the existence
of a w-solution u of problem (1.1), (1.2).

Step 4. Arguing as in step 4 of the proof of Theorem 1.4, we see that to show u ∈
ACn−1[0,T], it suffices to prove f (t,u(t), . . . ,u(n−1)(t)) ∈ L1(I0), where I0 = [t0 − η, t0 +
η]∩ [0,T]. Put M = V1 ∪V2 ∪V3, where

V1 =
{
t ∈ I0 : f (t, ·, . . . , ·) : R

n �→ R is not continuous
}

,

V2 =
{
t ∈ I0 : t is an isolated zero of u(n−1)},

V3 =
{
t ∈ I0 : u(n)(t) does not exist or (1.1) is not fulfilled

}
.

Then, meas(M) = 0. Choose an arbitrary s ∈ I0 \M, s �= t0.



Singularities in time variable 11

(a) Let u(n−1)(s) �= 0. Assume, for example, signu(n−1)(s) = 1. Then, there exists

�0 ∈ N such that for each � ≥ �0, we have signu(n−1)
k�

(s) = 1 and so, due to (1.9), (1.11),
(1.12), and s /∈ V1,

lim
�→∞

λ1 fk�
(
s,uk� (s), . . . ,u(n−1)

k�
(s)
)

sign u(n−1)
k�

(s) = λ1 f
(
s,u(s), . . . ,u(n−1)(s)

)
sign u(n−1)(s).

(1.21)

If signu(n−1)(s) = −1, we get (1.21) in the same way.
(b) Let s be an accumulation point of a set of zeros of u(n−1). Then, there exists

a sequence {sm} ⊂ I0 such that u(n−1)(sm) = 0 and limm→∞ sm = s. Since u(n−1) is
continuous on I0 \ {t0}, we get u(n−1)(s) = 0. Further,

lim
m→∞

u(n−1)
(
sm
)− u(n−1)(s)
sm − s = 0

and, by virtue of s /∈ V3, we get 0 = u(n)(s) = f (s,u(s), . . . ,u(n−1)(s)). Since s /∈ V1, we
have by (1.9), (1.11), and (1.12)

lim
�→∞

fk�
(
s,uk� (s), . . . ,u(n−1)

k�
(s)
)
signu(n−1)

k�
(s)

= f
(
s,u(s), . . . ,u(n−1)(s)

)
lim
�→∞

signu(n−1)
k�

(s) = 0.

So, we have proved that (1.21) is valid for a.e. s ∈ I0.
Assume that (1.6)(i) holds and t0 − η ≥ 0. Then, by (1.10), there exist c > 0 and

�0 ∈ N such that for each � ≥ �0,

∫ t0

t0−η
λ1 fk�

(
s,uk� (s), . . . ,u(n−1)

k�
(s)
)
signu(n−1)

k�
(s)ds = λ1

∫ t0

t0−η

∣
∣u(n−1)

k�
(s)
∣
∣′ds

= λ1
(∣∣u(n−1)

k�

(
t0
)∣∣− ∣∣u(n−1)

k�

(
t0 − η

)∣∣)

≤ c,

and hence, due to (1.20) and (1.21), we can use the Fatou lemma to deduce that

λ1 f
(
t,u(t), . . . ,u(n−1)(t)

)
signu(n−1)(t) ∈ L1

[
t0 − η, t0

]
,

which yields f (t,u(t), . . . ,u(n−1)(t) ∈ L1[t0−η, t0]. Similarly, if (1.6)(ii) holds and t0+η ≤
T , we deduce that f (t,u(t), . . . ,u(n−1)(t)) ∈ L1[t0, t0 + η]. �

Now, we will consider the boundary conditions (1.2) which are characterized by the
set B, where

B is a closed subset in Cn−1[0,T]. (1.22)

Theorem 1.6 (third principle for time singularities). Let (1.6), (1.9), (1.10), and (1.22)
hold. Assume that

{
u(n−1)
k

}
is equicontinuous at t0. (1.23)
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Then, there exist a function u ∈ Ω and a subsequence {uk�} ⊂ {uk} such that lim�→∞ ‖uk� −
u‖Cn−1 = 0, (u(t), . . . ,u(n−1)(t)) ∈ A for t ∈ [0,T] and u∈Cn−1[0,T] is a w-solution of
problem (1.1), (1.2).

If, in addition, (1.20) holds, then u ∈ ACn−1[0,T], that is, u is a solution of problem
(1.1), (1.2).

Proof

Step 1. Convergence of the sequence of approximate solutions {uk}.
By (1.10), there is a c > 0 such that

∥
∥uk

∥
∥
Cn−1 ≤ c for each k ∈ N. (1.24)

This implies that sequences {u(i)
k }, 0 ≤ i ≤ n − 2, are equicontinuous on [0,T]. Let us

prove that {un−1
k } is also equicontinuous on [0,T]. Choose an arbitrary ε > 0. By (1.23),

we can find δ0 > 0 such that for each k ∈ N and each t ∈ [t0 − δ0, t0 + δ0] ∩ [0,T], the
inequality

∣
∣u(n−1)

k (t)− u(n−1)
k

(
t0
)∣∣ < ε

holds. Therefore, for each t1, t2 ∈ [t0 − δ0, t0 + δ0]∩ [0,T], we have

∣
∣u(n−1)

k

(
t1
)− u(n−1)

k

(
t2
)∣∣ < 2ε. (1.25)

Now, let t1, t2 ∈K , where K = [0,T] \ (t0 − δ0, t0 + δ0). Put

h(t) = sup
{∣∣ f

(
t, x0, . . . , xn−1

)∣∣ :
∣
∣xi

∣
∣ ≤ c, i = 0, . . . ,n− 1

}
.

Then, h ∈ L1(K) and we can find δ1 > 0 such that

∣
∣t1 − t2

∣
∣ < δ1 �⇒

∣
∣
∣
∣

∫ t2

t1
h(t)dt

∣
∣
∣
∣ < ε.

By (1.24), we have | fk(t,uk(t), . . . ,u(n−1)
k (t))| ≤ h(t) a.e. on K for each sufficiently large

k ∈ N. Hence, we get

∣
∣t1 − t2

∣
∣ < δ1 �⇒

∣
∣u(n−1)

k

(
t1
)− u(n−1)

k

(
t2
)∣∣ < ε. (1.26)

Finally, let t1 ∈ (t0 − δ0, t0 + δ0) ∩ [0,T], t2 ∈ K , t2 > t0 + δ0. Put δ = min{δ0, δ1} and

assume that |t1 − t2| < δ. Then, by (1.25) and (1.26), |u(n−1)
k (t1) − u(n−1)

k (t2)| < 3ε. For

t2 < t0 − δ0, we argue similarly. So, we have proved that {u(n−1)
k } is equicontinuous on

[0,T]. By the Arzelà-Ascoli theorem, there exists a function u ∈ Ω and a subsequence
{uk�} ⊂ {uk} such that

lim
�→∞

∥
∥uk� − u

∥
∥
Cn−1 = 0,

(
u(t), . . . ,u(n−1)(t)

) ∈A for t ∈ [0,T].
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Moreover, u ∈ B ⊂ Cn−1[0,T] and, by Theorem 1.4, u is a w-solution of problem (1.1),
(1.2).

Step 2. If we assume, in addition, that (1.20) holds, then to prove that u ∈ ACn−1[0,T],
we can argue as in step 4 of the proof of Theorem 1.5. �

1.3. Singularities in space variables

A function f has a singularity in one of its space variables (in short, a space singularity)
if f is not continuous in this variable on a region, where f is studied. Motivated by the
equation

u′′ + ψ(t)u−λ = 0,

where λ ∈ (0,∞), we will consider the following case of discontinuity. Let Ai ⊂ R be
a closed interval and let ci ∈ Ai, Di = Ai \ {ci}, i = 0, 1, . . . ,n − 1. Let us choose
j ∈ {0, 1, . . . ,n− 1} and assume that

lim sup
xj→cj , xj∈D j

∣
∣ f
(
t, x0, . . . , xj , . . . , xn−1

)∣∣ = ∞ for a.e. t ∈ [0,T]

and for some xi ∈Di, i = 0, 1, . . . ,n− 1, i �= j.
(1.27)

If we put A =A0×· · ·×An−1, we see that f is not continuous on A (for a.e. t ∈ [0,T]).
Consequently, f has a singularity in its space variable xj , namely, at the value cj . Let u be
a solution of (1.1), (1.2) and let a point tu ∈ [0,T] be such that u( j)(tu) = cj . Then, tu is
called a singular point corresponding to the solution u. Now, let u be a w-solution of (1.1),
(1.2). Assume that a point tu ∈ [0,T] is such that u(n−1)(tu) does not exist or u( j)(tu) = cj .
Then, tu is called a singular point corresponding to the w-solution u.

Example 1.7. Let α ∈ (0,∞), h1,h2,h3 ∈ L1[0,T], h2 �= 0, h3 �= 0 a.e. on [0,T]. Consider
the Dirichlet problem

u′′ + h1(t) +
h2(t)
u(t)

+
h3(t)

∣
∣u′(t)

∣
∣α = 0, u(0) = u(T) = 0. (1.28)

Let u be a solution of (1.28). Then, 0 and T are singular points corresponding to u.
Moreover, there exists at least one point tu ∈ (0,T) satisfying u′(tu) = 0, which means
that tu is also a singular point corresponding to u. Note that (in contrast to the points 0
and T) we do not know the location of tu in (0,T).

In accordance with this example, we will distinguish two types of singular points
corresponding to solutions or to w-solutions: singular points of type I, where we know
their location in [0,T], and singular points of type II whose location is not known.

Similarly to Section 1.2, we will establish sufficient conditions for approximate se-
quences of regular problems and of their solutions. Using the properties of those approx-
imate solutions, we will pass to a limit, thus obtaining a solution or a w-solution of



14 Existence principles for singular problems

the original singular problem (1.1), (1.2). Let Ai ⊂ R, i = 0, . . . ,n− 1, be closed intervals
and let A =A0 × · · · ×An−1. Consider problem (1.1), (1.2) on [0,T]×A. Denote

Di =Ai \
{
ci
}

, i = 0, . . . ,n− 1.

First, we will assume that f has one singularity at each xi, namely, at the values ci ∈ Ai,
i = 0, . . . ,n− 2. Hence, we assume

D =D0 × · · · ×Dn−2 ×An−1,

f ∈ Car
(
[0,T]×D

)
satisfies (1.27) for j = 0, . . . ,n− 2.

(1.29)

In the next two theorems, we work with the notion of uniform integrability which
can be found in Appendix A.

Theorem 1.8 (first principle for space singularities). Let (1.8), (1.10), and (1.29) hold.
(i) Assume that

for each k ∈ N, for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈D ,

fk
(
t, x0, . . . , xn−1

) = f
(
t, x0, . . . , xn−1

)

if
∣
∣xi − ci

∣
∣ ≥ 1

k
, 0 ≤ i ≤ n− 1.

(1.30)

Then assertion (1.11) is valid.

(ii) If, moreover, the set of singular points

S = {
s ∈ [0,T] : u(i)(s) = ci for i ∈ {0, . . . ,n− 2}} is finite,

then assertion (1.12) is valid for J = [0,T] \ S and if

the sequence
{
fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
)}

is uniformly integrable on each interval [a, b] ⊂ J ,
(1.31)

then u ∈ ACn−1
loc (J) is a w-solution of problem (1.1), (1.2).

(iii) If, in addition, there exists a function ψ ∈ L1[0,T] such that

fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
) ≥ ψ(t) for a.e. t ∈ [0,T] and all � ∈ N,

then u ∈ ACn−1[0,T] and u is a solution of problem (1.1), (1.2).

Proof

Step 1. Convergence of the sequence of approximate solutions.
As in step 1 of the proof of Theorem 1.4, we derive from (1.10) that (1.11) holds and

u ∈ B ⊂ Cn−2[0,T]. Assume that S is finite and choose an arbitrary [a, b] ⊂ J . Then,
there exist k0 ∈ N and h ∈ L1[0,T] such that for each k ∈ N, k ≥ k0,

∣
∣u(i)

k (t)− ci
∣
∣ ≥ 1

k
for t ∈ [a, b], i ∈ {0, . . . ,n− 1}
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and, for a.e. t ∈ [a, b],

∣
∣ fk

(
t,uk(t), . . . ,u(n−1)

k (t)
)∣∣ = ∣

∣ f (t,uk(t), . . . ,u(n−1)
k (t)

)∣∣ ≤ h(t).

So, for each ε > 0, there exists δ > 0 such that the implication

∣
∣t2 − t1

∣
∣ < δ �⇒ ∣

∣u(n−1)
k

(
t2
)− u(n−1)

k

(
t1
)∣∣ ≤

∣
∣
∣
∣

∫ t2

t1
h(t)dt

∣
∣
∣
∣ < ε

is valid for t1, t2 ∈ [a, b], k ≥ k0. Thus, the sequence {u(n−1)
k } is equicontinuous on [a, b].

By (1.10), the sequence {u(n−1)
k } is bounded on [0,T]. Using the Arzelà-Ascoli theorem

and the diagonalization theorem, we deduce that the subsequence {uk�} in (1.11) can be
chosen so that it fulfils (1.12).

Step 2. Convergence of the sequence of approximate nonlinearities.
Consider the set

V1 =
{
t ∈ [0,T] : f (t, ·, . . . , ·) : D �→ R is not continuous

}
.

We can see that meas(V1) = 0. By (1.30), there exists V2 ⊂ [0,T] such that meas(V2) = 0
and for each k ∈ N, each t ∈ [0,T] \V2, and each (x0, . . . , xn−1) ∈D , the equality

fk
(
t, x0, . . . , xn−1

) = f
(
t, x0, . . . , xn−1

)

holds if |xi − ci| ≥ 1/k, 0 ≤ i ≤ n− 1. Denote U = S ∪V1 ∪V2 and choose an arbitrary
t ∈ [0,T] \U. By (1.11) and (1.12), there exists �0 ∈ N such that for each � ∈ N, � ≥ �0,

∣
∣u(i)(t)− ci

∣
∣ >

1
k�

,
∣
∣u(i)

k�
(t)− ci

∣
∣ ≥ 1

k�
for i ∈ {0, . . . ,n− 1}.

According to (1.30), we have

fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
) = f

(
t,uk� (t), . . . ,u(n−1)

k�
(t)
)

and, by (1.11), (1.12),

lim
�→∞

fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
) = f

(
t,u(t), . . . ,u(n−1)(t)

)
. (1.32)

Since meas(U) = 0, equality (1.32) holds for a.e. t ∈ [0,T].

Step 3. The function u is a w-solution of problem (1.1), (1.2).
Choose an arbitrary interval [a, b] ⊂ J . By virtue of (1.31) and (1.32), we can use the

Vitali convergence theorem to show that

f
(
t,u(t), . . . ,u(n−1)(t)

) ∈ L1[a, b]

and that if we pass to the limit in the sequence

u(n−1)
k�

(t) = u(n−1)
k�

(a) +
∫ t

a
fk�
(
s,uk� (s), . . . ,u(n−1)

k�
(s)
)
ds, t ∈ [a, b],



16 Existence principles for singular problems

we get

u(n−1)(t) = u(n−1)(a) +
∫ t

a
f
(
s,u(s), . . . ,u(n−1)(s)

)
ds, t ∈ [a, b].

Since [a, b] ⊂ J is an arbitrary interval, we conclude that u ∈ ACn−1
loc (J) satisfies (1.1) for

a.e. t ∈ [0,T].

Step 4. The function u is a solution of problem (1.1), (1.2).
Let, moreover,

fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
) ≥ ψ(t) for a.e. t ∈ [0,T] and all � ∈ N.

Assumption (1.10) yields the existence of c > 0 such that

∫ T

0
fk�
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
)
dt = u(n−1)

k�
(T)− u(n−1)

k�
(0) ≤ c.

Therefore, by (1.32) and the Fatou lemma, f (t,u(t), . . . ,u(n−1)(t)) ∈ L1[0,T] and u ∈
ACn−1[0,T]. �

Now we will consider problem (1.1), (1.2) on [0,T]×A provided A = A0 × · · · ×
An−1 and f has space singularities at each xi, namely, at the values ci ∈Ai, i = 0, . . . ,n−1.
So, we assume Di =Ai \ {ci}, i = 0, . . . ,n− 1,

f ∈ Car
(
[0,T]×D

)
satisfies (1.27) for j = 0, . . . ,n− 1,

where D =D0 × · · · ×Dn−2 ×Dn−1.
(1.33)

Theorem 1.9 (second principle for space singularities). Let (1.10), (1.22), (1.30), and
(1.33) hold. Assume that the sequence

{
fk
(
t,uk(t), . . . ,u(n−1)

k (t)
)}

is uniformly integrable on [0,T]. (1.34)

Then there exist a function u ∈ Ω and a subsequence {uk�} ⊂ {uk} such that lim�→∞ ‖uk� −
u‖Cn−1 = 0 and (u(t), . . . ,u(n−1)(t)) ∈A for t ∈ [0,T].

If, moreover, the functions u(i) − ci, 0 ≤ i ≤ n− 1, have at most a finite number of zeros
in [0,T], then u ∈ ACn−1[0,T] is a solution of (1.1), (1.2).

Proof

Step 1. Convergence of the sequence of approximate solutions.
Assumption (1.34) yields that for each ε > 0, there exists δ > 0 such that for each

t1, t2 ∈ [0,T] and each k ∈ N, the implication

∣
∣t2 − t1

∣
∣<δ �⇒∣∣u(n−1)

k

(
t2
)− u(n−1)

k

(
t1
)∣∣=

∣
∣
∣
∣

∫ t2

t1
fk
(
t,uk(t), . . . ,u(n−1)

k (t)
)
dt
∣
∣
∣
∣<ε
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is valid. Therefore, the sequence {u(n−1)
k } is equicontinuous on [0,T]. This, together with

(1.10) and the Arzelà-Ascoli theorem, guarantees the existence of a subsequence {uk�} of
{uk} such that

lim
�→∞

∥
∥uk� − uk

∥
∥
Cn−1 = 0.

Since A is closed in Rn and B is closed in Cn−1[0,T], we get

(
u(t), . . . ,u(n−1)(t)

) ∈A for t ∈ [0,T], u ∈ B.

Step 2. As in step 2 in the proof of Theorem 1.6, we get that (1.32) is valid.

Step 3. The function u is a solution of problem (1.1), (1.2).
By virtue of (1.7), we have for � ∈ N,

u(n)
k�

(t) = f
(
t,uk� (t), . . . ,u(n−1)

k�
(t)
)

for a.e. t ∈ [0,T],

u(n−1)
k�

(t) = u(n−1)
k�

(0) +
∫ t

0
fk�
(
s,uk� (s), . . . ,u(n−1)

k�
(s)
)
ds for t ∈ [0,T].

By (1.32), (1.34), and the Vitali convergence theorem, we can pass to the limit and get

u(n−1)(t) = u(n−1)(0) +
∫ t

0
f
(
s,u(s), . . . ,u(n−1)(s)

)
ds for t ∈ [0,T]

with f (t,u(t), . . . ,u(n−1)(t)) ∈ L1[0,T]. Therefore, u ∈ ACn−1[0,T] satisfies (1.1) a.e. on
[0,T]. �

All the above-mentioned existence principles (Theorems 1.4–1.6, 1.8, and 1.9 require
condition (1.10) and so, in order to apply them, we need global a priori estimates for all

approximate solutions uk and for all their derivatives u(i)
k , 1 ≤ i ≤ n − 1. We can see

in literature that local a priori estimates of u(n−1)
k can be sufficient for the existence of

w-solutions (see, e.g., Kiguradze and Shekhter [120]). However, such existence results
give w-solutions with, in general, unbounded (n − 1)st derivative. Here, our main goal
is to prove the existence of solutions. To this purpose, only w-solutions, whose (n − 1)st
derivatives are bounded on the set where they are defined, are useful. Therefore, condition
(1.10) appears in all our principles.

Bibliographical notes

The proof of Theorem 1.4 is given in Rachůnková, Staněk, and Tvrdý [165]. Theorems
1.5, 1.6, and 1.8 are new. Theorem 1.9 was published in [165] and its modifications can
be found in Rachůnková and Staněk [161–163].





2
Focal problems

Focal problems have received large attention (see, e.g., Agarwal [2]). This is due to the fact
that these types of problems are basic, in the sense that the methods employed in their
study are extendable to other types of problems. Here, we will consider the nth order
differential equation with (p,n− p) right focal conditions:

u(i)(0) = 0, 0 ≤ i ≤ p − 1, u( j)(T) = 0, p ≤ j ≤ n− 1 (2.1)

or with (n− p, p) left focal conditions

u(i)(0) = 0, p ≤ i ≤ n− 1, u( j)(T) = 0, 0 ≤ j ≤ p − 1, (2.2)

where n ∈ N, n ≥ 2, and p ∈ {1, . . . ,n− 1} is fixed.
Using the existence principles of Chapter 1, we will investigate both the focal prob-

lems with time singularities and the focal problems with space singularities.

2.1. Time singularities

First, consider a (1,n− 1) left focal problem

u(n) = f
(
t,u, . . . ,u(n−1)), (2.3)

u(n−1)(0) = 0, u(i)(T) = 0, 0 ≤ i ≤ n− 2. (2.4)

We will assume that

f ∈ Car
(
[0,T)×R

n
)

has a time singularity at t = T (2.5)

and prove the existence result for problem (2.3), (2.4) by means of Theorem 1.6 (third
principle for time singularities). Since we impose no additional conditions on solutions
of (2.3), (2.4), we have

A = R
n, B = {

u ∈ Cn−1[0,T] : u satisfies (2.4)
}
.
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Theorem 2.1. Assume (2.5) holds and let

f
(
t, x0, . . . , xn−1

)
sign xn−1 ≤ −h(t)

∣
∣xn−1

∣
∣ +

n−1∑

j=0

hj(t)
∣
∣xj

∣
∣αj

for a.e. t ∈ [0,T] and all
(
x0, . . . , xn−1

) ∈ R
n,

(2.6)

where αj ∈ (0, 1), hj ∈ L1[0,T], j = 0, . . . ,n − 1, are nonnegative and h ∈ Lloc[0,T) is
nonnegative and satisfies

∫ T

T−ε
h(s)ds = ∞ for each sufficiently small ε > 0. (2.7)

Then, problem (2.3), (2.4) has a solution u ∈ ACn−1[0,T].

Proof

Step 1. Approximate regular problems.
For s, ρ ∈ (0,∞), put

χ(s, ρ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s ∈ [0, ρ],

2ρ− s
ρ

if s ∈ (ρ, 2ρ),

0 if s ≥ 2ρ.

Further, for k ∈ N, (x0, . . . , xn−1) ∈ Rn and for a.e. t ∈ [0,T], define

fk
(
t, x0, . . . , xn−1

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
(
t, x0, . . . , xn−1

)
if t ∈

[
0,T − 1

k

]
,

0 if t ∈
(
T − 1

k
,T
]

,
(2.8)

gk
(
t, x0, . . . , xn−1

) = χ

( n−1∑

i=0

∣
∣xi

∣
∣, ρ

)

fk
(
t, x0, . . . , xn−1

)
. (2.9)

Choose a k ∈ N and consider auxiliary approximate regular equations

u(n) = fk
(
t,u, . . . ,u(n−1)), (2.10)

u(n) = gk
(
t,u, . . . ,u(n−1)). (2.11)

For a.e. t ∈ [0,T], define

mk(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup

{
∣
∣ f
(
t, x0, . . . , xn−1

)∣∣ :
n−1∑

i=0

∣
∣xi

∣
∣ ≤ 2ρ

}

if t ≤ T − 1
k

,

0 if t > T − 1
k
.

Then, mk ∈ L1[0,T] and gk(t, x0, . . . , xn−1)| ≤ mk(t) for a.e. t ∈ [0,T]. Since the homo-
geneous problem u(n) = 0, (2.4) has only the trivial solution, we get by the Fredholm-type
existence theorem that problem (2.11), (2.4) has a solution uk ∈ AC(n−1)[0,T].
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Step 2. Estimates of approximate solutions uk.
Let us fix k ∈ N and assume that

max
{∣∣u(n−1)

k (t)
∣
∣ : t ∈ [0,T]

} = ∣
∣u(n−1)

k (b)
∣
∣ = r > 0.

By condition (2.4), we have b ∈ (0,T] and we can find a ∈ [0, b) such that

∣
∣u(n−1)

k (a)
∣
∣ = 0,

∣
∣u(n−1)

k (t)
∣
∣ > 0 for t ∈ (a, b].

Since u(n−1)
k (t) = u(n−1)

k (T − 1/k) for t ∈ [T − 1/k,T], we can assume that b ≤ T − 1/k.
By virtue of assumption (2.6), we get for a.e. t ∈ [a, b],

u(n)
k (t) sign u(n−1)

k (t) = χ

( n−1∑

i=0

∣
∣u(i)

k (t)
∣
∣, ρ

)

f
(
t,uk(t), . . . ,u(n−1)

k (t)
)

sign u(n−1)
k (t)

≤ χ

( n−1∑

i=0

∣
∣u(i)

k (t)
∣
∣, ρ

) n−1∑

j=0

hj(t)
∣
∣u

( j)
k (t)

∣
∣αj ≤

n−1∑

j=0

hj(t)
∣
∣u

( j)
k (t)

∣
∣αj ,

and hence

∣
∣u(n−1)

k (t)
∣
∣′ ≤

n−1∑

j=0

hj(t)
∣
∣u

( j)
k (t)

∣
∣αj . (2.12)

Conditions (2.4) yield ‖u( j)
k ‖∞ ≤ rTn− j−1, j = 0, . . . ,n− 2. Integrating inequality (2.12)

over [a, b], we obtain

r = ∣
∣u(n−1)

k (b)
∣
∣ ≤

n−1∑

j=0

Tαj (n− j−1)rαj
∫ T

0
hj(t)dt,

1 ≤
n−1∑

j=0

Tαj (n− j−1)rαj−1
∥
∥hj

∥
∥

1 =: F(r).

We have limx→∞ F(x) = 0, which implies the existence of r∗ > 0 such that F(x) < 1 for all
x ≥ r∗. Therefore, by (2.1), the estimate r < r∗ must be true. Since r∗ does not depend
on uk (but just on T , hj , αj), we get

∥
∥uk

∥
∥
Cn−1 < r∗

n−1∑

j=0

Tn− j−1 for each k ∈ N.

If we define

ρ = r∗
n−1∑

j=0

Tn− j−1, Ω = {
x ∈ Cn−1[0,T] : ‖x‖Cn−1 ≤ ρ

}
,

we see that uk is a solution of (2.10) and uk ∈ Ω for each k ∈ N. We have proved that
conditions (1.9) and (1.10) of Theorem 1.6 If we define are valid.
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Step 3. Properties of approximate solutions.
According to (2.6) and (2.8), we get for a.e. t ∈ [0,T − 1/k],

fk
(
t,uk(t), . . . ,u(n−1)

k (t)
)
signu(n−1)

k (t) ≤
n−1∑

j=0

hj(t)
∣
∣u

( j)
k (t)

∣
∣αj < (ρ + 1)

n−1∑

j=0

hj(t).

Put

ψ(t) = −(ρ + 1)
n−1∑

j=1

hj(t) for a.e. t ∈ [0,T].

Then ψ ∈ L1[0,T], ψ ≤ 0 a.e. on [0,T], and

− fk
(
t,uk(t), . . . ,u(n−1)

k (t)
)
signu(n−1)

k (t) ≥ ψ(t) for a.e. t ∈ [0,T]. (2.13)

Due to (2.7), condition (1.6)(i) with t0 = T is satisfied.
Put λ1 = −1 and choose an arbitrary η ∈ (0,T). Then, by (2.13), we get (1.20).

Moreover, condition (2.4) yields (1.22).

Now, let us put vk(t) = u(n−1)
k (t) for t ∈ [0,T]. Then for each k ∈ N, k > 1/η,

the function vk satisfies (A.20) with h∗ = 0 a.e. on [T − 1/k,T]. Since uk ∈ Ω, we
can find β0 ∈ (0, ρ) such that vk fulfils condition (A.18). By (2.6), we get (A.19), where
g∗(t) = (ρ+1)

∑n−1
j=0 hj(t). Hence, by Criterion A.11, the sequence {vk} is equicontinuous

at T from the left. Therefore, {u(n−1)
k } satisfies (1.23) with t0 = T and, by Theorem 1.6,

there exists a solution u ∈ ACn−1[0,T] of problem (2.3), (2.4). �

Example 2.2. Let c ∈ R, α ∈ [1,∞). Then the function

f
(
t, x0, . . . , xn−1

) = −xn−1

tα
+

c√
t

n−1∑

j=0

x2/3
j

satisfies (2.5) and (2.6), where hj(t) = |c|/
√
t, h(t) = 1/tα, αj = 2/3 for j = 0, . . . ,n − 1.

Therefore, the corresponding problem (2.3), (2.4) has a solution u ∈ ACn−1[0,T].

2.2. Space singularities

Let R− = (−∞, 0) and R+ = (0,∞). We study the singular (p,n− p) right focal problem

(−1)n−pu(n) = f
(
t,u, . . . ,u(n−1)), (2.14)

u(i)(0) = 0, 0 ≤ i ≤ p − 1, u( j)(T) = 0, p ≤ j ≤ n− 1, (2.15)

where f ∈ Car([0,T]×D) with

D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R
p+1
+ ×R− ×R+ ×R− × · · · ×R+︸ ︷︷ ︸

n

if n− p is odd,

R
p+1
+ ×R− ×R+ ×R− × · · · ×R−︸ ︷︷ ︸

n

if n− p is even,
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and f may be singular at the value 0 of any of its space variables. Notice that if f is
positive, then the singular points corresponding to the solutions of problem (2.14), (2.15)
are of type I. The Green function of problem u(n) = 0, (2.15), is presented in Agarwal [1],
Agarwal and Usmani [23, 24], and Agarwal, O’Regan, and Wong [21].

We introduce the following assumptions:

f ∈ Car
(
[0,T]×D) and there exist positive constants a, r such that

a(T − t)r ≤ f
(
t, x0, . . . , xn−1

)
(2.16)

for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈D ;

the inequality

f
(
t, x0, . . . , xn−1

) ≤ h

(

t,
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−1∑

j=0

ωj
(∣∣xj

∣
∣)

holds for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈D , where

h ∈ Car
(
[0,T]× [0,∞)

)
is positive and nondecreasing

in the second variable,

ωj : R+ �→ R+ is nonincreasing for 0 ≤ j ≤ n− 1,

lim sup
v→∞

1
v

∫ T

0
h(t,Vv)dt < 1, where V =

⎧
⎪⎨

⎪⎩

Tn − 1
T − 1

if T �= 1,

n if T = 1,
∫ 1

0
ωj
(
tr+n− j

)
dt <∞ for 0 ≤ j ≤ n− 1.

(2.17)

Substituting t = T − s in (2.14), (2.15), we get the singular (n− p, p) left focal problem

(−1)pu(n) = f̃
(
s,u, . . . ,u(n−1)), (2.18)

u(i)(0) = 0, p ≤ i ≤ n− 1, u( j)(T) = 0, 0 ≤ j ≤ p − 1, (2.19)

where f̃ ∈ Car([0,T]×D∗) fulfils

f̃
(
t, x0, x1, . . . , xn−1

) = f
(
T − t, x0,−x1, . . . , (−1)n−1xn−1

)

for a.e. t ∈ [0,T] and all (x0, . . . , xn−1) ∈D∗. Here

D∗ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R+ ×R− ×R+ × · · · ×R− ×R
n−p
+︸ ︷︷ ︸

n

if p is even,

R+ ×R− ×R+ × · · · ×R+ ×R
n−p
−︸ ︷︷ ︸

n

if p is odd.
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The corresponding assumptions for problem (2.18), (2.19) have the following form:

f̃ ∈ Car
(
[0,T]×D∗

)
and there exist positive constants a, r such that

atr ≤ f̃
(
t, x0, . . . , xn−1

)
(2.20)

for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈D∗;

the inequality

f̃
(
t, x0, . . . , xn−1

) ≤ h

(

t,
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−1∑

j=0

ωj
(∣∣xj

∣
∣)

holds for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈D∗,

where the functions h and ωj , 0 ≤ j ≤ n− 1, have

the properties given in (2.17).

(2.21)

A priori estimates

Let us choose positive constants a and r and define the set

B(r, a) = {
u ∈ ACn−1[0,T] : u fulfils (2.15) and (2.23)

}
, (2.22)

where

(−1)n−pu(n)(t) ≥ a(T − t)r for a.e. t ∈ [0,T]. (2.23)

The next two lemmas are devoted to the study of the set B(r, a). The results obtained in
this part will be used in the proofs of existence results for auxiliary regular problems.

Lemma 2.3. There exists c > 0 such that the inequalities

u( j)(t) ≥ ctr+n− j for 0 ≤ j ≤ p − 1, (2.24)

(−1) j−pu( j)(t) ≥ c(T − t)r+n− j for p ≤ j ≤ n− 1 (2.25)

are true for t ∈ [0,T] and each u ∈ B(r, a).

Proof . Put

c = a

(r + 1)(r + 2) · · · (r + n)
.

Then, integrating inequality (2.23) and using condition (2.15), we get step by step that
(2.25) holds on [0,T] and that

u(p−1)(t) ≥ c
(
Tr+n−p+1 − (T − t)r+n−p+1) for t ∈ [0,T]. (2.26)

Set ν = r + n − p + 1 and consider the function ϕ(t) = Tν − (T − t)ν − tν on [0,T].
Since ν > 2, ϕ(0) = ϕ(T) = 0, and ϕ is concave on [0,T], we have ϕ > 0 on (0,T) and



Space singularities 25

thus Tr+n−p+1− (T − t)r+n−p+1 > tr+n−p+1 holds on (0,T), which together with inequality
(2.26) yields

u(p−1)(t) ≥ ctr+n−p+1 for t ∈ [0,T]. (2.27)

Now, using (2.15) again and integrating (2.27), we successively obtain inequality (2.24)
for t ∈ [0,T]. �

Lemma 2.4. Let functions h and ωj , 0 ≤ j ≤ n − 1, have the properties given in condition
(2.17). Then, there exists a positive constant S such that for each function u ∈ B(r, a)
satisfying

(−1)n−pu(n)(t) ≤ h

(

t,n +
n−1∑

j=0

∣
∣u( j)(t)

∣
∣
)

+
n−1∑

j=0

[
ωj(1) + ωj

(∣∣u( j)(t)
∣
∣)] (2.28)

for a.e. t ∈ [0,T], the estimate
∥
∥u(n−1)

∥
∥∞ < S (2.29)

is valid.

Proof . Given a function u ∈ B(r, a) which satisfies (2.28) a.e. on [0,T], we put ρ =
‖u(n−1)‖∞. Then, we integrate the inequality

∣
∣u(n−1)(t)

∣
∣ ≤ ρ for t ∈ [0,T],

and due to condition (2.15), we successively get
∥
∥u( j)

∥
∥ ≤ ρTn− j−1, 0 ≤ j ≤ n− 2. (2.30)

Further, we integrate (2.28) over [t,T] ⊂ [0,T] and in view of (2.30), we see that the
inequality

ρ ≤
∫ T

0
h

(

t,n + ρ
n−1∑

j=0

Tn− j−1

)

dt +
n−1∑

j=0

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt + T

n−1∑

j=0

ωj(1) (2.31)

holds. In order to find S fulfilling inequality (2.29), we need to estimate the integrals

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt, 0 ≤ j ≤ n− 1.

For this purpose, we distinguish two cases.

Case 1. Let 0 ≤ j ≤ p − 1. Then, by Lemma 2.3, there exists c > 0 such that

∫ T

0
ωj
(∣∣x( j)(t)

∣
∣)dt ≤

∫ T

0
ωj
(
ctr+n− j

)
dt =

∫ T

0
ωj
((
cj t
)r+n− j)

dt, (2.32)

where c
r+n− j
j = c. Therefore,

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt ≤ 1

cj

∫ cjT

0
ωj
(
tr+n− j

)
dt =: Cj.
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Case 2. Let p ≤ j ≤ n− 1. Then, by Lemma 2.3 and inequality (2.25),

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt ≤

∫ T

0
ωj
(
c(T − t)r+n− j)dt =

∫ T

0
ωj
(
ctr+n− j

)
dt = Cj ,

that is, (2.32) holds for p ≤ j ≤ n− 1, too.
After inserting (2.32) into (2.31), we obtain

ρ ≤
∫ T

0
h(t,n + ρV)dt +

n−1∑

j=0

[
Cj + Tωj(1)

]
, (2.33)

where V is given in assumption (2.17). Since

lim sup
v→∞

1
v

∫ T

0
h(t,Vv)dv < 1,

by our assumption, there exists a positive constant S such that

∫ T

0
h(t,n +Vv)dt +

n−1∑

j=0

[
Cj + Tωj(1)

]
< v,

whenever v ≥ S. This together with (2.33) shows that ρ < S, which proves inequality
(2.29). �

Approximate regular problems

Let S be the positive constant from the assertion of Lemma 2.4. Form ∈ N, 0 ≤ j ≤ n−1,
and v ∈ R, put

ρj = 1 + STn− j−1, (2.34)

σj

(
1
m

, v
)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
m

sign v if |v| < 1
m

,

v if
1
m
≤ |v| ≤ ρj ,

ρj sign v if ρj < |v|.

(2.35)

Let f ∗ denote the extension of f onto [0,T]× (R \ {0})n as an even function in each of
its space variables xj , 0 ≤ j ≤ n− 1, and for a.e. t ∈ [0,T] and for all (x0, . . . , xn−1) ∈ Rn,
m ∈ N, define an auxiliary function

fm
(
t, x0, . . . , xn−1

) = f ∗
(
t, σ0

(
1
m

, x0

)
, . . . , σn−1

(
1
m

, xn−1

))
. (2.36)

Consider the sequence of regular differential equations:

(−1)n−pu(n) = fm
(
t,u, . . . ,u(n−1)) (2.37)

depending on m ∈ N.
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Lemma 2.5. Let assumptions (2.16) and (2.17) hold, let B(r, a) be given in (2.22), and
let S be from Lemma 2.4. Then, for each m ∈ N, problem (2.37), (2.15) has a solution
um ∈ B(r, a) and

∥
∥u(n−1)

m

∥
∥∞ < S. (2.38)

Proof . Fix an arbitrarym ∈ N. Assumption (2.16) and formula (2.36) yield fm ∈ Car([0,
T]×Rn). Put

gm(t) = sup
{∣
∣ f ∗

(
t, x0, . . . , xn−1

)∣∣ :
1
m
≤ ∣
∣xj

∣
∣ ≤ ρj , 0 ≤ j ≤ n− 1

}
,

where ρj , 0 ≤ j ≤ n− 1, are given by (2.34). Then gm ∈ L1[0,T] and

∣
∣ fm

(
t, x0, . . . , xn−1

)∣∣ ≤ gm(t)

for a.e. t ∈ [0,T] and all (x0, . . . , xn−1) ∈ Rn.
Since the problem (−1)n−pu(n) = 0, (2.15) has only the trivial solution, the Fredholm-

type existence theorem implies that problem (2.37), (2.15) has a solution um ∈ ACn−1[0,
T]. Further, by assumptions (2.16) and (2.17), we see that the inequalities

a(T − t)r ≤ fm
(
t, x0, . . . , xn−1

)
, (2.39)

fm
(
t, x0, . . . , xn−1

) ≤ h

(

t,n +
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−1∑

j=0

[
ωj(1) + ωj

(∣∣xj
∣
∣)] (2.40)

are satisfied for a.e. t ∈ [0,T] and all (x0, . . . , xn−1) ∈ Rn. Notice that inequality (2.40)
follows from the relations

∣
∣
∣
∣σj

(
1
m

, xj

)∣∣
∣
∣ ≤ 1 +

∣
∣xj

∣
∣, ωj

(∣∣
∣
∣σj

(
1
m

, xj

)∣∣
∣
∣

)
≤ ωj(1) + ωj

(∣∣xj
∣
∣),

0 ≤ j ≤ n− 1,

and the facts that h is nondecreasing in the second variable and ωj is nonincreasing.
In view of (2.39), we have um ∈ B(r, a) and therefore from (2.40) and Lemma 2.4, we
conclude (2.38). �

Existence results

First, we consider the singular (p,n− p) right focal problem (2.14), (2.15) with 1 ≤ p ≤
n− 1.

Theorem 2.6. Let assumptions (2.16) and (2.17) hold. Then, there exists a solution u ∈
ACn−1[0,T] of problem (2.14), (2.15) such that

u( j) > 0 on (0,T] for 0 ≤ j ≤ p − 1,

(−1) j−pu( j) > 0 on [0,T) for p ≤ j ≤ n− 1.
(2.41)
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Proof . According to Lemma 2.5, for each m ∈ N, problem (2.37), (2.15) has a solution
um ∈ B(r, a) satisfying inequality (2.38), where S is a positive constant independent of
m. By Lemma 2.3, there exists c > 0 such that for m ∈ N and t ∈ [0,T], we have

u
( j)
m (t) ≥ ctr+n− j for 0 ≤ j ≤ p − 1, (2.42)

(−1) j−pu( j)
m (t) ≥ c(T − t)r+n− j for p ≤ j ≤ n− 1. (2.43)

Condition (2.15) and inequality (2.29) yield

∥
∥u

( j)
m
∥
∥∞ < STn− j−1 < ρj , 0 ≤ j ≤ n− 1. (2.44)

Here, ρj is defined in formula (2.34), We show that { fm(t,um(t), . . . ,u(n−1)
m (t))} is uni-

formly integrable on [0,T]. By assumption (2.16) and inequalities (2.40), (2.42)–(2.44),
we have

0 ≤ fm
(
t,um(t), . . . ,u(n−1)

m (t)
) ≤ h(t,n + SV) + q(t) +

n−1∑

j=0

ωj(1) (2.45)

for a.e. t ∈ [0,T] and all m ∈ N, where

q(t) =
p−1∑

j=0

ωj
(
ctr+n− j

)
+
n−1∑

j=p
ωj
(
c(T − t)r+n− j).

Put cj = r+n− j√c for 0 ≤ j ≤ n− 1. Then,

∫ T

0
q(t)dt =

p−1∑

j=0

1
cj

∫ cjT

0
ωj
(
tr+n− j

)
dt +

n−1∑

j=p

1
cj

∫ cjT

0
ωj
(
tr+n− j

)
dt.

By assumption (2.18), the functions h(t,n + VS) and ωj(tr+n− j), 0 ≤ j ≤ n − 1, belong
to L1[0,T]. Therefore, h(t,n+ SV) + q(t) ∈ L1[0, t] and from (2.45) and Criterion A.1, it

follows that { fm(t,um(t), . . . ,u(n−1)
m (t))} is uniformly integrable on [0,T]. Hence, the first

assertion in Theorem 1.9 guarantees the existence of a subsequence {um′ } of {um} which
converges in Cn−1[0,T] to a function u ∈ Cn−1[0,T]. Letting m′ → ∞ in inequalities
(2.42) and (2.43) (with m′ instead of m) yields

u( j)(t) ≥ ctr+n− j for 0 ≤ j ≤ p − 1,

(−1) j−pu( j)(t) ≥ c(T − t)r+n− j for p ≤ j ≤ n− 1

for t ∈ [0,T] and so u satisfies inequality (2.41). We see that u( j) has exactly one zero on
[0,T] for 0 ≤ j ≤ n − 1. Hence, u ∈ ACn−1[0,T] and u is a solution of problem (2.14),
(2.15) by Theorem 1.9. �

Substituting t = T − s in (2.14), (2.15) and using Theorem 2.6, we obtain the fol-
lowing existence result for the singular (n − p, p) left focal problem (2.18), (2.19) with
1 ≤ p ≤ n− 1.
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Theorem 2.7. Let assumptions (2.20) and (2.21) hold. Then, problem (2.18), (2.19) has a
solution u ∈ ACn−1[0,T] and

(−1) ju( j) > 0 on [0,T) for 0 ≤ j ≤ p − 1,

(−1)pu( j) > 0 on (0,T] for p ≤ j ≤ n− 1.

Example 2.8. Let r > 0, αj ∈ (0, 1/(r + n − j)) for 0 ≤ j ≤ n − 1. Let c ∈ L∞[0,T],
aj ∈ L∞[0,T], bj ∈ L1[0,T] be nonnegative for 0 ≤ j ≤ n − 1, 0 < a < c(t) for a.e.
t ∈ [0,T] and

∫ T

0
γ(t)dt <

1
V

,

where γ(t) = max{bj(t) : 0 ≤ j ≤ n−1} for a.e. t ∈ [0,T] and V is given in (2.18). Then,
the differential equation

(−1)n−pu(n) = c(t)(T − t)r +
n−1∑

j=0

(
aj(t)
∣
∣u( j)

∣
∣αj + bj(t)

∣
∣u( j)

∣
∣
)

(2.46)

satisfies all assumptions of Theorem 2.6. Hence, for each p ∈ {1, . . . ,n − 1}, problem
(2.46), (2.15) has a solution u ∈ ACn−1[0,T] satisfying inequality (2.41).

Bibliographical notes

Theorem 2.1 is new and represents the first result in literature for the existence of solu-
tions of (1,n− j) focal problems with time singularities. Theorem 2.6 was adapted from
Rachůnková and Staněk [161] (also see Rachůnková and Staněk [165]). Existence results
for positive solutions to singular (p,n − p) focal problems are available in Agarwal [2],
Agarwal and O’Regan [8–10], and Agarwal, O’Regan, and Lakshmikantham [15]. The
paper [9] is the first to establish the existence of two solutions. Further multiplicity results
solutions are established in [10]. The technique presented in [9, 10] to guarantee the
existence of twin solutions to singular (p,n− p) focal problems combines (i) a nonlinear
alternative of Leray-Schauder type, (ii) Krasnoselskii’s fixed point theorem in a cone, and
(iii) lower type inequalities.





3
(n, p) problem

Now, we are concerned with the singular (n, p) problem

−u(n) = f
(
t,u, . . . ,u(n−1)), (3.1)

u( j)(0) = 0, 0 ≤ j ≤ n− 2, u(p)(T) = 0, (3.2)

where n ≥ 2, 0 ≤ p ≤ n − 1, f ∈ Car([0,T] ×D), D ⊂ Rn, and f (t, x0, . . . , xn−1) may
be singular at the value 0 of its space variables x0, . . . , xn−2. Notice that the (n, 0) problem
is simultaneously the (1,n−1) conjugate problem discussed in Chapter 4. For f positive,
solutions of problem (3.1), (3.2) have singular points of type I at t = 0,T and also singular
points of type II. We will work with the following assumptions on the function f in (3.1):

f ∈ Car
(
[0,T]×D

)
, where D = (0,∞)× (R \ {0})n−2 ×R

and there exist a positive function ψ ∈ L1[0,T] and K > 0

such that ψ(t) ≤ f
(
t, x0, . . . , xn−1

)
for a.e. t ∈ [0,T]

and each
(
x0, . . . , xn−1

) ∈ (0,K]× (R \ {0})n−2 ×R;

(3.3)

0 < f
(
t, x0, . . . , xn−1

) ≤ h

(

t,
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−2∑

j=0

ωj
(∣∣xj

∣
∣)

for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈D ,

where h ∈ Car
(
[0,T]× [0,∞)

)
is positive and nondecreasing

in the second variable, ωj : (0,∞) �→ (0,∞) is nonincreasing,

lim sup
�→∞

1
�

∫ T

0
h
(
t,V(t)�

)
dt < 1 with V(t) =

n−1∑

j=0

t j

j!
,

∫ 1

0
ωj
(
sn− j−1)ds <∞ for 0 ≤ j ≤ n− 2.

(3.4)



32 (n, p) problem

Auxiliary results

Put

G(t, s) = 1
(n− 1)!

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tn−1
(

1− s

T

)n−p−1

− (t − s)n−1 for 0 ≤ s ≤ t ≤ T ,

tn−1
(

1− s

T

)n−p−1

for 0 ≤ t < s ≤ T.

Then G(t, s) is the Green function of the problem

−u(n) = 0, (3.2) (3.5)

(see, e.g., Agarwal [1] or Agarwal, O’Regan, and Wong [21]).

Lemma 3.1. The Green function G(t, s) of problem (3.5) fulfils

G(T , s) > 0 for s ∈ (0,T) and for p > 0, (3.6)

∂jG(t, s)
∂t j

> 0 for (t, s) ∈ (0,T)× (0,T),

and for 0 ≤ j ≤ min{p,n− 2}, p ≥ 0.
(3.7)

Proof . Property (3.6) of G follows from the inequality

(
1− s

T

)n−p−1

>
(

1− s

T

)n−1

which is true for s ∈ (0,T) and for p > 0. Further, let us suppose

0 ≤ j ≤ min{p,n− 2}

and prove inequality (3.7). We have

∂jG(t, s)
∂t j

= 1
(n− j − 1)!

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tn− j−1
(

1− s

T

)n−p−1

− (t − s)n− j−1 for 0 ≤ s ≤ t ≤ T ,

tn− j−1
(

1− s

T

)n−p−1

for 0 ≤ t < s ≤ T ,

and therefore it is sufficient to show that

(
1− s

T

)n−p−1

>
(

1− s

t

)n− j−1

for 0 < s ≤ t < T. (3.8)

Since the inequalities

(
1− s

T

)n−p−1

>
(

1− s

t

)n−p−1

≥
(

1− s

t

)n− j−1

are valid for 0 < s ≤ t < T , inequality (3.8) is true. �
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Lemma 3.2. Let u ∈ ACn−1[0,T] satisfy condition (3.2) and let

−u(n)(t) > 0 for a.e. t ∈ [0,T]. (3.9)

If p > 0, then

u( j)(t) > 0 for t ∈ (0,T], 0 ≤ j ≤ p − 1,

u(p)(t) > 0 for t ∈ (0,T)
(3.10)

and if p = 0, then

u(t) > 0 for t ∈ (0,T). (3.11)

Proof . We will consider two cases, namely, (i) p = n− 1 and (ii) 0 ≤ p ≤ n− 2.

Case (i). Let p = n− 1. Then, by conditions (3.2) and (3.9), we have

0 < −
∫ T

t
u(n)(s)ds = u(n−1)(t) for t ∈ [0,T). (3.12)

Thus, integrating (3.12) from 0 to t and using (3.2), we get step by step

u( j)(t) > 0 for t ∈ (0,T], 0 ≤ j ≤ n− 2. (3.13)

Inequalities (3.12) and (3.13) give the assertion of Lemma 3.2.

Case (ii). Let 0 ≤ p ≤ n− 2. Then, using the formula

u(t) = −
∫ T

0
G(t, s)u(n)(s)ds, (3.14)

we can see that the assertion of Lemma 3.2 follows from (3.9) and from Lemma 3.1. �

A priori estimates

The following three lemmas give a priori estimates from below for functions satisfying
conditions (3.2) and (3.9). We consider the cases p = n − 1, p = 0, and 1 ≤ p ≤ n − 2
separately.

Lemma 3.3. Let p = n − 1 and let u ∈ ACn−1[0,T] satisfy conditions (3.2), (3.9). Then
the inequalities

u( j)(t) ≥ ‖u‖∞
Tn−1

tn− j−1 for t ∈ [0,T], 0 ≤ j ≤ n− 2, (3.15)

are fulfilled.

Proof . Put

p0(t) = ‖u‖∞
(
t

T

)n−1

for t ∈ [0,T]. (3.16)
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Then p0(0) = · · · = p(n−2)
0 (0) = 0, p0(T) = ‖u‖∞. By virtue of inequality (3.10), we

have ‖u‖∞ = u(T). So, if h(t) = u(t)− p0(t) for t ∈ [0,T], then, h satisfies the boundary
conditions h(0) = · · · = h(n−2)(0) = 0, h(T) = 0, and moreover

h(n)(t) = u(n)(t)− p(n)
0 (t) = u(n)(t) < 0 for a.e. t ∈ [0,T].

Therefore, Lemma 3.2 (with h instead of u) gives h > 0 on (0,T), that is,

u(t) ≥ p0(t) for t ∈ [0,T]. (3.17)

Further, put

p1(t) = ‖u′‖∞
(
t

T

)n−2

for t ∈ [0,T]. (3.18)

Then p1(0) = · · · = p(n−3)
1 (0) = 0, p1(T) = ‖u′‖∞. Since ‖u′‖∞ = u′(T), the function

h1 = u′ − p1 satisfies h1(0) = · · · = h(n−3)
1 (0) = 0, h1(T) = 0, and moreover

h(n−1)
1 = u(n) − p(n−1)

1 = u(n) < 0 a.e. on [0,T].

Thus, by Lemma 3.2, where we use h1 and n− 1 instead of u and n, respectively, we have
h1 > 0 on (0,T), that is,

u′(t) ≥ p1(t) for t ∈ [0,T]. (3.19)

Similarly, for 2 ≤ j ≤ n− 2, we put

pj(t) =
∥
∥u( j)

∥
∥∞

(
t

T

)n− j−1

, hj(t) = u( j)(t)− pj(t) for t ∈ [0,T].

Using Lemma 3.2 (with hj and n − j instead of u and n), we get hj > 0 on (0,T), and
therefore

u( j)(t) ≥ pj(t) for t ∈ [0,T], 2 ≤ j ≤ n− 2. (3.20)

Now (3.16)–(3.20) together with the inequalities

∥
∥u( j)

∥
∥∞ ≥

‖u‖∞
T j , 1 ≤ j ≤ n− 2, (3.21)

give (3.15). �
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Lemma 3.4. Let p = 0 and let u ∈ ACn−1[0,T] satisfy assumptions (3.2), (3.9). Then, for
0 ≤ j ≤ n− 2,

u( j)(t)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≥ ‖u‖∞
Tn−1

tn− j−1 for 0 ≤ t ≤ ξj+1,

≥ ‖u‖∞
T j+1

(
ξj − t

)
for ξj+1 ≤ t ≤ ξj ,

≤ ‖u‖∞
T j+1

(
ξj − t

)
for ξj ≤ t ≤ T

(3.22)

with

0 < ξn−1 < ξn−2 < · · · < ξ2 < ξ1 < ξ0 = T ,

where ξi is a unique zero of u(i) in (0,T), 1 ≤ i ≤ n− 1.
(3.23)

Proof . In view of (3.2) and (3.11), we have u(0) = u(T) = 0, u > 0 on (0,T). Further,
there is a unique ξ1 ∈ (0,T) such that u′(ξ1) = 0 (otherwise, we would get a contradiction
to inequality (3.9)). Similarly, in (0,T), there is a unique ξi < ξi−1 such that u(i)(ξi) = 0,
2 ≤ i ≤ n− 1. According to (3.9), we get

u(i) > 0 on
(
0, ξi

)
, u(i) < 0 on

(
ξi,T

]
, 1 ≤ i ≤ n− 1. (3.24)

Hence,

u(i) is concave on
[
ξi+2,T

]
and convex on

[
0, ξi+2

]
, 0 ≤ i ≤ n− 2, (3.25)

where ξn = 0. Let us prove inequality (3.22) for j = 0. Put

p0(t) = ‖u‖∞
(
t

ξ1

)n−1

for t ∈ [
0, ξ1

]
.

Then p0(0) = · · · = p(n−2)
0 (0) = 0, p0(ξ1) = ‖u‖∞. Since ‖u‖∞ = u(ξ1), the function

h = u − p0 fulfils the boundary conditions h(0) = · · · = h(n−2)(0) = 0, h(ξ1) = 0, and
h(n)(t) < 0 for a.e. t ∈ [0, ξ1]. Therefore, by Lemma 3.2 (where we use h and ξ1 instead of
u and T), we deduce that the inequality h > 0 holds on (0, ξ1), which gives

u(t) ≥ ‖u‖∞
Tn−1

tn−1 for t ∈ [
0, ξ1

]
. (3.26)

By property (3.25), u is concave on [ξ1,T] ⊂ [ξ2,T]. Thus the inequality u(t) ≥
u(ξ1)((T − t)/(T − ξ1)) holds for t ∈ [ξ1,T], and therefore

u(t) ≥ ‖u‖∞
T

(T − t) for t ∈ [
ξ1,T

]
. (3.27)

Estimates (3.26) and (3.27) lead to inequality (3.22) for j = 0.
For 1 ≤ j ≤ n− 2, we put

pj(t) = u( j)(ξj+1
)
(

t

ξ j+1

)n− j−1

, h(t) = u( j)(t)− pj(t)
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on [0, ξj+1]. Since

u( j)(ξj+1
) = ∥

∥u( j)
∥
∥∞ ≥

‖u‖∞
T j , 1 ≤ j ≤ n− 2, (3.28)

we get as before

u( j)(t) ≥ ‖u‖∞
Tn−1

tn− j−1 for t ∈ [
0, ξj+1

]
. (3.29)

Further, using (3.25), we see that u( j) is concave on [ξj+1,T] ⊂ [ξj+2,T]. Hence

u( j)(t) ≥ u( j)(ξj+1
) ξj − t
ξ j − ξj+1

≥ 0 for t ∈ [
ξj+1, ξj

]
,

u( j)(t) ≤ u( j)(ξj+1
) ξj − t
ξ j − ξj+1

≤ 0 for t ∈ [
ξj ,T

]
.

(3.30)

Due to estimate (3.28), the above inequalities yield

∣
∣u( j)(t)

∣
∣ ≥ ‖u‖∞

T j+1

∣
∣ξj − t

∣
∣ for t ∈ [

ξj+1,T
]
. (3.31)

Estimates (3.29)–(3.31) imply (3.22) for 1 ≤ j ≤ n− 2. �

Lemma 3.5. Let 1 ≤ p ≤ n − 2 and let u ∈ ACn−1[0,T] satisfy (3.2), (3.9). Then, for
0 ≤ j ≤ p − 1, inequality (3.15) is true and for p ≤ j ≤ n− 2, inequalities (3.22) are valid
on [0,T] with 0 < ξn−1 < ξn−2 < · · · < ξp+1 < ξp = T , where ξi is a unique zero of u(i) in
(0,T), p + 1 ≤ i ≤ n− 1.

Proof . For 0 ≤ j ≤ p − 1, we use the arguments of the proof of Lemma 3.3 and for
p ≤ j ≤ n− 2, we argue as in the proof of Lemma 3.4. �

For the proof of solvability of problem (3.1), (3.2), we will need the following results.

Lemma 3.6. Let ψ ∈ L1[0,T] be positive. Then there is a positive constant c = c(ψ) such
that for each function u ∈ ACn−1[0,T] satisfying (3.2) and

ψ(t) ≤ −u(n)(t) for a.e. t ∈ [0,T], (3.32)

the estimate ‖u‖∞ ≥ c holds.

Proof . Let G be the Green function of problem (3.5). There are two cases to consider,
namely, (i) 1 ≤ p ≤ n− 1 and (ii) p = 0.

Case (i). Suppose 1 ≤ p ≤ n− 1 and define a function Φ by the formula

Φ(t, s) = G(t, s)
tn−1

for (t, s) ∈ (0,T]× (0,T].
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By Lemma 3.1, the function Φ is continuous and positive on (0,T]× (0,T). Further, for
any s ∈ (0,T), we have

∂n−1G(t, s)
∂tn−1

∣
∣
∣
∣

(t,s)=(0,s)
=
(

1− s

T

)n−p−1

> 0.

Choose an arbitrary s ∈ (0,T). Then

lim
t→0+

Φ(t, s) = 1
(n− 1)!

∂n−1G(t, s)
∂tn−1

∣
∣
∣
∣

(t,s)=(0,s)
= 1

(n− 1)!

(
1− s

T

)n−p−1

> 0,

which means that for any s ∈ (0,T), we can extend Φ(·, s) at t = 0 as a continuous and
positive function on [0,T]. Thus the function

F(t) =
∫ T

0
Φ(t, s)ψ(s)ds

is continuous and positive on [0,T], too. Therefore we can find d > 0 such that F(t) ≥ d
on [0,T]. Then

u(t) = −
∫ T

0
G(t, s)u(n)(s)ds ≥

∫ T

0
G(t, s)ψ(s)ds

= tn−1
∫ T

0

G(t, s)
tn−1

ψ(s)ds = tn−1F(t) ≥ tn−1d for t ∈ [0,T].

This implies ‖u‖∞ = u(T) ≥ Tn−1d = c.

Case (ii). Let p = 0. Define the function

Φ(t, s) = G(t, s)
tn−1(T − t) for (t, s) ∈ (0,T)× (0,T).

In view of Lemma 3.1, Φ is continuous and positive on (0,T)× (0,T). For any s ∈ (0,T),
we get

lim
t→0+

Φ(t, s) = 1
T(n− 1)!

(
1− s

T

)n−1

> 0,

lim
t→T−

Φ(t, s) = − 1
Tn−1

∂G(t, s)
∂t

∣
∣
∣
∣

(t,s)=(T ,s)
= − 1

T(n− 2)!

[(
1− s

T

)n−1

−
(

1− s

T

)n−2]
> 0,

which means that for any s ∈ (0,T) we can extend Φ(·, s) to [0,T] as a continuous and
positive function. Further, we can argue as in case (i). �
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Lemma 3.7. Let a > 0, K > 0, and let the function ψ ∈ L1[0,T] be positive. Furthermore,
let the functions h,ωj , (0 ≤ j ≤ n− 2) have the properties given in assumption (3.4). Then
there exist constants r > 0 and α ∈ (0,K] such that for each function u ∈ ACn−1[0,T]
satisfying (3.2),

−u(n)(t) ≤ a + h

(

t,n +
n−1∑

j=0

∣
∣u( j)(t)

∣
∣
)

+
n−2∑

j=0

ωj
(∣∣u( j)(t)

∣
∣)

for a.e. t ∈ [0,T],

(3.33)

‖u‖∞ ≤ K �⇒ ψ(t) ≤ −u(n)(t) for a.e. t ∈ [0,T], (3.34)

the estimates

∥
∥u(n−1)

∥
∥∞ < r, ‖u‖∞ ≥ α (3.35)

are valid.

Proof . Let u ∈ ACn−1[0,T] satisfy conditions (3.2), (3.33), and (3.34). Let ‖u‖∞ ≤ K .
Then, by (3.34) and Lemma 3.6, there is a positive constant c = c(ψ) such that ‖u‖∞ ≥ c.
Otherwise, we would have ‖u‖∞ > K . If we put α = min{c,K}, then the second inequality
in (3.35) is satisfied.

In order to prove the first estimate in (3.35), we put ‖u(n−1)‖∞ = ρ. Then −ρ ≤
u(n−1)(t) ≤ ρ on [0,T] and if we integrate this inequality from 0 to t ∈ (0,T] and use
(3.2), we get step by step

∣
∣u( j)(t)

∣
∣ ≤ ρ

tn− j−1

(n− j − 1)!
for t ∈ [0,T], 0 ≤ j ≤ n− 1. (3.36)

Lemmas 3.4 and 3.5 guarantee the existence of a unique zero ξn−1 of u(n−1) with ξn−1 ∈
(0,T) for 0 ≤ p ≤ n− 2 and ξn−1 = T for p = n− 1. Integrating inequality (3.33) from t
to ξn−1 gives

0 < u(n−1)(t) ≤ a
(
ξn−1 − t

)
+
∫ ξn−1

t
h

(

s,n +
n−1∑

j=0

∣
∣u( j)(s)

∣
∣
)

ds +
n−2∑

j=0

∫ ξn−1

t
ωj
(∣∣u( j)(s)

∣
∣)ds

for t ∈ [0, ξn−1). If p < n− 1 and thus ξn−1 < T , we integrate (3.33) from ξn−1 to t and get

0 < −u(n−1)(t) ≤ a
(
t − ξn−1

)
+
∫ t

ξn−1

h

(

s,n +
n−1∑

j=0

∣
∣u( j)(s)

∣
∣
)

ds +
n−2∑

j=0

∫ t

ξn−1

ωj
(∣∣u( j)(s)

∣
∣)ds

for t ∈ (ξn−1,T]. Hence the inequality

∣
∣u(n−1)(t)

∣
∣ ≤ aT +

∣
∣
∣
∣
∣

∫ t

ξn−1

h

(

s,n +
n−1∑

j=0

∣
∣u( j)(s)

∣
∣
)

ds

∣
∣
∣
∣
∣ +

n−2∑

j=0

∣
∣
∣
∣

∫ t

ξn−1

ωj
(∣∣u( j)(s)

∣
∣)ds

∣
∣
∣
∣
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is true for t ∈ [0,T], and consequently (see (3.36))

ρ ≤ aT +
∫ T

0
h
(
t,n +V(t)ρ

)
dt +

n−2∑

j=0

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt, (3.37)

where V is given in (3.4). We now estimate the integrals

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt, 0 ≤ j ≤ n− 2.

We will consider three cases.

Case (i). Let p = n− 1. Then, by Lemma 3.3, for 0 ≤ j ≤ n− 2, we have

ωj
(∣∣u( j)(t)

∣
∣) ≤ ωj

(‖u‖∞
Tn−1

tn− j−1
)

for t ∈ (0,T].

Thus

ωj
(∣∣u( j)(t)

∣
∣) ≤ ωj

((
cj t
)n− j−1)

for t ∈ (0,T], 0 ≤ j ≤ n− 2, (3.38)

where c
n− j−1
j = αT1−n. Inequality (3.38) implies

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt ≤ 1

cj

∫ cjT

0
ωj
(
sn− j−1)ds =: Bj ,

and therefore, we have

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt ≤ Bj , 0 ≤ j ≤ n− 2. (3.39)

Case (ii). Let p = 0. Then, by Lemma 3.4,

ωj
(∣∣u( j)(t)

∣
∣) ≤

⎧
⎪⎨

⎪⎩

ωj

((
cj t
)n− j−1

)
for 0 ≤ t ≤ ξj+1,

ωj
(
kj
∣
∣ξj − t

∣
∣) for ξj+1 ≤ t ≤ T

(3.40)

for 0 ≤ j ≤ n− 2, where

c
n− j−1
j = αT1−n, kj = αT− j−1, (3.41)

and ξj fulfils relation (3.23). Therefore

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt

≤
∫ ξj+1

0
ωj
((
cj t
)n− j−1)

dt +
∫ ξj

ξ j+1

ωj
(
kj
(
ξj − s

))
dt +

∫ T

ξj
ωj
(
kj
(
t − ξj

))
dt

≤ Bj +
1
kj

∫ kj (ξj−ξj+1)

0
ωj(s)ds +

1
kj

∫ kj (T−ξj)

0
ωj(s)ds ≤ Bj + Cj ,
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with Cj = (2/kj)
∫ kjT

0 ωj(s)ds. Consequently, for 0 ≤ j ≤ n− 2, we have

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt ≤ Bj + Cj. (3.42)

Case (iii). Let 1 ≤ p ≤ n− 2. By Lemma 3.5, for 0 ≤ j ≤ p − 1, we have estimate (3.39),
and for p ≤ j ≤ n− 2, estimate (3.42) holds.

In view of (3.37), (3.39), and (3.42), we deduce that in all the above three cases

ρ ≤
∫ T

0
h
(
t,n +V(t)ρ

)
dt +D, (3.43)

where D = aT +
∑n−2

j=0 (Bj + Cj). Since, by assumption (3.4),

lim sup
ρ→∞

1
ρ

∫ T

0
h
(
t,V(t)ρ

)
dt < 1,

we have

lim sup
ρ→∞

1
ρ

∫ T

0
h
(
t,n +V(t)ρ

)
dt < 1,

and consequently there exists r > 0 such that

∫ T

0
h
(
t,n +V(t)η

)
dt +D < η

whenever η ≥ r. Then inequality (3.43) gives ρ < r, which proves the first inequality in
(3.35) since ρ = ‖u(n−1)‖∞. �

Approximate regular problems

The main result on the existence of a solution of problem (3.1), (3.2) will be proved by
Theorem 1.9. To this end, we consider a sequence of regular problems constructed by the
following procedure. Let K > 0, ψ, h and ωj , 0 ≤ j ≤ n− 2, have the properties given in

assumptions (3.3) and (3.4), a = ∑n−2
j=0 ωj(1) and let positive constants r and α be taken

from Lemma 3.7. Put

ρ0 = 1 + rTn−1 + K , ρi = 1 + rTn−i−1, 1 ≤ i ≤ n− 1,

σi(x) =
⎧
⎨

⎩

x for |x| ≤ �i,
ρi sign x for |x| > ρi,

0 ≤ i ≤ n− 1,

and, for 0 < c < ρ0,

σ∗0 (c, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c for x < c,

x for c ≤ x ≤ ρ0,

ρ0 for ρ0 < x.
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Choose m ∈ N and use the function f from (3.1) to define an auxiliary function hm by
means of the following recurrent formulas for a.e. t ∈ [0,T] and all (x0, . . . , xn−1) ∈D :

hm,0
(
t, x0, . . . , xn−1

) = f
(
t, x0, . . . , xn−1

)
,

hm,i
(
t, x0, . . . , xn−1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hm,i−1
(
t, x0, . . . , xn−1

)
if
∣
∣xi

∣
∣ ≥ 1

m
,

m

2

[
hm,i−1

(
t, x0, . . . , xi−1,

1
m

, xi+1, . . . , xn−1

)(
xi +

1
m

)

−hm,i−1

(
t, x0, . . . , xi−1,− 1

m
, xi+1, . . . , xn−1

)(
xi − 1

m

)]

if
∣
∣xi

∣
∣ <

1
m

,

for 1 ≤ i ≤ n− 2, and

hm
(
t, x0, . . . , xn−1

) = hm,n−2
(
t, x0, . . . , xn−1

)
.

Now, for a.e. t ∈ [0,T] and all (x0, . . . , xn−1) ∈ Rn, put

fm
(
t, x0, . . . , xn−1

) = hm

(
t, σ∗0

(
1
m

, x0

)
, σ1

(
x1
)
, . . . , σn−1

(
xn−1

))
. (3.44)

Then, by conditions (3.3) and (3.4), fm ∈ Car([0,T]×Rn) and the inequalities

ψ(t) ≤ fm
(
t, x0, . . . , xn−1

)

for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈ R
n, x0 ≤ K ,

(3.45)

and

0 < fm
(
t, x0, . . . , xn−1

)

≤
n−2∑

j=0

ωj(1) + h

(

t,n +
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−2∑

j=0

ωj
(∣∣xj

∣
∣)

for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈ (
R \ {0})n−1 ×R

(3.46)

hold for m ≥ m0 ≥ 1/K . Inequality (3.46) follows from the fact that
∣
∣σi

(
xi
)∣∣ ≤ ∣

∣xi
∣
∣ for 1 ≤ i ≤ n− 1,

∣
∣
∣
∣σ

∗
0

(
1
m

, x0

)∣∣
∣
∣ ≤ 1 +

∣
∣x0

∣
∣, σ∗0

(
1
m

, x0

)
≥ σ0

(
x0
)
,

ωi
(∣∣σi

(
xi
)∣∣) ≤ ωi

(∣∣xi
∣
∣) + ωi(1), 0 ≤ i ≤ n− 2.

Consider auxiliary regular equation

−u(n) = fm
(
t,u, . . . ,u(n−1)), (3.47)

where m ≥ m0.
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Lemma 3.8. Let assumptions (3.3) and (3.4) hold. Then for each m ∈ N, m ≥ m0, problem
(3.47), (3.2) has a solution um ∈ ACn−1[0,T], the sequence

{
fm
(
t,um(t), . . . ,u(n−1)

m (t)
)}

m≥m0
(3.48)

is uniformly integrable on [0,T] and there exists a positive constant r such that

∥
∥u(n−1)

m

∥
∥∞ < r for m ≥ m0. (3.49)

Proof . Choose m ∈ N, m ≥ m0 and put

gm(t)=sup
{
f
(
t, x0, . . . , xn−1

)
:

1
m
≤x0≤ρ0,

1
m
≤∣∣xi

∣
∣≤ρi (0≤ i≤n−2),

∣
∣xn−1

∣
∣≤ρn−1

}
.

Since f ∈ Car([0,T]×D), we have gm ∈ L1[0,T] and

fm
(
t, x0, . . . , xn−1

) ≤ gm(t) for a.e. t ∈ [0,T] and all
(
x0, . . . , xn−1

) ∈ R
n.

Since the homogeneous problem −u(n) = 0, (3.2) has only the trivial solution, the
Fredholm-type existence theorem guarantees the existence of a solution um ∈ ACn−1[0,
T] of problem (3.47), (3.2). By virtue of (3.45) and (3.46), Lemma 3.7 gives

∥
∥u(n−1)

m

∥
∥∞ < r, ‖um‖∞ ≥ α, m ≥ m0, (3.50)

where r and α are positive constants taken from Lemma 3.7. Condition (3.2) and the first
inequality in (3.50) yield

∥
∥u

(n− j−1)
m

∥
∥∞ < rT j < ρn− j−1, 0 ≤ j ≤ n− 1. (3.51)

It remains to verify that the sequence (3.48) is uniformly integrable on [0,T]. By inequal-
ity (3.46),

0 ≤ fm
(
t,um(t), . . . ,u(n−1)

m (t)
)

≤
n−2∑

j=0

ωj(1) + h

(

t,n +
n−1∑

j=0

∣
∣u

( j)
m (t)

∣
∣
)

+
n−2∑

j=0

ωj
(∣∣u

( j)
m (t)

∣
∣)

for a.e. t ∈ [0,T] and all m ≥ m0. From the inequality (see (3.51))

0 < h

(

t,n +
n−1∑

j=0

∣
∣u

( j)
m (t)

∣
∣
)

≤ h

(

t,n + r
n−1∑

j=0

T j

)

and from h(t,n + r
∑n−1

j=0 T
j) ∈ L1[0,T], we see that the sequence (3.48) is uniformly

integrable on [0,T] if the sequences

{
ωj
(∣∣u

( j)
m
∣
∣)}

m≥m0
, 0 ≤ j ≤ n− 2, (3.52)

have this property. We will distinguish three cases, namely, p = n−1, p = 0, and 1 ≤ p ≤
n− 2.
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Case (i). Suppose p = n− 1. Then Lemma 3.3 and the second inequality in (3.50) give

u
( j)
m (t) ≥ α

Tn−1
tn− j−1 for t ∈ [0,T], 0 ≤ j ≤ n− 2, m ≥ m0. (3.53)

Hence

ωj
(∣∣u

( j)
m (t)

∣
∣) ≤ ωj

(
α

Tn−1
tn− j−1

)

and since
∫ 1

0
ωj
(
sn− j−1)ds <∞ for 0 ≤ j ≤ n− 2

by assumption (3.4), the sequences in (3.52) are uniformly integrable on [0,T] by
Criterion A.4.

