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Preface

The topic of singular boundary value problems has been of substantial and rapidly grow-
ing interest for many scientists and engineers. This book is devoted to singular bound-
ary value problems for ordinary differential equations. It presents existence theory for
a variety of problems having unbounded nonlinearities in regions where their solutions
are searched for. The importance of thorough investigation of analytical solvability is
emphasized by the fact that numerical simulations of solutions to such problems usually
break down near singular points.

The contents of the monograph is mainly based on results obtained by the authors
during the last few years. Nevertheless, most of the more advanced results achieved to
date in this field can be found here. Besides, some known results are presented in a new
way. The selection of topics reflects the particular interests of the authors.

The book is addressed to researchers in related areas, to graduate students or advan-
ced undergraduates, and, in particular, to those interested in singular and nonlinear
boundary value problems. It can serve as a reference book on the existence theory for
singular boundary value problems of ordinary differential equations as well as a textbook
for graduate or undergraduate classes. The readers need basic knowledge of real analysis,
linear and nonlinear functional analysis, theory of Lebesgue measure and integral, theory
of ordinary differential equations (including the Carathédory theory and boundary value
problems) on the graduate level.

The monograph deals with boundary value problems which are considered in the
frame of the Carathéodory theory. If nonlinearities in differential equations fulfil the
Carathéodory conditions, the boundary value problems are called regular, while, if the
Carathéodory conditions are not fulfilled on the whole region, the problems are called
singular. Two types of singularities are distinguished—time and space ones. For singular
boundary value problems, we introduce notions of a solution and of a w-solution. Solu-
tions of nth-order differential equations are understood as functions having absolutely
continuous derivatives up to order n — 1 on the whole basic compact interval. On the
other hand, w-solutions have these derivatives only locally absolutely continuous on a
noncompact subset of the basic interval. The main attention is paid to the existence
of solutions of singular problems. The proofs are mostly based on regularization and
sequential technique. The impact of our theoretical results is demonstrated by illustrative
examples.

Essentially, the book is divided into two parts and four appendices.

Part I consists of 6 chapters and is devoted to scalar higher-order singular boundary
value problems. In Chapter 1, time and space singularities are defined, three existence
principles for problems with time singularities and two for problems with space singular-
ities are formulated and proved. Chapter 2 presents existence results for focal problems
with a time singularity and for focal problems having space singularities in all variables.
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Chapters 3—6 investigate other higher-order boundary value problems having only space
singularities which appear most frequently in literature. They provide existence results for
(n, p)-problems, conjugate problems, Sturm-Liouville problems, and Lidstone problems.

Part II consists of Chapters 7—11 and deals with scalar second-order singular bound-
ary value problems with one-dimensional ¢-Laplacian. The exposition is focused mainly
on Dirichlet and periodic problems which are considered in Chapters 7 and 8, respec-
tively. Section 7.1 is fundamental for further investigation. The operator representation
of the regular Dirichlet problem with ¢-Laplacian is derived here and the methods of
a priori estimates and lower and upper functions are developed. In Sections 7.2-7.4,
three existence principles are presented. These principles together with the principles
of Chapter 1 are then specialized to important particular cases and existence theorems
and criteria extending and supplementing earlier results are obtained. Section 7.2 deals
with time singularities, Section 7.3 with space singularities, and Section 7.4 with mixed
singularities, that is, both time and space ones. In Chapter 8, we consider the existence of
periodic solutions. We start with the method of lower and upper functions and with its
relationship to the Leray-Schauder degree in Section 8.1. Section 8.2 is devoted to prob-
lems with a nonlinearity having an attractive singularity in its first space variable. Sec-
tions 8.3 and 8.4 deal with problems with strong and weak repulsive space singularities,
respectively. An existence theorem for periodic problems with time singularities is given
in the last section of Chapter 8. In Chapter 9, we study two singular mixed boundary
value problems. The latter arises in the theory of shallow membrane caps and we discuss
its solvability in dependence on parameters which appear in the differential equation. In
Chapter 10, we treat problems which may have singularities in space variables. Boundary
conditions under discussion are generally nonlinear and nonlocal. We present general
principles for solvability of regular and singular nonlocal problems and show some of
their applications. Chapter 11 is devoted to a class of problems having singularities in
space variables. Implementation of a parameter into the equation enables us to prove
solvability of problems with three independent (generally nonlocal) boundary condi-
tions. We deliver an existence principle and its specialization to the problem with given
maximal values for positive solutions.

Appendices give an overview of some basic classical theorems and assertions which
are used in Chapters 1-11. Appendix A presents several criteria for uniform integrability
or equicontinuity. Some convergence theorems are given in Appendix B. In particular,
we recall the Lebesgue dominated convergence theorem, the Fatou lemma, the Vitali
convergence theorem for integrable functions, and the Arzela-Ascoli theorem and the
diagonalization theorem for differentiable functions. Appendix C contains the Schauder
fixed point theorem, the Leray-Schauder degree theorem, the Borsuk antipodal theorem,
and the Fredholm-type existence theorem. Appendix D collects some useful facts from
half-linear analysis which are needed in Chapter 8.
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List of :

Let] C R, [a,b] CR,keN, p e (l,0), M C Rk. Then we will write

(i) Lo(J) for the set of functions essentially bounded and (Lebesgue) measurable
on J; the corresponding norm is

llullw = supess{|u(t)| :t €]}

(ii) Ly(J) for the set of functions (Lebesgue) integrable on J; the corresponding
norm is [lull, = [; [u(t)|dt;

(iii) Lioc(J) for the set of functions (Lebesgue) integrable on each compact interval
IC];

(iv) L,(J) for the set of functions whose pth powers of modulus are integrable on
J; the corresponding norm is [|ull, = ([; [u(t)|? dnle,

(v) C(J) and C*(J) for the sets of functions continuous on J and having continuous
kth derivatives on J, respectively;

(vi) AC(J) and ACK(J) for the sets of functions absolutely continuous on J and
having absolutely continuous kth derivatives on J, respectively;

(vil) ACoc(J) and AC{‘OC(] ) for the sets of functions absolutely continuous on each
compact interval I C ] and having absolutely continuous kth derivatives on
each compact interval I C J, respectively;

(viii) Car([a, b] x M) for the set of functions satisfying the Carathéodory conditions
on [a,b] X M.

IfJ C [a,b] and ] # ], then f € Car(J x M) will denote that f € Car(I x M) for each
compact interval I C J.

If ] = [a, b], we will simply write Cl[a, b] instead of C([a, b]) and similarly for other
types of intervals and other functional sets defined above.

If ueLo[a,b] N Cla, b], then max{|u(t)| : t€la,b]} = supess{lu(t)| : t € [a,b]}.
Therefore, the norms in C[a, b] and C*[a, b] will be denoted by

k
lullw = max {|u(t)| :t € [a,b]},  lulle =D |[u?]],,
i=0

respectively.

M will denote the closure of M, d.M the boundary of M, and meas(.M) the Lebesgue
measure of M.

The symbol deg(4 —F, Q) stands for the Leray-Schauder degree of { — F with respect
to Q, where £ denotes the identity operator.

We will say that some property holds for a.e. t € J (a.e. on J) if it is fulfilled for each
t € J\ Jo, where meas(Jy) = 0.



List of notation

Throughout this text we exploit the following basic theorems listed in appendices.

(i) Lebesgue dominated convergence theorem (Theorem B.1).
(ii) Fatoulemma (Theorem B.2).
(iii) Vitali convergence theorem (Theorem B.3).
(iv) Arzela-Ascoli theorem (Theorem B.5).
(v) Diagonalization theorem (Theorem B.6).
(vi) Schauder fixed point theorem (Theorem C.1).
(vii) Leray-Schauder degree theorem (Theorem C.2).
(viii) Borsuk antipodal theorem (Theorem C.3).
(ix) Fredholm-type existence theorem (Theorem C.5).
(x) Sharp Poincaré inequality (Lemma D.2).
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Part I. Higher-order singular problems 3
Consider the boundary value problem
u™ = 1t u,..,u" V), ue B, (BVP)

where n € N, [0,T] € R, and 8 c C[0, T]. In what follows, we will investigate the
solvability of problem (BVP) on the set [0, T] X +, where # is a closed subset of R". If
we impose some additional conditions on solutions of (BVP), for example, if we search
for positive or for monotonous solutions, we express this requirement in terms of the set
4 # R" and prove the existence of a solution u such that (u(t),...,u""V(t)) € # for
t € [0, T]. On the other hand, if there are no additional requirements on solutions, we
can assume 4 = R".

Let MCR". We say that a function f satisfies the Carathéodory conditions on the set
[a,b]XM (f € Car([a,b]xXM)) if

(1) f(-,%05...>%n-1) : [a, b] =R is measurable for all (xo,...,x,-1)EM,
(ii) f(t+...,+): M — Ris continuous for a.e. t € [a,b],
(iii) for each compact set KX C M, there is a function mx € L;[a,b] such that
| f(t, %0, Xu-1)| < myg(t) fora.e. t € [a,b] and all (xo,...,x,-1) € K.

If] C [a,b] and ] # ], then f € Car(J X M) means that f € Car(I x M) for each
compact interval I C J.
The classical existence results are based on the assumption

f € Car([0,T] x ).

In this case, we will say that problem (BVP) is regular on [0, T]xA. If f & Car([0, T] X A),
we will say that problem (BVP) is singular on [0, T] X . The research of singular prob-
lems was essentially initiated by Kiguradze in [116, 117]. For further development see, for
example, the monographs Agarwal [2], Agarwal and O’Regan [12], Agarwal, O’Regan,
and Wong [21], O’Regan [150], Kiguradze [118], Kiguradze and Shekhter [120], Mawhin
[137], Rachtnkova, Stanék, and Tvrdy [165], and references therein.

Example 1. In certain problems in fluid dynamics and boundary layer theory (see, e.g.,
Callegari and Friedman [53], Callegari and Nachman [54, 55]) the second-order
differential equation

u”+ﬂ;):0
u

arose. Here A € (0, ) and v € C(0, 1), v € L,[0, 1]. This equation is known as the gen-
eralized Emden-Fowler equation. Its solvability with the Dirichlet boundary conditions

was investigated by Taliaferro [192] in 1979 and subsequently by many other authors.
Since solutions positive on (0, 1) have been searched for, this Dirichlet problem has been
studied on the set [0,1] X A with 4 = [0, ). We can see that f(t,x) = w(t)x™* does
not fulfil conditions (ii) and (iii) with [a,b] = [0,1] and M = [0, o). Hence the above
problem is singular on [0, 1] X [0, c0).
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Example 2. Consider the fourth-order degenerate parabolic equation
U+ (|U|‘quyy)y =0,

which arises in droplets and thin viscous flows models (see, e.g., Bernis, Peletier, and
Williams [39] and Bertozzi, Brenner, Dupont, and Kadanoff [40]). The source-type solu-
tions of this equation have the form

1
b (b _
Uy, t) =t u(yt™®), b e

which leads to the study of the third-order ordinary differential equation
u" = btu'H
on [—1,1]. We see that f(t,x) = btx'"# is singular on [—1,1] X [0, 00) if g > 1.

Example 3. Similar to the previous example, the sixth-order degenerate equation

U — (|U|MUyyyyy) =0,

y
which arises in semiconductor models (Bernis [37, 38]), leads to the fifth-order ordinary

differential equation

t

6 - =
—u® =

ut

which is singular for A > 0.
Example 4. Consider the nonlinear elliptic partial differential equation
Au+g(r,u)=0 onQ, ulp=0,

where A is the Laplace operator, Q is the open unit disk in R" centered at the origin, I
is its boundary, and r is the radial distance from the origin. When searching for positive
radially symmetric solutions to this problem, we get the singular problem of the form

1
W gt =0, W (0) =0, u(l)=0.

(See Berestycki, Lions, and Peletier [36] or Gidas, Ni, and Nirenberg [98].)

Example 5. Assume f € Car([0, ) x R) and consider the regular boundary value prob-
lem

W' = f(tbu), u(l)=0, wu(c)=0

on the infinite interval [1, o). We can transform this problem to a finite interval, for
example, on [0, 1]. Then we get the singular problem of the form

"y %V, _ t%f(%v) v(0) = v(1) = 0.



Existence principles for

singular problems

1.1. Formulation of the problem

Forn € N,[0,T] c R,i € {0,1,...,n — 1}, and a closed set B C C[0, T], consider the
boundary value problem

u™ :f(t,u,...,u(”_l)), (1.1)
ue B. (1.2)

A decision concerning solvability for singular boundary value problems requires
an exact definition of a solution to such problems. Here, we will work with the same
definition of a solution both for the regular problems and for the singular ones.

Definition 1.1. A function u € AC" 1[0, T] N B is called a solution of problem (1.1), (1.2)
if it satisfies the equality

u(t) = f(t,u(t),...,u" V() forae.te[0,T].

If problem (1.1), (1.2) is investigated on [0, T] X «+, where A # R", then (u(t),...,
u"=(t)) € A for t € [0, T] is required.

In literature, an alternative approach to solvability of singular problems can be found.
In that approach, authors search for solutions which are defined as functions whose (n —
1)st derivatives can have discontinuities at some points in [0, T']. Here, we will call them
w-solutions. According to Kiguradze [117] or Agarwal and O’Regan [12], we define them
as follows. In contrast to our starting setting, to define w-solutions we assume (in general)
that B is a closed subset in C'[0, T], where i € {0,1,...,n — 2}.

Definition 1.2. A function u € C"~2[0, T] is a w-solution of problem (1.1), (1.2) if there
exists a finite number of points t, € [0, T],v = 1,2,...,r,such thatif ] = [0, T]\ {t,},_,,
then u € AC'.'(J) n B, and

u(t) = f(tyu(t),...,u" V() forae.te[0,T].

If A # R (u(t),...,u" " D(t)) € 4 for t € J is required.
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Clearly, each solution is a w-solution and each w-solution which belongs to AC*~'[0,
T] is a solution. While only the existence of w-solutions was proved in the works cited
above, our main goal is to prove the existence of solutions. However, in some cases, we
first find w-solutions and then prove that they are also solutions.

When studying the singular problem (1.1), (1.2), we will focus our attention on two
types of singularities of the function f.

Let J C [0, T]. We say that f : ] X A — R has singularities in its time variable t if
J#J=10,T] and

f € Car(J] x A), f ¢ Car ([0, T] X A). (1.3)

Let & C . We say that f : [0,T] X & — R has singularities in its space variables
X0y X1se - s Xn_1,1f D # D = A and

feCar([0,T] x D), f & Car ([0, T] X #). (1.4)

We will study particular cases of (1.3) and (1.4), which will be described in Section 1.2
and Section 1.3, respectively.

1.2. Singularities in time variable

A function f has a singularity in its time variable ¢ (in short a time singularity) if, roughly
speaking, f is not integrable on [0, T]. Let us define it more precisely. Let k € N, t; €
[0,T],i=1,....k,] = [0,T]\ {#;,t2..., 1} and let f € Car(J X #4A). Assume that for
eachi € {1,...,k}, there exists (xg,...,%x,_1) € + such that

ti

Liﬂ | f(t,x05...,%n-1) |dt = 0 or J't | f(t %05+ %n-1) |dt = (1.5)

i i€

for any sufficiently small ¢ > 0. Then f & Car ([0, T] X +) and f has singularities in its
time variable t, namely, at the values t = t1,..., . We will call t,,..., t singular points

of f.

Example 1.3. Let fi: R" — R,i=1,2,...,k, be continuous. Then the function

f(t %05 Xn-1) = Z

i=1

1
f— tifi(xO)-wa-xn—l)y

has singular points ¢, t5,. .., t.

To establish the existence of a solution of a singular problem, we usually introduce a
sequence of approximate regular problems which are solvable. Solutions of these regular
problems are called approximate solutions. Then, we pass to the limit of the sequence of
approximate solutions to get a solution of the original singular problem. Here, we provide
existence principles which contain main rules for the construction of such sequences to
get either w-solutions or solutions.
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Consider problem (1.1), (1.2) on [0, T] X . For the sake of simplicity, assume that
f has only one time singularity at t = t,, ty € [0, T]. Thus,

J =10, T]\ {to}, f € Car(J X ) satisfies one of the conditions:

Q) L:_E|f(t,x0,...,xn,1)|dt=oo, fo € (0, T1, e

tot+e
(i) J | (60 2t) | dE = 00, 1o € [0,T),

to

for some (xp,...,x,-1) € + and each sufficiently small ¢ > 0.
Further, consider a sequence of regular problems:

U (t) = fi(t,u(t),...,u" V), ueB, (1.7)

where fi € Car([0,T] x R"), k € N. Solutions of problem (1.7) are understood in the
sense of Definition 1.1. The following two theorems deal with the case

B is a closed subset in C"2[0, T]. (1.8)

Theorem 1.4 (first principle for time singularities). Let (1.6) and (1.8) hold. Assume that
the conditions

for each k € N and each (xo,...,%X,-1) € A,
(6, %05, x01) = f(t%05-- 5 %0—1)  a.e.on [0, T]\ Ay, (1.9)

where Ay = (to - %,to + i) N [0, T];

there exists a bounded set QO ¢ C"1[0, T such that
for each k € N, the regular problem (1.7) has a solution (1.10)

up € Q,  (w(t),...,u" V(1)) € A fort € [0,T]

are fulfilled.
Then,

there exist a function u € C"2[0, T] and a subsequence (L11)

{uk,} C {uk} such that lime_.o ||uk, — uf| iz = 05

. (n—1)
limg-— o 1y,

and (u(t),...,u""V(t)) € A fort € J;

_ -1 :
(t)=u (t) locally uniformly on | (L12)

ue AC{H(]), u is a w-solution of problem (1.1), (1.2). (1.13)

oc
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Assume, moreover, that

there existy € L1[0,T],n > 0,8 € N, and A, A, € {—1,1}
such that

M e (1 i, (8, ul () = p(b)

for each € € N, ¢ > &y, and for a.e. t € [ty —n,ty) C [0, T]
provided (1.6)(i) holds (1.14)

and

Asze (t) ukg(t)> ey l/l](gzil)(t)) > w(t)

foreach £ € N, £ > £y, and for a.e. t € (ty,fo+1] C [0, T]
provided (1.6)(ii) is true.
Then u € AC"'[0, T, u is a solution of problem (1.1), (1.2) and
(u(t),...,u" V(t)) € A forte[0,T].

Proof

Step 1. Convergence of the sequence of approximate solutions.

Condition (1.10) implies that the sequences {u,(f)}, 0 <i < n—2,are bounded and
equicontinuous on [0, T]. By the Arzela-Ascoli theorem, we see that assertion (1.11) is
trueand u € B8 ¢ C*2[0, T]. Let ty # 0. Since {u,i"_l)} is bounded on [0, T'], we get, due
to (1.9), that for each 7 € [0, ty) there exist k; € N and h, € L;[0, T'] such that for each
k > k;,

| fi (s, uk(s),...,uinfl)(s)ﬂ < h,(s) fora.e.se€[0,1]. (1.15)

Hence, by virtue of (1.7), for k = ki, t;,t, € [0, 7], we have

>

t
e = )| = | [ Che(ods

which implies that the sequence {u,(ffl)} is equicontinuous on [0, 7]. The same holds
on [1,T] if T € (ty, T] and t, # T. The Arzela-Ascoli theorem implies that for each
compact subset X C J = [0, T]\ {t,}, a subsequence of {u,&n_l)} uniformly converging to
4= on X can be chosen. Therefore, using the diagonalization theorem, we can choose
a subsequence {u, } satisfying both (1.11) and (1.12).

Step 2. Convergence of the sequence of approximate nonlinearities.

Let V; be the set of all t € [0, T'] such that f(t,-,...,-) : R” — R is not continuous
and let 'V, be the set of all t € [0, T'] such that (1.9) is not satisfied. Then meas(V,UV;) =
0. Choose an arbitrary 7 € [0, T]\(V;UV,). Then there exists £, € N such that for £ = £,

o (Tug (0wl () = £ (g (0), w0 (1)
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and, by (1.11) and (1.12),
}ir?oﬁge(r, uke(f),...,ug V(1)) = fr,u(r),...,u"V(1)).
Hence,
}irgloﬁce(t, ukz(t),...,uke (t)) f(tu(t),...,u" V() foraete[0,T]. (1.16)

Step 3. The function u is a w-solution of problem (1.1), (1.2).
Let ty # 0 and ¢ € N. Choose an arbitrary 7 € [0, fy) and integrate the equality

uke () = fi, (£, ug, (1), ...,uke (t)) fora.e.t € [0, T].

We get

uke Dir) = uk’: D O)+J S (8, i, (5), ..,uk:' Y(s))ds.

According to (1.15), (1.16), and the Lebesgue dominated convergence theorem on [0, 7],
we can deduce (having in mind that 7 is arbitrary) that if {, # 0 the limit u solves the
equation

u" V(1) = uD(0) + th(s, u(s),...,u" V(s))ds forte [0,1). (1.17)
0

Similarly, if £y # T, the limit u solves the equation

T
u V() =y (T — I f(s,u(s),...,u"V(s))ds forte (t,T]. (1.18)

The equalities (1.17) and (1.18) immediately yield (1.13).

Step 4. The function u is a solution of problem (1.1), (1.2).
Assume, moreover, that (1.14) and (1.6)(i) hold. Since

-1 1)
0 ) = [ A9 0

for t € (0,1y), we get, due to (1.10), that there is a ¢ € (0, o) such that
to
M t fkg(s,uke(s),...,ukf (s))dss c (1.19)
01

for each ¢ € N. By the Fatou lemma, using conditions (1.16), (1.14), and (1.19), we
deduce that

Ftu(t),...,u™ V() € Li[to — n,to].

Similarly, if condition (1.6)(ii) holds, we deduce that

ftut),...,u" V() € Li[to, to + 17].
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Hence,
ftu),...,u" V(1) € Li([to — 1,8 + 1] N [0,T]).

Recall that, by (1.12), we have (u(t),...,u""V(t)) € # for t € J and, by (1.6), f €
Car(J x ). Further, by virtue of (1.10) and (1.11), the functions u,u/,...,u"? are
bounded on [0, T] and (1.10), (1.12) imply that u"~V is bounded on [0, T]\ (to—1#, to+7).
Hence,

ftu),...,u V(1) € Li([0, T]\ (to — n,to + 7)),
which together with the above arguments yields
ftu(t),...,u" V() € Li[0, T].

Therefore, due to (1.17) and (1.18), we have that u € AC"~1[0, T], that is, u is a solution
of problem (1.1), (1.2). Finally, since -4 is closed, we get

llﬁn{g (u(t)y...,u™ (@) = (uty),...,u" V(L)) € A. -

Theorem 1.5 (second principle for time singularities). Let (1.6), (1.8), (1.9), and (1.10)
hold. Assume that

there exist y € L1[0,T], # >0, and A, A, € {—1,1} such that

M fie (8, (), ul ™D (1) signu ™ () = y(t)

for each ¢ € Nand fora.e. t € [ty — n,t9) C [0, T] if (1.6)(i) holds (1.20)
and ’

Ao feo (8 ug (), . ul D (8)) sign " (1) = y(t)

for each € € N and for a.e. t € (to,to + 1] C [0, T if (1.6)(ii) is true.

Then, there exists a function u € AC" [0, T] satisfying (1.11) and (1.12) which is a
solution of problem (1.1), (1.2), and (u(t),...,u"""V(t)) € 4 fort € [0, T].
Proof. Steps 1-3 are the same as in the proof of Theorem 1.4 and guarantee the existence

of a w-solution u of problem (1.1), (1.2).