Case (ii). Suppose p = 0. Let ξi,m denote the unique zero of u(i)
m , 1 ≤ i ≤ n− 1, in (0,T).

Then, by Lemma 3.4 and inequality (3.50),

0 < ξn−1,m < ξn−2,m < · · · < ξ2,m < ξ1,m = T , (3.54)

u
( j)
m (t)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

≥ α

Tn−1
tn− j−1 for 0 ≤ t ≤ ξj+1,m,

≥ α

T j+1

(
ξj,m − t

)
for ξj+1,m ≤ t ≤ ξj,m,

≤ α

T j+1

(
ξj,m − t

)
for ξj,m ≤ t ≤ T ,

(3.55)

for 0 ≤ j ≤ n− 2, m ≥ m0. Hence for these j and m, we have

∣
∣u

( j)
m (t)

∣
∣ ≥

⎧
⎨

⎩

cj tn− j−1 for 0 ≤ t ≤ ξj+1,m,

cj
∣
∣ξj,m − t

∣
∣ for ξj+1,m ≤ t ≤ T ,

(3.56)

where

cj = αmin
{
T1−n,T−1− j}. (3.57)

Since
∫ 1

0
ωj
(
sn− j−1)ds <∞ for 0 ≤ j ≤ n− 2

by assumption (3.4), Criterion A.4 guarantees that the sequences in (3.52) are uniformly
integrable on [0,T].

Case (iii). Suppose 1 ≤ p ≤ n − 2. Then, by Lemma 3.5 and inequality (3.50), u(i)
m has a

unique zero ξi,m in (0,T) for p + 1 ≤ i ≤ n− 1,

0 < ξn−1,m < ξn−2,m < · · · < ξp+1,m < ξp,m = T ,

u
( j)
m (t) ≥ α

Tn−1
tn− j−1 for t ∈ [0,T], 0 ≤ j ≤ p − 1, m ≥ m0



44 (n, p) problem

and inequality (3.55) holds for p ≤ j ≤ n − 2 and m ≥ m0. Now applying arguments
from case (i) for 0 ≤ j ≤ p − 1 and from case (ii) for p ≤ j ≤ n − 2, we can verify that
the sequences in (3.52) are uniformly integrable on [0,T].

Summarizing, we have proved that the sequences in (3.48) are uniformly integrable
on [0,T]. �

Main result

Theorem 3.9. Assume that assumptions (3.3) and (3.4) hold. Then there exists a solution
u ∈ ACn−1[0,T] of problem (3.1), (3.2) such that

u( j) > 0 on (0,T] if p ≥ 1, 0 ≤ j ≤ p − 1, (3.58)

u(p) > 0 on (0,T). (3.59)

Proof . By Lemma 3.8, for each m ∈ N, m ≥ m0 ≥ 1/K , there exists a solution um ∈
ACn−1[0,T] of problem (3.47), (3.2) satisfying inequality (3.50), which means that
{um}m≥m0 is bounded in Cn−1[0,T] and the sequence (3.48) is uniformly integrable on

[0,T], which further implies that {u(n−1
m )}m≥m0 is equicontinuous on [0,T]. Thus, by

the Arzelà-Ascoli theorem, we can assume without loss of generality that {um}m≥m0 is
convergent in Cn−1[0,T] to a function u ∈ Cn−1[0,T].

We now prove that the function u( j) has at most a finite number of zeros on [0,T]
for 0 ≤ j ≤ n − 2. Then u ∈ ACn−1[0,T] and u is a solution of problem (3.1), (3.2) by
Theorem 1.9 since the function f in (3.1) has no singularity in its last space variable. Let
p = n− 1. Then (3.53) is true and letting m→∞ in (3.53) we obtain

u( j)(t) ≥ α

Tn−1
tn− j−1, t ∈ [0,T], 0 ≤ j ≤ n− 2. (3.60)

From this inequality and from condition (3.2), we see that 0 is the unique zero of u( j) for
0 ≤ j ≤ n − 2. Let p = 0. Then (3.56) holds for 0 ≤ j ≤ n − 2 and m ≥ m0, where

cj is given in (3.57) and ξi,m denotes the unique zero of u(i)
m in (0,T) (0 ≤ i ≤ n − 1).

The localization of ξi,m is given in (3.54). Passing if necessary to subsequences, we can
assume that {ξi,m}m≥m0 is convergent; let limm→∞ ξi,n = ξi, 0 ≤ i ≤ n− 1. Letting m→∞,
inequality (3.56) yields

∣
∣u( j)(t)

∣
∣ ≥

⎧
⎨

⎩

cj tn− j−1 for 0 ≤ t ≤ ξj+1,

cj
∣
∣ξj − t

∣
∣ for ξj+1 ≤ t ≤ T ,

0 ≤ j ≤ n− 2. (3.61)

Condition (3.2) and inequality (3.61) show that u( j) has at most two zeros in [0,T] for
0 ≤ j ≤ n − 2. Finally, let 1 ≤ p ≤ n − 2. In this case, we can show that the inequality
in (3.60) holds for t ∈ [0,T] and 0 ≤ j ≤ p − 1 and that in (3.61) for t ∈ [0,T] and
p ≤ j ≤ n − 2. Therefore, u( j) has at most two zeros in [0,T] for 0 ≤ j ≤ n − 2.
Summarizing, we have proved that in all the above cases, u( j) has at most two zeros in
[0,T] for 0 ≤ j ≤ n− 2.
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Finally, it follows from Lemma 3.2 that u(p) > 0 on (0,T) and if p > 0, then from the
inequalities in (3.60) for t ∈ [0,T] and 0 ≤ j ≤ p− 1, we conclude that u( j) > 0 on (0,T]
for these j. �

Example 3.10. Let γ, δ,βi ∈ (0, 1), 0 < αj < 1/(n − j − 1), and let aj ∈ L∞[0,T] and let
bi ∈ L1[0,T] be nonnegative for 0 ≤ j ≤ n− 2, 0 ≤ i ≤ n− 1. Then, by Theorem 3.9, the
differential equation

−u(n) = e−u

tγ(T − t)δ +
n−2∑

j=0

aj(t)
∣
∣u( j)

∣
∣αj +

n−1∑

i=0

bi(t)
∣
∣u(i)

∣
∣βi

has a solution u ∈ ACn−1[0,T] satisfying the boundary conditions (3.2) and inequalities
(3.58), (3.59).
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Agarwal, O’Regan, and Lakshmikantham [15]. In [9, 10], the existence of two positive
solutions in the set Cn−1[0, 1]∩ Cn(0, 1) was proved for the differential equation

u(n) + ϕ(t) f (t,u) = 0,

where ϕ ∈ C0(0, 1) ∩ L1[0, 1] and f ∈ C0([0, 1] × (0,∞)) are positive. The paper [15]
dealt with the differential equation

u(n) + ϕ(t) f
(
t,u, . . . ,up−1) = 0,

where ϕ ∈ C0(0, 1) ∩ L1[0, 1] and f ∈ C0([0,T] × (0,∞)p) are positive. By a combi-
nation of regularization and sequential techniques with a nonlinear alternative of Leray-
Schauder type, the authors proved the existence of a solution u ∈ Cn−1[0, 1] ∩ Cn(0, 1)
with u( j) > 0 on (0,T] for 0 ≤ j ≤ p − 1.





4 Conjugate problem

Let p be a positive integer, 1 ≤ p ≤ n− 1. Consider the (p,n− p) conjugate problem

(−1)pu(n) = f
(
t,u, . . . ,u(n−1)), (4.1)

u(i)(0) = 0, 0 ≤ i ≤ n− p − 1, u( j)(T) = 0, 0 ≤ j ≤ p − 1, (4.2)

where n ≥ 3, f ∈ Car([0,T]×D), D ⊂ Rn, and f may be singular at the value 0 of any of
its space variables. Replacing t by T− t if necessary, we may assume that p−1 ≤ n− p−1,
that is,

p ∈
{

1, . . . ,
n

2

}
for n even and p ∈

{
1, . . . ,

n− 1
2

}
for n odd. (4.3)

We observe that the larger p is chosen, the more complicated structure of the set of all
singular points of any solution to problem (4.1), (4.2) and its derivatives is obtained.
This fact will be shown in Lemmas 4.1 and 4.2. We note that if f is positive then all
solutions of problem (4.1), (4.2) have singular points of type I at t = 0 and t = T and
also singular points of type II. Problem (4.1), (4.2) with p = 1 is the (n, 0) problem which
was considered in Chapter 3 devoted to the (n, p) problem. We assume that n ≥ 3 since
problem (4.1), (4.2) for n = 2 is the Dirichlet problem discussed in Chapter 7.

We will use the following assumptions:

f ∈ Car
(
[0,T]×D

)
, where D = (0,∞)× (R \ {0})n−1

and

there exists c > 0 such that

c ≤ f
(
t, x0, . . . , xn−1

)

for a.e. t ∈ [0,T] and all
(
x0, . . . , xn−1

) ∈D ;

(4.4)
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h ∈ Car([0,T]× [0,∞)) is positive and nondecreasing in its second variable and

lim sup
z→∞

1
z

∫ T

0
h(t, z)dt <

1
K

, K =
⎧
⎪⎨

⎪⎩

Tn − 1
T − 1

if T �= 1,

n if T = 1;
(4.5)

ωj : (0,∞) �→ (0,∞) is nonincreasing and
∫ 1

0
ωj
(
sn− j

)
ds <∞ for 0 ≤ j ≤ n− 1;

(4.6)

the inequality

f
(
t, x0, . . . , xn−1

) ≤ h

(

t,
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−1∑

j=0

ωj
(∣∣xj

∣
∣)

holds for a.e. t ∈ [0,T] and all
(
x0, . . . , xn−1

) ∈D ,

where h and ωj satisfy (4.5) and (4.6).

(4.7)

Localization analysis of zeros to solutions

Let f satisfy assumption (4.4), that is, f may be singular at the value 0 of any of its space
variables and f ≥ c > 0 on [0,T]×D . Then all singular points of any solution of problem
(4.1), (4.2) and its derivatives coincide with zeros of this solution and its derivatives. The
localization analysis of zeros of solutions to problem (4.1), (4.2) and their derivatives up
to order n−1 can be studied by localization analysis of zeros of solutions to the differential
inequality

(−1)pu(n)(t) ≥ c > 0 (4.8)

satisfying the boundary conditions (4.2). Define

B = {
u ∈ ACn−1[0,T] : u satisfies (4.2) and (4.8) holds for a.e. t ∈ [0,T]

}
.

Lemma 4.1. Let u ∈ B and let p = 1. Then u > 0 on (0,T) and u( j) has precisely one zero
on (0,T), 1 ≤ j ≤ n− 1.

Proof . The assertion follows immediately from Lemmas 3.2 and 3.4. �

Lemma 4.2. Let u ∈ B, p ≥ 2, and let (4.3) hold. Then

(i) u > 0 on (0,T),
(ii) u(k) has precisely k zeros in (0,T) for k = 1, . . . , p − 1,

(iii) u(k) has precisely p zeros in (0,T) for k = p, . . . ,n− p,
(iv) u(n−k) has precisely k zeros in (0,T) for k = 1, . . . , p − 1.
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Proof . The proof is divided into three steps.

Step 1. Lower bounds for zeros.

By (4.2), we see that u′ has at least one zero t(1)
1 in (0,T). Hence u′(0) = u′(t(1)

1 ) =
u′(T) = 0, which implies that u′′ has at least two zeros t(2)

1 , t(2)
2 in (0,T), t(2)

1 < t(2)
2 , and

consequently (if p ≥ 3)

u′′(0) = u′′
(
t(2)
1

) = u′′
(
t(2)
2

) = u′′(T) = 0.

By induction, we conclude that u(k), k = 3, . . . , p − 1, has at least k zeros t(k)
1 , . . . , t(k)

k in

(0,T), 0 < t(k)
1 < · · · < t(k)

k < T and, by (4.2) and (4.3),

u(k)(0) = u(k)(t(k)
1

) = · · · = u(k)(t(k)
k

) = u(k)(T) = 0, k = 3, . . . , p − 1.

Therefore, u(p) has at least p zeros in (0,T). Now we will distinguish two cases.

Case (a). Let p < n/2. Then p ≤ n− p − 1 and, by (4.2),

u( j)(0) = 0, j = p, . . . ,n− p − 1.

Therefore, u(k) has at least p zeros in (0,T) for k = p + 1, . . . ,n− p.

Case (b). Let p = n/2 (clearly n is even in this case). Then p = n − p and u(n−p) has at
least p zeros in (0,T).

We have shown that in both cases, u(n−p) has at least p zeros in (0,T). Since for u(n−k),
k = 1, . . . , p − 1, we cannot use (4.2) any more, we deduce that u(n−k) has at least k zeros
in (0,T) for k = 1, . . . , p − 1. In particular, u(n−1) has at least one zero in (0,T).

Step 2. Exact number of zeros.
By inequality (4.8), u(n−1) is strictly monotonous on [0,T] and hence it has precisely

one zero in (0,T). Therefore, by step 1, u(n−k) has precisely k zeros in (0,T) for 2 ≤ k ≤
p−1 and u(k) has precisely p zeros in (0,T) for p ≤ k ≤ n− p. Similarly, u(k) has precisely
k zeros in (0,T) for 1 ≤ k ≤ p − 1 and u has no zero in (0,T). We have proved that the
statements (ii)–(iv) are true.

Step 3. Positivity of u.

Denote by t(k)
1 the first zero of u(k) in (0,T), 1 ≤ k ≤ n − 1. Inequality (4.8) implies

that (−1)pu(n−1) < 0 on [0, t(n−1)
1 ) and hence (−1)pu(n−2) > 0 on [0, t(n−2)

1 ). Therefore,

(−1)p+ ju(n− j) > 0 on [0, t
(n− j)
1 ) for j = 3, . . . , p. In particular, we have u(n−p) > 0 on

[0, t
(n−p)
1 ), wherefore, by virtue of (4.2), we obtain u(k) > 0 on (0, t(k)

1 ), 1 ≤ k ≤ n− p− 1,
and consequently u > 0 on (0,T). �

Our next result provides estimates from below of the absolute value of functions
u ∈ B and their derivatives up to order n − 1 on the interval [0,T]. These estimates are
necessary for applying Theorem 1.9 to problem (4.1), (4.2) with f satisfying assumption
(4.4).
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Lemma 4.3. Let u ∈ B and let (4.3) hold. Then for each i ∈ {1, . . . ,n− 1}, there are pi + 1
disjoint intervals (ak, ak+1), 0 ≤ k ≤ pi, pi ≤ (n− 1)p such that

pi⋃

k=0

[
ak, ak+1

] = [0,T] (4.9)

and for each k ∈ {0, . . . , pi}, one of the inequalities

∣
∣u(n−i)(t)

∣
∣ ≥ c

i!

(
t − ak

)i
for t ∈ [

ak, ak+1
]
, (4.10)

∣
∣u(n−i)(t)

∣
∣ ≥ c

i!

(
ak+1 − t

)i
for t ∈ [

ak, ak+1
]
, (4.11)

is satisfied.

Proof . Let t
( j)
i be zeros of u( j) in (0,T), 1 ≤ j ≤ n− 1, described in Lemmas 4.1 and 4.2.

Integrating inequality (4.8) yields

(−1)p+1u(n−1)(t) ≥ c
(
t(n−1)
1 − t

)
for t ∈

[
0, t(n−1)

1

]
,

(−1)pu(n−1)(t) ≥ c
(
t − t(n−1)

1

)
for t ∈

[
t(n−1)
1 ,T

]
.

(4.12)

Now, integrating the first inequality in (4.12) from t ∈ [0, t(n−2)
1 ) to t(n−2)

1 gives

(−1)pu(n−2)(t) ≥ c

2

[
(t(n−1)

1 − t
)2 −

(
t(n−1)
1 − t(n−2)

1

)2] ≥ c

2!

(
t(n−2)
1 − t

)2
.

Hence, we get by such procedure that

(−1)pu(n−2)(t) ≥ c

2!

(
t(n−2)
1 − t

)2
for t ∈

[
0, t(n−2)

1

]
,

(−1)p+1u(n−2)(t) ≥ c

2!

(
t − t(n−2)

1

)2
for t ∈

[
t(n−2)
1 , t(n−1)

1

]
,

(−1)p+1u(n−2)(t) ≥ c

2!

(
t(n−2)
2 − t

)2
for t ∈

[
t(n−1)
1 , t(n−2)

2

]
,

(−1)pu(n−2)(t) ≥ c

2!

(
t − t(n−2)

2

)2
for t ∈

[
t(n−2)
2 ,T

]
.

(4.13)

Let us choose i ∈ {1, . . . ,n− 1} and take all different zeros of functions u(n−1), . . . ,u(n−i),
which are in (0,T). By Lemmas 4.1 and 4.2, there is a finite number pi ≤ (n−1)p of these
zeros. Let us put them in the natural order and denote them by a1, . . . , api . Set a0 = 0,
api+1 = T . Thus, we get pi + 1 disjoint intervals (ak, ak+1), 0 ≤ k ≤ pi, satisfying (4.9).

If i = 1, then for a1 = t(n−1)
1 and a2 = T , we get by (4.12) that

∣
∣u(n−1)(t)

∣
∣ ≥ c

(
a1 − t

)
for t ∈ [

a0, a1
]
,

∣
∣u(n−1)(t)

∣
∣ ≥ c

(
t − a1

)
for t ∈ [

a1, a2
]
.
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If i = 2, we put t(n−2)
1 = a1, t(n−1)

1 = a2, t(n−2)
2 = a3, T = a4, and then inequality

(4.13) gives (4.10) or (4.11).
If i > 2 and we integrate the inequalities in (4.13) (i − 2) times, we get that on each

[ak, ak+1], k ∈ {0, . . . , pi}, either (4.10) or (4.11) has to be fulfilled. �

Existence result

In order to prove the main result (Theorem 4.7), we will need the following three lemmas.

Lemma 4.4. Let conditions (4.3) and (4.6) hold. Then there exist constants Ai > 0, 0 ≤ i ≤
n− 1, such that for each u ∈ B, the estimates

∫ T

0
ωi
(∣∣u(i)(t)

∣
∣)dt ≤ Ai, 0 ≤ i ≤ n− 1, (4.14)

are satisfied.

Proof . Let u ∈ B and let i ∈ {0, . . . ,n − 1}. By Lemma 4.3, there exist pi + 1 disjoint
intervals (ak, ak+1), 0 ≤ k ≤ pi, pi ≤ (n− 1)p, such that (4.9) and either (4.10) or (4.11)
are satisfied. Since ωi is nonincreasing, inequalities (4.10) and (4.11) give

∫ T

0
ωi
(∣∣u(i)(t)

∣
∣)dt =

pi∑

k=0

∫ ak+1

ak
ωi
(∣∣u(i)(t)

∣
∣)dt

<
pi∑

k=0

[∫ ak+1

ak
ωi

(
c

(n−i)!

(
t−ak

)n−i
)
dt+

∫ ak+1

ak
ωi

(
c

(n−i)!

(
ak+1−t

)n−i
)
dt
]
.

If we put ci = (c/(n− i)!)1/(n−i), we have

∫ T

0
ωi
(∣∣u(i)(t)

∣
∣)dt <

2pi
ci

∫ ciT

0
ωi
(
sn−i

)
ds <

n(n− 1)
ci

∫ ciT

0
ωi
(
sn−i

)
ds.

Hence inequality (4.14) holds with

Ai = n(n− 1)
ci

∫ ciT

0
ωi
(
sn−i

)
ds

and, by assumption (4.6), Ai <∞ for 0 ≤ i ≤ n− 1. �

Lemma 4.5. Let conditions (4.3) and (4.6) hold and let {um} ⊂ B. Then for 0 ≤ i ≤ n− 1,

the sequence {ωi(|u(i)
m (t)|)} is uniformly integrable on [0,T].

Proof . Let i ∈ {0, . . . ,n − 1}. Then, by Lemma 4.3, there exist pm,i + 1 disjoint intervals
(am,k, am,k+1), 0 ≤ k ≤ pm,i, pm,i ≤ (n− 1)p, such that

pm,i⋃

k=0

[
am,k, am,k+1

] = [0,T],
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and for each k ∈ {0, . . . , pm,i} and m ∈ N, one of the inequalities

∣
∣u(i)

m (t)
∣
∣ ≥ c

(n− i)!

(
t − am,k

)n−i
for t ∈ [

am,k, am,k+1
]
,

∣
∣u(i)

m (t)
∣
∣ ≥ c

(n− i)!

(
am,k+1 − t

)n−i
for t ∈ [

am,k, am,k+1
]
,

is satisfied. Now the uniform integrability of {ωi(|u(i)
m (t)|)} on [0,T] follows from

Criterion A.3. �

Lemma 4.6. Let conditions (4.3), (4.5), and (4.6) hold. Then there exists a positive constant
S ≥ n such that for each u ∈ B satisfying

(−1)pu(n)(t) ≤ h

(

t,n +
n−1∑

j=0

∣
∣u( j)(t)

∣
∣
)

+
n−1∑

j=0

[
ωj
(∣∣u( j)(t)

∣
∣) + ωj(1)

]
(4.15)

for a.e. t ∈ [0,T], the estimate

‖u‖Cn−1 < S (4.16)

holds.

Proof . Let u ∈ B. By Lemmas 4.1 and 4.2 and by condition (4.2), we find t j ∈ (0,T)
such that u( j)(t j) = 0 for 0 ≤ j ≤ n− 2. Put

max
{∣∣u(n−1)(t)

∣
∣ : 0 ≤ t ≤ T

} = ρ.

Then−ρ ≤ u(n−1)(t) ≤ ρ for t ∈ [0,T]. Integrate this inequality from tn−2 to t ∈ (tn−2,T]
and from t ∈ [0, tn−2) to tn−2. We get −ρT ≤ u(n−2)(t) ≤ ρT on [0,T]. Similarly, using
u( j)(t j) = 0 for 0 ≤ j ≤ n− 2 and repeating the integration, we obtain step by step

∣
∣u( j)(t)

∣
∣ ≤ ρTn− j−1, t ∈ [0,T], 0 ≤ j ≤ n− 3.

Hence

‖u‖Cn−1 ≤ ρK , (4.17)

where K is taken from condition (4.5). Now, integrating inequality (4.15) over [0, tn−1]
and [tn−1,T] and using the fact that tn−1 ∈ (0,T) is the unique zero of u(n−1) by Lemmas
4.1 and 4.2 (and therefore, (−1)pu(n−1) < 0 on [0, tn−1) and (−1)pu(n−1) > 0 on (tn−1,T]
due to (4.8)), we get

0<(−1)p+1u(n−1)(t)≤
∫ tn−1

t
h

(

s,n +
n−1∑

j=0

∣
∣u( j)(s)

∣
∣
)

ds+
n−1∑

j=0

∫ tn−1

t

[
ωj
(∣∣u( j)(s)

∣
∣) + ωj(1)

]
ds
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for t ∈ [0, tn−1] and

0 < (−1)pu(n−1)(t) ≤
∫ t

tn−1

h

(

s,n +
n−1∑

j=0

∣
∣u( j)(s)

∣
∣
)

ds +
n−1∑

j=0

∫ t

tn−1

[
ωj
(∣∣u( j)(s)

∣
∣) + ωj(1)

]
ds

for t ∈ [tn−1,T]. Hence, by (4.5) and (4.17),

∣
∣u(n−1)(t)

∣
∣ ≤

∫ T

0
h(t,n + ρK)dt +

n−1∑

j=0

[∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt + Tωj(1)

]

for t ∈ [0,T]. Further, by Lemma 4.4, we can find positive constants Aj , 0 ≤ j ≤ n − 1,
independent of u and satisfying inequality (4.14). Therefore, if we put

A =
n−1∑

j=0

[
Aj + Tωj(1)

]
,

we have

ρ ≤
∫ T

0
h(t,n + ρK)dt + A. (4.18)

Since, by condition (4.5), lim supz→∞ 1/z
∫ T

0 h(t, z)dt < 1/K , there exists a positive con-
stant S ≥ n such that

∫ T

0
h(t,n + Kz)dt +A < z if z ≥ S. (4.19)

Inequalities (4.18) and (4.19) give ρ < S, which shows that (4.16) is true. �

Theorem 4.7. Let conditions (4.3)–(4.7) hold. Then problem (4.1), (4.2) has a solution
u ∈ ACn−1[0,T] and u > 0 on (0,T).

Proof

Step 1. Construction of auxiliary regular problems.
Let S be the constant from Lemma 4.6 satisfying inequality (4.16). Set

σ0(x) =
⎧
⎨

⎩

|x| for |x| ≤ S,

S for |x| > S,
σ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x for |x| ≤ S,

Sx

|x| for |x| > S.
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Choose m ∈ N and first define an auxiliary function hm ∈ Car([0,T] × Rn−1) by the
following recurrent formulas:

hm,0
(
t, x0, x1, . . . , xn−1

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
(
t, x0, x1, . . . , xn−1

)
if x0 ≥ 1

m
,

f
(
t,

1
m

, x1, . . . , xn−1

)
if x0 <

1
m

,

hm,i
(
t, x0, . . . , xi, . . . , xn−1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hm,i−1
(
t, x0, . . . , xi, . . . , xn−1

)
if
∣
∣xi

∣
∣ ≥ 1

m
,

m

2

[
hm,i−1

(
t, x0, . . . , xi−1,

1
m

, xi+1, . . . , xn−1

)(
xi + 1

m

)

−hm,i−1

(
t, x0, . . . , xi−1,− 1

m
, xi+1, . . . , xn−1

)(
xi − 1

m

)]

if
∣
∣xi

∣
∣ <

1
m

for 1 ≤ i ≤ n− 1 and

hm
(
t, x0, . . . , xn−1

) = hm,n−1
(
t, x0, . . . , xn−1

)
.

Finally, for a.e. t ∈ [0,T] and all (x0, . . . , xn−1) ∈ Rn, put

fm
(
t, x0, x1, . . . , xn−1

) = hm
(
t, σ0

(
x0
)
, σ
(
x1
)
, . . . , σ

(
xn−1

))
. (4.20)

Then fm ∈ Car([0,T]×Rn) for m ∈ N and, by (4.4) and (4.20),

c ≤ fm
(
t, x0, . . . , xn−1

) ≤ gm(t) (4.21)

for a.e. t ∈ [0,T] and all (x0, x1, . . . , xn−1) ∈ Rn, where gm ∈ L1[0,T]. Further, for
(x0, x1, . . . , xn−1) ∈ Rn and m ∈ N, we have

max
{
σ0
(
x0
)
,

1
m

}
≤ ∣
∣x0

∣
∣ + 1,

ω0

(
max

{
σ0
(
x0
)
,

1
m

})
< ω0

(∣∣x0
∣
∣) + ω0(S) < ω0

(∣∣x0
∣
∣) + ω0(1)

and similarly

max
{
σ
(
xi
)
,

1
m

}
≤ ∣
∣xi

∣
∣ + 1,

ωi

(
max

{
σ
(
xi
)
,

1
m

})
< ωi

(∣∣xi
∣
∣) + ωi(1), 1 ≤ i ≤ n− 1.

Therefore, by assumption (4.7), for each m ∈ N, we have

fm
(
t, x0, . . . , xn−1

) ≤ h

(

t,n +
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−1∑

j=0

[
ωj
(∣∣xj

∣
∣) + ωj(1)

]
(4.22)

for a.e. t ∈ [0,T] and all (x0, x1, . . . , xn−1) ∈ Rn.
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Consider the regular differential equation

(−1)pu(n) = fm
(
t, x0, . . . , xn−1

)
. (4.23)

Since the homogeneous problem (−1)pu(n) = 0, (4.2) has only the trivial solution and fm
satisfies inequality (4.21), the Fredholm-type existence theorem guarantees that for each
m ∈ N, there exists a solution um ∈ ACn−1[0,T] of problem (4.23), (4.2). Then it follows
from inequalities (4.21) and (4.22) that for each m ∈ N, um ∈ B and inequality (4.15)
hold with u = um. Hence Lemma 4.6 shows that

∥
∥um

∥
∥
Cn−1 < S, m ∈ N, (4.24)

and, by Lemma 4.3, for each i ∈ {1, . . . ,n − 1}, there exist pm,i + 1 disjoint intervals
(am,k, am,k+1), 0 ≤ k ≤ pm,i, pm,i ≤ (n− 1)p such that

pm,i⋃

k=0

[
am,k, am,k+1

] = [0,T],

and for each k ∈ {0, . . . , pm,i} and m ∈ N, one of the inequalities

∣
∣u(n−i)

m (t)
∣
∣ ≥ c

i!

(
t − am,k

)i
for t ∈ [

am,k, am,k+1
]
,

∣
∣u(n−i)

m (t)
∣
∣ ≥ c

i!

(
am,k+1 − t

)i
for t ∈ [

am,k, am,k+1
]
,

is satisfied.

Step 2. Uniform integrability.
Consider the sequence

{
fm
(
t,um(t), . . . ,u(n−1)

m (t)
)} ⊂ L1[0,T]. (4.25)

Inequalities (4.21) and (4.22) show that

0 < fm
(
t,um(t), . . . ,u(n−1)

m (t)
)

≤ h

(

t,n +
n−1∑

j=0

∣
∣u

( j)
m (t)

∣
∣
)

+
n−1∑

j=0

[
ωj
(∣∣u

( j)
m (t)

∣
∣) + ωj(1)

]

for m ∈ N and a.e. t ∈ [0,T]. Since h ∈ Car([0,T]× [0,∞)) and um satisfies (4.24), there
exists h∗ ∈ L1[0,T] such that

h

(

t,n +
n−1∑

j=0

∣
∣u

( j)
m (t)

∣
∣
)

≤ h∗(t) for a.e. t ∈ [0,T] and all m ∈ N.

Hence, in order to prove that (4.25) is uniformly integrable on [0,T], it suffices to show
that the sequences

{
ωj
(∣∣u

( j)
m (t)

∣
∣)}, j = 0, . . . ,n− 1,

are uniformly integrable on [0,T]. Since {um} ⊂ B, this fact follows from Lemma 4.5.
We have proved that (4.25) is uniformly integrable on [0,T].
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Step 3. Existence of a solution of problem (4.1), (4.2).

Consider the sequence {um}, where um is a solution of problem (4.23), (4.2). We
know that (4.24) holds and since (4.25) is uniformly integrable on [0,T], the sequence

{u(n−1)
m } is equicontinuous on [0,T]. Hence, by the Arzelà-Ascoli theorem, there exist

u ∈ Cn−1[0,T] and a subsequence {ulm} ⊂ {um} such that

lim
m→∞

∥
∥ulm − u

∥
∥
Cn−1 = 0.

Letting m→∞ and working with subsequences if necessary, we get

lim
m→∞ plm,i = pi, pi ≤ (n− 1)p, 1 ≤ i ≤ n− 1,

lim
m→∞ alm,k = ak, 0 ≤ k ≤ pi,

where 0 = a0 ≤ a1 ≤ · · · ≤ api ≤ T . In addition, (4.9) and either (4.10) or (4.11)
hold. Hence u(i), 0 ≤ i ≤ n− 1, has a finite number of zeros. Therefore, by Theorem 1.9,
u ∈ ACn−1[0,T] and u is a solution of problem (4.1), (4.2). From assumption (4.4) and
Lemmas 4.1 and 4.2, we get u > 0 on (0,T). �

Example 4.8. Let p be a positive integer, 1 ≤ p ≤ n−1. Consider the differential equation

(−1)pu(n) = 1
uα0

+ uβ0 +
n−1∑

j=1

(
aj(t)
∣
∣u( j)

∣
∣αj + bj(t)

∣
∣u( j)

∣
∣βj
)

, (4.26)

where aj ∈ L∞[0,T], bj ∈ L1[0,T] are nonnegative, αj ∈ (0, 1/(n − j)) and βj ∈ (0, 1)
for 0 ≤ j ≤ n − 1. Applying Theorem 4.7, problem (4.26), (4.2) has a solution u ∈
ACn−1[0,T] and u > 0 on (0,T).

Bibliographical notes

Theorem 4.7 was adapted from Rachůnková and Staněk [162, 164]. Singular (p,n − p)
conjugate problems were discussed by Agarwal and O’Regan in [6, 10] and by Eloe and
Henderson in [82] (here with p = 1) and [83] for differential equations of the type

(−1)n−pu(n) = f (t,u),

where f ∈ C0((0, 1) × (0,∞)) is positive and f may be singular at u = 0. Here positive
solutions on (0, 1) belong to the class Cn−1[0,T] ∩ Cn(0, 1). The paper [10] discussed
also the existence of two positive solutions. Existence results in [10, 82, 83] are proved
by fixed-point theorems on cones, whereas those in [6] by a combination of a sequential
technique and a nonlinear alternative of Leray-Schauder type.



5 Sturm-Liouville problem

We are now concerned with the Sturm-Liouville problem for the differential equation

−u(n) = f
(
t,u, . . . ,u(n−1)) (5.1)

with the boundary conditions

u( j)(0) = 0, 0 ≤ j ≤ n− 3,

αu(n−2)(0)− βu(n−1)(0) = 0,

γu(n−2)(T) + δu(n−1)(T) = 0,

(5.2)

where n ≥ 3, α, γ > 0, β, δ ≥ 0. Here

f ∈ Car
(
[0,T]×D

)
, D = (0,∞)n−1 × (R \ {0}).

Notice that the function f may be singular at the value 0 of any of its space variables. If f
is positive, the solutions of problem (5.1), (5.2) have singular points of type I at the end
points of the interval [0,T] and also singular points of type II.

We will impose the following conditions on the function f in (5.1):

f ∈ Car
(
[0,T]×D

)
, where D = (0,∞)n−1 × (R \ {0})

and there exist positive constants a and r such that

atr ≤ f
(
t, x0, . . . , xn−1

)

for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈D ;

(5.3)

h ∈ Car
(
[0,T]× [0,∞)

)
is positive and nondecreasing

in the second variable and

lim sup
v→∞

1
v

∫ T

0
h(t,Vv)dt < 1,

where V = n
(
β

α
+ T

)
max

{
Tn− j−2

(n− j − 2)!
: 0 ≤ j ≤ n− 2

}
;

(5.4)
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the inequality

f
(
t, x0, . . . , xn−1

) ≤ h

(

t,
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−1∑

j=0

ωj
(∣∣xj

∣
∣)

holds for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈D , (5.5)

where ωj : (0,∞) �→ (0,∞) are nonincreasing, 0 ≤ j ≤ n− 1, and
∫ 1

0
ωn−1

(
tr+1)dt <∞,

∫ 1

0
ωj
(
tn− j−1)dt <∞, 0 ≤ j ≤ n− 2;

the inequality

f
(
t, x0, . . . , xn−1

)≤h
(

t,
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−1∑

j=0
j �=n−2

ωj
(∣∣xj

∣
∣)+q(t)ωn−2

(∣∣xn−2
∣
∣)

holds for a.e. t ∈ [0,T] and each
(
x0, . . . , xn−1

) ∈D ,

where q ∈ L1[0,T] is nonnegative, ωj : (0,∞) �→ (0,∞)

are nonincreasing, 0 ≤ j ≤ n− 1, and
∫ 1

0
ωn−1(tr+1)dt <∞,

∫ 1

0
ωj
(
tn− j−2)dt <∞, 0 ≤ j ≤ n− 3.

(5.6)

Green function and a priori estimates

We denote by G(t, s) the Green function of the problem

−u′′ = 0, (5.7)

αu(0)− βu′(0) = 0, γu(T) + δu′(T) = 0, (5.8)

where α, γ > 0 and β, δ ≥ 0. Then (see, e.g., Agarwal [1])

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
d

(β + αs)
(
δ + γ(T − t)) for 0 ≤ s ≤ t ≤ T ,

1
d

(β + αt)
(
δ + γ(T − s)) for 0 ≤ t < s ≤ T ,

(5.9)

where d = αγT + αδ + βγ > 0. We will discuss two cases, namely, min{β, δ} = 0, that
is, at least one of the constants β and δ equals zero, and min{β, δ} > 0, that is, both the
constants β and δ are positive.

Let us choose positive constants a and r and define a set

A(r, a) = {
u ∈ ACn−1[0,T] : u fulfils (5.2) and (5.10)

}
,

where

−u(n)(t) ≥ atr for a.e. t ∈ [0,T]. (5.10)
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Lemma 5.1. Let min{β, δ} = 0. Let u ∈A(r, a) and set

A = a

(r + 1)(r + 2)

(
T

2

)r+1

. (5.11)

Then u(n−1) is decreasing on [0,T],

u(n−1)(t)

⎧
⎪⎪⎨

⎪⎪⎩

≥ a

r + 1
(ξ − t)r+1 if t ∈ [0, ξ],

< − a

r + 1
(t − ξ)r+1 if t ∈ (ξ,T],

(5.12)

where ξ ∈ (0,T) is the unique zero of u(n−1),

u(n−2)(t) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

At if t ∈
[

0,
T

2

]
,

A(T − t) if t ∈
(
T

2
,T
]

,
(5.13)

u( j)(t) ≥ A

4(n− j − 1)!
tn− j−1 for t ∈ [0,T], 0 ≤ j ≤ n− 3. (5.14)

Proof . From (5.9), (5.10), and the equality

u(n−2)(t) = −
∫ T

0
G(t, s)u(n)(s)ds, t ∈ [0,T],

it follows that

u(n−2)(0) = −β
d

∫ T

0

(
δ + γ(T − s))u(n)(s)ds ≥ aβγ

d

∫ T

0
(T − s)sr ds ≥ 0, (5.15)

u(n−2)(T) = −δ
d

∫ T

0
(β + αs)u(n)(s)ds ≥ aαδ

d

∫ T

0
sr+1ds ≥ 0, (5.16)

u(n−1)(0) = −
∫ T

0

∂G(t, s)
∂t

∣
∣
∣
∣
t=0
u(n)(s)ds

= −α
d

∫ T

0

(
δ + γ(T − s))u(n)(s)ds

≥ aαγ

d

∫ T

0
(T − s)sr ds > 0,

u(n−1)(T) = −
∫ T

0

∂G(t, s)
∂t

∣
∣
∣
∣
t=T

u(n)(s)ds

= γ

d

∫ T

0
(β + αs)u(n)(s)ds

≤ −aαγ
d

∫ T

0
sr+1 ds < 0.

(5.17)
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Since u(n−1) is decreasing on [0,T] by inequality (5.10) and

u(n−1)(0) > 0, u(n−1)(T) < 0,

we see that u(n−1) has a unique zero ξ ∈ (0,T). Then

−u(n−1)(t) =
∫ ξ

t
u(n)(s)ds ≤ −a

∫ ξ

t
srds = − a

r + 1

(
ξr+1 − tr+1)

for t ∈ [0, ξ]. Hence,

u(n−1)(t) ≥ a

r + 1
(ξ − t)r+1, t ∈ [0, ξ],

because of ξr+1−tr+1 ≥ (ξ−t)r+1 for t ∈ [0, ξ]. Similarly, using the inequality tr+1−ξr+1 >
(t − ξ)r+1, we get

u(n−1)(t) =
∫ t

ξ
u(n)(s)ds

≤ −a
∫ t

ξ
sr ds

= − a

r + 1

(
tr+1 − ξr+1)

< − a

r + 1
(t − ξ)r+1 for t ∈ (ξ,T].

We have proved that inequality (5.12) holds.
We now verify inequality (5.13). From (5.15) and (5.16) and from the assumption

min{β, δ} = 0, it follows that

min
{
u(n−2)(0),u(n−2)(T)

} = 0.

Moreover, by inequality (5.10), u(n−2) is concave on [0,T] and consequently to prove
(5.13), it suffices to show that

u(n−2)
(
T

2

)
≥ A

T

2
. (5.18)

Due to inequality (5.12), we have

u(n−2)(t) = u(n−2)(0) +
∫ t

0
u(n−1)(s)ds

≥ a

r + 1

∫ t

0
(ξ − s)r+1 ds

= a

(r + 1)(r + 2)

(
ξr+2 − (ξ − t)r+2)

≥ a

(r + 1)(r + 2)
tr+2
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for t ∈ [0, ξ], since ξr+2 − (ξ − t)r+2 ≥ tr+2 holds in such a case. Similarly, by (5.12), we
obtain

u(n−2)(t) = u(n−2)(T)−
∫ T

t
u(n−1)(s)ds

>
a

r + 1

∫ T

t
(s− ξ)r+1 ds

= a

(r + 1)(r + 2)

(
(T − ξ)r+2 − (t − ξ)r+2)

≥ a

(r + 1)(r + 2)
(T − t)r+2

for t ∈ (ξ,T], since (T−ξ)r+2−(t−ξ)r+2 ≥ (T− t)r+2 holds in such a case. Summarizing,
we have

u(n−2)(t) ≥ a

(r + 1)(r + 2)
tr+2 if t ∈ [0, ξ], (5.19)

u(n−2)(t) ≥ a

(r + 1)(r + 2)
(T − t)r+2 if t ∈ (ξ,T]. (5.20)

We know that max{u(n−2)(t) : t ∈ [0,T]} = u(n−2)(ξ). Consequently, if ξ ≥ T/2, then
(5.11) and (5.19) yield (5.18) and if ξ < T/2 then (5.18) follows from (5.11) and (5.20).

It remains to prove inequality (5.14). Using (5.13) and u(n−3)(0) = 0, we obtain

u(n−3)(t) =
∫ t

0
u(n−2)(s)ds ≥ A

∫ t

0
sds = A

2
t2 for t ∈

[
0,
T

2

]
.

In particular, u(n−3)(T/2) ≥ (A/2)(T/2)2. Since u(n−3) is increasing and (t/2)2 ≤ (T/2)2,
we conclude that the inequality u(n−3)(T/2) ≤ u(n−3)(t) holds on [T/2,T], and

u(n−3)(t) ≥ A
t2

4 · 2!
for t ∈

[
T

2
,T
]
.

Consequently,

u(n−3)(t) ≥ A
t2

4 · 2!
for t ∈ [0,T].

Now, using the equalities

u( j)(t) =
∫ t

0
u( j+1)(s)ds for t ∈ [0,T], 0 ≤ j ≤ n− 4,

we can verify that inequalities (5.14) are satisfied. �
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Lemma 5.2. Let min{β, δ} > 0. Let u ∈A(r, a) and set

B = a

d
min

{
βγ
∫ T

0
(T − s)sr ds, αδ

∫ T

0
sr+1 ds

}
> 0. (5.21)

Then u(n−1) is decreasing on [0,T], u(n−1) satisfies inequality (5.12), where ξ ∈ (0,T) is its
unique zero,

u(n−2)(t) ≥ B for t ∈ [0,T], (5.22)

u( j)(t) ≥ B

(n− j − 2)!
tn− j−2 for t ∈ [0,T], 0 ≤ j ≤ n− 3. (5.23)

Proof . The properties of u(n−1) follow immediately from Lemma 5.1 and its proof. Next,
by relations (5.15) and (5.16),

u(n−2)(0) ≥ aβγ

d

∫ T

0
(T − s)sr ds ≥ B,

u(n−2)(T) ≥ aαδ

d

∫ T

0
sr+1 ds ≥ B.

(5.24)

Since u(n−2) is concave on [0,T], inequalities (5.24) show that (5.22) is true. Now (5.22)
and the equalities u( j)(0) = 0, 0 ≤ j ≤ n− 3, imply that inequality (5.23) holds. �

Lemma 5.3. Let min{β, δ} = 0 and let h and ωj , 0 ≤ j ≤ n− 1, have the properties given
in conditions (5.4) and (5.5). Then there exists a positive constant S0 such that for each
u ∈A(r, a) satisfying that

−u(n)(t) ≤ h

(

t,n +
n−1∑

j=0

∣
∣u( j)(t)

∣
∣
)

+
n−1∑

j=0

[
ωj
(∣∣u( j)(t)

∣
∣) + ωj(1)

]
(5.25)

for a.e. t ∈ [0,T], the estimates

∥
∥u( j)

∥
∥∞ < S0 for 0 ≤ j ≤ n− 1 (5.26)

are valid.

Proof . Let u ∈ A(r, a) satisfy inequality (5.25) for a.e. t ∈ [0,T]. By Lemma 5.1, u(n−1)

has a unique zero ξ ∈ (0,T), and u satisfies inequalities (5.12)–(5.14) with A given in
(5.11). From

u(n−2)(0) = β

α
u(n−1)(0) ≥ 0,

it follows that

∣
∣u(n−2)(t)

∣
∣ ≤ β

α
u(n−1)(0) +

∫ t

0

∣
∣u(n−1)(s)

∣
∣ds ≤

(
β

α
+ T

)∥
∥u(n−1)

∥
∥∞
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for t ∈ [0,T]. Thus,

∥
∥u(n−2)

∥
∥∞ ≤

(
β

α
+ T

)∥
∥u(n−1)

∥
∥∞ (5.27)

and then the equalities

u( j)(t) = 1
(n− j − 3)!

∫ t

0
(t − s)n− j−3u(n−2)(s)ds, t ∈ [0,T], 0 ≤ j ≤ n− 3,

give

∥
∥u( j)

∥
∥∞ ≤

Tn− j−2

(n− j − 2)!

∥
∥u(n−2)

∥
∥∞ ≤

Tn− j−2

(n− j − 2)!

(
β

α
+ T

)∥
∥u(n−1)

∥
∥∞,

that is,

∥
∥u( j)

∥
∥∞ ≤

V

n

∥
∥u(n−1)

∥
∥∞, 0 ≤ j ≤ n− 3, (5.28)

where V is given in condition (5.4). Now inequality (5.25) yields

∣
∣u(n−1)(t)

∣
∣ =

∣
∣
∣
∣

∫ t

ξ
u(n)(s)ds

∣
∣
∣
∣

≤
∫ T

0

[

h

(

s,n +
n−1∑

j=0

∣
∣u( j)(s)

∣
∣
)

+
n−1∑

j=0

[
ωj
(∣∣u( j)(s)

∣
∣) + ωj(1)

]
]

ds

≤
∫ T

0

[

h
(
s,n +V

∥
∥u(n−1)

∥
∥∞
)

+
n−1∑

j=0

[
ωj
(∣∣u( j)(s)

∣
∣) + ωj(1)

]
]

ds,

for t ∈ [0,T], that is,

∣
∣u(n−1)(t)

∣
∣ ≤

∫ T

0

[

h
(
s,n+V

∥
∥u(n−1)

∥
∥∞
)

+
n−1∑

j=0

[
ωj
(∣∣u( j)(s)

∣
∣)+ωj(1)

]
]

ds for t∈[0,T].

(5.29)

Set

K = r+1

√
a

r + 1
, r j = n− j−1

√
A

4(n− j − 1)!
, 0 ≤ j ≤ n− 3.
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Since (see inequalities (5.12)–(5.14))

∫ T

0
ωn−1

(∣∣u(n−1)(t)
∣
∣)dt ≤

∫ ξ

0
ωn−1

(
a

r + 1
(ξ − t)r+1

)
dt +

∫ T

ξ
ωn−1

(
a

r + 1
(t − ξ)r+1

)
dt

= 1
K

[∫ Kξ

0
ωn−1

(
tr+1)dt +

∫ K(T−ξ)

0
ωn−1

(
tr+1)dt

]

≤ 2
K

∫ KT

0
ωn−1

(
tr+1)dt,

(5.30)

∫ T

0
ωn−2

(∣∣u(n−2)(t)
∣
∣)dt ≤

∫ T/2

0
ωn−2(At)dt +

∫ T

T/2
ωn−2

(
A(T − t))dt

= 2
A

∫ (AT)/2

0
ωn−2(t)dt,

(5.31)

and (for 0 ≤ j ≤ n− 3)

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt ≤

∫ T

0
ωj

(
A

4(n− j − 1)!
tn− j−1

)
dt = 1

r j

∫ r jT

0
ωj
(
tn− j−1)dt,

we deduce from inequality (5.29) that

∥
∥u(n−1)

∥
∥∞ ≤

∫ T

0
h
(
s,n +V

∥
∥u(n−1)

∥
∥∞
)
ds + Λ, (5.32)

where

Λ =
n−3∑

j=0

1
r j

∫ r jT

0
ωj
(
tn− j−1)dt +

2
A

∫ (AT)/2

0
ωn−2(t)dt

+
2
K

∫ KT

0
ωn−1

(
tr+1)dt + T

n−1∑

j=0

ωj(1) <∞.
(5.33)

According to our assumption (see condition (5.4)) we have

lim sup
v→∞

1
v

∫ T

0
h(t,Vv)dt < 1,

and therefore there exists a positive constant S∗ such that

∫ T

0
h(t,n +Vv)dt + Λ < v (5.34)

whenever v ≥ S∗. Inequalities (5.32) and (5.34) show that ‖u(n−1)‖∞ < S∗. Now using
(5.27) and (5.28), we see that inequality (5.26) holds with S0=S∗ max{1,V/n}. �
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Lemma 5.4. Let min{β, δ} > 0 and let h, q, and ωj (0 ≤ j ≤ n − 1) have the properties
given in conditions (5.4) and (5.6). Then there exists a positive constant S1 such that

∥
∥u( j)

∥
∥∞ < S1, 0 ≤ j ≤ n− 1, (5.35)

for each u ∈A(r, a) satisfying the inequality

−u(n)(t) ≤ h

(

t,n +
n−1∑

j=0

∣
∣u( j)(t)

∣
∣
)

+
n−1∑

j=0
j �=n−2

[
ωj
(∣∣u( j)(t)

∣
∣) + ωj(1)

]

+ q(t)
[
ωn−2

(∣∣u(n−2)(t)
∣
∣) + ωn−2(1)] for a.e. t ∈ [0,T].

(5.36)

Proof . Let u ∈A(r, a) satisfy (5.36) for a.e. t ∈ [0,T]. By Lemma 5.2, inequalities (5.12),
(5.22), and (5.23) are true provided ξ ∈ (0,T) is the unique zero of u(n−1) and B is
given by (5.21). Since u(n−2)(0) = (β/α)u(n−1)(0) the same reasoning as in the proof of
Lemma 5.3 shows that inequalities (5.27) and (5.28) hold if V is defined by (5.4). From
inequalities (5.22) and (5.23), we obtain

ωn−2
(∣∣u(n−2)(t)

∣
∣) ≤ ωn−2(B), t ∈ [0,T],

∫ T

0
ωj
(∣∣u( j)(t)

∣
∣)dt ≤

∫ T

0
ωj

(
B

(n− j − 2)!
tn− j−2

)
dt

= 1
mj

∫ mjT

0
ωj
(
tn− j−2)dt

for 0 ≤ j ≤ n− 3, where mj = n− j−2
√
B/(n− j − 2)!. Then (see (5.28), (5.30), and (5.36))

∣
∣u(n−1)(t)

∣
∣ =

∣
∣
∣
∣

∫ t

ξ
u(n)(s)ds

∣
∣
∣
∣

≤
∫ T

0

[

h

(

s,n +
n−1∑

j=0

∣
∣u( j)(s)

∣
∣
)

+
n−1∑

j=0
j �=n−2

[
ωj
(∣∣u( j)(s)

∣
∣) + ωj(1)]

+ q(s)
[
ωn−2

(∣∣u(n−2)(s)
∣
∣) + ωn−2(1)

]
]

ds

≤
∫ T

0
h
(
s,n +V

∥
∥u(n−1)

∥
∥∞
)
ds + Λ1 for t ∈ [0,T],

where

Λ1 =
n−3∑

j=0

1
mj

∫ mjT

0
ωj
(
tn− j−2)dt + ‖q‖1

[
ωn−2(B) + ωn−2(1)

]

+
2
K

∫ KT

0
ωn−1

(
tr+1)dt + T

n−1∑

j=0
j �=n−2

ωj(1) <∞.
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Hence,

∥
∥u(n−1)

∥
∥∞ ≤

∫ T

0
h
(
s,n +V

∥
∥u(n−1)

∥
∥∞
)
ds + Λ1

and using the same procedure as in the proof of Lemma 5.3, we conclude from the as-
sumption lim supv→∞(1/v)

∫ T
0 h(s,Vv)ds < 1 that inequality (5.35) is true with a positive

constant S1. �

Auxiliary regular problems

For each m ∈ N and any positive constant L define �L,m, τL ∈ C0(R) and fL,m ∈ Car([0,
T]×Rn) by the formulas

�L,m(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
m

if |v| < 1
m

,

|v| if
1
m
≤ |v| ≤ L + 1,

L + 1 if |v| > L + 1,

τL(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v if |v| ≤ L + 1,

(L + 1)v
|v| if |v| > L + 1,

fL,m
(
t, x0, . . . , xn−2, xn−1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(
t,�L,m

(
x0
)
, . . . ,�L,m

(
xn−2

)
, τL

(
xn−1

))
if
∣
∣xn−1

∣
∣ ≥ 1

m
,

m

2

[
fL,m

(
t, x0, . . . , xn−2,

1
m

)(
xn−1 +

1
m

)

− fL,m

(
t, x0, . . . , xn−2,− 1

m

)(
xn−1 − 1

m

)]
if
∣
∣xn−1

∣
∣ <

1
m
.

Then for a.e. t ∈ [0,T] and all (x0, . . . , xn−1) ∈ Rn,

atr ≤ fL,m
(
t, x0, . . . , xn−1

) ≤ h

(

t,n +
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−1∑

j=0

[
ωj
(∣∣xj

∣
∣) + ωj(1)

]
(5.37)

provided conditions (5.3)–(5.5) hold, and

atr ≤ fL,m
(
t, x0, . . . , xn−1

) ≤ h

(

t,n +
n−1∑

j=0

∣
∣xj

∣
∣
)

+
n−1∑

j=0
j �=n−2

[
ωj
(∣∣xj

∣
∣) + ωj(1)

]
+ q(t)

[
ωn−2

(∣∣xj
∣
∣) + ωn−2(1)

] (5.38)

provided conditions (5.3), (5.4), and (5.6) hold.
Consider an auxiliary family of regular differential equations

−u(n) = fL,m
(
t,u, . . . ,u(n−1)) (5.39)

depending on L > 0 and m ∈ N.
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Lemma 5.5. Let min{β, δ} = 0 and let conditions (5.3)–(5.5) hold. Let S0 be the positive
constant from Lemma 5.3. Then for each m ∈ N, problem (5.39), (5.2) with L = S0 has a
solution um ∈A(r, a) and

∥
∥u

( j)
m
∥
∥∞ < S0 for 0 ≤ j ≤ n− 1. (5.40)

In addition, the sequence

{
fS0,m

(
t,um(t), . . . ,u(n−1)

m (t)
)}

(5.41)

is uniformly integrable on [0,T].

Proof . Choose m ∈ N. Put

gm(t) = sup
{
fS0,m

(
t, x0, . . . , xn−1

)
:
(
x0, . . . , xn−1

) ∈ R
n
}
.

Then

gm(t)=sup
{
f
(
t, x0, . . . , xn−1

)
:

1
m
≤xj≤S0 +1 for 0≤ j≤n− 2,

1
m
≤∣∣xn−1

∣
∣≤S0 +1

}
.

Since f ∈ Car([0,T]×D), we have gm ∈ L1[0,T]. As the homogeneous problem−u(n) =
0, (5.2) has only the trivial solution, the Fredholm-type existence theorem guarantees the
existence of a solution um of problem (5.39), (5.2) with L = S0. Besides, inequality (5.37)
with L = S0 yields

atr ≤ −u(n)
m (t) ≤ h

(

t,n +
n−1∑

j=0

∣
∣u

( j)
m (t)

∣
∣
)

+
n−1∑

j=0

[
ωj
(∣∣u

( j)
m (t)

∣
∣) + ωj(1)

]

for a.e. t ∈ [0,T]. Consequently, um ∈ A(r, a) and inequality (5.40) is true by Lemmas
5.1 and 5.3. Moreover,

u(n−1)
m (t)

⎧
⎪⎪⎨

⎪⎪⎩

≥ a

r + 1

(
ξm − t

)r+1
for t ∈ [0, ξm],

< − a

r + 1

(
t − ξm

)r+1
for t ∈ (

ξm,T
]
,

(5.42)

where ξm ∈ (0,T) is the unique zero of u(n−1)
m ,

u(n−2)
m (t) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

At for t ∈
[

0,
T

2

]
,

A(T − t) for t ∈
(
T

2
,T
]

,
(5.43)

u
( j)
m (t) ≥ A

4(n− j − 1)!
tn− j−1 for t ∈ [0,T], 0 ≤ j ≤ n− 3, (5.44)

where A is defined in formula (5.11). Since

0 ≤ fS0,m
(
t,um(t), . . . ,u(n−1)

m (t)
) ≤ h

(
t,n

(
1 + S0

))
+
n−1∑

j=0

[
ωj
(∣∣u

( j)
m (t)

∣
∣) + ωj(1)

]
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for a.e. t ∈ [0,T] and each m ∈ N, and h(t,n(1 + S0)) ∈ L1[0,T] by (5.4), to prove the
uniform integrability of sequence (5.41) it suffices to show that the sequences

{
ωj
(∣∣u

( j)
m (t)

∣
∣)}, 0 ≤ j ≤ n− 1,

are uniformly integrable on [0,T]. Let 0 ≤ j ≤ n− 3. Then

ωj
(∣∣u

( j)
m (t)

∣
∣) ≤ ωj

(
A

4(n− j − 1)!
tn− j−1

)
, t ∈ [0,T], m ∈ N,

and it follows from the properties of ωj that ωj((Atn− j−1)/(4(n− j − 1)!)) ∈ L1[0,T].

Hence, {ωj(|u( j)
m (t)|)} is uniformly integrable on [0,T]. Analogously, (5.43) gives

ωn−2(|u(n−2)
m (t)|) ≤ ωn−2(ϕ(t)) for t ∈ [0,T] and m ∈ N, where

ϕ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

At for t ∈
[

0,
T

2

]
,

A(T − t) for t ∈
(
T

2
,T
]
.

Since ωn−2(ϕ(t)) ∈ L1[0,T], it follows that sequence {ωn−2(|u(n−2)
m (t)|)} is uniformly

integrable on [0,T]. Furthermore, the uniform integrability of {ωn−1(|u(n−1)
m (t)|)} fol-

lows from Criterion A.4. We have proved that sequence (5.41) is uniformly integrable on
[0,T]. �

Lemma 5.6. Let min{β, δ} > 0 and let conditions (5.3), (5.4), and (5.6) hold. Let S1 be the
positive constant from Lemma 5.4. Then for each m ∈ N, problem (5.39), (5.2) with L = S1

has a solution um ∈A(r, a) and

∥
∥u

( j)
m
∥
∥∞ < S1 for 0 ≤ j ≤ n− 1. (5.45)

In addition, the sequence

{
fS1,m

(
t,um(t), . . . ,u(n−1)

m (t)
)}

(5.46)

is uniformly integrable on [0,T].

Proof . Essentially the same reasoning as in the first part of the proof of Lemma 5.5 shows
that for each m ∈ N there exists a solution um of problem (5.39), (5.2) with L = S1. The
fact that um ∈A(r, a) and um satisfies inequality (5.45) follows from Lemmas 5.2 and 5.4.
It remains to verify that sequence (5.46) is uniformly integrable on [0,T]. Notice that, by

Lemmas 5.2 and 5.4, u(n−1)
m satisfies inequality (5.42), where ξm ∈ (0,T) is its unique zero

and

u(n−2)
m (t) ≥ B for t ∈ [0,T], (5.47)

u
( j)
m (t) ≥ B

(n− j − 2)!
tn− j−2 for t ∈ [0,T], 0 ≤ j ≤ n− 3, (5.48)
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where B is given in formula (5.21). Hence,

ωn−2
(
u(n−2)
m (t)

) ≤ ωn−2(B), t ∈ [0,T], m ∈ N, (5.49)

ωj
(∣∣u

( j)
m (t)

∣
∣) ≤ ωj

(
B

(n− j − 2)!
tn− j−2

)
, t ∈ (0,T), m∈N, 0≤ j≤n− 3. (5.50)

By conditions (5.4) and (5.6), we know that the functions h(t,n(1 + S1)), q(t) and ωj((B/
(n− j − 2)!)tn− j−2) belong to the set L1[0,T] for 0 ≤ j ≤ n − 3 and that the sequence

{ωn−1(|u(n−1)
m (t)|)} is uniformly integrable on [0,T], which was shown in the proof of

Lemma 5.5. Hence, the uniform integrability of the sequence (5.46) follows from (5.49),
(5.50), and from the following inequality (see (5.38))

0 ≤ fS1,m
(
t,um(t), . . . ,u(n−1)

m (t)
) ≤ h

(
t,n

(
1 + S1

))

+
n−1∑

j=0
j �=n−2

[
ωj
(∣∣u

( j)
m (t)

∣
∣) + ωj(1)

]
+ q(t)

[
ωn−2

(∣∣u(n−2)
m (t)

∣
∣) + ωn−2(1)

]

for a.e. t ∈ [0,T] and all m ∈ N. �

Existence results

Theorem 5.7. Let conditions (5.3)–(5.5) hold and let min{β, δ} = 0. Then problem (5.1),
(5.2) has a solution u ∈ ACn−1[0,T] such that

u(n−2) > 0 on (0,T), u( j) > 0 on (0,T] for 0 ≤ j ≤ n− 3. (5.51)

Proof . By Lemma 5.5, for eachm ∈ N, there is a solution um ∈A(r, a) of problem (5.39),
(5.2) with L = S0. Lemmas 5.1, 5.3, and 5.5 show that um satisfies inequalities (5.40) and
(5.42)–(5.44), where A > 0 is given in (5.11) and sequence (5.41) is uniformly integrable

on [0,T]. Hence, {um} is bounded inCn−1[0,T] and {u(n−1)
m } is equicontinuous on [0,T].

Without loss of generality, we can assume that {um} is convergent in Cn−1[0,T] and {ξm}
is convergent in R, where ξm ∈ (0,T) denotes the unique zero of u(n−1)

m . Let limm→∞ um =
u, limm→∞ ξm = ξ. Then

u(n−1)(t)

⎧
⎪⎪⎨

⎪⎪⎩

≥ a

r + 1
(ξ − t)r+1 for t ∈ [0, ξ]

≤ − a

r + 1
(ξ − t)r+1 for t ∈ (ξ,T],

(5.52)

u(n−2)(t) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

At for t ∈
[

0,
T

2

]

A(T − t) for t ∈
(
T

2
,T
]

,

(5.53)

u( j)(t) ≥ A

4(n− j − 1)!
tn− j−1, t ∈ [0,T], 0 ≤ j ≤ n− 3. (5.54)
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Hence, u( j) has at most two zeros on [0,T] for 0 ≤ j ≤ n− 1. Applying Theorem 1.9, we
obtain that u ∈ ACn−1[0,T], u is a solution of problem (5.1), (5.2), and (see (5.53) and
(5.54)) u(n−2) > 0 on (0,T), u( j) > 0 on (0,T] for 0 ≤ j ≤ n− 3. �

Theorem 5.8. Assume (5.3), (5.4), (5.6) and let min{β, δ} > 0. Then there exists a solution
u ∈ ACn−1[0,T] of problem (5.1), (5.2) such that

u(n−2) > 0 on [0,T], u( j) > 0 on (0,T] for 0 ≤ j ≤ n− 3. (5.55)

Proof . Lemma 5.6 guarantees that for each m ∈ N there exists a solution um ∈A(r, a) of
problem (5.39), (5.2) with L = S1. By Lemmas 5.2, 5.4, and 5.6, um satisfies inequalities
(5.42), (5.45), (5.47), and (5.48), where B > 0 is defined in formula (5.21) and sequence
(5.46) is uniformly integrable on [0,T]. Without loss of generality, we can assume that
{um} and {ξm} are convergent in Cn−1[0,T] and R, respectively. Here ξm ∈ (0,T) is the

unique zero of u(n−1)
m . Let us denote u = limm→∞ um, ξ = limm→∞ ξm. Then inequalities

(5.52) and

u(n−2)(t) ≥ B, t ∈ [0,T], (5.56)

u( j)(t) ≥ B

(n− j − 2)!
tn− j−2, t ∈ [0,T], 0 ≤ j ≤ n− 3, (5.57)

are true. Hence, u( j) has at most one zero in [0,T] for 0 ≤ j ≤ n−1. Thus, by Theorem 1.9,
u ∈ ACn−1[0,T] is a solution of problem (5.1), (5.2). From (5.56) and (5.57), we see that
u(n−2) > 0 on [0,T] and u( j) > 0 on (0,T] for 0 ≤ j ≤ n− 3. �

Example 5.9. Consider the differential equation

−u(n) = sin
(
t

T

)r
+
n−2∑

j=0

(
aj(t)
(
u( j)

)αj + bj(t)
(
u( j))γj

)
+

an−1(t)
∣
∣u(n−1)

∣
∣αn−1 + bn−1(t)

∣
∣u(n−1)

∣
∣γn−1

(5.58)

with the boundary conditions (5.2), where min{β, δ} = 0. Theorem 5.7 guarantees that
this problem has a solution u ∈ ACn−1[0,T] satisfying inequality (5.51) provided r ∈
(0,∞), αj ∈ (0, 1/(n− j − 1)) for 0 ≤ j ≤ n − 2, αn−1 ∈ (0, 1/(r + 1)), γi ∈ (0, 1); and
the functions ai ∈ L∞[0,T], bi ∈ L1[0,T] are nonnegative for 0 ≤ i ≤ n− 1.

Now consider problem (5.58), (5.2), where min{β, δ} > 0. Assume that r ∈ (0,∞),
αj ∈ (0, 1/(n− j − 2)) for 0 ≤ j ≤ n− 3, αn−2 ∈ (0,∞), αn−1 ∈ (0, 1/(r + 1)), γi ∈ (0, 1),
bi ∈ L1[0,T] is nonnegative for 0 ≤ i ≤ n − 1 and finally an−2 ∈ L1[0,T], an−1, ak ∈
L∞[0,T] are nonnegative for 0 ≤ k ≤ n− 3. Then, by Theorem 5.8, problem (5.58), (5.2)
has a solution satisfying inequality (5.55).

Bibliographical notes

Theorems 5.7 and 5.8 were adapted from Rachůnková and Staněk [161]. The singular
Sturm-Liouville problem for the equation

u(n) + f
(
t,u, . . . ,u(n−2)) = 0
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is considered in Agarwal and Wong [26], where f ∈ C0((0, 1) × (0,∞)n−1) is positive.
Here the existence of a solution u ∈ Cn−1[0, 1]∩Cn(0, 1) positive on (0, 1) is proved by a
fixed-point theorem for mappings that are decreasing with respect to a cone in a Banach
space.





6
Lidstone problem

Let R− = (−∞, 0), R+ = (0,∞) and R0 = R \ {0}. We will consider the singular Lidstone
problem

(−1)nu(2n) = f
(
t,u, . . . ,u(2n−1)), (6.1)

u(2 j)(0) = u(2 j)(T) = 0, 0 ≤ j ≤ n− 1, (6.2)

where n ≥ 1 and f ∈ Car([0,T]×D) with

D =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R+ ×R0 ×R− ×R0 × · · · ×R+ ×R0︸ ︷︷ ︸
4k−2

if n = 2k − 1,

R+ ×R0 ×R− ×R0 × · · · ×R− ×R0︸ ︷︷ ︸
4k

if n = 2k

(for n = 1 and 2, we have D = R+ × R0 and D = R+ × R0 × R− × R0, resp.). If n = 1,
problem (6.1), (6.2) reduces to the Dirichlet problem. The function f may be singular at
the value 0 of its space variables. If f is positive on [0,T]×D , the solutions of problem
(6.1), (6.2) have singular points of type I at t = 0 and t = T and also singular points of
type II.

Green functions

Let j ∈ N. In our studies we will essentially use the Green functions Gj(t, s) of the
problems

u(2 j)(t) = 0, u(2i)(0) = u(2i)(T) = 0, 0 ≤ i ≤ j − 1.

Then

G1(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

s

T
(t − T) for 0 ≤ s ≤ t ≤ T ,

t

T
(s− T) for 0 ≤ t < s ≤ T.

(6.3)
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If j > 1 we have

Gj(t, s) =
∫ T

0
· · ·

∫ T

0︸ ︷︷ ︸
( j−1) times

G1
(
t, s j−1

)
G1
(
s j−1, s j−2

) · · ·G1
(
s1, s

)
ds1 · · ·dsj−1

for (t, s) ∈ [0,T]× [0,T]. Therefore the Green function Gj(t, s) can be expressed as

Gj(t, s) =
∫ T

0
G1(t, τ)Gj−1(τ, s)dτ (6.4)

for (t, s) ∈ [0,T]× [0,T] and j > 1 (see Agarwal [1], Agarwal and Wong [25], Wong and
Agarwal [201]). Since G1(t, s) < 0 for (t, s) ∈ (0,T)× (0,T), we conclude from (6.4) that

(−1) jGj(t, s) > 0 for (t, s) ∈ (0,T)× (0,T). (6.5)

The next lemma gives inequalities for the Green function Gj(t, s).

Lemma 6.1. For (t, s) ∈ [0,T]× [0,T] and j ∈ N, the inequality

∣
∣Gj(t, s)

∣
∣ ≥ T2 j−5

30 j−1 st(T − t)(T − s) (6.6)

holds.

Proof . The validity of inequality (6.6) will be proved by induction. Since

∣
∣G1(t, s)

∣
∣ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s

T
(T − t) ≥ st(T − t)(T − s)

T3
for 0 ≤ s ≤ t ≤ T ,

t

T
(T − s) ≥ st(T − t)(T − s)

T3
for 0 ≤ t < s ≤ T ,

(6.7)

estimate (6.6) is true for j = 1. Assume now that (6.6) holds for j = i ≥ 1. Then relations
(6.4)–(6.7) give

∣
∣Gi+1(t, s)

∣
∣ =

∫ T

0

∣
∣G1(t, τ)

∣
∣
∣
∣Gi(τ, s)

∣
∣dτ

≥ T2i−8

30i−1
st(T − t)(T − s)

∫ T

0
τ2(T − τ)2 dτ

= T2i−3

30i
st(T − t)(T − s)

for (t, s) ∈ [0,T]× [0,T] and therefore (6.6) is valid for j = i + 1. �

In the proof of Theorem 6.3 we will need the following result.

Lemma 6.2. Let ξ ∈ (0,T). Then

∣
∣
∣
∣

∫ t

ξ
s(T − s)ds

∣
∣
∣
∣ ≥

T

6
(t − ξ)2 for t ∈ [0,T]. (6.8)
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Proof . It suffices to prove inequality (6.8) only for t ∈ [ξ,T]. Then

2Tt + 4Tξ − 2
(
t2 + tξ + ξ2) = 2t(T − t) + 2ξ(T − t) + 2ξ(T − ξ) > 0

and therefore

∫ t

ξ
s(T − s)ds = 1

6

[
3T
(
t2 − ξ2)− 2

(
t3 − ξ3)]

= t − ξ
6

[
T(t − ξ) + 2Tt + 4Tξ − 2

(
t2 + tξ + ξ2)]

≥ T

6
(t − ξ)2.

�

Main result

The next result provides sufficient conditions for the existence of a solution of the singular
Lidstone problem.

Theorem 6.3. Let f ∈ Car([0,T]×D) and let there exist a ∈ (0,∞) such that

a ≤ f
(
t, x0, . . . , x2n−1

)
for a.e. t ∈ [0,T] and each

(
x0, . . . , x2n−1

) ∈D . (6.9)

Let

f
(
t, x0, . . . , x2n−1

) ≤ h

(

t,
2n−1∑

j=0

∣
∣xj

∣
∣
)

+
2n−1∑

j=0

ωj
(∣∣xj

∣
∣)

for a.e. t ∈ [0,T] and each
(
x0, . . . , x2n−1

) ∈D ,

(6.10)

where h ∈ Car([0,T] × [0,∞)) is positive and nondecreasing in the second variable, ωj :
R+ → R+ is nonincreasing, 0 ≤ j ≤ 2n− 1,

lim sup
v→∞

1
v

∫ T

0
h(t,Kv)dt < 1 with K =

⎧
⎪⎪⎨

⎪⎪⎩

2n if T = 1,

T2n − 1
T − 1

if T �= 1,
(6.11)

∫ 1

0
ω2n−1(s)ds <∞,

∫ 1

0
ω2 j(s)ds <∞ for 0 ≤ j ≤ n− 1, (6.12)

∫ 1

0
ω2 j+1

(
s2
)
ds <∞ for 0 ≤ j ≤ n− 2. (6.13)

Then problem (6.1), (6.2) has a solution u ∈ AC2n−1[0,T] and

(−1) ju(2 j)(t) > 0 for t ∈ (0,T), 0 ≤ j ≤ n− 1. (6.14)
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Proof

Step 1. Regularization.
For each m ∈ N, define χm,ϕm, τm ∈ C0(R), and Rm ⊂ R by the formulas

χm(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v if v ≥ 1
m

,

1
m

if v <
1
m

,
ϕm(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
m

if v > − 1
m

,

v if v ≤ − 1
m

,

τm =
⎧
⎪⎨

⎪⎩

χm if n = 2k − 1,

ϕm if n = 2k,
Rm = R \

(
− 1
m

,
1
m

)
.

Choose m ∈ N and put

fm,0
(
t, x0, x1, x2, x3, . . . , x2n−2, x2n−1

) = f
(
t, χm

(
x0
)
, x1,ϕm

(
x2
)
, x3, . . . , τm

(
x2n−2

)
, x2n−1

)

for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1) ∈ [0,T]×R×Rm×R×Rm×· · ·×R×Rm. Define
fm ∈ Car([0,T]×R2n) by the formula

fm
(
t, x0, x1, x2, x3, . . . , x2n−2, x2n−1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m

2

[
fm,0

(
t, x0,

1
m

, x2, x3, . . . , x2n−2, x2n−1

)(
x1 +

1
m

)

− fm,0

(
t, x0,− 1

m
, x2, x3, . . . , x2n−2, x2n−1

)(
x1 − 1

m

)]

for
(
t, x0, x1, x2, x3, . . . , x2n−2, x2n−1

)

∈ [0,T]×R×
[
− 1
m

,
1
m

]
×R×Rm × · · · ×R×Rm,

m

2

[
fm,0

(
t, x0, x1, x2,

1
m

, . . . , x2n−2, x2n−1

)(
x3 +

1
m

)

− fm,0

(
t, x0, x1, x2,− 1

m
, . . . , x2n−2, x2n−1

)(
x3 − 1

m

)]

for
(
t, x0, x1, x2, x3, . . . , x2n−2, x2n−1

)

∈ [0,T]×R3 ×
[
− 1
m

,
1
m

]
× · · · ×R×Rm,

...
...

...
...

m

2

[
fm,0

(
t, x0, x1, x2, . . . , x2n−2,

1
m

)(
x2n−1 +

1
m

)

− fm,0

(
t, x0, x1, x2, . . . , x2n−2,− 1

m

)(
x2n−1 − 1

m

)]

for
(
t, x0, x1, x2, . . . , x2n−2, x2n−1

) ∈ [0,T]×R2n−1×
[
− 1
m

,
1
m

]
.
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Then inequalities (6.9) and (6.10) imply that

a ≤ fm
(
t, x0, . . . , x2n−1

) ≤
(

t, 2n +
2n−1∑

j=0

∣
∣xj

∣
∣
)

+
2n−1∑

j=0

[
ωj
(∣∣xj

∣
∣) + ωj(1)

]
(6.15)

for a.e. t ∈ [0,T] and all (x0, . . . , x2n−1) ∈ R
2n
0 .

Consider the sequence of approximate regular differential equations

(−1)nu(2n) = fm
(
t,u, . . . ,u(2n−1)). (6.16)

Step 2. Solvability of problem (6.16), (6.2).
We first give a priori bounds for solutions of problem (6.16), (6.2). To this end let

um ∈ AC2n−1[0,T] be a solution of problem (6.16), (6.2). By inequality (6.15) we have

(−1)nu(2n)
m (t) ≥ a > 0 for a.e. t ∈ [0,T]. (6.17)

Furthermore, by the definitions of the Green functionsGi(t, s), i = 1, 2, . . . ,n, the equality

(−1) ju
(2 j)
m (t) = (−1)n− j

∫ T

0
Gn− j(t, s)(−1)nu(2n)

m (s)ds (6.18)

holds for t ∈ [0,T] and 0 ≤ j ≤ n− 1. From relations (6.5) and (6.17) we see that

(−1) ju
(2 j)
m (t) > 0 for t ∈ [0,T], 0 ≤ j ≤ n− 1. (6.19)

Hence, (−1) ju
(2 j+1)
m is decreasing on [0,T] for 0 ≤ j ≤ n − 1. Therefore and due to

boundary conditions (6.2) we conclude that u
(2 j+1)
m (ξj,m) = 0 holds for a unique ξj,m ∈

(0,T). Moreover, from relations (6.6), (6.17), and (6.18) it follows that

∣
∣u

(2 j)
m (t)

∣
∣ ≥ a

T2(n− j)−5

30n− j−1 t(T − t)
∫ T

0
s(T − s)ds

= a
T2(n− j)−2

6 · 30n− j−1 t(T − t) for t ∈ [0,T], 0 ≤ j ≤ n− 1.

In particular,

∣
∣u

(2 j)
m (t)

∣
∣ ≥ a

T2(n− j)−2

6 · 30n− j−1 t(T − t) for t ∈ [0,T], 0 ≤ j ≤ n− 1. (6.20)

Since

u
(2 j+1)
m (t) =

∫ t

ξ j,m
u

(2 j+2)
m (s)ds,

∣
∣
∣
∣

∫ t

ξ j,m
s(T − s)ds

∣
∣
∣
∣ ≥

T

6

(
t − ξj,m

)2

by Lemma 6.2, we obtain

∣
∣u

(2 j+1)
m (t)

∣
∣ ≥ a

T2(n− j)−3

36 · 30n− j−2

(
t − ξj,m

)2
for t ∈ [0,T], 0 ≤ j ≤ n− 2, (6.21)

∣
∣u(2n−1)

m (t)
∣
∣ ≥ a

∣
∣t − ξn−1,m

∣
∣ for t ∈ [0,T]. (6.22)
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By inequality (6.17), we have |u(2n)
m (t)| ≥ a > 0 for a.e. t ∈ [0,T]. Put

A = amin
{

1,A1,A2
}

,

where

A1 = min
{

T2(n− j)−3

36 · 30n− j−2 : 0 ≤ j ≤ n− 2
}

,

A2 = min
{
T2(n− j)−2

6 · 30n− j−1 : 0 ≤ j ≤ n− 1
}
.

Then inequalities (6.20)–(6.22) give

∣
∣u(2n−1)

m (t)
∣
∣ ≥ A

∣
∣t − ξn−1,m

∣
∣,

∣
∣u

(2 j+1)
m (t)

∣
∣ ≥ A

(
t − ξj,m

)2
for 0 ≤ j ≤ n− 2,

∣
∣u

(2 j)
m (t)

∣
∣ ≥ At(T − t) for 0 ≤ j ≤ n− 1,

(6.23)

for t ∈ [0,T]. Hence,

∫ T

0
ω2n−1

(∣∣u(2n−1)
m (s)

∣
∣)ds ≤

∫ T

0
ω2n−1

(
A
∣
∣s− ξn−1,m

∣
∣)ds

= 1
A

∫ Aξn−1,m

0
ω2n−1(s)ds +

1
A

∫ A(T−ξn−1,m)

0
ω2n−1(s)ds

<
2
A

∫ AT

0
ω2n−1(s)ds,

∫ T

0
ω2 j+1

(∣∣u
(2 j+1)
m (s)

∣
∣)ds ≤

∫ T

0
ω2 j+1

(
A
(
s− ξj,m

)2)
ds

= 1√
A

∫ √A(T−ξj,m)

−√Aξj,m
ω2 j+1

(
s2
)
ds

<
2√
A

∫ √AT

0
ω2 j+1

(
s2
)
ds

and using the inequality

t(T − t) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Tt

2
for 0 ≤ t ≤ T

2
,

T(T − t)
2

for
T

2
≤ t ≤ T ,
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we compute

∫ T

0
ω2 j

(∣∣u
(2 j)
m (s)

∣
∣)ds ≤

∫ T

0
ω2 j

(
As(T − s))ds

≤
∫ T/2

0
ω2 j

(
ATs

2

)
ds +

∫ T

T/2
ω2 j

(
AT(T − s)

2

)
ds

= 4
AT

∫ AT2/2

0
ω2 j(s)ds.

So, we can summarize the above considerations as follows:

∫ T

0
ω2n−1

(∣∣u(2n−1)
m (s)

∣
∣)ds <

2
A

∫ AT

0
ω2n−1(s)ds, (6.24)

∫ T

0
ω2 j+1

(∣∣u
(2 j+1)
m (s)

∣
∣)ds <

2√
A

∫ √AT

0
ω2 j+1

(
s2
)
ds, j = 0, 1, . . . ,n− 2, (6.25)

∫ T

0
ω2 j

(∣∣u
(2 j)
m (s)

∣
∣)ds ≤ 4

AT

∫ AT2/2

0
ω2 j(s)ds, j = 0, 1, . . . ,n− 1, (6.26)

From inequalities (6.24)–(6.26) and from (6.15) we obtain

∣
∣u(2n−1)

m (t)
∣
∣ =

∣
∣
∣
∣

∫ t

ξn−1,m

fm
(
s,um(s), . . . ,u(2n−1)

m (s)
)
ds
∣
∣
∣
∣

≤
∫ T

0

∣
∣ fm

(
s,um(s), . . . ,u(2n−1)

m (s)
)∣∣ds

≤
∫ T

0
h

(

s, 2n +
2n−1∑

j=0

∣
∣u

( j)
m (s)

∣
∣
)

ds +
2n−1∑

j=0

∫ T

0
ωj
(∣∣u

( j)
m (s)

∣
∣)ds

<
∫ T

0
h

(

s, 2n +
2n−1∑

j=0

∣
∣u

( j)
m (s)

∣
∣
)

ds + Λ

for t ∈ [0,T], where

Λ = 2
A

∫ AT

0
ω2n−1(s)ds +

2√
A

n−2∑

j=0

∫ √AT

0
ω2 j+1

(
s2
)
ds +

4
AT

n−1∑

j=0

∫ AT2/2

0
ω2 j(s)ds +

2n−1∑

j=0

ωj(1).

In particular,

∣
∣u(2n−1)

m (t)
∣
∣ <

∫ T

0
h

(

s, 2n +
2n−1∑

j=0

∣
∣u

( j)
m (s)

∣
∣
)

ds + Λ for t ∈ [0,T]. (6.27)

Notice that Λ <∞ due to conditions (6.12) and (6.13). Since

∥
∥u

( j)
m
∥
∥∞ ≤ T2n− j−1

∥
∥u(n−1)

m

∥
∥∞, 0 ≤ j ≤ 2n− 2, m ∈ N, (6.28)
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which follows immediately from u
(2 j+1)
m (ξj,m) = 0 and u

(2 j)
m (0) = 0, 0 ≤ j ≤ n − 1,

inequality (6.27) shows that

∥
∥u(2n−1)

m

∥
∥∞ <

∫ T

0
h

(

s, 2n +
2n−1∑

j=0

∥
∥u

( j)
m
∥
∥∞

)

ds + Λ

≤
∫ T

0
h
(
s, 2n + K

∥
∥u(2n−1)

m

∥
∥∞
)
ds + Λ,

(6.29)

where K is given in (6.11). By condition (6.11),

lim sup
v→∞

1
v

(∫ T

0
h(s, 2n + Kv)ds + Λ

)
< 1

and therefore there exists a positive constant S such that

∫ T

0
h(s, 2n + Kv)ds + Λ < v

whenever v ≥ S. Now (6.29) shows that

∥
∥u(2n−1)

m

∥
∥∞ < S, m ∈ N, (6.30)

and then, by inequality (6.28),

∥
∥u

( j)
m
∥
∥∞ < T2n− j−1S, 0 ≤ j ≤ 2n− 2, m ∈ N. (6.31)

We have proved that there exists a positive constant S such that any solution um of prob-
lem (6.16), (6.2) satisfies inequalities (6.30) and (6.31), that is, ‖um‖C2n−1 ≤ KS. Set

γ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if |x| ≤ KS,

2− |x|
KS

if KS < |x| ≤ 2KS,

0 if |x| > 2KS

and let f̃m ∈ Car([0,T]×R2n) be given by

f̃m
(
t, x0, . . . , x2n−1

) = γ

( 2n−1∑

j=0

∣
∣xj

∣
∣
)
[
fm
(
t, x0, . . . , x2n−1

)− a] + a.

Clearly, inequality (6.15) is satisfied with f̃m instead of fm. Hence, applying the above
procedure we obtain that ‖ũm‖C2n−1 ≤ KS for any solution ũm of the differential equations

(−1)nu(2n) = f̃m
(
t,u, . . . ,u(2n−1))

satisfying the boundary conditions (6.2). Therefore Corollary C.6 (with ϕ(t) = a and
with 2n instead of n) guarantees that problem (6.16), (6.2) has a solution um ∈ AC2n−1[0,
T] and ‖um‖C2n−1 ≤ KS.
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Step 3. Limit processes.
By step 2, we know that for each m ∈ N there exists a solution um of problem (6.16),

(6.2) satisfying inequalities (6.23), (6.30), and (6.31). We now show that the sequence

{ fm(um(t), . . . ,u(2n−1)
m (t))} is uniformly integrable on [0,T]. From inequalities (6.15) and

(6.23) it follows that

a ≤ fm
(
um(t), . . . ,u(2n−1)

m (t)
)

≤ h

(

t, 2n +
2n−1∑

j=0

∣
∣u

( j)
m (t)

∣
∣
)

+
2n−1∑

j=0

[
ωj
(∣∣u

( j)
m (t)

∣
∣) + ωj(1)

]

≤ h(t, 2n + KS) +
2n−1∑

j=0

ωj(1) +
n−1∑

j=0

ω2 j
(
At(T − t))

+
n−2∑

j=0

ω2 j+1
(
A
(
t − ξj,m

)2)
+ ω2n−1

(
A
∣
∣t − ξn−1,m

∣
∣)

for a.e. t ∈ [0,T], where ξj,m is the unique zero of u
(2 j+1)
m , 0 ≤ j ≤ n− 1, m ∈ N. We have

h(t, 2n + KS) ∈ L1[0,T] and also ω2 j(At(T − t)) ∈ L1[0,T] by (6.12). Hence, to prove

that { fm(um(t), . . . ,u(2n−1)
m (t))} is uniformly integrable on [0,T], it suffices to show that

the sequences

{
ω2 j+1

(
A
(
t − ξj,m

)2)}
,

{
ω2n−1

(
A
∣
∣t − ξn−1,m

∣
∣)}, 0 ≤ j ≤ n− 2,

are uniformly integrable on [0,T]. Due to conditions (6.12) and (6.13), this fact follows

from Criterion A.4. The uniform integrability of the sequence { fm(um(t), . . . ,u(2n−1)
m (t))}

yields that {u(2n−1)
m } is equicontinuous on [0,T] and consequently, by the Arzelà-Ascoli

theorem and the Bolzano-Weierstrass theorem, we can assume without loss of generality
that {um} is convergent in C2n−1[0,T] and {ξj,m} is convergent in R for 0 ≤ j ≤ n − 1.
Let limm→∞ um = u and limm→∞ ξj,m = ξj (0 ≤ j ≤ n− 1). Then u ∈ C2n−1[0,T] satisfies
the boundary conditions (6.2) and letting m→∞ in inequality (6.23) we get

∣
∣u(2n−1)(t)

∣
∣ ≥ A

∣
∣t − ξn−1

∣
∣,

∣
∣u(2 j+1)(t)

∣
∣ ≥ A

(
t − ξj

)2
,

∣
∣u(2i)(t)

∣
∣ ≥ At(T − t)

for t ∈ [0,T], 0 ≤ j ≤ n− 2 and 0 ≤ i ≤ n− 1. Hence, u( j) has at most two zeros in [0,T]
for 0 ≤ j ≤ 2n − 1 and moreover, due to inequality (6.19), u satisfies inequality (6.14).
Therefore, by Theorem 1.9, u is a solution of problem (6.1), (6.2) and u ∈ AC2n−1[0,T].

�

Example 6.4. Consider problem (6.1), (6.2) with

f
(
t, x0, . . . , x2n−1

) = p(t) +
2n−1∑

k=0

(
ak(t)
∣
∣xk

∣
∣αk + bk(t)

∣
∣xk

∣
∣βk
)

on [0,T] ×D , where the functions ak ∈ L∞[0,T], p, bk ∈ L1[0,T] are nonnegative for
0 ≤ k ≤ 2n−1, and p(t) ≥ a > 0 for a.e. t ∈ [0,T]. If α2n−1,α2 j ∈ (0, 1) for 0 ≤ j ≤ n−1,
α2 j+1 ∈ (0, 1/2) for 0 ≤ j ≤ n−2 and βk ∈ (0, 1) for 0 ≤ k ≤ 2n−1 then, by Theorem 6.3,
the problem has a solution u ∈ AC2n−1[0,T] satisfying inequality (6.14).
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xn−1) may be singular at xj = 0, j = 0, 1, . . . ,n − 1, t = 0 and/or t = 1. Sufficient
and necessary conditions for the existence of positive solutions in the sets C2n−2[0, 1] ∩
C2n(0, 1) or C2n−1[0, 1]∩ C2n(0, 1) are given. The results are proved by a combination of
the method of lower and upper functions with a maximal principle.
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Many nonlinear evolution partial differential equations, which act as models for com-
busting or other processes, have solutions which develop strong singularities in a finite
time, see the references in the books by Bebernes and Eberly [35], Samarskii, Galaktionov,
Kurdyumov, and Mikhailov [177], and in the survey paper by Levine [126]. The proto-
type of such problems is the semilinear parabolic equation from combustion theory

ut = uxx + f (u).

Important examples of f include f (u) = exp(u) and f (u) = uβ, β > 1. In many physical
systems, the diffusion term is not linear but depends on the function u, for example,

ut =
(
uσux

)
x + uβ, σ > 0.

This equation has a porous-medium-type diffusion term, and arises as a model for the
temperature profile of a fusion reactor plasma with one source term (see Zmitrenko,
Kurdyumov, Mikhailov, and Samarski [209] and for further references see the works of
Samarskii, Galaktionov, Kurdyumov, and Mikhailov [177] or Le Roux and Wilhelmsson
[125]). Another possibility is that the diffusion term depends on its gradient. It occurs in
the equation

ut =
(∣∣ux

∣
∣σux

)
x + exp(u),

which arises from studies of turbulent diffusion or the flow of a non-Newtonian liquid.
This equation is invariant under the respective Lie groups of transformations (see, e.g.,
Budd, Collins, and Galaktionov [48]). Searching for solutions which are invariant under
these transformations leads to the following ordinary differential equation for u with a
quasilinear differential operator:

(|u′|p−2u′
)′ − ctu′ + exp(u)− 1 = 0,

where c is a positive constant and p = σ + 2. Let us put

φp(y) = |y|p−2y for y ∈ R.

If p > 1, then the quasilinear operator

u � �→ (
φp(u′)

)′

is called the (one-dimensional) p-Laplacian.
Further, motivated by various significant applications to non-Newtonian fluid the-

ory, diffusion of flows in porous media, nonlinear elasticity and theory of capillary sur-
faces (see Atkinson and Bouillet [29], Esteban and Vazquez [84], Phan-Thien [153]),
several authors have proposed the study of radially symmetric solutions of the p-Laplace
equation

div
(|∇v|p−2∇v) = h

(|x|, v).
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Here ∇ is the gradient, p > 1, and |x| is the Euclidean norm in Rn of x = (x1, . . . , xn),
n > 1. Radially symmetric solutions of this partially differential equation (i.e., solutions
that depend only on the variable r = |x|) satisfy the ordinary differential equation

r1−n(rn−1|v′|p−2v′
)′ = h(r, v), ′ = d

dr
.

If p = n, the change of variables t = ln r transforms it into the equation

(|u′|p−2u′
)′ = enth

(
et,u

)
, ′ = d

dt
,

and for p �= n, the change of variables t = r(p−n)/(p−1) yields the equation

(|u′|p−2u′
)′ =

∣
∣
∣
∣
p − 1
p − n

∣
∣
∣
∣

p

t(p−n)/(p(1−n))h
(
t(p−1)/(p−n),u

)
, ′ = d

dt
.

Both these equations have (one-dimensional) p-Laplacian φp.
This operator was also discussed for systems of second-order differential equations

by Lu, O’Regan, and Agarwal [132], Manásevich and Mawhin [133, 134], Mawhin [139],
Mawhin and Ureña [141], Nowakowski and Orpel [147], Zhang [205]. Further modi-
fications can be found in X. L. Fan and X. Fan [87], Fan et al. [88], where the p(t)-
Laplacian u → (|u′|p(t)−2u)′ was investigated and in Dambrosio [63] who worked with
the (p1, . . . , pn)-Laplacian. The above operators have been sometimes replaced by their
abstract and more general version of the form

u � �→ (
φ(u′)

)′

called the φ-Laplacian, where φ : R → R is an increasing homeomorphism. This leads to
clearer exposition and better understanding of the methods that are employed to derive
existence results. See also Manásevich and Mawhin [134], where φ : Rn → Rn is a strictly
monotone homeomorphism.

Most of existence results for problems with φ-Laplacian (or with some of its spe-
cial versions) is proved under the assumption that the problems are regular. See, for
example, Dambrosio [63], X. L. Fan and X. Fan [87], Fan, Wu, and Wang [88], Lü,
O’Regan, and Agarwal [127], Lu [132], Manásevich and Mawhin [133, 134], Mawhin
[139, 140], Mawhin and Ureña [141], O’Regan [149], Rachůnková and Tvrdý [171],
Zhang [205] who consider two-point boundary conditions (Dirichlet, Neumann, mixed,
and periodic). Further, we refer to the papers of Agarwal, O’Regan, and Staněk [20] or
Nowakowski and Orpel [147], where some nonlocal boundary conditions can be found.
Recently, some papers dealing with singular problems with φ-Laplacian have been pub-
lished. We can refer to Agarwal, Lü, and O’Regan [3], Jiang [111, 112], Wang and Gao
[199] for the Dirichlet problem, to Jebelean and Mawhin [109, 110], Liu [128], Polášek
and Rachůnková [155], Rachůnková and Tvrdý [172] for the periodic problem, to Agar-
wal, O’Regan, and Staněk [18, 20] for the mixed or nonlocal problems and to
Rachůnková, Staněk, and Tvrdý [165] for other references and results.
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Assume that φ is an increasing odd homeomorphism with φ(R) = R.
In this chapter, we consider the singular Dirichlet problem with φ-Laplacian of the

form

(
φ(u′)

)′
+ f (t,u,u′) = 0, u(0) = u(T) = 0, (7.1)

and its special cases, in particular, the problem of the form

u′′ + f (t,u,u′) = 0, u(0) = u(T) = 0, (7.2)

where φ(y) ≡ y. We will investigate problems (7.1) and (7.2) on the set [0,T] × A.
In general, the function f depends on the time variable t ∈ [0,T] and on two space
variables x and y, where (x, y) ∈ A and A is a closed subset of R2. We assume that
problems (7.1) and (7.2) are singular, which means, by Chapter 1, that f does not satisfy
the Carathéodory conditions on [0,T]×A. In what follows, the types of singularities of
f will be exactly specified for each problem under consideration.

In accordance with Chapter 1, we have the following definitions.

Definition 7.1. A function u : [0,T] → R with φ(u′) ∈ AC[0,T] is a solution of problem
(7.1) if u satisfies

(
φ
(
u′(t)

))′
+ f

(
t,u(t),u′(t)

) = 0 a.e. on [0,T]

and fulfils the boundary conditions u(0) = u(T) = 0. If A �= R2, then (u(t),u′(t)) ∈ A
for t ∈ [0,T] is required.

A function u ∈ C[0,T] is a w-solution of problem (7.1) if there exists a finite number
of singular points tν ∈ [0,T], ν = 1, . . . , r, such that if J = [0,T] \ {tν}rν=1, then φ(u′) ∈
ACloc(J), u satisfies

(
φ
(
u′(t)

))′
+ f

(
t,u(t),u′(t)

) = 0 a.e. on [0,T]

and fulfils the boundary conditions u(0) = u(T) = 0. If A �= R2, then (u(t),u′(t)) ∈ A
for t ∈ J is required.

Note that the condition φ(u′) ∈ AC[0,T] implies u ∈ C1[0,T] and the condition
φ(u′) ∈ ACloc(J) implies u ∈ C1(J). If f is supposed to be continuous on (0,T)×R2 and
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can have only time singularities at t = 0 and t = T , then any solution (any w-solution)
u of problem (7.1) moreover satisfies φ(u′) ∈ C1(0,T). If we have a w-solution u which
is not a solution, then we do not know the behaviour of u′ near singular points tν. But
we often need to know this behaviour. For example, if a singular ordinary differential
equation arises from a partial differential equation with some symmetry properties, we
need u′ to be defined on the whole interval [0,T]. Therefore, we will focus our main
attention on solutions and on such w-solutions that have bounded first derivatives on J .

Remark 7.2. We see that the Dirichlet conditions in (7.1) can be written in the form
u ∈ B, where

B = {
x ∈ C[0,T] : x(0) = x(T) = 0

}

is a closed subset of C[0,T]. Hence, we can carry out the investigation of problem (7.1)
in the spirit of the existence principles presented in Chapter 1:

(i) the singular problem (7.1) is approximated by a sequence of solvable regular
problems;

(ii) a sequence {un} of approximate solutions is generated;
(iii) a convergence of a suitable subsequence {ukn} is investigated;
(iv) the type of this convergence determines the properties of its limit u and, among

other, determines whether u is a w-solution or a solution of the original singu-
lar problem.

There are more possibilities how to construct an approximate sequence of regular
problems. Their choice depends on the type of singularities of the nonlinearity f in
(7.1) (time, space), on the type of singular points corresponding to a solution or a w-
solution of problem (7.1) (type I, type II), on the type of results desired (existence of a
solution, a positive solution, aw-solution, uniqueness), and so on. A common idea is that
approximate functions fn have no singularities, fn �= f on neighbourhoodsUn of singular
points of f , fn = f elsewhere, and limn→∞ meas(Un) = 0. Having such a sequence of { fn}
we study regular problems

(
φ(u′)

)′
+ fn(t,u,u′) = 0, u(0) = An, u(T) = Bn, n ∈ N,

where An,Bn ∈ R, limn→∞An = limn→∞ Bn = 0. In some proofs, one simply puts An =
Bn = 0 for n ∈ N. Solvability of these regular problems can be investigated by means
of various methods which have been developed for regular Dirichlet problems (fixed
point theorems, topological degree arguments—Cronin [59], Mawhin [137], the critical
point theory—Drábek [79], the topological transversality method—Granas, Guenther,
and Lee [102], variational methods—Ambrosetti [27], Došlý and Řehák [78], Mawhin
and Willem [142], lower and upper functions—De Coster and Habets [60–62], Kiguradze
and Shekhter [120], Vasiliev and Klokov [196], Ważewski method—Srzednicki [182],
Diblı́k [75], etc.). Using these methods, we generate a sequence of approximate solutions
{un}. The crucial information which enables us to realize the limit process concerns a
priori estimates of the approximate solutions un. In the next section, we present some
existence results and a priori estimates of solutions of regular problems which will be
used in the study of solvability of the singular problem (7.1).
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7.1. Regular Dirichlet problem

In this section, we will study an auxiliary regular problem of the form

(
φ(u′)

)′
+ g(t,u,u′) = 0, u(0) = A, u(T) = B, (7.3)

where g ∈ Car([0,T]×R2), A,B ∈ R.

Definition 7.3. A function u : [0,T] → R with φ(u′) ∈ AC[0,T] is a solution of problem
(7.3) if u satisfies

(
φ
(
u′(t)

))′
+ g

(
t,u(t),u′(t)

) = 0 for a.e. t ∈ [0,T]

and fulfils the boundary conditions u(0) = A, u(T) = B.

The simplest case when g has a Lebesgue integrable majorant, is described in the next
theorem.

Theorem 7.4. Assume that there is a function h ∈ L1[0,T] such that

∣
∣g(t, x, y)

∣
∣ ≤ h(t) for a.e. t ∈ [0,T] and all x, y ∈ R. (7.4)

Then problem (7.3) has a solution.

Proof

Step 1. Solution of an auxiliary problem.
Consider the auxiliary problem

(
φ(u′)

)′ = b(t), u(0) = A, u(T) = B, (7.5)

where b ∈ L1[0,T]. It can be checked by direct computation that u is a solution of
problem (7.5) if and only if u ∈ C1[0,T] satisfies the conditions

u(t) = A +
∫ t

0
φ−1

(
φ
(
u′(0)

)
+
∫ s

0
b(τ)dτ

)
ds,

∫ T

0
φ−1

(
φ
(
u′(0)

)
+
∫ s

0
b(τ)dτ

)
ds = B −A.

Step 2. Definition of functional γ.
For each � ∈ C[0,T] define

ψ� : R �→ R, ψ�(x) =
∫ T

0
φ−1(x + �(s)

)
ds.

Due to the assumption that φ is an increasing homeomorphism with φ(R) = R, the
function ψ� is continuous, increasing, and ψ�(R) = R. Thus, the equation ψ�(x) = B−A
has exactly one root x = γ(�) ∈ R. Therefore, we can define the functional

γ : C[0,T] �→ R, ψ�
(
γ(�)

) = B − A.
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Step 3. The functional γ maps bounded sets to bounded sets.
Assume that M ⊂ C[0,T] and c ∈ (0,∞) are such that ‖�‖∞ ≤ c for each � ∈ M.

Further assume that there exists a sequence {�n} ⊂M such that

lim
n→∞ γ

(
�n
) = ∞ or lim

n→∞ γ
(
�n
) = −∞.

Let the former possibility occur. Then

B − A = lim
n→∞ψ�n

(
γ
(
�n
)) ≥ lim

n→∞Tφ
−1(γ

(
�n
)− c) = ∞,

a contradiction. The latter possibility can be argued similarly. Thus, γ(M) is bounded.

Step 4. Functional γ is continuous.
Consider a sequence {�n} ⊂ C[0,T] and assume that

lim
n→∞ �n = �0 in C[0,T].

By step 3, the sequence {γ(�n)} ⊂ R is bounded and hence we can choose a subsequence
such that limn→∞ γ(�kn) = x0 ∈ R. We get

B −A = ψ�kn
(
γ
(
�kn
)) =

∫ T

0
φ−1(γ

(
�kn
)

+ �kn(t)
)
dt,

which, for n→∞, yields

B −A =
∫ T

0
φ−1(x0 + �0(t)

)
dt.

Thus, according to step 2, we have x0 = γ(�0). It follows that any convergent subsequence
of {γ(�n)} has the same limit γ(�0). Since {γ(�n} is bounded, we get γ(�0) = limn→∞ γ(�n).

Step 5. Definition of operator F .
Define operators N : C1[0,T] → C[0,T] and F : C1[0,T] → C1[0,T] by

(
N (u)

)
(t) = −

∫ t

0
g
(
s,u(s),u′(s)

)
ds,

(
F (u)

)
(t) = A +

∫ t

0
φ−1(γ

(
N (u)

)
+
(
N (u)

)
(s)
)
ds.

Steps 1 and 2 yield that u is a solution of problem (7.3) if and only if u ∈ C1[0,T] satisfies

u(t) = A +
∫ t

0
φ−1(φ

(
u′(0)

)
+
(
N (u)

)
(s)
)
ds, φ

(
u′(0)

) = γ
(
N (u)

)
.

Therefore, the operator equation u = F (u) is equivalent to problem (7.3). Thus, it
suffices to prove that the operator F has a fixed point.
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Step 6. Fixed point of operator F .
Since the operators γ and N are continuous, it follows that F is continuous. Choose

an arbitrary sequence {un} ⊂ C1[0,T] and denote vn = F (un) for n ∈ N. Then

v′n(t) = φ−1(γ
(
N
(
un
))

+
(
N
(
un
))

(t)
)
, t ∈ [0,T], n ∈ N.

By condition (7.4), there is a c1 ∈ (0,∞) such that ‖(N (un)‖∞ ≤ c1. This implies that
the sequences {vn} and {v′n} are bounded on [0,T]. Consequently, the sequence {vn} is
equicontinuous on [0,T]. Moreover, for t1, t2 ∈ [0,T], we have

∣
∣φ
(
v′n
(
t1
))− φ(v′n

(
t2
))∣∣ = ∣

∣(N
(
un
))(

t1
)− (N (

un
))(

t2
)∣∣ ≤

∣
∣
∣
∣

∫ t2

t1
h(s)ds

∣
∣
∣
∣.

Thus, the sequence {φ(v′n)} is bounded and equicontinuous on [0,T]. Making use of
the Arzelà-Ascoli theorem we can find subsequences {vkn} and {φ(v′kn)} uniformly con-
vergent on [0,T]. Then {v′kn} is also uniformly convergent on [0,T] and so, {vkn} is
convergent in C1[0,T]. We have proved that the operator F is compact on C1[0,T].
By the Schauder fixed point theorem, F has a fixed point, which is a solution of problem
(7.3). �

Method of a priori estimates

Using the method of a priori estimates we can get existence of solutions of problem (7.3)
even for functions g which do not satisfy (7.4) with some h ∈ L1[0,T]. To this aim the
following two lemmas will be useful. Define the linear function

a(t) = T − t
T

A +
t

T
B, t ∈ [0,T]. (7.6)

Motivated by the monographs Kiguradze [117] or Kiguradze and Shekhter [120], we will
prove a priori estimates under one-sided growth conditions.

Lemma 7.5 (a priori estimate—sublinear growth). Let α,β ∈ [0, 1), κ ∈ (0,∞). Let
h1 ∈ L1[0,T] be nonnegative and let the function a be given by (7.6). Further assume that

lim
y→∞

φ(y)
y

> 0. (7.7)

Then there exists r > 0 such that the estimate

‖u‖∞ + ‖u′‖∞ ≤ r

is valid for each nonnegative function h0∈L1[0,T] with ‖h0‖1≤κ and for each function u
satisfying

φ(u′) ∈ AC[0,T], u(0) = A, u(T) = B,

−(φ(u′(t)))′ sign
(
u(t)− a(t)

) ≤ h0(t) + h1(t)
(∣∣u(t)

∣
∣α +

∣
∣u′(t)

∣
∣β) for a.e. t ∈ [0,T].

(7.8)



92 Dirichlet problem

Proof . Choose an arbitrary u satisfying (7.8). Denote ρ = ‖u′‖∞ and let ρ = |u′(t0)|.
Assume that ρ > |(B − A)/T|. We have ‖u‖∞ ≤ ρT + |A|. Now, we will consider four
cases.

Case 1. Let u′(t0) = ρ, u(t0) < a(t0). This yields t0 ∈ (0,T) and if we put v(t) = u(t)−a(t)
on [0,T], we have v′(t0) > 0, v(t0) < 0. Since v(0) = 0, we can find t1 ∈ [0, t0) such that

v′
(
t1
) = 0, v′(t) > 0 for t ∈ (

t1, t0
)
.

This implies u(t)− a(t) = v(t) < 0 on [t1, t0]. Integrating the inequality in (7.8), we get

∫ t0

t1

(
φ
(
u′(t)

))′
dt ≤ ∥

∥h0
∥
∥

1 +
((
ρT + |A|)α + ρβ

)∥∥h1
∥
∥

1.

Thus,

φ(ρ)
ρ

≤ 1
ρ

(
κ +

∣
∣
∣
∣φ
(
B − A
t

)∣∣
∣
∣

)
+
((
ρT + |A|)α

ρ
+ ρβ−1

)∥
∥h1

∥
∥

1 := F(ρ). (7.9)

Since limy→∞ F(y) = 0, we deduce by assumption (7.7) that

there exists ρ∗ >
∣
∣
∣
∣
B − A
T

∣
∣
∣
∣ such that ‖u′‖∞ ≤ ρ∗. (7.10)

We see that ρ∗ does not depend on the choice of u and h0.

Case 2. Let u′(t0) = ρ, u(t0) ≥ a(t0). So, for v = u − a we have v′(t0) > 0, v(t0) ≥ 0. Let
t0 ∈ [0,T). Then there exists t1 ∈ (t0,T) such that

v′
(
t1
) = 0, v′(t) > 0 for t ∈ (

t0, t1
)
.

This implies u(t)− a(t) = v(t) > 0 on (t0, t1]. Integrating the inequality in (7.8), we get

−
∫ t1

t0

(
φ
(
u′(t)

))′
dt ≤ ∥

∥h0
∥
∥

1 +
((
ρT + |A|)α + ρβ

)∥∥h1
∥
∥

1.

Thus relation (7.9) is valid which yields estimate (7.10). Now, let t0 = T . Then there exists
t1 ∈ (0,T) such that

v′
(
t1
) = 0, v′(t) > 0 for t ∈ (

t1,T
)
.

Since v(T) = 0, we see that u(t)− a(t) = v(t) < 0 on (t1,T). Integrating the inequality in
(7.8), we get

∫ T

t1

(
φ
(
u′(t)

))′
dt ≤ ∥

∥h0
∥
∥

1 +
((
ρT + |A|)α + ρβ

)∥∥h1
∥
∥

1.

So, relation (7.9) and consequently estimate (7.10) are valid again.

Cases 3 and 4. Let

u′
(
t0
) = −ρ, u

(
t0
)
> a

(
t0
)

or u′
(
t0
) = −ρ, u

(
t0
) ≤ a

(
t0
)
.
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Similarly, using the assumption that φ is odd, we can verify that estimate (7.10) is true
also in this remaining two cases.

Summarizing, if we put r = ρ∗ + ρ∗T + |A|, we get ‖u‖∞ + ‖u′‖∞ ≤ r. �

Remark 7.6. (i) If φ does not fulfil condition (7.7), we replace the inequality in (7.8) by

−(φ(u′(t)))′ sign
(
u(t)− a(t)

) ≤ h0(t) + h1(t)
(∣∣
∣
∣φ
(
u(t)− A

T

)∣∣
∣
∣

α

+
∣
∣φ
(
u′(t)

)∣∣β
)

for a.e. t ∈ [0,T].
Then, arguing similarly to the proof of Lemma 7.5, we get

1 ≤ 1
φ(ρ)

(
κ +

∣
∣
∣
∣φ
(
B −A
T

)∣∣
∣
∣

)
+
∥
∥h1

∥
∥

1

((
φ(ρ)

)α−1
+
(
φ(ρ)

)β−1)
.

This implies estimate (7.10) and consequently ‖u‖∞ + ‖u′‖∞ ≤ r.
(ii) If φ(y) = φp(y) = |y|p−2y with p ≥ 2, then condition (7.7) is always satisfied.

Lemma 7.7 (a priori estimate—linear growth). Assume that κ ∈ (0,∞) and that the
function a is given by (7.6). Let h1,h2 ∈ L1[0,T] be nonnegative and let

lim
y→∞

φ(y)
y

> T
∥
∥h1

∥
∥

1 +
∥
∥h2

∥
∥

1. (7.11)

Then there exists r > 0 such that the estimate

‖u‖∞ + ‖u′‖∞ ≤ r

is valid for each nonnegative function h0∈L1[0,T] with ‖h0‖1≤κ and for each function u
satisfying

φ(u′) ∈ AC[0,T], u(0) = A, u(T) = B,

−(φ(u′(t)))′ sign
(
u(t)− a(t)

) ≤ h0(t) + h1(t)
∣
∣u(t)

∣
∣ + h2(t)

∣
∣u′(t)

∣
∣ for a.e. t ∈ [0,T].

(7.12)

Proof . Choose an arbitrary function u satisfying condition (7.12). Denote ρ = ‖u′‖∞
and let ρ = |u′(t0)|. We have ‖u‖∞ ≤ ρT + |A|. Assume that ρ > |(B − A)/T|. Now, we
will consider four cases as in the proof of Lemma 7.5.

Let u′(t0) = ρ, u(t0) < a(t0). We argue as in the proof of Lemma 7.5 and find t1 ∈
[0, t0) such that u′(t1) = |(B−A)/T| and u(t) < a(t) on [t1, t0]. Integrating the inequality
in (7.12), we get

φ(ρ)
ρ

≤ 1
ρ

(
κ +

∣
∣
∣
∣φ
(
B − A
T

)∣∣
∣
∣ + |A|∥∥h1

∥
∥

1

)
+ T

∥
∥h1

∥
∥

1 +
∥
∥h2

∥
∥

1 =: F1(ρ).

Since limy→∞ F1(y) = T‖h1‖1 + ‖h2‖1, we deduce by assumption (7.11) that estimate
(7.10) holds. The remaining three cases are similar. Therefore, if we put r = ρ∗+ρ∗T+|A|,
we get ‖u‖∞ + ‖u′‖∞ ≤ r. �
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Remark 7.8. (i) If condition (7.11) is not satisfied, we assume

T
∥
∥h1

∥
∥

1 +
∥
∥h2

∥
∥

1 < 1

and replace the inequality in (7.12) by

−(φ(u′(t)))′ sign
(
u(t)− a(t)

) ≤ h0(t) + h1(t)
∣
∣
∣
∣φ
(
u(t)− A

T

)∣∣
∣
∣ + h2(t)

∣
∣φ
(
u′(t)

)∣∣

for a.e. t ∈ [0,T].
Then, arguing similarly to the proof of Lemma 7.7 and to Remark 7.6, we get ‖u‖∞+

‖u′‖∞ ≤ r.
(ii) We see that if φ(y) = φp(y) = |y|p−2y with p > 2, then condition (7.11) is

fulfilled for each h1,h2 ∈ L1[0,T].

The following theorem relies on Lemma 7.5.

Theorem 7.9. Assume that the function a is given by (7.6). Let α,β ∈ [0, 1) and let h ∈
L1[0,T] be nonnegative. Further assume (7.7) and

g(t, x, y) sign
(
x − a(t)

) ≤ h(t)
(
1 + |x|α + |y|β)

for a.e. t ∈ [0,T] and all x, y ∈ R.
(7.13)

Then problem (7.3) has a solution.

Proof . Let r be the constant of Lemma 7.5 for h0 = h1 = h and κ = ‖h‖1. Put M =
max{|A|, |B|}, r̃ = r +M, and define

χ(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−r̃ if z < −r̃,
z if |z| ≤ r̃,

r̃ if z > r̃,

g̃(t, x, y) = g
(
t, χ(x), χ(y)

)

for a.e. t ∈ [0,T] and all x, y, z ∈ R. Then g̃ ∈ Car([0,T] × R2) and there is a function

h̃ ∈ L1[0,T] such that |g̃(t, x, y)| ≤ h̃(t) for a.e. t ∈ [0,T] and all x, y ∈ R. Consider the
auxiliary problem

(
φ(u′)

)′
+ g̃(t,u,u′) = 0, u(0) = A, u(T) = B. (7.14)

By Theorem 7.4, problem (7.14) has a solution u. Since r̃ > M, we deduce that sign(x −
a(t)) = sign(χ(x)− a(t)) for t ∈ [0,T], x ∈ R, and

−(φ(u′(t)))′ sign
(
u(t)− a(t)

) = g
(
t, χ
(
u(t)

)
, χ
(
u′(t)

))
sign

(
χ
(
u(t)

)− a(t)
)

≤ h(t)
(
1 +

∣
∣χ
(
u(t)

)∣∣α +
∣
∣χ
(
u′(t)

)∣∣β)

≤ h(t)
(
1 +

∣
∣u(t)

∣
∣α +

∣
∣u′(t)

∣
∣β) for a.e. t ∈ [0,T].

Thus, by Lemma 7.5, the function u satisfies ‖u‖∞ + ‖u′‖∞ ≤ r and hence u is also a
solution of problem (7.3). �
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Remark 7.10. If g satisfies inequality (7.13) with α,β ∈ [0, 1), we will say that g has one-
sided sublinear growth in x and y. In this case, each function g + g0 has also one-sided
sublinear growth provided g0(t, x, y) sign(x − a(t)) is nonpositive on [0,T]×R2.

Example 7.11. Let A = B = 0, hi ∈ L1[0,T], i = 0, 1, 2, 3, h1, h3 be nonnegative on [0,T].
For a.e. t ∈ [0,T] and all x, y ∈ R define the function

g(t, x, y) = h0(t)− h1(t)x3 + h2(t)
√
|y| − h3(t)xy4.

We see that g satisfies inequality (7.13) because a(t) ≡ 0 and we can write g in the form

g = g0 + g1, where g1(t, x, y) = h0(t) + h2(t)
√
|y| and g0(t, x, y) = −h1(t)x3 − h3(t)xy4.

Here, g1 has a sublinear growth in x and y and g0(t, x, y) sign x ≤ 0 on [0,T]×R2.

The next theorem will be applicable to problem (7.3) with g(t, x, y) having one-sided
linear growth in x and y.

Theorem 7.12. Let the function a be given by (7.6). Let h0,h1,h2 ∈ L1[0,T] be nonnegative
and let condition (7.11) hold. Further assume that

g(t, x, y) sign
(
x − a(t)

) ≤ h0(t) + h1(t)|x| + h2(t)|y|
for a.e. t ∈ [0,T] and all x, y ∈ R.

Then problem (7.3) has a solution.

Proof . We argue as in the proof of Theorem 7.9 and use Lemma 7.7 instead of Lemma
7.5. �

Example 7.13. Let T = 1, n ∈ N, A = 0, B = 1, φ(y) ≡ y, h ∈ L1[0, 1] and let ϕ ∈
Car([0, 1]×R2) be nonnegative. Then the function

g(t, x, y) = h(t) + tx + t2y − (x − t)2n+1ϕ(t, x, y)

satisfies the conditions of Theorem 7.12 because

g(t, x, y) sign(x − t) ≤ ∣
∣h(t)

∣
∣ + t|x| + t2|y|

for a.e. t ∈ [0, 1] and for all x, y ∈ R, and

lim
y→∞

φ(y)
y

= 1 >
∫ 1

0
tdt +

∫ 1

0
t2dt = 5

6
,

that is, condition (7.11) is valid.

Remark 7.14. If φ does not fulfil conditions (7.7) and (7.11) in Theorems 7.9 and 7.12,
respectively, we modify these theorems according to Remarks 7.6 and 7.8.
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Method of lower and upper functions

It is well known that for regular second-order boundary value problems the lower and
upper functions method is a useful instrument for proofs of their solvability and for a
priori estimates of their solutions. See, for example, De Coster and Habets [60–62], Kig-
uradze and Shekhter [120], Ladde, Lakshmikantham, and Vatsala [122], Rachůnková
and Tvrdý [169–171], or Vasiliev and Klokov [196]. In literature, several definitions of
lower and upper functions for regular boundary value problems can be found. (Note that
in some papers they are called lower and upper solutions). Here, we will use the following
one.

Definition 7.15. A function σ ∈ C[0,T] is called a lower function of problem (7.3) if there
is a finite set Σ⊂ (0,T) such that φ(σ ′) ∈ ACloc([0,T]\Σ), σ ′(τ+) := limt→τ+ σ ′(t) ∈ R,
σ ′(τ−) := limt→τ− σ ′(t) ∈ R for each τ ∈ Σ,

(
φ
(
σ ′(t)

))′
+ g

(
t, σ(t), σ ′(t)

) ≥ 0 for a.e. t ∈ [0,T],

σ(0) ≤ A, σ(T) ≤ B, σ ′(τ−) < σ ′(τ+) for each τ ∈ Σ.
(7.15)

If the inequalities in (7.15) are reversed, then σ is called an upper function of problem (7.3).

We have seen that Theorems 7.9 and 7.12 can be used for problem (7.3) provided
g(t, x, y) satisfies sublinear or linear one-sided growth restrictions with respect to x and
y. Another class of functions g is covered by the next theorem which says that if there exist
lower and upper functions σ1 ≤ σ2 to problem (7.3), it suffices to require the inequality
in (7.4) only for x ∈ [σ1, σ2]. This implies that g(t, x, y) can grow in x arbitrarily.

Theorem 7.16. Let σ1 and σ2 be a lower function and an upper function of problem (7.3)
and let σ1(t) ≤ σ2(t) for t ∈ [0,T]. Assume that there is a function h ∈ L1[0,T] such that

∣
∣g(t, x, y)

∣
∣ ≤ h(t) for a.e. t ∈ [0,T] and all x ∈ [

σ1(t), σ2(t)
]
, y ∈ R.

Then problem (7.3) has a solution u such that

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0,T]. (7.16)

Proof

Step 1. Construction of an auxiliary problem.
For a.e. t ∈ [0,T] and all x, y ∈ R, ε ∈ [0, 1], define

g̃(t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g
(
t, σ1(t), y

)
+ ω1

(
t,

σ1(t)− x
σ1(t)− x + 1

)
+

σ1(t)− x
σ1(t)− x + 1

if x < σ1(t),

g(t, x, y) if σ1(t) ≤ x ≤ σ2(t),

g
(
t, σ2(t), y

)− ω2

(
t,

x − σ2(t)
x − σ2(t) + 1

)
− x − σ2(t)
x − σ2(t) + 1

if x > σ2(t),

where, for i = 1, 2,

ωi(t, ε) = sup
{∣∣g

(
t, σi(t), σ ′i (t)

)− g(t, σi(t), y
)∣∣ :

∣
∣y − σ ′i (t)

∣
∣ < ε

}
.
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We see that ωi ∈ Car([0,T]× [0, 1]) is nonnegative, nondecreasing in its second variable
and ωi(t, 0) = 0 for a.e. t ∈ [0,T], i = 1, 2. Further, we have g̃ ∈ Car([0,T] × R2) and

there exists h̃ ∈ L1[0,T] such that |g̃(t, x, y)| ≤ h̃(t) for a.e. t ∈ [0,T] and all x, y ∈ R.
Thus, by Theorem 7.4, problem (7.14) with g̃ defined in this proof has a solution u.

Step 2. Solution u of the auxiliary problem lies between σ1 and σ2.
We will prove that estimate (7.16) holds. Denote v(t) = u(t) − σ2(t) for t ∈ [0,T]

and assume, on the contrary, that

max
{
v(t) : t ∈ [0,T]

} = v
(
t0
)
> 0.

Since u(0) = A, u(T) = B and σ2(0) ≥ A, σ2(T) ≥ B, we have t0 ∈ (0,T). Moreover,
Definition 7.15 implies that t0 /∈ Σ, because v′(τ−) < v′(τ+) for τ ∈ Σ. So, we have
t0 ∈ (0,T) \ Σ and v′(t0) = 0. This guarantees the existence of t1 ∈ (t0,T) such that

v(t) > 0,
∣
∣v′(t)

∣
∣ <

v(t)
v(t) + 1

< 1

for t ∈ [t0, t1] and [t0, t1]∩ Σ = ∅. Then

(
φ
(
u′(t)

))′ − (φ(σ ′2(t)
))′

= −g̃(t,u(t),u′(t)
)− (φ(σ ′2(t)

))′

= −g(t, σ2(t),u′(t)
)

+ω2

(
t,

v(t)
v(t) + 1

)
+

v(t)
v(t) + 1

−(φ(σ ′2(t)
))′

> −g(t, σ2(t),u′(t)
)

+ ω2
(
t,
∣
∣v′(t)

∣
∣)− (φ(σ ′2(t)

))′

≥ −g(t, σ2(t),u′(t)
)

+ g
(
t, σ2(t),u′(t)

)− g(t, σ2(t), σ ′2(t)
)− (φ(σ ′2(t)

))′ ≥ 0

for a.e. t ∈ [t0, t1]. Hence,

0 <
∫ t

t0

(
φ
(
u′(s)

))′ − (φ(σ ′2(s)
))′
ds = φ

(
u′(t)

)− φ(σ ′2(t)
)
, t ∈ (

t0, t1
]
.

Therefore, v′ = u′ − σ ′2 > 0 on (t0, t1], which contradicts the assumption that v has its
maximum value at t0. The inequality σ1(t) ≤ u(t) can be proved similarly. Thus, u fulfils
estimate (7.16) and so, u is a solution of problem (7.3). �

Example 7.17. Let A,B ∈ R and r1, r2 ∈ R be such that r1 ≤ min{0,A,B} and r2 ≥
max{0,A,B} and

g
(
t, r1, 0

) ≥ 0, g
(
t, r2, 0

) ≤ 0 for a.e. t ∈ [0,T].

Then the constant function σ1(t) ≡ r1 satisfies condition (7.15) and hence, σ1 is a lower
function of problem (7.3). Similarly, σ2(t) ≡ r2 satisfies condition (7.15) with the reversed
inequalities and so, σ2 is an upper function of problem (7.3). Here, Σ = ∅.
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The next lemmas on a priori estimates enable us to extend the existence results
of Theorems 7.9 and 7.12. The first two deal with the so-called Nagumo function ω ∈
C[0,∞) which is positive and fulfils

∫∞

0

ds

ω(s)
= ∞. (7.17)

Similar a priori estimates for φ(y) ≡ y can be found in Kiguradze [117] or Kiguradze and
Shekhter [120].

Lemma 7.18 (a priori estimate–Nagumo condition I). Assume that the function a is given
by (7.6). Let r0, κ ∈ (0,∞), let h0 ∈ L1[0,T] be nonnegative and letω ∈ C[0,∞) be positive
and fulfil condition (7.17). Then there exists r > 0 such that for each function u satisfying

φ(u′) ∈ AC[0,T], u(0) = A, u(T) = B, ‖u‖∞ ≤ r0,

− (φ(u′(t)))′ sign
(
u(t)− a(t)

) ≤ κω
(∣∣φ

(
u′(t)

)∣∣)(h0(t) +
∣
∣u′(t)

∣
∣)

for a.e.t ∈ [0,T],

(7.18)

the estimate ‖u′‖∞ ≤ r is valid.

Proof . Choose an arbitrary u satisfying condition (7.18). Denote ‖u′‖∞ = ρ and let ρ =
|u′(t0)|. Assume ρ > |(B−A)/T|. We will consider four cases as in the proof of Lemma 7.5.

Case 1. Let u′(t0) = ρ,u(t0) < a(t0). Then t0 ∈ (0,T) and since u(0) = a(0), we can find
t1 ∈ [0, t0) such that

u′
(
t1
) =

∣
∣
∣
∣
B − A
T

∣
∣
∣
∣, u′(t) >

∣
∣
∣
∣
B − A
T

∣
∣
∣
∣ for t ∈ (t1, t0).

This implies

u(t) < a(t), u′(t) > 0 for t ∈ [
t1, t0

]

and, by condition (7.18),
(
φ
(
u′(t)

))′

ω
(
φ
(
u′(t)

)) ≤ κ
(
h0(t) + u′(t)

)
for a.e. t ∈ [

t1, t0
]
.

Integration of the last inequality leads to

∫ t0

t1

(
φ
(
u′(t)

))′

ω
(
φ
(
u′(t)

))dt ≤ κ
(∥∥h0

∥
∥

1 + 2r0
)
, (7.19)

∫ φ(ρ)

0

ds

ω(s)
≤
∫ φ(|(B−A)/T|)

0

ds

ω(s)
+ κ

(∥∥h0
∥
∥

1 + 2r0
) =: K <∞. (7.20)

Case 2. Let u′(t0) = ρ, u(t0) ≥ a(t0). Let t0 ∈ [0,T). Then there exists t1 ∈ (t0,T) such
that

u′
(
t1
) =

∣
∣
∣
∣
B −A
T

∣
∣
∣
∣, u′(t) >

∣
∣
∣
∣
B −A
T

∣
∣
∣
∣ for t ∈ (

t0, t1
)
.
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This implies

u(t) > a(t), u′(t) > 0 for t ∈ (
t0, t1

]

and, by condition (7.18),

−
(
φ
(
u′(t)

))′

ω
(
φ
(
u′(t)

)) ≤ κ
(
h0(t) + u′(t)

)
for a.e. t ∈ [

t0, t1
]
.

Integration of the last inequality leads to

−
∫ t1

t0

(
φ
(
u′(t)

))′

ω
(
φ
(
u′(t)

))dt ≤ κ
(∥∥h0

∥
∥

1 + 2r0
)

and we get relation (7.20).
Now, let t0 = T . Then there exists t1 ∈ (0,T) such that

u′
(
t1
) =

∣
∣
∣
∣
B − A
T

∣
∣
∣
∣, u′(t) >

∣
∣
∣
∣
B − A
T

∣
∣
∣
∣, u(t) < a(t) for t ∈ (

t1,T
)
.

We get (7.20) as in Case 1.

Cases 3 and 4. In the remaining two cases, we prove (7.20) similarly.
By condition (7.17), there is an r > |(B −A)/T| such that

∫ φ(r)

0

ds

ω(s)
> K.

Thus, by virtue of relation (7.20), ρ < r. Hence, the estimate ‖u′‖∞ ≤ r is proved. �

Lemma 7.19 (a priori estimate–Nagumo condition II). Let a1, a2 ∈ [0,T], a1 < a2, y1,
y2 ∈ R, r0, κ ∈ (0,∞). Furthermore, let h0 ∈ L1[0,T] be nonnegative and let ω ∈ C[0,∞)
be positive and fulfil condition (7.17). Then there exists r > 0 such that for each function u
satisfying

φ(u′) ∈ AC[0,T], ‖u‖∞ ≤ r0,
(
φ
(
u′(t)

))′
sign

(
u′(t)− y1

) ≥ −κω
(∣∣φ

(
u′(t)

)− φ(y1
)∣∣)(h0(t) +

∣
∣u′(t)− y1

∣
∣)

for a.e. t ∈ [0, a2],
(
φ
(
u′(t)

))′
sign

(
u′(t)− y2

) ≤ κω
(∣∣φ

(
u′(t)

)− φ(y2
)∣∣)(h0(t) +

∣
∣u′(t)− y2

∣
∣)

for a.e. t ∈ [a1,T],
(7.21)

the estimate ‖u′‖∞ ≤ r is valid.
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Proof . Choose an arbitrary u satisfying condition (7.21). By the mean value theorem we
can find ξ ∈ (a1, a2) such that |u′(ξ)| ≤ 2r0/(a2 − a1) =: c0. Further we see that

sign
(
φ
(
u′(t)

)− φ(yi
)) = sign

(
u′(t)− yi

)
, i = 1, 2, for t ∈ [0,T].

Put vi(t) = φ(u′(t))− φ(yi), i = 1, 2, for t ∈ [0,T]. Then

∣
∣vi(ξ)

∣
∣ ≤ φ

(
c0
)

+
∣
∣φ
(
yi
)∣∣ =: ci, i = 1, 2.

Condition (7.17) implies that there exists ρi ∈ (ci,∞), i = 1, 2, such that

∫ ρi

ci

ds

ω(s)
> κ

(∥∥h0
∥
∥

1 + 2r0 + T
∣
∣yi

∣
∣), i = 1, 2. (7.22)

Assume that

max
{∣∣v1(t)

∣
∣ : t ∈ [0, ξ]

} = ∣
∣v1(α)

∣
∣ > ρ1.

Then α < ξ and there exists β ∈ (α, ξ] such that

∣
∣v1(β)

∣
∣ = c1,

∣
∣v1(t)

∣
∣ ≥ c1 for t ∈ [α,β].

By the inequality in (7.21) which holds on [0, a2], we get

−v
′
1(t) sign v1(t)
ω
(∣∣v1(t)

∣
∣) ≤ κ

(
h0(t) +

∣
∣u′(t)− y1

∣
∣) for a.e. t ∈ [α,β].

Integrating this inequality over [α,β] and using the substitution s = |v′1(t)|, we arrive at

∫ |v1(α)|

c1

ds

ω(s)
≤ κ

(∫ β

α
h0(t)dt +

∫ β

α

∣
∣u′(t)− y1

∣
∣dt

)
. (7.23)

Since |v1(t)| = |φ(u′(t)) − φ(y1)| ≥ c1 for t ∈ [α,β], we see that u′(t) − y1 does not
change its sign on [α,β] and hence,

∫ β

α

∣
∣u′(t)− y1

∣
∣dt =

∣
∣
∣
∣

∫ β

α

(
u′(t)− y1

)
dt
∣
∣
∣
∣ ≤ 2r0 + T

∣
∣y1

∣
∣.

So, (7.23) leads to

∫ ρ1

c1

ds

ω(s)
<
∫ |v1(α)|

c1

ds

ω(s)
≤ κ

(∥∥h0
∥
∥

1 + 2r0 + T
∣
∣y1

∣
∣),

which contradicts inequality (7.22). Therefore, |v1(α)| ≤ ρ1 and we have proved that

∣
∣φ
(
u′(t)

)− φ(y1
)∣∣ ≤ ρ1 for t ∈ [0, ξ].

The estimate

∣
∣φ
(
u′(t)

)− φ(y2
)∣∣ ≤ ρ2 for t ∈ [ξ,T]

can be proved similarly. Hence, we get ‖u′‖∞ ≤ r if we put r = φ−1(ρ∗), where ρ∗ =
max{ρ1, ρ2} + max{|φ(y1)|, |φ(y2)|}. �
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If we investigate problem (7.3) with g(t, x, y) having arbitrary growth in x and growth
in y controlled by the Nagumo condition (7.24), we can often use one of the following
two theorems.

Theorem 7.20. Let a be given by (7.6), let σ1 and σ2 be a lower function and an upper
function of problem (7.3) and let σ1(t) ≤ σ2(t) for t ∈ [0,T]. Assume that there exist
κ ∈ (0,∞), a nonnegative function h0 ∈ L1[0,T] and a positive function ω ∈ C[0,∞)
fulfilling condition (7.17) and

g(t, x, y) sign
(
x − a(t)

) ≤ κω
(∣∣φ(y)

∣
∣)(h0(t) + |y|)

for a.e. t ∈ [0,T] and all x ∈ [
σ1(t), σ2(t)

]
, y ∈ R.

(7.24)

Then problem (7.3) has a solution u satisfying estimate (7.16) and moreover, ‖u′‖∞ ≤ r.
Here, r > 0 is the constant independent of u and given by Lemma 7.18 for r0 = max{‖σ1‖∞,
‖σ2‖∞}.

Proof . Without loss of generality we can assume that

r > max
{∥∥σ ′1

∥
∥∞,

∥
∥σ ′2

∥
∥∞
}
.

Define

χ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ z ≤ r,

2r − z
r

if r < z < 2r,

0 if z ≥ 2r

g̃(t, x, y) = χ
(|y|)g(t, x, y) (7.25)

for a.e. t ∈ [0,T] and all x, y ∈ R, z ∈ [0,∞). Then g̃ ∈ Car([0,T] × R2) and there

is a function h̃ ∈ L1[0,T] such that |g̃(t, x, y)| ≤ h̃(t) for a.e. t ∈ [0,T] and all x ∈
[σ1(t), σ2(t)], y ∈ R. Consider problem (7.14) with g̃ defined by (7.25). Since σ1 and σ2

are also lower and upper functions to this problem, we get by Theorem 7.16 that it has a
solution u satisfying estimate (7.16). Further,

−(φ(u′(t)))′ sign
(
u(t)− a(t)

) = g̃
(
t,u(t),u′(t)

)
sign

(
u(t)− a(t)

)

= χ
(∣∣u′(t)

∣
∣)g

(
t,u(t),u′(t)

)
sign

(
u(t)− a(t)

)

≤ χ
(∣∣u′(t)

∣
∣)κω

(∣∣φ
(
u′(t)

)∣∣)(h0(t) +
∣
∣u′(t)

∣
∣)

≤ κω
(∣∣φ

(
u′(t)

)∣∣)(h0(t) +
∣
∣u′(t)

∣
∣) for a.e. t ∈ [0,T].

By Lemma 7.18, the function u satisfies ‖u′‖∞ ≤ r and hence, u is also a solution of
problem (7.3). �
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Example 7.21. Let k,n ∈ N, A = B = 1, c ∈ R, h1 ∈ L∞[0,T], and let h2 ∈ L1[0,T] and
ϕ ∈ Car([0,T]×R2) be nonnegative functions. For a.e. t ∈ [0,T] and all x, y ∈ R define
the function

g(t, x, y) = h1(t)− x2n+1 + x2(h2(t) + cy
)
φ(y)− (x − 1)2k+1ϕ(t, x, y). (7.26)

We can find constant functions σ1(t) ≡ r1 < 1 and σ2(t) ≡ r2 > 1 which are respectively
lower and upper functions of problem (7.3) with g defined by (7.26). Moreover, g fulfils
inequality (7.24) with κ = 1,

ω(s) = (
1 + |c|)(1 + s), h0(t) = ∣

∣h1(t)
∣
∣ + max

{∣∣r1
∣
∣, r2

}2∣∣h2(t)
∣
∣.

By Theorem 7.20, our problem has a solution u satisfying r1 ≤ u(t) ≤ r2 for t ∈ [0,T].

The second form of the Nagumo condition is condition (7.27) which is used in the
next theorem.

Theorem 7.22. Let σ1 and σ2 be a lower function and an upper function of problem (7.3)
and let σ1(t) ≤ σ2(t) for t ∈ [0,T]. Assume that there exist a1, a2 ∈ [0,T], a1 < a2,
y1, y2 ∈ R, κ ∈ (0,∞), a nonnegative function h0 ∈ L1[0,T] and a positive function
ω ∈ C[0,∞) fulfilling condition (7.17) and

g(t, x, y) sign
(
y − y1

) ≤ κω
(∣∣φ(y)− φ(y1

)∣∣)(h0(t
)

+
∣
∣y − y1

∣
∣)

for a.e. t ∈ [
0, a2

]
and all x ∈ [

σ1(t), σ2(t)
]
, y ∈ R,

g(t, x, y) sign
(
y − y2

) ≥ −κω
(∣∣φ(y)− φ(y2

)∣∣)(h0(t) +
∣
∣y − y2

∣
∣)

for a.e. t ∈ [
a1,T

]
and all x ∈ [

σ1(t), σ2(t)
]
, y ∈ R.

(7.27)

Then problem (7.3) has a solution u satisfying estimate (7.16) and moreover, ‖u′‖∞ ≤ r.
Here, r > 0 is the constant independent of u and given by Lemma 7.19 for r0 = max{‖σ1‖∞,
‖σ2‖∞}.

Proof . We define g̃ as in the proof of Theorem 7.20 using a sufficiently large r from
Lemma 7.19. Then, similarly to the proof of Theorem 7.20, we get a solution u of problem
(7.14) satisfying estimate (7.16) and condition (7.21). By Lemma 7.19, the function u
satisfies ‖u′‖∞ ≤ r and hence u is also a solution of problem (7.3). �

Example 7.23. Let k ∈ N be odd, A,B, c, r ∈ R, y1 = y2 = 0, a1, a2 ∈ [0,T], a1 < a2,
h1,h2,h3 ∈ L1[0,T]. Assume that h1 is positive on [0,T] and

h2 ≥ 0 a.e. on
[
0, a1

]
, h2 = 0 a.e. on

(
a1,T

]
,

h3 = 0 a.e. on
[
0, a2

]
, h3 ≥ 0 a.e. on

(
a2,T

]
.

Consider problem (7.3) with φ(y) ≡ y and

g(t, x, y) = h1(t)
(
rk − xk) + cy2 − h2(t)y3 + h3(t)y5
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for a.e. t ∈ [0,T] and all x, y ∈ R. We can find r1, r2 ∈ R such that

r1 ≤ min
{− |r|,A,B

}
, r2 ≥ max

{|r|,A,B
}

,

g
(
t, r1, 0

)
> 0, g

(
t, r2, 0

)
< 0 for a.e. t ∈ [0,T].

Therefore, the constant function σ1(t) ≡ r1 satisfies condition (7.15) and hence σ1 is
a lower function of the problem. Similarly, σ2(t) ≡ r2 satisfies condition (7.15) with
reversed inequalities and so, σ2 is an upper function of this problem. Moreover, g fulfils
both the inequalities in (7.27) with κ = 1 and

h0(t) = ∣
∣h1(t)

∣
∣(|r|k +

(
max

{∣∣r1
∣
∣, r2

})k)
, ω(s) = (|c| + 1

)
(1 + s).

Hence, by Theorem 7.22, our problem has a solution u such that r1 ≤ u(t) ≤ r2 for
t ∈ [0,T]. Note that since the growth restrictions in Theorem 7.22 are only one sided,
the function g can have not only the quadratic term cy2 but also terms with y3 and y5.

7.2. Dirichlet problem with time singularities

First we will study the singular problem (7.2) under the assumption that

f ∈ Car
(
(0,T]×R

2) has a time singularity at t = 0, (7.28)

that is, there exist x, y ∈ R such that

∫ ε

0

∣
∣ f (t, x, y)

∣
∣dt = ∞ for ε ∈ (0,T].

We want to prove the existence of a solution to (7.2) or the existence of a w-solution u to
(7.2) satisfying

there exists r > 0 such that
∣
∣u′(t)

∣
∣ ≤ r for t ∈ (0,T]. (7.29)

According to Definition 7.1 and assumption (7.28), a w-solution u of problem (7.2) has a
continuous derivative on (0,T] but u′ need not exist at the singular point t = 0. However,
condition (7.29) guarantees that u′ must be bounded near t = 0. Those who are interested
in the existence of a w-solution u with u′ possibly unbounded near t = 0 can find nice
results in Agarwal, Lü, and O’Regan [3], Agarwal and O’Regan [4, 5, 7, 12], Kiguradze
[117, 119], Kiguradze and Shekhter [120], Lomtatidze [129], Lomtatidze and Malaguti
[130], or Lomtatidze and Torres [131].

If we modify theorems of Section 1.2 for the Dirichlet problem (7.2) with time sin-
gularities, we can extend the results of Section 7.1 and obtain the existence of w-solutions
or solutions of (7.2). To this aim we present here the version of Theorem 1.4 for t0 = 0,
n = 2, and A = R2. Consider a sequence of regular problems

u′′ + fk(t,u,u′) = 0, u(0) = u(T) = 0, (7.30)

where fk ∈ Car([0,T]×R2), k ∈ N.
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Theorem 7.24. Let assumption (7.28) hold. Assume

for each k ∈ N and each (x, y) ∈ R
2,

fk(t, x, y) = f (t, x, y) a.e. on [0,T] \�k,

where�k =
[

0,
1
k

)
∩ [0,T];

(7.31)

there exists a bounded set Ω ⊂ C1[0,T]

such that for each k ∈ N

the regular problem (7.30) has a solution uk ∈ Ω.

(7.32)

Then

there exist a function u ∈ C[0,T] and a subsequence
{
uk�
} ⊂ {

uk
}

such that lim
�→∞

∥
∥uk� − u

∥
∥∞ = 0;

(7.33)

lim
�→∞

u′k� (t) = u′(t) locally uniformly on (0,T]; (7.34)

u ∈ AC1
loc(0,T] and

u is a w-solution of problem (7.2) satisfying (7.29).
(7.35)

Assume, moreover, that there exist ψ ∈ L1[0,T], η > 0, �0 ∈ N, and λ ∈ {−1, 1} such that

λ fk�
(
t,uk� (t),u′k� (t)

) ≥ ψ(t) for each � ∈ N, � ≥ �0, and for a.e. t ∈ (0,η]. (7.36)

Then u is a solution of problem (7.2), that is, u ∈ AC1[0,T].

If f (t, x, y) in (7.2) has one-sided sublinear growth in x and y, we use Theorem 7.24
to modify Theorem 7.9 as follows.

Theorem 7.25. Let assumption (7.28) hold and let α,β ∈ [0, 1). Assume that there exists a
nonnegative function h ∈ L1[0,T] such that

f (t, x, y) sign x ≤ h(t)
(
1 + |x|α + |y|β) for a.e. t ∈ [0,T] and all x, y ∈ R.

Then problem (7.2) has a w-solution u satisfying estimate (7.29).

Proof . Choose an arbitrary k ∈ N and for x, y ∈ R define the auxiliary function

fk(t, x, y) =
⎧
⎨

⎩

f (t, x, y) for a.e. t ∈ [0,T] \ Δk,

0 for a.e. t ∈ Δk,
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where Δk = [0,T]∩[0, 1/k). We see that fk ∈ Car([0,T]×R2) fulfils condition (7.31) and
inequality (7.13) with a(t) ≡ 0 and g = fk. Consider the approximate regular problem

u′′ + fk(t,u,u′) = 0, u(0) = u(T) = 0. (7.37)

Let us put a(t) ≡ 0 and φ(y) ≡ y. By Theorem 7.9, we deduce that problem (7.37) has a
solution uk. In this way we get a sequence {uk} of solutions of (7.37), k ∈ N, satisfying

−u′′k (t) signuk(t) ≤ h(t)
(
1 +

∣
∣uk(t)

∣
∣α +

∣
∣u′k(t)

∣
∣β)

for a.e. t ∈ [0,T] and all k ∈ N. So, by Lemma 7.5, there exists r > 0 such that

∥
∥uk

∥
∥∞ +

∥
∥u′k

∥
∥∞ ≤ r, k ∈ N.

Define the set

Ω = {
x ∈ C1[0,T] : ‖x‖∞ + ‖x′‖∞ ≤ r

}
.

Then condition (7.32) is valid and, by Theorem 7.24, we can find a subsequence {uk�} ⊂
{uk} satisfying conditions (7.33)–(7.35). �

Example 7.26. Let k ∈ N, α ∈ [1,∞), let ϕ ∈ C(R2) be positive and let h0,h1,h2 ∈
L1[0,T]. Consider problem (7.2), where

f (t, x, y) = −x
2k+1ϕ(x, y)

tα
+ h0(t) + h1(t)x1/3 + h2(t)|y|1/2

for a.e. t ∈ [0,T] and all x, y ∈ R. The first term of f is singular at t = 0. Further, f
satisfies

f (t, x, y) sign x ≤ h(t)
(
1 + |x|1/3 + |y|1/2)

for a.e. t ∈ [0,T], x, y ∈ R, where h = |h0|+ |h1|+ |h2|. Therefore, by Theorem 7.25, the
problem has a w-solution satisfying (7.29).

If f (t, x, y) in (7.2) has one-sided linear growth in x and y, we can decide about the
existence of a w-solution by means of the following modification of Theorem 7.12.

Theorem 7.27. Let assumption (7.28) hold. Assume that there exist nonnegative functions
h0,h1,h2 ∈ L1[0,T] such that ‖h1‖1 + ‖h2‖1 < 1 and

f (t, x, y) sign x ≤ h0(t) + h1(t)|x| + h2(t)|y| for a.e. t ∈ [0,T] and all x, y ∈ R.

Then problem (7.2) has a w-solution u satisfying estimate (7.29).

Proof . For k ∈ N consider problem (7.37). Put a(t) ≡ 0 and φ(y) ≡ y. Using Theorem
7.12 and Lemma 7.7 we argue as in the proof of Theorem 7.25. �
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Example 7.28. Let k ∈ N, α ∈ [1,∞), a, b ∈ R, |a| + |b| < 1/2, let ϕ ∈ C(R2) be positive
and let h0 ∈ L1[0, 1]. Consider problem (7.2), where T = 1 and

f (t, x, y) = −x
2k+1ϕ(x, y)

tα
+ h0(t) +

1√
t
(ax + by)

for a.e. t ∈ [0, 1] and all x, y ∈ R. The first term of f is singular at t = 0. Further, f
satisfies

f (t, x, y) sign x ≤ ∣
∣h0(t)

∣
∣ +

|a|√
t
|x| +

|b|√
t
|y|

for a.e. t ∈ [0, 1], x, y ∈ R. Therefore, by Theorem 7.27, the problem has a w-solution
satisfying estimate (7.29).

The next theorem shows that if f (t, x, y) keeps its sign for small t and x, we get a
solution of problem (7.2).

Theorem 7.29. Let all conditions of Theorem 7.25 or Theorem 7.27 be fulfilled and let u be
a w-solution of problem (7.2) satisfying estimate (7.29). Further assume that

there exist λ ∈ {−1, 1}, δ ∈ (0,T) such that

λ f (t, x, y) < 0 for a.e. t ∈ (0, δ) and all x ∈ (−δ, δ), y ∈ [−r, r]. (7.38)

Then u is a solution of problem (7.2).

Proof . For k ∈ N consider problem (7.37). By the proof of Theorem 7.25 or Theorem
7.27 there exist r > 0 and a sequence of approximate solutions {uk�} satisfying conditions
(7.33), (7.34) and ‖uk�‖∞+‖u′k�‖∞ ≤ r for � ∈ N. The function u in (7.33) is aw-solution
of problem (7.2) and fulfils estimate (7.29). To prove that u is a solution, we will describe
the behaviour of u′ at the singular point t = 0. Since u(0) = 0, there exists η1 ∈ (0, δ)
such that |u(t)| < δ for t ∈ (0,η1). Then condition (7.38) gives

−λu′′(t) = λ f
(
t,u(t),u′(t)

)
< 0 for a.e. t ∈ (

0,η1
)

and hence, u′ is strictly monotonous on (0,η1). Using estimate (7.29) we see that
limt→0+ u′(t) ∈ [−r, r].