Step 4. Arguing as in step 4 of the proof of Theorem 1.4, we see that to show u €
AC" 1[0, T, it suffices to prove f(t,u(t),...,u""V(t)) € Li(Iy), where Iy = [ty — 1, to +
nl 0 [0, T]. Put M =V, UV, U V3, where

Vi={tel: f(t-..., ) : R" — Ris not continuous},
V, = {t € Iy : tis an isolated zero of u"~V},
Vs = {t € Iy : u™(t) does not exist or (1.1) is not fulfilled}.

Then, meas(M) = 0. Choose an arbitrary s € Iy \ M, s # to.
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(a) Let u™V(s) £ 0. Assume, for example, signu n=1(s) = 1. Then, there exists
¢y € N such that for each ¢ = ¢, we have sign uk (s) = 1 and so, due to (1.9), (1.11),
(1.12),and s ¢ V,

}im M S, (8, i, (5), .. uke D)) sign u,(;‘fl)(s) =M f(su(s),...,u"V(s)) sign uV(s).
(1.21)

If sign u("Y(s) = —1, we get (1.21) in the same way.

(b) Let s be an accumulation point of a set of zeros of u"~!. Then, there exists
a sequence {s,,} C Iy such that " V(s,,) = 0 and limy_«s, = s. Since u™V is
continuous on Iy \ {fy}, we get u"~V(s) = 0. Further,

(n—1) _ (n-1)
. u S u S
li ( m) ( )

m— oo Sm — S

=0

and, by virtue of s & V3, we get 0 = u™(s) = f(s,u(s),...,u"D(s)). Since s & V;, we
have by (1.9), (1.11), and (1.12)

{1111010 fro (s, uke(s),...,u,((jfl)( ))sign u,({" D(s)
= f(su(s),...,u"V(s)) }Ln; sign u,(;’*l)(s) =0.

So, we have proved that (1.21) is valid for a.e. s € I,.
Assume that (1.6)(i) holds and #, — # = 0. Then, by (1.10), there exist ¢ > 0 and
£o € N such that for each € > £,
to ( 0 ( 1 ’
z A f (8 g (5), s 1) (s))51gn uk (s)ds =1 J |u n- s)| ds
o= 01
=0(ul ™ () | = [l (k= 1) |)

<c

and hence, due to (1.20) and (1.21), we can use the Fatou lemma to deduce that
Mf(tu(t),...,u" V() signu"V(t) € L[t — n, o],

which yields f(t,u(t),...,u""V(t) € L[ty —#, to]. Similarly, if (1.6)(ii) holds and ty+# <
T, we deduce that f(t, u(t),...,u"""V(t)) € L[t to + 7). O

Now, we will consider the boundary conditions (1.2) which are characterized by the
set B, where

B is a closed subset in C*1[0, T]. (1.22)

Theorem 1.6 (third principle for time singularities). Let (1.6), (1.9), (1.10), and (1.22)
hold. Assume that

{ui”il)} is equicontinuous at ty. (1.23)
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Then, there exist a function u € Qanda subsequence {uy,} C {ux} such thatlime_ o ||ug, —
ullcir = 0, (u(t),...,uV(t)) € A fort € [0,T) and u € C"~'[0, T] is a w-solution of
problem (1.1), (1.2).

If, in addition, (1.20) holds, then u € AC"1[0, T], that is, u is a solution of problem
(1.1), (1.2).

Proof

Step 1. Convergence of the sequence of approximate solutions {uy}.
By (1.10), there is a ¢ > 0 such that

|uk)|cos <= ¢ foreachk € N. (1.24)

This implies that sequences {u,(f)}, 0 < i < n— 2, are equicontinuous on [0, T]. Let us
prove that {uz_l} is also equicontinuous on [0, T']. Choose an arbitrary € > 0. By (1.23),
we can find 8y > 0 such that for each k € N and each t € [ty — 8y, o + 8] N [0, T], the
inequality

luf ™) — ™ ()| <6
holds. Therefore, for each t1,t, € [ty — 8o, o + 8] N [0, T'], we have

| u}({n—l) (tl) _ u’(cn—l)

(1) | < 2e (1.25)
Now, let t1,t, € K, where K = [0, T] \ (ty — &g, to + &p). Put
h(t) =sup {| f(t,x0,...,Xu-1) | & |xi] <¢, i=0,...,n—1}.

Then, h € L;(K) and we can find §; > 0 such that
t
|t — | <6 = H h(t)dt‘ <e&
h

By (1.24), we have | fi (t, u(t),..., u,&”_l)(t))l < h(t) a.e. on K for each sufficiently large
k € N. Hence, we get

|t1 — t2| < 61 = |u,(<"71)(t1) — u]((nil)(tz) | <E&. (1.26)

Finally, lett; € (to — 0o, to + 50) N [0, T], th € K, t) >ty + 6. Put § = min{dy, 1} and
assume that |t; — f,| < §. Then, by (1.25) and (1.26), Iu,(fl_l)(tl) - u}c"_l)(tz)l < 3e¢. For
t, < ty — 8o, we argue similarly. So, we have proved that {u,(cn_l)} is equicontinuous on
[0, T]. By the Arzela-Ascoli theorem, there exists a function u € ) and a subsequence
{uk,} C {ug} such that

}im |luk, — ul|car = 0, (u(t),...,u" () e A fortel0,T].
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Moreover, u € 8 C C"![0, T] and, by Theorem 1.4, u is a w-solution of problem (1.1),
(1.2).

Step 2. If we assume, in addition, that (1.20) holds, then to prove that u € AC""1[0, T,
we can argue as in step 4 of the proof of Theorem 1.5. O

1.3. Singularities in space variables

A function f has a singularity in one of its space variables (in short, a space singularity)
if f is not continuous in this variable on a region, where f is studied. Motivated by the
equation

u+ytut =0,

where A € (0, o), we will consider the following case of discontinuity. Let 4; C R be
a closed interval and let ¢; € A;, D; = A; \ {c¢i},i = 0,1,...,n — 1. Let us choose
j€10,1,...,n— 1} and assume that

limsup | f(t,X05...>%j>...,Xp—1) | = 0 forae.t e [0,T]
xj =€, X €D; (1.27)
and for somex; € D;, i =0,1,...,n—1, i # j.

If we put A = A X - - - X A,_1, we see that f is not continuous on #4 (fora.e. t € [0, T]).
Consequently, f has a singularity in its space variable x;, namely, at the value ;. Let u be
a solution of (1.1), (1.2) and let a point t, € [0, T] be such that u'/(t,) = c;. Then, t, is
called a singular point corresponding to the solution u. Now, let u be a w-solution of (1.1),
(1.2). Assume that a point #, € [0, T] is such that u"~V(t,) does not exist or u'/)(t,) = c;.
Then, t, is called a singular point corresponding to the w-solution u.

Example 1.7. Let a € (0, 00), hy, hy, hs € L1[0, T, hy # 0, h3 # 0 a.e. on [0, T]. Consider
the Dirichlet problem

m() | hst) o
w) T Tw "% WO =um =0 (1.28)

u’ +hi(t) +

Let u be a solution of (1.28). Then, 0 and T are singular points corresponding to u.
Moreover, there exists at least one point t, € (0, T) satisfying u'(t,) = 0, which means
that ¢, is also a singular point corresponding to u. Note that (in contrast to the points 0
and T') we do not know the location of ¢, in (0, T).

In accordance with this example, we will distinguish two types of singular points
corresponding to solutions or to w-solutions: singular points of type I, where we know
their location in [0, T'], and singular points of type II whose location is not known.

Similarly to Section 1.2, we will establish sufficient conditions for approximate se-
quences of regular problems and of their solutions. Using the properties of those approx-
imate solutions, we will pass to a limit, thus obtaining a solution or a w-solution of
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the original singular problem (1.1), (1.2). Let A; C R, i = 0,...,n — 1, be closed intervals
and let A = A X - - - X A,_1. Consider problem (1.1), (1.2) on [0, T] X #. Denote

o@i=d’o,‘\{ci}, i=0,...,n—1.
First, we will assume that f has one singularity at each x;, namely, at the values ¢; € A;,
i=0,...,n— 2. Hence, we assume
D =Dy X+ XDya X Ay_1,

1.29
f € Car ([0, T] x D) satisfies (1.27) for j = 0,...,n — 2. (1.29)

In the next two theorems, we work with the notion of uniform integrability which
can be found in Appendix A.

Theorem 1.8 (first principle for space singularities). Let (1.8), (1.10), and (1.29) hold.
(1) Assume that

foreach k €N, fora.e. t € [0, T] and each (xy,...,x,-1) € D,
fk(t,X(),...,anl) = f(t,XO,...,anl) (130)

if |xi—c| = 0<i<n-—1.

1
k b
Then assertion (1.11) is valid.

(ii) If, moreover, the set of singular points
8=1{se[0,T]:u(s) = ¢ fori € {0,...,n — 2}} is finite,
then assertion (1.12) is valid for ] = [0, T] \ & and if

the sequence { fi, (t, uk, (£),. .., u,((?_l)(t))}

(1.31)
is uniformly integrable on each interval [a, b] C ],

then u € AC!"'(]) is a w-solution of problem (1.1), (1.2).

ocC

(iii) If, in addition, there exists a function y € L, [0, T such that
e (tug, (1), u" (1) = y(t) forae te[0,T]andall€ €N,
then u € AC""'[0, T] and u is a solution of problem (1.1), (1.2).

Proof

Step 1. Convergence of the sequence of approximate solutions.

As in step 1 of the proof of Theorem 1.4, we derive from (1.10) that (1.11) holds and
u € B8 C C"2[0,T]. Assume that 4 is finite and choose an arbitrary [a,b] C J. Then,
there exist kg € Nand h € L;[0, T such that foreach k € N, k > ko,

|u,((i)(t)—6i|2 fortE[Cl,b];iE{O)---)”_l}

o~



Singularities in space variables 15
and, fora.e. t € [a,b],

| fieltsur ().l V@) | = | ft (D), V(1) | < h(p).

So, for each ¢ > 0, there exists § > 0 such that the implication

5]
Ith—t| <6d= |ul" V() —ul" V()] < ‘ h(t)dt| < e

31

is valid for t,,t, € [a,b], k = ko. Thus, the sequence {u]((”_l)} is equicontinuous on [a, b].
By (1.10), the sequence {u,(("_l)} is bounded on [0, T]. Using the Arzela-Ascoli theorem
and the diagonalization theorem, we deduce that the subsequence {u,} in (1.11) can be
chosen so that it fulfils (1.12).

Step 2. Convergence of the sequence of approximate nonlinearities.
Consider the set

Vi={tel[0,T]: f(t,-,...,-) : D — Ris not continuous}.

We can see that meas(V;) = 0. By (1.30), there exists V, C [0, T] such that meas(V,) = 0
and for each k € N, each t € [0, T] \ V,, and each (x,...,x,-1) € D, the equality

fk(tax(])---)xnfl) = f(t)x())---)xnfl)

holds if |x; — ¢;| = 1/k,0 < i < n— 1. Denote U = 4 U 'V, U 'V, and choose an arbitrary
t€ [0, T]\ U. By (1.11) and (1.12), there exists £, € N such that for each £ € N, € > ¢,

WD) - | >

i 1 .
—, |u,(<>(t)—ci| > — forie{0,...,n—1}.
ke ¢

ke
According to (1.30), we have
fie (b1, (D, ul V(1) = £t ug, (), oul (1)
and, by (1.11), (1.12),
lim fi, (1, U, (8),oult () = f(Lult),...,u" V(D). (1.32)

Since meas(U) = 0, equality (1.32) holds for a.e. t € [0, T].

Step 3. The function u is a w-solution of problem (1.1), (1.2).
Choose an arbitrary interval [a, b] C J. By virtue of (1.31) and (1.32), we can use the
Vitali convergence theorem to show that

f(tu(t),...,u" V() € Li[a,b]

and that if we pass to the limit in the sequence

t
u,(;*l)(t) = u;;’*l)(a) +J fr (s, ukz(s),...,u,(;h])(s))ds, t € [a,b],



16 Existence principles for singular problems
we get
t
u" V() = uV(a) +J f(su(s),...,u"V(s))ds, te ab]
Since [a, b] C ] is an arbitrary interval, we conclude that u € AC'_(]) satisfies (1.1) for

loc
ae. t€[0,T].

Step 4. The function u is a solution of problem (1.1), (1.2).
Let, moreover,

fio (6, (D, ul () = y(t) forae t€[0,T]andall £ € N.

Assumption (1.10) yields the existence of ¢ > 0 such that

T
L Foo (bt (), ()t = ulO(T) w7V (0) < c.

Therefore, by (1.32) and the Fatou lemma, f(t,u(t),...,u""V(t)) € L;[0,T] and u €
AC™ 10, T]. a

Now we will consider problem (1.1), (1.2) on [0, T] X A provided A = Ay X - -+ X
Ay—1 and f has space singularities at each x;, namely, at the values ¢; € A;,i = 0,...,n—1.
So, we assume D; = A; \ {¢;},i=0,...,n—1,

f € Car ([0, T] x D) satisfies (1.27) for j = 0,...,n — 1,

(1.33)
where D = Do X -+ - X Dyo X D1

Theorem 1.9 (second principle for space singularities). Let (1.10), (1.22), (1.30), and
(1.33) hold. Assume that the sequence

{ fi (£, uk(1),...., u,(f_l)(t))} is uniformly integrable on [0, T]. (1.34)

Then there exist a function u € Qanda subsequence {uy,} C {ux} such thatlime_.. |lux, —
ullcir = 0 and (u(t),...,u" V(1)) € A fort € [0,T].

If, moreover, the functions u”) — ¢;, 0 < i < n — 1, have at most a finite number of zeros
in [0, T], then u € AC""'[0, T] is a solution of (1.1), (1.2).

Proof

Step 1. Convergence of the sequence of approximate solutions.
Assumption (1.34) yields that for each ¢ > 0, there exists § > 0 such that for each
ti,t; € [0, T] and each k € N, the implication

t
Ity =t <6=|ul" V() —ul "V (1)] = ‘ t Fe(tug(£),. . ul" V(1)) dt | <e
1
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is valid. Therefore, the sequence {ugcn_l)} is equicontinuous on [0, T']. This, together with
(1.10) and the Arzela-Ascoli theorem, guarantees the existence of a subsequence {u, } of
{uy} such that

}Lr?o l|uk, — k]| s = 0.

Since + is closed in R” and B is closed in C"~1[0, T], we get
(u(t),...,u" V() e A forte[0,T],uc B.

Step 2. As in step 2 in the proof of Theorem 1.6, we get that (1.32) is valid.

Step 3. The function u is a solution of problem (1.1), (1.2).
By virtue of (1.7), we have for £ € N,

w (1) = f (b ug (), ou (1) forae.t € [0,T),

t
ul V() = w1V (0) + L S (5, ug,(s), ..., u" "V (s))ds  fort € [0, T.

By (1.32), (1.34), and the Vitali convergence theorem, we can pass to the limit and get
t
u"= V() = u"D(0) +I f(su(s),...,u"V(s))ds forte [0,T]
0

with f(t,u(t),...,u"V(t)) € L1[0, T]. Therefore, u € AC"~'[0, T] satisfies (1.1) a.e. on
[0, T]. 0

All the above-mentioned existence principles (Theorems 1.4-1.6, 1.8, and 1.9 require
condition (1.10) and so, in order to apply them, we need global a priori estimates for all
approximate solutions u; and for all their derivatives u,(:), 1 <i < n-1. We can see
in literature that local a priori estimates of ugc”_l) can be sufficient for the existence of
w-solutions (see, e.g., Kiguradze and Shekhter [120]). However, such existence results
give w-solutions with, in general, unbounded (n — 1)st derivative. Here, our main goal
is to prove the existence of solutions. To this purpose, only w-solutions, whose (n — 1)st
derivatives are bounded on the set where they are defined, are useful. Therefore, condition
(1.10) appears in all our principles.

Bibliographical notes

The proof of Theorem 1.4 is given in Rachtnkovd, Stanék, and Tvrdy [165]. Theorems
1.5, 1.6, and 1.8 are new. Theorem 1.9 was published in [165] and its modifications can
be found in Rachtinkova and Stanék [161-163].






Focal problems have received large attention (see, e.g., Agarwal [2]). This is due to the fact
that these types of problems are basic, in the sense that the methods employed in their
study are extendable to other types of problems. Here, we will consider the nth order
differential equation with (p,n — p) right focal conditions:

ud0)=0, 0<i<p-1, uN(T)=0, p<j<n-1 (2.1)
or with (n — p, p) left focal conditions
u(0)=0, p<i<n-1, uN(T)=0, 0<j<p-—1, (2.2)

wheren e N,n = 2,and p € {1,...,n — 1} is fixed.
Using the existence principles of Chapter 1, we will investigate both the focal prob-
lems with time singularities and the focal problems with space singularities.

2.1. Time singularities

First, consider a (1,n — 1) left focal problem

u™ = f(tyu,...,u" V), (2.3)
umD) =0, uNT)=0, 0<i<n-2. (2.4)

We will assume that
f € Car ([0, T) x R") has a time singularity at t = T (2.5)

and prove the existence result for problem (2.3), (2.4) by means of Theorem 1.6 (third
principle for time singularities). Since we impose no additional conditions on solutions
of (2.3), (2.4), we have

A =R", B ={ue C0,T] : usatisfies (2.4)}.
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Theorem 2.1. Assume (2.5) holds and let

n—1
(%05 > Xn—1) sign xp—1 < —h(£)|x4-1 | + Z hj(t)|x; |
=0 (2.6)

fora.e t €[0,T] and all (xo,...,x,-1) € R",
where a; € (0,1), hj € Li[0,T], j = 0,...,n — 1, are nonnegative and h € Lioc[0, T) is
nonnegative and satisfies
T
h(s)ds = oo for each sufficiently small € > 0. (2.7)
T—¢

Then, problem (2.3), (2.4) has a solution u € AC"7'[0, T].

Proof

Step 1. Approximate regular problems.
Fors,p € (0, ), put

1 ifs € [0, p],
2p—s .

x(s,p) = % if s € (p,2p),
0 if s > 2p.

Further, for k € N, (x0,...,%,-1) € R" and for a.e. t € [0, T], define

f(t,xo,...,x,,,l) ifte [O,T—l],

k
Se(tx0,. . x0m1) = . (2.8)
0 ifte(T—f,T],
k
n—1
Skt X055 X01) = x( > |Xi|,P)fk(t:x0:-~~>xnl)- (2.9)
i=0
Choose a k € N and consider auxiliary approximate regular equations
u™ = fi(tyu,...,u" V), (2.10)
u(m =gk(t,u,...,u(”_1)). (2.11)

For a.e. t € [0, T], define

n—1
sup{|f(t,x0,...,xn1)| DWE] sZp} ift < T—%,
i=0

1
ift>T— —.
0 ift > k

my(t) =

Then, my € L0, T] and g (t, X0, . ..,Xs—1)| < my(t) for a.e. t € [0, T]. Since the homo-
geneous problem u™ = 0, (2.4) has only the trivial solution, we get by the Fredholm-type
existence theorem that problem (2.11), (2.4) has a solution ux € AC"~V[0, T].
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Step 2. Estimates of approximate solutions uy.
Let us fix k € N and assume that

max { |u" V(t)| :t € [0,T]} = |ul" V(b)| = r>0.
By condition (2.4), we have b € (0, T] and we can find a € [0, b) such that
" )| =0, |u"V(@)] >0 forte (ab)

Since u,(cnfl)(t) = u,(cnfl)(T — 1/k) for t € [T — 1/k, T], we can assume that b < T — 1/k.
By virtue of assumption (2.6), we get for a.e. t € [a, b],

n—1
“Ecn)(t) sign ’/‘;cn_l)(t) = X( > |”§<i)(t) | ,p>f(t, uk(t),...,ugcn_l)(t)) sign ui”_l)(t)

i=0

n—1 n—1 . ‘ n—1 . .
sx(z |u<k”<t>|,p) S h]ud O < X h]ud 0",
i=0 j=0 j=0

and hence
n—1 .
luf V0] < X ki) [ ()], (2.12)
j=0

Conditions (2.4) yield ”u]((j)Hoo <rT" /7Y, j=0,...,n— 2. Integrating inequality (2.12)
over [a, b], we obtain

n—1 T
= |u](<n71)(b)| < Z Ttxj(nfj—l)rajj hj(t)dl‘,
j=0 0
n—1 )
1< > 1001 by || =2 F(r).
=0

We have lim,_ o, F(x) = 0, which implies the existence of 7* > 0 such that F(x) < 1 for all
x = r*. Therefore, by (2.1), the estimate r < r* must be true. Since r* does not depend
on u (butjuston T, hj, a;), we get

n—1
lukl| s < 7% D T"I1 foreachk € N.
j=0
If we define
n—1 .
p=r*> T Q= {xeC0,T]: xllc <p},
j=0

we see that uy is a solution of (2.10) and ux € Q for each k € N. We have proved that
conditions (1.9) and (1.10) of Theorem 1.6 If we define are valid.
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Step 3. Properties of approximate solutions.
According to (2.6) and (2.8), we get for a.e. t € [0, T — 1/k],

n—1 . n—1
Felty (). ul V() sign ™ V(6) < S ki) | ()Y < (p+1) S hy(0).
j=0 j=0

Put

n—1

y(t) = —(p+1) > hi(t) forae.te[0,T]

j=1
Then y € L1[0,T], v < 0a.e.on [0, T], and

— fi (b (), ..o V(1)) signu V() = w(t) forae.t e [0,T]. (2.13)
Due to (2.7), condition (1.6)(i) with ¢, = T is satisfied.

Put ; = —1 and choose an arbitrary # € (0,T). Then, by (2.13), we get (1.20).
Moreover, condition (2.4) yields (1.22).

Now, let us put v (t) = ui"il)(t) for t € [0,T]. Then for each k € N, k > 1/y,
the function vy satisfies (A.20) with h* = 0 a.e. on [T — 1/k, T]. Since u; € Q, we
can find By € (0,p) such that v fulfils condition (A.18). By (2.6), we get (A.19), where
g (t) = (p+1) Z;’;& h;(t). Hence, by Criterion A.11, the sequence {vx} is equicontinuous
at T from the left. Therefore, {u,(("_l)} satisfies (1.23) with t{, = T and, by Theorem 1.6,
there exists a solution u € AC"1[0, T] of problem (2.3), (2.4). O

Example 2.2. Letc € R, a € [1, o). Then the function

Xn— c
f(t:xO)--.,Xn,l) =" 1+ﬁ 2 X?B

th

satisfies (2.5) and (2.6), where hj(t) = |c|/+/t, h(t) = 1/t% aj = 2/3for j = 0,...,n — L.
Therefore, the corresponding problem (2.3), (2.4) has a solution u € AC""![0, T].

2.2. Space singularities

Let R. = (—c0,0) and R, = (0, o). We study the singular (p,n — p) right focal problem
(=) Pu™ = f(t,u,...,u"V), (2.14)
u0)=0, 0<i<p-1, u(T)=0, p<j<n-1, (2.15)

where f € Car([0, T] x D) with

REVXR.OXR, xR_X--- xR, ifn—pisodd,

D= n
JRTIXR,XI&XR,X---XR,J if n — pis even,

n
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and f may be singular at the value 0 of any of its space variables. Notice that if f is
positive, then the singular points corresponding to the solutions of problem (2.14), (2.15)
are of type L. The Green function of problem u(" = 0, (2.15), is presented in Agarwal [1],
Agarwal and Usmani [23, 24], and Agarwal, O’Regan, and Wong [21].