Let limt→0+ u′(t) �= 0. Then

there exists η ∈ (
0,η1

)
such that

u(t) > 0 on (0,η)
(
or u(t) < 0 on (0,η)

)
.

(7.39)

Let limt→0+ u′(t) = 0. Since u′ is strictly monotonous on (0,η1), we have u′(t) �= 0 for
t ∈ (0,η1). This implies (7.39). Moreover, conditions (7.33) and (7.39) yield �0 > 0 such
that

uk� (t) > 0 on (0,η]
(
or uk� (t) < 0 on (0,η]

)
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for each � ∈ N, � ≥ �0. Hence, under the assumptions of Theorem 7.25 or Theorem 7.27,
we have

λ2 fk�
(
t,uk� (t),u′k� (t)

) ≥ ψ(t) for a.e. t ∈ (0,η], � ≥ �0,

where λ2 = − signuk� (t). Provided the assumptions of Theorem 7.25 hold, we put ψ(t) =
−h(t)(1 + rα + rβ) and if the assumptions of Theorem 7.27 are fulfilled, we put ψ(t) =
−h0(t)− (r + 1) (h1(t) + h2(t)). Consequently, inequality (7.36) holds and Theorem 7.24
implies u ∈ AC1[0,T], that is, u is a solution of problem (7.2). �

Example 7.30. Let k ∈ N, α ∈ [1,∞), a, b ∈ R, |a| < 1/6, b < 0 and let ϕ ∈ C(R2) be
positive. Consider problem (7.2), where T = 1 and

f (t, x, y) = −
(|x| + x

)2k+1
ϕ(x, y)

tα
+

1√
t
(ax + ty + b)

for a.e. t ∈ [0, 1] and all x, y ∈ R. Then f satisfies

f (t, x, y) sign x ≤ |b|√
t

+
|a|√
t
|x| +

√
t|y|

for a.e. t ∈ [0, 1] and all x, y ∈ R. Therefore, by Theorem 7.27, the problem has a
w-solution satisfying estimate (7.29). We can check that there exists δ > 0 such that
f (t, x, y) < 0 for a.e. t ∈ [0, δ] and all x ∈ [−δ, δ], y ∈ [−r, r]. Hence, by Theorem 7.29,
u is a solution of the problem.

Similarly, we could modify other theorems of Section 7.1 in order to get a solution
or a w-solution to problem (7.2). However, we switch our attention to the more general
singular problem (7.1).

Dirichlet problem with φ-Laplacian

As before, we assume that f fulfils condition (7.28) and we are interested in the existence
of a solution to problem (7.1) or of aw-solution u to (7.1) satisfying estimate (7.29). Since
problem (7.1) contains φ-Laplacian, we cannot now use theorems of Section 1.2 directly
but we need to generalize them for problems with φ-Laplacian. Consider the sequence of
regular problems

(
φ(u′)

)′
+ fk(t,u,u′) = 0, u(0) = u(T) = 0, (7.40)

where fk ∈ Car([0,T]×R2), k ∈ N.

Theorem 7.31 (first principle for φ-Laplacian and time singularities). Let assumptions
(7.28) and (7.31) hold. Further assume that

there exists a bounded set Ω ⊂ C1[0,T] such that

the regular problem (7.40) has a solution uk ∈ Ω for each k ∈ N.
(7.41)
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Then assertions (7.33) and (7.34) are valid, φ(u′) ∈ ACloc(0,T] and u is a w-solution of
problem (7.1).

If, moreover, condition (7.36) is satisfied, then u is a solution of problem (7.1), that is,
φ(u′) ∈ AC[0,T].

Proof

Step 1. Convergence of the sequence of approximate solutions.
Condition (7.41) implies that the sequence {uk} is bounded and equicontinuous on

[0,T]. By the Arzelà-Ascoli theorem assertion (7.33) is true and u(0) = u(T) = 0. Since
{u′k} is bounded, we get, due to assumption (7.31), that for each τ ∈ (0,T] there exist
kτ ∈ N and hτ ∈ L1[0,T] such that, for each k ≥ kτ ,

∣
∣ fk

(
s,uk(s),u′k(s)

)∣∣ ≤ hτ(s) for a.e. s ∈ [τ,T]. (7.42)

Hence, problem (7.40) yields for k ≥ kτ , t1, t2 ∈ [τ,T],

∣
∣φ
(
u′k
(
t2
))− φ(u′k

(
t1
))∣∣ ≤

∣
∣
∣
∣

∫ t2

t1
hτ(s)ds

∣
∣
∣
∣,

which implies that the sequence {φ(u′k)} is equicontinuous on [τ,T]. By virtue of the
uniform continuity of φ−1 on compact intervals, the sequence {u′k} is also equicontinuous
on [τ,T]. The Arzelà-Ascoli theorem implies that for each compact subset K ⊂ (0,T] a
subsequence of {u′k} uniformly converging to u′ on K can be chosen. Therefore, using
the diagonalization theorem, we can choose a subsequence {uk�} satisfying both (7.33)
and (7.34).

Step 2. Convergence of the sequence of approximate nonlinearities.
Let V1 be the set of all t ∈ [0,T] such that f (t, ·, ·) : R2 → R is not continuous and

let V2 be the set of all t ∈ [0,T] such that the equality in (7.31) is not satisfied. Then
meas(V1∪V2) = 0. Choose an arbitrary τ ∈ (0,T] \ (V1∪V2). Then there exists �0 ∈ N

such that for � ≥ �0 we have

fk�
(
τ,uk� (τ),u′k� (τ)

) = f
(
τ,uk� (τ),u′k� (τ)

)

and, by (7.33) and (7.34), the equality

lim
�→∞

fk�
(
τ,uk� (τ),u′k� (τ)

) = f
(
τ,u(τ),u′(τ)

)

holds. Hence,

lim
�→∞

fk�
(
t,uk� (t),u′k� (t)

) = f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T]. (7.43)

Step 3. The function u is a w-solution of problem (7.1).
Choose an arbitrary τ ∈ (0,T] and integrate the equality

(
φ
(
u′k� (t)

))′
+ fk�

(
t,uk� (t),u′k� (t)

) = 0 for a.e. t ∈ [0,T].
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We get

φ
(
u′k� (T)

)− φ(u′k� (τ)
)

+
∫ T

τ
fk�
(
s,uk� (s),u′k� (s)

)
ds = 0.

Applying conditions (7.42), (7.43), and the Lebesgue dominated convergence theorem
on [τ,T], we can deduce (having in mind that τ is arbitrary) that the limit u solves the
equation

φ
(
u′(T)

)− φ(u′(t)) +
∫ T

t
f
(
s,u(s),u′(s)

)
ds = 0 for t ∈ (0,T]. (7.44)

This immediately yields that φ(u′) ∈ ACloc(0,T] and u is a w-solution of (7.1).

Step 4. The function u is a solution of problem (7.1).
Assume, moreover, that condition (7.36) holds. Due to assumption (7.41) there is a

c ∈ (0,∞) such that for each � ∈ N

∣
∣
∣
∣

∫ η

0
fk�
(
s,uk� (s),u′k� (s)

)
ds
∣
∣
∣
∣ = |φ

(
u′k� (0)

)− φ(u′k� (η)
)∣∣ ≤ c.

So, by the Fatou lemma, using also condition (7.36) and equality (7.43), we deduce
that f (t,u(t),u′(t)) ∈ L1[0,η]. Further, by virtue of assumption (7.41) and assertions
(7.33) and (7.34), the functions u and u′ are bounded on [η,T]. Hence, assumption
(7.28) implies f (t,u(t),u′(t)) ∈ L1[η,T], which together with the above arguments
yields f (t,u(t),u′(t)) ∈ L1[0,T]. Therefore, due to equality (7.44) we have that φ(u′) ∈
AC[0,T], that is, u is a solution of problem (7.1). �

Now, using Theorem 7.31, we will extend Theorem 7.20 which is based on the exis-
tence of lower and upper functions to problem (7.1). Note that lower and upper functions
to problem (7.1) are understood in the sense of Definition 7.15.

Theorem 7.32. Assume that (7.28) holds. Let σ1 and σ2 be a lower function and an upper
function of problem (7.1) and let σ1(t) ≤ σ2(t) for t ∈ [0,T]. Assume that there exist a
nonnegative function h ∈ L1[0,T] and a positive function ω ∈ C[0,∞) fulfilling condition
(7.17), further assume that

there exists b > 0 such that ω(s) ≥ b for s ∈ [0,∞); (7.45)

f (t, x, y) sign x ≤ ω
(∣∣φ(y)

∣
∣)(h(t) + |y|)

for a.e. t ∈ [0,T] and all x ∈ [
σ1(t), σ2(t)

]
, y ∈ R.

(7.46)

Then problem (7.1) has a w-solution u satisfying estimate (7.16) and ‖u′‖∞ <∞.
If, moreover, condition (7.38) with r ≥ ‖u′‖∞ holds, then u is a solution of problem

(7.1).
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Proof

Step 1. Choose an arbitrary k ∈ N and denote Δk = [0,T] ∩ [0, 1/k), Δk1 = {t ∈ Δk :
σ1(t) = σ2(t)}, Δk2 = {t ∈ Δk : σ1(t) < σ2(t)}. Define a function gk by

gk(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
φ
(
σ ′2(t)

))′
if x > σ2(t),

(
x − σ1(t)

)(
φ
(
σ ′2(t)

))′
+
(
σ2(t)− x)(φ(σ ′1(t)

))′

σ2(t)− σ1(t)

if σ1(t) ≤ x ≤ σ2(t),

(
φ
(
σ ′1(t)

))′
if x < σ1(t)

for a.e. t ∈ Δk2 and all x ∈ R, and a function fk by

fk(t, x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (t, x, y) if t ∈ [0,T] \ Δk,

−(φ(σ ′1(t)
))′

if t ∈ Δk1,

−gk(t, x) if t ∈ Δk2

(7.47)

for a.e. t ∈ [0,T] and all x, y ∈ R. Then fk ∈ Car([0,T] × R2) and condition (7.31)
is valid. Consider problem (7.40) with fk defined in this proof. Then σ1 and σ2 are also
lower and upper functions to this problem. Moreover, due to inequalities (7.45), (7.46),
and formula (7.47), fk satisfies inequality (7.24) with g(t, x, y) = fk(t, x, y), a(t) ≡ 0,
κ = 1 + 1/b, and

h0(t) = h(t) +
∣
∣(φ

(
σ ′1(t)

))′∣∣ +
∣
∣(φ

(
σ ′2(t)

))′∣∣.

Hence, for each k ∈ N, Theorem 7.20 gives a solution uk of problem (7.40). More-
over, each solution uk satisfies estimate (7.16) and ‖u′k‖∞ ≤ r, where r > 0 is given by
Lemma 7.18 for r0 = max{‖σ1‖∞,‖σ2‖∞} and for A = B = 0.

Step 2. Define a set

Ω = {
x ∈ C1[0,T] : σ1 ≤ x ≤ σ2 on [0,T],‖x′‖∞ ≤ r

}
.

Then condition (7.41) is valid and, by Theorem 7.31, we can find a subsequence {uk�} ⊂
{uk} such that assertions (7.33) and (7.34) hold and the function u ∈ C[0,T] with
φ(u′) ∈ ACloc(0,T] is a w-solution of problem (7.1). Since {uk�} ⊂ Ω, we see that u
fulfils estimate (7.16) and ‖u′‖∞ ≤ r.

Step 3. Let condition (7.38) hold. Similarly to the proof of Theorem 7.29, we can show
that there exist η > 0 and �0 > 0 such that either uk� (t) > 0 on (0,η] for each � ∈ N,
� ≥ �0, or uk� (t) < 0 on (0,η] for each � ∈ N, � ≥ �0. Denote

ω0 = max
{
ω(s) : s ∈ [

0,φ(r)
]}

,

ψ(t) = −∣∣(φ(σ ′1(t)
))′∣∣− ∣∣(φ(σ ′2(t)

))′∣∣− ω0
[
h(t) + r

]
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for a.e. t ∈ [0,T]. Since

− fk�
(
t,uk� (t),u′k� (t)

)
signuk� (t) ≥ ψ(t)

for a.e. t ∈ [0,η] and all � ≥ �0, we see that fk� fulfils condition (7.36) with λ =
− signuk� (t). Therefore, Theorem 7.31 implies u ∈ AC1[0,T], that is, u is a solution
of problem (7.1). �

Example 7.33. Let k,n ∈ N, c ∈ R, α ∈ [1,∞), ε ∈ (0,∞), ϕ ∈ C(R2), and ψ ∈ C(R).
Further, assume that ϕ is nonnegative and ψ(x) = 0 if x ≤ 0 and ψ(x) < 0 if x > 0.
Consider problem (7.1), where

f (t, x, y) = (t − ε)2n+1 − x2n+1 + cx2yφ(y)− x2k+1ϕ(x, y) +
1
tα
ψ(x)

for a.e. t ∈ [0,T] and all x, y ∈ R. The last term of f is singular at t = 0. We can find
constant functions σ1(t) ≡ r1 < 0 and σ2(t) ≡ r2 > 0 which are lower and upper functions
of the problem. Moreover, f satisfies inequalities (7.38) and (7.46). Indeed, we can choose
δ > 0 sufficiently small and put λ = 1, r = max{|r1|, r2}, ω(s) = (|c|r2 + 1)(1 + s),
h(t) = |t−ε|2n+1. By Theorem 7.32, our problem has a solution u such that r1 ≤ u(t) ≤ r2

for t ∈ [0,T].

We continue with a generalization of Theorem 1.5 to problem (7.1).

Theorem 7.34 (second principle for φ-Laplacian and time singularities). Let the assump-
tions of Theorem 7.31 be satisfied with (7.36) replaced by the assumption that there exist
ψ ∈ L1[0,T], η > 0, γ ∈ R, �0 ∈ N, and λ ∈ {−1, 1} such that

λ fk�
(
t,uk� (t),u′k� (t)

)
sign

(
u′k� (t)− γ

) ≥ ψ(t)

for each � ∈ N, � ≥ �0, and for a.e. t ∈ (0,η].
(7.48)

Then the assertions of Theorem 7.31 remain valid.

Proof . By Theorem 7.31 there exist a sequence {uk�} and a function u such that assertions
(7.33) and (7.34) hold and u is a w-solution of problem (7.1) with φ(u′) ∈ ACloc(0,T].
Arguing as in step 4 of the proof of Theorem 7.31 we see that to show φ(u′) ∈ AC[0,T],
it suffices to prove that f (t,u(t),u′(t)) ∈ L1[0,η]. Put M = V1 ∪V2 ∪V3 ∪V4, where

V1 =
{
t ∈ [0,η] : f (t, ·, ·) : R

2 �→ R is not continuous
}

,

V2 =
{
t ∈ [0,η] : t is an isolated zero of u′ − γ},

V3 =
{
t ∈ [0,η] :

(
φ
(
u′(t)

))′
+ f

(
t,u(t),u′(t)

) = 0 is not fulfilled
}

,

V4 =
{
t ∈ [0,η] : the equality in condition (7.31) is not fulfilled

}
.

Then meas(M) = 0. Choose an arbitrary s ∈ (0,T] \M.
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(a) Let u′(s) �= γ. Assume, for example, that sign(u′(s) − γ) = 1. Then, there exists
�0 ∈ N such that for each � ≥ �0 we have sign(u′k� (s) − γ) = 1 and so, due to properties
(7.31), (7.33), (7.34), and since s /∈ V1 ∪V4, we get

lim
�→∞

fk�
(
s,uk� (s),u′k� (s)

)
sign

(
u′k� (s)− γ

) = f
(
s,u(s),u′(s)

)
sign

(
u′(s)− γ). (7.49)

If sign(u′(s)− γ) = −1, we get equality (7.49) in the same way.
(b) Let s be an accumulation point of the set V2 of isolated zeros of u′ − γ. Then

there is a sequence {sm} ⊂ (0,T] such that u′(sm) = γ and limm→∞ sm = s. Since u′ is
continuous on (0,T], we get u′(s) = γ. Therefore, φ(u′(sm)) = φ(u′(s)) = φ(γ),

lim
m→∞

φ
(
u′
(
sm
))− φ(u′(s))
sm − s = 0,

and, by virtue of s /∈ V3, we get 0 = (φ(u′(s)))′ = − f (s,u(s),u′(s)). Since s /∈ V1 ∪ V4,
we have by properties (7.31), (7.33), and (7.34)

lim
�→∞

fk�
(
s,uk� (s),u′k� (s)

)
sign

(
u′k� (s)− γ

) = f
(
s,u(s),u′(s)

)
lim
�→∞

sign
(
u′k� (s)− γ

) = 0.

So, we have proved that equality (7.49) is valid for a.e. s ∈ [0,η].
Further, by assumption (7.41), there exist c > 0 and �0 ∈ N such that for � ≥ �0,

∫ η

0
λ fk�

(
s,uk� (s),u′k� (s)

)
sign

(
u′k� (s)− γ

)
ds ≤

∫ η

0

∣
∣φ
(
u′k� (s)

)− φ(γ)
∣
∣′ds

≤ ∣
∣φ
(
u′k� (0)

)− φ(γ)
∣
∣ +

∣
∣φ
(
u′k� (η)

)− φ(γ)
∣
∣

≤ c,

and hence, due to assumption (7.48), we can use the Fatou lemma to deduce that λ f (t,
u(t),u′(t)) sign(u′(t)− γ) ∈ L1[0,η], and, consequently, f (t,u(t),u′(t)) ∈ L1[0,η]. �

Now, we are ready to extend Theorem 7.22 with the second form of Nagumo condi-
tion to problem (7.1).

Theorem 7.35. Assume that (7.28) holds. Let σ1 and σ2 be a lower function and an upper
function of problem (7.1) and let σ1(t) ≤ σ2(t) for t ∈ [0,T]. Assume that there exist
a1, a2 ∈ [0,T], a1 < a2, y1, y2 ∈ R, a nonnegative function h ∈ L1[0,T], and a positive
function ω ∈ C[0,∞) fulfilling conditions (7.17), (7.45) and

f (t, x, y) sign
(
y − y1

) ≤ ω
(∣∣φ(y)− φ(y1

)∣∣)(h(t) +
∣
∣y − y1

∣
∣)

for a.e. t ∈ [
0, a2

]
and all x ∈ [

σ1(t), σ2(t)
]
, y ∈ R,

f (t, x, y) sign
(
y − y2

) ≥ −ω(∣∣φ(y)− φ(y2
)∣∣)(h(t) +

∣
∣y − y2

∣
∣)

for a.e. t ∈ [
a1,T

]
and all x ∈ [

σ1(t), σ2(t)
]
, y ∈ R.

(7.50)

Then problem (7.1) has a solution u satisfying estimate (7.16).
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Proof . Choose an arbitrary k ∈ N and consider problem (7.40) with fk defined by (7.47).
Let us put g(t, x, y) = fk(t, x, y), a(t) ≡ 0, κ = 1 + 1/b, and

h0(t) = h(t) +
∣
∣(φ

(
σ ′1(t)

))′∣∣ +
∣
∣(φ

(
σ ′2(t)

))′∣∣.

Here, b > 0 is given by (7.45). Using Theorem 7.22 and Lemma 7.19 and arguing similarly
to the proof of Theorem 7.32 we show that conditions (7.31) and (7.41) are valid. So, by
Theorem 7.34, we get a w-solution u of problem (7.1). By Theorem 7.22, u also satisfies
estimates (7.16) and (7.29), where r > 0 is the constant found by Lemma 7.19 for r0 =
max{‖σ1‖∞,‖σ2‖∞}. Moreover, the first inequality in (7.50) gives

− fk�
(
t,uk� (t),u′k� (t)

)
sign

(
u′k� (t)− y1

) ≥ ψ(t) for a.e. t ∈ [
0, a2

]
,

where

ψ(t) = −ω0
(
h(t) + r +

∣
∣y1

∣
∣)− ∣∣(φ(σ ′1(t)

))′∣∣− ∣∣(φ(σ ′2(t)
))′∣∣,

ω0 = max
{
ω(s) : s ∈ [

0,φ(r) +
∣
∣φ
(
y1
)∣∣]}.

So, using Theorem 7.34 with λ = −1, η = a2, and γ = y1, we get that u is a solution of
problem (7.1). �

Example 7.36. Assume that n ∈ N, c,d ∈ R, α ∈ [1,∞), ε ∈ (0,∞). Choose a1 ∈ (0,T/2),
a2 = T/2, h1,h2,h3 ∈ L1[0,T], where h2(t) ≥ ε a.e. on [0,T]. Let h3 be nonnegative a.e.
on [0,T] and vanish a.e. on [0,T/2]. Consider problem (7.1) where φ(y) ≡ y and

f (t, x, y) = −t−αy + h1(t)y + c
(
y2 + 1

)− h2(t)
(
x2n−1 − d) + h3(t)y3

for a.e. t ∈ [0,T] and all x, y ∈ R. The first term is singular at t = 0. Let y1 = y2 = 0.
We can find constant functions σ1(t)≡r1 < 0 and σ2(t)≡r2 > 0 which are lower and upper
functions of the problem. Moreover, f satisfies the conditions of Theorem 7.35. We see it
if we putω(s) = (|c|+1)(s+1),K = (|r1|+r2)2n−1+|d|, and h(t) = a−α1 +|h1(t)|+Kh2(t)+1.

7.3. Dirichlet problem with space singularities

Many papers studying problem (7.1) or (7.2) with a space singularity at x = 0 concern the
case that the nonlinearity f is positive. Such problems are referred to as positone ones in
literature, see Agarwal and O’Regan [11, 12] or Staněk [185]. The positivity of f implies
that each solution of (7.2) is concave and hence positive on (0,T), and if, moreover, f
has a space singularity at x = 0 but not at y, then each solution has only two singular
points 0, T which are of type I. This makes the study of such problems easier than of
those having sign-changing f or space singularities at y because the latter problems can
generate solutions with singular points of type II. First we will study the singular problem
(7.2) with a positive nonlinearity f satisfying

f ∈ Car
(
[0,T]×D

)
, where D = (0,∞)×R,

f has a space singularity at x = 0,
(7.51)

that is, lim supx→0+ | f (t, x, y)| = ∞ for a.e. t ∈ [0,T] and some y ∈ R. In this case, we
can use theorems of Section 1.3 and extend the existence results of Section 7.1. To this
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aim we present here the version of Theorem 1.8 for c0 = 0, n = 2, and A = [0,∞) × R.
We will consider the sequence of regular problems

u′′ + fk(t,u,u′) = 0, u(0) = u(T) = 0, (7.52)

where fk ∈ Car([0,T]×R2).

Theorem 7.37. Assume that (7.51) holds and that

fk(t, x, y) = f (t, x, y) for a.e. t ∈ [0,T], for each k >
2
T

and for each (x, y) ∈ [0,∞)×R, x ≥ 1
k

, |y| ≥ 1
k

;
(7.53)

there exists a bounded set Ω ⊂ C1[0,T] such that

the regular problem (7.52) has a solution uk ∈ Ω

and uk(t) ≥ 0 for t ∈ [0,T], k >
2
T
.

(7.54)

Then there exist u ∈ C[0,T] and a subsequence {uk�} ⊂ {uk} such that

lim
�→∞

uk� (t) = u(t) uniformly on [0,T].

If, moreover, the set of singular points S = {s ∈ [0,T] : u(s) = 0} is finite, then

lim
�→∞

u′k� (t) = u′(t) locally uniformly on [0,T] \ S.

If, in addition,

on each interval [a, b] ⊂ [0,T] \ S

the sequence
{
fk�
(
t,uk� (t),u′k� (t)

)}
is uniformly integrable,

(7.55)

then u ∈ AC1
loc([0,T] \ S) and u is a w-solution of problem (7.2).

Finally, if there exists a function ψ ∈ L1[0,T] such that

fk�
(
t,uk� (t),u′k� (t)

) ≥ ψ(t) for a.e. t ∈ [0,T] and all � ∈ N, (7.56)

then u ∈ AC1[0,T] and u is a solution of problem (7.2).

The following lemma will be useful in the subsequent proofs.

Lemma 7.38. Let ε > 0. Then there exists η > 0 such that for each function u ∈ AC1[0,T]
satisfying

u(0) = u(T) = 0, −u′′(t) ≥ ε for a.e. t ∈ [0,T]
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the estimate

u(t) ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ηt for t ∈
[

0,
T

2

]
,

η(T − t) for t ∈
[
T

2
,T
]
.

(7.57)

is valid.

Proof . Let G(t, s) be the Green function of the problem −v′′(t) = 0, v(0) = v(T) = 0,
that is,

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t(T − s)
T

for 0 ≤ t ≤ s ≤ T ,

s(T − t)
T

for 0 ≤ s ≤ t ≤ T.

Let u be an arbitrary function fulfilling −u′′(t) ≥ ε for a.e. t ∈ [0,T] and u(0) = u(T) =
0. Then we have

u(t) = −
∫ T

0
G(t, s)u′′(s)ds ≥ ε

∫ T

0
G(t, s)ds

= 1
2
εt(T − t) ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ηt for t ∈
[

0,
T

2

]
,

η(T − t) for t ∈
[
T

2
,T
]

,

if we choose η ≤ ε(T/4). �

If f (t, x, y) in (7.2) has one-sided sublinear growth in x and y, we use Theorem 7.37
to modify Theorem 7.9 as follows.

Theorem 7.39. Let (7.51) hold and let ε, γ, δ ∈ (0,∞), α,β ∈ [0, 1). Assume that there
exist a nonnegative function g0 ∈ L1[0,T] and a function ψ ∈ C(0,∞) positive and
nonincreasing on (0,∞) satisfying

∫ T

0

(
tγ + tδ

)
ψ(t)dt <∞,

ε ≤ f (t, x, y) ≤ tγ(T − t)δψ(x) + g0(t)
(
1 + xα + |y|β)

for a.e. t ∈ [0,T] and all x ∈ (0,∞), y ∈ R.

Then problem (7.2) has a solution positive on (0,T).
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Proof

Step 1. Construction of approximate regular problems.
Choose an arbitrary k ∈ N and for a.e. t ∈ [0,T] and all x, y ∈ R define the auxiliary

function

fk(t, x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (t, x, y) if |x| ≥ 1
k

,

f
(
t,

1
k

, y
)

if |x| < 1
k
.

We see that fk ∈ Car([0,T]×R2) fulfils condition (7.53) and

ε ≤ fk(t, x, y)

≤ tγ(T − t)δψ
(

1
k

)
+ g0(t)

(
1 +

(
1
k

)α
+ |x|α + |y|β

)

≤ h(t)
(
1 + |x|α + |y|β)

for a.e. t ∈ [0,T] and all x, y ∈ R, where h(t) = tγ(T − t)δψ(1/k) + 2g0(t). Consider the
approximate regular problem

u′′ + fk(t,u,u′) = 0, u(0) = u(T) = 0. (7.58)

Put a(t) ≡ 0 and φ(y) ≡ y. Then, by Theorem 7.9, problem (7.58) has a solution uk.

Step 2. Convergence of the sequence {uk} of approximate solutions.
Lemma 7.38 yields η ∈ (0, 1) such that

uk(t) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηt for t ∈
[

0,
T

2

]
,

η(T − t) for t ∈
[
T

2
,T
]
.

(7.59)

Clearly uk > 0 on (0,T). Further, the inequality tγ(T − t)δψ(uk(t)) ≤ ψ̃(t) holds for a.e.
t ∈ [0,T], where

ψ̃(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tγ(T − t)δψ(ηt) if t ∈
[

0,
T

2

]
,

tγ(T − t)δψ(η(T − t)) if t ∈
[
T

2
,T
]
.

Since ψ(1/k) ≤ ψ(x) if x ∈ (0, 1/k], we have

fk(t, x, y) ≤ tγ(T − t)δψ(x) + g0(t)
(
2 + xα + |y|β)

for a.e. t ∈ [0,T] and all x ∈ (0,∞), y ∈ R. Therefore,

−u′′k (t) ≤ ψ̃(t) + g0(t)
(
2 + uαk(t) +

∣
∣u′k(t)

∣
∣β) for a.e. t ∈ [0,T].
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We can find κ0 ∈ (0,∞) such that
∫ T

0
ψ̃(t)dt ≤ κ0.

Thus, ‖ψ̃+g0‖1 ≤ κ0 +‖g0‖1. Consider the sequence {uk} of solutions of problem (7.58),
k ∈ N. The functions uk, k ∈ N, satisfy condition (7.8) for φ(y) ≡ y, a(t) ≡ 0, h0 = ψ̃+g0,
with κ = κ0 + ‖g0‖1 and h1 = g0. By Lemma 7.5 there exists r > 0 such that

∥
∥uk

∥
∥∞ +

∥
∥u′k

∥
∥∞ ≤ r for k ∈ N.

Define a set Ω = {x ∈ C1[0,T] : ‖x‖∞ + ‖x′‖∞ ≤ r}. Then condition (7.54) is valid and,
by Theorem 7.37, we can find a function u ∈ C[0,T] and a subsequence {uk�} ⊂ {uk}
such that

lim
�→∞

uk� (t) = u(t) uniformly on [0,T].

Step 3. The function u is a solution of problem (7.2).
By estimate (7.59), u satisfies estimate (7.57), and u ∈ C[0,T] is positive on (0,T).

By virtue of assumption (7.51), we know that f has only a singularity at x = 0. The set S
of singular points is finite because it consists of two points 0 and T . Hence, Theorem 7.37
yields

lim
�→∞

u′k� (t) = u′(t) locally uniformly on (0,T).

Let us choose an arbitrary interval [a, b] ⊂ (0,T). Then there exists �0 ∈ N such that for
each � ≥ �0 the inequality uk� ≥ 1/�0 is valid on [a, b] and

fk�
(
t,uk� (t),u′k� (t)

) ≤ tγ(T − t)δψ
(

1
�0

)
+ g0(t)

(
2 + rα + rβ

) =: ϕ(t)

for a.e. t ∈ [a, b]. Using Criterion A.1 and the fact that ϕ ∈ L1[a, b], we get that the
sequence { fk� (t,uk� (t),u′k� (t))} is uniformly integrable on [a, b]. This yields that condi-
tion (7.55) holds and consequently, u ∈ AC1

loc(0,T) is a w-solution of problem (7.2).
Moreover, condition (7.56) is also satisfied because the inequality 0 ≤ fk� (t,uk� (t),u′k� (t))
holds for a.e. t ∈ [0,T] and for all � ∈ N. Due to Theorem 7.37, u is a solution of problem
(7.2). �

Example 7.40. Let h1,h2 ∈ L1[0,T] be nonnegative. For a.e. t ∈ [0,T] and all x, y ∈
(0,∞)×R define a function

f (t, x, y) = 1 +
t3/2(T − t)3/2

x2
+ h1(t)

√
x + h2(t)

√
|y|.

The second term of f has a space singularity at x = 0. Further, f satisfies the conditions
of Theorem 7.39 with ε = 1, α = β = 1/2, γ = δ = 3/2, ψ(x) = x−2, and g0 = 1 + h1 + h2.
Therefore, by Theorem 7.39, the problem

u′′ + 1 +
t3/2(T − t)3/2

u2
+ h1(t)

√
u + h2(t)

√
|u′| = 0, u(0) = u(T) = 0,

has a solution positive on (0,T).
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Now, we will present conditions ensuring solvability of problems with space singu-
larities in the variables x and y and with singular points both of type I and of type II.
The main difficulty in the study of singular points of type II is the fact that their location
in [0,T] is not known. This is why there are only few papers concerning solvability of
such problems in mathematical literature and no results about w-solutions are known.

Consider problem (7.2) under the assumption that f satisfies

f ∈ Car
(
[0,T]×D

)
, where D = (0,∞)× (R \ {0}),

f has space singularities at x = 0 and y = 0,
(7.60)

that is,

lim sup
x→0+

∣
∣ f (t, x, y

)∣∣ = ∞ for a.e. t ∈ [0,T] and some y ∈ R \ {0},

lim sup
y→0

∣
∣ f (t, x, y

)∣∣ = ∞ for a.e. t ∈ [0,T] and some x ∈ (0,∞).

Conditions for solvability of problem (7.2), provided f (t, x, y) is positive and has one-
sided linear growth in x and y, are formulated in the next theorem which extends
Theorem 7.12.

Theorem 7.41. Let (7.60) hold and let ε, γ, δ ∈ (0,∞). Assume that there are nonnegative
functions g,h1,h2 ∈ L1[0,T] and functions ψ1,ψ2 ∈ C(0,∞) positive and nonincreasing on
(0,∞) satisfying T‖h1‖1 + ‖h2‖1 < 1 and

∫ T

0

(
tγ + tδ

)
ψ1(t)dt <∞,

∫ T

0
ψ2(t)dt <∞,

ε ≤ f (t, x, y) ≤ tγ(T − t)δψ1(x) + ψ2
(|y|) + g(t) + h1(t)x + h2(t)|y|

for a.e. t ∈ [0,T] and all x ∈ (0,∞), y ∈ (
R \ {0}).

Then problem (7.2) has a solution positive on (0,T).

Proof . Due to condition (7.60), f has also a space singularity at its last variable y and
hence, we cannot use Theorem 7.37, where condition (7.51) is involved. We will use some
arguments from the proof of Theorem 1.8.

Step 1. Construction of approximate regular problems.
Choose an arbitrary k ∈ N and for a.e. t ∈ [0,T] and all x, y ∈ R define the auxiliary

functions

f̃k(t, x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
(
t, |x|, y) if |x| ≥ 1

k
,

f
(
t,

1
k

, y
)

if |x| < 1
k

,

fk(t, x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f̃k(t, x, y) if |y| ≥ 1
k

,

k

2

(
f̃k

(
t, x,

1
k

)(
y +

1
k

)
− f̃k

(
t, x,−1

k

)(
y − 1

k

))
if |y| < 1

k
.

(7.61)
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We see that fk ∈ Car([0,T]×R2) fulfils

fk(t, x, y) = f (t, x, y) for a.e. t ∈ [0,T] and all x ∈
[

1
k

,∞
)

, |y| ∈
[

1
k

,∞
)
. (7.62)

Further,

ε ≤ fk(t, x, y)

≤ tγ(T − t)δψ1

(
1
k

)
+ ψ2

(
1
k

)
+ g(t) + h1(t)

(
|x| +

1
k

)
+ h2(t)

(
|y| +

1
k

)

for a.e. t ∈ [0,T] and all x, y ∈ R. Put a(t) ≡ 0, φ(y) ≡ y, and

h0(t) = tγ(T − t)δψ1

(
1
k

)
+ ψ2

(
1
k

)
+ g(t) + h1(t) + h2(t).

Then, by Theorem 7.12, problem (7.58) with fk defined by (7.61) has a solution uk.

Step 2. Convergence of the sequence {uk} of approximate solutions.
Lemma 7.38 gives η ∈ (0, 1) such that uk satisfies estimate (7.59). Clearly, uk > 0

on (0,T) and uk has a unique maximum point tk ∈ (0,T). Integrating the inequality
ε ≤ −u′′k (t) we get

ε
(
tk − t

) ≤ u′k(t) = ∣
∣u′k(t)

∣
∣ for t ∈ [

0, tk
]
,

ε
(
t − tk

) ≤ −u′k(t) = ∣
∣u′k(t)

∣
∣ for t ∈ [

tk,T
]
.

(7.63)

Denote

ψ̃1(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tγ(T − t)δψ1(ηt) if t ∈
[

0,
T

2

]
,

tγ(T − t)δψ1
(
η(T − t)) if t ∈

[
T

2
,T
]

,

ψ̃2k(t) =
⎧
⎪⎨

⎪⎩

ψ2(ε
(
tk − t

))
if t ∈ [

0, tk
]
,

ψ2
(
ε
(
t − tk

))
if t ∈ [

tk,T
]
.

Then

tγ(T − t)δψ1
(
uk(t)

) ≤ ψ̃1(t), ψ2
(∣∣u′k(t)

∣
∣) ≤ ψ̃2k(t)

for a.e. t ∈ [0,T]. Since ψ1(1/k) ≤ ψ1(x) if x ∈ (0, 1/k] and ψ2(1/k) ≤ ψ2(|y|) if |y| ≤
1/k, we have

fk(t, x, y) ≤ tγ(T − t)δψ1(x) + ψ2
(|y|) + g(t) + h1(t)(x + 1) + h2(t)

(|y| + 1
)

for a.e. t ∈ [0,T] and all x ∈ (0,∞), y ∈ R. Therefore,

−u′′k (t) ≤ ψ̃1(t) + ψ̃2k(t) + g(t) + h1(t)
(
uk(t) + 1

)
+ h2(t)

(∣∣u′k(t)
∣
∣ + 1

)
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for a.e. t ∈ [0,T]. Without loss of generality we may assume that ε ≤ 1 and we can find
κ1, κ2 ∈ (0,∞) such that

∫ T

0
ψ̃1(t)dt ≤ κ1,

∫ T

0
ψ̃2k(t)dt ≤ κ2, k ∈ N.

Thus, ‖ψ̃1 + ψ̃2k + g‖1 ≤ κ1 + κ2 + ‖g‖1 =: κ. Consider the sequence {uk} of solutions
of problems (7.58), k ∈ N. The functions uk, k ∈ N, satisfy condition (7.12) for a(t) ≡ 0,
φ(y) ≡ y, and h0 = ψ̃1 + ψ̃2k + g + h1 + h2. By Lemma 7.7 there exists r ∈ (η,∞) such
that ‖uk‖∞ + ‖u′k‖∞ ≤ r for k ∈ N. By the Arzelà-Ascoli theorem, we can find a function
u ∈ C[0,T] and a subsequence {uk�} ⊂ {uk} such that

lim
�→∞

uk� (t) = u(t) uniformly on [0,T].

So, we have u(0) = u(T) = 0 and u satisfies estimate (7.57). By estimate (7.59), uk(T/2) ≥
(ηT)/2 for k ∈ N. Since the inequality ‖u′k‖∞ ≤ r holds for k ∈ N, we have (ηT)/(2r) ≤
tk ≤ T − (ηT)/(2r) for k ∈ N. Therefore, we can choose the above subsequence so that
lim�→∞ tk� = tu ∈ (0,T).

Step 3. Convergence of the sequence { fk} of approximate nonlinearities.
Let us choose an arbitrary interval [a, b] ⊂ (0,T) \ {tu}. By virtue of estimates (7.59)

and (7.63), there exists �0 ∈ N such that for each � ≥ �0

uk� (t) ≥
1
�0

,
∣
∣u′k� (t)

∣
∣ ≥ 1

�0
for a.e. t ∈ [a, b], (7.64)

fk�
(
t,uk� (t),u′k� (t)

) ≤ tγ(T − t)δψ1

(
1
�0

)
+ ψ2

(
1
�0

)
+ g(t) + h1(t)r + h2(t)r =: ϕ(t)

for a.e. t ∈ [a, b].
(7.65)

Since ϕ ∈ L1[a, b], the sequence {u′k�} is equicontinuous on [a, b]. Having in mind that
[a, b] is arbitrary and using the Arzelà-Ascoli theorem and the diagonalization theorem,
we can choose the subsequence {uk�} in such a way that

lim
�→∞

u′k� (t) = u′(t) locally uniformly on (0,T) \ {tu
}
.

By estimate (7.63), u′(t) �= 0 for t ∈ (0,T) \ {tu}. Denote S = {0, tu,T} and U =
V1 ∪V2 ∪ S, where

V1 =
{
t ∈ [0,T] : f (t, ·, ·) : D �→ R is not continuous

}
,

V2 =
{
t ∈ [0,T] : the equality in condition (7.62) is not fulfilled

}
.

Choose an arbitrary t ∈ [0,T] \ U. Then there exists �0 ∈ N such that for each � ≥
�0 estimates (7.64) hold. Since t /∈ V1 ∪ V2, we have equality fk� (t,uk� (t),u′k� (t)) =
f (t,uk� (t),u′k� (t)) and consequently,

lim
�→∞

fk�
(
t,uk� (t),u′k� (t)

) = f
(
t,u(t),u′(t)

)
. (7.66)

Since meas(U) = 0, equality (7.66) holds for a.e. t ∈ [0,T].
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Step 4. The function u is a solution of problem (7.2).
First, we will prove that u is a w-solution of (7.2). Choose an arbitrary interval

[a, b] ⊂ (0,T) \ {tu}. Since condition (7.65) holds for each � ≥ �0, we get by equality
(7.66) and the Lebesgue dominated convergence theorem on [a, b] that f (t,u(t),u′(t)) ∈
L1[a, b] and if we pass to the limit in

u′k� (t)− u′k� (a) +
∫ t

a
fk�
(
s,uk� (s),u′k� (s)

)
ds = 0, t ∈ [a, b],

we get

u′(t)− u′(a) +
∫ t

a
f
(
s,u(s),u′(s)

)
ds = 0, t ∈ [a, b].

Having in mind that [a, b] ⊂ (0,T) \ {tu} is an arbitrary interval, we conclude that u is a
w-solution of problem (7.2).

Finally, we will show that u is a solution of (7.2). For each � ≥ �0, we have

∫ T

0
fk�
(
t,uk� (t),u′k� (t)

)
dt = u′k� (0)− u′k� (T) ≤ 2r,

fk�
(
t,uk� (t),u′k� (t)

) ≥ ε for a.e. t ∈ [0,T].

Hence, by (7.66) and the Fatou lemma, we have f (t,u(t),u′(t)) ∈ L1[0,T]. Consequently,
u ∈ AC1[0,T], that is, u is a solution of problem (7.2). �

Remark 7.42. Notice the fact that the point tu in the proof of Theorem 7.41 is a singular
point of type II, because we do not know its position in (0,T).

Example 7.43. Let c ∈ (0,∞). For a.e. t ∈ [0,T] and all x, y ∈ R \ {0}, define a function

f (t, x, y) =
√
T − t

(
1 +

t2

x

)
+

c
√
|y|

+
1

6
√
tT

(
x

T
+ |y|

)
.

The first term has a space singularity at x = 0 and the second at y = 0. We can see that f
satisfies the conditions of Theorem 7.41 if we put

γ = 2, δ = 1
2

, ψ1(x) = 1
x

, ψ2
(|y|) = c

√
|y|

,

g(t) =
√
T − t, h1(t) = 1

6T
√
tT

, h2(t) = 1
6
√
tT

,

and choose ε > 0 sufficiently small.

7.4. Dirichlet problem with mixed singularities

In this section, we will study problems having the so-called mixed singularities, that is,
both time and space ones. Moreover, in some theorems we omit the assumption that the
nonlinearity f in the differential equation is positive. In literature we can find results
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about the solvability of singular Dirichlet problems with sign-changing nonlinearities
which mostly concernw-solutions. Here, we will prove the existence of solutions to prob-
lem (7.1) provided f has mixed singularities. We assume that A1, A2 are closed intervals
containing 0 and

f ∈ Car
(
(0,T)×D

)
, where D = (

A1 \ {0}
)× (A2 \ {0}

)
,

f has time singularities at t = 0 and at t = T ,

and space singularities at x = 0 and at y = 0,

(7.67)

that is, there exists (x, y) ∈D such that

∫ ε

0

∣
∣ f (t, x, y)

∣
∣dt = ∞,

∫ T

T−ε

∣
∣ f (t, x, y)

∣
∣dt = ∞ for ε ∈

(
0,
T

2

)
,

lim sup
x→0

∣
∣ f (t, x, y)

∣
∣ = ∞ for a.e. t ∈ [0,T] and some y ∈A2 \ {0},

lim sup
y→0

∣
∣ f (t, x, y)

∣
∣ = ∞ for a.e. t ∈ [0,T] and some x ∈A1 \ {0}.

Since problem (7.1) contains φ-Laplacian and has mixed singularities, we cannot use
theorems of Sections 1.2 and 1.3. Hence, we will prove their new generalized version.
In order to do it we will consider the sequence of regular problems

(
φ(u′)

)′
+ fk(t,u,u′) = 0, u(0) = ak, u(T) = bk, (7.68)

where fk ∈ Car([0,T]×R2), ak, bk ∈ R, k ∈ N.

Theorem 7.44 (principle for φ-Laplacian and mixed singularities). Let (7.67) hold, let
εk > 0, ηk > 0 for k ∈ N and assume that

lim
k→∞

εk = 0, lim
k→∞

ηk = 0; (7.69)

fk(t, x, y) = f (t, x, y) for a.e. t ∈
[

1
k

,T − 1
k

]
, for each k >

2
T

and for each (x, y) ∈ A1 ×A2, |x| ≥ εk, |y| ≥ ηk;

(7.70)

there exists a bounded set Ω ⊂ C1[0,T] such that

the regular problem (7.68) has a solution uk ∈ Ω

and
(
uk(t),u′k(t)

) ∈A1 ×A2 for t ∈ [0,T], k >
2
T
.

(7.71)

Then there exist u ∈ C[0,T] and a subsequence {uk�} ⊂ {uk} such that

lim
�→∞

uk� (t) = u(t) uniformly on [0,T].
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Further assume that there is a finite set S = {s1, . . . , sν} ⊂ (0,T) such that

the sequence
{
φ
(
u′k
)}

is equicontinuous

on each interval [a, b] ⊂ (0,T) \ S.
(7.72)

Then u ∈ C1((0,T) \ S) and

lim
�→∞

u′k� (t) = u′(t) locally uniformly on (0,T) \ S.

Assume, in addition, that limk→∞ ak = 0, limk→∞ bk = 0 and that

S = {
s ∈ (0,T) : u(s) = 0 or u′(s) = 0 or u′(s) does not exist

}
. (7.73)

Then φ(u′) ∈ ACloc((0,T) \ S) and u is a w-solution of problem (7.1).
Denote s0 = 0 and sν+1 = T . Moreover, let there be η ∈ (0,T/2), λ0,μ0, λ1,μ1, . . . , λν+1,

μν+1 ∈ {−1, 1}, �0 ∈ N and ψ ∈ L1[0,T] such that

λi fk�
(
t,uk� (t),u′k� (t)

)
signu′k� (t) ≥ ψ(t)

for a.e. t ∈ (
si − η, si

)∩ (0,T), and all i ∈ {0, . . . ,ν + 1}, � ≥ �0,
(7.74)

μi fk�
(
t,uk� (t),u′k� (t)

)
signu′k� (t) ≥ ψ(t)

for a.e. t ∈ (
si, si + η

)∩ (0,T), and all i ∈ {0, . . . , ν + 1}, � ≥ �0.
(7.75)

Then φ(u′) ∈ AC[0,T] and u is a solution of problem (7.1). Moreover, (u(t),u′(t)) ∈
A1 ×A2 holds for t ∈ [0,T].

Proof

Step 1. Convergence of the sequence {uk�}.
Assume that conditions (7.67), (7.70), and (7.71) hold. By (7.71) there exists r > 0

such that the sequence {uk} of solutions to problem (7.68) satisfies

∥
∥uk

∥
∥
C1 ≤ r for k >

2
T
.

Hence, the sequence {uk} is bounded and equicontinuous on [0,T]. Due to the Arzelà-
Ascoli theorem, this yields the existence of a function u ∈ C[0,T] and a subsequence
{uk�} ⊂ {uk} such that lim�→∞ uk� (t) = u(t) uniformly on [0,T].

Step 2. Convergence of the sequence {u′k�}.
Assume, in addition to step 1, that condition (7.72) holds and choose an arbitrary

interval [a, b] ⊂ (0,T) \ S. Then {φ(u′k)} and consequently {u′k} is equicontinuous on
[a, b]. Since {u′k} is also bounded on [a, b], we can use the Arzelà-Ascoli theorem and
choose a subsequence {uk�} such that it uniformly converges on [0,T] and lim�→∞ u′k� (t)=
u′(t) uniformly on [a, b]. Using the diagonalization theorem we deduce that we can
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choose the uniformly converging on [0,T] subsequence {uk�} so that

lim
�→∞

u′k� (t) = u′(t) locally uniformly on (0,T) \ S.

Therefore, u ∈ C1((0,T) \ S).

Step 3. Convergence of the approximate nonlinearities { fk�}.
Assume, in addition to step 2, that limk→∞ ak = 0, limk→∞ bk = 0, and that condition

(7.73) holds. Then u(0) = u(T) = 0. Define U = V1 ∪V2 ∪ S, where

V1 =
{
t ∈ (0,T) : f (t, ·, ·) : D �→ R is not continuous

}
,

V2 =
{
t ∈ (0,T) : the equality in condition (7.70) is not fulfilled

}
.

Choose an arbitrary t ∈ (0,T) \U. Then there exists �0 ∈ N such that for all � ≥ �0 we
have t ∈ [1/k� ,T − 1/k�], |uk� (t)| ≥ εk� , |u′k� (t)| ≥ ηk� and

fk�
(
t,uk� (t),u′k� (t)

) = f
(
t,uk� (t),u′k� (t)

)
.

Since t is an arbitrary element in (0,T) \U and meas(U) = 0, we get

lim
�→∞

fk�
(
t,uk� (t),u′k� (t)

) = f
(
t,u(t),u′(t)

)
a.e. on [0,T]. (7.76)

Step 4. The function u is a w-solution.
Now, choose an arbitrary interval [a, b] ⊂ (0,T)\S. Then there exist �∗ ∈ N, ε∗ > 0,

and η∗ > 0 such that for all � ≥ �∗

∣
∣ fk�

(
t,uk� (t),u′k� (t)

)∣∣ ≤ h(t) for a.e. t ∈ [a, b],

where

h(t) = sup
{∣∣ f (t, x, y)

∣
∣ : ε∗ ≤ |x| ≤ r, η∗ ≤ |y| ≤ r

} ∈ L1[a, b].

Therefore, we can apply the Lebesgue dominated convergence theorem and get f (t,u(t),
u′(t)) ∈ L1[a, b] and

lim
�→∞

∫ b

a
fk�
(
s,uk� (s),u′k� (s)

)
ds =

∫ b

a
f
(
s,u(s),u′(s)

)
ds.

Integrating the equality

(
φ
(
u′k� (t)

))′
+ fk�

(
t,uk� (t),u′k� (t)

) = 0 for a.e. t ∈ [0,T], (7.77)

we get

φ
(
u′k� (t)

)− φ(u′k� (a)
)

+
∫ t

a
fk�
(
s,uk� (s),u′k� (s)

)
ds = 0 for t ∈ [a, b],

which for � →∞ leads to

φ
(
u′(t)

)− φ(u′(a)
)

+
∫ t

a
f
(
s,u(s),u′(s)

)
ds = 0 for t ∈ [a, b].
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Since [a, b] can be an arbitrary interval in (0,T)\S, we deduce that φ(u′) ∈ ACloc((0,T)\
S) and u is a w-solution of problem (7.1).

Step 5. The function u is a solution.
Assume, in addition to step 3, that there exist η ∈ (0,T/2), λ0, . . . , λν+1, μ0, . . . ,μν+1 ∈

{−1, 1}, �0 ∈ N, and ψ ∈ L1[0,T] such that conditions (7.74) and (7.75) are valid.
Since u is a w-solution of problem (7.1), it remains to prove that φ(u′) ∈ AC[0,T].
By step 3, f (t,u(t),u′(t)) ∈ L1[a, b] for each [a, b] ⊂ (0,T) \ S. So, it suffices to prove
f (t,u(t),u′(t)) ∈ L1[ci,di] for i = 0, . . . , ν + 1, where (ci,di) = (si − η, si + η) ∩ (0,T).
Choose an arbitrary i ∈ {0, . . . , ν + 1} and t ∈ (ci,di) \ S. Then u′(t) �= 0. If we use
equality (7.76) and the fact that {u′k�} locally uniformly converges to u′ on (0,T) \ S, we
obtain

lim
�→∞

fk�
(
t,uk� (t),u′k� (t)

)
signu′k� (t) = f

(
t,u(t),u′(t)

)
signu′(t)

for a.e. t ∈ [ci,di]. If we multiply equality (7.77) by signu′k� (t) and then integrate over
[ci,di], we get for � ≥ �0

∣
∣
∣
∣

∫ di

ci
fk�
(
s,uk� (s),u′k� (s)

)
signu′k� (s)ds

∣
∣
∣
∣ ≤ φ

(∣∣u′k�
(
di
)∣∣) + φ

(∣∣u′k�
(
ci
)∣∣) ≤ 2φ(r).

Therefore, the Fatou lemma yields f (t,u(t),u′(t)) ∈ L1[ci,di], by conditions (7.74) and
(7.75). Hence, f (t,u(t),u′(t)) ∈ L1[0,T] and φ(u′) ∈ AC[0,T]. �

Remark 7.45. (i) Theorem 7.44 guarantees the existence of a solution u which can change
its sign.

(ii) According to Step 4 of the proof of Theorem 7.44, we can claim that Theorem 7.44
remains valid if we replace (7.75) with

fk�
(
t,uk� (t),u′k� (t)

) ≥ ψ(t)

for a.e. t ∈ (
si − η, si + η

)∩ (0,T)

and all i ∈ {0, . . . ,ν + 1}, � ≥ �0.

(7.78)

(iii) If f has no singularity at y = 0, then we put ηk = 0 for k ∈ N in Theorem 7.44.
Moreover, due to step 3 of the proof of Theorem 7.44, the set S in (7.73) consists only of
the zeros of u. This will be accounted for in the next theorem. We will assume that

f ∈ Car
(
(0,T)×D

)
can change its sign, D = (0,∞)×R,

and f has mixed singularities at t = 0, t = T , x = 0.
(7.79)

Theorem 7.46. Let (7.79) hold. Let σ1 and σ2 be a lower function and an upper function of
problem (7.1) and let

0 < σ1(t) ≤ σ2(t) for t ∈ (0,T).
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Assume that there exist a1, a2 ∈ [0,T], a1 < a2, a nonnegative function h ∈ L1[0,T], and a
positive function ω ∈ C[0,∞) fulfilling conditions (7.17), (7.45) and

f (t, x, y) sign y ≤ ω
(∣∣φ(y)

∣
∣)(h(t) + |y|)

for a.e. t ∈ [
0, a2

]
and all x ∈ [

σ1(t), σ2(t)
]
, y ∈ R,

f (t, x, y) sign y ≥ −ω(∣∣φ(y)
∣
∣)(h(t) + |y|)

for a.e. t ∈ [
a1,T

]
and all x ∈ [

σ1(t), σ2(t)
]
, y ∈ R.

(7.80)

Then problem (7.1) has a solution u satisfying estimate (7.16).

Proof . Choose an arbitrary k ∈ N such that k > 2/T , and denote

Δk =
[

0,
1
k

)
∪
(
T − 1

k
,T
]

,

Δk1 =
{
t ∈ Δk : σ1(t) = σ2(t)

}
, Δk2 =

{
t ∈ Δk : σ1(t) < σ2(t)

}
.

Further, define

α(t, x) =
⎧
⎨

⎩

σ1(t) if x < σ1(t),

x if σ1(t) ≤ x

for t ∈ [0,T] and x ∈ R,

gk(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
φ
(
σ ′2(t)

))′
if x > σ2(t),

(
x − σ1(t)

)(
φ
(
σ ′2(t)

))′
+
(
σ2(t)− x)(φ(σ ′1(t)

))′

σ2(t)− σ1(t)
if σ1(t) ≤ x ≤ σ2(t),

(
φ
(
σ ′1(t)

))′
if x < σ1(t)

for a.e. t ∈ Δk2 and x ∈ R, and

fk(t, x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f
(
t,α(t, x), y

)
if t ∈ [0,T] \ Δk,

−(φ(σ ′1(t)
))′

if t ∈ Δk1,

−gk(t, x) if t ∈ Δk2

(7.81)

for a.e. t ∈ [0,T] and x, y ∈ R. Then fk ∈ Car([0,T] × R2) and fk satisfies inequalities
(7.27) where g(t, x, y) = fk(t, x, y), y1 = y2 = 0, κ = 1 + 1/b with b given by (7.45)
and h0(t) = h(t) + |(φ(σ ′1(t)))′| + |(φ(σ ′2(t)))′|. Consider problem (7.40) with fk defined
by (7.81). We see that σ1 and σ2 are also lower and upper functions to problem (7.40).
Hence, for each k ∈ N, Theorem 7.22 gives a solution uk of problem (7.40). Moreover,
each solution uk satisfies estimate (7.16) and ‖u′k‖∞ ≤ r, where r > 0 is the constant
found in Lemma 7.19 for r0 = max{‖σ1‖∞,‖σ2‖∞}. Define

Ω = {
x ∈ C1[0,T] : σ1 ≤ x ≤ σ2 on [0,T], ‖x′‖∞ ≤ r

}
.
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Let us put A1 = [0,∞), A2 = R, εk = max{σ1(1/k), σ1(T − 1/k)} and, according to
Remark 7.45(iii), we have ηk = 0 for k ∈ N. Then conditions (7.70) and (7.71) are valid
and, by Theorem 7.44, we can find a subsequence {uk�}⊂{uk} uniformly converging on
[0,T] to a function u ∈ C[0,T].

Choose [a, b] ⊂ (0,T). Then there exists k0 ∈ N such that for k ≥ k0 we have
[a, b] ⊂ [1/k,T − 1/k] and

∣
∣ fk

(
t,uk(t),u′k(t)

)∣∣ ≤ h(t) for a.e. t ∈ [a, b],

where

h(t) = sup
{∣∣ f (t, x, y)

∣
∣ : r1 ≤ x ≤ σ2(t), |y| ≤ r

}

and r1 = min{σ1(t) : t ∈ [a, b]} > 0. Since h ∈ L1[a, b], we see that the sequence
{φ(u′k)} is equicontinuous on [a, b]. Further, ak = 0, bk = 0, k ∈ N. According to
Remark 7.45(iii), the set S ⊂ (0,T) consists only of the zeros of u. Since u is posi-
tive on (0,T), S is empty and we see that conditions (7.72) and (7.73) hold. Hence, by
Theorem 7.44, u is a w-solution of problem (7.1).

Denote ω0 = max{ω(s) : s ∈ [0,φ(r)]} and

ψ(t) = −∣∣(φ(σ ′1(t)
))′∣∣− ∣∣(φ(σ ′2(t)

))′∣∣− ω0
[
h(t) + r

]
.

The first inequality in (7.80) implies that

− fk�
(
t,uk� (t),u′k� (t)

)
signu′k� (t) ≥ ψ(t)

for a.e. t ∈ [0, a2] and all � ≥ �0, and similarly the second inequality in (7.80) gives

fk�
(
t,uk� (t),u′k� (t)

)
signu′k� (t) ≥ ψ(t)

for a.e. t ∈ [a1,T] and all � ≥ �0. So, if we put ν = 0, μ0 = −1, s0 = 0 and λ1 = 1, s1 = T ,
η = min{a2,T − a1}, we get inequalities (7.74) and (7.75). Therefore, by Theorem 7.44,
u is a solution of problem (7.1). �

Example 7.47. Suppose that α,β ∈ [1,∞), a ∈ R, b ∈ (0, 1/
√

2), c ∈ (0,∞), d ∈ (0, 1/b−
2b). Consider problem (7.1) where φ(y) ≡ y and

f (t, x, y) = (
(T − t)−β − t−α + a

)(
x − bt(T − t))y + cy2 − d +

t(T − t)
x

for a.e. t ∈ [0,T] and all x, y ∈ R. The first term of f has time singularities at t = 0,
t = T and the last term of f has a space singularity at x = 0. Let us put σ1(t) = bt(T − t),
σ2(t) ≡ r2 ≥ (T2/4)(1/d + b), ω(s) = (c + 1)(s + 1), a1 = T/3, a2 = T/2. If we choose a
sufficiently large positive constant K and put h(t) ≡ K , we can check that all conditions
of Theorem 7.46 are fulfilled. Therefore, our problem has a solution u satisfying (7.16).

The next theorem deals with problem (7.1) provided f has singularities in all its
variables.
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Theorem 7.48. Let ν ∈ (0,T/2), ε ∈ (0,φ(ν)/ν), c1, c2 ∈ (ν,∞), and let assumption (7.67)
hold with A1 = [0,∞), A2 = [−c1, c2]. Denote

σ(t) = min
{
c2t, c1(T − t)} for t ∈ [0,T]

and assume that

f
(
t, σ(t), σ ′(t)

) = 0 for a.e. t ∈ [0,T],

0 ≤ f (t, x, y) for a.e. t ∈ [0,T] and all x ∈ (
0, σ(t)

]
, y ∈ [− c1, c2

]
,

ε ≤ f (t, x, y) for a.e. t ∈ [0,T] and all x ∈ (
0, σ(t)

]
, y ∈ [−ν, ν].

(7.82)

Then problem (7.1) has a solution u satisfying

0 < u(t) ≤ σ(t), −c1 ≤ u′(t) ≤ c2 for t ∈ (0,T). (7.83)

Proof

Step 1. Existence of approximate solutions.
Choose k ∈ N, k > 2/T and put εk = min{σ(1/k), σ(T − 1/k)}. For x, y ∈ R define

αk(x) =
⎧
⎨

⎩

x if εk ≤ x,

εk if x < εk,
β(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c2 if y > c2,

y if − c1 ≤ y ≤ c2,

−c1 if y < −c1,

γ(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε if |y| ≤ ν,

0 if y ≤ −c1 or y ≥ c2,

ε
c2 − y

c2 − ν if ν < y < c2,

ε
c1 + y

c1 − ν if − c1 < y < −ν.

Further, for a.e. t ∈ [0,T] and all x, y ∈ R define auxiliary functions

f̃k(t, x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ(y) if t ∈
[

0,
1
k

)
∪
(
T − 1

k
,T
]

,

f
(
t,αk(x),β(y)

)
if t ∈

[
1
k

,T − 1
k

]
,

(7.84)

fk(t, x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f̃k(t, x, y) if |y| ≥ 1
k

,

k

2

(
f̃k

(
t, x,

1
k

)(
y +

1
k

)
− f̃k

(
t, x,−1

k

)(
y − 1

k

))
if |y| < 1

k
.

(7.85)

Then fk ∈ Car([0,T]×R2) and we can find a function mk ∈ L1[0,T] such that

∣
∣ fk(t, x, y)

∣
∣ ≤ mk(t) for a.e. t ∈ [0,T] and all x ∈ [

0, σ(t)
]
, y ∈ R.
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Moreover, fk satisfies condition (7.70) with εk = min{σ(1/k), σ(T − 1/k)} and ηk = 1/k.
Due to (7.82), we have

fk
(
t, σ(t), σ ′(t)

) = 0, fk(t, 0, 0) ≥ 0 for a.e. t ∈ [0,T],

and σ1 ≡ 0 and σ are, respectively, lower and upper functions of problem (7.58) with fk
defined by (7.85). Hence, by Theorem 7.16, this problem has a solution uk and

0 ≤ uk(t) ≤ σ(t) for t ∈ [0,T]. (7.86)

Step 2. A priori estimates of approximate solutions.
Since fk(t, x, y) ≥ 0 for a.e. t ∈ [0,T] and all x, y ∈ R, we have

(
φ
(
u′k(t)

))′ ≤ 0 for a.e. t ∈ [0,T].

This yields that φ(u′k) and u′k are nonincreasing functions on [0,T]. Moreover,

−c1 ≤ u′k(t) ≤ c2 for t ∈ [0,T], (7.87)

because uk(0) = σ(0) = uk(T) = σ(T) = 0 and σ ′(0) = c2, σ ′(T) = −c1. Let tk ∈ (0,T)
be a point of maximum of uk. Then u′k(tk) = 0 and

u′k(t) ≥ 0 for t ∈ [
0, tk

]
,

u′k(t) ≤ 0 for t ∈ [
tk,T

]
.

(i) Let tk − ν ≥ 0. Then there exists ak ∈ [0, tk) such that u′k(t) ≤ ν for t ∈ [ak, tk].
Assuming ak ≤ tk − ν and integrating the last inequality in assumption (7.82), we get

ε
(
tk − t

) ≤ φ
(
u′k(t)

)
for t ∈ [

tk − ν, tk
]
. (7.88)

If ak > tk − ν and u′k(t) > ν for t ∈ [0, ak), then similarly

ε
(
tk − t

) ≤ φ
(
u′k(t)

)
for t ∈ [

ak, tk
]
.

Since φ(u′k(t)) > φ(ν) > εν > ε(tk − t) for t ∈ [tk − ν, ak], we get estimate (7.88) again.
Integration of (7.88) over [tk − ν, tk] yields the estimate

uk
(
tk
) ≥

∫ ν

0
φ−1(εs)ds = ν0 > 0. (7.89)

(ii) Let tk − ν < 0. Then tk + ν ≤ T and there exists bk ∈ (tk,T] such that −u′k(t) ≤ ν
for t ∈ [tk, bk]. Assuming bk ≥ tk + ν and integrating the last inequality in assumption
(7.82), we obtain

ε
(
t − tk

) ≤ −φ(u′k(t)
)

for t ∈ [
tk, tk + ν

]
. (7.90)

If bk < tk + ν and u′k(t) < −ν for t ∈ (bk,T], then similarly

ε
(
t − tk

) ≤ −φ(u′k(t)
)

for t ∈ [
tk, bk

]
.
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Since −φ(u′k(t)) > φ(ν) > εν > ε(t− tk) for t ∈ [bk, tk + ν], we get inequality (7.90) again.
Integration of (7.90) over [tk, tk + ν] yields estimate (7.89). Using this estimate and the
fact that u′k is nonincreasing on [0,T] we conclude that

αk(t) ≤ uk(t) ≤ σ(t) for t ∈ [0,T],

where

αk(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ν0

T
t for t ∈ [

0, tk
]
,

ν0

T
(T − t) for t ∈ (

tk,T
]
.

Step 3. Convergence of the sequence of approximate solutions.
Consider the sequence of solutions {uk}, k > 2/T . Define

Ω = {
x ∈ C1[0,T] : 0 ≤ x ≤ σ(t), −c1 ≤ x′ ≤ c2 on [0,T]

}
.

Then condition (7.71) is valid and by Theorem 7.44 we can choose a subsequence {uk�} ⊂
{uk} which is uniformly converging on [0,T] to a function u ∈ C[0,T]. By estimates
(7.87) and (7.89) we get 0 < ν0/c2 ≤ tk and tk ≤ T − ν0/c1 < T for k ∈ N. So, we can
choose a subsequence {uk�} in such a way that lim�→∞ tk� = tu ∈ (0,T) and

αu(t) ≤ u(t) ≤ σ(t) for t ∈ [0,T], (7.91)

where

αu(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ν0

T
t for t ∈ [

0, tu
]
,

ν0

T
(T − t) for t ∈ (

tu,T
]
.

Put S = {tu} and choose [a, b] ⊂ (0, tu). Then there exists k0 ∈ N such that for k ≥ k0 we
have |tk − tu| ≤ (tu − b)/2, [a, b] ⊂ (1/k, tk),

uk(t) ≥ ν0a

t
=: m0, φ

(
u′k(t)

) ≥ ε

2

(
tu − b

) =: m1 on [a, b].

Thus, for a.e. t ∈ [a, b]

∣
∣ fk

(
t,uk(t),u′k(t)

)∣∣ ≤ h(t) ∈ L1[a, b],

where h(t) = sup{| f (t, x, y)| : m0 ≤ x ≤ σ(t), φ−1(m1) ≤ y ≤ c2}. If we choose
[a, b] ⊂ (tu,T), we argue similarly and obtain also a Lebesgue integrable majorant for fk,
k ≥ k0, on [a, b]. So, we have proved that condition (7.72) holds. By Theorem 7.44, we
get u ∈ C1((0,T) \ S) and lim�→∞ u′k� (t) = u′(t) locally uniformly on (0,T) \ S.
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Step 4. The function u is a solution.
Since u′k is nonincreasing on [0,T] for k ≥ k0, u′ is nonincreasing on (0, tu) and on

(tu,T). Therefore,

0 ≤ u′(t) ≤ c2 for t ∈ [
0, tu

)
, −c1 ≤ u′(t) ≤ 0 for t ∈ (

tu,T
]

(7.92)

and the limits limt→tu− u′(t) and limt→tu+ u′(t) exist.
(i) Let limt→tu− u′(t) = 0. Assume that there exists t∗ ∈ (0, tu) such that u′(t∗) = 0.

Then u′(t) = 0 for t ∈ [t∗, tu]. On the other hand, by the last inequality in assumption
(7.82), we get

0 < φ−1(ε
(
tu − t

)) ≤ u′(t) for t ∈ [
t∗, tu

)
,

a contradiction. Similarly for limt→tu+ u′(t) = 0.
(ii) Let limt→tu− u′(t) > 0. Since u′ is nonincreasing, we have u′(t) > 0 for t ∈ [0, tu).

Similarly for limt→tu+ u′(t) < 0. Hence, tu is the unique point in [0,T] where either
u′(tu) = 0 or u′(tu) does not exist. By estimate (7.91), u is positive in (0,T). This implies
that S satisfies condition (7.73). Having in mind that ak = bk = 0, k ∈ N, we get by
Theorem 7.44 that φ(u′) ∈ ACloc((0,T) \ S) and u is a w-solution of problem (7.1).
Finally, by assumption (7.82) and definition (7.85), we have

fk�
(
t,uk� (t),u′k� (t)

) ≥ 0 for a.e. t ∈ [0,T], � ∈ N.

Hence, condition (7.78) holds. According to Theorem 7.44 and Remark 7.45, u is a solu-
tion of problem (7.1). Estimates (7.91) and (7.92) yield the required estimate (7.83). �

Example 7.49. Let α1,α2,β1,β2 ∈ (0,∞), and let functions hi ∈ Lloc(0,T), i = 1, 2, 3, 4,
be nonnegative. For a.e. t ∈ [0,T] and all x ∈ (0,∞), y ∈ R{0} define

f (t, x, y) = (
1− y2)

(
1
2t

+ h1(t)xα1 + h2(t)|y|α2 + h3(t)
1
xβ1

+ h4(t)
1

|y|β2

)

.

We can check that f satisfies the conditions of Theorem 7.48.
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8
Periodic problem

The main goal of this chapter is to present existence results for singular periodic problems
of the form

(
φ(u′)

)′ = f (t,u,u′), (8.1)

u(0) = u(T), u′(0) = u′(T), (8.2)

where 0 < T < ∞, φ : R → R is an increasing and odd homeomorphism such that
φ(R) = R and

f ∈ Car
(
[0,T]× ((0,∞)×R

))
,

f has a space singularity at x = 0.
(8.3)

In accordance with Section 1.3, this means that

lim sup
x→0+

∣
∣ f (t, x, y)

∣
∣ = ∞ for a.e. t ∈ [0,T] and some y ∈ R.

Physicists say that f has an attractive singularity at x = 0 if

lim inf
x→0+

f (t, x, y) = −∞ for a.e. t ∈ [0,T] and some y ∈ R

since near the origin the force is directed inward. Alternatively, f is said to have a repulsive
singularity at x = 0 if

lim sup
x→0+

f (t, x, y) = ∞ for a.e. t ∈ [0,T] and some y ∈ R.

Second-order nonlinear differential equations or systems with singularities appear
naturally in the description of particles subject to Newtonian-type forces or to forces
caused by compressed gases. Their mathematical study started in the sixties by Forbat and
Huaux [93], Huaux [108], Derwidué [70–72], and Faure [89], who considered positive
solutions of equations describing, for example, the motion of a piston in a cylinder closed
at one extremity and subject to a periodic exterior force, to the restoring force of a
perfect gas and to a viscosity friction. The equations they studied may be after suitable
substitutions transformed to

u′′ + cu′ = β

u
+ e(t),
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where c �= 0 and β �= 0 can be either positive or negative. Equations of this form are
usually called Forbat equations and their Liénard-type generalizations like

u′′ + h(u)u′ = g(t,u) + e(t)

are sometimes also referred to as the generalized Forbat equations.
In the setting of Section 1.3, problem (8.1), (8.2) is investigated on the set [0,T]×A,

where A = [0,∞) × R. In contrast to the Dirichlet problem (7.1), where each solution
vanishes at t = 0 and t = T and hence enters the space singularity x = 0 of f , all known
existence results for the periodic problem (8.1), (8.2) under assumption (8.3) concern
positive solutions which do not touch the space singularity x = 0 of the function f .

Definition 8.1. A function u : [0,T] → R is called a solution of problem (8.1), (8.2) if
φ(u′) ∈ AC[0,T], (u(t),u′(t)) ∈A for t ∈ [0,T],

(
φ
(
u′(t)

))′ = f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T]

and condition (8.2) is satisfied. If u > 0 on [0,T], then u is called a positive solution.

By Definition 8.1 and assumption (8.3) and with respect to the choice A = [0,∞)×
R, we see that each solution of problem (8.1), (8.2) must be nonnegative and can vanish
just on a set of zero measure. The restriction to positive solutions causes that the general
existence principles in Theorems 1.8 and 1.9 about the limit of a sequence of approximate
solutions need not be employed here. On the other hand, the singular problem (8.1),
(8.2) will be also investigated through regular approximate periodic problems governed
by differential equations of the form

(
φ(u′)

)′ = h(t,u,u′), (8.4)

where h ∈ Car([0,T]× R2). As usual, by a solution of the regular problem (8.4), (8.2) we
understand a function u such that φ(u′) ∈ AC[0,T], (8.2) is true, and

(
φ
(
u′(t)

))′ = h
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T].

Notice that the requirement φ(u′) ∈ AC[0,T] implies that u ∈ C1[0,T].
In this chapter, we will extensively utilize the Leray-Schauder degree and its finite

dimensional special case—the Brouwer degree. For the definitions and basic properties
of these notions we refer to Appendix C. In particular, see the Leray-Schauder degree
theorem, the Borsuk antipodal theorem, and Remark C.4.

We will also discuss various special cases of equation (8.1) including the classical one
with φ(y) ≡ y or those with f not depending on u′ or with f depending on u′ linearly.
Let us notice that the assumption that φ is an odd function is only technical. We employ
it just to simplify some formulas occurring in this section.
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8.1. Method of lower and upper functions

Regular problems

First, we will consider problem (8.4), (8.2), where h ∈ Car([0,T] × R2). We bring some
results which will be exploited in the investigation of the singular problem (8.1), (8.2).
The lower and upper functions method combined with the topological degree argument
is an important tool for proofs of solvability of regular periodic problems.

Definition 8.2. A function σ ∈ C[0,T] is a lower function of problem (8.4), (8.2) if there is
an at most finite set Σ ⊂ (0,T) such that φ(σ ′) ∈ ACloc([0,T] \ Σ),

σ ′(t+) := lim
τ→t+ σ

′(τ) ∈ R, σ ′(t−) := lim
τ→t− σ

′(τ) ∈ R for each t ∈ Σ, (8.5)

(
φ
(
σ ′(t)

))′ ≥ h
(
t, σ(t), σ ′(t)

)
for a.e. t ∈ [0,T], (8.6)

σ(0) = σ(T), σ ′(0) ≥ σ ′(T), σ ′(t+) > σ ′(t−) for each t ∈ Σ. (8.7)

If the inequalities in (8.6) and (8.7) are reversed, σ is called an upper function of problem
(8.4), (8.2).

Remark 8.3. It follows immediately from Definition 8.2 that ‖σ ′1‖∞ < ∞ and ‖σ ′2‖∞ < ∞
hold for each lower function σ1 and each upper function σ2 of problem (8.4), (8.2).

The role of lower and upper functions is demonstrated by the following maximum
principle.

Lemma 8.4. Let σ1 and σ2 be lower and upper functions of problem (8.4), (8.2) and let

σ1 ≤ σ2 on [0,T]. Then for each f̃ ∈ Car([0,T] × R2) and each d ∈ [σ1(0), σ2(0)] such
that

f̃ (t, x, y) < h
(
t, σ1(t), σ ′1(t)

)
for a.e. t ∈ [0,T], all x ∈ (−∞, σ1(t)

)

and all y ∈ R such that
∣
∣y − σ ′1(t)

∣
∣ <

σ1(t)− x
σ1(t)− x + 1

,

f̃ (t, x, y) > h
(
t, σ2(t), σ ′2(t)

)
for a.e. t ∈ [0,T], all x ∈ (

σ2(t),∞)

and all y ∈ R such that
∣
∣y − σ ′2(t)

∣
∣ <

x − σ2(t)
x − σ2(t) + 1

,

(8.8)

any solution u of the problem

(
φ(u′)

)′ = f̃ (t,u,u′), u(0) = u(T) = d (8.9)

satisfies σ1 ≤ u ≤ σ2 on [0,T].
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Proof . Let u be a solution of the auxiliary Dirichlet problem (8.9). Denote v = u−σ1 and
assume that

v
(
t0
) = min

{
v(t) : t ∈ [0,T]

}
< 0.

Since d ∈ [σ1(0), σ2(0)] and thanks to property (8.7), where σ = σ1, we may assume that
t0 ∈ (0,T) \ Σ, v′(t0) = 0, and there is t1 ∈ (t0,T] such that (t0, t1]∩ Σ = ∅ and

v(t) < 0,
∣
∣v′(t)

∣
∣ <

−v(t)
1− v(t)

for each t ∈ [
t0, t1

]
.

Using property (8.6) and the first inequality in (8.8), we obtain

(
φ
(
u′(t)

)− φ(σ ′1(t)
))′

< h
(
t, σ1(t), σ ′1(t)

)− (φ(σ ′1(t)
))′ ≤ 0

for a.e. t ∈ [t0, t1]. Hence,

0 >
∫ t

t0

(
φ
(
u′(s)

)− φ(σ ′1(s)
))′
ds = φ

(
u′(t)

)− φ(σ ′1(t)
)

for a.e. t ∈ [t0, t1], which leads to a contradiction with the definition of t0, that is, u ≥ σ1

on [0,T]. Similarly we can show that u ≤ σ2 on [0,T]. �

Remark 8.5. Let h ∈ Car([0,T] × R) and let σ1, σ2 ∈ C[0,T] be such that σ1 < σ2 on
[0,T]. Furthermore, assume that there is ψ ∈ L1[0,T] such that

∣
∣h(t, x, y)

∣
∣ ≤ ψ(t)

for a.e. t ∈ [0,T], and all (x, y) ∈ [σ1(t), σ2(t)]×R. Then it is always possible to construct

a function f̃ ∈ Car([0,T]×R2) having the following properties:

(i) f̃ (t, x, y) = h(t, x, y) whenever x ∈ [σ1(t), σ2(t)],

(ii) there is ψ̃ ∈ L1[0,T] such that | f̃ (t, x, y)| ≤ ψ̃(t) for a.e. t ∈ [0,T] and all
(x, y) ∈ R2,

(iii) f̃ satisfies inequalities (8.8).

Indeed, let us define

ωi(t, ζ) = sup
z∈R,|σ ′i (t)−z|≤ζ

∣
∣h
(
t, σi(t), σ ′i (t)

)− h(t, σi(t), z
)∣∣

for i = 1, 2 and (t, ζ) ∈ [0,T]× [0, 1] and

f̃ (t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h
(
t, σ1(t), y

)− ω1

(
t,

σ1(t)− x
σ1(t)− x + 1

)
− σ1(t)− x
σ1(t)− x + 1

if x < σ1(t),

h(t, x, y) if x ∈ [
σ1(t), σ2(t)

]
,

h
(
t, σ2(t), y

)
+ ω2

(
t,

x − σ2(t)
x − σ2(t) + 1

)
+

x − σ2(t)
x − σ2(t) + 1

if x > σ2(t),

for a.e. t ∈ [0,T] and (x, y) ∈ R2. One can verify that the functions ωi, i = 1, 2, belong
to the class Car([0,T] × [0, 1]) and map the set [0,T] × [0, 1] into [0,∞). In particular,
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f̃ ∈ Car([0,T] × R2). Furthermore, it is easy to verify that f̃ has properties (i) and (ii).

We will show that f̃ satisfies the first inequality in (8.8). Indeed, let

x < σ1(t),
∣
∣y − σ ′1(t)

∣
∣ <

σ1(t)− x
σ1(t)− x + 1

.

Then, since ω1 is nondecreasing in the second variable, we have

∣
∣h
(
t, σ1(t), σ ′1(t)

)− h(t, σ1(t), y
)∣∣ ≤ ω1

(
t,

σ1(t)− x
σ1(t)− x + 1

)
,

that is,

h
(
t, σ1(t), y

) ≤ h
(
t, σ1(t), σ ′1(t)

)
+ ω1

(
t,

σ1(t)− x
σ1(t)− x + 1

)

for a.e. t ∈ [0,T]. Consequently,

f̃ (t, x, y) = h
(
t, σ1(t), y

)− ω1

(
t,

σ1(t)− x
σ1(t)− x + 1

)
− σ1(t)− x
σ1(t)− x + 1

< h
(
t, σ1(t), σ ′1(t)

)
for a.e. t ∈ [0,T].

Similarly, we can show that f̃ satisfies also the second inequality in (8.8).

Now we will transform problem (8.4), (8.2) to a fixed point problem. Having in mind
that the periodic conditions (8.2) can be equivalently written as

u(0) = u(T) = u(0) + u′(0)− u′(T),

we can proceed similarly to the proof of Theorem 7.4.
Let us consider the quasilinear Dirichlet problem

(
φ(x′)

)′ = b(t) a.e. on [0,T], x(0) = x(T) = d (8.10)

with b ∈ L1[0,T] and d ∈ R. A function x ∈ C1[0,T] is a solution of (8.10) if and only
if there is γ ∈ R such that

x(t) = d +
∫ t

0
φ−1

(
γ +

∫ s

0
b(τ)dτ

)
ds for t ∈ [0,T],

∫ T

0
φ−1

(
γ +

∫ s

0
b(τ)dτ

)
ds = 0.

As in the proof of Theorem 7.4, we can see that for each � ∈ C[0,T] there is a uniquely
determined c := γ(�) ∈ R such that

∫ T

0
φ−1(c + �(s)

)
ds = 0.
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The functional γ : C[0,T] → R is continuous and maps bounded sets to bounded sets
(see steps 3 and 4 of the proof of Theorem 7.4). Thus, we can define an operator K :
C[0,T] → C1[0,T] by

(
K(�)

)
(t) =

∫ t

0
φ−1(γ(�) + �(s)

)
ds. (8.11)

Due to the continuity of γ and of φ−1, the operator K is continuous as well. Let N :
C1[0,T] → C[0,T] and F : C1[0,T] → C1[0,T] be given by

(
N (u)

)
(t) =

∫ t

0
h
(
s,u(s),u′(s)

)
ds, (8.12)

(
F (u)

)
(t) = u(0) + u′(0)− u′(T) +

(
K
(
N (u)

))
(t). (8.13)

In view of the definition of F , a function u ∈ C1[0,T] is a solution to problem (8.4),
(8.2) if and only if it is a fixed point of F . Furthermore, since the operators K and N
are continuous, it follows that F is continuous. The properties of the operator F are
summarized by the following lemma.

Lemma 8.6. Let F : C1[0,T] → C1[0,T] be defined by (8.13). Then F is completely
continuous and u ∈ C1[0,T] is a solution to problem (8.4), (8.2) if and only if F (u) = u.

Proof . It remains to show that F is completely continuous. Let {un} be an arbitrary
sequence bounded in C1[0,T]. Denote vn = F (un) for n ∈ N. Then

v′n(t) = φ−1(γ
(
N
(
un
))

+
(
N
(
un
))

(t)
)

for t ∈ [0,T], n ∈ N.

We can see that the sequences {vn} and {v′n} are bounded on [0,T]. In particular, the
sequence {vn} is equicontinuous on [0,T]. Further, since h ∈ Car([0,T] × R2), there is
m ∈ L1[0,T] such that

∣
∣h
(
t,un(t),u′n(t)

)∣∣ ≤ m(t) for a.e. t ∈ [0,T], all n ∈ N.

So, for t1, t2 ∈ [0,T] we get

∣
∣φ
(
v′n
(
t1
))− φ(v′n

(
t2
))∣∣ = ∣

∣(N
(
un
))(

t1
)− (N (

un
))(

t2
)∣∣ ≤

∣
∣
∣
∣

∫ t2

t1
m(s)ds

∣
∣
∣
∣.

Therefore, the sequence {φ(v′n)} is bounded and equicontinuous on [0,T]. Making use
of the Arzelà-Ascoli theorem, we can find subsequences {vkn} and {φ(v′kn)} uniformly
convergent on [0,T]. Then {v′kn} is also uniformly convergent on [0,T], and so, {vkn} is
convergent in C1[0,T]. We have proved that the operator F maps any sequence bounded
in C1[0,T] to a set relatively compact in C1[0,T]. Since we already know that F is
continuous, we can conclude that it is completely continuous in C1[0,T]. �

The next lemma describes the relationship between lower and upper functions and
the Leray-Schauder degree. We will consider the class of auxiliary problems

(
φ(v′)

)′ = η(v′)h(t, v, v′), v(0) = v(T), v′(0) = v′(T), (8.14)

where η is a continuous function mapping R into [0, 1].
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Lemma 8.7. Let σ1 and σ2 be lower and upper functions of problem (8.4), (8.2) and let
σ1 < σ2 on [0,T]. Furthermore, assume that there exists r∗ > 0 such that

‖v′‖∞ < r∗ for each continuous η : R �→ [0, 1] and

for each solution v of (8.14) such that σ1 ≤ v ≤ σ2 on [0,T].
(8.15)

Finally, assume that F : C1[0,T] → C1[0,T] is defined by (8.13) and, for ρ > 0, denote

Ωρ =
{
u ∈ C1[0,T] : σ1 < u < σ2 on [0,T],‖u′‖∞ < ρ

}
. (8.16)

Then

deg
(
I−F ,Ωρ

) = 1 for each ρ ≥ r∗ such that F (u) �= u on ∂Ωρ.

Proof

Step 1. The Leray-Schauder degree of an auxiliary operator F̃ .
Denote Ω = Ωr∗ and assume

F (u) �= u for u ∈ ∂Ω. (8.17)

Furthermore, since σ ′1, σ ′2 ∈ L∞[0,T] (see Remark 8.3), we can define

R∗ = r∗ +
∥
∥σ ′1

∥
∥∞ +

∥
∥σ ′2

∥
∥∞, η(y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if |y| ≤ R∗,

2− |y|
R∗

if R∗ < |y| < 2R∗,

0 if |y| ≥ 2R∗.

(8.18)

Then σ1 and σ2 are lower and upper functions for problem (8.14) and there exists a
function ψ ∈ L1[0,T] satisfying

∣
∣η(y)h(t, x, y)

∣
∣ ≤ ψ(t)

for a.e. t ∈ [0,T] and all (x, y) ∈ [σ1(t), σ2(t)] × R. Now, let f̃ ∈ Car([0,T] × R2) and
ψ̃ ∈ L1[0,T] be such that

f̃ (t, x, y)=η(y)h(t, x, y) for a.e. t∈[0,T] and all (x, y)∈[σ1(t), σ2(t)
]×R, (8.19)

∣
∣ f̃ (t, x, y)

∣
∣ ≤ ψ̃(t) for a.e. t ∈ [0,T], all (x, y) ∈ R

2 (8.20)

and f̃ satisfies inequalities (8.8) with η(y)h(t, x, y) in place of h(t, x, y). Such a function
can be certainly constructed, see Remark 8.5.

Let an operator F̃ : C1[0,T] → C1[0,T] be given by

F̃ (u) = α
(
u(0) + u′(0)− u′(T)

)
+ K

(
Ñ (u)

)
, (8.21)
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where

(
Ñ (u)

)
(t) =

∫ t

0
f̃
(
s,u(s),u′(s)

)
ds for u ∈ C1[0,T], t ∈ [0,T],

α(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1(0) if x < σ1(0),

x if σ1(0) ≤ x ≤ σ2(0),

σ2(0) if x > σ2(0)

and K : C[0,T] → C1[0,T] is defined by (8.11). According to Lemma 8.6, the operator
F̃ is completely continuous. Moreover, it follows from the definition of the operator F̃
that the problem

(
φ(u′)

)′ = f̃ (t,u,u′), u(0) = u(T) = α
(
u(0) + u′(0)− u′(T)

)
(8.22)

is equivalent to the operator equation F̃ (u) = u. Due to relations (8.20) and (8.21) we
can find r0 ∈ (0,∞) such that for any λ ∈ [0, 1], each fixed point u of the operator λF̃
belongs to the set

B
(
r0
) = {

x ∈ C1[0,T] : ‖x‖∞ + ‖x′‖∞ < r0
}

, and B
(
r0
) ⊃ Ω

So, by the normalization property and the homotopy property from the Leray-Schauder
degree theorem, we get

deg
(
I− F̃ , B

(
r0
)) = deg

(
I, B

(
r0
)) = 1. (8.23)

Step 2. Fixed points of the operator F̃ .
Denote

Q = {
u ∈ Ω : σ1(0) < u(0) + u′(0)− u′(T) < σ2(0)

}
.

Obviously, F̃ = F on Q and σ1(0) < u(0) = u(0) + u′(0) − u′(T) < σ2(0) whenever
F (u) = u and u ∈ Ω. In other words, we have

(
F (u) = u, u ∈ Ω

)
�⇒ u ∈ Q. (8.24)

We will show that the implication

(
F̃ (u) = u

)
�⇒ u ∈ Q (8.25)

is true, as well. To this end, assume that F̃ (u) = u. Then

σ1(0) ≤ u(0) = u(T) = α
(
u(0) + u′(0)− u′(T)

) ≤ σ2(0). (8.26)

This, together with Lemma 8.4, proves that the estimate

σ1 ≤ u ≤ σ2 on [0,T] (8.27)
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holds. Furthermore, taking into account relation (8.19), we conclude that

f̃
(
t,u(t),u′(t)

) = η
(
u′(t)

)
h
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T]. (8.28)

We already know that u(0) = u(T). We will show that u satisfies the second condition
from (8.2), that is, u′(0) = u′(T) holds. By virtue of (8.21), this is true whenever

σ1(0) ≤ u(0) + u′(0)− u′(T) ≤ σ2(0). (8.29)

If the inequality u(0)+u′(0)−u′(T) > σ2(0) were valid then, in accordance with property
(8.7) of lower functions, with inequality (8.26) and with the definition of α, we would
obtain

u(0) = u(T) = σ2(0) = σ2(T), u′(0) > u′(T).

However, this together with the already justified estimate (8.27) can hold only if σ ′2(0) ≥
u′(0) > u′(T) ≥ σ ′2(T), which contradicts property (8.7) of lower functions. Therefore,
u(0) + u′(0) − u′(T) ≤ σ2(0). Similarly we could prove that u(0) + u′(0) − u′(T) ≥
σ1(0) is true as well. Consequently, relation (8.29) and hence also the equality u′(0) =
u′(T) holds. To summarize, if F̃ (u) = u, then u solves problem (8.22), satisfies the
periodicity condition (8.2) and relation (8.28). Therefore, it is a solution to problem
(8.14). Furthermore, having in mind that (8.27) holds and by virtue of relations (8.15)
and (8.18), we conclude that

‖u′‖∞ < r∗ ≤ R∗. (8.30)

Therefore, η(u′(t))≡1 on [0,T] and u is a solution to problem (8.4), (8.2) (cf. (8.18)).
In other words, F (u) = u and u ∈ Ω due to relations (8.17), (8.27), and (8.30). Now,
recalling that σ1(0) < u(0) + u′(0)− u′(T) < σ2(0) holds whenever F (u) = u and u ∈ Ω,
we conclude that u ∈ Q. This completes the proof of implication (8.25).

Step 3. The Leray-Schauder degree of the operator F .
Having in mind implication (8.24) and applying the excision property of the Leray-

Schauder degree we get

deg(I−F ,Ω) = deg(I−F , Q).

The equality F̃ = F on Q implies that deg(I − F , Q) = deg(I − F̃ , Q). On the other
hand, by the definitions of r0, implication (8.25) gives

deg(I− F̃ , Q) = deg
(
I− F̃ , B

(
r0
))
.

Therefore, by (8.23),

deg(I−F ,Ω) = deg(I−F , Q) = deg
(
I− F̃ , B

(
r0
)) = 1.

Finally, notice that due to assumption (8.15) the implication

(
F (u) = u, σ1 < u < σ2 on [0,T]

)
�⇒ u ∈ Ω



142 Periodic problem

is valid. So, we have proved that

deg
(
I−F ,Ωρ

) = deg(I−F ,Ω) = 1

for each ρ ≥ r∗ such that F (u) �= u on ∂Ωρ. �

Lemma 8.7 offers a possibility to get existence results for problems having a pair of
lower and upper functions σ1 and σ2 satisfying

σ1 ≤ σ2 on [0,T]. (8.31)

In such a case, we say that σ1 and σ2 are well ordered and the existence of a constant r∗

with property (8.15) is usually ensured by conditions of Nagumo type. A suitable version
of such conditions is provided by the next lemma.

Lemma 8.8. Let α,β ∈ C[0,T] be such that α ≤ β on [0,T] and assume that

ψ ∈ L1[0,T] is nonnegative, ε1, ε2 ∈ {−1, 1},

ω ∈ C(R) is positive,
∫ 0

−∞
dt

ω(t)
=
∫∞

0

dt

ω(t)
= ∞.

(8.32)

Then there is an r∗ > 0 such that

‖u′‖∞ < r∗ (8.33)

holds for each function u ∈ C1[0,T] fulfilling the periodicity conditions (8.2) and, in addi-
tion, possessing the following properties: φ(u′) ∈ AC[0,T],

α ≤ u ≤ β on [0,T], (8.34)

ε1
(
φ
(
u′(t)

))′ ≤ (
ψ(t) + u′(t)

)
ω
(
φ
(
u′(t)

))
if u′(t) > 0,

ε2
(
φ
(
u′(t)

))′ ≤ (
ψ(t)− u′(t))ω(φ(u′(t))) if u′(t) < 0

for a.e. t ∈ [0,T].

(8.35)

Proof . Denote

Q = {
u∈C1[0,T] : φ(u′)∈AC[0,T], u(0)=u(T),u′(0)=u′(T), α≤u ≤β on [0,T]

}
,

Nu =
{
t ∈ [0,T] : u′(t) = 0

}
for u ∈ Q.

Let a function u ∈ Q fulfilling inequalities (8.35) be given. We want to show that then the
a priori estimate (8.33) holds with r∗ independent of the choice of u ∈ Q. Without any
loss of generality, we may assume that ‖u′‖∞ > 0. Let tu ∈ [0,T] be such that |u′(tu)| =
‖u′‖∞. Since u(0) = u(T), we have Nu �= ∅.

(i) First, let u′(tu) > 0 and ε1 = 1. We may assume that tu ∈ (0,T]. Moreover, let
Nu ∩ [0, tu) �= ∅. Then there is t1 ∈ Nu ∩ [0, tu) such that u′(t) > 0 on (t1, tu]. Hence, in
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view of estimates (8.35), we have

(
φ
(
u′(t)

))′ ≤ (
ψ(t) + u(t)

)
ω
(
u′(t)

)
for a.e. t ∈ [

t1, tu
]
.

Consequently,

∫ φ(‖u′‖∞)

0

dt

ω(t)
=
∫ tu

t1

(
φ
(
u′(t)

))′

ω
(
u′(t)

) dt ≤
∫ tu

t1

(
ψ(t) + u(t)

)
dt

≤ ‖ψ‖1 + 2‖u‖∞ ≤ ‖ψ‖1 + 2
(‖α‖∞ + ‖β‖∞

)
,

that is,

∫ φ(‖u′‖∞)

0

dt

ω(t)
≤ ‖ψ‖1 + 2

(‖α‖∞ + ‖β‖∞
)
. (8.36)

On the other hand, if Nu∩[0, tu) = ∅, then u′ > 0 on [0, tu]. Therefore, u′(T) = u′(0) > 0
and there is t2 ∈ Nu such that u′ > 0 on (t2,T]. Using estimates (8.35), we get

∫ φ(u′(0))

0

dt

ω(t)
=
∫ φ(u′(T))

φ(u′(t2))

dt

ω(t)
=
∫ T

t2

(
φ
(
u′(t)

))′

ω
(
u′(t)

) dt

≤
∫ T

t2

(
ψ(t) + u(t)

)
dt ≤ ‖ψ‖1 + 2

(‖α‖∞ + ‖β‖∞
)
,

∫ φ(u′(tu))

φ(u′(0))

dt

ω(t)
=
∫ tu

0

(
φ
(
u′(t)

))′

ω
(
u′(t)

) dt

≤
∫ tu

0

(
ψ(t) + u(t)

)
dt ≤ ‖ψ‖1 + 2

(‖α‖∞ + ‖β‖∞
)
.

Thus,

∫ φ(‖u′‖∞)

0

dt

ω(t)
=
∫ φ(u′(0))

0

dt

ω(t)
+
∫ φ(u′(tu))

φ(u′(0))

dt

ω(t)

≤ 2
(‖ψ‖1 + 2

(‖α‖∞ + ‖β‖∞
))

,

that is,

∫ φ(‖u′‖∞)

0

dt

ω(t)
≤ 2

(‖ψ‖1 + 2
(‖α‖∞ + ‖β‖∞

))
. (8.37)

(ii) Now, let u′(tu) > 0 and ε1 = −1. Since u(0) = u(T), we may assume that tu ∈
[0,T). Moreover, let Nu∩(tu,T] �=∅. Then there is t3 ∈ Nu∩(tu,T] such that u′ > 0 on
[tu, t3). Using estimates (8.35) we obtain

(
φ
(
u′(t)

))′ ≥ −(ψ(t) + u(t)
)
ω
(
u′(t)

)
for a.e. t ∈ [

tu, t3
]
.
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Therefore,

∫ φ(‖u′‖∞)

0

dt

ω(t)
= −

∫ t3

tu

(
φ
(
u′(t)

))′

ω
(
u′(t)

) dt ≤
∫ t3

tu

(
ψ(t) + u(t)

)
dt

≤ ‖ψ‖1 + 2
(‖α‖∞ + ‖β‖∞

)
,

that is, (8.36) holds also in this case.
If Nu∩(tu,T] = ∅, then u′ > 0 on [tu,T]. Furthermore, u′(0) = u′(T)>0 and there

is t4 ∈ Nu such that u′ > 0 on [0, t4). Using estimates (8.35), we obtain

(
φ
(
u′(t)

))′ ≥ −(ψ(t) + u(t)
)
ω
(
u′(t)

)
for a.e. t ∈ [

0, t4
]∪ [tu,T

]
.

Hence,

∫ φ(‖u′‖∞)

0

dt

ω(t)
=
∫ φ(u′(0))

0

dt

ω(t)
+
∫ φ(u′(tu))

φ(u′(0))

dt

ω(t)

= −
∫ t4

0

(
φ
(
u′(t)

))′

ω
(
u′(t)

) dt −
∫ T

tu

(
φ
(
u′(t)

))′

ω
(
u′(t)

) dt

≤ 2
(‖ψ‖1 + 2

(‖α‖∞ + ‖β‖∞
))

,

that is, (8.37) is again true.
To summarize, inequality (8.37) is true whenever u′(tu) > 0. Analogously we can

prove that

∫ 0

−φ(‖u′‖∞)

dt

ω(t)
≤ 2

(‖ψ‖1 + 2
(‖α‖∞ + ‖β‖∞

))
(8.38)

holds provided u′(tu) < 0.
On the other hand, conditions (8.32) imply that we can choose r∗ > 0 such that

min
{∫ 0

−φ(r∗)

dt

ω(t)
,
∫ φ(r∗)

0

dt

ω(t)

}
> 2

(‖ψ‖1 + 2
(‖α‖∞ + ‖β‖∞

))
.

However, this may hold simultaneously with inequalities (8.37) and (8.38) only if esti-
mate (8.33) is true for all u ∈ Q fulfilling (8.35). �

In the case that the given problem possesses only lower and upper functions σ1 and
σ2 which are not well ordered, that is, if

σ1(τ) > σ2(τ) for some τ ∈ [0,T], (8.39)

the following a priori estimate is available.

Lemma 8.9. Let ψ ∈ L1[0,T], r∗ = φ−1(‖ψ‖1), and ε ∈ {−1, 1}. Then the estimate
‖u′‖∞ ≤ r∗ holds for each u ∈ C1[0,T] fulfilling the periodicity conditions (8.2) and such
that φ(u′) ∈ AC[0,T] and

ε
(
φ
(
u′(t)

))′ ≥ ψ(t) for a.e. t ∈ [0,T].
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Analogously,‖u′‖∞ < r∗ holds for each u ∈ C1[0,T] fulfilling the periodicity conditions
(8.2) and such that φ(u′) ∈ AC[0,T] and

ε
(
φ
(
u′(t)

))′
> ψ(t) for a.e. t ∈ [0,T].

Proof . Let u ∈ C1[0,T] fulfill φ(u′) ∈ AC[0,T], the periodicity conditions (8.2) and let

(
φ
(
u′(t)

))′
> ψ(t) for a.e. t ∈ [0,T].

Put v = φ(u′). Then v ∈ AC[0,T], v(0) = v(T), v′ > ψ a.e. on [0,T] and there is a
tv ∈ (0,T) such that v(tv) = 0. We have

−‖ψ‖1 ≤ −
∫ t

tv

∣
∣ψ(s)

∣
∣ds < v(t) for t ∈ (

tv,T
]
, (8.40)

−‖ψ‖1 ≤ −
∫ tv

t

∣
∣ψ(s)

∣
∣ds < −v(t) for t ∈ [

0, tv
)
. (8.41)

In particular, since v(0) = v(T),

−‖ψ‖1 ≤ −
∫ T

tv

∣
∣ψ(s)

∣
∣ds < v(T) = v(0) <

∫ tv

0

∣
∣ψ(s)

∣
∣ds ≤ ‖ψ‖1. (8.42)

Furthermore, if t ∈ [0, tv], then using (8.40) and (8.42), we obtain

v(t) ≥ v(0)−
∫ t

0

∣
∣ψ(s)

∣
∣ds > −

∫ T

tv

∣
∣ψ(s)

∣
∣ds−

∫ t

0

∣
∣ψ(s)

∣
∣ds ≥ −‖ψ‖1. (8.43)

Similarly, for t ∈ [tv,T], we get

v(t) < v(T) +
∫ T

t

∣
∣ψ(s)

∣
∣ds <

∫ tv

0

∣
∣ψ(s)

∣
∣ds +

∫ T

t

∣
∣ψ(s)

∣
∣ds ≤ ‖ψ‖1.

Summarizing, we can see that the estimates ‖v‖∞ = ‖φ(u′)‖∞ < ‖ψ‖1 and ‖u′‖∞ <
φ−1(‖ψ‖1) are satisfied.

In the cases (φ(v′(t)))′ < ψ(t) or ε(φ(v′(t)))′ ≥ ψ(t) the proof follows a similar
argument. �

The next assertion provides an existence principle which covers also the case (8.39).

Theorem 8.10. Let σ1 and σ2 be lower and upper functions of problem (8.4), (8.2) and let
assumption (8.39) hold. Furthermore, let there be m ∈ L1[0,T] and ε ∈ {−1, 1} such that

εh(t, x, y) > m(t) for a.e. t ∈ [0,T] and all x, y ∈ R

and let ψ = −(|m| + 2).
Then problem (8.4), (8.2) has a solution u satisfying

‖u′‖∞ < φ−1(‖ψ‖1
)
, (8.44)

min
{
σ1
(
τu
)
, σ2

(
τu
)} ≤ u

(
τu
) ≤ max

{
σ1
(
τu
)
, σ2

(
τu
)}

for some τu ∈ [0,T]. (8.45)



146 Periodic problem

Proof . Let ε = 1.

Step 1. Auxiliary problem and operator representation.
Put r∗ = φ−1(‖ψ‖1). By Lemma 8.9, we have

‖u′‖∞ < r∗ for each u ∈ C1[0,T] fulfilling (8.2) and such that

φ(u′) ∈ AC[0,T],
(
φ
(
u′(t)

))′
> ψ(t) for a.e. t ∈ [0,T].

(8.46)

Furthermore, put c∗ = ‖σ1‖∞+‖σ2‖∞+Tr∗ and define for a.e. t ∈ [0,T] and all (x, y) ∈
R2

f̃ (t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(∣∣m(t)
∣
∣ + 1

)
if x ≤ −(c∗ + 1

)
,

h(t, x, y) +
(
x + c∗

)(∣∣m(t)
∣
∣ + 1 + h(t, x, y)

)
if − (c∗ + 1

)
< x < −c∗,

h(t, x, y) if − c∗ ≤ x ≤ c∗,

h(t, x, y) +
(
x − c∗)∣∣m(t)

∣
∣ if c∗ < x < c∗ + 1,

h(t, x, y) +
∣
∣m(t)

∣
∣ if x ≥ c∗ + 1.

Let us consider the auxiliary problem

(
φ(u′)

)′ = f̃ (t,u,u′), u(0) = u(T), u′(0) = u′(T). (8.47)

We have

f̃ (t, x, y) < 0 if x ≤ −(c∗ + 1
)
,

f̃ (t, x, y) > 0 if x ≥ c∗ + 1,

f̃ (t, x, y) = h(t, x, y) if x ∈ [− c∗, c∗
]

for a.e. t ∈ [0,T] and all x, y ∈ R;

(8.48)

f̃ (t, x, y) > ψ(t) for a.e. t ∈ [0,T] and all x, y ∈ R. (8.49)

Furthermore, σ1 and σ2 are lower and upper functions of (8.47) and, moreover, σ3(t) ≡
−c∗ − 2 and σ4(t) ≡ c∗ + 2 form another pair of lower and upper functions for (8.47).
We have

σ3 < min
{
σ1, σ2

} ≤ max
{
σ1, σ2

}
< σ4 on [0,T].

Denote

Ω0 =
{
u ∈ C1[0,T] : σ3 < u < σ4 on [0,T],‖u′‖∞ < r∗

}
,

Ω1 =
{
u ∈ Ω0 : σ3 < u < σ2 on [0,T]

}
,

Ω2 =
{
u ∈ Ω0 : σ1 < u < σ4 on [0,T]

}
,

Ω = Ω0 \Ω1 ∪Ω2.
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Let F be given by (8.13). Clearly, Ω is the set of all u ∈ Ω0 for which the relations
‖u′‖∞ < r∗ and

u
(
tu
)
< σ1

(
tu
)
, u

(
su
)
> σ2

(
su
)

for some tu, su ∈ [0,T] (8.50)

are satisfied. Furthermore, Ω1 ∩Ω2 = ∅ and ∂Ω = ∂Ω0 ∪ ∂Ω1 ∪ ∂Ω2.
By Lemma 8.6, problem (8.47) is equivalent to the operator equation F̃ (u) = u in

C1[0,T], where

Ñ (u)(t) =
∫ t

0
f̃
(
s,u(s),u′(s)

)
ds,

F̃ (u)(t) = u(0) + u′(0)− u′(T) + K
(
Ñ (u)

)
(t)

and K : C[0,T] → C1[0,T] is given by (8.11). Let F be given by (8.13). Clearly, F̃ (u) =
F (u) for u ∈ C1[0,T] such that ‖u‖∞ ≤ c∗.

Step 2. First a priori estimate.
We will prove the implication

(
F̃ (u) = u,u ∈ Ω0

)
�⇒ u ∈ Ω0. (8.51)

To this aim, first notice that by (8.46) and (8.49) the implication

(
F̃ (u) = u

)
�⇒ ‖u′‖∞ < r∗ (8.52)

holds. Now, assume that F̃ (u) = u and u ∈ ∂Ω0. Taking into account (8.52), we can see
that this can happen only if

u(α) = max
t∈[0,T]

u(t) = c∗ + 2 or u(α) = min
t∈[0,T]

u(t) = −(c∗ + 2
)

(8.53)

for some α ∈ [0,T). In the former case, we have u′(α) = 0 and u(t) > c∗ + 1 on [α,β] for
some β ∈ (α,T]. Due to (8.48), we have also

(
φ
(
u′(t)

))′ = f̃
(
t,u(t),u′(t)

)
> 0 for a.e. t ∈ [α,β],

that is, u′(t) > 0 on (α,β], a contradiction. Similarly we can prove that the latter case in
(8.53) is impossible. This shows that u satisfies the estimate

‖u‖∞ < c∗ + 2, (8.54)

wherefrom, with respect to (8.52), implication (8.51) follows.

Step 3. Second a priori estimate.
Next, we will prove that the implication

(
F̃ (u) = u,u ∈ Ω

)
�⇒ ‖u‖∞ < c∗ (8.55)

is true. Indeed, let F̃ (u) = u and u ∈ ∂Ω. By (8.52), we have ‖u′‖∞ < r∗ and (8.54).
Consequently, either u ∈ ∂Ω1 or u ∈ ∂Ω2. This means that there is a τu ∈ [0,T] such
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that either u(τu) = σ1(τu) or u(τu) = σ2(τu). In both these cases, we have |u(τu)| ≤
‖σ1‖∞ + ‖σ2‖∞. Consequently,

∣
∣u(t)

∣
∣ ≤ ∣

∣u
(
τu
)∣∣ +

∫ t

τu

∣
∣u′(s)

∣
∣ds <

∥
∥σ1

∥
∥∞ +

∥
∥σ2

∥
∥∞ + Tr∗ = c∗.

This completes the proof of estimate (8.55).

Step 4. Existence of a solution to problem (8.4), (8.2).
(i) Let F̃ (u) = u and u ∈ ∂Ω. By (8.55), we have F (u) = F̃ (u) = u and u is a

solution to problem (8.4), (8.2).
(ii) Let F̃ (u) �= u on ∂Ω. Then using successively Lemma 8.7 for three well-ordered

couples: {σ3, σ4}, {σ3, σ2}, and {σ1, σ4} of lower and upper functions for problem (8.4),
(8.2), we get

deg
(
I− F̃ ,Ω0

) = deg
(
I− F̃ ,Ω1

) = deg
(
I− F̃ ,Ω2

) = 1.

Since by (8.39), we have Ω1 ∩ Ω2 = ∅, the additivity property of the degree yields that
the equalities

deg
(
I− F̃ ,Ω

) = deg
(
I− F̃ ,Ω0

)− deg
(
I− F̃ ,Ω1

)− deg
(
I− F̃ ,Ω2

) = −1

hold. So F̃ has a fixed point u in Ω. Moreover, by step 3, we have ‖u‖∞ < c∗ and hence

f̃
(
t,u(t),u′(t)

) = h
(
t,u(t),u′(t)

)

holds for a.e. t ∈ [0,T]. This means that u is a solution to (8.4), (8.2).
We can proceed analogously when ε = −1. �

Singular problems

Now we are going to consider problem (8.1), (8.2), where f satisfies condition (8.3).
We will present sufficient conditions in terms of lower and upper functions for the exis-
tence of positive solutions to the singular problem (8.1), (8.2). Lower and upper func-
tions σ1 and σ2 are defined similarly to those for the regular problem (8.4), (8.2) (see
Definition 8.2). However, since problem (8.1), (8.2) is investigated on [0,T] ×A where
A = [0,∞)×R, only such σ1 and σ2 which are positive a.e. on [0,T] make sense.

Definition 8.11. A function σ ∈ C[0,T] is a lower function of problem (8.1), (8.2) if σ(t) ∈
(0,∞) for a.e. t ∈ [0,T] and there is a finite set Σ ⊂ (0,T) such that φ(σ ′) ∈ ACloc([0,T]\
Σ) and (8.6) and (8.7) are satisfied.

If the inequalities in (8.6) and (8.7) are reversed, σ is called an upper function of
problem (8.4), (8.2).

The first existence result concerns problem (8.1), (8.2) possessing well ordered lower
and upper functions.
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Theorem 8.12. Let there exist lower and upper functions σ1 and σ2 of problem (8.1), (8.2)
such that σ2 ≥ σ1 > 0 on [0,T]. Furthermore, let for a.e. t ∈ [0,T] and each (x, y) ∈
[σ1(t), σ2(t)]×R the inequalities

ε1 f (t, x, y) ≤ (
ψ(t) + y

)
ω
(
φ(y)

)
if y > 0,

ε2 f (t, x, y) ≤ (
ψ(t)− y

)
ω
(
φ(y)

)
if y < 0

(8.56)

hold with ε1, ε2, ω and ψ satisfying (8.32).
Then problem (8.1), (8.2) has a positive solution u such that

σ1 ≤ u ≤ σ2 on [0,T]. (8.57)

Proof

Step 1. The case σ1 < σ2.
Assume that σ1 < σ2 on [0,T]. Consider the auxiliary regular problem (8.4), (8.2)

with h defined for a.e. t ∈ [0,T] and (x, y) ∈ R2 by

h(t, x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f
(
t, σ1(t), y

)
if x < σ1(t),

f (t, x, y) if x ∈ [
σ1(t), σ2(t)

]
,

f
(
t, σ2(t), y

)
if x > σ2(t).

Clearly, h ∈ Car([0,T] × R2) and σ1 and σ2 are lower and upper functions of problem
(8.4), (8.2), respectively. Choose an arbitrary continuous function η : R → [0, 1] and let
v be an arbitrary solution of problem (8.14) fulfilling σ1 ≤ v ≤ σ2 on [0,T]. Since (8.56)
is satisfied with h instead of f , we have for a.e. t ∈ [0,T]

ε1
(
φ
(
v′(t)

))′ = ε1η
(
v′(t)

)
h
(
t, v(t), v′(t)

)

≤ η
(
v′(t)

)(
ψ(t) + v′(t)

)
ω
(
φ
(
v′(t)

))

≤ (
ψ(t) + v′(t)

)
ω
(
φ
(
v′(t)

))
if v′(t) > 0,

ε2
(
φ
(
v′(t)

))′ ≤ (
ψ(t)− v′(t))ω(φ(v′(t))) if v′(t) < 0.

Hence we can apply Lemma 8.8 to deduce that (8.15) is satisfied. Let F : C1[0,T] →
C1[0,T] and Ω = Ωr∗ be defined by (8.13) and (8.16), respectively. Then there are two
possibilities: either F has a fixed point u ∈ ∂Ω or F (u) �= u on ∂Ω.

(i) Let F (u) = u for some u ∈ ∂Ω. In view of Lemma 8.6 and of the definition of h,
it follows that u is a solution to (8.1), (8.2) fulfilling (8.57).

(ii) If F (u) �= u on ∂Ω, then by Lemma 8.7 we have deg(I − F ,Ω) = 1, which
implies that F has a fixed point u ∈ Ω. As in (i), this fixed point is a solution to (8.1),
(8.2) fulfilling (8.57).
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Step 2. The case σ1 ≤ σ2.
For each k ∈ N, the function σ̃k = σ2 + 1/k is also an upper function of problem

(8.4), (8.2), and σ1 < σ̃k on [0,T]. Hence, in the general case when the strict inequality
between σ1 and σ2 need not hold, we can use step 1 to show that for each k ∈ N there
exists a solution uk to (8.4), (8.2) such that

uk(t) ∈
[
σ1(t), σ2(t) +

1
k

]
for t ∈ [0,T],

∥
∥u′k

∥
∥∞ < r∗,

where r∗ > 0 is the constant given by Lemma 8.8 where α = σ1 and β = σ2 + 1. Using
the Arzelà-Ascoli theorem and the Lebesgue dominated convergence theorem for the
sequences {uk} and {h(t,uk(t),u′k(t))} we get a solution u of (8.1), (8.2) as the limit
of a subsequence of {uk} on C1[0,T]. �

Remark 8.13. Let functions α and β continuous on [0,T] and such that β ≥ α > 0 on
[0,T] be given. We say that a function f satisfies the Nagumo conditions with respect to
the couple α, β if there are ε1, ε2 ∈ {−1, 1} and functions ω, ψ having properties (8.32)
and such that (8.56) is satisfied for a.e. t ∈ [0,T] and all (x, y) ∈ [α(t),β(t)]×R. Notice
that the Nagumo conditions with respect to α, β are satisfied in particular if f (t, x, y) =
−h(x)y + g(t, x), where h ∈ C[0,∞) and g ∈ Car([0,T] × (0,∞)). Indeed, for a.e. t ∈
[0,T] and each (x, y) ∈ [α(t),β(t)]×R we have

∣
∣ f (t, x, y)

∣
∣ ≤ ∣

∣h(x)
∣
∣|y| +

∣
∣g(t, x)

∣
∣ ≤ K

(
ψ(t) + |y|),

where

K = 1 + max
{∣∣h(x)

∣
∣ : x ∈ [

δ,‖β‖∞
]}

,

ψ(t) = sup
{∣∣g(t, x)

∣
∣ : x ∈ [

δ,‖β‖∞
]}

and δ = min{α(t) : t ∈ [0,T]}. (By assumption, we have δ > 0.)

Example 8.14. Theorem 8.12 provides the existence of a positive solution to problem
(8.1), (8.2) also for

f (t, x, y) = g(t, x)y2n+1 + h(x)yφ(y)− ax−λ1 + bxλ2

for a.e. t ∈ [0,T] and all (x, y) ∈ (0,∞)×R, where g ∈ Car([0,T]×R) is nonnegative,
n ∈ N, a, b, λ1, λ2 ∈ (0,∞) and h ∈ C[0,∞).

The last result of this section concerns the case when the given problem possesses
lower and upper functions, but no pair of them is well ordered. We will restrict ourselves
to the equation

(
φ(u′)

)′ = g(u) + p(t,u,u′), (8.58)

where p is a well-behaved function (p ∈ Car([0,T] × R2)) and g has a singularity at
the origin. Recall that problem (8.58), (8.2) is investigated on the set [0,T] ×A, where
A = [0,∞)×R.
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The key assumption is that

lim
x→0+

∫ 1

x
g(s)ds = ∞. (8.59)

Clearly, condition (8.59) implies that

lim sup
x→0+

g(x) = ∞, (8.60)

which means that g has a space repulsive singularity at the origin. Repulsive singularities
having property (8.59) are called strong singularities and the function g is then usually
said to be a strong repulsive singular force. We will refer to condition (8.59) as to the
strong repulsive singularity condition. On the other hand, if condition (8.60) is satisfied
together with

lim
x→0+

∫ 1

x
g(s)ds ∈ R,

then the singularity of f at x = 0 is called a weak singularity and g is said to be a weak
repulsive singular force.

The meaning of the strong repulsive singularity condition is revealed by the following
lemma.

Lemma 8.15. Let p ∈ Car([0,T]×R2) and let g ∈ C(0,∞). Furthermore, let g satisfy the
strong repulsive singularity condition (8.59) and let there be a function m ∈ L1[0,T] such
that

g(x) + p(t, x, y) > m(t) for a.e. t ∈ [0,T] and all x > 0, y ∈ R. (8.61)

Then each lower function σ1 of problem (8.58), (8.2) is positive on the whole interval [0,T].

Proof . Let σ1 be a lower function for (8.58), (8.2) and ρ := ‖σ ′1‖∞. Then ρ < ∞ and, by
virtue of the property (8.6) for σ = σ1, we have

(
φ
(
σ ′1(t)

))′(
σ ′1(t)− ρ) ≤ g

(
σ1(t)

)(
σ ′1(t)− ρ) + p

(
t, σ1(t), σ ′1(t)

)(
σ ′1(t)− ρ)

for a.e. t ∈ [0,T]. Furthermore, due to (8.59) there is δ > 0 such that

lim
x→0+

∫ δ′

x
g(s)ds = ∞ for δ′ ∈ (0, δ). (8.62)

Let an arbitrary ε > 0 be given. Since in view of Definition 8.11 we have σ1 > 0 a.e. on
[0,T], we can choose t0 ∈ (0, ε] in such a way that σ1(t0) > 0. Put t∗ = sup{t ∈ [t0,T] :
σ1(s) > 0 on [t0, t]}. Let σ1(t∗) = 0. Then there is a t′ ∈ (t0, t∗) such that

σ1(t) ∈ [0, δ) for t ∈ [
t′, t∗

]
. (8.63)
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Let tn ∈ (t′, t∗) be an increasing sequence such that limn→∞ tn = t∗. Then

lim
n→∞ σ1

(
tn
) = σ1

(
t∗
) = 0, (8.64)

∫ tn

t′

(
φ
(
σ ′1(t)

))′(
σ ′1(t)− ρ)dt

≤
∫ tn

t′
g
(
σ1(t)

)(
σ ′1(t)− ρ)dt +

∫ tn

t′
p
(
t, σ1(t), σ ′1(t)

)(
σ ′1(t)− ρ)dt

= −
∫ σ1(t′)

σ1(tn)
g(s)ds−ρ

∫ tn

t′

(
g
(
σ1(t)

))
+p

(
t, σ1(t), σ ′1(t)

)
dt+

∫ tn

t′
p
(
t, σ1(t), σ ′1(t)

)
σ ′1(t)dt.

Therefore, for each n ∈ N, we have
∫ σ1(t′)

σ1(tn)
g(s)ds ≤

∫ tn

t′

∣
∣(φ

(
σ ′1(t)

))′∣∣∣∣σ ′1(t)− ρ∣∣dt +
∫ tn

t′

∣
∣p
(
t, σ1(t), σ ′1(t)

)∣∣
∣
∣σ ′1(t)

∣
∣dt

− ρ
∫ tn

t′

(
g
(
σ1(t)

))
+ p

(
t, σ1(t), σ ′1(t)

)
dt ≤ c,

where c = ρ(2‖φ(σ ′1)′‖1+
∫ T

0 |p(t, σ1(t), σ ′1(t))|dt+‖m‖1) <∞. On the other hand, thanks
to relations (8.62)–(8.64) we have

lim
n→∞

∫ σ1(t′)

σ1(tn)
g(s)ds = ∞,

a contradiction. Thus, σ1(t∗) > 0. It follows that t∗ = T , since otherwise we would get a
contradiction with the definition of t∗. In particular, we can see that σ1(t) is positive on
any interval (ε,T], ε > 0, and, as we also have σ1(0) = σ1(T) > 0 in view of the periodicity
condition (8.7), this completes the proof of the lemma. �

Remark 8.16. Lemma 8.15 says, in particular, that under assumptions (8.59) and (8.61),
where m ∈ L1[0,T], each solution u ∈ C1[0,T] of problem (8.58), (8.2) must be positive
at each t ∈ [0,T].

Theorem 8.17. Let p ∈ Car([0,T] × R2) and g ∈ C(0,∞). Furthermore, let the strong
repulsive singularity condition (8.59) and condition (8.61) with some m ∈ L1[0,T] be
satisfied. Finally, let there be lower and upper functions σ1 and σ2 of problem (8.58), (8.2)
such that relation (8.39) is true and σ2 > 0 on [0,T].

Then problem (8.58), (8.2) possesses a positive solution u having properties (8.44) and
(8.45).

Proof . Put r∗ = φ−1(‖ψ‖1), where ψ = |m| + 2. Let us define

R = ∥
∥σ1

∥
∥∞ +

∥
∥σ2

∥
∥∞, r = r∗ +

∥
∥σ ′1

∥
∥∞, B = R + r∗T. (8.65)

Since p ∈ Car([0,T]×R2), there is p̃ ∈ L1[0,T] such that
∣
∣p(t, x, y)

∣
∣ ≤ p̃(t) for a.e. t ∈ [0,T] and all (x, y) ∈ [0,B]× [−r, r]. (8.66)



Method of lower and upper functions 153

By Lemma 8.15, σ1 > 0 on [0,T]. Since we assume σ2 > 0 on [0,T], it follows that δ :=
min{{σ1(t), σ2(t)} : t ∈ [0,T]} > 0. Now, put

K = ‖ p̃‖1r
∗ +

∫ B

δ

∣
∣g(s)

∣
∣ds.

By (8.59) there exists ε ∈ (0, δ) such that g(ε) > 0 and

∫ δ

ε
g(s)ds > K. (8.67)

For a.e. t ∈ [0,T] and all (x, y) ∈ R2, define

h(t, x, y) = g̃(x) + p(t, x, y), where g̃(x) =
⎧
⎨

⎩

g(ε) if x < ε,

g(x) if x ≥ ε.

Then h ∈ Car([0,T] × R2), σ1 and σ2 are lower and upper functions of problem (8.4),
(8.2), respectively, and by assumption (8.61),

h(t, x, y) > m(t) for a.e. t ∈ [0,T] and all x > 0, y ∈ R.

By Theorem 8.10, problem (8.4), (8.2) has a solution u satisfying estimate (8.44) and
δ ≤ u(tu) ≤ R for some tu ∈ [0,T]. In particular, u ≤ B for all t ∈ [0,T]. It remains to
show that u ≥ ε on [0,T]. Let t0, t1 ∈ [0,T] be such that

u
(
t0
) = min

{
u(t) : t ∈ [0,T]

}
, u

(
t1
) = max

{
u(t) : t ∈ [0,T]

}
.

We have u′(t0) = u′(t1) = 0 and u(t1) ∈ [δ,B]. Put v(t) = φ(u′(t)) for t ∈ [0,T]. Then
u′(t) = φ−1(v(t)) on [0,T], v(t0) = v(t1) = φ(0) and

∫ t1

t0

(
φ
(
u′(s)

))′
u′(s)ds =

∫ t1

t0
v′(s)φ−1(v(s)

)
ds =

∫ v(t1)

v(t0)
φ−1(y)dy = 0.

Thus, multiplying both sides of the equality

(
φ
(
u′(t)

))′ = h
(
t,u(t),u′(t)

)

by u′(t) and integrating from t0 to t1, and using (8.65), (8.66) and Lemma 8.9, we get

∫ u(t1)

u(t0)
g̃(s)ds ≤

∫ t1

t0

∣
∣p
(
t,u(t),u′(t)

)∣∣
∣
∣u′(t)

∣
∣dt ≤ ‖ p̃‖1r

∗.

Therefore

g(ε)
(
ε − u(t0

))
+
∫ δ

ε
g(s)ds =

∫ δ

u(t0)
g̃(s)ds

≤
∫ u(t1)

u(t0)
g̃(s)ds +

∫ B

δ

∣
∣g(s)

∣
∣ds

≤ ‖ p̃‖1r
∗ +

∫ B

δ

∣
∣g(s)

∣
∣ds = K.
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Since g(ε) > 0, this contradicts inequality (8.67) whenever

u
(
t0
) = min

{
u(t) : t ∈ [0,T]

} ≤ ε.

Hence, u(t) > ε on [0,T], which means that u is a solution to problem (8.58), (8.2). �

Example 8.18. Let

g(x) = ax−λ1 + bxλ2 for x ∈ (0,∞),

where a, b, λ2 ∈ (0,∞) and λ1 ≥ 1. Then Theorem 8.17 provides the existence of a
positive solution to problem (8.58), (8.2) if p ∈ Car([0,T]×R2) is bounded below, that
is, there is m ∈ L1[0,T] such that p(t, x, y) ≥ m(t) for a.e. t ∈ [0,T] and all (x, y) ∈ R2.

8.2. Attractive singular forces

This section is devoted to the singular problem (8.1), (8.2), where f has an attractive
singularity at x = 0, which means that, in addition to (8.3), it has also the following
property:

lim inf
x→0+

f (t, x, y) = −∞ for a.e. t ∈ [0,T] and some y ∈ R.

Such a situation can be treated by means of lower and upper functions associated with
the problem. We can decide whether the problem has constant lower and upper functions
and to find them provided they exist. In general, however, it is easy neither to find lower
and upper functions which need not be constant nor to prove their existence, which
can make the application of theorems like Theorem 8.12 difficult. A simple possibility
how to find nonconstant lower or upper functions to problem (8.1), (8.2) is offered by
the following lemma. In what follows we use the standard notation for mean values of
integrable functions: for y ∈ L1[0,T], the symbol y stands for

y := 1
T

∫ T

0
y(t)dt.

Lemma 8.19. (i) Let there exist A > 0 and b ∈ L1[0,T] such that b ≥ 0,

f (t, x, y) ≥ b(t) for a.e. t ∈ [0,T] and all x ∈ [A,B], |y| ≤ φ−1(‖b‖1
)
, (8.68)

where B −A ≥ 2Tφ−1(‖b‖1).

Then problem (8.1), (8.2) possesses an upper function σ2 such that

A ≤ σ2 ≤ B on [0,T].

(ii) If A, B and b ∈ L1[0,T] satisfy analogous conditions but with b ≤ 0 and

f (t, x, y) ≤ b(t) for a.e. t ∈ [0,T] and all x ∈ [A,B], |y| ≤ φ−1(‖b‖1
)
, (8.69)

then problem (8.1), (8.2) possesses a lower function σ1 such that

A ≤ σ1 ≤ B on [0,T].
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Proof . (i) Assume that b ≥ 0 and relation (8.68) is true. For a given d ∈ R, let xd be a
solution of the quasilinear auxiliary Dirichlet problem (8.10). Then

φ
(
x′d(t)

) = φ
(
x′d
(
t0
))

+
∫ t

t0
b(s)ds for t, t0 ∈ [0,T].

Since b ≥ 0, it follows that x′d(T) ≥ x′d(0). Since xd(0) = xd(T), there is a td ∈ (0,T) such
that x′d(td) = 0. Thus

φ
(
x′d(t)

) =
∫ t

td
b(s)ds for t ∈ [0,T]

and so ‖x′d‖∞ ≤ φ−1(‖b‖1) for each d ∈ R and ‖x0‖∞ ≤ Tφ−1(‖b‖1). Put σ2 = A +
Tφ−1(‖b‖1) + x0. Then

A ≤ σ2 ≤ A + 2Tφ−1(‖b‖1
) ≤ B on [0,T].

Having in mind assumption (8.68) and the definition of xd, we can see that σ2 is an upper
function of problem (8.1), (8.2).

(ii) If b ≤ 0 and assumption (8.69) is valid, then σ1 = A+Tφ−1(‖b‖1) + x0 is a lower
function of problem (8.1), (8.2) and A ≤ σ1 ≤ B on [0,T]. �

Corollary 8.20. Let there exist r > 0, A > r, and b ∈ L1[0,T] such that b ≥ 0, (8.68) with
B − A ≥ 2Tφ−1(‖b‖1) and

f (t, r, 0) ≤ 0 for a.e. t ∈ [0,T]

hold. Furthermore, let for a.e. t ∈ [0,T] and each (x, y) ∈ [r,B]×R inequalities (8.56) be
true with ε1, ε2, ω, ψ satisfying (8.32).

Then problem (8.1), (8.2) has a positive solution u such that

r ≤ u ≤ B on [0,T]. (8.70)

Proof . By Lemma 8.19, problem (8.1), (8.2) has an upper function σ2 such that σ2 ∈
[A,B] on [0,T]. Furthermore, σ1 = r is a lower function of (8.1), (8.2) and 0 < σ1 <
σ2 on [0,T]. By Theorem 8.12, problem (8.1), (8.2) has a positive solution u satisfying
(8.70). �

Now, let us consider the Liénard equation

(
φ(u′)

)′
+ h(u)u′ = g(u) + e(t), (8.71)

where

h ∈ C[0,∞), g ∈ C(0,∞), e ∈ L1[0,T] (8.72)

and g has an attractive space singularity at x = 0, that is,

lim inf
x→0+

g(x) = −∞. (8.73)
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The next lemma shows that problem (8.71), (8.2) possesses an upper function when-
ever

lim inf
x→∞

[
g(x) + e

]
> 0. (8.74)

Lemma 8.21. Let conditions (8.72) and (8.74) hold. Furthermore, assume that there exists
α ∈ (0,∞) such that

lim inf
|y|→∞

∣
∣φ(y)

∣
∣

|y|α > 0. (8.75)

Then for an arbitrary r ∈ (0,∞), problem (8.71), (8.2) possesses an upper function σ2 such
that σ2 > r on [0,T].

Proof

Step 1. Construction of operator Fλ.
Choose r ∈ (0,∞). By assumption (8.74) there is R > r such that

g(x) + e > 0 for x ≥ R. (8.76)

Take an arbitrary c ∈ R and consider the auxiliary Dirichlet problem

(
φ(v′)

)′
+ λh(v + c)v′ = λb(t), v(0) = v(T) = 0, (8.77)

where b(t) = g0 + e(t) for a.e. t ∈ [0,T], g0 = inf{g(x) : x ∈ [R,∞)} and λ ∈ [0, 1] is a
parameter. For a given λ ∈ [0, 1] define an operator Fλ : C1[0,T]×R→ C1[0,T]×R by

Fλ : (v, a) �→
(∫ t

0
φ−1

(
a + λ

∫ s

0

[
b(τ)− h(v(τ) + c

)
v′(τ)

]
dτ
)
ds,

a−
∫ T

0
φ−1

(
a + λ

∫ s

0

[
b(τ)− h(v(τ) + c

)
v′(τ)

]
dτ
)
ds
)
.

Taking into account that the second component of Fλ has a finite dimensional range and
using an argument analogous to those applying to the proof of Lemma 8.6 (see also the
proof of Theorem 7.4) we can show that the operator Fλ is completely continuous for
each λ ∈ [0, 1]. Furthermore, v is a solution of the Dirichlet problem (8.77) satisfying
φ(v′(0)) = a if and only if Fλ(v, a) = (v, a).

Step 2. A priori estimates of fixed points of Fλ.
Choose λ ∈ (0, 1] and assume that (v, a) ∈ C1[0,T] × R is a fixed point of the

operator Fλ. We have

(
φ
(
v′(t)

))′
+ λh

(
v(t) + c

)
v′(t) = λb(t) for a.e. t ∈ [0,T], (8.78)

v(0) = v(T) = 0 and φ(v′(0)) = a. Multiplying equality (8.78) by v(t) and integrating
over [0,T], we get

−
∫ T

0
φ
(
v′(t)

)
v′(t)dt = λ

∫ T

0
b(t)v(t)dt. (8.79)
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Let α ∈ (0,∞) be such that relation (8.75) holds. Then there are k > 0 and y0 > 0 such
that

φ
(|y|)
|y|α >

k

2
for |y| ≥ y0.

Consequently, if we define β(y) = φ(y)− kyα for y ≥ 0, then β ∈ C[0,∞) and

−β(y)
yα

<
k

2
for y ≥ y0. (8.80)

Next, since φ is odd, we have φ(y) y ≥ 0 and |φ(y)| = φ(|y|) for each y ∈ R. In
particular, φ(|y|) |y| = φ(y) y for all y ∈ R. Relation (8.79) can be now rewritten as

−k‖v′‖α+1
α+1 −

∫ T

0
β
(∣∣v′(t)

∣
∣)
∣
∣v′(t)

∣
∣dt = λ

∫ T

0
b(t)v(t)dt. (8.81)

Denote J = {t ∈ [0,T] : |v′(t)| ≥ y0} and M = max{β(y) : y ∈ [0, y0]} and assume that
‖v‖∞ ≥ 1. Then relations (8.80) and (8.81) imply

k‖v′‖α+1
α+1 ≤ ‖b‖1 ‖v‖∞ +My0T −

∫

J

β
(∣∣v′(t)

∣
∣)

∣
∣v′(t)

∣
∣α

∣
∣v′(t)

∣
∣α+1

dt

≤ (‖b‖1 +My0T
)‖v‖∞ +

k

2
‖v′‖α+1

α+1,

that is,

‖v′‖α+1
α+1 ≤

2
k

(‖b‖1 +My0T
)‖v‖∞.

Further, as the Hölder inequality yields

‖v‖∞ ≤
∫ T

0

∣
∣v′(s)

∣
∣ds ≤ Tα/(α+1)‖v′‖α+1, (8.82)

we conclude that

‖v′‖α+1 ≤
(

2
k

(‖b‖1 +My0T
)
)1/α

T1/(α+1).

Now, using (8.82) once more, we get

‖v‖∞ ≤ T
(

2
k

(‖b‖1 +My0T
)
)1/α

.

Thus, including into our consideration also the case ‖v‖∞ < 1, we conclude that v satisfies
the estimate

‖v‖∞ < d := T
(

2
k

(‖b‖1 +My0T
)
)1/α

+ 1. (8.83)
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As v(0) = v(T), there is τ0 ∈ (0,T) such that v′(τ0) = 0. Hence, integrating equality
(8.78) we obtain

φ
(
v′(t)

)
+ λ

∫ v(t)

v(τ0)
h(x + c)dx = λ

∫ t

τ0

b(s)ds for t ∈ [0,T],

wherefrom the estimate

∣
∣φ
(
v′(t)

)∣∣ ≤ κ := ‖b‖1 + 2dmax
{∣∣h(x)

∣
∣ : |x| ≤ |c| + d

}
for t ∈ [0,T]

follows. Consequently,

‖v′‖∞ ≤ φ−1(κ), |a| = ∣
∣φ
(
v′(0)

)∣∣ ≤ κ. (8.84)

On the other hand, it is easy to see that F0(v, a) = (v, a) if and only if (v, a) = (0, 0). This,
together with (8.84), imply that if we choose

ρ > d + φ−1(κ) + κ,

we get (v, a) ∈ B(ρ), where

B(ρ) = {
(v, a) ∈ C1[0,T]×R : ‖v‖∞ + |a| < ρ}.

Step 3. Properties of the Leray-Schauder degree of Fλ.
By step 2 and by the homotopy property from the Leray-Schauder degree theorem,

where H(λ, x) = (I−Fλ)(x) and Ω = B(ρ), we get

deg
(
I−F1, B(ρ)

) = deg
(
I−F0, B(ρ)

)
.

Moreover, F0 is an odd mapping, and hence by the Borsuk antipodal theorem we see that

deg
(
I−F0, B(ρ)

) �= 0.

Therefore, by the existence property of the Leray-Schauder degree, we deduce that for
each c ∈ R the operator F1 has a fixed point (vc, ac). It follows from the construction of
the operator F1 that vc is a solution of the auxiliary Dirichlet problem (8.77) with λ = 1
and ac = φ(v′c(0)). Moreover, ‖vc‖∞ < d on [0,T] holds due to (8.83).

Step 4. Construction of an upper function σ2.
Put c = R + d and σ2 = vc + c. Then σ2(0) = σ2(T) = c and, due to (8.76), we have

φ
(
σ ′2(T)

)− φ(σ ′2(0)
) = Tb = T

(
g0 + e

) ≥ 0.
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Furthermore, σ2(t) > c − d = R on [0,T]. Therefore, due to inequality (8.76),

(
φ
(
σ ′2(t)

))′ = −h(σ2(t)
)
σ ′2(t) + g0 + e(t)

≤ −h(σ2(t)
)
σ ′2(t) + g

(
σ2(t)

)
+ e(t) for a.e. t ∈ [0,T].

This shows that σ2 is an upper function for (8.71), (8.2). �

The following alternative assertion can be proved by an argument analogous to that
used in the proof of the previous lemma.

Lemma 8.22. Assume (8.72) and

lim sup
x→∞

[
g(x) + e

]
< 0.

Then for an arbitrary r ∈ (0,∞), problem (8.71), (8.2) possesses a lower function σ1 such
that σ1 > r on [0,T].

A straightforward application of Theorem 8.12 and Lemma 8.21 gives the following
result.

Theorem 8.23. Assume (8.72)–(8.75) and let there exist r ∈ (0,∞) such that

g(r) + e(t) ≤ 0 for a.e. t ∈ [0,T]. (8.85)

Then problem (8.71), (8.2) has a positive solution u such that u ≥ r on [0,T].

Proof . Let r ∈ (0,∞) be such that g(r) + e(t) ≤ 0 for a.e. t ∈ [0,T]. Then σ1(t) ≡ r
is a lower function of problem (8.71), (8.2). Furthermore, due to Lemma 8.21, problem
(8.71), (8.2) has an upper function σ2 such that σ2 > r = σ1 > 0 on [0,T]. Thus, by
Theorem 8.12 and Remark 8.13, problem (8.71), (8.2) has a positive solution u such that
u(t) ∈ [r, σ2(t)] for each t ∈ [0,T]. �

Example 8.24. Let g ∈ C(0,∞) satisfy (8.73). Then we can guarantee the existence of a
positive constant r for which the inequality g(r) + e(t) ≤ 0 holds a.e. on [0,T] provided

lim inf
x→0+

(
g(x) + ‖e‖∞

)
< 0.

This occurs, for example, if sup ess{e(t) : t ∈ [0,T]} < ∞. In particular, Theorem 8.23
applies to problem (8.71), (8.2) if

φ = φp, p ∈ (1,∞), e > 0, sup ess
{
e(t) : t ∈ [0,T]

}
<∞

and g(x) = −ax−λ1 + bxλ2 , where a, b, λ1, λ2 ∈ (0,∞).

Further, notice that condition (8.75) is satisfied, for example, by

φ(y) = (|y|y + y
)

ln
(

1 +
1
|y|

)
or φ(y) = y

(
exp

(
y2)− 1

)
.
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8.3. Strong repulsive singular forces

In this section, we study the singular problem (8.1), (8.2) with f having a repulsive
singularity at x = 0. Recall that this means that, in addition to (8.3), the relation

lim sup
x→0+

f (t, x, y) = ∞ for a.e. t ∈ [0,T] and some y ∈ R

is true. In general, in this case, the existence of a pair of associated lower and upper
functions having the opposite order is typical. This causes that such a case is more difficult
and more interesting than that of an attractive singularity.

The next assertion deals with (8.58) and is a direct corollary of Theorem 8.17.

Theorem 8.25. Assume that g ∈ C(0,∞) and p ∈ Car([0,T] × R2) satisfy the strong
repulsive singularity condition (8.59) and inequality (8.61) with some m ∈ L1[0,T]. Fur-
thermore, let there be a function b ∈ L1[0,T] and constants r,A,B ∈ (0,∞) such that b ≤ 0,
A > r, B − A ≥ 2Tφ−1(‖b‖1), and

g(r) + p(t, r, 0) ≥ 0 for a.e. t ∈ [0,T],

g(x) + p(t, x, y) ≤ b(t) for a.e. t ∈ [0,T] and all x ∈ [A,B], |y| ≤ φ−1(‖b‖1
)
.

Then problem (8.58), (8.2) has a positive solution u such that

u
(
tu
) ∈ [r,B] for some tu ∈ [0,T].

Proof . By Lemma 8.19(ii) there is a lower function σ1 of problem (8.58), (8.2) such that
A ≤ σ1 ≤ B on [0,T]. Moreover, by our assumptions, σ2(t) ≡ r is an upper function of
problem (8.58), (8.2). Using Theorem 8.17, we complete the proof. �

In particular, Theorem 8.25 provides for the Duffing equation with the φ-Laplacian

(
φ(u′)

)′ = g(u) + e(t) (8.86)

the following immediate corollary.

Corollary 8.26. Let e ∈ L1[0,T], inf ess{e(t) : t ∈ [0,T]} > −∞ and let g ∈ C(0,∞)
satisfy the strong repulsive singularity condition (8.59). Further, let

g∗ := inf
{
g(x) : x ∈ (0,∞)

}
> −∞

and let there be A > 0 such that

g(x) + e ≤ 0 for x ∈ [A,B], where B − A ≥ 2Tφ−1(‖e − e‖1
)
.

Then problem (8.86), (8.2) has a positive solution u such that u(tu) ≤ B for some tu ∈ [0,T].

Proof . By the strong singularity condition (8.59), we have (8.60). Since, moreover, we
assume inf ess{e(t) : t ∈ [0,T]} > −∞, we can certainly find an r ∈ (0,A) such that
g(r) + e(t) ≥ 0 for a.e. t ∈ [0,T]. The assertion then follows by Theorem 8.25 if we put
b(t) = e(t)− e and m(t) = g∗ + e(t) a.e. on [0,T]. �
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In the remaining part of the section we will consider the Liénard equation

(
φp(u′)

)′
+ h(u)u′ = g(u) + e(t) (8.87)

with the p-Laplacian φp(y) = |y|p−2y. To this aim, the following continuation-type
principle will be helpful.

Lemma 8.27. Let p ∈ (1,∞), h ∈ C[0,∞), g ∈ C(0,∞) and e ∈ L1[0,T]. Furthermore,
assume that there exist r > 0, R > r, and R′ > 0 such that

(i) the inequalities r < v < R on [0,T] and ‖v′‖∞ < R′ hold for each λ ∈ (0, 1] and
for each positive solution v of the problem

(
φp(v′)

)′ = λ
(− h(v)v′ + g(v) + e(t)

)
,

v(0) = v(T), v′(0) = v′(T),
(8.88)

(ii) (g(x) + e = 0) ⇒ r < x < R,
(iii) (g(r) + e) (g(R) + e) < 0.

Then problem (8.87), (8.2) has at least one solution u such that r < u < R on [0,T].

Proof

Step 1. Construction of the operator Fλ.
First, notice that integrating the differential equation in (8.88) over the interval [0,T]

and taking into account the periodicity conditions we arrive at

0 =
∫ T

0
g
(
v(s)

)
ds + Te, for all solutions u of problem (8.88). (8.89)

Let us consider the problems

(
φp(v′)

)′ = fλ(t, v)(t), v(0) = v(T), v′(0) = v′(T), (8.90)

where λ ∈ [0, 1] and

fλ(t, v)(t) = λ
(− h(v(t)

)
v′(t) + g

(
v(t)

)
+ e(t)

)
+ (1− λ)w0(v),

w0(v) = 1
T

(∫ T

0
g
(
v(s)

)
ds + Te

)

for v ∈ C1[0,T] and for a.e. t ∈ [0,T]. Due to (8.89), we can see that for each λ ∈ [0, 1]
problems (8.88) and (8.90) are equivalent. Furthermore, for λ = 1 problem (8.90) reduces
to problem (8.87), (8.2) (with v instead of u).

As in the proof of Theorem 7.4 (see also the introduction to Lemma 8.6 in Section
8.1), we denote by γ the functional on C[0,T] which is uniquely determined by the
relation

∫ T

0
φ−1(γ(�) + �(s)

)
ds = 0. (8.91)
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Similarly, the operator K : C[0,T] → C1[0,T] is defined by (8.11), that is,

K(�)(t) =
∫ t

0
φ−1(γ(�) + �(s)

)
ds.

Recall that both γ and K are continuous. Denote

Ω = {u ∈ C1[0,T] : r < u < R, |u′| < R′ on [0,T]}

and, for λ ∈ [0, 1], define operators Nλ : Ω→ C[0,T] and Fλ : Ω→ C[0,T] by

Nλ(u)(t) =
∫ t

0
fλ(s,u)(s)ds,

Fλ(u)(t) = u(0) + u′(0)− u′(T) + K
(
Nλ(u)

)
(t).

(8.92)

Arguing as in the proof of Lemma 8.6, we can show that for each λ ∈ [0, 1] the operator
Fλ is compact. Moreover, a function u ∈ Ω solves problem (8.90) if and only if it is a fixed
point of Fλ. In particular, u ∈ Ω is a solution of (8.87), (8.2) if and only if F1(u) = u.

Step 2. Properties of the fixed points of Fλ.
We state that

Fλ(v) �= v for λ ∈ [0, 1], v ∈ ∂Ω. (8.93)

Indeed, if λ > 0, then relation (8.93) follows from assumption (i), while for λ = 0 it is a
corollary of the following claim.

Claim. v ∈ Ω is a fixed point of F0 if and only if there is x ∈ (r,R) such that v(t) ≡ x on
[0,T] and

g(x) + e = 0. (8.94)

Proof of Claim. For each v ∈ Ω and each t ∈ [0,T] we have f0(t, v)(t) = w0(v) and
(N0(v))(t) = tw0(v). Let c ∈ R. If w0(v) �= 0, then

∫ T

0
φ−1
p

(
c + N0(v)(t)

)
dt =

∫ T

0
φq
(
c + tw0(v)

)
dt =

∣
∣c + Tw0(v)

∣
∣q − |c|q

qw0(v)
,

where q = p/(p − 1). In particular,

∫ T

0
φ−1
p

(
c + N0(v)(t)

)
dt = 0 ⇐⇒ c = −T

2
w0(v).

On the other hand, if w0(v) = 0, then
∫ T

0
φ−1
p

(
c + N0(v)(t)

)
dt = Tφ−1

p (c) = 0 ⇐⇒ c = 0.

Since γ(N0(v)) is the only solution of (8.91) with � = N0(v), we can summarize that

c = γ
(
N0(v)

) = −T
2
w0(v) for v ∈ C1[0,T].
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Inserting this into the definition of F0, we get

F0(v)(t) = v(0) + v′(0)− v′(T) +
∫ t

0
φ−1
p

(
w0(v)

(
s− T

2

))
ds

= v(0) + v′(0)− v′(T) +
1
q
φq
(
w0(v)

)
(∣∣
∣
∣t −

T

2

∣
∣
∣
∣

q

−
(
T

2

)q)
.