We introduce the following assumptions:

f € Car ([0, T] x D) and there exist positive constants a, r such that
a(T —t)" < f(t,x05...>%n-1) (2.16)

fora.e. t € [0, T] and each (xo,...,x,_1) € D;

the inequality

n—1

f(t, %050 rxn-1) < h(t, Z |xj|) + i w;i(|xj])
=0

=0
holds for a.e. t € [0, T] and each (xo,...,x,_1) € D, where

h e Car ([0, T] % [0, ®)) is positive and nondecreasing

in the second variable,

2.17
wj: Ry — R, is nonincreasing for 0 < j < n — 1, ( )
T "=l er sy,
limsup — | h(t,Vv)dt<1, where V=1 T -1
e VIO n T =1,

1
J w; (" I)dt < oo for0<j<n-—L
0

Substituting t = T — s in (2.14), (2.15), we get the singular (n — p, p) left focal problem

(—1)Pu™ =f(s,u,...,u(”_l)), (2.18)

u0)=0, p<i<n-1, uN(T)=0, 0<j<p-1, (2.19)

where f € Car([0, T] X D) fulfils

~

f(ter:xla---yxn—l) = f(T_ t)-x())_xl:'--)(_l)nilxn—l)
fora.e.t € [0,T] and all (xg,...,x,_1) € Dx. Here

Ry x R- xRy x -+ - xR_ xRy P if pis even,

C(JD*: " n—p . .
R+XR,XR+X---XR+XR,1 if p is odd.
n
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The corresponding assumptions for problem (2.18), (2.19) have the following form:

f € Car ([0, T] X D) and there exist positive constants a, r such that
at” < f(t, X05-->Xn—1) (2.20)

fora.e.t € [0,T] and each (xo,...,x,-1) € Dy;

the inequality

~

(%055 %n-1) < h(t, Z |xj|> +iwj(|xj|)
J j=0

i=0
holds for a.e. t € [0, T] and each (xo,...,X,—1) € D, (2.21)
where the functions h and wj, 0 < j < n — 1, have
the properties given in (2.17).
A priori estimates
Let us choose positive constants a and r and define the set
B(r,a) = {u € AC" [0, T] : u fulfils (2.15) and (2.23)}, (2.22)
where
(=) Pu"(t) = a(T — t)" forae. t e [0,T]. (2.23)

The next two lemmas are devoted to the study of the set B(r, a). The results obtained in
this part will be used in the proofs of existence results for auxiliary regular problems.

Lemma 2.3. There exists ¢ > 0 such that the inequalities
ud(t) = ct™ T foro0<j<p-1, (2.24)
(=17 Pu(t) = (T —t)"™ forp<j<n-—1 (2.25)
are true for t € [0, T] and each u € B(r,a).

Proof. Put

a
CCUrDGr) - (rin)

Then, integrating inequality (2.23) and using condition (2.15), we get step by step that
(2.25) holds on [0, T'] and that

uP=V() = (TP — (T — )" P*1)  fort e [0,T). (2.26)

Setv = r+n — p+ 1 and consider the function ¢(t) = T¥ — (T — )" — t' on [0, T].
Since v > 2, ¢(0) = ¢(T) = 0, and ¢ is concave on [0, T'], we have ¢ > 0 on (0, T) and
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thus TP — (T — ¢)r+n=p+1 > gr+n=ptl holds on (0, T), which together with inequality
(2.26) yields

uP=V(t) = et P fort e [0, T]. (2.27)

Now, using (2.15) again and integrating (2.27), we successively obtain inequality (2.24)
fort € [0, T]. O

Lemma 2.4. Let functions h and wj, 0 < j < n — 1, have the properties given in condition
(2.17). Then, there exists a positive constant S such that for each function u € B(r,a)

satisfying

n—1 n—1
(=) Pu(t) < h(t,n+ Z |u(f)(t)|) + Z [wj(1) +a)j(|u(j)(t)|)] (2.28)
j=0

j=0
fora.e. t € [0, T], the estimate
[[u=V]|, <S (2.29)

is valid.

Proof. Given a function u € B(r,a) which satisfies (2.28) a.e. on [0, T], we put p =
lu"=V||». Then, we integrate the inequality

luV(t)| <p forte[0,T],
and due to condition (2.15), we successively get
[|[uD|| < pT"=I7Y, 0<j<n-2 (2.30)
Further, we integrate (2.28) over [t,T] C [0,T] and in view of (2.30), we see that the
inequality
T n—1 ) n—1 .T . n—1
p < J h(t,n +p > T”11>dt+ > J o (|u(®)])dt+ T > w;(1) (2.31)
0 j=0 j=0+"0 =0
holds. In order to find S fulfilling inequality (2.29), we need to estimate the integrals
T .
J wi(|lu()|)dt, 0<j=n-1.
0

For this purpose, we distinguish two cases.

Case 1. Let0 < j < p — 1. Then, by Lemma 2.3, there exists ¢ > 0 such that

T T T )
j w;(|x9()|)dt = J w; (et ) dt = j 0 ()" Y, (2.32)
0 0 0
where C;Jrn_j = ¢. Therefore,
T . 1 ot 4
J wi(|[uP())dt < = | w;(t))dt =: C;.
0 cj Jo
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Case 2. Let p < j < n — 1. Then, by Lemma 2.3 and inequality (2.25),
T

T 0
. J <
L w](|u (t)|)dl‘_J‘0

that is, (2.32) holds for p < j < n — 1, too.
After inserting (2.32) into (2.31), we obtain

T
w;i(c(T = )" 7)dt = J w;(ct™ 1) dt = C;j,
0

n—1

T
p< | munspvids 3 (G Tw ) (233)
0 o

where V is given in assumption (2.17). Since

T
lim sup % h(t, Vv)dv < 1,
0

Y— 00
by our assumption, there exists a positive constant S such that

T n—1
J h(t,n+ Vot + S [Cr+ Twi(1)] <,
0 -
j=0

whenever v > S. This together with (2.33) shows that p < S, which proves inequality

(2.29). 0

Approximate regular problems

Let S be the positive constant from the assertion of Lemma 2.4. Form e N,0 < j < n—1,
and v € R, put

pj=1+8T"77, (2.34)
lsignv if|v|<l,
. m m
GJ‘(;’V) =v if% < vl < pj, (2.35)

pjsignv ifp; <|v|.

Let f* denote the extension of f onto [0, T] X (R \ {0})" as an even function in each of
its space variables x;,0 < j < n—1,and fora.e. t € [0, T] and for all (xo,...,x,-1) € R",
m € N, define an auxiliary function

S (£, %05 -+ Xn—1) = [ (t, 00(%,960),...,0,,,1 (%,xn,l». (2.36)

Consider the sequence of regular differential equations:
(=D)"Pu™ = £, (tu,...,u"") (2.37)

depending on m € N.
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Lemma 2.5. Let assumptions (2.16) and (2.17) hold, let B(r,a) be given in (2.22), and
let S be from Lemma 2.4. Then, for each m € N, problem (2.37), (2.15) has a solution
Uy € B(r,a) and

gVl < S. (2.38)

Proof. Fix an arbitrary m € N. Assumption (2.16) and formula (2.36) yield f,, € Car([0,
T] x R™). Put

1 .
gm(t) = sup{|f*(t,x0,...,x,,_1)| . |xj| <pj, 0<j=<n-— 1},
where pj, 0 < j < n— 1, are given by (2.34). Then g,, € L;[0, T] and

’fm(taxo,u-:xnfl) | ng(t)

fora.e. t € [0, T] and all (xo,...,x,_1) € R".

Since the problem (—1)"~?u" = 0, (2.15) has only the trivial solution, the Fredholm-
type existence theorem implies that problem (2.37), (2.15) has a solution u,, € AC""'[0,
T]. Further, by assumptions (2.16) and (2.17), we see that the inequalities

a(T =) < fu(t, %05 > Xn-1)> (2.39)
n—1 n—1

fn (£, %055 Xpo1) < h(t,n+ > |xj|> +> [wi() +w;(|x])] (2.40)
j=0 j=0

are satisfied for a.e. t € [0, T] and all (xo,...,x,-1) € R". Notice that inequality (2.40)
follows from the relations

1 1
(L) =1e 1l ([ Lon)]) et +artih,
J(m x])‘ lxil,  w;{ |0 i wj(1) +w;(]x;])
O0<j=<n-1,
and the facts that & is nondecreasing in the second variable and w; is nonincreasing.

In view of (2.39), we have u,, € B(r,a) and therefore from (2.40) and Lemma 2.4, we
conclude (2.38). O

Existence results

First, we consider the singular (p,n — p) right focal problem (2.14), (2.15) with 1 < p <
n—1.

Theorem 2.6. Let assumptions (2.16) and (2.17) hold. Then, there exists a solution u €
AC" 10, T] of problem (2.14), (2.15) such that

u >0 on(0,T]for0<j<p—1,
) ) (2.41)
(=) Pu) >0 on|o0, T)forp<j<n-1
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Proof. According to Lemma 2.5, for each m € N, problem (2.37), (2.15) has a solution
U, € B(r,a) satisfying inequality (2.38), where S is a positive constant independent of
m. By Lemma 2.3, there exists ¢ > 0 such that for m € Nand ¢t € [0, T], we have

uf () =t foro<j<p-1, (2.42)

(—1)/Pud () = (T )" forp<j<n—1L (2.43)
Condition (2.15) and inequality (2.29) yield

lud|| < ST™i1 < pj» 0<j<n-—L (2.44)

Here, p; is defined in formula (2.34), We show that {fn(tum(t),..., um (t))} is uni-
formly integrable on [0, T']. By assumption (2.16) and inequalities (2.40), (2.42)—(2.44),
we have

n—1

0= fun(tum(®),...,ul V(1) < h(t,n +SV) +q(t) + > w;(1) (2.45)
=0

fora.e.t € [0,T] and all m € N, where

n—1
q(t) = Z (et )+ > wi(e(T = 1)),
j=p

Putc; = "J/cfor0 < j < n— 1. Then,

Jq dt-ZCJ t’+”fdt+zcj (£ dt.,
J J

By assumption (2.18), the functions h(t,n + VS) and wj(t”"’j), 0 <j<n-1,belong
to L1[0, T]. Therefore, h(t,n + SV) +q(t) € L1[0, ] and from (2.45) and Criterion A.1, it
follows that { f,, (£, t(t),..., u (t))} is uniformly integrable on [0, T']. Hence, the first
assertion in Theorem 1.9 guarantees the existence of a subsequence {u,, } of {u,,} which
converges in C""1[0, T] to a function u € C""![0, T]. Letting m" — oo in inequalities
(2.42) and (2.43) (with m’ instead of m) yields

ud(t) = ct"™ for0<j<p-1,
(=17 Py (t) = (T — )™ forp<j<n-—1
for t € [0, T] and so u satisfies inequality (2.41). We see that u/) has exactly one zero on

[0,T] for0 < j < n— 1. Hence,u € AC" 1[0, T] and u is a solution of problem (2.14),
(2.15) by Theorem 1.9. |

Substituting ¢t = T — s in (2.14), (2.15) and using Theorem 2.6, we obtain the fol-
lowing existence result for the singular (n — p, p) left focal problem (2.18), (2.19) with
l<p=<n-1
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Theorem 2.7. Let assumptions (2.20) and (2.21) hold. Then, problem (2.18), (2.19) has a
solution u € AC"~1[0, T] and

(-1)/u) >0 on [0,T)for0<j=<p-—-1,
(-1)PuD) >0 on(0,T)forp<j<n-—1.
Example 2.8. Letr > 0, aj € (0,1/(r +n—j)) for0 < j < n— 1. Letc € L[0,T],

aj € Ls[0,T], bj € L1[0,T] be nonnegative for 0 < j < n—1,0 < a < ¢(t) for a.e.
t € [0, T] and

T 1
L Y0t < 7,

where y(t) = max{b;(t): 0 < j <n—1}forae.t € [0,T] and V is given in (2.18). Then,
the differential equation

n—1
)Py _ o OION (j))
(DA =T -0+ 3, ( e O] (2.46)
satisfies all assumptions of Theorem 2.6. Hence, for each p € {1,...,n — 1}, problem

(2.46), (2.15) has a solution u € AC""'[0, T] satisfying inequality (2.41).

Bibliographical notes

Theorem 2.1 is new and represents the first result in literature for the existence of solu-
tions of (1,7 — j) focal problems with time singularities. Theorem 2.6 was adapted from
Rachiinkova and Stanék [161] (also see Rachiinkova and Stanék [165]). Existence results
for positive solutions to singular (p,n — p) focal problems are available in Agarwal [2],
Agarwal and O’Regan [8-10], and Agarwal, O’Regan, and Lakshmikantham [15]. The
paper [9] is the first to establish the existence of two solutions. Further multiplicity results
solutions are established in [10]. The technique presented in [9, 10] to guarantee the
existence of twin solutions to singular (p,#n — p) focal problems combines (i) a nonlinear
alternative of Leray-Schauder type, (ii) Krasnoselskii’s fixed point theorem in a cone, and
(iii) lower type inequalities.






Now, we are concerned with the singular (#, p) problem

—u" = f(tyu,...,u"V), (3.1)

uD0)=0, 0<j<n-2, uPN(T)=0, (3.2)

wheren 22,0 < p <n-1, f € Car([0, T] X D), D C R", and f(¢,x0,...,%,—1) may
be singular at the value 0 of its space variables xy, . .., x,_». Notice that the (1,0) problem
is simultaneously the (1, n — 1) conjugate problem discussed in Chapter 4. For f positive,
solutions of problem (3.1), (3.2) have singular points of type I at t = 0, T and also singular
points of type II. We will work with the following assumptions on the function f in (3.1):

f e Car([0,T] X D), where D = (0,0) x (R\ {0})" * xR
and there exist a positive function y € L,;[0, T] and K > 0
such that y(¢) < f(t,x0,...,%,-1) forae.t e [0,T]

and each (xp,...,x,-1) € (0,K] x (R {0})”_2 x R;

n—1 n—2
0<f(t,X0,...,Xn71) < h(t,z |Xj|) + Z wj(|xj|)
j=0 j=0

fora.e. t € [0, T] and each (xo,...,x,1) € D,

where h € Car ([0, T] X [0, 0)) is positive and nondecreasing

in the second variable, w; : (0, 00) — (0, c0) is nonincreasing, (3.4)
1 (7 ot

lim sup 2 ) h(t,V(t)e)dt <1 with V(t) = ik

0—00

j=0J*

1
J wi(s" I ds< oo for0<j<n-2.
0
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Auxiliary results

Put
. s n—p-1 .
" 1—? —(t—s)" forO<s<t=<T,
G(t,s) = !
(n—1)! s\ Pl
t"’1<1—?> for0<t<s<T.

Then G(t, s) is the Green function of the problem
—um =0, (3.2) (3.5)

(see, e.g., Agarwal [1] or Agarwal, O’'Regan, and Wong [21]).
Lemma 3.1. The Green function G(t, s) of problem (3.5) fulfils

G(T,s) >0 forse (0,T) and for p >0,

dIG(t,s)
TR 0 for(t,s) € (0,T)x(0,T), (3.7)

and for 0 < j < min{p,n -2}, p = 0.

Proof. Property (3.6) of G follows from the inequality

S n—p-1 S n—1
(-5) (-3
which is true for s € (0, T) and for p > 0. Further, let us suppose

0 <j<min{p,n—2}

and prove inequality (3.7). We have

n—p-—1
VG X tnfjfl(1_%) —(t—s)" /! for0<s<t<T,
L,s)
ol (n—j—1) . s\ Pl
t”—J—1<1_—> forO0<t<s<T,

and therefore it is sufficient to show that
s\l s\
(1——) ><1——) forO<s<t<T. (3.8)
T t
Since the inequalities

s n—p—1 s n—p-1 s n—j—1
1- 1-° >(1-2
) e e A U

are valid for 0 < s < t < T, inequality (3.8) is true.
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Lemma 3.2. Let u € AC""'[0, T] satisfy condition (3.2) and let
—u"(t) >0 fora.e. t €[0,T]. (3.9)
If p >0, then

ud() >0 forte(0,T),0<j=<p-1,

uP(t)>0 forte (0,T) (3.10)
and if p = 0, then
u(t) >0 forte (0,7). (3.11)
Proof. We will consider two cases, namely, (i) p=n—1land (i) 0 < p <n-—2.
Case (i). Let p = n — 1. Then, by conditions (3.2) and (3.9), we have
T
0<— [ s =" (o) foree [0.7T) (3.12)
Thus, integrating (3.12) from 0 to t and using (3.2), we get step by step
u(t)>0 forte (0,T],0<j<n-2. (3.13)
Inequalities (3.12) and (3.13) give the assertion of Lemma 3.2.
Case (ii). Let 0 < p < n — 2. Then, using the formula
u(t) = j Glt,5)u™ (5)ds (3.14)

we can see that the assertion of Lemma 3.2 follows from (3.9) and from Lemma 3.1. [

A priori estimates

The following three lemmas give a priori estimates from below for functions satisfying
conditions (3.2) and (3.9). We consider the cases p =n—-1,p=0,and1 < p <n -2
separately.

Lemma 3.3. Let p = n — 1 and let u € AC" 1[0, T] satisfy conditions (3.2), (3.9). Then
the inequalities

llull o

D)= Ty forte[0,T],0<j=n-2, (3.15)

are fulfilled.

Proof. Put

n—1
po(t) = ||u||m(%> fort € [0, T). (3.16)
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Then py(0) = - - - = p(()"_z)(O) =0, po(T) = llullw. By virtue of inequality (3.10), we
have [|ullo = u(T). So, if h(t) = u(t) — po(t) for t € [0, T], then, h satisfies the boundary
conditions #(0) = - - - = h"=2(0) = 0, h(T) = 0, and moreover

() = u™ () — p{() = u™ (1) <0 fora.e.t e [0,T].

Therefore, Lemma 3.2 (with & instead of u) gives h > 0 on (0, T), that is,

u(t) = po(t) forte [0,T]. (3.17)
Further, put
¢ n—2
pi(t) = ||u'||oo<f> fort € [0, T]. (3.18)
Then p1(0) = - - - = p" (0) = 0, pi(T) = 1t/ || Since ||’ ||« = 1/ (T), the function
hy = u’ — p; satisfies h; (0) = - - - = h(lnfa)(O) =0, h1(T) = 0, and moreover

R =y — pD =y <0 ae.on [0, T).

Thus, by Lemma 3.2, where we use h; and n — 1 instead of u and n, respectively, we have
hi >0o0n (0, T), that is,

u'(t) = pi(t) forte[0,T]. (3.19)
Similarly, for 2 < j < n — 2, we put

t

, nej1 .
pj(t)=||u(f)||w<?) L hi() = uD () - pj(t) fort € [0,T).

Using Lemma 3.2 (with h; and n — j instead of u and n), we get h; > 0 on (0, T), and
therefore

u(t) = pi(t) forte[0,T],2<j<n-2. (3.20)
Now (3.16)—(3.20) together with the inequalities

llull o
Ti

|||, = l<j<n-2, (3.21)

give (3.15). O
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Lemma 3.4. Let p = 0 and let u € AC" 1[0, T] satisfy assumptions (3.2), (3.9). Then, for
0<j=<n-2

> %t”*f*‘ for0 <t <&,
‘ 1] oo
uD () = i (& —t) for&i <t=<i, (3.22)
- ||u||oc(£'_t) fo<t<T
L~ T+l J fOT J =" =

with
0<&i<&r<---<bH<b<E =T,

. . N (3.23)
where &; is a unique zero ofu(’) in(0,T),l <i<n-1.

Proof. In view of (3.2) and (3.11), we have u(0) = u(T) = 0, u > 0 on (0, T). Further,
thereis a unique &; € (0, T) such that u’(&;) = 0 (otherwise, we would get a contradiction
to inequality (3.9)). Similarly, in (0, T'), there is a unique &; < &_; such that u® (&) = 0,
2 <i<n— 1. According to (3.9), we get

u? >0 on(0,%), u? <0 on (§T], 1<i<n-1. (3.24)
Hence,
u"" is concave on [&;1,, T] and convex on [0,&42], 0<i<n-—2, (3.25)

where &, = 0. Let us prove inequality (3.22) for j = 0. Put

t n—1
pot) = ||u||m(g) fort € [0,&].
Then po(0) = -+ - = py" 2(0) = 0, po(&)) = llullw. Since lull = u(&)), the function
h = u — p, fulfils the boundary conditions #(0) = - - - = h*=2(0) = 0, h(&;) = 0, and

h"(t) < 0 for a.e. t € [0,&;]. Therefore, by Lemma 3.2 (where we use h and &; instead of
u and T), we deduce that the inequality 4 > 0 holds on (0, §;), which gives

u(t) = %t”‘l fort € [0,&]. (3.26)
By property (3.25), u is concave on [&,T] C [&,T]. Thus the inequality u(t) >
u(¢)((T - t)/(T - &;)) holds for t € [&;, T], and therefore

llull o0
T

Estimates (3.26) and (3.27) lead to inequality (3.22) for j = 0.
Forl <j <n-—2,weput

u(t) = (T—-1t) forte[&,T]. (3.27)

) ¢ n—j—1 )
=G (=) . O = w0 - pi0)
J+
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n [0,&j41]. Since

u D (&41) = [|u?]], = % l<j<n-2, (3.28)
we get as before
ud(t) = ij‘”""t" 71 fort € [0,€5]. (3.29)

Further, using (3.25), we see that u'/) is concave on (i1, T] C [&j42, T]. Hence

A §—t
uD () = ul (f]+1)€ i >0 forte [&1,&],
(3.30)
) &t
ul)( u (&) —5— <0 forte[§,T].
f] é;‘;+1
Due to estimate (3.28), the above inequalities yield
() llull o
[uP (0] = T & =] fort e [§,T]. (3.31)
Estimates (3.29)—(3.31) imply (3.22) for 1 < j <n - 2. O

Lemma 3.5. Let 1| < p < n—2and let u € AC" 1[0, T] satisfy (3.2), (3.9). Then, for
0 < j < p — 1, inequality (3.15) is true and for p < j < n — 2, inequalities (3.22) are valid
on [0, TI with0 < &,y < &5 < -+ < &y < &, = T, where &; is a unique zero of u in
0, T),p+tl=<i<n-1

Proof. For 0 < j < p — 1, we use the arguments of the proof of Lemma 3.3 and for
p < j <n—2,weargue as in the proof of Lemma 3.4. g

For the proof of solvability of problem (3.1), (3.2), we will need the following results.

Lemma 3.6. Let v € L,[0, T] be positive. Then there is a positive constant ¢ = c(y) such
that for each function u € AC"7'[0, T satisfying (3.2) and

v(t) < —u"(t) foraete[0,T], (3.32)
the estimate ||ull» = ¢ holds.

Proof. Let G be the Green function of problem (3.5). There are two cases to consider,
namely, (i) 1 < p <n—1land (il) p = 0.

Case (i). Suppose 1 < p < n — 1 and define a function @ by the formula

G(t,s)

(D(t ) n—1

for (t,s) € (0, T] x (0, T].
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By Lemma 3.1, the function ® is continuous and positive on (0, T'] x (0, T'). Further, for
any s € (0, T), we have

" 1G(t,s)
atn—l

n—p-1
- (1 - i) > 0.
(£:5)=(0,5) T

Choose an arbitrary s € (0, T). Then

1 9" 'G(ts)
(n—1)! o1

1 ( s >n7p71
=— |1 - = N 0’
(to)=(05) (m—1)! T

which means that for any s € (0, T), we can extend ®(-,s) at t = 0 as a continuous and
positive function on [0, T]. Thus the function

lim ®(t,s) =
-0+

T
Ft) = L O (L, 5)y(s)ds

is continuous and positive on [0, T], too. Therefore we can find d > 0 such that F(t) > d
on [0, T]. Then

T T
u(®) = - | G @ds > | Glrowsds

T
=1 G;«itif )W(s)ds =" 'F(t) = t""'d fort e [0,T].
0

This implies || u|l = u(T) = T" 'd = c.
Case (ii). Let p = 0. Define the function

G(t,s)

D(t,s) = m

for (t,s) € (0, T) x (0, T).

In view of Lemma 3.1, ® is continuous and positive on (0, T') X (0, T). For any s € (0, T),
we get

. 1 s\"!
mos = ooy (1-7) >0

: 1 0G(ts) B 1 [( i)"‘l ( i)”‘z]
tliIYI"I* O(t5) = Tn=1 ot (t,5)=(T.s) B T(n-2)! ! T L T >0,

which means that for any s € (0, T') we can extend ®(-,s) to [0, T] as a continuous and
positive function. Further, we can argue as in case (i). O
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Lemma 3.7. Leta > 0, K > 0, and let the function v € L,[0, T] be positive. Furthermore,
let the functions h,w;, (0 < j < n — 2) have the properties given in assumption (3.4). Then
there exist constants r > 0 and a € (0,K] such that for each function u € AC" 1[0, T]
satisfying (3.2),

o =1 ) -
u"(t) <a+ h(t,n + jgo [ ud(t)| g (|u?(t) (3.33)
fora.e. t €[0,T],
lullo < K = y(t) < —um(t) fora.e. t €[0,T], (3.34)
the estimates
D, <r, Nulleza (3.35)

are valid.

Proof. Let u € AC" 1[0, T] satisfy conditions (3.2), (3.33), and (3.34). Let |lull~ < K.
Then, by (3.34) and Lemma 3.6, there is a positive constant ¢ = c(y) such that [|ull. = c.
Otherwise, we would have || u|l. > K. If we put @ = min{c, K}, then the second inequality
in (3.35) is satisfied.

In order to prove the first estimate in (3.35), we put [|u* V|, = p. Then —p <
u"=1(t) < p on [0, T] and if we integrate this inequality from 0 to t € (0, T] and use
(3.2), we get step by step

tﬂ*j*l

[u(t)| < Pl fort €[0,T], 0<j<n—1. (3.36)

n—j—1)!

Lemmas 3.4 and 3.5 guarantee the existence of a unique zero &,-; of u"~V with §,_; €
(0,T)for0 < p <n-2andi,; = T for p = n — 1. Integrating inequality (3.33) from ¢
to &,_; gives

En 1
o<u<n—1><t>sa<£n,1—t)+j (s,n+Z |u(s) )ds+ZJ i ([u(s)[)ds
t
fort € [0,&,-1). If p < n—1and thus §,_; < T, we integrate (3.33) from &,_; to f and get
t n—1
O<—u(”*l>(t)sa(t—€n_1)+L h(s,n+z | uP(s)] )ds+2j i(Ju(s)])ds
n—1 j:0

for t € (¢,-1, T]. Hence the inequality

t n—1
L h(s,n+ > |u(f)(s)|)

j=0

|u"=D(t)| < aT + u(s)|)ds

n—1
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is true for t € [0, T], and consequently (see (3.36))

T n=2 T
p=<al+ J h(t,n+ V(t)p)dt+ > J w; (| (t)])dt,
0 00
j=0

where V is given in (3.4). We now estimate the integrals

T .

j 0 (|u (1) |)dr, 0=j<n—2.

0

We will consider three cases.

Case (i). Let p = n — 1. Then, by Lemma 3.3, for 0 < j < n — 2, we have

“’j(|“(j)(t)|) < wj(%t”_j_l> fort € (0, T].

Tn-1
Thus
wi(|u(n)]) = wj((c]-t)"fjfl) forte (0,T],0<j<n-2,
where c?fjfl = «T'". Inequality (3.38) implies
T . 1 T .
J “’j(|”(])(t)|)dfS - wj(snfﬁl)ds =: Bj,
0 C] 0

and therefore, we have

T
[ w1 e =B, 0=j=n-2

Case (ii). Let p = 0. Then, by Lemma 3.4,

((ci)"™™") foro=t=é&,
)y = [T 0zt
wj(kj|£j—t|) fOI‘fj.H <t<T

for 0 < j < n— 2, where

n—j—1

¢

1- —j-1
=al' 7" ki=aT 77,

and &; fulfils relation (3.23). Therefore

T
[, @il
0

& T

< J0£j+le((cjt)njl)dt +J

§+1 j

1 (ki€i=&) 1 (ki(T=5)
sBj+k—jL wj(s)ds + EL wj(s)ds < B; + Cj,

w; (ki (& — s))dt + L_wj(kj(t &) de
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(3.37)

(3.38)

(3.39)

(3.40)

(3.41)
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with C; = (2/k;) f(;(jT w;(s)ds. Consequently, for 0 < j < n — 2, we have
T .
ijwmmnmsm+q. (3.42)
0

Case (iii). Let 1 < p < n—2.By Lemma 3.5, for 0 < j < p — 1, we have estimate (3.39),
and for p < j < n — 2, estimate (3.42) holds.

In view of (3.37), (3.39), and (3.42), we deduce that in all the above three cases
T
psjimm+vmmm+a (3.43)
0
where D = aT + z;‘;g(Bj + C;). Since, by assumption (3.4),
1 T
limsup — | h(t, V(t)p)dt <1,
p—oo P 0

we have

T
limsupl% h(t,n+ V(H)p)dt <1,
0

p—oo

and consequently there exists r > 0 such that

T
Jh@n+vmmm+D<q
0

whenever 77 = r. Then inequality (3.43) gives p < r, which proves the first inequality in
(3.35) since p = [|u"V||. -

Approximate regular problems

The main result on the existence of a solution of problem (3.1), (3.2) will be proved by
Theorem 1.9. To this end, we consider a sequence of regular problems constructed by the
following procedure. Let K > 0, y, h and w;, 0 < j < n — 2, have the properties given in
assumptions (3.3) and (3.4), a = Z;’;S w;(1) and let positive constants r and « be taken
from Lemma 3.7. Put

po=1+rT"'+K, pi=1+rT""Y 1<i<n-1,
X for [x| < g,
oi(x) = 0<i<n-1,
pisignx for |x| > p;,

and, for 0 < ¢ < py,

¢ forx<eg,
o5 (c,x) =1x  forc < x < py,

po forpy < x.
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Choose m € N and use the function f from (3.1) to define an auxiliary function h,, by
means of the following recurrent formulas for a.e. t € [0, T] and all (xo,...,x,-1) € D:
hm,O(tawa .. )xn—l) = f(tny:- .. >xn—l);

hm,i(t)x03~ .. 7xn—1)
1

hm,i—l(t)x():---)-xn—l) if |'xi| = —,
m

m 1 1
N hm,i—l t,xO,...,X,‘_l,*,le,...,Xn_l xi+7
m m

2
1 1
_hm,i—l tax03~--rxi—h_*:-xiJrl’-“)xn—l Xi— —
m m

1
if|x,‘| < —,
m

forl<i<n-2,and
hm(t’an--- ,xn,]) = hm,n72(t)x0)---)xrl71)~

Now, for a.e. t € [0, T] and all (xo,...,x,—1) € R", put

1
fm(t,XO, - ,Xn_l) = hm (t, O'(;k (Q,x()), 01 (X]), ey Oy (xn_l)). (3.44)
Then, by conditions (3.3) and (3.4), f» € Car([0, T] x R") and the inequalities

V(1) < fin(t,%05 s Xn-1)

(3.45)
fora.e. t € [0, T] and each (xp,...,x,-1) € R", x9 <K,

and
0< fum(t,Xx05...>Xn-1)
n—2 n—1 n—2
=S a0 +h(nn+ 3 |51)+ S aylls)) (46
j=0 j=0 j=0
fora.e. t € [0, T] and each (xo,...,%,-1) € (R {0})"_1 xR
hold for m = my > 1/K. Inequality (3.46) follows from the fact that

loi(x;)| < |x;| forl<i<n-—1,

1
% (W@)

wi(|0,~(xi)|)Sw,-(|x,~|)+wi(1), 0<i<n-2.

1
<1+ |x0], agk(;,xo) > 09(x0)s

Consider auxiliary regular equation
—u" = f(tyu,...,u"V), (3.47)

where m > my.



42 (n, p) problem

Lemma 3.8. Let assumptions (3.3) and (3.4) hold. Then for each m € N, m = my, problem
(3.47), (3.2) has a solution u,, € AC"~1[0, T1, the sequence

{fon (&t (05 um V(D) Y (3.48)

is uniformly integrable on [0, T'| and there exists a positive constant r such that

[|uli=V)|, <7 form = my. (3.49)

Proof. Choose m € N, m = mg and put

gm(t)=sup {f(t,xo,...,xn,l):%

1 .
<x<po, = |xi| <pi (0<i<n-2), |xu_1] Spn,l}.
Since f € Car([0,T] x D), we have g,, € L[0,T] and
St %05 xn-1) < gm(t)  fora.e.t € [0, T] andall (xo,...,x,-1) € R".

Since the homogeneous problem —u™ = 0, (3.2) has only the trivial solution, the
Fredholm-type existence theorem guarantees the existence of a solution u,, € AC*" 1[0,
T1] of problem (3.47), (3.2). By virtue of (3.45) and (3.46), Lemma 3.7 gives

fulr D), <7 Numllo 2@ m=mg, (3.50)

where r and « are positive constants taken from Lemma 3.7. Condition (3.2) and the first
inequality in (3.50) yield

N7 || < 7T <puj1, 0<j<n—1L (3.51)

It remains to verify that the sequence (3.48) is uniformly integrable on [0, T']. By inequal-
ity (3.46),

0 < fin(tstim(t),...,uli" V(1))
n—2 n—1 (i) n—2 ()
< ij(1)+h<t,n+ > i (t)|) + > w0 (|um (1)])
j=0 j=0 j=0
fora.e. t € [0, T] and all m > my. From the inequality (see (3.51))
n—1 ) n—1
0< h(t,n+ > |u(ri)(t)|> < h(t,n+r > Tj)

j=0 j=0

and from h(t,n + r Z?;& Ti) € Li[0,T], we see that the sequence (3.48) is uniformly
integrable on [0, T'] if the sequences

{0 (|t N}y 0<j=<n—2, (3.52)

have this property. We will distinguish three cases, namely, p =n—1,p =0,and 1 < p <
n-—2.
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Case (i). Suppose p = n — 1. Then Lemma 3.3 and the second inequality in (3.50) give

u%)(t)> _* il fort e [O,T],OSjSﬂ_z, m = .

— Tn-1

Hence

. a L
wj(|unﬁ)(t)|) =< wj(iTn—ltn J 1)

and since

1
I wi(s" T Nds< oo for0<j<n-2
0

(3.53)

by assumption (3.4), the sequences in (3.52) are uniformly integrable on [0, T] by

Criterion A.4.

Case (ii). Suppose p = 0. Let &; ,, denote the unique zero of uf 1 <i<n—1,in(0,7).

Then, by Lemma 3.4 and inequality (3.50),

0< fnfl,m < fnfz,m <--e < é;‘Z,m < El,m = T)
>Lt”*j*1 for0 <t <¢;
= Tn-1 orV=r1= jt1,m>
() Y E ) foré. ,
Um (t) 2 Tj+1 (f],m t) or £]+l,m S t S f],m;
04

Sﬁ(fj,m_t) fOI'fj’mStST,

for0 < j < n—2, m = my. Hence for these j and m, we have

|l ()] = {Cjtn_j_l for0 <t < &rm
cil&m—t] for&m=<t<T,
where
¢j=amin {T"", T '/}
Since

1
J wi(s" T Nds< oo for0<j<n-2
0

(3.54)

(3.55)

(3.56)

(3.57)

by assumption (3.4), Criterion A.4 guarantees that the sequences in (3.52) are uniformly

integrable on [0, T].

Case (iii). Suppose 1 < p < n — 2. Then, by Lemma 3.5 and inequality (3.50), ' has a

unique zero &, in (0, T) for p+1 <i<n-—1,
0< fnfl,m < £n72,m <--- < fp-%—l,m < Ep,m = T;

(04
>
Tn—-1

"Il fort€ [0, T, 0<j<p—1,m=my
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and inequality (3.55) holds for p < j < n — 2 and m = my. Now applying arguments
from case (i) for 0 < j < p — 1 and from case (ii) for p < j < n — 2, we can verify that
the sequences in (3.52) are uniformly integrable on [0, T].

Summarizing, we have proved that the sequences in (3.48) are uniformly integrable
on [0, T]. O

Main result

Theorem 3.9. Assume that assumptions (3.3) and (3.4) hold. Then there exists a solution
u € AC" 1[0, T] of problem (3.1), (3.2) such that

U >0 on(0,T]ifp=1,0<j<p—1, (3.58)
u? >0 on(0,T). (3.59)

Proof. By Lemma 3.8, for each m € N, m = my = 1/K, there exists a solution u,, €
AC"10,T] of problem (3.47), (3.2) satisfying inequality (3.50), which means that
{4} m=m, is bounded in C"~'[0, T] and the sequence (3.48) is uniformly integrable on
[0, T], which further implies that {u(,;f_l)}mzmo is equicontinuous on [0, T']. Thus, by
the Arzela-Ascoli theorem, we can assume without loss of generality that {u,,} mom, 1s
convergent in C"~1[0, T] to a function u € C"~'[0, T].

We now prove that the function 4!/ has at most a finite number of zeros on [0, T
for0 < j <n—2.Thenu € AC"'[0, T] and u is a solution of problem (3.1), (3.2) by
Theorem 1.9 since the function f in (3.1) has no singularity in its last space variable. Let
p =n— 1. Then (3.53) is true and letting m — oo in (3.53) we obtain

[04
Tn-1

ud(t) = "Il te [0, T, 0<j<n-2 (3.60)

From this inequality and from condition (3.2), we see that 0 is the unique zero of u"/) for
0 <j<mn—-2 Letp =0.Then (3.56) holds for 0 < j < n—2 and m = my, where
¢j is given in (3.57) and &, denotes the unique zero of u) in 0, T) (0 <i<n-1).
The localization of &;,, is given in (3.54). Passing if necessary to subsequences, we can
assume that {; ;} = m, is convergent; let lim— &, = &,0 < i < n — 1. Letting m — oo,
inequality (3.56) yields

‘ ¢l for0 <t <&,
luD(t)] = { / g < j<n-—2. (3.61)

Cj|fj—t| fOl’fjHSl’ST,

Condition (3.2) and inequality (3.61) show that u/) has at most two zeros in [0, T] for
0 < j <n—2. Finally, let | < p < n — 2. In this case, we can show that the inequality
in (3.60) holds for t € [0,T] and 0 < j < p — 1 and that in (3.61) for t € [0,T] and
p < j < n— 2. Therefore, u/) has at most two zeros in [0,T] for 0 < j < n — 2.
Summarizing, we have proved that in all the above cases, 1)) has at most two zeros in
[0,T]for0<j<mn-2.
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Finally, it follows from Lemma 3.2 that u® >0o0n (0,T) and if p > 0, then from the
inequalities in (3.60) for t € [0, T] and 0 < j < p — 1, we conclude that u/) > 0 on (0, T]
for these j. O

Example 3.10. Let y,8,B; € (0,1),0 < aj < 1/(n— j —1),and let a; € L, [0, T] and let
bi € L,[0, T] be nonnegative for 0 < j < n—2,0 <i < n— 1. Then, by Theorem 3.9, the
differential equation

(n)_ e*” +niz a](t) +nilb(t)| (1)|ﬁ,
B TG L PO R

has a solution u € AC"" [0, T] satisfying the boundary conditions (3.2) and inequalities
(3.58), (3.59).

Bibliographical notes

Theorem 3.9 was adapted from Agarwal, O’'Regan, Rachtinkova, and Stanék [16].
Singular (n, p) problems were considered by Agarwal and O’Regan in [9, 10] and

Agarwal, O’Regan, and Lakshmikantham [15]. In [9, 10], the existence of two positive

solutions in the set C"~1[0, 1] n C"(0, 1) was proved for the differential equation

u™ + o(t) f(t,u) =0,

where ¢ € C°(0,1) N Ly[0,1] and f € C°([0, 1] X (0, o)) are positive. The paper [15]
dealt with the differential equation

U™ +o(t) f(tu,...,uP~t) =0,

where ¢ € C°0,1) N Li[0,1] and f € C°([0, T] X (0, 00)?) are positive. By a combi-
nation of regularization and sequential techniques with a nonlinear alternative of Leray-
Schauder type, the authors proved the existence of a solution u € C*~'[0,1] n C*(0,1)
with u? >0o0n (0,T]for0 < j < p—1.






Conjugateproblem

Let p be a positive integer, 1 < p < n — 1. Consider the (p,n — p) conjugate problem

(-DPu™ = f(t,u,...,u"V), (4.1)

u0)=0, 0<i<n-p-1, u(T)=0, 0<j<p-—1, (4.2)

wheren = 3, f € Car([0, T]xD), D C R", and f may be singular at the value 0 of any of
its space variables. Replacing t by T — t if necessary, we may assume that p—1 <n—p—1,
that is,

pe {1,...,%} fornevenand p € {1,...,%1} for n odd. (4.3)

We observe that the larger p is chosen, the more complicated structure of the set of all
singular points of any solution to problem (4.1), (4.2) and its derivatives is obtained.
This fact will be shown in Lemmas 4.1 and 4.2. We note that if f is positive then all
solutions of problem (4.1), (4.2) have singular points of type I at f = 0 and t = T and
also singular points of type II. Problem (4.1), (4.2) with p = 1 is the (n,0) problem which
was considered in Chapter 3 devoted to the (n, p) problem. We assume that n > 3 since
problem (4.1), (4.2) for n = 2 is the Dirichlet problem discussed in Chapter 7.

We will use the following assumptions:

feCar([0,T] x D), whereD = (0,00)x (R {0})"_1 and
there exists ¢ > 0 such that
¢ < f(t,%05.->Xn-1)

fora.e. t € [0,T] and all (xo,...,x,_1) € D;
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h € Car([0, T] x [0, o)) is positive and nondecreasing in its second variable and

n_
1T 1 T ! ifT #1,
limsup — | “h(tz)dt < 2, K= T-1 (4.5)
ze 20 n ifT =1;
w; : (0,00) — (0, c0) is nonincreasing and
1 ‘ (4.6)
J wj(s"V)ds< oo for0<j<n-1
0

the inequality

f(t %05+ Xn-1) < h(t,z |xj|> + iwj(|xj|)
J j=0

i=0
holds for a.e. t € [0, T] and all (xo,...,x,-1) € D,
where / and w; satisfy (4.5) and (4.6).

Localization analysis of zeros to solutions

Let f satisfy assumption (4.4), that is, f may be singular at the value 0 of any of its space
variablesand f = ¢ > 0 on [0, T] X D. Then all singular points of any solution of problem
(4.1), (4.2) and its derivatives coincide with zeros of this solution and its derivatives. The
localization analysis of zeros of solutions to problem (4.1), (4.2) and their derivatives up
to order n—1 can be studied by localization analysis of zeros of solutions to the differential
inequality

(=) u™(t) = ¢ >0 (4.8)
satisfying the boundary conditions (4.2). Define

B = {uc AC" [0, T] : u satisfies (4.2) and (4.8) holds for a.e. t € [0, T]}.

Lemma 4.1. Letu € B and let p = 1. Then u > 0 on (0, T) and u'?) has precisely one zero
on(0,T),l<j<n-1

Proof. The assertion follows immediately from Lemmas 3.2 and 3.4. O

Lemma 4.2. Letu € B, p > 2, and let (4.3) hold. Then

(i) u>00n(0,T),

(ii) u® has precisely k zeros in (0, T) fork =1,...,p — 1,
(iii) u® has precisely p zerosin (0, T) fork = p,...,n— p,
(iv) u"=® has precisely k zeros in (0, T) fork =1,...,p — 1.
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Proof. The proof is divided into three steps.

Step 1. Lower bounds for zeros.

By (4.2), we see that u’ has at least one zero til) in (0, T). Hence u'(0) = u’(tgl)) =
u'(T) = 0, which implies that #’" has at least two zeros tiz), tf) in (0,7T), tiz) < tgz), and
consequently (if p = 3)

u'’(0) = u”(tiz)) = u”(téz)) =u"(T) = 0.

By induction, we conclude that u®), k = 3,..., p — 1, has at least k zeros 9 t,(ck) in
0,T),0 <t < - .. < #¥ < T and, by (4.2) and (4.3),
u®(0) = u® (#F) = . .. = u(k)(t,((k)) =uf(T)=0, k=3,...,p— L

Therefore, u?) has at least p zeros in (0, T'). Now we will distinguish two cases.
Case (a). Let p <n/2. Then p < n— p — 1 and, by (4.2),

u0)=0, j=p,....,n—p—1
Therefore, u® has at least pzerosin (0,T) fork=p+1,...,n—p.

Case (b). Let p = n/2 (clearly n is even in this case). Then p = n — p and u"~#) has at
least p zeros in (0, T).

We have shown that in both cases, u"?) has at least p zeros in (0, T). Since for u"=%),
k=1,...,p — 1, we cannot use (4.2) any more, we deduce that u"=%) has at least k zeros
in (0,T) fork = 1,..., p — 1. In particular, u"~" has at least one zero in (0, T).

Step 2. Exact number of zeros.

By inequality (4.8), u*~ Y is strictly monotonous on [0, T] and hence it has precisely
one zero in (0, T). Therefore, by step 1, u"=k) has precisely k zeros in (0, T) for2 < k <
p—1and u® has precisely p zeros in (0, T) for p < k < n— p. Similarly, u®) has precisely
k zeros in (0, T) for 1 < k < p — 1 and u has no zero in (0, T'). We have proved that the
statements (ii)—(iv) are true.

Step 3. Positivity of u.

Denote by ) the first zero of u® in (0, T), 1 < k < n — 1. Inequality (4.8) implies
that (=1)?uD < 0 on [0,£"") and hence (—1)?u"=? > 0 on [0, £" ). Therefore,
(=1)PHiy"=i) > 0 on [0, t%nij)) for j = 3,...,p. In particular, we have u"?) > 0 on
[0, t;nip)), wherefore, by virtue of (4.2), we obtain u®) > 00n (0,£”),1 <k <n-— -1,
and consequently u > 0 on (0, T'). O

Our next result provides estimates from below of the absolute value of functions
u € B and their derivatives up to order n — 1 on the interval [0, T]. These estimates are
necessary for applying Theorem 1.9 to problem (4.1), (4.2) with f satisfying assumption
(4.4).
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Lemma 4.3. Let u € 8B and let (4.3) hold. Then for eachi € {1,...,n— 1}, there are p; + 1
disjoint intervals (ak, ars1), 0 < k < pj;, pi < (n — 1) p such that

pi
U [aka ak+l] = [0) T] (49)
k=0

and for each k € {0,..., pi}, one of the inequalities
|u"=0(t)| = :C'(t - ak)i fort € [ak, ak+1], (4.10)
[u"=D(t)| = ITC'(ak+1 — t)i for t € [ak, ax+1], (4.11)
is satisfied.

Proof. Let t;j) be zeros of u) in (0,T), 1 < j < n—1,described in Lemmas 4.1 and 4.2.
Integrating inequality (4.8) yields

(=P D () = C(t?H) -~ t) fort € [0, t§”’”],

(4.12)
-DPu'" V()= clt -1t orte |ty ,T|.
(0P V@) = e(t-4"Y) foree [V, 1]
Now, integrating the first inequality in (4.12) from ¢ € [0, ti"‘”) to tin_z) gives
P20y = [ = o) - (0 = )] = € ()’
u =5\ 1 1 = \h
Hence, we get by such procedure that
P (p) s (1D _ ) (n-2)
(—1)Pu (t)ZZ!(tl t) forte [O,t1 ]
2
(—1)P* = (f) > %(t— H) forte [tY‘ 2),t§”’”],
o (n-1)_(n-2) (13)
_1)p*1,(n=2) b (fn=2) n-1) ,(n-2
(P2 () = (4 t)” forte 4,47,
- ¢ (n-2))? 2)
(=1)Pum=2(t) > i(t— B) forte [tgn ,T].