Consequently, v ∈ Ω is a fixed point of F0 if and only if

v(t) = v(0) + v′(0)− v′(T) +
1
q
φq
(
w0(v)

)
(∣∣
∣
∣t −

T

2

∣
∣
∣
∣

q

−
(
T

2

)q)

for t ∈ [0,T]. In particular, for t = 0, this relation reduces to v(0) = v(0) + v′(0)− v′(T),
which yields v′(0) = v′(T). Similarly, inserting t = T gives v(T) = v(0). On the other
hand,

v′(t) = φq
(
w0(v)

)
∣
∣
∣
∣t −

T

2

∣
∣
∣
∣

q−1

sign
(
t − T

2

)
for t �= T

2
,

v′(T)− v′(0) = 2φq
(
w0(v)

)(T

2

)q−1

.

Thus, v′(0) = v′(T) can hold if and only if w0(v) = 0, which gives v(t) ≡ v(0) on [0,T].
Denoting x = v(0), we can see that w0(v) = 0 if and only if g(x) + e = 0. However, by
assumption (ii), any x ∈ R satisfying this equation must belong to the interval (r,R). On
the other hand, if g(x) + e = 0 and v ≡ x on [0,T], then v is obviously a fixed point of
F0. This completes the proof of the claim.

Step 3. Properties of the Leray-Schauder degree of Fλ.
By (8.93) and by the homotopy property of the degree we have

deg
(
I−F1,Ω

) = deg
(
I−F0,Ω

)
. (8.95)

Denote

X = {
v ∈ C1[0,T] : v(t) ≡ v(0) on [0,T]

}
, Ω0 = Ω∩X.

Then Ω0 = {v ∈ X : r < v(0) < R} and, by Claim in step 2, each fixed point of F0 belongs
to Ω0. Consequently, the excision property of the topological degree yields

deg
(
I−F0,Ω

) = deg
(
I−F0,Ω0

)
. (8.96)

Step 4. Construction and properties of the operator F̃μ.

For μ ∈ [0, 1] define F̃μ : Ω0 → C1[0,T] by

F̃μ(v)(t) = v(0) + φq
(
g
(
v(0)

)
+ e

)
[

1− μ +
μ

q

(∣∣
∣
∣t −

T

2

∣
∣
∣
∣

q

−
(
T

2

)q)]
.

We have

F̃0(v) = v(0) + φq
(
g
(
v(0)

)
+ e

)
, F̃1(v) = F0(v) for v ∈ Ω0.
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Similarly to Fλ, the operators F̃μ, μ ∈ [0, 1], are also completely continuous. By Claim in

step 2, F̃1(v) �= v for all v ∈ ∂Ω0. Let i be the natural isometrical isomorphism R → X,
that is,

i(x)(t) ≡ x for x ∈ R, i−1(v) = v(0) for v ∈ X.

Assume that μ ∈ [0, 1), x ∈ (0,∞), v = i(x), and F̃μ(v) = v. Then

φq
(
g(x) + e

)
[

1− μ +
μ

q

(∣∣
∣
∣t −

T

2

∣
∣
∣
∣

q

−
(
T

2

)q)]
= 0 for t ∈ [0,T].

If t = 0, this relation reduces to g(x) + e = 0, which is due to assumption (ii) possible
only if x ∈ (r,R). To summarize,

F̃μ(v) �= v for v ∈ ∂Ω0, and all μ ∈ [0, 1].

Therefore, using the homotopy property of the degree and taking into account that
dim X = 1, we conclude that

deg
(
I−F0,Ω0

) = deg
(
I− F̃1,Ω0

) = dB
(
I− F̃0,Ω0

)
, (8.97)

where dB(I− F̃0,Ω0) stands for the Brouwer degree of I − F̃0 with respect to Ω0.

Step 5. The Brouwer degree of I− F̃0.
Define Φ : (0,∞) → R by Φ(x) = g(x) + e. Then

(
I− F̃0

)(
i(x)

) = i
(
Φ(x)

)
for each x ∈ (0,∞).

In other words, Φ = i−1 ◦ (I− F̃0) ◦ i on (0,∞). Consequently, by Remark C.4, we have

dB
(
I− F̃0,Ω0

) = dB
(
Φ, (r,R)

)
. (8.98)

Put

Ψ(x) = Φ(r)
R− x
R− r + Φ(R)

x − r
R− r .

Then Ψ has a unique zero x0 ∈ (r,R) and

Ψ′
(
x0
) = Φ(R)−Φ(r)

R− r .

Hence, by the definition of the Brouwer degree in R we have

dB
(
Ψ, (r,R)

) = signΨ′
(
x0
) = sign

(
Φ(R)−Φ(r)

)
.

By the homotopy property and thanks to our assumption (iii), we conclude that

dB
(
Φ, (r,R)

) = dB
(
Ψ, (r,R)

) = sign
(
Φ(R)−Φ(r)

) �= 0. (8.99)
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Step 6. Fixed point of F1.
To summarize, by (8.95)–(8.99), we have

deg
(
I−F1,Ω

) �= 0,

which, in view of the existence property of the topological degree, shows that F1 has a
fixed point u ∈ Ω. By step 1 this means that problem (8.87), (8.2) has a solution. �

Lemma 8.27 enables us to prove the following result, where we meet the symbol πp
defined for p ∈ (1,∞) by

πp = 2π(p − 1)1/p

p sin(π/p)
.

Clearly π2 = π. Furthermore, (πp/T)p is the first eigenvalue of the quasilinear Dirichlet
problem

(
φp(u′)

)′
+ λφp(u) = 0, u(0) = u(T) = 0

(see Appendix D).

Theorem 8.28. Assume that p ∈ (1,∞), h ∈ C[0,∞), e ∈ L1[0,T]. Furthermore, let
g ∈ C(0,∞) satisfy the strong repulsive singularity condition (8.59) and the conditions

lim inf
x→0+

[
g(x) + e

]
> 0 > lim sup

x→∞

[
g(x) + e

]
, (8.100)

there exist nonnegative constants a, γ such that

a <
(
πp
T

)p
and g(x)x ≥ −(axp + γ

)
for x > 0.

(8.101)

Then problem (8.87), (8.2) has a positive solution.

Proof . We will verify that the assumptions of Lemma 8.27 are satisfied.

Step 1. One-point estimate.
First, we will show that

there are R0 > 0 and R1 > R0 such that

v(tv) ∈
(
R0,R1

)
for some tv ∈ [0,T]

holds for each λ ∈ (0, 1] and each positive solution v of (8.88).

(8.102)

So, assume that λ ∈ (0, 1] and that v is a positive solution to the auxiliary problem (8.88).
By the first inequality in assumption (8.100), there is R0 > 0 such that

g(x) + e > 0 whenever x ∈ (
0,R0

)
. (8.103)
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If g(v(t)) + e > 0 were valid on [0,T], we would have

∫ T

0

(
g
(
v(t)

)
+ e(t)

)
dt =

∫ T

0

(
g
(
v(t)

)
+ e

)
dt > 0,

which contradicts (8.89). This shows that max{v(t) : t ∈ [0,T]} > R0.
Similarly, by the second inequality in assumption (8.100), there is R1 > R0 such that

g(x) + e < 0 whenever x > R1 (8.104)

and min{v(t) : t ∈ [0,T]} < R1. This proves (8.102).

Step 2. Upper estimate of solutions to the auxiliary problem (8.88).
We claim that

there is R > 0 such that v < R on [0,T] holds

for each λ ∈ (0, 1] and each positive solution v of (8.88).
(8.105)

Indeed, assume that λ ∈ (0, 1] and v is a positive solution to the auxiliary problem (8.88).
Multiplying the differential equation in (8.88) by v(t) and integrating over [0,T] we get

−‖v′‖pp =
∫ T

0
g
(
v(s)

)
v(s)ds +

∫ T

0
e(s)v(s)ds,

and using assumption (8.101) we arrive at the inequality

‖v′‖pp ≤ a‖v‖pp + ‖e‖1‖v‖∞ + γT. (8.106)

Further, by (8.102), we have

0 < v(t) = v
(
tv
)

+
∫ t

tv
v′(s)ds < R1 + T1/q‖v′‖p for t ∈ [0,T], (8.107)

where q = p/(p − 1). Now put

y(t) =
⎧
⎪⎨

⎪⎩

v
(
t + tv

)− v(tv
)

if 0 ≤ t ≤ T − tv,
v
(
t + tv − T

)− v(tv
)

if T − tv ≤ t ≤ T.

Since y ∈ C1[0,T], y(0) = y(T) = 0, and ‖y + v(tv)‖pp = ‖v‖pp, we can apply the sharp
Poincaré inequality (see Lemma D.2) to show that

‖y‖p ≤ T

πp
‖y′‖p = T

πp
‖v′‖p.

Now, we can see that for arbitrary positive numbers ε and c0 we can always find a
positive constant c2 such that (x + c0)p ≤ (1 + ε)xp + c2 holds for each x ≥ 0. Indeed,
the inequality (x + c0)p < (1 + ε)xp holds whenever x > x0 := c0((1 + ε)1/p − 1)−1 and the
expression |(x + c0)p − (1 + ε)xp| is certainly bounded on the interval [0, x0]. As a result,
we can state that for an arbitrary ε > 0 there is c1 > 0 such that

‖v‖pp ≤
(‖y‖p + v

(
tv
)
T1/p)p ≤ (1 + ε)

(
T

πp

)p
‖v′‖pp + c1.
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Inserting this into inequality (8.106), choosing ε ∈ (0, (1/a)(πp/T)p − 1) and having in
mind estimate (8.107), we deduce that we can choose c2 > 0 such that

α‖v′‖pp ≤ T1/q‖e‖1‖v′‖p + c2

holds with

α =
(

1− a(1 + ε)
(
T

πp

)p)
> 0.

However, this is possible only if there is Rp ∈ (0,∞) independent of λ and v and such that
‖v′‖p < Rp. Therefore

0 < v(t) < R1 + T1/qRp + 1 on [0,T]

for each λ ∈ (0, 1] and each positive solution v of (8.88), that is, statement (8.105) is true
with R = R1 + T1/qRp + 1.

Step 3. Estimate of the derivatives of solutions to problem (8.88).
Now we show that

there is R′ > 0 such that |v′| < R′ on [0,T]

for each λ ∈ (0, 1] and each positive solution v of (8.88).
(8.108)

Let λ ∈ (0, 1] and let v be a positive solution to the auxiliary problem (8.88). In particular,
we have v(0) = v(T) and, therefore, there is t′ ∈ [0,T] such that v′(t′) = 0. Integrating
the differential equation in (8.88) over the interval [t′, t] and taking into account state-
ment (8.105), we obtain

∣
∣v′(t)

∣
∣p−1 ≤ λ

(∫ R

0

∣
∣h(x)

∣
∣dx + ‖e‖1 +

∣
∣
∣
∣

∫ t

t′

∣
∣g
(
v(s)

)∣∣ds
∣
∣
∣
∣

)
for t ∈ [0,T]. (8.109)

Thanks to assumption (8.100), we can choose a positive constant b in such a way that
inf{g(x) : x ∈ (0,R]} ≥ −b and, by (8.105), also g(v(t)) ≥ −b on [0,T]. Therefore,
|g(v(t))| ≤ g(v(t)) + 2b holds for all t ∈ [0,T]. From this inequality, using (8.89), we
deduce that

∣
∣
∣
∣

∫ t

t′

∣
∣g
(
v(s)

)∣∣ds
∣
∣
∣
∣ ≤ 2bT + ‖e‖1 for t ∈ [0,T],

which inserted into (8.109) yields (8.108) with

R′ =
(∫ R

0

∣
∣h(x)

∣
∣dx + 2

(
bT + ‖e‖1

)
)1/(p−1)

> 0.

Step 4. Lower estimate of solutions to problem (8.88).
Choose λ ∈ (0, 1] and let v be a positive solution of problem (8.88). Put

H = max
{∣∣h(x)

∣
∣ : x ∈ [0,R]

}
,

K = R′2TH +
∫ R

R0

∣
∣g(x)

∣
∣dx + R′‖e‖1.
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By (8.59) there is r ∈ (0,R0) such that

∫ R0

x
g(x)dx > K for x ∈ (0, r]. (8.110)

Let t1, t2 ∈ [0,T] be such that

v
(
t1
) = min

{
v(t) : t ∈ [0,T]

}
, v

(
t2
) = max

{
v(t) : t ∈ [0,T]

}
.

In view of (8.2), we have v′(t1) = v′(t2) = 0. Denotew(t) = φp(v′(t)) for t ∈ [0,T]. Then
v′(t) = φ−1

p (w(t)) on [0,T] and w(t1) = w(t2) = φp(0) = 0. Let, as before, q = p/(p− 1).
Then φq = φ−1

p and we have also

∫ t2

t1

(
φp
(
v′(t)

))′
v′(t)dt =

∫ t2

t1
w′(t)φq

(
w(t)

)
dt =

∫ w(t2)

w(t1)
φq(x)dx = 0.

Thus, multiplying the differential equation in (8.88) by v′(t) and integrating from t1 to t2
yields

0 = −
∫ t2

t1
h
(
v(t)

)
v′2(t)dt +

∫ R0

v(t1)
g(x)dx +

∫ v(t2)

R0

g(x)dx +
∫ t2

t1
e(t)v′(t)dt.

It follows that
∫ R0

v(t1)
g(x)dx ≤ R′2TH +

∫ R

R0

∣
∣g(x)

∣
∣dx + R′‖e‖1,

which is, owing to (8.110), possible only when v(t1) > r.

Step 5. Final conclusion.
To summarize, there are r, R, and R′ such that assumption (i) from Lemma 8.27 is

satisfied. Furthermore, since by step 1, we have

g(x) + e > 0 if 0 < x < R0, g(x) + e < 0 if x > R1

and 0 < r < R0 < R1 < R, it is easy to see that also assumptions (ii) and (iii) of Lemma 8.27
are satisfied. Hence, applying Lemma 8.27, we complete the proof of the theorem. �

The following two results are consequences of Theorem 8.28 and its proof.

Corollary 8.29. Let all assumptions of Theorem 8.28 be satisfied but with (8.101) replaced
by

lim inf
x→∞

g(x)
xp−1 > −

(
πp
T

)p
.

Then problem (8.87), (8.2) has a positive solution.

Proof . Let

lim inf
x→∞

g(x)
xp−1 > −a > −

(
πp
T

)p
.
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Then there exists A > 0 such that

g(x)x ≥ −axp for x ∈ [A,∞).

Furthermore, by (8.100), we have g∗ = inf{g(x) : x ∈ (0,A)} > −∞. Therefore, g(x)x ≥
−|g∗|A > −∞ for all x ∈ (0,A). So, we can summarize that condition (8.101) is satisfied.
The proof is completed by means of Theorem 8.28. �

Corollary 8.30. Let all assumptions of Theorem 8.28 be satisfied but with (8.101) replaced
by

e ∈ L2[0,T], h(x) ≥ h∗ > 0
(
or h(x) ≤ −h∗ < 0

)
for x ∈ [0,∞).

Then problem (8.87), (8.2) has a positive solution.

Proof . Assume that the dissipativity condition

h(x) ≥ h∗ > 0 for x ∈ [0,∞)

is satisfied. Then the proof is analogous to that of Theorem 8.28, just estimate (8.105) is
now obtained more easily. Indeed, let λ ∈ (0, 1] and let v be a positive solution of (8.88).
Let R0, R1, and tv be found as in (8.102), that is, R0 is such that (8.103) is true, R1 > R0,
g(x) + e < 0 for x ≥ R1 and v(tv) ∈ (R0,R1). Put w(t) = φ(v′(t)) for t ∈ [0,T]. Then
v′(t) = φ−1(w(t)) on [0,T], w(0) = φ(v′(0)) = φ(v′(T)) = w(T) and

∫ T

0

(
φ
(
v′(s)

))′
v′(s)ds =

∫ T

0
w′(s)φ−1(w(s)

)
ds =

∫ w(T)

w(0)
φ−1(y)dy = 0.

Thus, multiplying the differential equation in (8.88) by v′ and integrating over the inter-
val [0,T], we obtain h∗‖v′‖2 ≤ ‖e‖2 and, consequently,

v(t) = v
(
tv
)

+
∫ t

tv
v′(s)ds < R1 +

√
T
‖e‖2

h∗
+ 1 for t ∈ [0,T].

Thus, (8.105) is true with R = R1 +
√
T‖e‖2/h∗ + 1. Now, we can repeat steps 3–5 of the

proof of Theorem 8.28. �

Examples 8.31. (i) Clearly, if g ∈ C(0,∞) fulfills condition (8.100) and, in addition,
also lim infx→∞ g(x) > −∞, it satisfies also condition (8.101) and, hence, in such a case
Theorem 8.28 ensures the existence of a positive solution to problem (8.87), (8.2). In
particular, Theorem 8.28 implies that problem (8.87), (8.2) with g(x) = βx−α on (0,∞),
β > 0,α ≥ 1, h ∈ C[0,∞), and e ∈ L1[0,T] has a positive solution if e < 0. Moreover,
integrating both sides of the differential equation in (8.87) over [0,T] and taking into
account that g is positive on (0,∞), we can see that the condition e < 0 is also necessary
for the existence of a positive solution to (8.87), (8.2).
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(ii) Let p ∈ (1,∞), h ∈ C[0,∞), 0 < a < (πp/T)p, β > 0, and α ≥ 1. Then, by
Corollary 8.29, the problem

(|u′|p−2u′
)′

+ h(u)u′ = −aup−1 +
β

uα
+ sinu + e(t),

u(0) = u(T), u′(0) = u′(T)

has a positive solution for each e ∈ L1[0,T].
Similarly, if in addition p > 2, m is the integer part of p − 2 and

g(x) = −axp−1 +
m∑

i=0

cix
i +

β

xα
for x > 0,

then, by Corollary 8.29, problem (8.87), (8.2) has a positive solution for arbitrary coeffi-
cients ci ∈ R, i = 0, 1, . . . ,m, and each e ∈ L1[0,T].

(iii) Let p ∈ (1,∞), c �= 0, a > 0, β > 0, α ≥ 1. Then, by Corollary 8.30, the problem

(|u′|p−2u′
)′

+ cu′ = β

uα
− a exp(u) + e(t),

u(0) = u(T), u′(0) = u′(T)

has a solution for each e ∈ L2[0,T].

8.4. Weak repulsive singular forces

Here, unlike the previous section, we do not assume the strong singularity condition. We
will restrict ourselves to the case that f does not depend on u′, that is, we consider the
equation

(
φp(u′)

)′ = f (t,u), (8.111)

where f ∈ Car([0,T]× (0,∞)) can have a weak repulsive singularity at the origin, that is,

lim sup
x→0+

f (t, x) = ∞ for a.e. t ∈ [0,T]

can hold.
The next existence principle relies on the comparison of the given problem with the

related quasilinear problem fulfilling the antimaximum principle.

Theorem 8.32. Let f ∈ Car([0,T]× (0,∞)) and p ∈ [2,∞). Further, let r ∈ (0,∞),A ∈
[r,∞) and μ ∈ L1[0,T], β ∈ L1[0,T] be such that μ(t) ≥ 0 for a.e. t ∈ [0,T], μ > 0, β ≤ 0,

f (t, x) ≤ β(t) for a.e. t ∈ [0,T] and all x ∈ [A,B], (8.112)

f (t, x) + μ(t)φp(x − r) ≥ 0 for a.e. t ∈ [0,T] and all x ∈ [r,B], (8.113)
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where

B −A ≥ T

2
φ−1
p

(‖m‖1
)
;

m(t) = max
{

sup
{
f (t, x) : x ∈ [r,A]

}
, β(t), 0

}
for a.e. t ∈ [0,T];

(8.114)

v ≥ 0 on [0,T] holds for each v ∈ C1[0,T] such that

φp(v′) ∈ AC[0,T],
(
φp
(
v′(t)

))′
+ μ(t)φp

(
v(t)

) ≥ 0 for a.e. t ∈ [0,T],

v(0) = v(T), v′(0) = v′(T).

(8.115)

Then problem (8.111), (8.2) has a solution u such that

r ≤ u ≤ B on [0,T], ‖u′‖∞ < φ−1
p

(‖m‖1
)
. (8.116)

Proof

Part I. First, assume that β < 0.

Step 1. Upper and lower functions of an auxiliary regular problem.
Put

f̃ (t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (t, r)− μ(t)φp(x − r) if x ≤ r,

f (t, x) if x ∈ [r,B],

f (t,B) if x ≥ B

(8.117)

and consider an auxiliary problem

(
φp(u′)

)′ = f̃ (t,u), u(0) = u(T), u′(0) = u′(T). (8.118)

We have f̃ ∈ Car([0,T]×R). Furthermore, by (8.112), (8.113), and (8.117), the inequal-
ities

f̃ (t, x) ≤ β(t) if x ∈ [A,∞), (8.119)

f̃ (t, x) + μ(t)φp(x − r) ≥ 0 for x ∈ R (8.120)

are valid for a.e. t ∈ [0,T]. In particular, in view of (8.117) we have

f̃ (t, x) ≥ h(t) := −μ(t)φp(B − r) for a.e. t ∈ [0,T] and all x ∈ R, (8.121)

with h ∈ L1[0,T].
By (8.120), σ2 ≡ r is an upper function of (8.118). Further, if b = β − β, then

b ∈ L1[0,T] and b = 0 and, similarly to the proofs of Lemma 8.6 or of Theorem 7.4,
we can see that there is a uniquely defined σ0 ∈ C1[0,T] such that φp(σ ′0) ∈ AC[0,T],

(
φp
(
σ ′0(t)

))′ = b(t) for a.e. t ∈ [0,T], σ0(0) = σ0(T) = 0.



172 Periodic problem

Now, let us choose c∗ > 0 such that c∗ + σ0 ≥ A on [0,T] and define σ1 = c∗ + σ0. We
have σ1(0) = σ1(T) = c∗, φp(σ ′0(T))− φp(σ ′0(0)) = Tb = 0 and, by (8.119),

(
φp
(
σ ′1(t)

))′ = b(t) = β(t)− β > β(t) ≥ f̃
(
t, σ1(t)

)
for a.e. t ∈ [0,T].

Consequently, σ1 is a lower function of (8.118). Therefore, by (8.121) and by Theorem
8.10, the regular problem (8.118) has a solution u such that u(tu) ≥ r for some tu ∈ [0,T].

Step 2. A priori estimates of the solution u of the regular problem.
We will show that

u(t) ≥ r for t ∈ [0,T]. (8.122)

To this aim, set v = u− r. By virtue of (8.120), we have

(
φp
(
v′(t)

))′
+ μ(t)φp

(
v(t)

) = f̃ (t,u(t)) + μ(t)φp
(
u(t)− r) ≥ 0

for a.e. t ∈ [0,T]. By (8.115), it follows that v(t) ≥ 0 on [0,T], that is, (8.122) is true.
Now, we show that

u(t) ≤ B for t ∈ [0,T]. (8.123)

Indeed, by the definition of m and by (8.117) and (8.119) we have

f̃ (t, x) ≤ m(t) for a.e. t ∈ [0,T] and all x ≥ r.

Hence, we can use Lemma 8.9 to get the estimate

‖u′‖∞ ≤ φ−1
p

(‖m‖1
)
. (8.124)

If u ≥ A were valid on [0,T], then taking into account the periodicity of u′ and (8.119)
we would get

0 =
∫ T

0
f̃
(
t,u(t)

)
dt ≤

∫ T

0
β(t)dt = Tβ < 0,

a contradiction. Hence,

min
{
u(s) : s ∈ [0,T]

}
< A.

Now, assume that

u∗ := max
{
u(s) : s ∈ [0,T]

}
> A

and extend u to be T-periodic on R. There are s1, s2 and s∗ ∈ R such that

s1 < s
∗ < s2, s2 − s1 < T , u

(
s1
) = u

(
s2
) = A, u

(
s∗
) = u∗ > A.

In particular, due to (8.124),

2
(
u
(
s∗
)−A) =

∫ s∗

s1
u′(s)ds +

∫ s∗

s2
u′(s)ds ≤ Tφ−1

p

(‖m‖1
)
,
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wherefrom the estimate

u(t)− A ≤ T

2
φ−1
p

(‖m‖1
) ≤ B −A on [0,T]

follows. Thus, (8.123) is true.
Estimates (8.122) and (8.123) mean that r ≤ u ≤ B holds on [0,T]. In view of

(8.117), we conclude that u is a solution to (8.1), (8.2).

Part II. Now, let β = 0. Put n0 = max{1/r, 1/(B − A), 3}. For an arbitrary n ∈ N, define

f̃n(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (t, r) if x ≤ r,

f (t, x) if x ∈ [r,A],

f (t, x)− μ(t)φp

(
1
n

x −A
x −A + 1

)
if x ∈ (A,B],

f (t,B)− μ(t)φp

(
1
n

B −A
B − A + 1

)
if x ≥ B.

(8.125)

If x ∈ [A + 1/n,B], then using (8.112) we deduce that

f̃n(t, x) = f (t, x)− μ(t)φp

(
1
n

x −A
x − A + 1

)

≤ β(t)− μ(t)φp

(
1
n

x −A
x −A + 1

)

≤ β(t)− μ(t)φp

(
1

n(n + 1)

)

≤ β(t)− μ(t)φp

(
1

2n2

)

is true for a.e. t ∈ [0,T] and all n ∈ N such that n ≥ n0. Similarly, if x > B, then

f̃n(t, x) = f (t,B)− μ(t)φp

(
1
n

B − A
B −A + 1

)
≤ β(t)− μ(t)φp

(
1

2n2

)
.

Thus,

f̃n(t, x) ≤ β(t)− μ(t)φp

(
1

2n2

)
:= βn(t)

for x ≥ A +
1
n

, for a.e. t ∈ [0,T] and all n ≥ n0.

(8.126)

Clearly,

βn < 0, βn(t) ≤ β(t) for a.e. t ∈ [0,T]. (8.127)
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Furthermore, by (8.113) and (8.125) we have

f̃n(t, x) + μ(t)φp

(
x −

(
r − 1

n

))
≥ f (t, r) ≥ 0 if x ∈

[
r − 1

n
, r
]

,

f̃n(t, x) + μ(t)φp

(
x −

(
r − 1

n

))
≥ f (t, x) + μ(t)φp(x − r) ≥ 0 if x ∈ [r,A]

and, taking into account that ξ p−1 + ηp−1 ≤ (ξ + η)p−1 holds for all ξ,η ≥ 0 and each
p ≥ 2,

f̃n(t, x) + μ(t)φp

(
x −

(
r − 1

n

))
= f (t, x)− μ(t)φp

(
1
n

x − A
x − A + 1

)
+ μ(t)φp

(
x − r +

1
n

)

≥ f (t, x) + μ(t)φp(x − r) ≥ 0 if x ∈ [A,B],

f̃n(t, x) + μ(t)φp

(
x −

(
r − 1

n

))
= f (t,B)− μ(t)φp

(
1
n

B − A
B −A + 1

)
+ μ(t)φp

(
x − r +

1
n

)

≥ f (t,B) + μ(t)φp(B − r) ≥ 0 if x ≥ B.

To summarize,

f̃n(t, x) + μ(t)φp

(
x −

(
r − 1

n

))
≥ 0 if x ≥ r − 1

n
. (8.128)

For a.e. t ∈ [0,T] and all n ∈ N, put

m̃n(t) := max
{

sup
{
f̃n(t, x) : x ∈

[
r − 1

n
,A +

1
n

]}
,βn(t), 0

}
.

In view of (8.125) and (8.127) we have

0 ≤ m̃n(t) ≤ m(t) for a.e. t ∈ [0,T], n ≥ n0.

This together with (8.126)–(8.128) means that, for n ∈ N large enough, Part I of this
proof ensures the existence of a solution un to the auxiliary problem

(
φp
(
u′n
))′ = f̃n(t,un), un(0) = un(T), u′n(0) = u′n(T)

which satisfies the estimates

r − 1
n
≤ un(t) ≤ B +

1
n

on [0,T],
∥
∥u′n

∥
∥∞ ≤ φ−1

p

(‖m‖1
)
.

Now, notice that

∣
∣ f̃n(t, x)− h(t, x)

∣
∣ ≤ μ(t)φp

(
1
n

)
for a.e. t ∈ [0,T], all x ∈ R and all n ∈ N,

where

h(t, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (t, r) if x ≤ r,

f (t, x) if x ∈ [r,B],

f (t,B) if x ≥ B.
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In particular, h ∈ Car([0,T]×R),

lim
n→∞ f̃n(t, x) = h(t, x) for a.e. t ∈ [0,T] and all x ∈ R

and the sequence { f̃n(t,un(t))} has a Lebesgue integrable majorant on [0,T]. Thus, using
the Arzelà-Ascoli theorem and the Lebesgue dominated convergence theorem for the

sequences {un} and { f̃n(t,un(t))}, we can show that the sequence {un} contains a subse-
quence which converges in C1[0,T] to a solution u of the problem

(
φp(u′)

)′ = h(t,u), u(0) = u(T), u′(0) = u′(T).

Since u satisfies estimate (8.116), u solves also problem (8.1), (8.2). �

The next supplementary assertion concerning the case p ∈ (1, 2) follows immedi-
ately from the first part of the previous proof.

Theorem 8.33. Let all assumptions of Theorem 8.32 be satisfied, with the exceptions that
1 < p < 2 is allowed and β < 0 is required in (8.112). Then problem (8.111), (8.2) has a
solution u such that (8.116) is true.

It is well known that the function

G(t, s) = T

2π
sin

(
π

T
|t − s|

)
, t, s ∈ [0,T],

is the Green function for the linear periodic problem

v′′ +
(
π

T

)2

v = 0, v(0) = v(T), v′(0) = v′(T)

and G(t, s) is nonnegative on [0,T] × [0,T]. Therefore, each T-periodic function v ∈
AC1[0,T] fulfilling the inequality

v′′(t) +
(
π

T

)2

v(t) ≥ 0 for a.e. t ∈ [0,T]

must be nonnegative on [0,T]. More generally, for linear periodic problems the following
antimaximum principle is valid.

Let μ ∈ L1[0,T] be such that 0 ≤ μ(t) ≤ (π/T)2 for a.e. t ∈ [0,T] and μ > 0 and let
v ∈ AC1[0,T] satisfy the periodic conditions (8.2) and

v′′(t) + μ(t)v(t) ≥ 0 for a.e. t ∈ [0,T].

Then v is nonnegative on [0,T].
Next, we will show that for quasilinear periodic problems an analogous assertion

holds although, in general, no tools like the Green function are available.

Theorem 8.34. Let 1 < p <∞ and μ ∈ L1[0,T] be such that

μ > 0, 0 ≤ μ(t) ≤
(
πp
T

)p
for a.e. t ∈ [0,T] (8.129)
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and let v ∈ C1[0,T] be such that φp(v′) ∈ AC[0,T],

(
φp
(
v′(t)

))′
+ μ(t)φp

(
v(t)

) ≥ 0 for a.e. t ∈ [0,T], (8.130)

v(0) = v(T), v′(0) = v′(T). (8.131)

Then v ≥ 0 on [0,T].

Proof . Let v ∈ C1[0,T] be such that φp(v′) ∈ AC[0,T] and (8.129)–(8.131) hold.
Without any loss of generality we may assume that v is not trivial.

Step 1. First, we show that

v∗ := max
{
v(t) : t ∈ [0,T]

}
> 0. (8.132)

Assuming, on the contrary, that v ≤ 0 on [0,T], we get by (8.130)

(
φp
(
v′(t)

))′ ≥ −μ(t)φp
(
v(t)

) ≥ 0 for a.e. t ∈ [0,T].

Therefore, v′ is nondecreasing on [0,T] and, taking into account (8.131), we deduce that
v′ = 0 on [0,T]. Consequently, v(t) ≡ v(0) ≤ 0 on [0,T]. Hence, (8.130) reduces to

−μ(t)
(− v(0)

)p−1 ≥ 0 for a.e. t ∈ [0,T].

However, as μ ≥ 0 a.e. on [0,T] and μ > 0, this is possible if and only if v(0) = 0, that is,
v ≡ 0 on [0,T], which contradicts our assumption that v does not vanish identically on
[0,T]. Thus, (8.132) is true.

Step 2. Assume that min{v(t) : t ∈ [0,T]} < 0. Let us extend v and μ to T-periodic
functions on R. In view of step 1, there are a, b ∈ R such that v > 0 on (a, b), v(a) =
v(b) = 0, and

0 < b − a < T. (8.133)

In virtue of (8.129) and (8.130), we have

(
φp
(
v′(t)

))′
+
(
πp
T

)p
φp
(
v(t)

) ≥ (
φp
(
v′(t)

))′
+ μ(t)φp

(
v(t)

) ≥ 0 for a.e. t ∈ [a, b].

(8.134)

Furthermore, put

a0 = a− 1
2

(T − b + a), b0 = a0 + T > b,

σ2(t) = d
T

πp
sinp

((
πp
T

)
(
t − a0

)
)

for t ∈ R

with d > 0 such that σ2(t) > v(t) ≥ 0 on [a, b]. We have

(
φp
(
σ ′2(t)

))′
+
(
πp
T

)p
φp
(
σ2(t)

) = 0 for a.e. t ∈ [a, b]. (8.135)
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Thus, σ2 is an upper function for the problem

(
φp(u′)

)′
+ λφp(u) = 0, u(a) = u(b) = 0. (8.136)

Moreover, in view of (8.134), σ1 = v is a lower function for (D.3). It follows easily from
Theorem 7.16 where we put g(t, x, y) = −(πp/T)pφp(x) for t, x, y ∈ R, that there exists a
nontrivial solution u to (8.136). This, due to (8.133), contradicts Lemma D.2. �

Theorems 8.32–8.34 yield the following new existence criterion.

Theorem 8.35. Let f ∈ Car([0,T] × (0,∞)) and 1 < p < ∞. Furthermore, let r ∈
(0,∞),A ∈ [r,∞), and β ∈ L1[0,T] be such that estimates (8.112) and (8.114) hold,
where β < 0 if 1 < p < 2 and β ≤ 0 if 2 ≤ p <∞.

Finally, let μ ∈ L1[0,T] be such that μ > 0;

0 ≤ μ(t) ≤
(
πp
T

)p
for a.e. t ∈ [0,T]

and estimate (8.113) is true.
Then problem (8.111), (8.2) has a solution u such that (8.116) is true.

In particular, for the Duffing equation (φp(u′))′ = g(u) + e(t), we have the following
corollary.

Corollary 8.36. Let 1 < p < ∞. Suppose that f (t, x) = g(x) + e(t) for x ∈ (0,∞) and a.e.
t ∈ [0,T], where g ∈ C(0,∞), e ∈ L1[0,T],

e + lim sup
x→∞

g(x) < 0; (8.137)

there exists r > 0 such that

e(t) + g(x) +
(
πp
T

)p
(x − r)p−1 ≥ 0

for a.e. t ∈ [0,T] and all x ≥ r.

(8.138)

Then problem (8.1), (8.2) has a solution u such that u(t) ≥ r on [0,T].

Proof . Denote f (t, x) = g(x) + e(t). Due to (8.137), we can find A ≥ r such that

g(x) + e <
1
2

(
e + lim sup

x→∞
g(x)

)
< 0 for x ∈ [A,∞).

Consequently,

f (t, x) = g(x) + e + e(t)− e < 1
2

(
e + lim sup

x→∞
g(x)

)
+ e(t)− e

for a.e. t ∈ [0,T] and all x ∈ [A,∞). Therefore (8.112) holds with

β(t) = e(t) +
1
2

(
lim sup
x→∞

g(x)− e
)

,
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β < 0 and B > A arbitrarily large. Furthermore, by virtue of (8.138), we have

f (t, x) +
(
πp
T

)p
(x − r)p−1 ≥ 0 for x ∈ [r,∞).

The assertion now follows by Theorem 8.35. �

Remark 8.37. Notice that the assertion of Corollary 8.36 remains valid also when assump-
tion (8.137) is replaced by a slightly weaker assumption that there is an A > r such that
g(x) + e ≤ 0 for x ≥ A.

Example 8.38. Consider the problem

(
φp(u′)

)′ = g(u) + e(t), u(0) = u(T), u′(0) = u′(T), (8.139)

with 1 < p <∞, e ∈ L1[0,T] essentially bounded below and

g(x) = −kxp−1 +
a

xα
for x ∈ (0,∞), a > 0, α > 0, k ≥ 0.

We will apply Corollary 8.36. To this aim we need to verify that conditions (8.137) and
(8.138) are satisfied.

It is easy to see that if k > 0, then assumption (8.137) of Corollary 8.36 is satisfied for
all e ∈ L1[0,T], while in the case k = 0 this condition holds whenever e < 0.

Furthermore, denote e∗ = inf ess{e(t) : t ∈ [0,T]}, μ = (πp/T)p,

h(x, r) = a

xα
+ μ(x − r)p−1 − kxp−1 for r > 0, x ≥ r or r = 0, x > r,

κ(r) = inf
{
h(x, r) : x ∈ (r,∞)

}
for r ≥ 0.

Condition (8.138) is satisfied if and only if there is r > 0 such that e∗ + κ(r) ≥ 0. We can
show that this occurs if e∗ + κ(0+) > 0 where κ(0+) = limr→0+ κ(r). Notice that

κ(0+) = a
(
α + p − 1
p − 1

)(
(p − 1)(μ− k)

αa

)α/(α+p−1)

if k ∈ [0,μ), 1 < p ≤ ∞,

κ(0+) = 0 if k = μ, 1 < p ≤ 2.

Thus, making use of Corollary 8.36, we can summarize that problem (8.139) has a posi-
tive solution if

k = 0, 1 < p <∞, e < 0, e∗ > −a
(
α + p − 1
p − 1

)(
(p − 1)μ

αa

)α/(α+p−1)

or

0 < k < μ, 1 < p <∞, e∗ > −a
(
α + p − 1
p − 1

)(
(p − 1)(μ− k)

αa

)α/(α+p−1)

or

k = μ, 1 < p ≤ 2, e∗ > 0.
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Notice that limx→∞ h(x, r) = −∞ if k > μ, p > 1, and r ≥ 0 and also if k = μ, p > 2,
and r > 0. We have κ(r) = −∞ in these cases. In particular, condition (8.138) cannot be
satisfied when

k > μ, p > 1 or k = μ, p > 2.

8.5. Periodic problem with time singularities

In this section, we will study the periodic problem (8.1), (8.2) under the assumption

f ∈ Car
(
(0,T)×R

2) has time singularities at t = 0, t = T , (8.140)

that is, there exist x, y ∈ R such that

∫ ε

0

∣
∣ f (t, x, y)

∣
∣dt = ∞,

∫ T

T−ε

∣
∣ f (t, x, y)

∣
∣dt = ∞

for each sufficiently small ε > 0.
We will provide conditions for the existence of solutions to problem (8.1), (8.2)

which can change their sign on [0,T]. Solutions of problem (8.1), (8.2) are understood
in the sense of Definition 8.1 where A = R2.

Theorem 8.39. Let (8.140) hold. Assume that there exist a1, a2 ∈ [0,T], a1 < a2, α, γ, r1,
r2 ∈ R, a nonnegative function h0 ∈ L1[0,T], and a positive function ω ∈ C[0,∞) fulfilling
condition (7.17) such that

r1 + tρ ≤ α ≤ r2 + tρ for t ∈ [0,T],

f
(
t, r1 + tρ, ρ

) ≤ 0, f
(
t, r2 + tρ, ρ

) ≥ 0 for a.e. t ∈ [0,T];
(8.141)

f (t, x, y) sign(y − ρ) ≥ −ω(∣∣φ(y)− φ(ρ)
∣
∣)(h0(t) + |y − ρ|)

for a.e. t ∈ [
0, a2

]
and all x ∈ [

r1 + tρ, r2 + tρ
]
, y ∈ R;

(8.142)

f (t, x, y) sign(y − ρ) ≤ ω
(∣∣φ(y)− φ(ρ)

∣
∣)(h0(t) + |y − ρ|)

for a.e. t ∈ [
a1,T

]
and all x ∈ [

r1 + tρ, r2 + tρ
]
, y ∈ R.

(8.143)

Further assume that r is the constant given by Lemma 7.19 for y1 = y2 = ρ, r0 = max{|r1|,
|r2|} + T|ρ|, κ = 1 and that there exist η ∈ (0,T/2),ψ0 ∈ L1[0,T] and a nonnegative
function h ∈ Lloc(0,T) satisfying (A.21), (A.25),

f (t, x, y) sign(y − ρ) ≥ h(t)
∣
∣φ(y)− φ(ρ)

∣
∣ + ψ0(t)

for a.e. t ∈ (0,η) and all x ∈ [
r1 + tρ, r2 + tρ

]
, y ∈ [−r, r];

(8.144)

f (t, x, y) sign(y − ρ) ≤ −h(t)
∣
∣φ(y)− φ(ρ)

∣
∣ + ψ0(t)

for a.e. t ∈ [T − η,T] and all x ∈ [
r1 + tb, r2 + tb

]
, y ∈ [−r, r].

(8.145)
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Then problem (8.1), (8.2) has a solution u satisfying

u(0) = u(T) = α, u′(0) = u′(T) = ρ. (8.146)

Proof

Step 1. Approximate regular problems.
Choose an arbitrary k ∈ N, k > 2/T , and for x, y ∈ R define the auxiliary function

fk(t, x, y) =
⎧
⎨

⎩

− f (t, x, y) for a.e. t ∈ [0,T] \ Δk,

0 for a.e. t ∈ Δk,
(8.147)

whereΔk = [0, 1/k)∪(T−1/k,T]. We see that fk ∈ Car([0,T]×R2) fulfills the inequalities

fk(t, x, y) sign(y − ρ) ≤ ω
(∣∣φ(y)− φ(ρ)

∣
∣)(h0(t) + |y − ρ|)

for a.e. t ∈ [0, a2] and all x ∈ [r1 + tρ, r2 + tρ], y ∈ R, and

fk(t, x, y) sign(y − ρ) ≥ −ω(∣∣φ(y)− φ(ρ)
∣
∣)(h0(t) + |y − ρ|)

for a.e. t ∈ [a1,T] and all x ∈ [r1 +tρ, r2 +tρ], y ∈ R. Put σ1(t) = r1 +tb, σ2(t) = r2 +tb for
t ∈ [0,T]. Then fk satisfies condition (7.27) with g = fk, y1 = y2 = ρ, κ = 1. Moreover,
by assumption (8.141) and Definition 7.15, the functions σ1 and σ2 are, respectively, lower
and upper functions of the regular Dirichlet problem

(
φ(u′)

)′
+ fk(t,u,u′) = 0, u(0) = u(T) = α. (8.148)

Hence, by Theorem 7.22, problem (8.148) has a solution uk satisfying

r1 + tρ ≤ uk(t) ≤ r2 + tρ for t ∈ [0,T], ‖u′k‖∞ ≤ r. (8.149)

Step 2. Convergence of the sequence of approximate solutions {uk}.
Condition (8.149) implies that the sequence {uk} is bounded and equicontinuous on

[0,T]. By the Arzelà-Ascoli theorem this yields a function u ∈ C[0,T] and a subsequence
uniformly converging to u on [0,T]. Therefore the limit u satisfies

u(0) = u(T) = α. (8.150)

Choose an arbitrary interval [a, b] ⊂ (0,T). Since the sequence {u′k} is also bounded,
assumption (8.140) and formula (8.147) provide a function m ∈ L1[0,T] such that for
each k > 2/T

∣
∣ fk

(
t,uk(t),u′k(t)

)∣∣ ≤ m(t) for a.e. t ∈ [a, b]. (8.151)

Hence (8.148) yields

∣
∣φ
(
u′k
(
t2
))− φ(u′k

(
t1
))∣∣ ≤

∣
∣
∣
∣

∫ t2

t1
m(s)ds

∣
∣
∣
∣

for k > 2/T , t1, t2 ∈ [a, b], which implies that the sequence {φ(u′k)} is equicontinuous
on [a, b]. By virtue of the uniform continuity of φ−1 on compact intervals, the sequence
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{u′k} is also equicontinuous on [a, b]. The Arzelà-Ascoli theorem guarantees that for each
compact subset K ⊂ (0,T) a subsequence of {u′k} uniformly converging to u′ on K can
be chosen. Therefore, using the diagonalization theorem, we can choose a subsequence
{uk�} satisfying

lim
�→∞

uk� (t) = u(t) uniformly on [0,T],

lim
�→∞

u′k� (t) = u′(t) locally uniformly on (0,T).
(8.152)

By (8.149) the limit u fulfills

r1 + tρ ≤ u(t) ≤ r2 + tρ for t ∈ [0,T], ‖u′‖∞ ≤ r.

Step 3. Convergence of the sequence of approximate nonlinearities { fk}.
Let V1 be the set of all t ∈ [0,T] such that f (t, ·, ·) : R2 → R is not continuous and

let V2 be the set of all t ∈ [0,T] such that the equality in (8.147) is not satisfied. Then,
meas(V1∪V2) = 0. Choose an arbitrary ξ ∈ (0,T) \ (V1∪V2). Then there exists �0 ∈ N

such that for � ≥ �0 we have

fk�
(
ξ,uk� (ξ),u′k� (ξ)

) = − f (ξ,uk� (ξ),u′k� (ξ)
)

and, by (8.152),

lim
�→∞

fk�
(
ξ,uk� (ξ),u′k� (ξ)

) = − f (ξ,u(ξ),u′(ξ)
)
.

Hence,

lim
�→∞

fk�
(
t,uk� (t),u′k� (t)

) = − f (t,u(t),u′(t)
)

for a.e. t ∈ [0,T]. (8.153)

Step 4. The function u is a w-solution of problem (8.1), (8.150).
Choose an arbitrary t ∈ (0,T). Then there exists an interval [a, b]⊂(0,T) such that

t,T/2 ∈ [a, b]. Integrate the equality

(
φ
(
u′k� (t)

))′
+ fk�

(
t,uk� (t),u′k� (t)

) = 0 for a.e. t ∈ [0,T].

We get

φ
(
u′k� (t)

)− φ
(
u′k�

(
T

2

))
+
∫ t

T/2
fk�
(
s,uk� (s),u′k� (s)

)
ds = 0.

According to conditions (8.151), (8.153) and the Lebesgue dominated convergence theo-
rem on [a, b], we can deduce that the limit u solves the equation

φ
(
u′(t)

)− φ
(
u′
(
T

2

))
−
∫ t

T/2
f
(
s,u(s),u′(s)

)
ds = 0 for t ∈ (0,T), (8.154)

φ(u′) ∈ ACloc(0,T) and u is a w-solution of problem (8.1), (8.150).
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Step 5. The function u is a solution of problem (8.1), (8.2).
First we prove that

f
(
t,u(t),u′(t)

) ∈ L1[0,η], f
(
t,u(t),u′(t)

) ∈ L1[T − η,T].

Assumption (8.144), formula (8.147), and estimate (8.149) imply

− fk
(
t,uk(t),u′k(t)

)
sign

(
u′k(t)− ρ) ≥ −∣∣ψ0(t)

∣
∣

for a.e. t ∈ (0,η) and all k > 2/T . By conditions (8.152) and (8.153), we have

lim
�→∞

fk�
(
t,uk� (t),u′k� (t) sign

(
u′k� (t)− ρ

)) = − f (t,u(t),u′(t)
)

sign
(
u′(t)− ρ)

for a.e. t ∈ [0,T] and all k > 2/T . Finally, having in mind that sign(y − ρ) = sign(φ(y)−
φ(ρ)) for y ∈ R, we compute

∣
∣
∣
∣

∫ η

0
fk�
(
t,uk� (t),u′k� (t)

)
sign

(
u′k� (t)− ρ

)
dt
∣
∣
∣
∣ ≤

∫ η

0

∣
∣φ
(
u′k� (t)

)− φ(ρ)
∣
∣′dt

≤ φ
(∣∣u′k� (η)

∣
∣) + 2φ

(|ρ|) + φ
(∣∣u′k� (0)

∣
∣)

≤ 2φ(r) + 2φ
(|ρ|)

for each � ∈ N. Therefore, the Fatou lemma implies f (t,u(t),u′(t)) ∈ L1[0,η]. The
condition f (t,u(t),u′(t)) ∈ L1[T−η,T] can be proved similarly. Hence f (t,u(t),u′(t)) ∈
L1[0,T] and u ∈ AC1[0,T].

In order to prove that u fulfills condition (8.2) we put

g∗(t) = ∣
∣ψ0(t)

∣
∣, h∗(t) = 0 for a.e. t ∈ [0,T],

vk(t) = φ
(
u′k(t)

)− φ(ρ) for t ∈ [0,T].

Then, according to (8.147) and (8.148),

v′k(t) =
⎧
⎨

⎩

f
(
t,uk(t),u′k(t)

)
for a.e. t ∈ [0,T] \ Δk,

0 for a.e. t ∈ Δk.

By estimate (8.149) there exists β0 ∈ (0,∞) such that

∣
∣vk(η)

∣
∣ ≤ β0,

∣
∣vk(T − η)

∣
∣ ≤ β0.

Further, due to assumption (8.144), we have

v′k(t) sign vk(t) ≥ h(t)
∣
∣vk(t)

∣
∣− g∗(t) for a.e. t ∈

[
1
k

,η
]
.

So, we see that conditions (A.22), (A.23), and (A.24) hold and, by Criterion A.12, the
sequence {vk} is equicontinuous at 0 from the right and limk→∞ vk(0) = 0. Similarly, due
to (8.145) we have

v′k(t) sign vk(t) ≤ −h(t)
∣
∣vk(t)

∣
∣ + g∗(t) for a.e. t ∈

[
T − η,T − 1

k

]
.
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Hence, conditions (A.18), (A.19), and (A.20) hold and Criterion A.11 guarantees that the
sequence {vk} is equicontinuous at T from the left and limk→∞ vk(T) = 0. Consequently,
the sequences {φ(u′k)} and {u′k} are also equicontinuous at 0 from the right and at T from
the left and

lim
k→∞

u′k(0) = ρ, lim
k→∞

u′k(T) = ρ.

This yields that for each ε > 0 there exists δ > 0 such that for each t ∈ (0, δ) we can find
kt ∈ N such that

∣
∣u′(t)− ρ∣∣ ≤ ∣

∣u′(t)− u′kt (t)
∣
∣ +

∣
∣u′kt (t)− u′kt (0)

∣
∣ +

∣
∣u′kt (0)− ρ∣∣ < 3ε.

So, limt→0+ u′(t) = ρ. The relation limt→T− u′(t) = ρ can be proved similarly. This to-
gether with (8.150) yields that u satisfies the periodic conditions (8.2). �

Corollary 8.40. Let all assumptions of Theorem 8.39 be fulfilled and let α = 0 and ρ �= 0.
Then problem (8.1), (8.2) has a sign-changing solution.

Example 8.41. Assume that λ,μ ∈ (1,∞), ρ, c, r ∈ R, n ∈ N and that ψ ∈ L1[0,T] is
positive. For a.e. t ∈ [0,T] and all x, y ∈ R define the function

f (t, x, y) =
(

1
tλ
− 1

(T − t)μ
)
(
φ(y)− φ(ρ)

)
+ cφ(y)y + ψ(t)(x − r)2n−1.

Then for an arbitrary α ∈ R the conditions of Theorem 8.39 are satisfied. Indeed, choose
α ∈ R and a1, a2 ∈ (0,T), a1 < a2. Then we can find a large positive number r2 and a
negative number r1 with a large modulus such that condition (8.141) holds. Denote, for
a.e. t ∈ [0,T],

ψ1(t) = ψ(t) max
{|x − r|2n−1 : r1 + tρ ≤ x ≤ r2 + tρ

}

ψ2(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(T − t)−μ if t ∈ [
0, a1

)
,

(T − t)−μ + t−λ if t ∈ [
a1, a2

]
,

t−λ if t ∈ (
a2,T

]
.

Then ψ1,ψ2 ∈ L1[0,T] are positive and

f (t, x, y) sign(y − ρ)

= f (t, x, y) sign
(
φ(y)− φ(ρ)

)

> − 1
(T − t)μ

∣
∣φ(y)− φ(ρ)

∣
∣− |c|∣∣φ(y)− φ(ρ)

∣
∣|y| − |c|∣∣φ(ρ)

∣
∣|y| − ψ1(t)

> −(∣∣φ(y)− φ(ρ)
∣
∣ + 1

)(|c| + 1
)(∣∣φ(ρ)

∣
∣ + 1

)(
ψ1(t) + ψ2(t) + |y|)

for a.e. t ∈ [0, a2] and for each x ∈ [r1 + tρ, r2 + tρ], y ∈ R. So, if we put

ω(s) = (s + 1)
(|c| + 1

)(∣∣φ(ρ)
∣
∣ + 1

)
, h0 = ψ1 + ψ2,

we get inequality (8.142). Similarly we can derive inequality (8.143).
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Finally, let us assume that r is the constant given by Lemma 7.19 for y1 = y2 = ρ,
r0 = max{|r1|, r2} + T|ρ|, κ = 1, and put

h(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t−λ for a.e. t ∈ (0,η),

0 for a.e. t ∈ [η,T − η],

(T − t)−μ for a.e. t ∈ (T − η,T),

ψ3(t) = |c|φ(r)r + ψ2(t)
(
φ(r) +

∣
∣φ(ρ)

∣
∣) + ψ1(t),

ψ0(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ψ3(t) for a.e. t ∈ (0,η),

0 for a.e. t ∈ [η,T − η],

ψ3(t) for a.e. t ∈ (T − η,T).

Then ψ0 ∈ L1[0,T], h ∈ Lloc(0,T) and h is nonnegative and satisfies conditions (A.21)
and (A.25). Further, for a.e. t ∈ (0,η) and for each x ∈ [r1 + tρ, r2 + tρ], y ∈ [−r, r] we
obtain

f (t, x, y) sign(y − ρ) = f (t, x, y) sign
(
φ(y)− φ(ρ)

)

>
1
tλ
∣
∣φ(y)− φ(ρ)

∣
∣− |c|φ(r)r − ψ2(t)

(
φ(r) +

∣
∣φ(ρ)

∣
∣)− ψ1(t)

= h(t)
∣
∣φ(y)− φ(ρ)

∣
∣ + ψ0(t).

Hence condition (8.144) is valid. Similarly we show that condition (8.145) holds. There-
fore, by Theorem 8.39, problem (8.1), (8.2), where f is defined at the beginning of this
example, has a solution u satisfying (8.146). Since α is chosen arbitrarily, problem (8.1),
(8.2) has infinitely many solutions. In particular, if we choose α = 0 and ρ �= 0, the
corresponding solution of problem (8.1), (8.2) changes its sign on [0,T].
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and Rachůnková.
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The singular periodic problem for ordinary differential equations (when φp is the
identity operator) has been studied for about 40 years and many papers have been writ-
ten till now. However, the attention paid to this problem considerably increased after
1987 due to the paper [124] by Lazer and Solimini. Motivated by the model equation
u′′ = au−α + e(t) with α > 0, a �= 0 and e integrable on [0,T], they investigated the
existence of positive solutions to the Duffing equation u′′ = g(u) + e(t) using topolog-
ical arguments and the lower and upper functions method. The restoring force g was
allowed to have an attractive space singularity or a strong repulsive space singularity at
origin. The results by Lazer and Solimini have been generalized or extended, for example,
by Habets and Sanchez [103], Mawhin [137], del Pino, Manásevich and Montero [68],
Omari and Ye [148], Zhang [204, 206], Ge and Mawhin [97], Rachůnková and Tvrdý
[170] or Rachůnková, Tvrdý, and Vrkoč [174]. All of these papers, when dealing with
the repulsive singularity, supposed that the strong force condition is satisfied. For the
case of weak singularity, first results were delivered by Rachůnková, Tvrdý, and Vrkoč
in [173]. Further results were delivered later also by Bonheure and De Coster [45] and
Torres [194]. For more historical details and more detailed description of some of the
above results, see also Rachůnková, Staněk, and Tvrdý [165].





9
Mixed problem

Various mathematical models of phenomena from physics, chemistry, and technical prac-
tice take on the form of partial differential equations subject to initial or boundary condi-
tions. For the investigation of stationary solutions many of these models can be reduced
to singular ordinary differential equations of the second order, especially when, due to
symmetries in the geometry of the problem data, polar, cylindrical, or spherical coordi-
nates can be used. We can refer to the Thomas-Fermi equation occuring in problems from
quantum mechanics and astrophysics in Chan and Hon [57] and the Ginzburg-Landau
equation describing ferromagnetic systems and arising in superconductivity models in
Rentrop [176]. Further examples are singular Sturm-Liouville eigenvalue problems in
Reddien [175], problems in the theory of diffusion and reaction according to Langmuir-
Hinshelwood kinetics in Bobisud [43, 44], problems from chemical reactor theory in
Parter, Stein, and Stein [151] and applications from mechanics, especially from the buck-
ling theory of spherical shells in Drmota, Scheidl, Troger, and Weinmüller [81]

In this chapter, we will study a class of nonlinear singular boundary value problems
whose importance is derived, in part, from the fact that they arise when searching for
positive, radially symmetric solutions to the nonlinear elliptic partial differential equation

Δu + g(r,u) = 0 on Ω, u |Γ= 0,

where Δ is the Laplace operator, Ω is the open unit disk in Rn (centered at the origin), Γ
is its boundary, and r is the radial distance from the origin. Radially symmetric solutions
to this problem are solutions of the ordinary differential equation

u′′ +
n− 1
t

u′ + g(t,u) = 0

with mixed boundary conditions u′(0) = 0,u(1) = 0. (See, e.g., Berestycki, Lions, and
Peletier [36] or Gidas, Ni, and Nirenberg [98].)

9.1. Problem with singularities in all variables

Similar to Chapter 7, we will assume that φ is an increasing odd homeomorphism with
φ(R) = R and consider now the singular mixed problem of the form

(
φ(u′)

)′
+ f (t,u,u′) = 0, u′(0) = u(T) = 0. (9.1)
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We will investigate problem (9.1) on the set [0,T]×A, where A is a closed subset of R2,
and we will assume that f has singularities, that is, f does not satisfy the Carathéodory
conditions on the whole set [0,T] ×A. Singularities of f will be specified later for each
problem under consideration. Since the mixed and the Dirichlet problems are close to
each other, a lot of results and comments are valid for both of them. In accordance with
Chapters 1 and 7, we have the following definitions.

Definition 9.1. A function u : [0,T] → R with φ(u′) ∈ AC[0,T] is a solution of problem
(9.1) if u satisfies

(
φ
(
u′(t)

))′
+ f

(
t,u(t),u′(t)

) = 0 for a.e. t ∈ [0,T]

and fulfills the boundary conditions u′(0)=u(T)=0. If A �=R2, then (u(t),u′(t))∈A for
t ∈ [0,T] is required.

A function u ∈ C[0,T] is a w-solution of problem (9.1) if there exists a finite number
of singular points tν ∈ [0,T], ν = 1, . . . , r, such that if we denote J = [0,T]\{tν}rν=1, then
φ(u′) ∈ ACloc(J), u satisfies

(
φ
(
u′(t)

))′
+ f

(
t,u(t),u′(t)

) = 0 for a.e. t ∈ [0,T]

and fulfills the boundary conditions u′(0) = u(T) = 0. If A �= R2, then (u(t),u′(t)) ∈ A
for t ∈ J is required.

First, we consider the auxiliary regular mixed problem of the form

(
φ(u′)

)′
+ g(t,u,u′) = 0, u′(0) = 0, u(T) = 0, (9.2)

where g ∈ Car([0,T]×R2). In the previous chapters, we have defined solutions of regular
problems in the same way as those of singular ones. In particular, we have the following
definition.

Definition 9.2. A function u : [0,T]→R with φ(u′) ∈ AC[0,T] is a solution of problem
(9.2) if u satisfies (φ(u′(t)))′ + g(t,u(t),u′(t)) = 0 a.e. on [0,T] and fulfills the boundary
conditions u′(0) = 0,u(T) = 0.

All theorems of Section 7.1 can be modified to suit problem (9.2). However, we
present here only one of them which is based on the existence of lower and upper func-
tions to problem (9.2) and will be used further in the investigation of the singular mixed
problem (9.1).

Definition 9.3. A function σ ∈ C[0,T] is a lower function of problem (9.2) if there exists
a finite set Σ ⊂ (0,T) such that φ(σ ′) ∈ ACloc([0,T] \ Σ), σ ′(τ+) := limt→τ+ σ ′(t) ∈ R,
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σ ′(τ−) := limt→τ− σ ′(t) ∈ R for each τ ∈ Σ,

(
φ
(
σ ′(t)

))′
+ g

(
t, σ(t), σ ′(t)

) ≥ 0 for a.e. t ∈ [0,T],

σ ′(0) ≥ 0, σ(T) ≤ 0, σ ′(τ−) < σ ′(τ+) for each τ ∈ Σ.
(9.3)

If the inequalities in (9.3) are reversed, then σ is called an upper function of problem (9.2).

The next theorem can be proved similarly to Theorem 7.16.

Theorem 9.4. Let σ1 and σ2 be a lower function and an upper function of problem (9.2) and
let σ1(t) ≤ σ2(t) for t ∈ [0,T]. Assume that there is a function h ∈ L1[0,T] satisfying

∣
∣g(t, x, y)

∣
∣ ≤ h(t) for a.e. t ∈ [0,T] and all x ∈ [

σ1(t), σ2(t)
]
, y ∈ R.

Then problem (9.2) has a solution u such that

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0,T]. (9.4)

We will apply Theorem 9.4 to the singular mixed problem (9.1) under the assump-
tion

f ∈ Car
(
(0,T)×D

)
, D = (0,∞)× (−∞, 0),

f has time singularities at t = 0, t = T

and space singularities at x = 0, y = 0.

(9.5)

We are interested in the existence of a solution positive and decreasing on [0,T) and so
we will investigate problem (9.1) on the set [0,T]×A, where A = [0,∞)× (−∞, 0].

Theorem 9.5. Let (9.5) hold. Assume that there exist c ∈ (ν,∞), ν ∈ (0,T) and ε ∈
(0,φ(ν)/ν) such that

f
(
t, c(T − t),−c) = 0 for a.e. t ∈ [0,T],

0 ≤ f (t, x, y) for a.e. t ∈ [0,T] and all x ∈ (
0, c(T − t)], y ∈ [−c, 0),

ε ≤ f (t, x, y) for a.e. t ∈ [0, ν] and all x ∈ (
0, c(T − t)], y ∈ [−ν, 0).

(9.6)

Then problem (9.1) has a solution u ∈ AC1[0,T] satisfying

0 < u(t) ≤ c(T − t), −c ≤ u′(t) < 0 for t ∈ (0,T). (9.7)
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Proof

Step 1. Approximate solutions.
Choose k ∈ N such that k > 2/T . For t ∈ [1/k,T − 1/k], x, y ∈ R put

αk(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c(T − t) if x > c(T − t),

x if
c

k
≤ x ≤ c(T − t),

c

k
if x <

c

k
,

βk(y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− ε
k

if y > − ε
k

,

y if − c ≤ y ≤ − ε
k

,

−c if y < −c,

γ(y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε if y ≥ −ν,

ε
c + y

c − ν if −c < y < −ν,

0 if y ≤ −c.

For a.e. t ∈ [0,T] and all x, y ∈ R define

fk(t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(y) if t ∈
[

0,
1
k

)
,

f
(
t,αk(t, x),βk(y)

)
if t ∈

[
1
k

,T − 1
k

]
,

0 if t ∈
(
T − 1

k
,T
]
.

Then fk ∈ Car([0,T]×R2) and there is ψk ∈ L1[0,T] such that

∣
∣ fk(t, x, y)

∣
∣ ≤ ψk(t) for a.e. t ∈ [0,T] and all x, y ∈ R. (9.8)

Moreover, assumption (9.6) yields

fk
(
t, c(T − t),−c) = 0, fk(t, 0, 0) ≥ 0 for a.e. t ∈ [0,T].

We have arrived at the auxiliary regular problem

(
φ(u′)

)′
+ fk(t,u,u′) = 0, u′(0) = 0, u(T) = 0. (9.9)

Put σ1(t) = 0, σ2(t) = c(T − t) for t ∈ [0,T]. Then σ1 is a lower function and σ2 is an
upper function of problem (9.9). Hence, by Theorem 9.4, problem (9.9) has a solution uk
and

0 ≤ uk(t) ≤ c(T − t) for t ∈ [0,T].



Problem with singularities in all variables 191

Step 2. A priori estimates of the approximate solutions uk.
Since fk(t, x, y)≥0 for a.e. t ∈ [0,T] and all x, y ∈ R, we get that φ(u′k(t)) as well as

u′k(t) are nonincreasing on [0,T]. Therefore, u′k(0) = 0 implies u′k(t) ≤ 0 on [0,T]. By
uk(T) = 0 we get uk(T)− uk(t) ≥ −c(T − t), which yields u′k(T)≥− c and

−c ≤ u′k(t) ≤ 0 for t ∈ [0,T]. (9.10)

Due to u′k(0) = 0, there is tk ∈ (0,T] such that

−ν ≤ u′k(t) ≤ 0 for t ∈ [
0, tk

]
.

If tk ≥ ν, the last inequality in assumption (9.6) implies

φ
(
u′k(t)

) ≤ −εt for t ∈ [0, ν]. (9.11)

Assume that tk < ν and u′k(t) < −ν for t ∈ (tk, ν]. Then

φ
(
u′k(t)

) ≤ −εt for t ∈ [
0, tk

]
.

Since φ(u′k(t)) < −φ(ν) < −εt for t ∈ (tk, ν], we get inequality (9.11) again. Integrating
(9.11) over [0, ν] and using the fact that u′k is nonincreasing on [0,T] and so uk is concave
here we deduce that

ν0

t
(T − t) ≤ uk(t) ≤ c(T − t) on [0,T], (9.12)

where ν0 =
∫ ν

0 φ
−1(εs)ds > 0.

Step 3. Convergence of the sequences {uk} and {u′k}.
Consider the sequence {uk}. Choose an arbitrary interval [a, b] ⊂ (0,T). By virtue

of estimates (9.10)–(9.12) there is k0 ∈ N such that for each k ∈ N, k ≥ k0,

c

k0
≤ uk(t) ≤ c(T − t), −c ≤ u′k(t) ≤ − ε

k0
for t ∈ [a, b], (9.13)

and hence there is ψ ∈ L1[a, b] such that

∣
∣ fk

(
t,uk(t),u′k(t)

)∣∣ ≤ ψ(t) for a.e. t ∈ [a, b]. (9.14)

The sequences {uk} and {u′k} are bounded on [0,T] and, due to inequality (9.14), {u′k} is
equicontinuous on [a, b]. Therefore, using the Arzelà-Ascoli theorem and the diagonal-
ization theorem, we can choose u ∈ C[0,T]∩C1(0,T) and a subsequence of {uk} (which
we denote for the sake of simplicity in the same way) such that

lim
k→∞

uk = u uniformly on [0,T],

lim
k→∞

u′k = u′ locally uniformly on (0,T).
(9.15)

Consequently, we have u(T) = 0.
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Step 4. Convergence of the sequence of approximate nonlinearities { fk}.
Let ξ ∈ (0,T) be such that f (ξ, ·, ·) is continuous on (0,∞) × (−∞, 0). By estimate

(9.13) there exist an interval [aξ , bξ] ⊂ (0,T) and kξ ∈ N such that ξ ∈ [aξ , bξ] and for
each k ≥ kξ ,

c(T − ξ) ≥ uk(ξ) >
c

kξ
, −c ≤ u′k(ξ) < − ε

kξ
,

[
aξ , bξ

] ⊂
[

1
k

,T − 1
k

]
.

Therefore, fk(ξ,uk(ξ),u′k(ξ))= f (ξ,uk(ξ),u′k(ξ)) and, by virtue of property (9.15), we get

lim
k→∞

fk
(
t,uk(t),u′k(t)

) = f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T]. (9.16)

Step 5. The function u is a solution.
Choose an arbitrary t ∈ (0,T). Then there exists an interval [a, b]⊂(0,T) such that

t,T/2 ∈ [a, b] and inequality (9.14) holds for all sufficiently large k with ψ ∈ L1[a, b]. By
(9.9), we get

φ
(
u′k

(
T

2

))
− φ(u′k(t)

) =
∫ t

T/2
fk
(
s,uk(s),u′k(s)

)
ds.

Letting k → ∞ and using conditions (9.14), (9.15), (9.16) and the Lebesgue dominated
convergence theorem on [a, b], we get

φ
(
u′
(
T

2

))
− φ(u′(t)) =

∫ t

T/2
f
(
s,u(s),u′(s)

)
ds for each t ∈ (0,T).

Therefore, φ(u′) ∈ ACloc(0,T) satisfies

(
φ
(
u′(t)

))′
+ f

(
t,u(t),u′(t)

) = 0 for a.e. t ∈ [0,T]. (9.17)

Further, according to (9.9), we have

∫ T

0
fk
(
s,uk(s),u′k(s)

)
ds = −φ(u′k(T)

) ≤ φ(c) for each k >
2
T

,

which together with the nonnegativity of fk and equality (9.16) yields, by the Fatou
lemma, that f (t,u(t),u′(t)) ∈ L1[0,T]. Therefore, by equality (9.17), we have φ(u′) ∈
AC[0,T]. Moreover,

∣
∣φ
(
u′k(t)

)∣∣ ≤
∫ t

0

∣
∣ fk

(
s,uk(s),u′k(s)

)− f
(
s,u(s),u′(s)

)∣∣ds +
∫ t

0

∣
∣ f
(
s,u(s)u′(s)

)∣∣ds

for each k > 2/T and t ∈ (0,T). So, by (9.16), for each ε0 > 0 there exists δ > 0 such that

∣
∣φ
(
u′k(t)

)∣∣ < ε0 for t ∈ [0, δ], k >
2
T
.

Then
∣
∣φ
(
u′(t)

)∣∣ ≤ ∣
∣φ
(
u′(t)

)− φ(u′k(t)
)∣∣ +

∣
∣φ
(
u′k(t)

)∣∣

<
∣
∣φ
(
u′(t)

)− φ(u′k(t)
)∣∣ + ε0 for t ∈ (0, δ], k >

2
T
.
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Hence, by property (9.15),

∣
∣φ
(
u′(t)

)∣∣ ≤ lim
k→∞

∣
∣φ
(
u′(t)

)− φ(u′k(t)
)∣∣ + ε0 = ε0 for t ∈ (0, δ).

It means that u′(0) = limt→0+ u′(t) = 0. We have proved that u is a solution of problem
(9.1). �

Example 9.6. Let α > 0, β, γ, δ ≥ 0 be arbitrary numbers. By Theorem 9.5 the problem

u′′ +
1

tγ(1− t)δ
(

1
uα

+ uβ + 1
)
(
1 + (u′)3) = 0, u′(0) = u(1) = 0

has a solution u ∈ AC1[0, 1] satisfying

0 < u(t) ≤ 1− t, −1 ≤ u′(t) < 0 for t ∈ (0, 1).

Note that Theorem 9.5 guarantees solvability of our problem even for the nonlinearity

f (t, x, y) = 1
tγ(1− t)δ

(
1
xα

+ xβ + 1
)
(
1 + y3)

having a strong space singularity (α ≥ 1) at x = 0.

9.2. Problem arising in the shallow membrane caps theory

Now we will investigate solvability of the singular differential equation

(
t3u′

)′
+ t3

(
1

8u2
− a0

u
− b0t

2γ−4
)
= 0 (9.18)

subject to the mixed boundary conditions

lim
t→0+

t3u′(t) = 0, u(1) = 0, (9.19)

where a0 ≥ 0, b0 > 0, γ > 1, arising in the theory of shallow membrane caps, see Baxley
and Robinson [34], Dickey [74], Johnson [114], Kannan and O’Regan [115]. For close
problems see Agarwal and O’Regan [13, 14], Baxley [32], Goldberg [99].

Our aim is to prove existence of a positivew-solution to problem (9.18), (9.19) which
is defined as follows.

Definition 9.7. A function u is a positive w-solution of problemindexsolution!w-solution
(9.18), (9.19) if u satisfies the following conditions:

(i) u ∈ C[0, 1]∩ C2(0, 1),
(ii) u(t) > 0 for all t ∈ (0, 1),

(iii) u satisfies (9.18) for t ∈ (0, 1) and the boundary conditions (9.19).
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Note that problem (9.18), (9.19) is singular and exhibits both the time and space
singularities. We can see this by transforming (9.18) into the first-order system by means
of the substitution x1(t) = u(t), x2(t) = t3u′(t), namely,

x′1 = f1
(
t, x1, x2

)
:= 1

t3
x2,

x′2 = f2
(
t, x1, x2

)
:= −t3

(
1

8x2
1
− a0

x1
− b0t

2γ−4
)
.

Because of the term 1/t3 in the first equation, we see that the function f1 is not integrable
in t on any right neighborhood of t = 0 and so f1 has a time singularity at t = 0.
Moreover, the function f2 is not continuous in x1, having a space singularity at x1 = 0.
In particular, since the powers of x1 in f2 are −2 and −1, f2 has strong singularities at
x1 = 0.

The present investigation of problem (9.18), (9.19) is strongly motivated by the
results given in Kannan and O’Regan [115], where the second boundary condition in
(9.19) has the form u(1) = u1 > 0. It turns out that in this case the solutions of problem
(9.18), (9.19) are positive on [0, 1] and consequently, the problem has no space singulari-
ties. As a technical tool in the existence proof, the lower and upper functions method has
been used in [115]. In our case, since u1 = 0, we need to cope with a space singularity at
u = 0 and therefore it is necessary to generalize the approach. To this aim we consider the
following auxiliary boundary value problem:

(
p(t)u′

)′
+ p(t)q(t) f (t,u) = 0, (9.20)

lim
t→0+

p(t)u′(t) = 0, u(T) = 0, (9.21)

where p : [0,T]→R, q : (0,T]→R are continuous and f satisfies the Carathéodory
conditions on the set (0,T)×D , where D ⊂ R.

Definition 9.8. A function u ∈ C[0,T] ∩ C1(0,T] with pu′ ∈ AC[0,T] a solution of
problem (9.20), (9.21) if it satisfies (9.20) for a.e. t ∈ [0,T] and if the boundary conditions
(9.21) hold.

We now define a lower function and an upper function of problem (9.20), (9.21).