Let us choose i € {1,...,n — 1} and take all different zeros of functions u™V, ... u®=)

which are in (0, T'). By Lemmas 4.1 and 4.2, there is a finite number p; < (n—1)p of these

zeros. Let us put them in the natural order and denote them by ay,...,ap,. Set ap = 0,

ap+1 = T. Thus, we get p; + 1 disjoint intervals (ax, ax+1), 0 < k < p;, satistying (4.9).
Ifi = 1, then for a; = tin_l) and a, = T, we get by (4.12) that

|u(n71)(t)| >c(ay—t) forte [ag,all,

| u" V()| = c(t—ay) fort e [ay,a].
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If i = 2, we put tﬁ”‘” = ai, t%”_l)
(4.13) gives (4.10) or (4.11).
If i > 2 and we integrate the inequalities in (4.13) (i — 2) times, we get that on each
[ak, ak1], k € {0,..., pi}, either (4.10) or (4.11) has to be fulfilled. O

= ay, tgn_z) = as, T = ay, and then inequality

Existence result

In order to prove the main result (Theorem 4.7), we will need the following three lemmas.

Lemma 4.4. Let conditions (4.3) and (4.6) hold. Then there exist constants A; > 0,0 < i <
n — 1, such that for each u € B, the estimates

T
J wi(|u()])dt <A;, 0<i<n-1, (4.14)
0

are satisfied.
Proof. Letu € B andleti € {0,...,n — 1}. By Lemma 4.3, there exist p; + 1 disjoint

intervals (ag, ak+1), 0 < k < p;, pi < (n — 1)p, such that (4.9) and either (4.10) or (4.11)
are satisfied. Since w; is nonincreasing, inequalities (4.10) and (4.11) give

T pi k1
J (| (8] )dt = ZJ w0 ( |6 (6)] ) dt
0 k=0 %

| e I N =

k=0

1/(n—i

If we put¢; = (¢/(n — 1)) ), we have

T . T _ T
J wi([u?(1)])dt < @ J wi(s"")ds < m J wi(s") ds.
o 0 Ci 0

Ci

Hence inequality (4.14) holds with

_ 1 C,‘T i
A = n(n—1) J w;(s"")ds
Ci 0
and, by assumption (4.6), A; < 0 for0 <i<n— 1. O

Lemma 4.5. Let conditions (4.3) and (4.6) hold and let {u,,} C B. Thenfor0 <i<n-1,
the sequence {w;(]| u(rﬁ,)(t) 1)} is uniformly integrable on [0, T].

Proof. Leti € {0,...,n — 1}. Then, by Lemma 4.3, there exist p,,; + 1 disjoint intervals
(@mks Amk+1)>0 < k < Py pmi < (n — 1)p, such that

Pm,[

U [am,k)am,kJrl] = [Oa T])
k=0



52 Conjugate problem

and for each k € {0,..., pp,i} and m € N, one of the inequalities

|ul(t)| = (t—amp)"" fort € [amp ampr1 ]

c
(n—1)!

[ud(t)] = (@mpr1 — 1) fort € [amp Amps1],

(n—1)!

is satisfied. Now the uniform integrability of {wi(lu%)(t)l)} on [0,T] follows from
Criterion A.3. O

Lemma 4.6. Let conditions (4.3), (4.5), and (4.6) hold. Then there exists a positive constant
S = n such that for each u € 8B satisfying

n—1 n—1
(—1)Pu(t) < h(t,n+ > |u(f)(t)|> + > [wi([uP(@®)]) + w;(1)] (4.15)

j=0 j=0
fora.e. t € [0, T], the estimate

llullcnt < S (4.16)
holds.

Proof. Let u € B. By Lemmas 4.1 and 4.2 and by condition (4.2), we find t; € (0,T)
such that ul/)(t;) = 0 for 0 < j < n — 2. Put

max { |u" V()| :0<t<T} =p.
Then —p < u"~V(t) < pfort € [0, T]. Integrate this inequality from t,,_; to t € (t,-, T
and from t € [0,t,-) to t,—5. We get —pT < u""2)(t) < pT on [0, T]. Similarly, using
ul)(t;) = 0 for 0 < j < n — 2 and repeating the integration, we obtain step by step
[ u(t)| <pT™ 7', te[0,T],0<j<n-3
Hence

lullcr < pK, (4.17)

where K is taken from condition (4.5). Now, integrating inequality (4.15) over [0, f,_;]
and [t,_1, T] and using the fact that t,_; € (0, T) is the unique zero of 4"~V by Lemmas
4.1 and 4.2 (and therefore, (—1)?u"~Y < 0 on [0, t,—;) and (—=1)?u"Y > 0 on (t,_1, T]
due to (4.8)), we get

el n—1 n—1 o1
0<(—1)P“u("_1)(t)sr h(s,n+ > |u(j)(s)|)ds+zr [w; (|uP(s)]) +w;(1)]ds
t iz PRy
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fort € [0,t,_1] and

0<(—1)Pu("*1)(t)sjlf (s,n+z | ud(s) )ds+ZJ i(|uD(s)]) + w;(1)]ds
tp1

for t € [t,—1, T]. Hence, by (4.5) and (4.17),

n—1

[u"=D(t) | J h(t,n+ pK UT (|u? ;
< p )dt+z wi(|u(t)|)dt + Tw;(1)
0

for t € [0, T]. Further, by Lemma 4.4, we can find positive constants A;, 0 < j < n —1,
independent of u and satisfying inequality (4.14). Therefore, if we put

Z [Aj+ Tw;(1)],

we have
T
psj h(t,n + pK)di + A, (4.18)
0

Since, by condition (4.5), limsup,_ , 1/z JOT h(t,z)dt < 1/K, there exists a positive con-
stant S > 7 such that

T
J htn+Ko)dt+A<z ifz>S (4.19)
0

Inequalities (4.18) and (4.19) give p < S, which shows that (4.16) is true. O

Theorem 4.7. Let conditions (4.3)—(4.7) hold. Then problem (4.1), (4.2) has a solution
ue AC" 10, T] andu >0 on (0,T).

Proof

Step 1. Construction of auxiliary regular problems.
Let S be the constant from Lemma 4.6 satisfying inequality (4.16). Set

o(x) =
S for |x| > S, Sx for |x| > S.

|x| for|x| <, x for [x| < S,
op(x) =
| x|
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Choose m € N and first define an auxiliary function h,, € Car([0, T] X R""!) by the
following recurrent formulas:

. 1
f(tx0,x15..5x0-1)  ifxg > —,

3

hm,O(t7x07x1)--->xn—l) =

1 . 1
flt =%, %021 if xg < —,
m m

Foni(ts %05+« 25 Xis o oo s Xn1)

. 1
hm,,’_l(t,Xo,...,X,‘,...,xn_l) 1f|x,-| > a,

m

1 1
N hm,i—l t)xO)--->xi—1171xi+17---)xn—1 xi"'a
2 m

1 1
_hm,ifl t)-x())---)xifl)_i)xi+l)---)xn71 Xi— —
m m

1
if|x,~| < —
m

forl <i<n-1and
P (£, %05+ s %n—1) = M1 (£, X0+ s Xn—1).
Finally, for a.e. t € [0, T] and all (xo,...,x,-1) € R", put
S (%0, %15+ Xn-1) = b (£, 00(x0), 0 (x1), ..., 0 (x4-1)). (4.20)
Then f,, € Car([0, T] x R") for m € N and, by (4.4) and (4.20),
€= fn(t,%05 s Xn-1) < gm(t) (4.21)

for a.e. t € [0,7T] and all (x0,x1,...,%,-1) € R", where g, € L,[0, T]. Further, for
(x05X15...,%n—1) € R" and m € N, we have

max{oo(xo),%} < |x0| +1,
wo<max {GO(XO)’%D < wo(|x0]) + wo(S) < wo(|xo]) + wo(1)
and similarly
max{a(x,-),%} < |xi| +1,

wi(max {a(x,-),%}) <wi(|x])+wi(1), 1<i<n-1

Therefore, by assumption (4.7), for each m € N, we have

n—1 n—1
fm(t)xO)---’xn—l) = h(t,n‘f‘ Z |Xj|> + Z [wj(|xj|) +wj(1)] (4.22)
j j=0

j=0

fora.e. t € [0, T] and all (xg,x1,...,%,—1) € R™.
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Consider the regular differential equation
(=DPu'™ = fou(t, X0, .., Xn-1). (4.23)

Since the homogeneous problem (—1)Pu(™ = 0, (4.2) has only the trivial solution and f,,
satisfies inequality (4.21), the Fredholm-type existence theorem guarantees that for each
m € N, there exists a solution u,, € AC""'[0, T] of problem (4.23), (4.2). Then it follows
from inequalities (4.21) and (4.22) that for each m € N, u,, € B and inequality (4.15)
hold with u = u,,. Hence Lemma 4.6 shows that

[lum||con <S8, meN, (4.24)

and, by Lemma 4.3, for each i € {1,...,n — 1}, there exist p,,; + 1 disjoint intervals
(k> Ami+1)> 0 < Kk < Py pmi < (n— 1) p such that

Pm,i

U [am,k>am,k+l] = [0) T])
k=0

and for each k € {0,..., py,i} and m € N, one of the inequalities

—1 C i
|u£;l l)(t) | > 7([’ — am’k)l fort € [am,ky am,k+1]>

~

|ul ()] =+ (ampsr — 1) for t € [amps Amps1 >

is satisfied.

Step 2. Uniform integrability.
Consider the sequence

{fon (s um(8), ..., ul27V (1))} € Ly[0, T (4.25)
Inequalities (4.21) and (4.22) show that

0< frultytm(t),...,u" V(1))

n—1 . -
sh(t,n+z |u%)(t ) Z w;j |u |)+wj(1)]

j=0 j=0
form € Nanda.e. t € [0, T]. Since h € Car([0, T] X [0, o)) and u,, satisfies (4.24), there
exists h* € L]0, T] such that

n—1 .
h(t,n+ S |u£,4>(t)|> < h*(t) forae.te [0,T] andallm € N.
i=0

Hence, in order to prove that (4.25) is uniformly integrable on [0, T], it suffices to show
that the sequences

{w;(luf O}, j=0,...,n—1,

are uniformly integrable on [0, T']. Since {u,} C B, this fact follows from Lemma 4.5.
We have proved that (4.25) is uniformly integrable on [0, T].
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Step 3. Existence of a solution of problem (4.1), (4.2).

Consider the sequence {u,,}, where u,, is a solution of problem (4.23), (4.2). We
know that (4.24) holds and since (4.25) is uniformly integrable on [0, T], the sequence
{ugff 71)} is equicontinuous on [0, T]. Hence, by the Arzela-Ascoli theorem, there exist
u € C"'[0, T] and a subsequence {u;,,} C {u,} such that

lim ||u;, — u||cs = 0.
tim [l — ol
Letting m — oo and working with subsequences if necessary, we get

lim p,i=pi, pisn-1p, l<i<n-1,
m— oo

lim aj,  =ar, 0<k<=<p;
m— o0

where 0 = gy < a; < -+ < ap, < T. In addition, (4.9) and either (4.10) or (4.11)
hold. Hence u?, 0 < i < n — 1, has a finite number of zeros. Therefore, by Theorem 1.9,
u € AC"'[0, T] and u is a solution of problem (4.1), (4.2). From assumption (4.4) and
Lemmas 4.1 and 4.2, we get u > 0 on (0, T). O

Example 4.8. Let p be a positive integer, 1 < p < n— 1. Consider the differential equation

n—1 .
(—=1)Pulm = ui +ub 4+ (“f(t) +b(t)|u |ﬁf'>, (4.26)

j=1 |“(J) |aj

where aj € L[0,T],b; € L1[0, T] are nonnegative, a; € (0,1/(n — j)) and 3; € (0,1)
for 0 < j < n — 1. Applying Theorem 4.7, problem (4.26), (4.2) has a solution u €
AC" 1[0, T] and u >0 on (0, T).

Bibliographical notes

Theorem 4.7 was adapted from Rachtnkovéd and Stanék [162, 164]. Singular (p,n — p)
conjugate problems were discussed by Agarwal and O’Regan in [6, 10] and by Eloe and
Henderson in [82] (here with p = 1) and [83] for differential equations of the type

(=1)"Pul = f(t,u),

where f € C°((0,1) X (0, )) is positive and f may be singular at u = 0. Here positive
solutions on (0, 1) belong to the class C"~'[0, T] N C*(0, 1). The paper [10] discussed
also the existence of two positive solutions. Existence results in [10, 82, 83] are proved
by fixed-point theorems on cones, whereas those in [6] by a combination of a sequential
technique and a nonlinear alternative of Leray-Schauder type.



=

We are now concerned with the Sturm-Liouville problem for the differential equation

—u = f(tu,...,u" ")
with the boundary conditions

u0)=0, 0<j<n-3,
au™2(0) — ﬁu(”_l)(O) =0,

yu(”_z)(T) +8u"(T) =0,

wheren = 3, &,y >0, 3,6 = 0. Here

f e Car([0,T] x D), D = (0,00)" 1 x (R\ {0}).

(5.1)

Notice that the function f may be singular at the value 0 of any of its space variables. If f
is positive, the solutions of problem (5.1), (5.2) have singular points of type I at the end

points of the interval [0, T] and also singular points of type IL.
We will impose the following conditions on the function f in (5.1):

f € Car ([0, T] x D), where D = (0,00)" ! x (R\ {0})
and there exist positive constants a and r such that
at” < f(t,x05...>Xn-1)

fora.e. t € [0, T] and each (xo,...,x,_1) € D;

h € Car ([0, T] x [0, %)) is positive and nondecreasing
in the second variable and

T
limsup% h(t, Vv)dt < 1,
0

V=00

here V B T e 0<j 2
= = - 0 <i<mn- .
where I’l(‘x+ )max{(n_j_z)!. =]=n },
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the inequality

f(t,xo,...,xn,l) < h(t,z_: |Xj|> + iwj(|xj|)
=0 =0

holds for a.e. t € [0, T] and each (xo,...,%,-1) € D, (5.5)

where w; : (0,00) — (0, c0) are nonincreasing, 0 < j <n— 1, and

1 1
J Wyt (FHY)dt < oo, J w; (" dt <0, 0<j<n-—2
0 0

the inequality

(%05 > Xn1) sh(t, i | x; |) +i w;i(|xj ) +q(Hwn— (| x4-2 )

=0 =0
j#Fn-2
holds for a.e. t € [0, T] and each (xo,...,x,-1) € D,
5.6
where g € L [0, T] is nonnegative, w; : (0, 00) — (0, o) (5.6)
are nonincreasing, 0 < j < n — 1, and
1 1
J W1 (1) dt < o0, J wi(t" T2 dt <00, 0<j<n-3.
0 0
Green function and a priori estimates
We denote by G(t,s) the Green function of the problem
-u’ =0, (5.7)
au(0) — pu’(0) =0, yu(T)+du'(T) =0, (5.8)

where a,y >0 and 3,8 = 0. Then (see, e.g., Agarwal [1])

é(ﬂ+o¢5)(8+y(T—t)) for0<s<t<T,
G(t,s) = ) (5.9)
3(ﬁ+0¢t)(5+y(T—s)) for0<t<s=<T,

where d = ayT + ad + By > 0. We will discuss two cases, namely, min{f, 8} = 0, that
is, at least one of the constants 5 and § equals zero, and min{f, §} > 0, that is, both the
constants ff and § are positive.

Let us choose positive constants a and r and define a set

A(r,a) = {u € AC* 1[0, T] : u fulfils (5.2) and (5.10)},
where

—u"(t) > at” forae. t e [0,T)]. (5.10)
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Lemma 5.1. Let min{f,8} = 0. Let u € A(r,a) and set

()

Then u=1 s decreasing on [0, T,

> a _ a\r+l .
g [P e,
- -0 ifte (T,

where & € (0, T) is the unique zero of u*=Y,

At 1ft c |:0;I:|)
(n-2) 2
u () = T
AT—1) ifte (E,T],
ud(t) = #t”‘j” fort €[0,T],0<j<n-3.
4n—j—1)!

Proof. From (5.9), (5.10), and the equality

U2 (p) = JG(ts " (s)ds, t € [0,T],

it follows that

T T
um=2(0) = —g J (8 +p(T - s5))u™(s)ds = a{STy L (T —s)s"ds =0,

T
U (T) = /3 +as)u™ (s)ds > aad J s™ds > 0,
d d Jo
U= (0) = — " 9G(1,9) " (s)ds
=0
a (T
=2 @ p(T - ) u (s
dJo
T
> wj (T —s)s"ds >0,
d
(n=1)(T) = J 9G(t, S) u™(s)ds
=T

= % JT([J’ + as)u™ (s)ds
0

T
—% L stds < 0.
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(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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Since u("~V is decreasing on [0, T] by inequality (5.10) and
u"v0) >0,  u"(T) <0,

we see that 4"~V has a unique zero & € (0, T). Then

3 3
_y(n=1) = () _ r - _ a r+1 _ 4r+l
u" (1) L u™(s)ds < aL s'ds . (& 1)

for t € [0,¢&]. Hence,

a

(n—1)
u t) >
®) r+1

(f - t)rJrl) te [0>£]:

because of ™1 —¢*1 > (£—¢1)™*! for t € [0, £]. Similarly, using the inequality 1 — &1 >
(t— &)L, we get

t
uD(t) = L u™ (s)ds

t
—aJ s"ds
&

a
— _m(tr+l _ £r+1)

IA

(t-&* fort e (§T).

r+1

We have proved that inequality (5.12) holds.
We now verify inequality (5.13). From (5.15) and (5.16) and from the assumption
min{B,d} = 0, it follows that

min {u"=2(0), u"2(T)} = 0.

Moreover, by inequality (5.10), u"=?) is concave on [0, T] and consequently to prove
(5.13), it suffices to show that

T T
=2 ) = A=, 5.18
" (2) 2 (5.18)
Due to inequality (5.12), we have

t
u"D(t) = 42 (0) +J UV (s)ds
0

~

> 4 J (& —s)*ds

T r+1Jo

a

— m(é’ﬂd _ (f _ t)r+2)

> a tr+2
T (r+1D)(r+2)
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for t € [0,&], since &2 — (& — )™ > ¢"*2 holds in such a case. Similarly, by (5.12), we
obtain

Dty = 42 (T) - J U (s)ds

t

T

a (5_ %‘)rﬂ ds

r+1J;
= ey (@O - o)
> e T
fort € (&, T],since (T —&)*2 —(t—&)™*2 > (T —t)"*2 holds in such a case. Summarizing,
we have

(n=2) > a r+ :
u Z(t)_i(r+l)(r+2)t 2 ifte|0,é], (5.19)

a r+ .
m(T—t) 2 ifte (& T). (5.20)

u" 2 (t) =
We know that max{u"2(t) : t € [0,T]} = u""2(£). Consequently, if £ > T/2, then
(5.11) and (5.19) yield (5.18) and if £ < T/2 then (5.18) follows from (5.11) and (5.20).
It remains to prove inequality (5.14). Using (5.13) and u("~%)(0) = 0, we obtain

t

W0 = |

t
u" 2 (s)ds = AJ sds = ét2 fort € [0, I]
0 0 2 2

In particular, u"=3(T/2) > (A/2)(T/2)?. Since u"~?) is increasing and (¢/2)? < (T/2)?,
we conclude that the inequality u"=(T/2) < u"=3)(¢) holds on [T/2, T], and

2
U3 = A ! fort e [g,T].

42!

Consequently,

t2

(n=3)
u (t) = A4 0

fort € [0, T].
Now, using the equalities
. t .
u(t) = J Wi (s)ds fort e [0,T), 0<j<n—4,
0

we can verify that inequalities (5.14) are satisfied. O
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Lemma 5.2. Let min{f,8} > 0. Let u € A(r,a) and set

T T
B = gmin {ﬁyj (T —s)s" ds, océj s ds} > 0. (5.21)
0 0

Then u"=V is decreasing on [0, T], u"~V satisfies inequality (5.12), where & € (0, T) is its
unique zero,

u"d(t)y=B forte[0,T], (5.22)
A B A
() P2 4n—j-2 ; _
u(t) = (n—j—Z)It fort € [0,T],0<j<n-3. (5.23)

Proof. The properties of u"~1 follow immediately from Lemma 5.1 and its proof. Next,
by relations (5.15) and (5.16),

T
u(n—Z)(O) > %;V J (T —s)s"ds = B,
0
(5.24)
u=(T) > ? JT{“ ds > B.
0

Since u"~2) is concave on [0, T], inequalities (5.24) show that (5.22) is true. Now (5.22)
and the equalities u(/)(0) = 0,0 < j < n — 3, imply that inequality (5.23) holds. O

Lemma 5.3. Let min{f, 8} = 0 and let h and wj, 0 < j < n — 1, have the properties given

in conditions (5.4) and (5.5). Then there exists a positive constant Sy such that for each
u € A(r,a) satisfying that

n—1 n—1
—u"(t) < h(t,n +> |u(j)(t)|> + O [w;([uP()]) + w;(1)] (5.25)

i=0 i=0
fora.e. t € [0, T], the estimates
|uP||, < Sy for0<j<n-—1 (5.26)
are valid.
Proof. Let u € A(r,a) satisfy inequality (5.25) for a.e. t € [0, T]. By Lemma 5.1, u"~!

has a unique zero & € (0,T), and u satisfies inequalities (5.12)—(5.14) with A given in
(5.11). From

L2 (0) = guww(m >0,
it follows that

t
20| = Buom00) ¢ [ w00 1ds < (£ ) jutn
o 0 o
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for t € [0, T]. Thus,
a2l = (B ) uny, .27

and then the equalities

u(j)(t)zmj(t—s)” Iy (9)ds, te[0,T],0<j<n-3
give
. Tn—j—z Tn—j—2 /3
() T ym2) s (n—1)
L e TL Al R e () [l
that is,
||, < %Hu("_l)ﬂm, 0<j<n-3 (5.28)

where V is given in condition (5.4). Now inequality (5.25) yields

t
un=V(t)| = ‘ J; u™ (s)ds
T

n—1
SJ [h(s,nJrZ | (s)]| ) Z w; ([uP(9)]) +w;(1 )]]ds
0 j:O

SJT[h<sm+V||u<"l>|| Zw, |l +wf<”]]d5’
0

for t € [0, T], that is,

T n—1
|u=D(1)| < L [h(s,n+V||u(”1)||w)+Z [wj(|u(j)(s)|)+wj(1)]]d5 for t€ [0, T.
i=0
(5.29)
Set
@ Cwia A L
K=o 7= "Nam—jopr 0=/=n7?
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Since (see inequalities (5.12)—(5.14))

K@Wﬂw*WwwﬁsKw4@jﬁa4wﬁm+ﬁw4(“ﬁpfwjm

r+
1 K& K(T-§)
_ *“ w,,,l(tr+l)dt+j wn,l(tr“)dt]
KLlJo 0
=z JO w1 (£ dt,
(5.30)
T /2 T
J wn_2(|u(”‘2)(t)|)dtsj wn_z(At)dt+J wn2(A(T = 1)) dt
0 0 /2
(5.31)
) (Am2
e L
A Jo :
and (for0 < j <n-—3)
T " ; T A ey 1 (T ey
. < o = _ - (h—j—
L w;([u)(1)]) t—JO w1<4(n_j_l)!t ) t o w;(t )dt,
we deduce from inequality (5.29) that
T
V]|, < f his,n+ V][uD||L)ds + A, (5.32)
0
where
n=3 | T g ) (@n2 p
A= —j w;i(t" 7™ t+—J w2 (t)dt
jgorj 0 ]( ) A 0 2()
(5.33)
2 KT n—1
+ = J W (FTHYdt+ T Z w;(1) < co.
K Jo =
According to our assumption (see condition (5.4)) we have
1 T
limsup — | h(t, Vv)dt < 1,
y—oo V Jo
and therefore there exists a positive constant Sy such that
T
J Bt + V)di+ A < v (5.34)
0

whenever v > S,. Inequalities (5.32) and (5.34) show that [[u"~ V|| < S. Now using
(5.27) and (5.28), we see that inequality (5.26) holds with Sy =S max{1, V/n}. O
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Lemma 5.4. Let min{f, 8} > 0 and let h, q, and w; (0 < j < n — 1) have the properties
given in conditions (5.4) and (5.6). Then there exists a positive constant Sy such that

|u||, <S8, 0<j<n-—1, (5.35)
for each u € A(r,a) satisfying the inequality
n—1 n—1
—u"(t) < h(t,n+ > |u(j)(t)|) + > [wj(|uP(®)]) + wj(1)]
j=0 jizfz (5.36)
+q(t)[waa(|u"2()]) + wy2(1)]  forae te[0,T].