Definition 9.9. A function σ ∈ C[0,T] is a lower function of problem (9.20), (9.21) if
there is a finite set Σ ⊂ (0,T) such that σ ′(τ+), σ ′(τ−) ∈ R for each τ ∈ Σ and pσ ′ ∈
ACloc((0,T) \ Σ). Moreover, σ has to satisfy

(
p(t)σ ′(t)

)′
+ p(t)q(t) f

(
t, σ(t)

) ≥ 0 for a.e. t ∈ [0,T],

lim
t→0+

p(t)σ ′(t) ≥ 0, σ(T) ≤ 0,

σ ′(τ−) < σ ′(τ+) for each τ ∈ Σ.

(9.22)

If the inequalities in (9.22) are reversed, then σ is an upper function of problem (9.20),
(9.21).
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Note that, in contrast to Definition 9.3, Definition 9.9 admits lower and upper func-
tions having first derivatives unbounded at the endpoints t = 0 and t = T .

For the subsequent analysis we make the following assumptions:

p ∈ C[0,T], q ∈ C(0,T], p(t) > 0, q(t) > 0 for t ∈ (0,T], (9.23)

∫ T

0
p(s)q(s)ds <∞,

∫ T

0

1
p(t)

(∫ t

0
p(s)q(s)ds

)
dt <∞, (9.24)

f satisfies the L∞-Carathéodory conditions on [0,T]×R, (9.25)

that is, f ∈ Car([0,T]×R) and for each compact set K ⊂ R there is a constant mK > 0
such that

∣
∣ f (t, x)

∣
∣ ≤ mK for a.e. t ∈ [0,T] and all x ∈K .

To prove the existence of a solution u to problem (9.20), (9.21), we use the lower and
upper functions method. The related fundamental statement is given in Theorem 9.10.

Theorem 9.10. Let σ1 and σ2 be a lower function and an upper function of problem (9.20),
(9.21). Assume that σ1(t) ≤ σ2(t) for t ∈ [0,T]. Let us also assume that conditions (9.23),
(9.24), and (9.25) hold. Then problem (9.20), (9.21) has a solution u satisfying estimate
(9.4). If, moreover,

lim
t→0+

1
p(t)

∫ t

0
p(s)q(s)ds = 0, (9.26)

then

u ∈ C1[0,T], u′(0) = 0. (9.27)

Proof

Step 1. Existence of a solution u of an auxiliary problem.
For a.e. t ∈ [0,T] and all x ∈ R, define

f ∗(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(
t, σ2(t)

)− x − σ2(t)
x − σ2(t) + 1

if x > σ2(t),

f (t, x) if σ1(t) ≤ x ≤ σ2(t),

f
(
t, σ1(t)

)
+

σ1(t)− x
σ1(t)− x + 1

if x < σ1(t),

and consider the equation

(
p(t)u′

)′
+ p(t)q(t) f ∗(t,u) = 0. (9.28)

Define an operator F : C[0,T] → C[0,T] by

(F u)(t) =
∫ T

t

(
1

p(τ)

∫ τ

0
p(s)q(s) f ∗

(
s,u(s)

)
ds
)
dτ. (9.29)
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Since condition (9.25) holds, we can find m∗ ∈ (0,∞) such that
∣
∣ f ∗(t, x)

∣
∣ ≤ m∗ for a.e. t ∈ [0,T] and all x ∈ R. (9.30)

Therefore, due to assumption (9.24), F is continuous and compact, and the Schauder
fixed point theorem guarantees that a fixed point u ∈ C[0,T] of F exists. According to
(9.29), we now have

u(t) =
∫ T

t

(
1

p(τ)

∫ τ

0
p(s)q(s) f ∗

(
s,u(s)

)
ds
)
dτ for t ∈ [0,T].

Hence, u satisfies (9.28) a.e. in [0,T], the boundary conditions (9.21) hold, and pu′ ∈
AC[0,T]. The assumptions p ∈ C[0,T] and p > 0 on (0,T] result in u ∈ C1(0,T]. This
means that u is a solution of problem (9.28), (9.21).

If, additionally, assumption (9.26) holds, we can use inequality (9.30) to conclude

lim
t→0+

∣
∣u′(t)

∣
∣ = lim

t→0+

∣
∣
∣
∣−

1
p(t)

∫ t

0
p(s)q(s) f ∗

(
s,u(s)

)
ds
∣
∣
∣
∣

≤ m∗ lim
t→0+

1
p(t)

∫ t

0
p(s)q(s)ds = 0.

Finally, we set u′(0) = limt→0+ u′(t) = 0, and assertion (9.27) follows.

Step 2. The function u solves (9.20).
To this end we verify that estimate (9.4) holds. Let us set v = u− σ2 and assume that

max
{
v(t) : t ∈ [0,T]

} = v
(
t0
)
> 0.

Since σ2(T) ≥ 0 and u(T) = 0, it follows that t0 ∈ [0,T). Moreover, Definitions 9.8 and
9.9 imply that t0 /∈ Σ, because v′(τ−) < v′(τ+) for τ ∈ Σ. Let t0 = 0. We have from
(9.21) and the inequality limt→0+ p(t)σ ′2(t) ≤ 0 (see (9.22)) that limt→0+ p(t)v′(t) ≥ 0.
Let limt→0+ p(t)v′(t) > 0. Then limt→0+ v′(t) > 0, which contradicts the assumption that
v has its maximum value at t0 = 0. Therefore, limt→0+ p(t)v′(t) = 0 holds. Now, let
t0 ∈ (0,T) \ Σ. Then v′(t0) = 0. So, we have t0 ∈ [0,T) \ Σ and we can find a δ > 0 such
that v(t) > 0 on (t0, t0 + δ) ⊂ (0,T) and

(
p(t)v′(t)

)′ = (
p(t)u′(t)

)′ − (p(t)σ ′2(t)
)′

≥ −p(t)q(t)
(
f
(
t, σ2(t)

)− u(t)− σ2(t)
u(t)− σ2(t) + 1

)
+ p(t)q(t) f

(
t, σ2(t)

)

= p(t)q(t)
v(t)

v(t) + 1
> 0

a.e. in (t0, t0 + δ). This yields

0 <
∫ t

t0
p(s)q(s)

v(s)
v(s) + 1

ds ≤
∫ t

t0

(
p(s)v′(s)

)′
ds = p(t)v′(t)

for t ∈ (t0, t0 +δ), contradicting the fact that v has its maximum at t0. We have shown that
u(t) ≤ σ2(t) for t ∈ [0,T]. The inequality σ1(t) ≤ u(t) for t ∈ [0,T] follows analogously.
The definition of f ∗ finally implies that u is also a solution of (9.20). �
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Example 9.11. Let a > 0, ε > 0, p(t) = ta, q(t) = tε−1. Then p and q satisfy conditions
(9.23), (9.24), and (9.26).

The main difficulty in applying Theorem 9.10 is to find a lower function σ1 and an
upper function σ2 for problem (9.20), (9.21) which are well ordered, that is, σ1(t) ≤ σ2(t)
for t ∈ [0,T]. If f (·, x) in (9.20) changes its sign on [0,T], for instance, then lower and
upper functions of problem (9.20), (9.21) have to be nonconstant and therefore their
computation can be difficult. In Lemmas 9.12 and 9.13 we present two pairs of well-
ordered lower and upper functions for problem (9.18), (9.19), where f (t, x) = 1/(8x2)−
a0/x − b0t2γ−4 changes its sign on (0, 1)× (0,∞).

Lemma 9.12. Let γ ≥ 2. Then there exist constants ν∗, c∗ ∈ (0,∞) such that for each
ν ∈ (0, ν∗] and c ≥ c∗, the functions

σ1(t) = ν(t + ν)(1− t), σ2(t) = c
√

1− t2 for t ∈ [0, 1], (9.31)

are a lower and an upper function of problem (9.18), (9.19).

Proof . It follows from (9.31) that σ ′1(t) = ν(1 − 2t − ν) and σ ′2(t) = −ct/√1− t2 for
t ∈ [0, 1). Thus,

lim
t→0+

t3σ ′1(t) = 0, lim
t→0+

t3σ ′2(t) = 0, σ1(1) = σ2(1) = 0. (9.32)

By inserting σ1 into (9.18) we obtain

(
t3σ ′1(t)

)′
+ t3

(
1

8σ2
1 (t)

− a0

σ1(t)
− b0t

2γ−4
)

= t2
(
νϕ1(t, ν) +

t

ν2(1− t)2(t + ν)2
ϕ2(t, ν)

)
for t ∈ (0, 1),

where

ϕ1(t, ν) = 3− 3ν − 8t,

ϕ2(t, ν) = 1
8
− a0ν(1− t)(t + ν)− b0t

2γ−4ν2(1− t)2(t + ν)2.

Let us choose ν0 ∈ (0, 3/11) such that

a0ν0
(
1 + ν0

)
+ b0ν

2
0

(
1 + ν0

)2
<

1
16
.

Then for all ν ∈ (0, ν0), we have ϕ1(t, ν) > 0, ϕ2(t, ν) > 0 for t ∈ [0, ν]. Moreover, we can
find ν∗ ∈ (0, ν0) such that

ν∗ϕ1
(
t, ν∗

)
+

1

16ν∗
(
1 + ν∗

)2 > 0 for t ∈ [
ν∗, 1

]
,

and consequently, for all ν ∈ (0, ν∗], we have

(
t3σ ′1(t)

)′
+ t3

(
1

8σ2
1 (t)

− a0

σ1(t)
− b0t

2γ−4
)
≥ 0 for t ∈ [0, 1). (9.33)

By properties (9.32) and (9.33), σ1 is a lower function of problem (9.18), (9.19).
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We now insert σ2 into (9.18) and obtain

(
t3σ ′2(t)

)′
+ t3

(
1

8σ2
2 (t)

− a0

σ2(t)
− b0t

2γ−4
)
≤ t3ϕ3(t, c) for t ∈ [0, 1),

where

ϕ3(t, c) = −c(1− t2)−3/2
(

1−
√

1− t2
8c3

)
≤ −c(1− t2)−3/2

(
1− 1

8c3

)
≤ 0

for t ∈ [0, 1) and c ≥ 1/2. Hence, for all c ∈ [1/2,∞) in the definition of σ2 (cf. (9.31)),
we have

(
t3σ ′2(t)

)′
+ t3

(
1

8σ2
2 (t)

− a0

σ2(t)
− b0t

2γ−4
)
≤ 0 for t ∈ [0, 1). (9.34)

Finally, we conclude from properties (9.32) and (9.34) that σ2 is an upper function of
problem (9.18), (9.19), which completes the proof. �

Lemma 9.13. Assume γ ∈ (1, 2). Then there exist constants ν∗, c∗ ∈ (0,∞) such that for
each ν ∈ (0, ν∗] and c ≥ c∗, the functions

σ1(t) = νt2−γ(1− t), σ2(t) = c
√

1− t2 for t ∈ [0, 1] (9.35)

are a lower and an upper function of problem (9.18), (9.19).

Proof . We first calculate the derivatives of σ1 and σ2:

σ ′1(t) = νt1−γ
(
2− γ − (3− γ)t

)
, σ ′2(t) = − ct√

1− t2 for t ∈ [0, 1).

Clearly, σ1 and σ2 satisfy condition (9.32). By inserting σ1 into (9.18) we obtain

(
t3σ ′1(t)

)′
+ t3

(
1

8σ2
1 (t)

− a0

σ1(t)
− b0t

2γ−4
)

= νt3−γ
[
(4− γ)(2− γ)− (5− γ)(3− γ)t

]
+

t2γ−1

ν2(1− t)2
ψ(t, ν)

for t ∈ (0, 1), where ψ(t, ν) = 1/8 − a0ν(1 − t)t2−γ − b0ν2(1 − t)2. We now find a
constant ν0 > 0 such that ψ(t, ν) > 0 for t ∈ [0, 1] and ν ∈ (0, ν0]. Furthermore, if
t0 = [(4− γ)(2− γ)]/[(5− γ)(3− γ)], we have (4− γ)(2− γ)− (5− γ)(3− γ) t ≥ 0 for
t ∈ [0, t0]. Further, we get

lim
ν→0+

t2γ−1

ν2(1− t)2
ψ(t, ν) = ∞

uniformly on [t0, 1). Therefore, we are able to provide a constant ν∗ ∈ (0, ν0] such that
for any ν ∈ (0, ν∗] in the definition of σ1, see (9.35),

(
t3σ ′1(t)

)′
+ t3

(
1

8σ2
1 (t)

− a0

σ1(t)
− b0t

2γ−4
)
> 0 for t ∈ (0, 1)
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holds. This means that, by condition (9.32), σ1 is a lower function of problem (9.18),
(9.19). Since σ2 is as in Lemma 9.12, we can similarly show that it is an upper function,
and the result follows. �

The main results characterizing solvability of problem (9.18), (9.19) are contained in
the next two theorems. We begin with considering the case γ ≥ 2. This study will utilize
results provided by Lemma 9.12.

Theorem 9.14. Let γ ≥ 2. Then there exists a positive w-solution u of problem (9.18),
(9.19). Moreover, this solution satisfies

u(0) > 0, lim
t→0+

u′(t) = 0. (9.36)

Proof

Step 1. Construction of auxiliary functions fk.
Our arguments are based on Theorem 9.10. We set

T = 1, p(t) = t3, q(t) = 1, f (t, x) = 1
8x2

− a0

x
− b0t

2γ−4.

It is easily seen that p and q satisfy conditions (9.23), (9.24), and (9.26), but condition
(9.25) does not hold for f . To remedy the situation, we introduce a sequence of functions
fk, k ∈ N, k > 3. Let σ1 and σ2 be specified by formulas (9.31), where ν ≤ ν∗ ≤ 1/9 and
c ≥ c∗ > 1, and for t ∈ [0, 1], x ∈ R, define

fk(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t ∈
[

0,
1
k

)
,

f
(
t,α(t, x)

)
if t ∈

[
1
k

, 1− 1
k

]
,

1 if t ∈
(

1− 1
k

, 1
]

,

(9.37)

where

α(t, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ2(t) if x > σ2(t),

x if σ1(t) ≤ x ≤ σ2(t),

σ1(t) if x < σ1(t).

Note that all functions fk satisfy condition (9.25).

Step 2. Lower and upper functions.
By Lemma 9.12, σ1 is a lower function and σ2 is an upper function of problem (9.18),

(9.19). For k ∈ N, k > 3, consider the equation

(
t3u′

)′
+ t3 fk(t,u) = 0. (9.38)
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Since k > 3, we have

(
t3σ ′1(t)

)′ = t2ν(3− 3ν − 8t) ≥ 0 for t ∈
[

0,
1
k

)
,

(
t3σ ′1(t)

)′
+ t3 = t2

(
ν(3− 3ν − 8t) + t

)
> 0 for t ∈

(
1− 1

k
, 1
]
.

Similarly,

(
t3σ ′2(t)

)′ = −ct3(1− t2)−3/2(
4− 3t2

) ≤ 0 for t ∈
[

0,
1
k

)
,

(
t3σ ′2(t)

)′
+ t3 = t3

(− c(1− t2)−3/2(
4− 3t2

)
+ 1

)
< 0 for t ∈

(
1− 1

k
, 1
)
.

Therefore, σ1 and σ2 are also lower and upper functions of problem (9.38), (9.19). With
no loss of generality, we can choose ν ∈ (0, ν∗) and c ≥ c∗ in such a way that ν(1 + ν) < c
holds. Then σ1 ≤ σ2 on [0, 1] and, by Theorem 9.10, problem (9.38), (9.19) has a solution
uk ∈ C1[0, 1] for k > 3 satisfying

σ1(t) ≤ uk(t) ≤ σ2(t) for t ∈ [0, 1], u′k(0) = 0. (9.39)

Step 3. Convergence of the sequence of approximate solutions {uk}.
We regard the sequence {uk} of solutions to problem (9.38), (9.19) as a sequence of

approximations to u, and first discuss the convergence properties of {uk}. Let us choose
an interval [0, b] ⊂ [0, 1). Then there exists an index k1 ∈ N such that [0, b] ⊂ [0, 1−1/k]
for k ≥ k1, and due to the boundary conditions (9.19) and (9.38), we have

t3u′k(t) +
∫ t

0
s3 fk

(
s,uk(s)

)
ds = 0 for t ∈ [0, b], k ≥ k1. (9.40)

Let

rb = min
{
σ1(t) : t ∈ [0, b]

}
, mb = 1

8r2
b

+
a0

rb
.

It follows from the first formula in (9.31) that rb > 0 and hence, (9.37) and (9.39) yield

∣
∣t3 fk

(
t,uk(t)

)∣∣ ≤ mbt
3 + b0t

2γ−1 for t ∈ [0, b], k ≥ k1. (9.41)

Consequently, by equality (9.40),

∣
∣t3u′k(t)

∣
∣ ≤ mb

4
t4 +

b0

2γ
t2γ for t ∈ [0, b], k ≥ k1. (9.42)

Due to estimates (9.39), (9.42) and the condition γ ≥ 2, the sequences {uk} and {u′k} are
bounded on [0, b], which implies that {uk} is equicontinuous on [0, b]. Furthermore, for
each ε > 0, there exists δ > 0 such that for any t1, t2 ∈ [0, b] and k ≥ k1, if |t1 − t2| < δ
holds, then

∣
∣t31u

′
k

(
t1
)− t32u′k

(
t2
)∣∣ ≤ mb

∣
∣
∣
∣

∫ t2

t1
s3ds

∣
∣
∣
∣ + b0

∣
∣
∣
∣

∫ t2

t1
s2γ−1ds

∣
∣
∣
∣ < ε.
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Hence the sequence {t3u′k} is equicontinuous on [0, b] and, by inequality (9.42), it is
bounded on [0, b]. The Arzelà-Ascoli theorem now implies that there exists a subsequence
{uk�} ⊂ {uk} such that

lim
�→∞

uk� = u uniformly on [0, b],

lim
�→∞

t3u′k� = t3u′ locally uniformly on (0, b].

Finally, by the diagonalization theorem, we find a subsequence (for simplicity we denote
it by {uk}) satisfying

lim
k→∞

uk = u locally uniformly on [0, 1),

lim
k→∞

t3u′k = t3u′ locally uniformly on (0, 1).
(9.43)

Step 4. Properties of the function u.
We conclude the proof by establishing the properties of the limit function u. By (9.42)

and (9.43), we obtain

∣
∣t3u′(t)

∣
∣ ≤ mb

4
t4 +

b0

2γ
t2γ for t ∈ (0, b].

Therefore,

lim
t→0+

t3u′(t) = 0 (9.44)

and due to (9.39) and (9.43), we have u ∈ C[0, 1) and

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, 1). (9.45)

Since σ1(1) = σ2(1) = 0, we get

lim
t→1−

u(t) = 0. (9.46)

Moreover, (9.37) and (9.43) imply

lim
k→∞

t3 fk(t,uk(t)) = t3 f (t,u(t)) for t ∈ (0, 1).

Consequently, due to (9.41) we can use the Lebesgue dominated convergence theorem on
[0, b]. Having in mind that b ∈ (0, 1) is arbitrary and letting k → ∞ in equality (9.40),
we conclude that

t3u′(t) +
∫ t

0
s3 f

(
s,u(s)

)
ds = 0 for t ∈ (0, 1). (9.47)

Thus u ∈ C2(0, 1) and u satisfies (9.18) for t ∈ (0, 1). Setting u(1) = limt→1− u(t),
we obtain u(1) = 0 and u ∈ C[0, 1]. These smoothness properties of u together with
properties (9.44)–(9.47) guarantee that u is a positive w-solution of problem (9.18),
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(9.19). It remains to show that assertion (9.36) holds. The first condition in (9.36) follows
from σ1(0) > 0. The second condition results by noting that

lim
t→0+

∣
∣u′(t)

∣
∣ ≤ lim

t→0+

mb

4
t + lim

t→0+

b0

2γ
t2γ−3 = 0

due to (9.42) and (9.43). �

Now, we apply Lemma 9.13 in order to cover the case γ ∈ (1, 2).

Theorem 9.15. Let γ ∈ (1, 2). Then there exists a positive w-solution u of problem (9.18),
(9.19). If γ > 3/2, then assertion (9.36) holds and for γ = 3/2 the w-solution u satisfies

u(0) > 0, lim
t→0+

u′(t) = b0

3
. (9.48)

Proof

Step 1. The arguments for the construction of the auxiliary sequence { fk} and of the
upper function σ2 are analogous to those given in steps 1 and 2 of the proof of Theorem
9.14. The only difference is the definition of the lower function σ1 which is now specified
by the first formula in (9.35), with ν ≤ ν∗ ≤ 1/8. By Lemma 9.13, σ1 is a lower function
of problem (9.18), (9.19). Choose k0 ∈ N, k0 > 4/(2− γ). For k ≥ k0 we have

(
t3σ ′1(t)

)′ = νt3−γ
(
(4− γ)(2− γ)− (5− γ)(3− γ)t

) ≥ 0

if t ∈ [0, 1/k), and

(
t3σ ′1(t)

)′
+ t3 = νt3−γ

(
(4− γ)(2− γ)− (5− γ)(3− γ)t

)
+ t3 > 0

if t ∈ (1 − 1/k, 1], which implies that σ1 is also a lower function of problem (9.38),
(9.19). Since σ2 is the same as in the previous proof, it is an upper function of problem
(9.38), (9.19). Now, arguing as in the proof of Theorem 9.14, we get the sequence {uk} of
solutions to problems (9.38), (9.19), k ∈ N, k ≥ k0. Furthermore, uk ∈ C1[0, 1] and it
satisfies conditions (9.39).

Step 2. Consider an interval [0, b] ⊂ [0, 1) and the sequence {uk}, k ∈ N, k ≥ k0. Then
equality (9.40) holds. If we put

a1 = a0

ν(1− b)
, b1 = 1

8ν2(1− b)2
+ b0,

we get

t3

8σ2
1 (t)

+
a0t3

σ1(t)
+ b0t

2γ−1 ≤ a1t
γ+1 + b1t

2γ−1 for t ∈ [0, b]. (9.49)

Assume that k1 ≥ k0. Thus, (9.39), (9.40), and (9.49) yield

∣
∣t3 fk

(
t,uk(t)

)∣∣ ≤ a1t
γ+1 + b1t

2γ−1,
∣
∣t3u′k(t)

∣
∣ ≤ a1

γ + 2
tγ+2 +

b1

2γ
t2γ
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for t ∈ [0, b] provided that k ≥ k1. Hence, for each ε > 0 there exists δ > 0 such that for
any t1, t2 ∈ [0, b] and k ≥ k1,

∣
∣t1 − t2

∣
∣ < δ �⇒ ∣

∣t31u
′
k

(
t1
)− t32u′k

(
t2
)∣∣ ≤

∣
∣
∣
∣

∫ t2

t1

(
a1t

γ+1 + b1t
2γ−1)dt

∣
∣
∣
∣ < ε,

∣
∣t1 − t2

∣
∣ < δ �⇒ ∣

∣uk
(
t1
)− uk

(
t2
)∣∣ ≤

∣
∣
∣
∣

∫ t2

t1

(
a1

γ + 2
tγ−1 +

b1

2γ
t2γ−3

)
dt
∣
∣
∣
∣ < ε.

Therefore, the sequences {uk} and {t3u′k} are bounded and equicontinuous on [0, b] and
condition (9.43) results due to the arguments given in the proof of Theorem 9.14.

Step 3. Properties (9.45), (9.46), (9.47) and u ∈ C[0, 1]∩C2(0, 1) can be shown as in the
proof of Theorem 9.14. Equality (9.47) leads to

t3u′(t) =
∫ t

0

s3

u2(s)

(
a0u(s)− 1

8

)
ds +

b0

2γ
t2γ for t ∈ (0, 1). (9.50)

Assume that u(0) > 0. Having in mind that γ > 1 and limt→0+ t3u′(t) = 0, equality (9.50)
yields

lim
t→0+

∫ t

0
s3
(
a0

u(s)
− 1

8u2(s)

)
ds = 0.

Hence, by the l’Hospital rule, we have

lim
t→0+

u′(t) = lim
t→0+

1
t3

∫ t

0
s3
(
a0

u(s)
− 1

8u2(s)

)
ds + lim

t→0+

b0

2γ
t2γ−3

= 1
3

lim
t→0+

t

u2(t)

(
a0u(t)− 1

8

)
+
b0

2γ
lim
t→0+

t2γ−3

= b0

2γ
lim
t→0+

t2γ−3,

that is,

lim
t→0+

u′(t) = b0

2γ
lim
t→0+

t2γ−3. (9.51)

On the other hand, since σ1(0) = 0 and limt→0+ σ
′
1(t) = ∞, we conclude that

u(0) = 0 �⇒ lim
t→0+

u′(t) = ∞ (9.52)

by virtue of the first inequality in (9.45).
Now, assume that γ ≥ 3/2. If u(0) = 0, then there is δ0 ∈ (0, 1) such that

∫ t

0

s3

u2(s)

(
a0u(s)− 1

8

)
ds < 0 for t ∈ (

0, δ0
)

and consequently, by (9.50),

u′(t) <
b0

2γ
t2γ−3 < c0 for t ∈ (

0, δ0
)
,
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where c0 = (b0/2γ)δ
2γ−3
0 ∈ (0,∞). This contradicts (9.52). So we have proved that if

γ ≥ 3/2, then u(0) > 0. If γ > 3/2, relation (9.51) gives limt→0+ u′(t) = 0 and if γ = 3/2,
we get from (9.51) that limt→0+ u′(t) = b0/3. This completes the proof. �

Remark 9.16. Consider a positive w-solution u of problem (9.18), (9.19) for γ > 1. We
first recapitulate the behavior of u′ at the singular point t = 0.

If γ ∈ (3/2,∞), then, by (9.36), we know that u′(0+) = 0 holds.
If γ = 3/2, then, by (9.48), the derivative satisfies u′(0+) = b0/3.

If γ ∈ (1, 3/2), then u′(0+) = ∞. This follows from (9.52) for u(0) = 0 and from
(9.51) for u(0) > 0.

Now, let us consider the singular point t = 1. Since u(1) = 0, there exists ξ ∈ (0, 1)
such that a0u(t) ≤ 1/16 for t ∈ [ξ, 1]. Let σ2 be an upper function given by the second
formula in (9.31) and let u(t) ≤ σ2(t) for t ∈ [0, 1]. Then it follows that

−
∫ t

ξ

ds

u2(s)
≤ −

∫ t

ξ

ds

σ2
2 (s)

≤ − 1
2c2

∫ t

ξ

ds

1− s =
1

2c2
ln
(

1− t
1− ξ

)
, t ∈ (ξ, 1).

Integration of (9.18) yields

t3u′(t) = ξ3u′(ξ) +
∫ t

ξ

s3

u2(s)

(
a0u(s)− 1

8

)
ds + b0

∫ t

ξ
s2γ−1ds

≤ ξ3u′(ξ) +
ξ3

32c2
ln
(

1− t
1− ξ

)
+
b0

2γ
for t ∈ (ξ, 1),

and therefore, limt→1− t3u′(t) = u′(1−) = −∞.
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10
Nonlocal problems

In this chapter, we discuss problems for second-order differential equations with
φ-Laplacian and with nonlinearities which may have singularities in both their space
variables. Boundary conditions under discussion are generally nonlinear and nonlocal.
Using regularization and sequential techniques, we present general existence principles
for the solvability of regular and singular nonlocal problems and show their applications.

We consider singular differential equations of the form
(
φ(u′)

)′ = f (t,u,u′), (10.1)

where

φ is an increasing and odd homeomorphism and φ(R) = R. (10.2)

Here, f ∈ Car([0,T]×D), D ⊂ R2 is not necessarily closed, and f may have singularities
in its space variables.

Let A denote the set of functionals α : C1[0,T] → R which are
(a) continuous,
(b) bounded, that is, α(Ω) is bounded for any bounded Ω ⊂ C1[0,T].
For α,β ∈A, consider the (generally nonlinear and nonlocal) boundary conditions

α(u) = 0, β(u) = 0, (10.3)

where α and β satisfy the compatibility condition requiring that, for each μ ∈ [0, 1], there
exists a solution of the problem

(
φ(u′)

)′ = 0, α(u)− μα(−u) = 0, β(u)− μβ(−u) = 0.

This is true if and only if the system

α(A + Bt)− μα(−A− Bt) = 0,

β(A + Bt)− μβ(−A− Bt) = 0
(10.4)

has a solution (A,B) ∈ R2 for each μ ∈ [0, 1].

Definition 10.1. A function u : [0,T] → R is said to be a solution of problem (10.1),
(10.3) if φ(u′) ∈ AC[0,T], u satisfies the boundary conditions (10.3) and (φ(u′(t)))′ =
f (t,u(t),u′(t)) holds for almost all t ∈ [0,T].
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Special cases of the boundary conditions (10.3) are the Dirichlet (Neumann, mixed,
periodic, and Sturm-Liouville type) boundary conditions which we get setting α(x) =
x(0), β(x) = x(T) (α(x) = x′(0), β(x) = x′(T); α(x) = x(0), β(x) = x′(T); α(x) =
x(0)−x(T), β(x) = x′(0)−x′(T) and α(x) = a0x(0) +a1x′(0), β(x) = b0x(T) +b1x′(T)).

Existence principles

In order to give an existence result for problem (10.1), (10.3), we use regularization
and sequential techniques. For this purpose, consider the sequence of regular differential
equations

(
φ(u′)

)′ = fn(t,u,u′), (10.5)

where fn ∈ Car([0,T]×R2), n ∈ N. Each function fn is constructed in such a way that

fn(t, x, y) = f (t, x, y) for a.e. t ∈ [0,T], (x, y) ∈ Qn,

where Qn ⊂D and, roughly speaking, Qn converges to D as n→∞.
Let h ∈ Car([0,T]×R2) and consider the regular differential equation

(
φ(u′)

)′ = h(t,u,u′). (10.6)

The next result is an existence principle which can be used for solving the nonlocal
regular problem (10.6), (10.3).

Theorem 10.2 (existence principle for nonlocal regular problems). Assume (10.2), h ∈
Car([0,T]×R2) and α,β ∈A. Suppose there exist positive constants S0 and S1 such that

‖u‖∞ < S0, ‖u′‖∞ < S1,

for each λ ∈ [0, 1] and each solution u to the problem

(
φ(u′)

)′ = λh(t,u,u′), α(u) = 0, β(u) = 0. (10.7)

Also assume that there exist positive constants Λ0 and Λ1 such that

|A| < Λ0, |B| < Λ1, (10.8)

for each μ ∈ [0, 1] and each solution (A,B) ∈ R2 of system (10.4).
Then problem (10.6), (10.3) has a solution.

Proof . Set

Ω = {
x ∈ C1[0,T] : ‖x‖∞ < max

{
S0,Λ0 + Λ1T

}
, ‖x′‖∞ < max

{
S1,Λ1

}}
.

Then Ω is an open, bounded, and symmetric with respect to 0 ∈ C1[0,T] subset of the
space C1[0,T]. Define an operator P : [0, 1]×Ω→ C1[0,T] by the formula

P (λ, x)(t) = x(0) + α(x) +
∫ t

0
φ−1(φ

(
x′(0) + β(x)

)
+ λ

∫ s

0
h
(
v, x(v), x′(v)

)
dv
)
ds.

(10.9)
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It follows from h ∈ Car([0,T] × R2), the continuity of α, β, φ, and the Lebesgue domi-
nated convergence theorem that P is a continuous operator. We claim that the set P ([0,
1]×Ω) is relatively compact in C1[0,T]. Indeed, since Ω is bounded in C1[0,T], we have

∣
∣α(x)

∣
∣ ≤ r,

∣
∣β(x)

∣
∣ ≤ r,

∣
∣h
(
t, x(t), x′(t)

)∣∣ ≤ �(t),

for a.e. t ∈ [0,T] and all x ∈ Ω, where r > 0 is a constant and � ∈ L1[0,T]. Then
∣
∣P (λ, x)(t)

∣
∣ ≤ max

{
S0,Λ0 + Λ1T

}
+ r + Tφ−1(φ

(
max

{
S1,Λ1

}
+ r

)
+ ‖�‖1

)
,

∣
∣P (λ, x)′(t)

∣
∣ ≤ φ−1(φ

(
max

{
S1,Λ1

}
+ r

)
+ ‖�‖1

)
,

∣
∣φ
[
P (λ, x)′

(
t2
)]− φ[P (λ, x)′

(
t1
)]∣∣ ≤

∣
∣
∣
∣

∫ t2

t1
�(t)dt

∣
∣
∣
∣,

for t, t1, t2 ∈ [0,T] and (λ, x) ∈ [0, 1] ×Ω. Here, P (λ, x)′(t) = (d/dt)P (λ, x)(t). Hence
the set P ([0, 1]×Ω) is bounded in C1[0,T] and the set

{
φ
(
P (λ, x)′

)
: (λ, x) ∈ [0, 1]×Ω

}

is equicontinuous on [0,T]. Using the fact that φ−1 is an increasing homeomorphism
from R onto R and

∣
∣P (λ, x)′

(
t2
)−P (λ, x)′

(
t1
)∣∣ = ∣

∣φ−1(φ
(
P (λ, x)′

(
t2
)))− φ−1(φ

(
P (λ, x)′

(
t1
)))∣∣,

we deduce that {P (λ, x)′ : (λ, x) ∈ [0, 1]×Ω} is also equicontinuous on [0,T]. Now, the
Arzelà-Ascoli theorem shows that P ([0, 1] × Ω) is relatively compact in C1[0,T]. Thus
P is a compact operator.

Suppose that x0 is a fixed point of the operator P (1, ·). Then

x0(t) = x0(0) + α
(
x0
)

+
∫ t

0
φ−1

(
φ
(
x′0(0) + β

(
x0
))

+
∫ s

0
h
(
v, x0(v), x′0(v)

)
dv
)
ds.

Hence, α(x0) = 0, β(x0) = 0 and x0 is a solution of the differential equation (10.6).
Therefore, x0 is a solution of problem (10.6), (10.3), and to prove our theorem, it suffices
to show that

deg
(
I−P (1, ·),Ω

) �= 0, (10.10)

where I is the identity operator on C1[0,T]. To see this, let us define a compact operator
K : [0, 1]×Ω→ C1[0,T] by

K(μ, x)(t) = x(0) + α(x)− μα(−x) +
[
x′(0) + β(x)− μβ(−x)

]
t.

Then K(1, ·) is odd (i.e., K(1,−x) = −K(1, x) for x ∈ Ω) and

K(0, ·) = P (0, ·). (10.11)

If K(μ1, x1) = x1 for some μ1 ∈ [0, 1] and x1 ∈ Ω, then

x1(t) = x1(0) + α
(
x1
)− μ1α

(− x1
)

+
[
x′1(0) + β

(
x1
)− μ1β

(− x1
)]
t,
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for t ∈ [0,T]. Thus x1(t) = A1 + B1t, where A1 = x1(0) + α(x1) − μ1α(−x1) and B1 =
x′1(0) + β(x1)− μ1β(−x1), so

α
(
x1
)− μ1α

(− x1
) = 0, β

(
x1
)− μ1β

(− x1
) = 0.

Hence

α
(
A1 + B1t

)− μ1α
(− A1 − B1t

) = 0,

β
(
A1 + B1t

)− μ1β
(− A1 − B1t

) = 0.

Therefore, |A1| < Λ0, |B1| < Λ1 and ‖x1‖∞ < Λ0 + Λ1T , ‖x′1‖∞ < Λ1, which gives
x1 /∈ ∂Ω. Now, by the Borsuk antipodal theorem and the homotopy property (see the
Leray-Schauder degree theorem),

deg
(
I−K(0, ·),Ω

) = deg
(
I−K(1, ·),Ω

) �= 0. (10.12)

Finally, assume that P (λ∗, x∗) = x∗ for some λ∗ ∈ [0, 1] and x∗ ∈ Ω. Then x∗ is
a solution of problem (10.7) with λ = λ∗ and, by our assumptions, ‖x∗‖∞ < S0 and
‖x′∗‖∞ < S1. Hence x∗ /∈ ∂Ω and the homotopy property yields

deg
(
I−P (0, ·),Ω

) = deg
(
I−P (1, ·),Ω

)
.

This, together with (10.11) and (10.12), implies (10.10). We have proved that problem
(10.6), (10.3) has a solution. �

Remark 10.3. If functionals α,β ∈A are linear, then they satisfy the compatibility condi-
tion. Indeed, system (10.4) has the form

Aα(1) + Bα(t) = 0,

Aβ(1) + Bβ(t) = 0,

for each μ ∈ [0, 1], and we see that it is always solvable in R2. The set of all its solutions
(A,B) is bounded if and only if α(1)β(t) − α(t)β(1) �= 0. In such a case, system (10.4)
has only the trivial solution (A,B) = (0, 0). This is satisfied, for example, for the Dirichlet
conditions but not for the periodic conditions.

Let us consider the singular problem (10.1), (10.3). By regularization and sequential
techniques, we construct an approximate sequence of the regular problems (10.5), (10.3)
for which solvability, Theorem 10.2 can be used. Existence results for problem (10.1),
(10.3) can be proved by the following existence principle which is based on a combination
of the Lebesgue dominated convergence theorem with the Fatou lemma.

Let I and J be intervals containing 0. Assume that

f ∈ Car
(
[0,T]×D

)
, where D = (

I \ {0})× (J \ {0}),
f may have space singularities at x = 0 and y = 0.

(10.13)
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Theorem 10.4 (Existence principle for nonlocal singular problems). Assume (10.2) and
(10.13). Let fn ∈ Car([0,T]×R2) satisfy

0 ≤ fn(t, x, y) ≤ p
(
t, |x|, |y|)

for a.e. t ∈ [0,T] and each x, y ∈ R \ {0}, n ∈ N,

where p ∈ Car
(
[0,T]× (0,∞)2).

(10.14)

Suppose that, for each n ∈ N, the regular problem (10.5), (10.3) has a solution un and there
exists a subsequence {ukn} of {un} converging in C1[0,T] to some u. Then u is a solution of
problem (10.1), (10.3) if u and u′ have a finite number of zeros, and

lim
n→∞ fkn

(
t,ukn(t),u′kn(t)

) = f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T]. (10.15)

Proof . Assume that (10.15) is true and 0 ≤ ξ1 < ξ2 < · · · < ξm ≤ T are all zeros of u and
u′. We have ‖ukn‖∞ ≤ L and ‖u′kn‖∞ ≤ L for each n ∈ N, where L is a positive constant,
and

φ
(
u′kn(T)

)− φ(u′kn(0)
) =

∫ T

0
fkn
(
t,ukn(t),u′kn(t)

)
dt, n ∈ N.

It follows from assumptions (10.14), (10.15) and from the Fatou lemma that

∫ T

0
f
(
t,u(t),u′(t)

)
dt ≤ 2φ(L).

Hence f (t,u(t),u′(t)) ∈ L1[0,T]. Set ξ0 = 0, and ξm+1 = T . We claim that, for all j ∈
{0, 1, . . . ,m} such that ξj < ξj+1, the equality

φ
(
u′(t)

) = φ
(
u′
(
ξj + ξj+1

2

))
+
∫ t

(ξj+ξj+1)/2
f
(
s,u(s),u′(s)

)
ds (10.16)

is satisfied for t ∈ [ξj , ξj+1]. Indeed, let j ∈ {0, 1, . . . ,m} and ξj < ξj+1. Let us look at the
interval [ξj + δ, ξj+1 − δ], where δ ∈ (0, (ξj + ξj+1)/2). We know that |u| > 0 and |u′| > 0
on (ξj , ξj+1), and consequently, there exists a positive ε such that |u(t)| ≥ ε, |u′(t)| ≥ ε
for t ∈ [ξj +δ, ξj+1−δ]. Hence there exists n0 ∈ N such that |ukn(t)| ≥ ε/2, |u′kn(t)| ≥ ε/2
for t ∈ [ξj + δ, ξj+1 − δ] and n ≥ n0. This yields (see (10.14))

0 ≤ fkn
(
t,ukn(t),u′kn(t)

) ≤ ψ(t),

for a.e. t ∈ [ξj + δ, ξj+1 − δ] and all n ≥ n0, where

ψ(t) = sup
{
p(t,u, v) : t ∈ [

ξj + δ, ξj+1 − δ
]
, u, v ∈

[
ε

2
,L
]}

∈ L1
[
ξj + δ, ξj+1 − δ

]
.

Letting n→∞ in

φ
(
u′kn(t)

) = φ
(
u′kn

(
ξj + ξj+1

2

))
+
∫ t

(ξj+ξj+1)/2
fkn
(
s,ukn(s),u′kn(s)

)
ds
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gives (10.16) for t ∈ [ξj + δ, ξj+1 − δ] by the Lebesgue dominated convergence theorem.
Since δ ∈ (0, (ξj + ξj+1)/2) is arbitrary, equality (10.16) is true on the interval (ξj , ξj+1),
and using the fact that f (t,u(t),u′(t)) ∈ L1[0,T], (10.16) holds also at t = ξj and ξj+1.
From equality (10.16), for t ∈ [ξj , ξj+1] and 0 ≤ j ≤ m, it follows that φ(u′) ∈ AC[0,T]
and that

(
φ
(
u′(t)

))′ = f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T].

Finally, α(ukn) = 0 and β(ukn) = 0 and the continuity of α and β yields α(u) = 0 and
β(u) = 0. Hence u is a solution of problem (10.1), (10.3). �

Application of existence principles

The next part of this chapter is devoted to an application of the above existence principles.
We consider equation (10.1) where f satisfies the Carathéodory conditions on a subset
of [0,T]×R2 and f (t, x, y) may have space singularities at x = 0 and y = 0. Along with
(10.1), we discuss the nonlocal boundary conditions

min
{
u(t) : t ∈ [0,T]

} = 0, γ(u′) = 0, γ ∈ B, (10.17)

where B denotes the set of functionals γ : C[0,T] → R which are
(a) continuous, γ(0) = 0,
(b) increasing, that is, x, y ∈ C[0,T] and x < y on (0,T) ⇒ γ(x) < γ(y).

Example 10.5. Let n ∈ N, 0 ≤ a < b ≤ T , ξ ∈ (0,T), and 0 < t1 < · · · < tn < T . Then the
functionals

γ1(x) = x(ξ) + max
{
x(t) : t ∈ [a, b]

}
, γ2(x) =

∫ b

a
x2n+1(t)dt,

γ3(x) =
∫ T

0
ex(t)dt − T , γ4(x) =

n∑

j=1

x
(
t j
)

belong to the set B. The functionals γ5(x) = x(0), γ6(x) = x(0) + x(T) satisfy condition
(a) of B but do not satisfy condition (b). Hence γ5, γ6 /∈ B.

Notice that the boundary conditions (10.17) satisfy the compatibility condition. In-
deed, if we put α(x) = min{x(t) : t ∈ [0,T]} and β(x) = γ(x′) in (10.4), we obtain the
system

max
{
A + Bt : t ∈ [0,T]

}− μmax
{− A− Bt : t ∈ [0,T]

} = 0,

γ(B)− μγ(−B) = 0,

having the solution (A,B) = (0, 0) ∈ R2 for each μ ∈ [0, 1].
We are interested in conditions on the functions φ and f in (10.1) which guarantee

solvability of problem (10.1), (10.17) for each γ ∈ B. Notice that, if f is positive, then
solutions of problem (10.1), (10.17) have singular points of type II.
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We will need the following result.

Lemma 10.6. Let γ ∈ B and γ(u) = 0 for some u ∈ C[0,T]. Then u vanishes at some
point of (0,T).

Proof . To obtain a contradiction, suppose that u(t)�=0 for all t ∈ (0,T). Then u > 0 or
u < 0 on (0,T). Therefore, γ(u) > γ(0) = 0 or γ(u) < γ(0) = 0, contrary to γ(u) = 0.
Consequently, u(ξ) = 0 for some ξ ∈ (0,T). �

We state an existence result for problem (10.1), (10.17).

Theorem 10.7. Let (10.2) hold. Further, assume that f ∈ Car([0,T] ×D), where D =
(0,∞)×(R\{0}), and that the following conditions are satisfied:

ϕ(t) ≤ f (t, x, y) ≤ (
h1(x) + h2(x)

)[
ω1
(
φ
(|y|)) + ω2

(
φ
(|y|))]

for a.e. t ∈ [0,T] and each (x, y) ∈D , where

ϕ ∈ L∞[0,T] is positive,

h1,ω1 ∈ C[0,∞) are positive and nondecreasing,

h2,ω2 ∈ C(0,∞) are positive and nonincreasing,
∫ 1

0
h2(s)ds <∞;

(10.18)

lim inf
x→∞

V(x)
H(Tx)

> 1, (10.19)

where

V(x) =
∫ φ(x)

0

φ−1(s)
ω1(s + 1) + ω2(s)

ds,

H(x) =
∫ x

0

[
h1(s + 1) + h2(s)

]
ds

(10.20)

for x ∈ [0,∞).
Then, problem (10.1), (10.17) has a solution u such that φ(u′) ∈ AC[0,T].

In order to prove Theorem 10.7, we use regularization and sequential techniques. To
this end, for each n ∈ N′ = {n ∈ N : φ(1/n) ≤ 1}, define fn ∈ Car([0,T] × R2) by the
formula

fn(t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (t, x, y) for t∈[0,T], x≥ 1
n

, |y|≥ 1
n

,

f
(
t,

1
n

, y
)

for t∈[0,T], x<
1
n

, |y|≥ 1
n

,

n

2

[
fn

(
t, x,

1
n

)(
y+

1
n

)
− fn

(
t, x,−1

n

)(
y− 1

n

)]
for t∈[0,T], x∈R, |y|< 1

n
.
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Then assumption (10.18) gives

ϕ(t) ≤ fn(t, x, y) ≤ [
h1
(|x| + 1

)
+ h2

(|x|)][ω1
(
φ
(|y|) + 1

)
+ ω2

(
φ
(|y|))], (10.21)

for a.e. t ∈ [0,T] and each x, y ∈ R \ {0}, n ∈ N′.
Consider the regular differential equation

(
φ(u′)

)′ = fn(t,u,u′), (10.22)

where n ∈ N′.
For the proof of Theorem 10.7 the following lemma is essential.

Lemma 10.8. Let the assumptions of Theorem 10.7 be satisfied. Then for each n ∈ N′,
problem (10.22), (10.17) has a solution un such that φ(u′n) ∈ AC[0,T] and

−u′n(t) ≥ φ−1
(∫ ξn

t
ϕ(s)ds

)
, un(t)≥

∫ ξn

t
φ−1

(∫ ξn

s
ϕ(v)dv

)
ds, t ∈ [

0, ξn
]
,

u′n(t) ≥ φ−1
(∫ t

ξn
ϕ(s)ds

)
, un(t)≥

∫ t

ξn
φ−1

(∫ s

ξn
ϕ(v)dv

)
ds, t ∈ [

ξn,T
]
,

(10.23)

where ξn ∈ (0,T) is the unique zero both of un and u′n. In addition, the sequence {un}n∈N′ is
bounded in C1[0,T], and {u′n}n∈N′ is equicontinuous on [0,T].

Proof . Let n ∈ N′. First, using Theorem 10.2 with

α(u) = min
{
u(t) : t ∈ [0,T]

}
, β(u) = γ(u′) for u ∈ C1[0,T],

we prove existence of a solution of problem (10.22), (10.17). To this end, we consider the
family of regular differential equations

(
φ(u′)

)′ = λ fn(t,u,u′), (10.24)

depending on the parameter λ ∈ [0, 1]. Let u be a solution of problem (10.24)), (10.17)).
If λ = 0, then (φ(u′))′ = 0 a.e. on [0,T], and consequently, u(t) = A+Bt where A,B ∈ R.
Since γ(u′) = 0, Lemma 10.6 shows that u′(ξ) = 0 for some ξ ∈ (0,T), and therefore,
B = 0. Now, the condition min{u(t) : t ∈ [0,T]} = 0 gives A = 0. Hence u = 0. Let
λ ∈ (0, 1]. Then (φ(u′(t)))′ ≥ λϕ(t) > 0 for a.e. t ∈ [0,T]. Therefore, φ(u′) is increasing
on [0,T], and since φ is increasing on R, u′ is increasing on [0,T]. Due to Lemma 10.6,
u′(ξ) = 0 for a unique ξ ∈ (0,T), and from min{u(t) : 0 ≤ t ≤ T} = 0, we see that
u(ξ) = 0. Obviously, u > 0 on [0,T] \ {ξ}, u′ < 0 on [0, ξ), u′ > 0 on (ξ,T] and (see
inequality (10.21))

(
φ
(
u′(t)

))′ ≤ [
h1
(
u(t) + 1

)
+ h2

(
u(t)

)][
ω1
(
φ
(∣∣u′(t)

∣
∣) + 1

)
+ ω2

(
φ
(∣∣u′(t)

∣
∣))],

for a.e. t ∈ [0,T]. Integrating

(
φ
(
u′(t)

))′
u′(t)

ω1
(
1− φ(u′(t))) + ω2

(− φ(u′(t))) ≥
[
h1
(
u(t) + 1

)
+ h2

(
u(t)

)]
u′(t) (10.25)
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over [t, ξ] ⊂ [0, ξ] and
(
φ
(
u′(t)

))′
u′(t)

ω1
(
φ
(
u′(t)

)
+ 1

)
+ ω2

(
φ
(
u′(t)

)) ≤ [
h1
(
u(t) + 1

)
+ h2

(
u(t)

)]
u′(t) (10.26)

over [ξ, t] ⊂ [ξ,T], we get

V
(∣∣u′(t)

∣
∣) ≤ H

(
u(t)

)
for t ∈ [0, ξ], (10.27)

V
(
u′(t)

) ≤ H
(
u(t)

)
for t ∈ [ξ,T], (10.28)

respectively, where the functions V and H are given in formula (10.20). From u(t) =
∫ t
ξ u

′(s)ds for t ∈ [0,T], it follows that ‖u‖∞ ≤ T‖u′‖∞, and therefore, (10.27) and
(10.28) imply V(|u′(t)|) ≤ H(T‖u′‖∞) for t ∈ [0,T]. Hence

V
(‖u′‖∞

) ≤ H
(
T‖u′‖∞

)
. (10.29)

By assumption (10.19) we can find a positive constant S such that

V(x) > H(Tx) whenever x ≥ S.

This, together with relation (10.29), implies that ‖u′‖∞ < S, and consequently, ‖u‖∞ ≤
T‖u′‖∞ < ST . We have proved that ‖u‖∞ < ST and ‖u′‖∞ < S for all solutions of problem
(10.24), (10.17) and each λ ∈ [0, 1].

We are now looking for all solutions (A,B) ∈ R2 of the system

min
{
A + Bt : t ∈ [0,T]

}− μmin
{− A− Bt : t ∈ [0,T]

} = 0, (10.30)

γ(B)− μγ(−B) = 0, (10.31)

where μ ∈ [0, 1]. Fix μ ∈ [0, 1] and suppose that (A,B) ∈ R2 is a solution of system
(10.30), (10.31). If B �= 0, then Lemma 10.6 shows that γ(B) �= 0, and since γ is an
increasing functional and γ(0) = 0, we have γ(−B)γ(B) < 0, contrary to (see (10.31))
γ(−B)γ(B) = μγ2(−B) ≥ 0. Hence B = 0. Therefore, A = 0, which follows immediately
from (10.30). We have proved that (A,B) = (0, 0) is the unique solution of system (10.30),
(10.31) for each μ ∈ [0, 1].

By Theorem 10.2, for each n ∈ N′, there exists a solution un of problem (10.22),
(10.17). From the above consideration, we have un(ξn) = u′n(ξn) = 0 for a unique ξn ∈
(0,T). Furthermore, {un}n∈N′ is bounded in C1[0,T] since ‖un‖∞ < ST and ‖u′n‖∞ < S
for n ∈ N′. Integrating, for each n ∈ N′, the inequality (φ(u′n(t)))′ ≥ ϕ(t) which holds
for a.e. t ∈ [0,T] and having in mind that un(ξn) = u′n(ξn) = 0, we obtain (10.23).

It remains to verify that {u′n}n∈N′ is equicontinuous on [0,T]. We know that {un}n∈N′

is bounded in C1[0,T]. Thus {un}n∈N′ is equicontinuous on [0,T] and so is {H(un)}n∈N′

since H ∈ C[0,∞). Hence, for each ε > 0, we can find δ > 0 such that
∣
∣H

(
un
(
t2
))−H(un

(
t1
))∣∣ < ε, n ∈ N

′,

whenever 0 ≤ t1 < t2 ≤ T and t2 − t1 < δ. Put

V∗(v) =
⎧
⎨

⎩

V(v) for v ∈ [0,∞)

−V(−v) for v ∈ (−∞, 0).
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Let 0 ≤ t1 < t2 ≤ T and t2 − t1 < δ. If t2 ≤ ξn, then integrating the inequality

(
φ
(
u′n(t)

))′
u′n(t)

ω1
(
1− φ(u′n(t)

))
+ ω2

(− φ(u′n(t)
)) ≥ [

h1
(
un(t) + 1

)
+ h2

(
un(t)

)]
u′n(t) (10.32)

(see (10.25)) from t1 to t2 yields

0 < V∗(u′n
(
t2
))−V∗(u′n

(
t1
)) ≤ H

(
un
(
t1
))−H(un

(
t2
))
< ε,

and if t1 ≥ ξn, then integrating the inequality

(
φ
(
u′n(t)

))′
u′n(t)

ω1
(
φ
(
u′n(t)

)
+ 1

)
+ ω2

(
φ
(
u′n(t)

)) ≤ [
h1
(
un(t) + 1

)
+ h2

(
un(t)

)]
u′n(t) (10.33)

(see (10.26)) from t1 to t2 gives

0 < V∗(u′n
(
t2
))−V∗(u′n

(
t1
)) ≤ H

(
un
(
t2
))−H(un

(
t1
))
< ε.

Finally, if t1 < ξn < t2, then integrating inequality (10.32) over the interval [t1, ξn] and
inequality (10.33) over the interval [ξn, t2], we obtain

0 < −V∗(u′n
(
t1
)) ≤ H

(
un
(
t1
)) = H

(
un
(
t1
))−H(un

(
ξn
))
< ε,

0 < V∗(u′n
(
t2
)) ≤ H

(
un
(
t2
)) = H

(
un
(
t2
))−H(un

(
ξn
))
< ε.

We have proved that

0 < V∗(u′n
(
t2
))−V∗(u′n

(
t1
))
< 2ε for n ∈ N

′.

Consequently, the sequence {V∗(u′n)}n∈N′ is equicontinuous on [0,T], and since V∗ ∈
C(R) is increasing and the sequence {u′n}n∈N′ is bounded in C[0,T], we conclude that
{u′n}n∈N′ is equicontinuous on [0,T]. �

We are now in a position to prove Theorem 10.7.

Proof of Theorem 10.7. Due to Lemma 10.8, for each n ∈ N′, there exists a solution un of
problem (10.22), (10.17), satisfying inequalities (10.23) where ξn ∈ (0,T) is the unique
zero both of un and of u′n, the sequence {un}n∈N′ is bounded in C1[0,T] and {u′n}n∈N′ is
equicontinuous on [0,T]. By the Arzelà-Ascoli theorem and the Bolzano-Weierstrass the-
orem, we may assume without loss of generality that {un}n∈N′ is convergent in C1[0,T]
and {ξn}n∈N′ is convergent in R. Let limn→∞ un = u and limn→∞ ξn = ξ. Then u ∈ C1[0,T]
satisfies the nonlocal boundary conditions (10.17), and letting n → ∞ in inequalities
(10.23), we get

∣
∣u′(t)

∣
∣ ≥ φ−1

(∫ ξ

t
ϕ(s)ds

)
, u(t) ≥

∫ ξ

t
φ−1

(∫ ξ

s
ϕ(v)dv

)
ds, t ∈ [0, ξ],

u′(t) ≥ φ−1
(∫ t

ξ
ϕ(s)ds

)
, u(t) ≥

∫ t

ξ
φ−1

(∫ s

ξ
ϕ(v)dv

)
ds, t ∈ [ξ,T].
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Hence ξ is the unique zero both of u and of u′ and since γ(u′) = 0, Lemma 10.6 yields
ξ ∈ (0,T). Moreover,

lim
n→∞ fn

(
t,un(t),u′n(t)

) = f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T]

and (see inequality (10.21))

0 ≤ fn(t, x, y) ≤ p
(
t, |x|, |y|) for a.e. t ∈ [0,T] and all x, y ∈ R \ {0},

where p(t, z, v) = (h1(z + 1) + h2(z))[ω1(φ(v) + 1) + ω2(φ(v))] is continuous on [0,T]×
(0,∞)2. Hence Theorem 10.4 guarantees that φ(u′) ∈ AC[0,T] and u is a solution of
problem (10.1), (10.17). �

Example 10.9. Let p ∈ (1,∞), β ∈ (0, 1), α,μ, λ, cj ∈ (0,∞), j = 1, 2, 3, 4, α + μ < p − 1,
and let ϕ ∈ L∞[0,∞) be positive. By Theorem 10.7, the differential equation

(|u′|p−2u′
)′ = ϕ(t)

(
1 + c1u

α +
c2

uβ

)(
1 + c3|u′|μ +

c4

|u′|λ
)

has a solution u satisfying conditions (10.17) and |u′|p−2u′ ∈ AC[0,T].
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Theorem 10.2 was taken from Agarwal, O’Regan, and Staněk [20] and from Rachůnková,
Staněk, and Tvrdý [165]. Theorem 10.4 was adapted from [165] and Theorem 10.7 from
Staněk [188]. Other singular nonlocal problems for (10.1) may be found in [20] and
Staněk [186, 187]. The paper [186] deals with the nonlocal boundary conditions

u(0) = u(T), max
{
u(t) : t ∈ [0,T]

} = c (c ∈ R),

whereas [187] discusses conditions

u(0) = u(T) = −γmin
{
u(t) : t ∈ [0,T]

} (
γ ∈ (0,∞)

)
.

In [20], conditions min{u(t) : t ∈ [0,T]} = 0, α(u) = 0 are considered, where α belongs
to the set of functionals α : C1[0,T] → R which are continuous, bounded, and for ε ∈
{−1, 1} satisfy (x ∈ C1[0,T], εx′ > 0 on [0,T]) ⇒ εα(x) > 0.





11 Problems with a parameter

This chapter is devoted to a class of singular boundary value problems with the φ-
Laplacian

(
φ(u′)

)′ = μ f (t,u,u′), (11.1)

u ∈ S, (11.2)

depending on the parameter μ. Here, φ is an increasing homomorphism from R onto R,
f is a Carathéodory function on a set [0,T] ×D , D ⊂ R2, f may have singularities in
both its space variables, and S is a closed subset in C1[0,T]. Usually, the set S is described
by three boundary conditions. Such conditions have, for example, the form

u(0) = 0, u(T) = 0, max
{
u(t) : 0 ≤ t ≤ T

} = A, (11.3)

or

u(0) = 0, u(T) = 0,
∫ T

0

√
1 +

(
u′(t)

)2
dt = B, (11.4)

where A,B ∈ R. We note that problems (11.1), (11.3) and (11.1), (11.4) are singular
boundary value problems, depending on the parameter μ, and we are looking for a value
μ∗ of the parameter μ for which the Dirichlet problem (11.1), u(0) = u(T) = 0, has
a solution u ∈ C1[0,T], satisfying the third (nonlocal) condition in (11.3) or (11.4),
φ(u′) ∈ AC[0,T] and (φ(u′(t)))′ = μ∗ f (t,u(t),u′(t)) for a.e. t ∈ [0,T]. If problem
(11.1), u(0) = u(T) = 0, has a unique solution for each μ from a subset of R, then the
shooting method can be applied for solving problems (11.1), (11.3) and (11.1), (11.4).
However, in our considerations, such assumption is not introduced. Our method for
establishing the solvability of problem (11.1), (11.2) is based on a regularization and a
sequential technique. We present an existence principle for solving problem (11.1), (11.2)
and give its application to problem (11.1), (11.3).

Existence principle

Consider the family of auxiliary regular differential equations,

(
φ(u′)

)′ = μ fn(t,u,u′), (11.5)
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depending on the parameters μ ∈ R and n ∈ N. Here, fn ∈ Car([0,T]×R2). The next
existence principle for solving problem (11.1), (11.2) is closely related to the principle
which is presented in Theorem 10.4.

Definition 11.1. A function u : [0,T] → R with φ(u′) ∈ AC[0,T] is a solution of problem
(11.1), (11.2) if there exists μu ∈ R such that (φ(u′(t)))′ = μu f (t,u(t),u′(t)) for a.e.
t ∈ [0,T] and u ∈ S.

Let I and J be intervals containing 0. Assume that

f ∈ Car
(
[0,T]×D

)
, where D = (

I \ {0})× (J \ {0}),
f may have space singularities at x = 0, y = 0.

(11.6)

Theorem 11.2 (existence principle for singular problems with a parameter). Let f satisfy
(11.6) and let fn ∈ Car([0,T]×R2) satisfy the inequality

0 ≤ − fn(t, x, y) ≤ p
(
t, |x|, |y|), n ∈ N, (11.7)

for a.e. t ∈ [0,T] and all x, y ∈ R \ {0}, where p ∈ Car([0,T] × (0,∞)2). Suppose that
there exist positive constants μ∗,μ∗, μ∗ < μ∗ such that for each n ∈ N, the regular problem
(11.5), (11.2) has a solution un ∈ C1[0,T], φ(u′n) ∈ AC[0,T] with μ = μn ∈ [μ∗,μ∗]. Let
{un} be bounded in C1[0,T] and {u′n} be equicontinuous on [0,T].

Then the following assertions are true:

(i) there exist u ∈ C1[0,T], μ0 ∈ [μ∗,μ∗] and subsequences {ukn}, {μkn} such that
‖ukn − u‖C1 → 0 and |μkn − μ0| → 0 as n→∞,

(ii) if u and u′ have a finite number of zeros and

lim
n→∞ fkn

(
t,ukn(t),u′kn(t)

) = f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T], (11.8)

then φ(u′) ∈ AC[0,T] and u is a solution of problem (11.1), (11.2) with μ = μ0.

Proof . Assertion (i) follows from the Arzelà-Ascoli theorem and the Bolzano-Weierstrass
theorem.

In order to prove assertion (ii), assume that equality (11.8) is true, 0 ≤ ξ1 < · · · <
ξm ≤ T are all zeros of u and u′, and put ξ0 = 0, ξm+1 = T . Since the next part of the proof
uses similar procedures as the proof of Theorem 10.4, we show only the main differences.
We have ‖ukn‖C1 ≤ L for each n ∈ N, where L is a positive constant, and

φ
(
u′kn(T)

) = φ
(
u′kn(0)

)
+ μkn

∫ T

0
fkn
(
t,ukn(t),u′kn(t)

)
dt, n ∈ N.

It follows from μn ∈ [μ∗,μ∗], conditions (11.7), (11.8), and the Fatou lemma that

−
∫ T

0
f
(
t,u(t),u′(t)

)
dt ≤ φ(L)− φ(−L)

μ∗
.
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Hence f (t,u(t),u′(t)) ∈ L1[0,T]. We can also verify that

φ
(
u′(t)

) = φ
(
u′
(
ξj + ξj+1

2

))
+ μ0

∫ t

(ξj+ξj+1)/2
f
(
s,u(s),u′(s)

)
ds

for t ∈ [ξj , ξj+1], provided j ∈ {0, . . . ,m} and ξj < ξj+1. Hence φ(u′) ∈ AC[0,T] and

(
φ
(
u′(t)

))′ = μ0 f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T].

Since {ukn} ⊂ S and S is closed in C1[0,T] we have u ∈ S. Therefore, u is a solution of
problem (11.1), (11.2) for μ = μ0. �

Application of the existence principle

We now present an application of Theorem 11.2 to the singular problem (11.1), (11.2).

Definition 11.3. A function u : [0,T] → R with φ(u′) ∈ AC[0,T] is a solution of problem
(11.1), (11.3) if there exists μu ∈ R such that

(
φ
(
u′(t)

))′ = μu f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T]

and u fulfils the boundary conditions (11.3).

We will use the following assumptions:

φ : R �→ R is an increasing and odd homeomorphism,

φ(R) = R and there exists β > 0 such that

φ(v) ≤ vβ for v ∈ [0,∞);

(11.9)

f ∈ Car
(
[0,T]×D

)
, D = (0,∞)× (R \ {0}),

there exists a > 0 such that (11.10)

a ≤ − f (t, x, y) for a.e. t ∈ [0,T] and each (x, y) ∈D ;

the inequality

− f (t, x, y) ≤ [
h1(x) + h2(x)

][
ω1
(
φ
(|y|)) + ω2

(
φ
(|y|))]

holds for a.e. t ∈ [0,T] and each (x, y) ∈D , (11.11)

where h1,ω1 ∈ C[0,∞) are positive and nondecreasing,

h2,ω2 ∈ C(0,∞) are positive and nonincreasing,
∫ 1

0
h2(s)ds <∞,

∫∞

0

β
√
s

ω1(s)
ds = ∞.
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For each n ∈ N, define �n ∈ C(R) and fn ∈ Car([0,T]×R2) by

�n(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v for v ≥ 1
n

,

1
n

for v <
1
n

,

fn(t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(
t,�n(x), y

)
for (t, x, y) ∈ [0,T]×R×

(
R \

[
− 1
n

,
1
n

])
,

n

2

[
f
(
t,�n(x),

1
n

)(
y +

1
n

)
− f

(
t,�n(x),−1

n

)(
y − 1

n

)]

for (t, x, y) ∈ [0,T]×R×
[
− 1
n

,
1
n

]
.

By assumptions (11.10) and (11.11),

a ≤ − fn(t, x, y), (11.12)

− fn(t, x, y) ≤ [
h1(x + 1) + h2(x)

][
ω1
(
φ
(|y|) + 1

)
+ ω2

(
φ
(|y|))] (11.13)

hold for a.e. t ∈ [0,T] and each (x, y) ∈D ,n ∈ N.
Consider the family of regular differential equations

(
φ(u′)

)′ = μ fn(t,u,u′) (11.14)

depending on the parameters μ ∈ R and n ∈ N along with the boundary conditions

u(0) = 0, u(T) = 0, (11.15)

max
{
u(t) : 0 ≤ t ≤ T

} = A. (11.16)

A priori bounds for solutions of problem (11.14)–(11.16), and the corresponding
values of the parameter μ are given in the next three lemmas.

Lemma 11.4. Let assumptions (11.9) and (11.10) hold. Let A > 0 and let u be a solution of
problem (11.14)–(11.16) with some μ = μu. Then μu > 0, u′ is decreasing on [0,T],

u′(t)

⎧
⎨

⎩

≥ φ−1
(
aμu(ξ − t)) for t ∈ [0, ξ],

≤ −φ−1
(
aμu(t − ξ)

)
for t ∈ [ξ,T],

(11.17)

where ξ ∈ (0,T) is the unique zero of u′,

u(t) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A

ξ
t for t ∈ [0, ξ],

A

T − ξ (T − t) for t ∈ (ξ,T],
(11.18)

μu ≤ 1
a

(
A
(

1 +
1
β

))β( 2
T

)1+β

. (11.19)
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Proof . If μu ≤ 0, then (φ(u′))′ ≥ −aμu ≥ 0 a.e. on [0,T]. Hence φ(u′) is nondecreasing
on [0,T] which implies that of u′. Due to (11.15), u′(t0) = 0 for t0 ∈ (0,T), and therefore,
u′ ≤ 0 on [0, t0] and u′ ≥ 0 on [t0,T]. This and (11.15) yield u ≤ 0 on [0,T], contrary
to equality (11.16). Hence μu > 0, and then from (φ(u′))′ ≤ −aμu < 0 a.e. on [0,T], we
see that u′ is decreasing on [0,T], and u′ has a unique zero ξ ∈ (0,T). Using φ(0) = 0,
u′(ξ) = 0 and integrating (φ(u′))′ ≤ −aμu, we obtain inequality (11.17).

Since u(0) = u(T) = 0, u(ξ) = A and u is concave on [0,T], which follows from the
fact that u′ is decreasing on [0,T], we see that (11.18) holds.

It remains to prove inequality (11.19). By (11.9), we have φ(v) ≤ vβ for v ∈ [0,∞)
and consequently,

φ−1(v) ≥ β
√
v for v ∈ [0,∞). (11.20)

This and inequality (11.17) give

A = u(ξ) =
∫ ξ

0
u′(t)dt ≥

∫ ξ

0
φ−1(aμu(ξ − t))dt

= 1
aμu

∫ aμuξ

0
φ−1(s)ds ≥ 1

aμu

∫ aμuξ

0

β
√
sds

= β β
√
aμu

1 + β
ξ1+1/β,

A = u(ξ) =
∫ ξ

T
u′(t)dt ≥

∫ T

ξ
φ−1(aμu(t − ξ)

)
dt

= 1
aμu

∫ aμu(T−ξ)

0
φ−1(s)ds ≥ 1

aμu

∫ aμu(T−ξ)

0

β
√
sds

= β β
√
aμu

1 + β
(T − ξ)1+1/β.

Hence

A ≥ β β
√
aμu

1 + β
max

{
ξ1+1/β, (T − ξ)1+1/β} ≥ β β

√
aμu

1 + β

(
T

2

)1+1/β

,

then we see from the inequality

β
√
aμu ≤ A

(
1 +

1
β

)(
2
T

)1+1/β

that inequality (11.19) is true. �

Lemma 11.5. Let assumptions (11.9)–(11.11) hold and let A > 0. Then there exists a
positive constant P independent of n ∈ N and λ ∈ (0, 1] such that for any solution u of
problem (11.14), (11.15) with some μ = μu satisfying

max
{
u(t) : 0 ≤ t ≤ T

} = λA, λ ∈ (0, 1], (11.21)
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the inequalities ‖u′‖∞ < P, 0 < μu ≤ μ∗ are valid, where

μ∗ = 1
a

(
A
(

1 +
1
β

))β( 2
T

)1+β

. (11.22)

Proof . Let u be a solution of problem (11.14), (11.15) with some μ = μu. Let u satisfy
condition (11.21) for some λ ∈ (0, 1]. Then it follows from Lemma 11.4 (with λA instead
ofA) that u is positive on (0,T), u′ is decreasing on [0,T], u′ has a unique zero ξ ∈ (0,T),
and

0 < μu ≤ 1
a

(
λA
(

1 +
1
β

))β( 2
T

)1+β

≤ μ∗.

Hence

‖u′‖∞ = max
{
u′(0),−u′(T)

}
, (11.23)

and u(ξ) = λA. In addition, by inequality (11.13),

(
φ
(
u′(t)

))′ ≥ −μu
[
h1
(
u(t) + 1

)
+ h2

(
u(t)

)][
ω1
(
φ
(∣∣u′(t)

∣
∣) + 1

)
+ ω2

(
φ
(∣∣u′(t)

∣
∣))]

for a.e. t ∈ [0,T]. Thus

(
φ
(
u′(t)

))′
u′(t)

ω1
(
φ
(
u′(t)

)
+ 1

)
+ ω2

(
φ
(
u′(t)

)) ≥ −μu
[
h1
(
u(t) + 1

)
+ h2

(
u(t)

)]
u′(t) (11.24)

for a.e. t ∈ [0, ξ], and

(
φ
(
u′(t)

))′
u′(t)

ω1
(
1− φ(u′(t))) + ω2

(− φ(u′(t))) ≤ −μu
[
h1
(
u(t) + 1

)
+ h2

(
u(t)

)]
u′(t) (11.25)

for a.e. t ∈ [ξ,T]. Integrating (11.24) over [0, ξ] and (11.25) over [ξ,T], we get

∫ φ(u′(0))

0

φ−1(s)
ω1(s + 1) + ω2(s)

ds ≤ μu

∫ u(ξ)

0

(
h1(s + 1) + h2(s)

)
ds

≤ μu

∫ A

0

(
h1(s + 1) + h2(s)

)
ds

≤ μ∗
∫ A

0

(
h1(s + 1) + h2(s)

)
ds,

(11.26)

∫ φ(−u′(T))

0

φ−1(s)
ω1(s + 1) + ω2(s)

ds ≤ μu

∫ u(ξ)

0

(
h1(s + 1) + h2(s)

)
ds

≤ μ∗
∫ A

0

(
h1(s + 1) + h2(s)

)
ds.

(11.27)

We now show that
∫∞

0

φ−1(s)
ω1(s + 1) + ω2(s)

ds = ∞. (11.28)
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Due to assumption (11.11), we have

∫∞

0

β
√
s

ω1(s)
ds = ∞, consequently,

∫∞

2

β
√
s

ω1(s)
ds = ∞.

From assumption (11.9) and from the properties of the functions ω1 and ω2, it follows
that φ−1(s) ≥ β

√
s for s ∈ [0,∞) and

ω1(s + 1) + ω2(s) ≤ ω1(s + 1) + ω2(1) ≤ Lω1(s + 1) for s ∈ [1,∞),

where L = 1 + ω2(1)/ω1(2).
Hence

∫∞

2

β
√
s

ω1(s)
ds =

∫∞

2

β

√
s

s− 1

β
√
s− 1
ω1(s)

ds <
β
√

2
∫∞

2

β
√
s− 1
ω1(s)

ds

= β
√

2
∫∞

1

β
√
s

ω1(s + 1)
ds ≤ β

√
2L
∫∞

1

β
√
s

ω1(s + 1) + ω2(s)
ds

≤ β
√

2L
∫∞

1

φ−1(s)
ω1(s + 1) + ω2(s)

ds.

Therefore,

∫∞

1

φ−1(s)
ω1(s + 1) + ω2(s)

ds = ∞,

and consequently, (11.28) holds. Equality (11.28) guarantees the existence of a positive
constant Q such that

∫ Q

0

φ−1(s)
ω1(s + 1) + ω2(s)

ds > μ∗
∫ A

0

(
h1(s + 1) + h2(s)

)
ds.

Now, inequalities (11.26) and (11.27) give max{φ(u′(0)),φ(−u′(T))} < Q, and from
(11.23), we see that ‖u′‖∞ < P holds with P = φ−1(Q). �

Lemma 11.6. Let conditions (11.9)–(11.11) hold and let A > 0. Then there exists a positive
constant μ∗ independent of n ∈ N such that for any solution u of problem (11.14)–(11.16)
with some μ = μu, the inequality

μu ≥ μ∗ (11.29)

is satisfied.