Proof. Letu € A(r,a) satisfy (5.36) fora.e. t € [0, T]. By Lemma 5.2, inequalities (5.12),
(5.22), and (5.23) are true provided & € (0,T) is the unique zero of u"~! and B is
given by (5.21). Since u"~2(0) = (B/a)u""1(0) the same reasoning as in the proof of
Lemma 5.3 shows that inequalities (5.27) and (5.28) hold if V is defined by (5.4). From
inequalities (5.22) and (5.23), we obtain

w2 ([u"2(1)]) < wa2(B), tE€[0,T],

JOT w; (|4 ()] )t < LT w,-(ﬁlmfj—z)dt

m;T
B

mi
for0 < j < n— 3, where mj = "/3/B/(n — j — 2)\. Then (see (5.28), (5.30), and (5.36))

WD (p) | H " (s)ds

n—1
SJO [ (s,n+z |u(1)(5)|> S [ ([u?(s)]) + w;(1)]

j=0
j#n=2

+q(s)[wna(|u2(s)]) + wnz(l)]} ds

T
SJ h(s,n+ V]ju" V|| )ds+ A, forte[0,T],
0

where
3

n-s

Lt ni=2)d B 1
], gl 2B) 0, (0)]

2 KT n—1
t % L W (At + T D wi(1) < o
j=0

j#En=2
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Hence,
T
Dl = [ s VIO )ds s A
0

and using the same procedure as in the proof of Lemma 5.3, we conclude from the as-
sumption limsup,_ ., (1/v) fOT h(s, Vv)ds < 1 that inequality (5.35) is true with a positive
constant S. |

Auxiliary regular problems

For each m € N and any positive constant L define ¢;,», 7. € C°(R) and f1,, € Car([0,
T] x R") by the formulas

1 . 1
— if v < —, )
m m V iflv| <L+1,
1
eLm(V) =qly| if— < <L+1, =711
m ( | |)V if|v] >L+1,
v
L+1 if|v|>L+1,
fL,m(t)xO)---)xn72>xn7])
. 1
f(toLm(x0)s s 0nm(Xn=2), 70 (xX4-1)) if [x,-1] = —

m 1 1
=15 Srm t,xo,---,xn—z,;> Xp-1+ "
1 1 . 1
7fL,m<t)x0)---)xn72)77> (xn—l - 7)] lf |xn7] | < —.
m m m

Then fora.e. t € [0, T] and all (xg,...,x,_1) € R",

n—1

n—1
at" < frm(t, X0, Xn-1) < h(t,n+ > |xj|> + > [wi(]xj]) + w;(1)] (5.37)
j=0

j=0

provided conditions (5.3)—(5.5) hold, and

n—1
at" < frm(t, X0, Xn-1) < h(t,n+ Z |xj|>

j=0
1 (5.38)
+ 2 Lo (fx]) + @]+ q®)[@na(|x)]) +@na(1)]
=0
jin—z
provided conditions (5.3), (5.4), and (5.6) hold.
Consider an auxiliary family of regular differential equations

—u" = £ (.., u"D) (5.39)

dependingon L >0 and m € N.
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Lemma 5.5. Let min{f,8} = 0 and let conditions (5.3)—(5.5) hold. Let Sy be the positive
constant from Lemma 5.3. Then for each m € N, problem (5.39), (5.2) with L = Sy has a
solution u,, € A(r,a) and

|uP|l. <So for0<j<n—1. (5.40)
In addition, the sequence

{fsom (& (8, ulp "D (1))} (5.41)

is uniformly integrable on [0, T'.
Proof. Choose m € N. Put

gm(t) = sup { foom(t: %05 » Xn-1) : (X05...,%p-1) € R"}.

Then

gm(t)=sup {f(t,xo,. s Xp1) : %sxj <So+lfor0<j<n-—2, %s E sSO+1}.
Since f € Car([0, T] x D), we have g,, € L, [0, T]. As the homogeneous problem —u(" =
0, (5.2) has only the trivial solution, the Fredholm-type existence theorem guarantees the
existence of a solution u,, of problem (5.39), (5.2) with L = S,. Besides, inequality (5.37)
with L = §; yields

at’ < ”)()<h(tn+Z|um ) Zw, (|t (6)]) + w;(1)]

j=0 j=0

for a.e. t € [0, T]. Consequently, u,, € A(r,a) and inequality (5.40) is true by Lemmas
5.1 and 5.3. Moreover,

= j_ 1 (fm - t)rﬂ for t € [0,&,],
R OOF B " (5.42)
<—r+1(t—£m) fort € (&,,T],
where &, € (0, T) is the unique zero of uln- ),
At fort e [0,%],
u"=A(t) = T (5.43)
A(T—1t) forte (E,T],
W)= — A i forre[0,T),0<j<n-3 (5.44)

4(n—j—1)!

where A is defined in formula (5.11). Since

0 < fom(t (1), ul V(1)) < h(t,n(1+Sp)) Z w; (lud )| ) +w;(1)]
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fora.e. t € [0,T] and each m € N, and h(t,n(1 + Sp)) € L,[0, T] by (5.4), to prove the
uniform integrability of sequence (5.41) it suffices to show that the sequences

{w;(|u O}, 0<j=n—1,
are uniformly integrable on [0, T]. Let 0 < j < n — 3. Then

A

) () ) n—j—l)
w](|um(t)|)§w1<4(n_j_1)!t , te[0,T], meN,
and it follows from the properties of w; that w;((At"/~1)/(4(n— j —1)!)) € L;[0,T].
Hence, {wj(\u%)(t)l)} is uniformly integrable on [0, T]. Analogously, (5.43) gives

wn (|2 (1)) < wy2(g(t)) for t € [0, T] and m € N, where

At fort e [0,%],

o= AT = 1) forteG,T].

Since w,—2(¢(t)) € L,[0,T], it follows that sequence {wn,z(lu%“z)(t)l)} is uniformly

integrable on [0, T']. Furthermore, the uniform integrability of {wn,l(lu%_l)(t)l)} fol-
lows from Criterion A.4. We have proved that sequence (5.41) is uniformly integrable on
[0, T]. 0

Lemma 5.6. Let min{f3,8} > 0 and let conditions (5.3), (5.4), and (5.6) hold. Let S, be the
positive constant from Lemma 5.4. Then for each m € N, problem (5.39), (5.2) with L = §;
has a solution u,, € A(r,a) and

| |l. <8 for0<j<n—1 (5.45)
In addition, the sequence

{sim (6 tm (8),.., ul ™V (1)) } (5.46)
is uniformly integrable on [0, T].

Proof. Essentially the same reasoning as in the first part of the proof of Lemma 5.5 shows
that for each m € N there exists a solution u,, of problem (5.39), (5.2) with L = S;. The
fact that u,, € A(r,a) and u,, satisfies inequality (5.45) follows from Lemmas 5.2 and 5.4.
It remains to verify that sequence (5.46) is uniformly integrable on [0, T']. Notice that, by
Lemmas 5.2 and 5.4, ult =V satisfies inequality (5.42), where &, € (0, T) is its unique zero
and

u"2(t)= B forte [0,T], (5.47)

B

Py o
un (1) 2

"2 forte[0,T],0<j<n-3, (5.48)
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where B is given in formula (5.21). Hence,

wn2 (U7 (1)) < w,_2(B), te€[0,T], meN, (5.49)

wi(|ud®)]) = w; (ﬁt"ﬂ”), t€(0,T), meN, 0<j<n-3. (550)
By conditions (5.4) and (5.6), we know that the functions h(t, n(1 + 1)), q(t) and w;((B/
(n—j—2))t"772) belong to the set L; [0, T] for 0 < j < n — 3 and that the sequence
{wn_l(lu%‘_l)(t)l)} is uniformly integrable on [0, T'], which was shown in the proof of
Lemma 5.5. Hence, the uniform integrability of the sequence (5.46) follows from (5.49),
(5.50), and from the following inequality (see (5.38))

0 < foom(tstm(®),...,ultV(t)) < h(t,n(1+8S)))
1

=
|

+ 2 lo(] i (0)]) + @; (1] + q(0) [@na (|l 2(8) ) + wa(1)]
JEm
forae.t € [0,T] and all m € N. O

Existence results

Theorem 5.7. Let conditions (5.3)—(5.5) hold and let min{f3,8} = 0. Then problem (5.1),
(5.2) has a solution u € AC" 1[0, T] such that

u" 2 >0 on(0,T), u >0 on(0,T] for0<j<n-3. (5.51)

Proof. By Lemma 5.5, for each m € N, there is a solution u,, € #4(r,a) of problem (5.39),
(5.2) with L = Sp. Lemmas 5.1, 5.3, and 5.5 show that u,, satisfies inequalities (5.40) and
(5.42)—(5.44), where A > 0 is given in (5.11) and sequence (5.41) is uniformly integrable
on [0, T]. Hence, {u,,} is bounded in C"~'[0, T] and {us,'ffl)} is equicontinuous on [0, T'].
Without loss of generality, we can assume that {u,,} is convergent in C"~![0, T] and {&,,}
is convergent in R, where &, € (0, T') denotes the unique zero of u Y Let limy, oo U =
u, lim,, . &, = £€. Then

> f_ [E-or forte [0.€]
TR OOF S (5.52)
< - (-0t forte (&1,
r+1
At fort e [0, g]
u"A(t) = . (5.53)
A(T—1) forte (E,T],
ud(t) = A "7l te[0,T,0<j<n-3. (5.54)

4(n—j—1)!
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Hence, u/) has at most two zeros on [0, T] for 0 < j < n — 1. Applying Theorem 1.9, we
obtain that u € AC""'[0, T], u is a solution of problem (5.1), (5.2), and (see (5.53) and
(5.54)) u"2 >00n (0,T), u’) >00n (0,T] for0 < j < n-— 3. O

Theorem 5.8. Assume (5.3), (5.4), (5.6) and let min{f, §} > 0. Then there exists a solution
u € AC" 1[0, T] of problem (5.1), (5.2) such that

u" 2 >0 onl0,T], uD >0 on(0,T]for0<j<n-—3. (5.55)

Proof. Lemma 5.6 guarantees that for each m € N there exists a solution u,, € A(r,a) of
problem (5.39), (5.2) with L = §;. By Lemmas 5.2, 5.4, and 5.6, u,, satisfies inequalities
(5.42), (5.45), (5.47), and (5.48), where B > 0 is defined in formula (5.21) and sequence
(5.46) is uniformly integrable on [0, T]. Without loss of generality, we can assume that
{un} and {&,,} are convergent in C"~'[0, T] and R, respectively. Here &,, € (0, T) is the
unique zero of u" Y Let us denote u = limyy,— e t, & = limy—.o &,. Then inequalities
(5.52) and

u"2(t)y=B, telo,T], (5.56)
) B )
() P n-j-2 . B
ul(t) > (n—j—2)!t , te[0,T,0<j<n-3, (5.57)

are true. Hence, u'/) has at most one zero in [0, T] for 0 < j < n—1.Thus, by Theorem 1.9,
u € AC" 1[0, T] is a solution of problem (5.1), (5.2). From (5.56) and (5.57), we see that
u"=2 >00n[0,T] and u/) >00n (0,T] for0 < j <n - 3. O

Example 5.9. Consider the differential equation
r 2

—u™ = sin (£> + (
T 0

with the boundary conditions (5.2), where min{f,§} = 0. Theorem 5.7 guarantees that
this problem has a solution u € AC" 1[0, T] satisfying inequality (5.51) provided r €
(0,00),aj € (0,1/(n—j—1))for0<j<n—-2a € (0,1/(r+1)),y € (0,1); and
the functions a; € L [0, T], b; € L,[0, T] are nonnegative for 0 <i < n — 1.

Now consider problem (5.58), (5.2), where min{f,§} > 0. Assume that r € (0, o),
aj€(0,1/(n—j—-2))for0<j<n-3,a,2 € (0,0),a, 1 €(0,1/(r+1)),y €(0,1),
bi € L,[0, T] is nonnegative for 0 < i < n — 1 and finally a,_» € L[0,T], ay,-1,ax €
L« [0, T] are nonnegative for 0 < k < n — 3. Then, by Theorem 5.8, problem (5.58), (5.2)
has a solution satisfying inequality (5.55).

n—

a;(t o et (F B -
(ufj()))aj + b,-(t)(u(”)”> + W by (8) | D |

j=
(5.58)

Bibliographical notes

Theorems 5.7 and 5.8 were adapted from Rachtinkova and Stanék [161]. The singular
Sturm-Liouville problem for the equation

u™ + f(t, uy...,u" ) =0
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is considered in Agarwal and Wong [26], where f € C°((0,1) X (0, 00)""!) is positive.
Here the existence of a solution u € C"~'[0, 1] n C"(0, 1) positive on (0, 1) is proved by a
fixed-point theorem for mappings that are decreasing with respect to a cone in a Banach
space.






Let R_ = (—00,0), Ry = (0,00) and Ry = R\ {0}. We will consider the singular Lidstone
problem
(1) = f(t,u,...,u(zn‘”), (6.1)

u0) =u®(T)=0, 0<j<n-1, (6.2)
where n > 1 and f € Car([0,T] X D) with

Ry xRy XR_XRgX---xRy xRy ifn=2k-1,
4k-2
R+><R0><R,><R0><---><R,><RQ if n =2k
ik

D =

(forn = 1 and 2, we have D = Ry X Rpand D = Ry X Ry X R_ X Ry, resp.). If n = 1,
problem (6.1), (6.2) reduces to the Dirichlet problem. The function f may be singular at
the value 0 of its space variables. If f is positive on [0, T'] X D, the solutions of problem
(6.1), (6.2) have singular points of type I at t = 0 and ¢t = T and also singular points of
type II.

Green functions

Let j € N. In our studies we will essentially use the Green functions Gj(t,s) of the
problems

u () =0, u®(0)=u®(T)=0, 0<i<j-1
Then

(t-T) forO<s<t=<T,
Gi(t,s) = (6.3)

(s—T) forO0<t<s<T.

N e



74 Lidstone problem

If j > 1 we have

T T
Gj(t,S) = J R J Gl(t,Sj_l)Gl(Sj_l,Sj_z) et G1 (51,5)d51 e de_l
0 0

(j—1) times

for (t,s) € [0, T] x [0, T]. Therefore the Green function G;(t,s) can be expressed as

T
Gj(t,s) = JO Gi(t,7)Gj-1(7,5)dT (6.4)

for (t,s) € [0,T] x [0, T]and j > 1 (see Agarwal [1], Agarwal and Wong [25], Wong and
Agarwal [201]). Since G;(¢,s) < 0 for (t,s) € (0, T) x (0, T), we conclude from (6.4) that

(—l)ij(t,s) >0 for(ts) e (0,T)x (0, T). (6.5)
The next lemma gives inequalities for the Green function G;(t,s).

Lemma 6.1. For (t,s) € [0,T] X [0,T] and j € N, the inequality

2j-5

T2
|Gj(t,5)| > 30/-1

st(T — t)(T — s) (6.6)
holds.

Proof. The validity of inequality (6.6) will be proved by induction. Since

%(T—t)z% for0<s<t=<T,
|Gi(t,5)] = T (6.7)
%(Tfs)zw for0<t<s=<T,

estimate (6.6) is true for j = 1. Assume now that (6.6) holds for j = i > 1. Then relations
(6.4)—(6.7) give

1Gin(1,5)] = LT 1G/(6, )| | Gilr,s) | dr
T2i—8 T
> ST = (T - 9) L (T = 1) dr
- T;;_Z.Sst(T — (T - )
for (t,s) € [0, T] x [0, T] and therefore (6.6) is valid for j = i+ 1. O

In the proof of Theorem 6.3 we will need the following result.

Lemma 6.2. Leté € (0, T). Then

> Z(t— £)? fort e [0,T]. (6.8)

‘ J: s(T —s)ds 5
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Proof. Tt suffices to prove inequality (6.8) only for t € [£, T]. Then
2Tt +A4TE - 2(2 +tE+ &%) = 26(T — t) + 26(T — t) + 25(T — &) > 0

and therefore

L@(T - 9ds= LT - 8) - 2(F - )

= O [T(t- &)+ 2Tt +ATE — 2(2 + tE + £%)]

~

Main result

The next result provides sufficient conditions for the existence of a solution of the singular
Lidstone problem.

Theorem 6.3. Let f € Car([0, T] X D) and let there exist a € (0, ) such that
a < f(t,x0,...,%m-1) forae t € [0,T]and each (xo,...,%m-1) € D. (6.9)

Let

Fltxne s ) sh(t, S |xj|) £ w0llx)

j=0 j=0 (6.10)
fora.e. t € [0, T] and each (xo,...,%m-1) € D,

where h € Car([0, T] X [0, o)) is positive and nondecreasing in the second variable, w; :
R, — Ry is nonincreasing, 0 < j < 2n — 1,

LT 2n ifT =1,
limsup — [ h(t,Kv)dt<1 withK = o (6.11)
v—oo YV JO T°" -1 lfT?/:I
T-1 ’
1 1
J Wop—1(s)ds < oo, J wyj(s)ds< oo for0<j<n-—1, (6.12)
0 0
1
J wrjs1(s)ds < o for0<j=<n-—2. (6.13)
0

Then problem (6.1), (6.2) has a solution u € AC**~1[0, T] and

(-1)7u®)(t) >0 forte€ (0,T),0<j<n-—1. (6.14)
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Proof

Step 1. Regularization.
For each m € N, define ym, ¢, Tm € C°(R), and R,, C R by the formulas

v ifv> %, L ifV>—%,
Am(v) = I ] Pm(v) = ]
— ifv<—, % ifv < ——,
m m m
Xm ifn=2k-1, 11
Tm = Rm:R\(——,—).
m’ m

om ifn =2k,
Choose m € N and put
S0 (£ X0, X1, X2, X35« . . s X2n—2, X2n—1) = f(t)Xm(xO)’xl)(Pm(x2))x3)---)Tm(x2n72))x2nfl)

for (t, X0, X1, X2, X35 . . s Xon—2,%2n-1) € [0, T] X RXR,, x RXR,, X - - - x R X R,,,. Define
fm € Car([0, T] x R?") by the formula

S (5 %05 X1, X2, X35 . > X202, X2n—1)
(m 1 1
5 fmo t)XO)%)xbx?n---)x2n—2)x2nfl X1+ m

1 1
— fmo (t,x(),—*>x2>x3,-~-ax2n—2,x2n—1 X|— —
m m

for (¢, %0, X1, X2, X3, . . s Xan—25X2n-1)
1 1
e [0, T] xR X [——,—] XRXR, X - XRXR,,
m m

m
2

1 1
I:fm,0<tax03xla-x2’ .. ax2n—2>-x2n—1) <x3 + *)
m m
1 1
— fmo | > X0, X1, X2, _E)-'-)x2n—27x2n71 X3 — —

m
for (£, %0, X1, X2, X3, . . » Xan—2>X2n-1)

e[0,T]><R3><[—l,l]x---xRme,
m m

m 1 1
? fm,O t)xO)xl)xZw--)xZVle); Xon-1+ ;
1 1
— fmo (f;xo,xlaxzam,XZn—z, —*> (xzn—l - *)]
m m

1 1
for (f,XO,X1,xZ,...,Xanz,infl) e [0, T]XRMAX[ - —, *]
m m
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Then inequalities (6.9) and (6.10) imply that

2n—1 2n-1
asfm(t,xo,...,xm,l) < (t,2n+ Z |Xj|>+ Z [wj(|xj|)+wj(1)] (6.15)
j=0 j=0

fora.e.t € [0, T] and all (xo,...,X2, 1) € R3".
Consider the sequence of approximate regular differential equations

(=D)"u® = f.(tu,...,u?" D), (6.16)

Step 2. Solvability of problem (6.16), (6.2).
We first give a priori bounds for solutions of problem (6.16), (6.2). To this end let
Um € AC?" 1[0, T] be a solution of problem (6.16), (6.2). By inequality (6.15) we have

(=D)"u”(t) =a>0 forae. te[0,T]. (6.17)

Furthermore, by the definitions of the Green functions G;(t,s),i = 1,2,..., n, the equality
(D10 = 0" [ Gy (6,9 (-1 (9)ds (6.18)
0
holds for t € [0,T] and 0 < j < n — 1. From relations (6.5) and (6.17) we see that
(—1)/us’ (1) >0 forte[0,T), 0<j=<n—1. (6.19)

Hence, (—1)ju£,2,j+l) is decreasing on [0, T] for 0 < j < n — 1. Therefore and due to
boundary conditions (6.2) we conclude that u%ﬁl)(fj)m) = 0 holds for a unique &;,, €

(0, T). Moreover, from relations (6.6), (6.17), and (6.18) it follows that
) T2(n-j)-5 T
lum” ()] = a1 {T =) L s(T —s)ds
T2(n-j)-2 '
:aml‘(T—t) fort€[0,T],0<j<n-1

In particular,

2j) T2 .
|Mm (t)| Zamt(’r—ﬂ fort € [O,T], OS] <n-1. (620)
Since
. t . t T
W2 ) = J 12 (5ds, U ST = )ds| = (t = &)’

Jsm Jsm

by Lemma 6.2, we obtain

. (n—j)-3
2j+1) T2

u | z2a—————

|wn™ (1) 36 - 3072

[uZ-V(t)| = alt—& 1| fortel0,T]. (6.22)

(t=&m) forte[0,T,0<j<n-2,  (621)
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By inequality (6.17), we have Iu%”)(t)l >a>0forae.t €[0,T].Put
A =amin{l,A,A,},

where

) T2(n—j)—3 ]
Ay :mln{mZOS]SH—Z},

T2(n-j)-2

A2 = min {W

0<j=<n- 1}.
Then inequalities (6.20)—(6.22) give

|u%n_1)(t)| ZA|t_fn—1,m|;
| @j+1) 2 ) B
um' ()| = A(t—&n)" for0<j<n-2, (6.23)

|u§;§j)(t)| >ANT —t) forO0<j<n-1,

for t € [0, T]. Hence,

T T
j wm_l(|u;3"-“<s>|>dssj 01 (Als = Eni | )ds
0 0

1

1 Agn—l,m A(T_fn—l,m)
=1 L wyn-1(8)ds + 0 JO wzn-1(s)ds

9 (AT
<XL won—1(s)ds,

T , T
Jo wzj+1(|ugj+l)(5) |)ds < Jo wajr1 (A(s — fj,m)z)ds
| (VA5
T VA Lmj,m

W2j+1 (Sz)ds
2 VAT
< ﬁ L w2j+1(52)d5

and using the inequality

% forOﬁtﬁ%,
tT —t) >
(T=D=1 17y T
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we compute
T 2i) T
J;) w2 (|um” (s)])ds < J;) w2 (As(T —5))ds
T2 [ATs r AT(T - s)
<], (%7 Jas | (R )as
AT?/2
= EL wyj(s)ds.

So, we can summarize the above considerations as follows:

T AT
J wan1 (| uZ=V(s)|)ds < —J Wan_1(s)ds, (6.24)
0

T ,
JO w2j+1(|u£y2,”1)(5)|)d5<\/“f wajr1(s s)ds, j=0,1,...,n—2, (6.25)

T o)) AT2/2
J wzj(|um (s)])ds < — wj(s)ds, j=0,1,...,n—1, (6.26)
0 0

From inequalities (6.24)—(6.26) and from (6.15) we obtain

t
U@ (5| = ‘L (s, tm(S), ., u2 D (5))ds

T
< [ s on(s) o060 L

2n—1 2n—1
SI (s 2n+ Z | u (s) )ds+ ZJ w; (|u(s)])d

2n-1

<I <5,2n+ Z |u(J) )d +A

for t € [0, T], where

2n—1

AT 4 AT2/2
= J Wyn—1(s)ds + —= Z J w241 (s 2)ds + E Z J wyj(s)ds + ;) w;j(1)

In particular,

T 2n—1 .
|20 () | <JO h(s,2n+ > |u%)(s)|)ds+A for t € [0, T]. (6.27)
j=0

Notice that A < o due to conditions (6.12) and (6.13). Since

1u|l. < T2 JuD)), 0 < j<2n-2,meN, (6.28)
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which follows immediately from ug,fjﬂ)(fj,m) = 0 and u%j)(o) =0,0<j<n-1,
inequality (6.27) shows that

T 2n—1 .

||u§£"_1)||oo <J h<$,2n+ z ||u%)||m>d5+1\

0 ‘
j=0

(6.29)

T
< J h(s, 2n + K|[u@D|| ) ds + A,
0
where K is given in (6.11). By condition (6.11),

T
lim sup %(J’ h(s,2n+Kv)ds+A) <1
0

V— 00

and therefore there exists a positive constant S such that

JOT h(s,2n+ Kv)ds+ A <v
whenever v > S. Now (6.29) shows that
[|uZr-V]|, <S, meN, (6.30)
and then, by inequality (6.28),
|lud||, < T>"i71S, 0<j<2n—-2, meN. (6.31)

We have proved that there exists a positive constant S such that any solution u,, of prob-
lem (6.16), (6.2) satisfies inequalities (6.30) and (6.31), that is, ||t |lc21 < KS. Set

1 if |x| < KS,
y(x) =12 - Xl ifKS < |x| < 2KS
KS ’

0 if |x| > 2KS$

and let fm € Car([0, T] x R?") be given by

2n—1

fm(t,xo,...,xz,,,l) = y( Z |xj|)[fm(t,xo,...,x2n1) —al+a.

j=0

Clearly, inequality (6.15) is satisfied with fm instead of f,,. Hence, applying the above
procedure we obtain that [|2, || cz-1 < KS for any solution 2, of the differential equations

(—1)"u® = fm (t, 1,..., u?D)

satisfying the boundary conditions (6.2). Therefore Corollary C.6 (with ¢(tf) = a and
with 27 instead of n) guarantees that problem (6.16), (6.2) has a solution u,, € AC**~1[0,
T] and HumHCzM < KS.
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Step 3. Limit processes.

By step 2, we know that for each m € N there exists a solution u,, of problem (6.16),
(6.2) satisfying inequalities (6.23), (6.30), and (6.31). We now show that the sequence
U (um (1), un 1)(l‘))} is uniformly integrable on [0, T']. From inequalities (6.15) and
(6.23) it follows that

a < fu(tm(t),...,u2"=0 (1)

2n—1 2n—1 .
<h(t m+ S |ulf( t)|> + > [w;(|ud ()]) +w;(1)]

j=0 j=0
2n— n—1
< h(t,2n+KS) + Z (1) + D wy (AH(T — 1))
=0 j=0
+ Zw21+1 Ejm) )+w2n—1(A|t_En—1,m|)

for a.e. t € [0, T], where &; ,, is the unique zero ofumj 1) ,0<j<n-1,me N Wehave

h(t,2n + KS) € L;[0, T] and also w,;(At(T — t)) € L,[0,T] by (6.12). Hence, to prove
that { fin (tn(1),. ..,urfn 1)( £))} is uniformly integrable on [0, T], it suffices to show that
the sequences

{w (At =Em)) s Ao (Alt=&im])}, 0<j<sn-2,

are uniformly integrable on [0, T]. Due to conditions (6.12) and (6.13), this fact follows
from Criterion A.4. The uniform integrability of the sequence { f,, (4, (), . .. w2 (t))}
yields that {u" VY s equicontinuous on [0, T] and consequently, by the Arzela-Ascoh
theorem and the Bolzano-Weierstrass theorem, we can assume without loss of generality
that {u,,} is convergent in C**~1[0, T] and {fj,m} is convergent in R for 0 < j < n — L.
Let im0 tty = u and limy, .o &j,n = &5 (0 < j < m —1). Then u € C**~ 1[0, T] satisfies
the boundary conditions (6.2) and letting m — oo in inequality (6.23) we get

W@ V()| = Alt =& 0], @0 = A(E-§)°,  |u® ()] = AT - 1)

fort € [0,T],0<j<n-2and0 <i<n—1.Hence, u) has at most two zeros in [0, T]
for 0 < j < 2n — 1 and moreover, due to inequality (6.19), u satisfies inequality (6.14).
Therefore, by Theorem 1.9, u is a solution of problem (6.1), (6.2) and u € AC*"~1[0, T].

a

Example 6.4. Consider problem (6.1), (6.2) with

2n—1 (t) ﬁk
f(t,x05. .5 x0m-1) = p(£) + Z ( =+ b (1) | x| >

k=0 |Xk |

on [0, T] X D, where the functions ax € L[0,T], p,bx € L;[0, T] are nonnegative for
0<k=<2n-1,and p(t) =a>0forae.t € [0,T].ifaz, 1, 00; € (0,1) for0 < j <n—1,
a1 € (0,1/2) for0 < j < n—2and B € (0,1) for 0 < k < 2n—1 then, by Theorem 6.3,
the problem has a solution u € AC?"~1[0, T] satisfying inequality (6.14).
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Bibliographical notes

Theorem 6.3 was adapted from Agarwal, O’Regan, Rachtinkova, and Stanék [16]. The
singular Lidstone problem for the differential equation

(=1)"u® = f(t,u)

is considered in Zhao [208]. Here f € C°((0,1) X (0, )) is nonnegative and f may
be singular at 4 = 0, ¢t = 0 and/or t = 1. The existence of positive solutions in the
sets C2"=2[0,1] n C**(0,1) and C?>"~'[0,1] n C**(0,1) is proved by a combination of
the method of lower and upper functions with the Schauder fixed-point theorem. Other
singular Lidstone problem for the differential equation

(D)™ = f(tyu,—u",. . (=1)TuD (1) u2n=2)

may be found in Wei [200], where f € C((0, 1) X (0, 0)") is nonnegative and f (t, xo, ...,
Xn-1) may be singular at x; = 0, j = 0,1,...,n — 1, t = 0 and/or t = 1. Sufficient
and necessary conditions for the existence of positive solutions in the sets C**~2[0,1] N
C?(0,1) or C>"~1[0,1] N C?"(0, 1) are given. The results are proved by a combination of
the method of lower and upper functions with a maximal principle.
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Many nonlinear evolution partial differential equations, which act as models for com-
busting or other processes, have solutions which develop strong singularities in a finite
time, see the references in the books by Bebernes and Eberly [35], Samarskii, Galaktionov,
Kurdyumov, and Mikhailov [177], and in the survey paper by Levine [126]. The proto-
type of such problems is the semilinear parabolic equation from combustion theory

Ur = Uy + f(11).

Important examples of f include f(u) = exp(u) and f(u) = uf, B > 1. In many physical
systems, the diffusion term is not linear but depends on the function u, for example,

u = (uuy) +uf, o>0.

This equation has a porous-medium-type diffusion term, and arises as a model for the
temperature profile of a fusion reactor plasma with one source term (see Zmitrenko,
Kurdyumov, Mikhailov, and Samarski [209] and for further references see the works of
Samarskii, Galaktionov, Kurdyumov, and Mikhailov [177] or Le Roux and Wilhelmsson
[125]). Another possibility is that the diffusion term depends on its gradient. It occurs in
the equation

U = ( | Ux | qu)x + eXP(“))

which arises from studies of turbulent diffusion or the flow of a non-Newtonian liquid.
This equation is invariant under the respective Lie groups of transformations (see, e.g.,
Budd, Collins, and Galaktionov [48]). Searching for solutions which are invariant under
these transformations leads to the following ordinary differential equation for u with a
quasilinear differential operator:

(\u'lpfzu')' —ctu' +exp(u) — 1 =0,
where c is a positive constant and p = o + 2. Let us put

¢p(y) = Iylp’zy for y € R.

If p > 1, then the quasilinear operator

u— (¢p(u))’

is called the (one-dimensional) p-Laplacian.

Further, motivated by various significant applications to non-Newtonian fluid the-
ory, diffusion of flows in porous media, nonlinear elasticity and theory of capillary sur-
faces (see Atkinson and Bouillet [29], Esteban and Vazquez [84], Phan-Thien [153]),
several authors have proposed the study of radially symmetric solutions of the p-Laplace
equation

div (|Vv|P72vv) = h(|x|,v).
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Here V is the gradient, p > 1, and |x| is the Euclidean norm in R” of x = (x1,...,%n),

n > 1. Radially symmetric solutions of this partially differential equation (i.e., solutions
that depend only on the variable r = |x|) satisfy the ordinary differential equation

P YY) = k), = %'

If p = n, the change of variables ¢t = In r transforms it into the equation

(Iu'lp_zu'), =e"h(e' u), '=

4a
ar’
and for p # n, the change of variables ¢t = r#="/(?=1 yields the equation

1P
(lw'1P2) = ‘% { o=/ (=D p=m) - L

Both these equations have (one-dimensional) p-Laplacian ¢,.

This operator was also discussed for systems of second-order differential equations
by Lu, O’Regan, and Agarwal [132], Manasevich and Mawhin [133, 134], Mawhin [139],
Mawhin and Urefia [141], Nowakowski and Orpel [147], Zhang [205]. Further modi-
fications can be found in X. L. Fan and X. Fan [87], Fan et al. [88], where the p(t)-
Laplacian u — (Ju'|P®)~2y)" was investigated and in Dambrosio [63] who worked with
the (p1,..., pn)-Laplacian. The above operators have been sometimes replaced by their
abstract and more general version of the form

u— (pu")’

called the ¢-Laplacian, where ¢ : R — R is an increasing homeomorphism. This leads to
clearer exposition and better understanding of the methods that are employed to derive
existence results. See also Manasevich and Mawhin [134], where ¢ : R” — R" is a strictly
monotone homeomorphism.

Most of existence results for problems with ¢-Laplacian (or with some of its spe-
cial versions) is proved under the assumption that the problems are regular. See, for
example, Dambrosio [63], X. L. Fan and X. Fan [87], Fan, Wu, and Wang [88], L,
O’Regan, and Agarwal [127], Lu [132], Manasevich and Mawhin [133, 134], Mawhin
[139, 140], Mawhin and Urena [141], O’'Regan [149], Rachinkovd and Tvrdy [171],
Zhang [205] who consider two-point boundary conditions (Dirichlet, Neumann, mixed,
and periodic). Further, we refer to the papers of Agarwal, O’'Regan, and Stanék [20] or
Nowakowski and Orpel [147], where some nonlocal boundary conditions can be found.
Recently, some papers dealing with singular problems with ¢-Laplacian have been pub-
lished. We can refer to Agarwal, L, and O’Regan (3], Jiang [111, 112], Wang and Gao
[199] for the Dirichlet problem, to Jebelean and Mawhin [109, 110], Liu [128], Polasek
and Rachtinkova [155], Rachtinkova and Tvrdy [172] for the periodic problem, to Agar-
wal, O’Regan, and Stan¢k [18, 20] for the mixed or nonlocal problems and to
Rachtinkova, Stanék, and Tvrdy [165] for other references and results.
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Assume that ¢ is an increasing odd homeomorphism with ¢(R) = R.
In this chapter, we consider the singular Dirichlet problem with ¢-Laplacian of the
form

(p(u)) + f(t,u,u') = 0, u(0) = u(T) =0, (7.1)
and its special cases, in particular, the problem of the form
u'+ f(tu,u') =0, u(0) = u(T) =0, (7.2)

where ¢(y) = y. We will investigate problems (7.1) and (7.2) on the set [0, T] X A.
In general, the function f depends on the time variable t+ € [0,T] and on two space
variables x and y, where (x,y) € 4 and + is a closed subset of R?. We assume that
problems (7.1) and (7.2) are singular, which means, by Chapter 1, that f does not satisty
the Carathéodory conditions on [0, T] X +4. In what follows, the types of singularities of
f will be exactly specified for each problem under consideration.

In accordance with Chapter 1, we have the following definitions.

Definition 7.1. A function u : [0, T] — R with ¢(u') € AC[0, T] is a solution of problem
(7.1) if u satisfies

(' () + f(Lu(t),u'(£)) =0 ae.on[0,T]

and fulfils the boundary conditions u(0) = u(T) = 0. If A # R?, then (u(t),u’(t)) € #4
for t € [0, T] is required.

A function u € C[0, T'] is a w-solution of problem (7.1) if there exists a finite number
of singular points t, € [0, T],v = 1,...,r,such thatif ] = [0, T] \ {t,}}_,, then ¢(u') €
ACioc(]), u satisfies

(p(' (1)) + f(tult),u () =0 ae. onl[0,T]

and fulfils the boundary conditions u(0) = u(T) = 0. If A # R, then (u(t),u’(t)) € #A
for t € ] is required.

Note that the condition ¢(u") € AC[0, T] implies u € C'[0, T] and the condition
¢(u') € ACc(J) implies u € C(J). If f is supposed to be continuous on (0, T') X R? and
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can have only time singularities at t = 0 and ¢ = T, then any solution (any w-solution)
u of problem (7.1) moreover satisfies ¢(u') € C'(0, T). If we have a w-solution u which
is not a solution, then we do not know the behaviour of u’' near singular points ¢,. But
we often need to know this behaviour. For example, if a singular ordinary differential
equation arises from a partial differential equation with some symmetry properties, we
need u’ to be defined on the whole interval [0, T']. Therefore, we will focus our main
attention on solutions and on such w-solutions that have bounded first derivatives on J.

Remark 7.2. We see that the Dirichlet conditions in (7.1) can be written in the form
u € B, where

B ={x€C[0,T]:x(0) =x(T) = 0}

is a closed subset of C[0, T']. Hence, we can carry out the investigation of problem (7.1)
in the spirit of the existence principles presented in Chapter 1:

(i) the singular problem (7.1) is approximated by a sequence of solvable regular
problems;
(ii) asequence {u,} of approximate solutions is generated;
(iii) a convergence of a suitable subsequence {uy, } is investigated;
(iv) the type of this convergence determines the properties of its limit # and, among
other, determines whether u is a w-solution or a solution of the original singu-
lar problem.

There are more possibilities how to construct an approximate sequence of regular
problems. Their choice depends on the type of singularities of the nonlinearity f in
(7.1) (time, space), on the type of singular points corresponding to a solution or a w-
solution of problem (7.1) (type L, type II), on the type of results desired (existence of a
solution, a positive solution, a w-solution, uniqueness), and so on. A common idea is that
approximate functions f, have no singularities, f, # f on neighbourhoods U, of singular
points of f, f, = f elsewhere, and lim,— . meas(U,) = 0. Having such a sequence of { f,}
we study regular problems

((p(u,)), +fn(t) u, u,) = 0) M(O) = An) Ll(T) = Bn: ne N,

where A,, B, € R, lim,_.o A, = lim,_.o B, = 0. In some proofs, one simply puts A, =
B, = 0 for n € N. Solvability of these regular problems can be investigated by means
of various methods which have been developed for regular Dirichlet problems (fixed
point theorems, topological degree arguments—Cronin [59], Mawhin [137], the critical
point theory—Drabek [79], the topological transversality method—Granas, Guenther,
and Lee [102], variational methods—Ambrosetti [27], Dosly and Rehédk [78], Mawhin
and Willem [142], lower and upper functions—De Coster and Habets [60—62], Kiguradze
and Shekhter [120], Vasiliev and Klokov [196], Wazewski method—Srzednicki [182],
Diblik [75], etc.). Using these methods, we generate a sequence of approximate solutions
{uy}. The crucial information which enables us to realize the limit process concerns a
priori estimates of the approximate solutions u,. In the next section, we present some
existence results and a priori estimates of solutions of regular problems which will be
used in the study of solvability of the singular problem (7.1).
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7.1. Regular Dirichlet problem
In this section, we will study an auxiliary regular problem of the form

(p(u)) +g(t,u,u’) =0, u(0) =4, u(T)=5, (7.3)
where g € Car([0,T] x R?), A,B € R.

Definition 7.3. A function u : [0, T] — R with ¢(u') € AC[0, T] is a solution of problem
(7.3) if u satisfies

(gb(u'(t))), +g(t,u(t),u’(t)) =0 forae. t€[0,T]
and fulfils the boundary conditions u(0) = A, u(T) = B.

The simplest case when g has a Lebesgue integrable majorant, is described in the next
theorem.

Theorem 7.4. Assume that there is a function h € L,[0, T'] such that
|g(t,x,y)| <h(t) foraete[0,T]andallx,y €R. (7.4)
Then problem (7.3) has a solution.

Proof

Step 1. Solution of an auxiliary problem.
Consider the auxiliary problem

(o)) =b(t), u(0)=A, u(T)=B, (7.5)

where b € L,[0,T]. It can be checked by direct computation that u is a solution of
problem (7.5) if and only if u € C'[0, T] satisfies the conditions

uty = A+ [ 97 (90w ) + [ bioae) ds
JOT ¢! <¢(u’(0)) + J; b(T)dT) ds—=B—A

Step 2. Definition of functional y.
For each ¢ € C[0, T] define

T
ViR —R, wx)= Jo ¢ (x+€(s))ds.

Due to the assumption that ¢ is an increasing homeomorphism with ¢(R) = R, the
function ¥, is continuous, increasing, and y,(R) = R. Thus, the equation y¢(x) = B— A
has exactly one root x = p(€) € R. Therefore, we can define the functional

y:C[0,T] — R, ve(y(€)) = B— A.
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Step 3. The functional y maps bounded sets to bounded sets.

Assume that M C C[0,T] and ¢ € (0, ) are such that ||£||» < ¢ for each ¢ € M.
Further assume that there exists a sequence {£,} C M such that

lim y(¢,) = or limy(¢,) = —oo.

Let the former possibility occur. Then
B—A = lim yy, (y(&,)) = lim T¢~' (y(€x) — ) = oo,

a contradiction. The latter possibility can be argued similarly. Thus, (M) is bounded.

Step 4. Functional y is continuous.
Consider a sequence {¢,} C C[0, T] and assume that

lim ¢, = ¢ in C[0, T,

By step 3, the sequence {y(¢,)} C R is bounded and hence we can choose a subsequence
such that lim, .. y(€,) = xo € R. We get

B— A= l//gk J (/5 +€k t))
which, for n — o, yields
T
B—A- J 61 (x0 + (1)) dt
0

Thus, according to step 2, we have xy = y(€p). It follows that any convergent subsequence
of {y(€,)} has the same limit y(¢). Since {y(€,} is bounded, we get y(£;) = lim,_. y(£,).

Step 5. Definition of operator F .
Define operators N : C'[0, T] — C[0,T] and F : C'[0, T] — C'[0, T] by

J g(s,u (s))ds,
(FW) (0 = A+ j 67 (N W) + (N () (5))ds
Steps 1 and 2 yield that u is a solution of problem (7.3) ifand only if u € C'[0, T] satisfies

u(t) A+j¢ (' (0)) + (W) (S)ds, B (0)) = y(N (w)).

Therefore, the operator equation u = % (u) is equivalent to problem (7.3). Thus, it
suffices to prove that the operator # has a fixed point.
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Step 6. Fixed point of operator ¥ .
Since the operators y and A are continuous, it follows that ¥ is continuous. Choose
an arbitrary sequence {u,} C C![0, T] and denote v, = F (u,) for n € N. Then

V() = ¢ (y(N (un)) + (N (4a)) (1), t€[0,T], neN.
By condition (7.4), there is a ¢; € (0, %) such that [|(N (un)ll« < c;1. This implies that

the sequences {v,} and {v;} are bounded on [0, T]. Consequently, the sequence {v,} is
equicontinuous on [0, T']. Moreover, for t1,t, € [0, T], we have

5]

[9053(1)) = () | = [ (W () (1) = (W () (1) | = | | By
Thus, the sequence {¢(v;)} is bounded and equicontinuous on [0, T]. Making use of
the Arzela-Ascoli theorem we can find subsequences {vk,} and {¢(V,;n)} uniformly con-
vergent on [0, T]. Then {v; } is also uniformly convergent on [0, T] and so, {v,} is
convergent in C'[0, T]. We have proved that the operator ¥ is compact on C'[0, T].
By the Schauder fixed point theorem, # has a fixed point, which is a solution of problem
(7.3). O

Method of a priori estimates

Using the method of a priori estimates we can get existence of solutions of problem (7.3)
even for functions ¢ which do not satisfy (7.4) with some h € L,[0, T]. To this aim the
following two lemmas will be useful. Define the linear function

T—t t
a(t) = TA + TB’ te[0,T]. (7.6)

Motivated by the monographs Kiguradze [117] or Kiguradze and Shekhter [120], we will
prove a priori estimates under one-sided growth conditions.

Lemma 7.5 (a priori estimate—sublinear growth). Let a,3 € [0,1), 5 € (0, ). Let
hy € L,[0, T] be nonnegative and let the function a be given by (7.6). Further assume that

tim 22 5 o, (7.7)
y=oy

Then there exists r > 0 such that the estimate
Nulloo + N1t llo < 7

is valid for each nonnegative function ho€L,[0, T] with ||holl, <3¢ and for each function u
satisfying

¢(u') € AC[0,T], u(0)=A, u(T)=B,

—(¢(u' (1)) sign (u(t) - a(®)) = ho(t) + (D) (|u(®)|* + | (D) fora.e t€[0,T).
(7.8)
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Proof. Choose an arbitrary u satisfying (7.8). Denote p = ||t/ |l and let p = |u'(t)].
Assume that p > [(B — A)/T|. We have ||ullo < pT + |A]. Now, we will consider four
cases.

Case 1. Letu'(ty) = p, u(ty) < a(ty). Thisyields ty € (0, T) and if we put v(t) = u(t)—a(t)
on [0, T, we have v'(ty) > 0, v(t) < 0. Since v(0) = 0, we can find #; € [0, ty) such that

V() =0, v(t)>0 forte (t,ty).

This implies u(t) — a(t) = v(t) < 0 on [t;, ty]. Integrating the inequality in (7.8), we get

to , .
J, (@G @)y de = [Inll, + (T + 141" +p8) ],
Thus,

B0) L[, |4 (BoAY[), (GTHAD" | ooy

; _P(%+‘¢< t )‘)Jr( S )||h1||1.—F(p). (7.9)
Since lim,, . F(y) = 0, we deduce by assumption (7.7) that

there exists p* > ’% such that [|[u'[| < p*. (7.10)
We see that p* does not depend on the choice of u and hj.