Proof . Let u be a solution of problem (11.14)–(11.16) with some μ = μu. Then u(ξ) = A,
where ξ ∈ (0,T) is the unique zero of u′, and therefore,

A = u(ξ)− u(0) = u′
(
η1
)
ξ, A = u(ξ)− u(T) = −u′(η2

)
(T − ξ),
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where 0 < η1 < ξ < η2 < T . Hence u′(η1) = A/ξ, −u′(η2) = A/(T − ξ) and since
min{ξ,T − ξ} ≤ T/2, we have max{u′(η1),−u′(η2)} ≥ 2A/T . Thus ‖u′‖∞ ≥ 2A/T and
it follows from (11.23), (11.26), and (11.27) that

∫ φ(2A/T)

0

φ−1(s)
ω1(s + 1) + ω2(s)

ds ≤
∫ φ(‖x′‖∞)

0

φ−1(s)
ω1(s + 1) + ω2(s)

ds

≤ μu

∫ A

0

(
h1(s + 1) + h2(s)

)
ds.

We see that (11.29) holds with

μ∗ =
∫ φ(2A/T)

0

[
φ−1(s)/

(
ω1(s + 1) + ω2(s)

)]
ds

∫ A
0

(
h1(s + 1) + h2(s)

)
ds

.

�

We are now in a position to show that the regular problem (11.14)–(11.16) has a
solution for each n ∈ N.

Lemma 11.7. Let conditions (11.9)–(11.11) hold and let A > 0. Then problem (11.14)–
(11.16) has a solution for each n ∈ N.

Proof . Fix n ∈ N and let P > 0 be given by Lemma 11.5. Set

Ω =
{

(u,μ) ∈ C1[0,T]×R : ‖u‖∞<A+1,‖u′‖∞<P, |μ|< 1
a

(
A
(

1+
1
β

))β(2
T

)1+β

+1

}

.

Then Ω is an open, bounded, and symmetric with respect to (0, 0) subset of the Banach
space C1[0,T]×R.

Define an operator H = (H1, H2) : [0, 1]×Ω→ C1[0,T]×R by

H(λ,u,μ) = (
H1(λ,u,μ), H2(λ,u,μ)

)
,

H1(λ,u,μ) =
∫ t

0
φ−1

(
B + μ

(
(λ− 1)s + λ

∫ s

0
fn
(
τ,u(τ),u′(τ)

)
dτ
))
ds,

H2(λ,u,μ) = λ
[

max
{
u(t) : 0 ≤ t ≤ T

}
+ min

{
u(t) : 0 ≤ t ≤ T

}]
+ (1− λ)u

(
T

2

)
+ μ,

where the constant B = B(λ,u,μ) is the unique solution of the equation

p(B; λ,u,μ) = 0 (11.30)

with

p(B; λ,u,μ) =
∫ T

0
φ−1

(
B + μ

(
(λ− 1)t + λ

∫ t

0
fn
(
s,u(s),u′(s)

)
ds
))
dt. (11.31)
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The existence and uniqueness of a solution for (11.30) follows from the fact that p(·; λ,
u,μ) is continuous and increasing on R and

lim
B→±∞

p(B; λ,u,μ) = ±∞

for each (λ,u,μ) ∈ [0, 1]×Ω.
Since

H(0,u,μ) =
(∫ t

0
φ−1(B − μs)ds,u

(
T

2

)
+ μ

)
,

where B is the unique solution of the equation
∫ T

0 φ−1(B − μt)dt = 0, the mean value
theorem for integrals gives B = μt0 for some t0 ∈ (0,T). Hence

H(0,u,μ) =
(∫ t

0
φ−1(μ

(
t0 − s

))
ds,u

(
T

2

)
+ μ

)
,

and therefore, H(0,−u,−μ) = −H(0,u,μ) for (u,μ) ∈ Ω, which shows that H(0, ·, ·) is
an odd operator.

We claim that H is a compact operator. To this aim, let

{(
λm,um,μm

)} ⊂ [0, 1]×Ω,

lim
m→∞

(
λm,um,μm

) = (
λ0,u0,μ0

)
in [0, 1]× C1[0,T]×R.

Let Bm be the solution of the equation p(B; λm,um,μm) = 0. Since the sequence {um}
is bounded in C1[0,T] and fn ∈ Car([0,T] × R2), there exists q ∈ L1[0,T] such that
| fn(t,um(t),u′m(t))| ≤ q(t) for a.e. t ∈ [0,T] and each m ∈ N. Consequently, {Bm} is
bounded, otherwise

lim sup
m→∞

∣
∣p
(
Bm; λm,um,μm

)∣∣ = ∞,

a contradiction.
We will show that {Bm} is convergent. Let {Bkm} be a convergent subsequence of

{Bm} and κ = limm→∞ Bkm . Then

0 = lim
m→∞ p

(
Bkm ; λkm ,ukm ,μkm

) = p
(
κ; λ0,u0,μ0

)

by the Lebesgue dominated convergence theorem, and consequently, κ = B0, where B0

is the unique solution of the equation p(B; λ0,u0,μ0) = 0. We have proved that any
convergent subsequence of {Bm} has the same limit B0. Therefore, limm→∞ Bm = B0.
Then

lim
m→∞

∫ t

0
φ−1

(
Bm + μm

(
(
λm − 1

)
s + λm

∫ s

0
fn
(
τ,um(τ),u′m(τ)

)
dτ
))
ds

=
∫ t

0
φ−1

(
B0 + μ0

(
(
λ0 − 1

)
s + λ0

∫ s

0
fn
(
τ,u0(τ),u′0(τ)

)
dτ
))
ds
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in C1[0,T]. This, together with

lim
m→∞

(
λm
[

max
{
um(t) : 0≤ t≤T}+min

{
um(t) : 0≤ t≤T}]+

(
1−λm

)
um

(
T

2

)
+μm

)

= λ0
[

max
{
u0(t) : 0 ≤ t ≤ T

}
+ min

{
u0(t) : 0 ≤ t ≤ T

}]
+
(
1− λ0

)
u0

(
T

2

)
+ μ0,

implies that H is a continuous operator.
In order to verify that the set H([0,T]×Ω) is relatively compact in C1[0,T]×R, let

us consider a sequence {(λj ,uj ,μj)} ⊂ [0, 1]×Ω. Then the sequence

{
λj
[

max
{
uj(t) : 0 ≤ t ≤ T

}
+ min

{
uj(t) : 0 ≤ t ≤ T

}]
+
(
1− λj

)
uj

(
T

2

)
+ μj

}

is bounded in R and there exists r ∈ L1[0,T] such that the inequality

∣
∣ fn

(
t,uj(t),u′j(t)

)∣∣ ≤ r(t) for a.e. t ∈ [0,T] and all j ∈ N

holds. Let p(Bj ; λj ,uj ,μj) = 0 for j ∈ N. Then the sequence {Bj} is bounded in R and
the sequence

{∫ t

0
φ−1

(
Bj + μj

(
(
λj − 1

)
s + λj

∫ s

0
fn
(
τ,uj(τ),u′j(τ)

)
dτ
))
ds
}

is bounded in C1[0,T]. Moreover, the sequence

{
μj

(
(
λj − 1

)
t + λj

∫ t

0
fn
(
s,uj(s),u′j(s)

)
ds
)}

is equicontinuous on [0,T]. Therefore, {H(λj ,uj ,μj)} is relatively compact in C1[0,T]×
R by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem.

Let H(λ0,u0,μ0) = (u0,μ0) for some λ0 ∈ [0, 1] and (u0,μ0) ∈ ∂Ω. Then

(
φ
(
u′0(t)

))′ = μ0
[
λ0 − 1 + λ0 fn

(
t,u0(t),u′0(t)

)]
for a.e. t ∈ [0,T], (11.32)

u0(0) = 0, u0(T) = 0, (11.33)

λ0
[

max
{
u0(t) : 0 ≤ t ≤ T

}
+ min

{
u0(t) : 0 ≤ t ≤ T

}]
+
(
1− λ0

)
u0

(
T

2

)
= 0. (11.34)

If μ0 > 0, then (11.12) and (11.32) give (φ(u′0))′ < 0 a.e. on [0,T], and (11.33) implies
that u0 > 0 on (0,T). Therefore, min{u0(t) : 0 ≤ t ≤ T} = 0 and by virtue of (11.34),

0 = λ0 max
{
u0(t) : 0 ≤ t ≤ T

}
+
(
1− λ0

)
u0

(
T

2

)
> 0,

which is impossible. Let μ0 < 0. Then (11.12) and (11.32) yield (φ(u′0))′ > 0 a.e. on [0,T],
which, together with (11.33), implies that u0 < 0 on (0,T) and

0 = λ0 min
{
u0(t) : 0 ≤ t ≤ T

}
+
(
1− λ0

)
u0

(
T

2

)
< 0,
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a contradiction. Hence μ0 = 0 and then we see from (φ(u′0))′ = 0 a.e. on [0,T] and
(11.33) that u0 = 0. We have proved that (u0,μ0) /∈ ∂Ω, and therefore, H(λ,u,μ) �=
(u,μ) for λ ∈ [0, 1] and (u,μ) ∈ ∂Ω. Now, by the Borsuk antipodal theorem, deg(I −
H(0, ·, ·),Ω) �= 0, where I is the identity operator on C1[0,T]×R. In addition,

deg
(
I−H(1, ·, ·),Ω

) = deg
(
I−H(0, ·, ·),Ω

)

by the homotopy property (see the Leray-Schauder degree theorem. Consequently,

deg
(
I−H(1, ·, ·),Ω

) �= 0. (11.35)

Finally, define an operator K = (K1, K2) : [0, 1]×Ω→ C1[0,T]×R by the formulas

K1(λ,u,μ) =
∫ t

0
φ−1

(
D + μ

∫ s

0
fn
(
τ,u(τ),u′(τ)

)
dτ
)
ds,

K2(λ,u,μ) = max
{
u(t) : 0 ≤ t ≤ T

}
+ min

{
u(t) : 0 ≤ t ≤ T

}− λA + μ,

where the constant D = D(u,μ) is the unique solution of the equation

r(D;u,μ) = 0 (11.36)

with

r(D;u,μ) =
∫ T

0
φ−1

(
D + μ

∫ t

0
fn
(
s,u(s),u′(s)

)
ds
)
dt. (11.37)

Essentially, the same reasoning as for (11.30) and for the operator H shows that there
exists a unique solution of (11.36) and that K is a compact operator. Assume that K(λ∗,
u∗,μ∗) = (u∗,μ∗) for some λ∗ ∈ [0, 1] and (u∗,μ∗) ∈ ∂Ω. Then

(
φ
(
u′∗(t)

))′ = μ∗ fn
(
t,u∗(t),u′∗(t)

)
for a.e. t ∈ [0,T], (11.38)

u∗(0) = 0, u∗(T) = 0, (11.39)

max
{
u∗(t) : 0 ≤ t ≤ T

}
+ min

{
u∗(t) : 0 ≤ t ≤ T

} = λ∗A. (11.40)

If μ∗ ≤ 0, then (φ(u′∗))′ ≥ 0 a.e. on [0,T] and from (11.39) we deduce that u∗ ≤ 0 on
[0,T]. Then (11.40) gives

0 ≤ λ∗A = max
{
u∗(t) : 0 ≤ t ≤ T

}
+ min

{
u∗(t) : 0 ≤ t ≤ T

}

= min
{
u∗(t) : 0 ≤ t ≤ T

}
,

which leads to u∗ = 0. Consequently, by (11.38), μ∗ = 0, and therefore, (u∗,μ∗) =
(0, 0), contrary to (u∗,μ∗) ∈ ∂Ω. It follows that μ∗ > 0, and then (φ(u′∗))′ < 0 a.e. on
[0,T]. From this inequality and from (11.39), we get u∗ > 0 on (0,T), and (11.40) gives
max{u∗(t) : 0 ≤ t ≤ T} = λ∗A. Thus u∗ is a solution of problem (11.14), (11.15),
(11.21) (with μ = μ∗ in (11.14) and λ = λ∗ in (11.21). Therefore, ‖u∗‖∞ = λ∗A and, by
Lemma 11.5,

∥
∥u′∗

∥
∥∞ < P, 0 < μ∗ ≤ 1

a

(
A
(

1 +
1
β

))β( 2
T

)1+β

.
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Hence (u∗,μ∗) /∈ ∂Ω, and we have proved that K(λ,u,μ) �= (u,μ) for all λ ∈ [0, 1] and
(u,μ) ∈ ∂Ω. By the homotopy property,

deg
(
I−K(0, ·, ·),Ω

) = deg
(
I−K(1, ·, ·),Ω

)
.

Since H(1, ·, ·) =K(0, ·, ·), relation (11.35) gives deg(I−K(1, ·, ·),Ω) �= 0. Therefore,
there exists a fixed point (û, μ̂) of the operator K(1, ·, ·), and it is easy to check that û is a
solution of problem (11.14)–(11.16) with μ = μ̂. �

Our next result is needed for applying Theorem 11.2 to the solvability of problem
(11.1), (11.3).

Lemma 11.8. Let conditions (11.9)–(11.11) hold and let A > 0. Let un be a solution of
problem (11.14)–(11.16) with some μ = μn, n ∈ N.

Then the sequence {u′n} is equicontinuous on [0,T].

Proof . By Lemmas 11.4–11.6, for each n ∈ N, we have 0 ≤ un(t) ≤ A for t ∈ [0,T], u′n
is decreasing on [0,T], and u′n vanishes at a unique ξn ∈ (0,T). Furthermore, there exist
positive constants P,μ∗, and μ∗ such that

∥
∥u′n

∥
∥∞ < P, n ∈ N, (11.41)

μ∗ ≤ μn ≤ μ∗, n ∈ N. (11.42)

Put

G(v) =
∫ φ(v)

0

φ−1(s)
ω1(s + 1) + ω2(s)

ds, H(v) =
∫ v

0

(
h1(s + 1) + h2(s)

)
ds

for v ∈ [0,∞),

G∗(v) =
⎧
⎨

⎩

G(v) for v ∈ [0,∞),

−G(−v) for v ∈ (−∞, 0).

Since {un} is bounded in C1[0,T], the sequence {H(un)} is equicontinuous on [0,T],
and therefore, for each ε > 0, there exists δ > 0 such that

∣
∣H

(
un
(
t2
))−H(un

(
t1
))∣∣ < ε, (11.43)

whenever 0 ≤ t1 < t2 ≤ T and t2 − t1 < δ. Choose 0 ≤ t1 < t2 ≤ T . If t2 ≤ ξn, then
integrating (see (11.24))

φ
(
u′n(t)

)
u′n(t)

ω1
(
φ
(
u′n(t)

)
+ 1

)
+ ω2

(
φ
(
u′n(t)

)) ≥ −μn
[
h1
(
un(t) + 1

)
+ h2

(
un(t)

)]
u′n(t) (11.44)

from t1 to t2 yields

0 < G
(
u′n
(
t1
))−G(u′n

(
t2
))

≤ μn
[
H
(
un
(
t2
))−H(un

(
t1
))]

≤ μ∗
[
H
(
un
(
t2
))−H(un

(
t1
))]

,

(11.45)
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while if ξn ≤ t1, then integrating (see (11.25))

φ
(
u′n(t)

)
u′n(t)

ω1
(− φ(u′n(t)

)
+ 1

)
+ ω2

(− φ(u′n(t)
)) ≤ −μn

[
h1
(
un(t) + 1

)
+ h2

(
un(t)

)]
u′n(t)

(11.46)

over [t1, t2] gives

0 < G
(− u′n

(
t2
))−G(− u′n

(
t1
))

≤ μn
[
H
(
un
(
t1
))−H(un

(
t2
))]

≤ μ∗
[
H
(
un
(
t1
))−H(un

(
t2
))]

.

(11.47)

Finally, if t1 < ξn < t2 then integrating (11.44) over [t1, ξn] and (11.46) over [ξn, t2] gives

0 < G
(
u′n
(
t1
)) ≤ μn

[
H
(
un
(
ξn
))−H(un

(
t1
))]

≤ μ∗
[
H
(
un
(
ξn
))−H(un

(
t1
))]

,
(11.48)

0 < G
(− u′n

(
t2
)) ≤ μn

[
H
(
un
(
ξn
))−H(un

(
t2
))]

≤ μ∗
[
H
(
un
(
ξn
))−H(un

(
t2
))]

.
(11.49)

Now, inequalities (11.45) and (11.47)–(11.49) imply that

0 < G∗
(
u′n
(
t1
))−G∗(u′n

(
t2
)) ≤ μ∗

∣
∣H

(
un
(
t1
))−H(un

(
t2
))∣∣

if 0 ≤ t1 < t2 ≤ ξn or ξn ≤ t1 < t2 ≤ T and

0 < G∗
(
u′n
(
t1
))−G∗(u′n

(
t2
)) ≤ μ∗

[
2H

(
un
(
ξn
))−H(un

(
t1
))−H(un

(
t2
))]

if 0 ≤ t1 < ξn < t2 ≤ T . This and inequality (11.43) give

0 < G∗
(
u′n
(
t1
))−G∗(u′n

(
t2
)) ≤ 2μ∗ε,

whenever 0 ≤ t1 < t2 ≤ T and t2 − t1 < δ. Hence {G∗(u′n)} is equicontinuous on [0,T],
and since G∗ ∈ C(R) is increasing and {u′n} is bounded in C[0,T], we see that {u′n} is
equicontinuous on [0,T]. �

The following theorem gives an existence result for problem (11.1), (11.3).

Theorem 11.9. Let assumptions (11.9)–(11.11) hold. Then for eachA > 0, there exists μ > 0
such that problem (11.1), (11.3) has a solution u ∈ C1[0,T] such that φ(u′) ∈ AC[0,T]
and u > 0 on (0,T).

Proof . Fix A > 0. By Lemma 11.7, for each n ∈ N, there exists a solution un of problem
(11.14)–(11.16) with some μ = μn. Lemmas 11.4–11.6 yield that

0 ≤ un(t) ≤ A for t ∈ [0,T], (11.50)
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u′n is decreasing on [0,T] and vanishes at a unique ξn ∈ (0,T),

un(t) ≥

⎧
⎪⎪⎨

⎪⎪⎩

A

ξn
t for t ∈ [

0, ξn
]
,

A

T − ξn (T − t) for t ∈ [
ξn,T

]
,

(11.51)

u′n(t)

⎧
⎪⎨

⎪⎩

≥ φ−1
(
aμn

(
ξn − t

))
for t ∈ [

0, ξn
]
,

≤ −φ−1
(
aμn

(
t − ξn

))
for t ∈ [

ξn,T
]
,

(11.52)

and there exist positive constants P, μ∗, and μ∗ such that inequalities (11.41) and (11.42)
are satisfied for all n ∈ N. In addition, by Lemma 11.8, {u′n} is equicontinuous on [0,T].
Using the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem, we can assume
without loss of generality that {un} is convergent in C1[0,T] and {μn} and {ξn} are
convergent in R. Let limn→∞ un = u, limn→∞ μn = μ, and limn→∞ ξn = ξ. Then u ∈
C1[0,T] fulfils (11.3), u′(ξ) = 0. Letting n → ∞ in inequalities (11.42) and (11.50)–
(11.52), we get 0 ≤ u(t) ≤ A for t ∈ [0,T],

u(t) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A

ξ
t for t ∈ [0, ξ],

A

T − ξ (T − t) for t ∈ [ξ,T],

u′(t)

⎧
⎨

⎩

≥ φ−1
(
aμ∗(ξ − t)) for t ∈ [0, ξ],

≤ −φ−1
(
aμ∗(t − ξ)

)
for t ∈ [ξ,T],

and μ∗ ≤ μ ≤ μ∗. Hence ξ ∈ (0,T) is the unique zero of u′, u > 0 on (0,T) and

lim
n→∞ fn

(
t,un(t),u′n(t)

) = f
(
t,u(t),u′(t)

)
for a.e. t ∈ [0,T].

By inequality (11.13),

0 < a ≤ − fn(t, x, y) ≤ [
h1
(|x| + 1

)
+ h2

(|x|)][ω1
(
φ
(|y|) + 1

)
+ ω2

(
φ
(|y|))]

for a.e. t ∈ [0,T] and all x, y ∈ R \ {0}. Put

p(t, x, y) = [
h1(x + 1) + h2(x)

][
ω1
(
φ(y) + 1

)
+ ω2

(
φ(y)

)]

for (t, x, y) ∈ [0,T] × (0,∞)2. Then fn satisfies inequality (11.7) and, consequently,
Theorem 11.2 guarantees that φ(u′) ∈ AC[0,T] and u is a solution of problem (11.1),
(11.3). �

Example 11.10. Let p ∈ (1,∞), γ1,η1,η2 ∈ (0,∞), γ2, γ3 ∈ (0, 1), and η3 ∈ (0, p). By
Theorem 11.9, for all A > 0, there exist μ > 0 and a solution u of the differential equation

(|u′|p−2u′
)′

+ μ
(

1 + uγ1 +
1
uγ2

+
1

uγ3|u′|η1
+

1
|u′|η2

+ |u′|η3

)
= 0,

satisfying the boundary conditions (11.3) and u > 0 on (0,T).
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Theorem 11.2 is taken from Staněk [189], Theorem 11.9 was adapted from Agarwal,
O’Regan, and Staněk [19]. Another singular problems for (11.1) depending on a param-
eter were considered in Staněk [189] and Staněk and Přibyl [190]. The paper [189] deals
with the boundary conditions u(0) = 0, u(T) = 0, ϕ(u′) = A (A > 0), where ϕ ∈
A. Here, A is the set of functionals ϕ : C[0,T]→R which are (i) continuous, ϕ(0) =
0, ϕ(x) = ϕ(|x|) for x ∈ C[0,T], (ii) increasing, and (iii) unbounded in the following
sense: limμ→∞ ϕ(μx) = ∞ for each x ∈ C[0,T], x �≡ 0. We note that the boundary
conditions (11.4) are a special case of the conditions discussed in [189]. In [190] the
authors considered the boundary conditions u(0) + u(T) = 0, u′(0) + u′(T) = 0, and
max{u(t) : 0 ≤ t ≤ T} = A (A > 0). The method of implementation of parameters to a
singular Lidstone problem for higher order differential equations with the extra condition
max{u(t) : 0 ≤ t ≤ T} = A was studied in Agarwal, O’Regan, and Staněk [17].





Appendices

A. Uniform integrability/equicontinuity

Here we present three criteria guaranteeing uniform integrability of sequences in L1[0,T]
which are applied in our proofs.

A sequence {ϕm} ⊂ L1[0,T] is called uniformly integrable on [0,T] if for any ε > 0,
there exists δ > 0 such that if M⊂[0,T] and meas(M) < δ, then

∫

M

∣
∣ϕm(t)

∣
∣dt < ε for m ∈ N.

An immediate consequence of the definition is the following simple criterion.

Criterion A.1. Let ϕm,α ∈ L1[0,T] be such that

∣
∣ϕm(t)

∣
∣ ≤ α(t) for a.e. t ∈ [0,T] and all m ∈ N.

Then {ϕm} is uniformly integrable on [0,T].

In order to prove more sophisticated criteria the following auxiliary result is useful.

Lemma A.2. Let {ϕm} ⊂ L1[0,T]. Suppose that for every ε > 0, there exists δ > 0 such that
for any at most countable set {(ai, bi)}i∈J of mutually disjoint intervals (ai, bi) ⊂ [0,T],
∑

i∈J(bi − ai) < δ, the inequality

∑

i∈J

∫ bi

ai

∣
∣ϕm(t)

∣
∣dt < ε for m ∈ N

holds. Then {ϕm} is uniformly integrable on [0,T].

Proof . Fix ε > 0 and let δ > 0 be from the assumption. Let M⊂[0,T] be a measurable
set, meas(M) < δ/2. Then there exists an open set M1⊂[0,T], M ∩ (0,T) ⊂ M1 such
that meas(M1) < δ. From the structure of open and bounded subsets in R, it follows
that M1 is the union of at most countable set {(αj ,βj)} j∈J∗ of mutually disjoint intervals
(αj ,βj) ⊂ [0,T]. Then

∫

M1

∣
∣ϕm(t)

∣
∣dt =

∑

j∈J∗

∫ βj

αj

∣
∣ϕm(t)

∣
∣dt < ε, m ∈ N,

by our assumptions. Hence
∫

M

∣
∣ϕm(t)

∣
∣dt ≤

∫

M1

∣
∣ϕm(t)

∣
∣dt < ε, m ∈ N.



234 Appendices

Consequently, {ϕm} is uniformly integrable on [0,T]. �

Criterion A.3. Let {um} ⊂ C[0,T] and � ∈ N. Let there exist �m + 1 disjoint intervals
(dm,k,dm,k+1), 0 ≤ k ≤ �m, �m ≤ �, such that

�m⋃

k=0

[
dm,k,dm,k+1

] = [0,T],

and for k ∈ {0, . . . , �m} and m ∈ N, one of the inequalities

∣
∣um(t)

∣
∣ ≥ b

(
t − dm,k

)rm,k for t ∈ [
dm,k,dm,k+1

]

or

∣
∣um(t)

∣
∣ ≥ b

(
dm,k+1 − t

)rm,k for t ∈ [
dm,k,dm,k+1

]
(A.1)

is satisfied where b > 0, 1 ≤ rm,k ≤ r. In addition, assume that g is a nonincreasing and
positive function on (0,∞) and

∫ 1

0
g
(
sr
)
ds <∞.

Then the sequence {g(|um(t)|)} is uniformly integrable on [0,T].

Proof . Put c = min{1/T , min{b1/rm,k : 0 ≤ k ≤ �m,m ∈ N}}. Then

b
(
t − dm,k

)rm,k ≥ [
c
(
t − dm,k

)]r
, b

(
dm,k+1 − t

)rm,k ≥ [
c
(
dm,k+1 − t

)]r

for t ∈ [dm,k,dm,k+1]. Therefore, for k ∈ {0, . . . , �m} and m ∈ N, one of the inequalities

∣
∣um(t)

∣
∣ ≥ [

c
(
t − dm,k

)]r
for t ∈ [

dm,k,dm,k+1
]

(A.2)

or

∣
∣um(t)

∣
∣ ≥ [

c
(
dm,k+1 − t

)]r
for t ∈ [

dm,k,dm,k+1
]

(A.3)

is satisfied.
Let {(ai, bi)}i∈J be an at most countable set of mutually disjoint intervals (ai, bi) ⊂

[0,T]. Put

Jm,k =
{
i ∈ J :

(
ai, bi

) ⊂ (
dm,k,dm,k+1

)}

for m ∈ N and k ∈ {0, . . . , �m}. If i ∈ Jm,k, then

∫ bi

ai
g
(∣∣um(t)

∣
∣)dt ≤

∫ bi

ai
g
([
c
(
t − dm,k

)]r)
dt = 1

c

∫ c(bi−dm,k)

c(ai−dm,k)
g
(
tr
)
dt

if (A.2) holds or

∫ bi

ai
g
(∣∣um(t)

∣
∣)dt ≤

∫ bi

ai
g
([
c
(
dm,k+1 − t

)]r)
dt = 1

c

∫ c(dm,k+1−ai)

c(dm,k+1−bi)
g
(
tr
)
dt
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if (A.3) holds. Hence

∑

i∈Jm,k

∫ bi

ai
g
(∣∣um(t)

∣
∣)dt ≤ 1

c

∫

Mm,k

g
(
tr
)
dt, 0 ≤ k ≤ �m, m ∈ N, (A.4)

where Mk,m ⊂ [0, cT] and meas(Mm,k) ≤ c
∑

i∈J(bi − ai).

Let i0 ∈ J \⋃�m
k=0 Jm,k for some m ∈ N. Then

dm,l0 ≤ ai0 ≤ dm,l0+1 < · · · < dm,l∗ ≤ bi0 ≤ dm,l∗+1,

where l0, l∗ ∈ {0, . . . , �m}, l0 + 1 ≤ l∗, and

dm,l∗ − dm,l0+1 < bi0 − ai0 < dm,l∗+1 − dm,l0 .

Notice that there exist at most �m positive integers i0 having the above property. Thus

∫ bi0

ai0

g
(∣∣um(t)

∣
∣)dt=

∫ dm,l0+1

ai0

g
(∣∣um(t)

∣
∣)dt+

l∗−1∑

k=l0+1

∫ dm,k+1

dm,k

g
(∣∣um(t)

∣
∣)dt+

∫ bi0

dm,l∗
g
(∣∣um(t)

∣
∣)dt

(here
∑l∗−1

k=l0+1 = 0 if l0 + 1 = l∗). Since

∫ dm,l0+1

ai0

g
(∣∣um(t)

∣
∣)dt ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
c

∫ c(dm,l0+1−dm,l0 )

c(ai0−dm,l0 )
g
(
tr
)
dt, if

∣
∣um(t)

∣
∣ ≥ [

c
(
t − dm,l0

)]r

1
c

∫ c(dm,l0+1−ai0 )

0
g
(
tr
)
dt, if

∣
∣um(t)

∣
∣ ≥ [

c
(
dm,l0+1 − t

)]r
,

∫ dm,k+1

dm,k

g
(∣∣um(t)

∣
∣)dt ≤

∫ c(dm,k+1−dm,k)

0
g
(
tr
)
dt, l0 + 1 ≤ k ≤ l∗ − 1 if l∗ ≥ l0 + 2,

∫ bi0

dm,l∗
g
(∣∣um(t)

∣
∣)dt ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
c

∫ c(bi0−dm,l∗ )

0
g
(
tr
)
dt if

∣
∣um(t)

∣
∣ ≥ [

c
(
t − dm,l∗

)]r
,

1
c

∫ c(dm,l∗+1−dm,l∗ )

c(dm,l∗+1−bi0 )
g
(
tr
)
dt if

∣
∣um(t)

∣
∣ ≥ [

c
(
dm,l∗+1 − t

)]r
,

it follows that

∫ bi0

ai0

g
(∣∣um(t)

∣
∣)dt <

l∗ − l0 + 1
c

∫ c(bi0−ai0 )

0
g
(
tr
)
dt

<
�

c

∫ c(bi0−ai0 )

0
g
(
tr
)
dt

<
�

c

∫

M∗
g
(
tr
)
dt,

(A.5)
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where M∗ ⊂ [0, cT] and meas(M∗) ≤ c
∑

i∈J(bi − ai). Due to (A.4) and (A.5), we have
that

∑

i∈J

∫ bi

ai
g
(∣∣um(t)

∣
∣)dt <

1
c

�m∑

k=0

∫

Mm,k

g
(
tr
)
dt +

�2

c

∫

M∗
g
(
tr
)
dt. (A.6)

Since g(tr) ∈ L1[0, 1] for every ε > 0, there exists δ > 0 such that

∫

M
g
(
tr
)
dt <

cε

�(� + 1)
(A.7)

whenever M ⊂ [0, 1] is measurable and meas(M) < δ. Hence for every ε > 0 there exists
δ > 0 such that for any at most countable set {(ai, bi)}i∈J of mutually disjoint intervals
(ai, bi) ⊂ [0,T],

∑
i∈J(bi − ai) < δ/c, we have (see (A.6) and (A.7))

∑

i∈J

∫ bi

ai
g
(∣∣um(t)

∣
∣)dt <

(
�

c
+
�2

c

)
cε

�(� + 1)
= ε, m ∈ N.

So, {g(|um(t)|)} is uniformly integrable on [0,T] by Lemma A.2, where we put rm(t) =
g(|um(t)|). �

In particular, for �m = 1 and rm,k = r we get the following.

Criterion A.4. Let {um} ⊂ C[0,T] and let there exist {ξm} ⊂ (0,T) and b > 0, r ≥ 1 such
that

∣
∣um(t)

∣
∣ ≥ b

∣
∣t − ξm

∣
∣r for t ∈ [0,T].

Suppose that g : (0,∞) → (0,∞) is nonincreasing and

∫ 1

0
g
(
sr
)
ds <∞.

Then the sequence {g(|um(t)|)} is uniformly integrable on [0,T].

Equicontinuity

Consider a sequence of functions vk ∈ C[a, b], k ∈ N, [a, b] ⊂ R. We say that {vk} is
equicontinuous on [a, b] if for each ε > 0 there exists δ > 0 such that for each t1, t2 ∈ [a, b]
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and each k ∈ N,

∣
∣t1 − t2

∣
∣ < δ �⇒ ∣

∣vk
(
t1
)− vk

(
t2
)∣∣ < ε.

Similarly, we say that the sequence {vk} is equicontinous at a point t0 ∈ [a, b] if for each
ε > 0 there exists δ > 0 such that for each t ∈ (t0 − δ, t0 + δ)∩ [a, b] and each k ∈ N, the
inequality |vk(t)− vk(t0)| < ε holds. If t0 = 0 (t0 = T), we talk about equicontinuity at 0
from the right (at T from the left).

It is well known that if {vk} ⊂ C1[a, b] and there exists c > 0 such that |v′k(t)| ≤ c on
[a, b] for k ∈ N, then {vk} is equicontinuous on [a, b].

Here we provide conditions which imply the equicontinuity of {vk} at the singular
point t0 ∈ [0,T] and which are not generally available in literature.

Lemma A.5. Let t0 ∈ (0,T). Assume that there exist η > 0 such that [t0−η, t0 +η] ⊂ [0,T]
and nonnegative functions α ∈ C[t0 − η, t0 + η], β ∈ C[t0 − η, t0) such that α(t0) = 0,
β(t0−) = 0. Further assume that for each k ∈ N, k > 1/η,

∣
∣vk(t)

∣
∣ ≤ β(t) for t ∈

[
t0 − η, t0 − 1

k

]
, (A.8)

∣
∣vk(t)− vk

(
t0
)∣∣ ≤ α(t) for t ∈

[
t0 − 1

k
, t0 +

1
k

]
, (A.9)

∣
∣vk(t)

∣
∣ ≤ β

(
t0 − 1

k

)
+ α

(
t0 − 1

k

)
+ α

(
t0 +

1
k

)
+ α(t) for t ∈

[
t0 +

1
k

, t0 + η
]
.

(A.10)

Then limk→∞ vk(t0) = 0 and the sequence {vk} is equicontinuous at t0.

Proof . Choose an arbitrary ε > 0. Then there exists δ ∈ (0,η) such that

t ∈ (
t0 − δ, t0 + δ

)
�⇒ ∣

∣α(t)
∣
∣ <

ε

6
, t ∈ (

t0 − δ, t0
)
�⇒ ∣

∣β(t)
∣
∣ <

ε

6
.

Choose an arbitrary k ∈ N, k ≥ 1/σ . Let t ∈ [t0 − 1/k, t0 + 1/k]. Then by (A.9),

∣
∣vk(t)− vk

(
t0
)∣∣ ≤ α(t) <

ε

6
< ε.

Let t ∈ (t0 − δ, t0 − 1/k). Then by (A.8) and (A.9),

∣
∣vk(t)− vk

(
t0
)∣∣ ≤ ∣

∣vk(t)
∣
∣ +

∣
∣
∣
∣vk

(
t0
)− vk

(
t0 − 1

k

)∣∣
∣
∣ +

∣
∣
∣
∣vk

(
t0 − 1

k

)∣∣
∣
∣

≤ β(t) + α
(
t0 − 1

k

)
+ β

(
t0 − 1

k

)
<

3ε
6
< ε.
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Let t ∈ (t0 + 1/k, t0 + δ). Then by (A.9) and (A.10),

∣
∣vk(t)− vk

(
t0
)∣∣ ≤ ∣

∣vk(t)
∣
∣ +

∣
∣
∣
∣vk

(
t0
)− vk

(
t0 − 1

k

)∣∣
∣
∣ +

∣
∣
∣
∣vk

(
t0 − 1

k

)∣∣
∣
∣

≤ β
(
t0 − 1

k

)
+ α

(
t0 − 1

k

)
+ α

(
t0 +

1
k

)

+ α(t) + α
(
t0 − 1

k

)
+ β

(
t0 − 1

k

)
< ε.

Hence, we have proved that {vk} is equicontinuous at t0. Further,

∣
∣vk

(
t0
)∣∣ ≤

∣
∣
∣
∣vk

(
t0
)− vk

(
t0 − 1

k

)∣∣
∣
∣ +

∣
∣
∣
∣vk

(
t0 − 1

k

)∣∣
∣
∣ ≤ α

(
t0 − 1

k

)
+ β

(
t0 − 1

k

)
.

Therefore, limk→∞ vk(t0) = 0. �

Similarly we can prove the following.

Lemma A.6. Let t0 ∈ (0,T). Assume that there exist η > 0 such that [t0−η, t0 +η] ⊂ [0,T]
and nonnegative functions α ∈ C[t0 − η, t0 + η], β ∈ C(t0, t0 + η] such that α(t0) = 0,
β(t0+) = 0. Further assume that for each k ∈ N, k > 1/η,

∣
∣vk(t)

∣
∣ ≤ β(t) for t ∈

[
t0 +

1
k

, t0 + η
]

,

∣
∣vk(t)− vk

(
t0
)∣∣ ≤ α(t) for t ∈

[
t0 − 1

k
, t0 +

1
k

]
,

∣
∣vk(t)

∣
∣ ≤ β

(
t0 +

1
k

)
+ α

(
t0 +

1
k

)
+ α

(
t0 − 1

k

)
+ α(t) for t ∈

[
t0 − η, t0 − 1

k

]
.

Then limk→∞ vk(t0) = 0 and the sequence {vk} is equicontinuous at t0.

In particular, for t0 = T and t0 = 0 arguing as before we get the following two
lemmas.

Lemma A.7. Assume that there exist η ∈ (0,T) and nonnegative functions α ∈ C[T−η,T],
β ∈ C[T − η,T) such that α(T) = 0, β(T−) = 0. Further assume that for k ∈ N, k > 1/η,

∣
∣vk(t)

∣
∣ ≤ β(t) for t ∈

[
T − η, t0 − 1

k

]
,

∣
∣vk(t)− vk(T)

∣
∣ ≤ α(t) for t ∈

[
T − 1

k
,T
]
.

Then limk→∞ vk(T) = 0 and the sequence {vk} is equicontinuous at T from the left.



Uniform integrability/equicontinuity 239

Lemma A.8. Assume that there exist η ∈ (0,T) and nonnegative functions α ∈ C[0,η],
β ∈ C(0,η] such that α(0) = 0, β(0+) = 0. Further assume that for k ∈ N, k > 1/η,

∣
∣vk(t)

∣
∣ ≤ β(t) for t ∈

[
1
k

,η
]

,

∣
∣vk(t)− vk(T)

∣
∣ ≤ α(t) for t ∈

[
0,

1
k

]
.

Then limk→∞ vk(0) = 0 and the sequence {vk} is equicontinuous at 0 from the right.

Now we provide criteria of equicontinuity of {vk} at the point t0 ∈ (0,T).

Criterion A.9. Let t0 ∈ (0,T), β0,η ∈ (0,∞) be such that [t0−η, t0+η] ⊂ [0,T]. Assume
that there exist nonnegative functions h∗, g∗ ∈ L1[0,T] and a nonnegative function
h ∈ Lloc([0,T] \ {t0}) such that for each k ∈ N, k > 1/η, there is a function vk ∈ AC[0,T]
fulfilling conditions

∣
∣vk

(
t0 − η

)∣∣ ≤ β0, (A.11)

v′k(t) sign vk(t) ≤ −h(t)
∣
∣vk(t)

∣
∣ + g∗(t) for a.e. t ∈ [

t0 − η, t0 + η
] \

(
t0 − 1

k
, t0 +

1
k

)
,

(A.12)

∣
∣v′k(t)

∣
∣ ≤ h∗(t) for a.e. t ∈

[
t0 − 1

k
, t0 +

1
k

]
, (A.13)

where
∫ t0

t0−ε
h(s)ds = ∞ for each sufficiently small ε > 0. (A.14)

Then limk→∞ vk(t0) = 0 and the sequence {vk} is equicontinuous at t0.

Proof . We will construct functions α and β of Lemma A.5. Consider the auxiliary prob-
lem

β′(t) = −h(t)β(t) + g∗(t), β
(
t0 − η

) = β0. (A.15)

Problem (A.15) has a unique solution and this solution has the form

β(t) = exp
(
−
∫ t

t0−η
h(s)ds

)(
β0 +

∫ t

t0−η
g∗(τ) exp

(∫ τ

t0−η
h(s)ds

)
dτ
)

for t ∈ [t0 − η, t0). Then β ∈ C[t0 − η, t0) and, by (A.14), we get

lim
t→t0−

β(t) = β0 exp
(
−
∫ t0

t0−η
h(s)ds

)
+
∫ t0

t0−η
g∗(τ) exp

(
−
∫ t0

τ
h(s)ds

)
dτ = 0,

because
∫ t0

τ
h(s)ds = ∞ for τ ∈ [

t0 − η, t0
)
.
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Let us prove that (A.8) is satisfied. On the contrary, assume that there exist t1 ∈ [t0 −
η, t0 − 1/k) and t2 ∈ (t1, t0 − 1/k] such that

∣
∣vk

(
t1
)∣∣ = β

(
t1
)
,

∣
∣vk(t)

∣
∣ > β(t) for t ∈ (

t1, t2
]
.

Then, by (A.12) and (A.15), we get

0 <
∣
∣vk

(
t2
)∣∣− β(t2

) =
∫ t2

t1

(
v′k(t) sign vk(t)− β′(t))dt

≤ −
∫ t2

t1
h(t)

(∣∣vk(t)
∣
∣− β(t)

)
dt ≤ 0,

a contradiction. So, (A.8) is proved.
Further, due to (A.13), we have

∣
∣vk(t)− vk

(
t0
)∣∣ ≤

∣
∣
∣
∣

∫ t

t0
h∗(s)ds

∣
∣
∣
∣ for t ∈

[
t0 − 1

k
, t0 +

1
k

]
(A.16)

and integrating (A.12) we obtain

∣
∣vk(t)

∣
∣ ≤

∣
∣
∣
∣vk

(
t0 +

1
k

)∣∣
∣
∣ +

∫ t

t0+1/k
g∗(s)ds for t ∈

[
t0 +

1
k

, t0 + η
]
. (A.17)

Let us put

α(t) = max
{∣∣
∣
∣

∫ t

t0
h∗(s)ds

∣
∣
∣
∣,
∣
∣
∣
∣

∫ t

t0
g∗(s)ds

∣
∣
∣
∣

}
for t ∈ [

t0 − η, t0 + η
]
.

Then α ∈ C[t0 − η, t0 + η] and α(t0) = 0. Moreover, (A.16) and (A.17) imply

∣
∣vk(t)− vk

(
t0
)∣∣ ≤ α(t) for t ∈

[
t0 − 1

k
, t0 +

1
k

]
,

∣
∣vk(t)

∣
∣ ≤

∣
∣
∣
∣vk

(
t0 +

1
k

)∣∣
∣
∣ + α(t)

≤
∣
∣
∣
∣vk

(
t0 +

1
k

)
−vk

(
t0
)
∣
∣
∣
∣+

∣
∣
∣
∣vk

(
t0
)−vk

(
t0− 1

k

)∣∣
∣
∣+

∣
∣
∣
∣vk

(
t0− 1

k

)∣∣
∣
∣+α(t)

≤ α
(
t0 +

1
k

)
+ α

(
t0 − 1

k

)
+ β

(
t0 − 1

k

)
+ α(t) for t ∈

[
t0 +

1
k

, t0 + η
]
.

Thus (A.9) and (A.10) are satisfied and, by Lemma A.5, the proof is completed. �

Using Lemma A.6 instead of Lemma A.5 we get a modified form of Criterion A.9.

Criterion A.10. Let t0 ∈ (0,T), β0 ∈ (0,∞) and η > 0 be such that [t0−η, t0 +η] ⊂ [0,T].
Assume that there exist nonnegative functions h∗, g∗ ∈ L1[0,T] and a nonnegative function
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h ∈ Lloc([0,T] \ {t0}) such that for each k ∈ N, k > 1/η, there is a function vk ∈ AC[0,T]
fulfilling conditions

∣
∣vk

(
t0 + η

)∣∣ ≤ β0,

v′k(t) sign vk(t) ≥ h(t)
∣
∣vk(t)

∣
∣− g∗(t) for a.e. t ∈ [

t0 − η, t0 + η
] \

(
t0 − 1

k
, t0 +

1
k

)
,

∣
∣v′k(t)

∣
∣ ≤ h∗(t) for a.e. t ∈

[
t0 − 1

k
, t0 +

1
k

]
,

where

∫ t0+ε

t0
h(s)ds = ∞ for each sufficiently small ε > 0.

Then limk→∞ vk(t0) = 0 and the sequence {vk} is equicontinuous at t0.

In particular, Lemmas A.7 and A.8 yield criteria which are used in our proofs and
which guarantee the equicontinuity of {vk} at T from the left and at 0 from the right,
respectively.

Criterion A.11. Let β0 ∈ (0,∞) and η ∈ (0,T). Assume that there exist nonnegative
functions h∗, g∗ ∈ L1[0,T] and a nonnegative function h ∈ Lloc[0,T) such that for each
k ∈ N, k > 1/η, there exists a function vk ∈ AC[0,T] fulfilling conditions

∣
∣vk(T − η)

∣
∣ ≤ β0, (A.18)

v′k(t) sign vk(t) ≤ −h(t)
∣
∣vk(t)

∣
∣ + g∗(t) for a.e. t ∈

[
T − η,T − 1

k

]
, (A.19)

∣
∣v′k(t)

∣
∣ ≤ h∗(t) for a.e. t ∈

[
T − 1

k
,T
]

, (A.20)

where

∫ T

T−ε
h(s)ds = ∞ for each sufficiently small ε > 0. (A.21)

Then limk→∞ vk(T) = 0 and the sequence {vk} is equicontinuous at T from the left.

Criterion A.12. Let β0 ∈ (0,∞) and η ∈ (0,T). Assume that there exist nonnegative
functions h∗, g∗ ∈ L1[0,T] and a nonnegative function h ∈ Lloc(0,T] such that for each
k ∈ N, k > 1/η, there exists a function vk ∈ AC[0,T] fulfilling conditions

∣
∣vk(η)

∣
∣ ≤ β0, (A.22)

v′k(t) sign vk(t) ≥ h(t)
∣
∣vk(t)

∣
∣− g∗(t) for a.e. t ∈

[
1
k

,η
]

, (A.23)

∣
∣v′k(t)

∣
∣ ≤ h∗(t) for a.e. t ∈

[
0,

1
k

]
, (A.24)
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where
∫ ε

0
h(s)ds = ∞ for each sufficiently small ε > 0. (A.25)

Then limk→∞ vk(0) = 0 and the sequence {vk} is equicontinuous at 0 from the right.

B. Convergence theorems

The main tool for proving solvability of singular problems is a regularization and a se-
quential technique. In this way, solutions of singular problems are obtained by limit
processes. Classical arguments here are convergence theorems in spaces of integrable
functions and differentiable functions.

Integrable functions

The following three theorems for integrable functions can be found, for example, in Bar-
tle [30], Hewitt and Stromberg [107], Lang [121], Natanson [145], Shilov and Gurevich
[180].

Theorem B.1 (Lebesgue dominated convergence theorem). Let ϕm,α ∈ L1[0,T] be such
that

∣
∣ϕm(t)

∣
∣ ≤ α(t) for a.e. t ∈ [0,T] and all m ∈ N,

lim
m→∞ϕm(t) = ϕ(t) for a.e. t ∈ [0,T].

Then ϕ ∈ L1[0,T] and

lim
m→∞

∫ T

0
ϕm(t)dt =

∫ T

0
ϕ(t)dt.

If the sequence is bounded by a Lebesgue integrable function only from one side, we
often use the theorem which is known in literature as the Fatou lemma.

Theorem B.2 (Fatou lemma). Let c ∈ (0,∞) and ϕm,α ∈ L1[0,T] be such that

α(t) ≤ ϕm(t) for a.e. t ∈ [0,T] and all m ∈ N,
∫ T

0
ϕm(t)dt ≤ c for each m ∈ N,

lim
m→∞ϕm(t) = ϕ(t) for a.e. t ∈ [0,T].

Then ϕ ∈ L1[0,T].

If we do not know the localization in [0,T] of singular points corresponding to
solutions of singular problems, that is, problems have singular points of type II, then it
often happens that we cannot find a Lebesgue integrable majorant function. In such cases,
the Vitali convergence theorem is used in limit processes since the existence of a Lebesgue
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integrable majorant function is replaced in this theorem by a more general assumption
about the uniform integrability.

Theorem B.3 (Vitali convergence theorem). Let ϕm ⊂ L1[0,T] for m ∈ N and let

lim
m→∞ϕm(t) = ϕ(t) for a.e. t ∈ [0,T].

Then the following statements are equivalent:

(i) ϕ ∈ L1[0,T] and limm→∞ ‖ϕm − ϕ‖1 = 0,
(ii) the sequence {ϕm} is uniformly integrable on [0,T].

Differentiable functions

First, we will consider the space C([a, b]; Rm), m ∈ N, which is the space of continuous
m-vector-valued functions on the interval [a, b]. It is well known that all norms on Rm

are equivalent (see, e.g., Lang [121]), that is, if ‖ · ‖∗ and ‖ · ‖∗∗ are two norms on Rm,
then there exist positive constants C1, C2 such that for all x ∈ Rm, x = (x1, . . . , xm), we
have

C1|x|∗ ≤ |x|∗∗ ≤ C2|x|∗.

Hence without loss of generality, we will use in Rm the norm

|x| = max
{∣∣xj

∣
∣ : 1 ≤ j ≤ m

}
.

We say that a subset H of C([a, b]; Rm) is relatively compact if from each sequence { fn} ⊂
H we can select a subsequence { fkn} converging in C([a, b]; Rm}, that is, we can select a
subsequence which is uniformly convergent on [a, b].

In order to give conditions guaranteeing that a subset H of C([a, b]; Rm) is relatively
compact, we introduce the notions of a uniformly bounded on [a, b] and equicontinuous
on [a, b] subset of C([a, b]; Rm).

A subset H of C([a, b]; Rm) is said to be uniformly bounded on [a, b] if there exists a
positive constant L such that

∣
∣ f (t)

∣
∣ ≤ L for each f ∈ H , t ∈ [a, b].

It is equicontinuous on [a, b] if for each ε > 0, there exists δ > 0 such that for any f ∈ H ,
we have

∣
∣ f
(
t1
)− f

(
t2
)∣∣ < ε

whenever t1, t2 ∈ [a, b] and |t1 − t2| < δ.
Sufficient and necessary conditions for a subset H of C([a, b]; Rm) to be relatively

compact are given in the following vector version of the Arzelà-Ascoli theorem (see, e.g.,
Hartman [105] or Piccinini, Stampacchia, and Vidossich [154]).

Theorem B.4. A subsetH of C([a, b]; Rm) is relatively compact if and only ifH is uniformly
bounded on [a, b] and equicontinuous on [a, b].
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We use the following scalar version of the Arzelà-Ascoli theorem which describes
compact subsets in Cm[a, b].

Theorem B.5 (Arzelà-Ascoli theorem). Let m ∈ N be fixed. Assume that {un} ⊂ Cm[a, b],

the sequence {u(m)
n } is equicontinuous on [a, b], and there exists a positive constant S such

that

∥
∥u

( j)
n
∥
∥∞ ≤ S for n ∈ N, 0 ≤ j ≤ m. (B.1)

Then there exist a subsequence {ukn} of {un} and u ∈ Cm[a, b] such that

lim
n→∞

∥
∥ukn − u

∥
∥
Cm = 0, (B.2)

that is, limn→∞ u
( j)
kn

(t) = u( j)(t) uniformly on [a, b] for 0 ≤ j ≤ m.

Proof . Put fn(t) = (un(t),u′n(t), . . . ,u(m)
n (t)) for t ∈ [a, b] and n ∈ N. Then { fn} ⊂

C([a, b]; Rm+1) and since | fn(t)| ≤ S for t ∈ [a, b] by (B.1), the sequence { fn} is uni-

formly bounded on [a, b]. As {u(m)
n } is equicontinuous on [a, b] by assumption, for each

ε > 0, there exists δε > 0 such that for n ∈ N, we have |u(m)
n (t1)− u(m)

n (t2)| < ε whenever
t1, t2 ∈ [a, b] and |t1 − t2| < δε. Due to (B.2), |u( j)

n (t1) − u
( j)
n (t2)| ≤ S|t1 − t2| for n ∈ N,

t1, t2 ∈ [a, b] and 0 ≤ j ≤ m− 1. Choose ε > 0 and let 0 < δ < min{δε, ε/S}. Then

∣
∣ fn

(
t1
)− fn

(
t2
)∣∣ < ε for each n ∈ N, t1, t2 ∈ [a, b],

∣
∣t1 − t2

∣
∣ < δ,

which shows that the sequence { fn} is equicontinuous on [a, b]. Hence { fn} is relatively
compact by Theorem B.4 and therefore there exist a subsequence { fkn} of { fn} and g ∈
C([a, b]; Rm+1), g = (g0, g1, . . . , gm), such that { fkn} converges in C([a, b]; Rm+1) to g,
which is equivalent to

lim
n→∞u

( j)
kn

(t) = gj(t) uniformly on [a, b] for 0 ≤ j ≤ m.

We now show that

gj(t) = g
( j)
0 (t) for t ∈ [a, b], 1 ≤ j ≤ m. (B.3)

Letting n→∞ in

ukn(t) = ukn(0) + u′kn(0)t + · · · +
u

( j−1)
kn

(0)

( j − 1)!
t j−1 +

1
( j − 1)!

∫ t

0
(t − s) j−1u

( j)
kn

(s)ds

yields

g0(t) = g0(0) + g1(0)t + · · · +
gj−1(0)

( j − 1)!
t j−1 +

1
( j − 1)!

∫ t

0
(t − s) j−1gj(s)ds (B.4)

for t ∈ [a, b] and 1 ≤ j ≤ m. The validity of (B.3) follows from (B.4). Putting u = g0 we
see that (B.2) holds. �
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The next theorem about locally uniform convergence on an open and bounded inter-
val is proved by means of Cauchy diagonalization principle and, hence, we call it the
diagonalization theorem.

Theorem B.6 (diagonalization theorem). Let a < νn < τn < b, where {νn} is decreasing
and converges to a, {τn} is increasing and converges to b. Let {un} ⊂ C1[νn, τn] be a sequence
such that for each � ∈ (0, (a + b)/2), there exist S� > 0 and n� ∈ N such that

∣
∣u

( j)
n (t)

∣
∣ ≤ S� for t ∈ [a + �, b− �], n ≥ n�, j = 0, 1

and {u′n}n≥n� is equicontinuous on [a + �, b − �].

Then there exist a subsequence {ukn} of {un} and u ∈ C1(a, b) such that

lim
n→∞u

( j)
kn

(t) = u( j)(t) locally uniformly on (a, b), j = 0, 1. (B.5)

Proof . Let {�n} ⊂ (0, (a + b)/2) be decreasing and limn→∞ �n = 0. Then there exists

n1 ∈ N such that |u( j)
n (t)| ≤ S�1 for t ∈ [a+�1, b − �1], n ≥ n1, j = 0, 1, and, in

addition, {un}n≥n1 is equicontinuous on [a + �1, b − �1]. Hence, by Theorem B.5, there

is a subsequence {uk1,n} of {un}n≥n1 for which {u( j)
k1,n

(t)} is uniformly convergent on [a +

�1, b−�1] for j = 0, 1. Next, there exists a subsequence {uk2,n} of {uk1,n} such that {u( j)
k2,n
} is

uniformly convergent on [a+�2, b−�2] for j = 0, 1. We can proceed inductively to obtain

a subsequence {uki,n} of {uki−1,n} such that {u( j)
ki,n
} is uniformly convergent on [a+�i, b−�i]

for j = 0, 1. Put kn = kn,n for n ∈ N and consider the diagonal sequence {ukn}. Choose
[α,β] ⊂ (a, b). Then [α,β] ⊂ [a+ �m, b− �m] for some m ∈ N. Since {ukn}n≥m is chosen

from {ukm,n} and we know that {u( j)
km,n
} is uniformly convergent on [a + �m, b − �m] for

j = 0, 1, we see that {u( j)
kn
}n≥m is uniformly convergent on [α,β] for j = 0, 1. We have

proved that {u( j)
kn
} is locally uniformly convergent on (a, b). Let limn→∞ ukn(t) = u(t) and

limn→∞ u′kn(t) = v(t) for t ∈ (a, b). Then u, v ∈ C(a, b) and letting n→∞ in

ukn(t) = ukn

(
a + b

2

)
+
∫ t

(a+b)/2
u′kn(s)ds, t ∈ [

νkn , τkn
]
, n ∈ N,

yields

u(t) = u
(
a + b

2

)
+
∫ t

(a+b)/2
v(s)ds, t ∈ (a, b).

Hence u ∈ C1(a, b) and v = u′ on (a, b), which shows that (B.5) holds. �

C. Some general existence theorems

We present here the Schauder fixed point theorem (see Deimling [64], Granas and
Dugundji [101]), the Leray-Schauder degree theorem, and the Borsuk antipodal theorem
(see Deimling [64], Mawhin [136]), and the Fredholm-type existence theorem (see Lasota
[123], Vasiliev and Klokov [196]). These theorems we use in the proofs of solvability of
auxiliary regular problems. Since the formulation of Theorem C.5 differs from those in
the references cited above, we provide its proof.
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Let X and Y be Banach spaces. We say that a set M ⊂ X is relatively compact if from
each sequence {xm} ⊂M a convergent subsequence can be chosen.

Let U be a subset of X . We say that F : U → Y is a compact operator if F is
continuous and the set F (U) is relatively compact.

We say that F : U → Y is completely continuous if for each bounded set V ⊂ U, the
restriction of F on V is a compact operator.

Theorem C.1 (Schauder fixed point theorem). Let X be a Banach space, Ω ⊂ X a
nonempty, closed, and convex set, and F : Ω → Ω a compact operator. Then F has a
fixed point.

Theorem C.2 (Leray-Schauder degree theorem). Let X be a Banach space, Ω ⊂ X be an
open and bounded set. Let F : Ω→ X be a compact operator and F (x) �= x for x ∈ ∂Ω. Let
I be the identity operator on X .

Then there exists an integer deg(I−F ,Ω) which has the following properties.

(i) Normalization property. If 0 ∈ Ω, then deg(I,Ω) = 1.
(ii) Existence property. If deg(I−F ,Ω) �= 0, then F has a fixed point x0 ∈ Ω.

(iii) Homotopy property. If H : [0, 1]×Ω→ X is a compact operator and H(λ, x) �= x
for λ ∈ [0, 1] and x ∈ ∂Ω, then

deg
(
I−H(0, ·),Ω

) = deg
(
I−H(1, ·),Ω

)
.

(iv) Additivity property. If Ω1 ⊂ Ω is an open set and Ω2 = Ω \Ω1 and if F (x) �= x
for x ∈ ∂Ω1 ∪ ∂Ω2, then

deg(I−F ,Ω) = deg
(
I−F ,Ω1

)
+ deg

(
I−F ,Ω2

)
.

(v) Excision property. If Ω1 ⊂ Ω is an open set and F (x) �= x for x ∈ Ω \Ω1, then

deg(I−F ,Ω) = deg
(
I−F ,Ω1

)
.

Theorem C.3 (Borsuk antipodal theorem). Let X be a Banach space, let Ω ⊂ X be an
open, bounded, and symmetric set with respect to 0 ∈ Ω. Let F : Ω → X be a compact
operator, odd in ∂Ω, and F (x) �= x for x ∈ ∂Ω. Then deg(I − F ,Ω) is an odd (and so
nonzero) number.

The integer deg(I − F ,Ω) is the Leray-Schauder degree of the operator F (with
respect to the set Ω and the point 0). If dimX < ∞, then the corresponding degree is
usually called the Brouwer degree (with respect to Ω and 0) and denoted by dB(I−F ,Ω).

Remark C.4. Let X be a linear normed space with dimX = k < ∞ and let h be an
isometrical isomorphism from X onto Rk. Let Ω be a bounded open set in X and F :
Ω→ X a continuous mapping. Suppose F(x) �= 0 on ∂Ω. Then

dB(F,Ω) = dB
(
h ◦ F ◦ h−1,h(Ω)

)
,

where h◦F ◦h−1 stands for the composition of mappings h, F, and h−1. See, for example,
Fučı́k, Nečas, Souček, and Souček [94] or Deimling [64].
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In order to formulate the Fredholm-type existence theorem, we consider the differ-
ential equation

u(n) +
n−1∑

i=0

ai(t)u(i) = g
(
t,u, . . . ,u(n−1)) (C.1)

and the corresponding linear homogeneous differential equation

u(n) +
n−1∑

i=0

ai(t)u(i) = 0, (C.2)

where ai ∈ L1[0,T], 0 ≤ i ≤ n− 1, g ∈ Car([0,T]×Rn). Further, we deal with boundary
conditions

L j(u) = r j , 1 ≤ j ≤ n, (C.3)

and with the corresponding homogeneous boundary conditions

L j(u) = 0, 1 ≤ j ≤ n, (C.4)

where L j : Cn−1[0,T] → R are linear and continuous functionals and r j ∈ R, 1 ≤ j ≤ n.

Theorem C.5 (Fredholm-type existence theorem). Let the linear homogeneous problem
(C.2), (C.4) have only the trivial solution and let there exist a function ψ ∈ L1[0,T] such
that

∣
∣g
(
t, x0, . . . , xn−1

)∣∣ ≤ ψ(t) for a.e. t ∈ [0,T] and all
(
x0, . . . , xn−1

) ∈ R
n. (C.5)

Then problem (C.1), (C.3) has a solution u ∈ ACn−1[0,T].

Proof . Let u1, . . . ,un be the fundamental system of solutions of (C.2). We will denote

by Δi(t) the cofactor of the element u(n−1)
i in the Wronskian W(t) of u1, . . . ,un. Define

Γ : Cn−1[0,T] → Cn−1[0,T] by the formula

(Γx)(t) =
n∑

i=1

ui(t)
∫ t

0

Δi(s)
W(s)

g
(
s, x(s), . . . , x(n−1)(s)

)
ds.

Then

(Γx)( j)(t) =
n∑

i=1

u
( j)
i (t)

∫ t

0

Δi(s)
W(s)

g
(
s, x(s), . . . , x(n−1)(s)

)
ds

for t ∈ [0,T], x ∈ Cn−1[0,T], and 0 ≤ j ≤ n− 1. Hence (see (C.5))

∥
∥(Γx)( j)

∥
∥∞ ≤

n∑

i=1

∥
∥u

( j)
i

∥
∥∞

∫ T

0

∣
∣Δi(t)

∣
∣

∣
∣W(t)

∣
∣ψ(t)dt, 0 ≤ j ≤ n− 1,
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and therefore,

‖Γx‖Cn−1 ≤
n∑

i=1

∥
∥ui

∥
∥
Cn−1

∫ T

0

∣
∣Δi(t)

∣
∣

∣
∣W(t)

∣
∣ψ(t)dt =: V (C.6)

for x ∈ Cn−1[0,T]. Because of (C.5), Γ is a continuous operator. From the inequalities
(for 0 ≤ t1 < t2 ≤ T and x ∈ Cn−1[0,T])

∣
∣(Γx)(n−1)(t2

)− (Γx)(n−1)(t1
)∣∣

=
∣
∣
∣
∣
∣

n∑

i=1

u(n−1)
i

(
t2
)
∫ t2

0

Δi(s)
W(s)

g
(
s, x(s), . . . , x(n−1)(s)

)
ds

−
n∑

i=1

u(n−1)
i

(
t1
)
∫ t1

0

Δi(s)
W(s)

g
(
s, x(s), . . . , x(n−1)(s)

)
ds

∣
∣
∣
∣
∣

≤
n∑

i=1

∫ t2

t1

∣
∣u(n)

i (s)
∣
∣ds

∫ T

0

∣
∣Δi(s)

∣
∣

∣
∣W(s)

∣
∣ψ(s)ds +

n∑

i=1

∥
∥u(n−1)

i

∥
∥∞

∫ t2

t1

∣
∣Δi(s)

∣
∣

∣
∣W(s)

∣
∣ψ(s)ds

and from ui ∈ ACn−1[0,T], (Δi(t)/W(t))ψ(t) ∈ L1[0,T], we see that the set {(Γx)(n−1) :
x ∈ Cn−1[0,T]} is equicontinous on [0,T]. This fact and (C.6) show that the set
Γ(Cn−1[0,T]) is compact in Cn−1[0,T] by the Arzelà-Ascoli theorem. Hence Γ is a com-
pact operator.

Since, by assumption, problem (C.2), (C.4) has only the trivial solution, the n × n
matrix (L j(uk))nj,k=1 is regular, that is, det(L j(uk)) �= 0. Consequently, for each x ∈
Cn−1[0,T], the linear system

n∑

i=1

ci(x)L j
(
ui
) = r j −L j(Γx), 1 ≤ j ≤ n,

with the unknown vector (c1(x), . . . , cn(x)) ∈ Rn has the unique solution

ci(x) = 1
det

(
L j
(
uk
))

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

L1
(
u1
) · · · r1 −L1(Γx) · · · L1

(
un
)

...
. . .

...
...

Li
(
u1
) · · · ri −Li(Γx) · · · Li

(
un
)

...
...

. . .
...

Ln
(
u1
) · · · rn −Ln(Γx) · · · Ln

(
un
)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

i = 1, 2, . . . ,n.

The continuity of Li and Γ implies that the functional ci : Cn−1[0,T] → R is continuous
and the inequality (see (C.6))

∣
∣ci(x)

∣
∣ ≤ n!An−1B

∣
∣det

(
L j
(
uk
))∣∣ for x ∈ Cn−1[0,T], 1 ≤ i ≤ n,
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where

A = max
{∣∣L j

(
uk
)∣∣ : 1 ≤ j, k ≤ n

}
,

B = max
{∣∣r j

∣
∣ : 0 ≤ j ≤ n

}
+ sup

{∣∣L j(x)
∣
∣ : ‖x‖Cn−1 ≤ V , 1 ≤ j ≤ n

}
,

implies that the set cj(Cn−1[0,T]) is compact on R for 1 ≤ j ≤ n. Hence cj , 0 ≤ j ≤ n,
are compact functionals.

Finally, define the operator K : Cn−1[0,T] → Cn−1[0,T] by the formula

(Kx)(t) =
n∑

i=1

ci(x)ui(t) + (Γx)(t).

Suppose that u is a fixed point of the operator K . Then

L j(u) =
n∑

i=1

ci(u)L j
(
ui
)

+ L j(Γu) = r j , 1 ≤ j ≤ n,

u(t) =
n∑

i=1

ci(u)ui(t) +
n∑

i=1

ui(t)
∫ t

0

Δi(s)
W(s)

g
(
s,u(s), . . . ,u(n−1)(s)

)
ds

for t ∈ [0,T]. Therefore, u satisfies the boundary conditions (C.3) and u ∈ ACn−1[0,T],

n−1∑

j=0

aj(t)u( j)(t) =
n∑

i=1

ci(u)

( n−1∑

j=0

aj(t)u
( j)
i (t)

)

+
n∑

i=1

∫ t

0

Δi(s)
W(s)

g
(
s,u(s), . . . ,u(n−1)(s)

)
ds

(n−1∑

j=0

aj(t)u
( j)
i (t)

)

= −
n∑

i=1

ci(u)u(n)
i (t)−

n∑

i=1

u(n)
i (t)

∫ t

0

Δi(s)
W(s)

g
(
s,u(s), . . . ,u(n−1)(s)

)
ds

(C.7)

for t ∈ [0,T] and

u(n)(t) =
n∑

i=1

ci(u)u(n)
i (t) +

n∑

i=1

u(n)
i (t)

∫ t

0

Δi(s)
W(s)

g
(
s,u(s), . . . ,u(n−1)(s)

)
ds

+ g
(
t,u(t), . . . ,u(n−1)(t)

)
(C.8)

for a.e. t ∈ [0,T]. From (C.7) and (C.8), it follows that

u(n)(t) = −
n−1∑

j=0

aj(t)u( j)(t) + g
(
t,u(t), . . . ,u(n−1)(t)

)
for a.e. t ∈ [0,T]

and therefore, u is a solution of (C.1). We have verified that any fixed point of K is a
solution of problem (C.1), (C.3). In order to prove our theorem, it suffices to show that
K has a fixed point. Since Γ is a compact operator and ci (1 ≤ i ≤ n) is a compact
functional, the operator K is compact as well. Therefore, there exists a fixed point of
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K by the Schauder fixed point theorem since there exists a closed ball Ω in Cn−1[0,T]
centered at 0 such that K(Ω) ⊂ Ω. �

Sometimes, we can apply Theorem C.5 in the following form.

Corollary C.6. Let problem (C.2), (C.4) have only the trivial solution. Let there exist a
positive constant S such that ‖u‖Cn−1 ≤ S for all solutions u of the problem

u(n) +
n−1∑

i=0

ai(t)u(i) = γ

( n−1∑

i=0

∣
∣u(i)

∣
∣
)
(
g
(
t,u, . . . ,u(n−1))− ϕ(t)

)
+ ϕ(t),

L j(u) = r j , 1 ≤ j ≤ n,

(C.9)

where ϕ ∈ L1[0,T] and

γ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for 0 ≤ x ≤ S,

2− x

S
for S < x ≤ 2S,

0 for x > 2S.

Then problem (C.1), (C.3) has a solution u ∈ ACn−1[0,T] and ‖u‖Cn−1 ≤ S.

Proof . Since g ∈ Car([0,T]×Rn), there exists ψ ∈ L1[0,T] such that

γ

( n−1∑

i=0

∣
∣xi

∣
∣
)
∣
∣g
(
t, x0, . . . , xn−1

)− ϕ(t)
∣
∣ +

∣
∣ϕ(t)

∣
∣ ≤ ψ(t)

for a.e. t ∈ [0,T] and all (x0, . . . , xn−1) ∈ Rn. Hence, by Theorem C.5, there exists a
solution u ∈ ACn−1[0,T] of problem (C.9). Because of our assumption ‖u‖Cn−1 ≤ S, we
have γ(

∑n−1
i=0 |u(i)(t)|) = γ(‖u‖Cn−1 ) = 1, which shows that

γ

( n−1∑

i=0

∣
∣u(i)(t)

∣
∣
)
(
g
(
t,u(t), . . . ,u(n−1)(t)

)− ϕ(t)
)

+ ϕ(t) = g
(
t,u(t), . . . ,u(n−1)(t)

)

for t ∈ [0,T]. Therefore, u is a solution of problem (C.1), (C.3). �

D. Spectrum of the quasilinear Dirichlet problem

Here we recall some basic useful facts from the half-linear analysis.
First, let us consider the initial value problem

(
φp(u′)

)′
+ λφp(u) = 0, (D.1)

u
(
t0
) = 0, u′

(
t0
) = d, (D.2)

where p ∈ (1,∞), t0 ∈ R, λ ∈ R, and d ∈ R. As in del Pino, Elgueta, and Manásevich
[66] (see also, e.g., Binding et al. [42], del Pino, Drábek, and Manásevich [65], Došlý [77],
Došlý and Řehák [78], Manásevich and Mawhin [135], and Zhang [205, 207]), let us put

πp = 2(p − 1)1/p
∫ 1

0

(
1− sp)−1/p

ds.
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Clearly, π2 = π. Furthermore, it is known that

πp = 2(p − 1)1/p π/p

sin(π/p)
= 2

(p − 1)1/p

p
B
(

1
p

, 1− 1
p

)
.

(See [78, Section 1.1.2], but take into account that our definition differs from that used in
[78], where πp = 2

∫ 1
0 (1− sp)−1/pds.) It is known (see [78, Theorem 1.1.1]) that for each

t0 ∈ R, λ ∈ R, and d ∈ R, problem (D.1), (D.2) has a unique solution u on R which can
be, by [66, Section 3]), expressed as

u(t) = dλ−1/p sinp
(
λ1/p(t − t0

))
for t ∈ R,

where the function sinp : R→ [−(p − 1)1/p, (p − 1)1/p] is defined as follows.
Let w : [0,πp/2] → [0, (p − 1)1/p] be the inverse function to

z(x) =
∫ x

0

ds
(
1− sp/(p − 1)

)1/p .

Further, put w̃(t) = w(πp − t) for t ∈ [πp/2,πp] and w̃(t) = −w̃(−t) for t ∈ [−πp, 0].
Finally, define sinp : R → R as the 2πp-periodic extension of w̃ to the whole R. In
particular, if d = 0, then u ≡ 0 on R. Obviously, we have

sinp(t) = 0 ⇐⇒ t = nπp, n ∈ N∪ {0},
sinp(t) = (p − 1)1/p ⇐⇒ t = (2n + 1)

πp
2

, n ∈ N∪ {0},
sinp(t) > 0 for t ∈ (

2nπp, (2n + 1)πp
)
, n ∈ N∪ {0}.

As a corollary, we immediately obtain that for given a, b ∈ R, a < b, the corresponding
quasilinear Dirichlet problem

(
φp(u′)

)′
+ λφp(u) = 0, u(a) = u(b) = 0 (D.3)

possesses a nontrivial solution, that is, λ is an eigenvalue for (D.3) if and only if

λ ∈
{(

nπp
b − a

)p
: n ∈ N∪ {0}

}
. (D.4)

In particular, (πp/T)p is the first eigenvalue for (D.3) with b − a = T , wherefrom the
following assertion follows.

Lemma D.1. Let p ∈ (1,∞), a, b ∈ R, a < b, and let λ = (πp/T)p. Then problem (D.3)
has a nontrivial solution if and only if b − a ≥ T .



252 Appendices

The following lemma gives the variational definition of the first eigenvalue for (D.3).
It follows from the embedding inequalities (cf. e.g. Drábek and Manásevich [80, Theorem
5.1], Zhang [205], or Talenti [191]).

Lemma D.2 (sharp Poincaré inequality). Let p ∈ (1,∞). Then

‖u‖p ≤ T

πp
‖u′‖p

holds for all u ∈ AC[0,T] such that u′ ∈ Lp[0,T] and u(0) = u(T) = 0.
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[41] V. Bevc, J. L. Palmer, and C. Süskind, “On the design of the transition region of axi-symmetric
magnetically beam valves,” The British Institution of Radio Engineers, vol. 18, pp. 697–708, 1958.
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des Arts et des Lettres du Hainaut, vol. 76, pp. 193–203, 1962.
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[123] A. Lasota, “Sur les problèmes linéaires aux limites pour un système d’équations différentielles
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Polášek V., 86, 131, 184
Pouso R., 184
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Souček J., 246
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