Case 2. Let u'(ty) = p, u(ty) = a(ty). So, for v = u — a we have v'(ty) > 0, v(ty) = 0. Let
to € [0, T). Then there exists t; € (fy, T) such that

V,(tl) =0, V/(t) >0 forte (to,tl).

This implies u(t) — a(t) = v(¢) > 0 on (ty, t;]. Integrating the inequality in (7.8), we get

-] @0 e < ol + (o7 + 141" + Pl

Thus relation (7.9) is valid which yields estimate (7.10). Now, let ¢, = T. Then there exists
t; € (0, T) such that

V() =0, v (t)>0 forte (t,T).

Since v(T) = 0, we see that u(t) — a(t) = v(¢) < 0 on (t;, T). Integrating the inequality in
(7.8), we get

T
L (¢(u' (1)) dt < [|holl, + ((pT + AN + pP) [P,
So, relation (7.9) and consequently estimate (7.10) are valid again.

Cases 3 and 4. Let

u'(to) = —p, ulto) >alty) or u' () =-p, u(t) <alto).
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Similarly, using the assumption that ¢ is odd, we can verify that estimate (7.10) is true
also in this remaining two cases.

Summarizing, if we putr = p* + p*T + |A|, we get |lulle + ||t/ |0 < 7. 0

Remark 7.6. (i) If ¢ does not fulfil condition (7.7), we replace the inequality in (7.8) by

u(t)T— A)

(¢ (1)) sign (u(t) — a(t)) < ho<t>+h1<t>(j¢( " 1o () )

forae.t € [0,T].
Then, arguing similarly to the proof of Lemma 7.5, we get

5 1o (57)]) )
1< ———|x+ — +||h + .
s 7 19057 Il (@)™ + (8(p))" )
This implies estimate (7.10) and consequently [[ulle + ||| < 7.
(i) If ¢(y) = ¢p(y) = ly|P~2y with p > 2, then condition (7.7) is always satisfied.

Lemma 7.7 (a priori estimate—linear growth). Assume that c € (0, 00) and that the
function a is given by (7.6). Let hy, h, € L[0, T] be nonnegative and let

tim #2057, + el 711)

Then there exists r > 0 such that the estimate
lullo + 1 lle < 7

is valid for each nonnegative function ho€L,[0, T] with ||holl, <3¢ and for each function u
satisfying

¢(u') € AC[0,T], u(0)=A, u(T)=B,

—(¢(u/' (1)) sign (u(t) — a(t)) < ho(t) + ha(t) |u(t)| + ha(t) |/ (t)|  fora.e.t € [0, T].
(7.12)

Proof. Choose an arbitrary function u satisfying condition (7.12). Denote p = [|t/'[l
and let p = |/ (ty)]. We have |lullo < pT + |A]. Assume that p > [(B — A)/T'|. Now, we
will consider four cases as in the proof of Lemma 7.5.

Let u'(ty) = p, u(ty) < a(ty). We argue as in the proof of Lemma 7.5 and find t; €
[0,%) such that u/(t;) = [(B—A)/T| and u(t) < a(t) on [t, ty]. Integrating the inequality
in (7.12), we get

1 B-A

KO 2w o (B2) |+ 1atlmll ) + Tl + lall, = Fao)
p P T

Since lim, . Fi(y) = Tllhlly + llh2|l1, we deduce by assumption (7.11) that estimate

(7.10) holds. The remaining three cases are similar. Therefore, if we putr = p*+p*T+|A[,

we get |[ullo + 1t/ |l < 7. 0
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Remark 7.8. (i) If condition (7.11) is not satisfied, we assume
Tlhlly + Ikl <1

and replace the inequality in (7.12) by

~((u (1)) sign (u) ~ a(0) < ho(6)+ In (0] 6 (12) | + a0 9 1)

forae.t € [0,T].

Then, arguing similarly to the proof of Lemma 7.7 and to Remark 7.6, we get || u]|« +
'l <.

(i) We see that if ¢(y) = ¢,(y) = [y[P~2y with p > 2, then condition (7.11) is
fulfilled for each h;, h, € L,[0, T].

The following theorem relies on Lemma 7.5.

Theorem 7.9. Assume that the function a is given by (7.6). Let o, p € [0,1) and let h €
L,[0, T] be nonnegative. Further assume (7.7) and

g(t,x, ) sign (x — a(t)) < h(t)(1+ |x|*+ |y|F)

7.13
fora.e.t € [0, T] andall x,y € R. ( )

Then problem (7.3) has a solution.

Proof. Let r be the constant of Lemma 7.5 for hy = h; = h and » = |[hll,. Put M =
max{|Al, |B|}, ¥ = r + M, and define

-7 ifz< -7,
x(z) =1z iflzl =7  gtxy) =gt x(x),x(»))
r ifz>7,

forae. t € [0,T] and all x, y,z € R. Then g € Car([0, T] X R?) and there is a function
h € L]0, T] such that |g(t,x, y)| < h(¢) fora.e. t € [0, T] and all x, y € R. Consider the
auxiliary problem

(o)) +g(t,u,u’) =0, u(0)=A, u(T)=B. (7.14)

By Theorem 7.4, problem (7.14) has a solution u. Since 7 > M, we deduce that sign(x —
a(t)) = sign(y(x) —a(t)) fort € [0, T], x € R, and

—(p(u/ (1)) sign (u(t) — a(t)) = g(t, x(u(®)), x (' (1)) sign (x(u(t)) — a(t))
<h(®)(1+ |x(w®)|*+ [xw ) ")
<h®)(1+ |u@®)|“+ |/ (1)|F) forae.t e [0,TI.

Thus, by Lemma 7.5, the function u satisfies |lull + [lt/' [l < 7 and hence u is also a
solution of problem (7.3). O
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Remark 7.10. 1If g satisfies inequality (7.13) with &, 8 € [0, 1), we will say that g has one-
sided sublinear growth in x and y. In this case, each function g + g has also one-sided

sublinear growth provided gy(f, x, y) sign(x — a(t)) is nonpositive on [0, T'] x R2.

Example 7.11. Let A= B =0,h; € L;[0,T],i=0,1,2,3, hy, h3 be nonnegative on [0, T].
Fora.e.t € [0, T] and all x, y € R define the function

g%, y) = ho(t) = hi (% + ha(\[Iy] = hs(D)xy*,

We see that g satisfies inequality (7.13) because a(t) = 0 and we can write g in the form

g = go + g1, where g1(t,x, y) = ho(t) + ha(t),/Iy] and go(t,x, y) = —h1(£)x* — hs(t)xy*.
Here, g, has a sublinear growth in x and y and gy(t,x, y) signx < 0 on [0, T] X R2.

The next theorem will be applicable to problem (7.3) with g(t,x, y) having one-sided
linear growth in x and y.

Theorem 7.12. Let the function a be given by (7.6). Let ho, hy, hy € L0, T'] be nonnegative
and let condition (7.11) hold. Further assume that

g(t,x, y)sign (x — a(t)) < ho(t) + hi(t)x] + ha(£) |yl
fora.e.t € [0, T] and all x,y € R.

Then problem (7.3) has a solution.

Proof. We argue as in the proof of Theorem 7.9 and use Lemma 7.7 instead of Lemma
7.5. O

Example 7.13. Let T = 1, n € NJA =0,B =1, ¢(y) = y, h € L1[0,1] and let ¢ €
Car([0, 1] x R?) be nonnegative. Then the function

g(tx,y) = h(t) +tx+ 2y — (x — )" o(t,x, y)
satisfies the conditions of Theorem 7.12 because
g(t,x, y)sign(x —t) < |h(t)| + tlx| + £y

fora.e.t € [0,1] and forall x, y € R, and

1 1
limM=1>J tdt+f tzdtzg,

yoooy 0 0
that is, condition (7.11) is valid.

Remark 7.14. 1f ¢ does not fulfil conditions (7.7) and (7.11) in Theorems 7.9 and 7.12,
respectively, we modify these theorems according to Remarks 7.6 and 7.8.
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Method of lower and upper functions

It is well known that for regular second-order boundary value problems the lower and
upper functions method is a useful instrument for proofs of their solvability and for a
priori estimates of their solutions. See, for example, De Coster and Habets [60-62], Kig-
uradze and Shekhter [120], Ladde, Lakshmikantham, and Vatsala [122], Rachtinkova
and Tvrdy [169-171], or Vasiliev and Klokov [196]. In literature, several definitions of
lower and upper functions for regular boundary value problems can be found. (Note that
in some papers they are called lower and upper solutions). Here, we will use the following
one.

Definition 7.15. A function o € CI[0, T] is called a lower function of problem (7.3) if there
is a finite set £ C (0, T') such that ¢(0”) € ACioc([0, TI\E), 0’ (7+) := lim;—..4+ 0’ () € R,
o' (t—):=lim;.,_0'(t) € Rforeacht € X,

(gb(a’(t)))’ +g(t,o(8),0'(t)) =0 forae.t e [0,T], s
0(0) <A, o(T)<B, o¢(r—-)<o'(r+) foreacht € 2. (7.15)

If the inequalities in (7.15) are reversed, then o is called an upper function of problem (7.3).

We have seen that Theorems 7.9 and 7.12 can be used for problem (7.3) provided
g(t,x, y) satisfies sublinear or linear one-sided growth restrictions with respect to x and
y. Another class of functions g is covered by the next theorem which says that if there exist
lower and upper functions 01 < 0> to problem (7.3), it suffices to require the inequality
in (7.4) only for x € [01,02]. This implies that g(¢, x, y) can grow in x arbitrarily.

Theorem 7.16. Let 0y and 0, be a lower function and an upper function of problem (7.3)
and let 01(t) < 0,(t) for t € [0, T]. Assume that there is a function h € L,[0, T] such that

|g(t,x,y)| <h(t) forae t€[0,T]andallx € [01(t),0:(t)], y € R.
Then problem (7.3) has a solution u such that
o1(t) < u(t) < oo(t) forte [0,T]. (7.16)

Proof

Step 1. Construction of an auxiliary problem.
Forae.t € [0,T]andallx, y € R, e € [0, 1], define

g(to1(t),y) + w (t, 012)(?;1 1) 01((7;)(?;1 I if x < 01(1),
gt,x,y) = g(t,x, y) ifo1(t) < x < 0y(1),
g(t’ Uz(t),}/) e (t’ X)i;z((yi)(:)- 1) a X)i(_fz((yi)(t-l)- 1 if x> 0'2(1'),

where, fori = 1,2,

wi(t,e) = sup {|g(t,0i(t), 0/ (1)) — g(t,0i(2), y) | : |y — 0/ (1) | <&}
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We see that w; € Car([0, T] x [0, 1]) is nonnegative, nondecreasing in its second variable
and w;(t,0) = 0 for a.e. t € [0, T], i = 1,2. Further, we have ¢ € Car([0, T] x R?) and
there exists i € L]0, T] such that |g(t, x, y)| < %(t) forae.t € [0,T] and all x,y € R.
Thus, by Theorem 7.4, problem (7.14) with ¢ defined in this proof has a solution u.

Step 2. Solution u of the auxiliary problem lies between o and o,.
We will prove that estimate (7.16) holds. Denote v(¢) = u(t) — 0x(t) for t € [0, T]
and assume, on the contrary, that

max {v(t) : t € [0, T]} = v(ty) > 0.
Since u(0) = A, u(T) = B and 0,(0) > A, 0,(T) = B, we have t, € (0, T). Moreover,
Definition 7.15 implies that t, & X, because v'(17—) < v'(7+) for 7 € X. So, we have

to € (0, T)\ £ and v'(tp) = 0. This guarantees the existence of t; € (ty, T') such that

v(t)

v(t) >0, |v'(t)|<v(t)+1<1
fort € [to, t1] and [to, t1] N X = &. Then
(p(u' (1) = (¢(05(1))
= —g(t,u(®),u' () — (p(a3(1)))’
— az(t),u'(t))+w2(t, V(t)(ti 1) N V(jgi) —— ($(o3(0))

\

—g(ta(),u' (1)) + w8, |V (1)]) = (¢(a3(1)))
> —g(t,oa(t),u (1) + g(t,aa(t), ' (1)) — g(t, 02(1), 05(1)) — (p(03())) = 0

Vv

for a.e. t € [ty, t;]. Hence,

0< [ (B ©)) - ($la6) ds = $(u(0) - 9lo3(0), 1€ (to1].

Therefore, v/ = u' — 05 > 0 on (¢, t;], which contradicts the assumption that v has its
maximum value at fy. The inequality 0, (¢) < u(t) can be proved similarly. Thus, u fulfils
estimate (7.16) and so, u is a solution of problem (7.3). O

Example 7.17. Let A,B € R and r,7, € R be such that r;, < min{0,A,B} and r, >
max{0,A,B} and

g(t,71,0) 20, g(£,1,0) <0 forae.te[0,T].
Then the constant function o1 (t) = r; satisfies condition (7.15) and hence, o; is a lower

function of problem (7.3). Similarly, 0,(¢) = r, satisfies condition (7.15) with the reversed
inequalities and so, 0, is an upper function of problem (7.3). Here, X = <.
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The next lemmas on a priori estimates enable us to extend the existence results
of Theorems 7.9 and 7.12. The first two deal with the so-called Nagumo function w €
C[0, o) which is positive and fulfils

® ds

. m = (7.17)

Similar a priori estimates for ¢(y) = y can be found in Kiguradze [117] or Kiguradze and
Shekhter [120].

Lemma 7.18 (a priori estimate—-Nagumo condition I). Assume that the function a is given
by (7.6). Let 1y, 52 € (0, ), let hy € L,[0, T] be nonnegative and let w € C[0, o) be positive
and fulfil condition (7.17). Then there exists v > 0 such that for each function u satisfying

o) e AC[0,T], u(0)=A, u(T)=B, lule <ro,
— (¢(u'(1))) sign (u(t) — a(t)) < sw(| ¢/ (1)) ]) (ho(t) + [/ (1)) (7.18)
fora.e.t €[0,T],

the estimate ||u' || < r is valid.

Proof. Choose an arbitrary u satisfying condition (7.18). Denote ||u/|| = p and let p =
[u'(ty)]. Assume p > [(B—A)/T|. We will consider four cases as in the proof of Lemma 7.5.

Case 1. Let u/(ty) = p,u(ty) < a(ty). Then t; € (0, T) and since u(0) = a(0), we can find
t; € [0, ty) such that

B-A B-A
u'(t) = ‘T , u'(t) > ‘T‘ fort € (t1,t).

This implies
u(t) <a(t), u'(t)>0 forte [t,t]
and, by condition (7.18),

(p(u' (1))
w(p(u' (1))

Integration of the last inequality leads to

Jfo (p(w' (1))

< sc(ho(t) +u'(t)) forae.t € [t,t].

tl5@$Gfaﬂjdtﬁ'””VwH1+zm), (7.19)

$(p) $(I(B-A)/T!)
J ds sJ JE+%mmm+mﬁ:K<w. (7.20)
0 w(s)

Case 2. Let u'(ty) = p, u(ty) = a(ty). Let ty € [0, T). Then there exists t; € (ty, T') such
that

_A, wupﬂﬁ%é‘ for t € (to, t1).
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This implies
u(t) >a(t), u'(t)>0 forte (to,t]

and, by condition (7.18),
< s(ho(t) +u'(t)) forae.t€ [ty t1].
Integration of the last inequality leads to

< s(||holl, +2r0)

h(g(u' (1))
_LO (@ ()™

and we get relation (7.20).
Now, let ty = T. Then there exists t; € (0, T) such that

u' () = ‘% , u(t) > ‘M

i u(t)<a(t) forte (t,T).

We get (7.20) as in Case 1.

Cases 3 and 4. In the remaining two cases, we prove (7.20) similarly.
By condition (7.17), thereis an r > [(B — A)/T| such that

¢ ds
— > K
Jo w(s)

Thus, by virtue of relation (7.20), p < r. Hence, the estimate ||/ || < 7 is proved. O

Lemma 7.19 (a priori estimate—-Nagumo condition II). Let a;,a; € [0,T], a1 < aa, y1,
y2 € R, 1y, 52 € (0, ). Furthermore, let hy € L [0, T'] be nonnegative and let w € C[0, o)
be positive and fulfil condition (7.17). Then there exists r > 0 such that for each function u

satisfying
o) e AC[0, T], llulle < 70,
(¢(u' (1)) sign (u'(£) = 1) = =2 (| $(w'(£)) = $(31) ) (ho(t) + [ () = 31 |)
fora.e. t €[0,a;],

(¢(u' (1)) sign (u' (1) — y2) < 2w (o' (1) = ¢(y2) ) (ho(t) + |/ (t) = y21)

forae. t € la,T],
(7.21)

the estimate ||u' || < r is valid.
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Proof. Choose an arbitrary u satisfying condition (7.21). By the mean value theorem we
can find & € (a1, ay) such that |u' (¢)| < 2rg/(a; — a1) =: co. Further we see that

sign (¢ (u'(¢)) — ¢(y:)) = sign (u'(t) — y;), i=1,2, fort €[0,T].
Put vi(t) = ¢(u/'(t)) — ¢(yi),i= 1,2, fort € [0, T]. Then
|Vl(£)| S¢(C0)+ |¢(y1)| =G i= 1>2

Condition (7.17) implies that there exists p; € (¢;, ), i = 1,2, such that

rlﬂ > se(|[holl, +2ro+ Tl yil), i=1,2 (7.22)
. (4)(5) 1 1 > y L .

Assume that

max { [vi(t)] : t € [0,&]} = [vi(a)| > p1.
Then a < & and there exists § € (a, &] such that

[vi(B)| =c, |wm@)|=ca forte [apl
By the inequality in (7.21) which holds on [0, a;], we get

_nOsg (D) v w6 - i |) forae.t € [afl

w([vi(6)])
Integrating this inequality over [, ] and using the substitution s = [v| ()|, we arrive at
il g¢
J o %(J o t)dt+J W () - 1 |dt>. (7.23)
Since |v1 ()| |¢ u' (1)) — ¢(y1)| = ¢ for t € [a, f], we see that u'(t) — y; does not

change its sign on [«, $] and hence,

K W' (1) =y |dt = ‘ Lﬁ (u (1) —yl)dt' <210+ Ty |.

So, (7.23) leads to

P4 [vi(a)] d
Jo s <l o =l 420710

which contradicts inequality (7.22). Therefore, |v;(«)| < p; and we have proved that
(¢ (1) —¢(n)| =pr forte[0,¢].

The estimate
l¢(u' () —¢(2) | <po fort e[ T]

can be proved similarly. Hence, we get [/ || < r if we putr = ¢! (p*), where p* =
max{p,p2} + max{|¢(y1)l, [¢(y2)|}. O
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If we investigate problem (7.3) with g(¢, x, y) having arbitrary growth in x and growth
in y controlled by the Nagumo condition (7.24), we can often use one of the following
two theorems.

Theorem 7.20. Let a be given by (7.6), let 01 and o, be a lower function and an upper
function of problem (7.3) and let 01(t) < 03(t) for t € [0, T]. Assume that there exist
» € (0,0), a nonnegative function hy € Li[0,T] and a positive function w € C[0, )
fulfilling condition (7.17) and

g(t,x, ) sign (x — a(t)) < sw(|p(y)|) (ho(t) + |yl)

(7.24)
fora.e. t € [0,T] and all x € [01(),02(t)], y € R.

Then problem (7.3) has a solution u satisfying estimate (7.16) and moreover, ||u' |l < 7.
Here, r > 0 is the constant independent of u and given by Lemma 7.18 for ro = max{||01 || ,

o2l oo}

Proof. Without loss of generality we can assume that

r>max {[|of[, [|03][ . }-

Define
1 if0<z<r,
2r—z . ~
x(z) = ifr <z<2r, gtx,y) = x(lyl)g(t,x, y) (7.25)
0 ifz>2r

forae. t € [0,T] and all x,y € R, z € [0, ). Then g € Car([0, T] x R?) and there
is a function 11 € L]0, T] such that |g(t,x, y)| < z(t) fora.e.t € [0,T] and all x €
[01(t), 02(t)], y € R. Consider problem (7.14) with g defined by (7.25). Since 01 and 0,
are also lower and upper functions to this problem, we get by Theorem 7.16 that it has a
solution u satisfying estimate (7.16). Further,

—(p(u' (1)) sign (u(r) — a(t)) = Z(t,u(r), (1)) sign (u(1) - a(t))
= x(|u'(6) ) g (t; u(t), (1)) sign (u(t) — a(t))
< x| @) (¢ (D)) (ho(t) + |/ (1))
<xw(|¢p@' (1) ])(ho(t) + |4/ (t)|) forae.te[0,T].

By Lemma 7.18, the function u satisfies |[t'[l < r and hence, u is also a solution of
problem (7.3). O
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Example 7.21. Letk,n €e NJA=B=1,c € R, h € Lo[0,T],and let h, € L,[0, T] and
¢ € Car([0, T] x R?) be nonnegative functions. For a.e. t € [0, T] and all x, y € R define
the function

gt x,y) = hi(t) — x* 1+ x* (ha(t) + cy)d(y) — (x — 1) o(t, x, ). (7.26)

We can find constant functions 0, (t) = < 1 and 02(¢) = r, > 1 which are respectively
lower and upper functions of problem (7.3) with g defined by (7.26). Moreover, g fulfils
inequality (7.24) with s = 1,

wis)= (1+1c)A+5s),  ho(t) = | ()] +max {|r|,n}" |ha(t)].
By Theorem 7.20, our problem has a solution u satisfying r; < u(t) < r, for t € [0, T].

The second form of the Nagumo condition is condition (7.27) which is used in the
next theorem.

Theorem 7.22. Let 01 and 0, be a lower function and an upper function of problem (7.3)
and let 01(t) < 03(t) for t € [0, T]. Assume that there exist aj,a, € [0,T], a1 < ay,
y,y2 € R, 2 € (0,), a nonnegative function hy € L[0,T] and a positive function
w € CI0, ) fulfilling condition (7.17) and

g(tx, y)sign (y = y1) < =w([¢(y) = ¢(y1) ) (ho(t) + |y = y1])
fora.e. t €[0,a;] and all x € [01(t),02(t)], y €R,

g(t:x, y)sign (y = y2) = —xw(|¢(y) = ¢(32) |) (ho(t) + | y = 321)
forae t € [a), T] and allx € [01(t),02(t)], y € R.

(7.27)

Then problem (7.3) has a solution u satisfying estimate (7.16) and moreover, ||t [l < 1.
Here, r > 0 is the constant independent of u and given by Lemma 7.19 for ro = max{||01 || ,
o210}

Proof. We define g as in the proof of Theorem 7.20 using a sufficiently large r from
Lemma 7.19. Then, similarly to the proof of Theorem 7.20, we get a solution u of problem
(7.14) satisfying estimate (7.16) and condition (7.21). By Lemma 7.19, the function u

satisfies ||u' [l < r and hence u is also a solution of problem (7.3). O

Example 7.23. Let k € Nbe odd, A,B,c,r € R, y1 = ¥, = 0, a1,a; € [0,T], a1 < ay,
hi,hy, hs € L [0, T]. Assume that h, is positive on [0, T'] and

hy >0 ae.on[0,a;], hy =0 a.e.on (a;,T],

hs =0 a.e.on[0,a;], hs =0 ae.on (ay,T].
Consider problem (7.3) with ¢(y) = y and

g(tx,y) = () (r* = xF) + ¢y = ha(1)y* + hs()y°
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fora.e.t € [0,T] and all x, y € R. We can find 1,7, € R such that

r1 <min{ - |r|,A, B}, r, = max {|r|,A, B},

g(t,1,0) >0, g(t,r,0) <0 forae te[0,T].

Therefore, the constant function o1(t) = ry satisfies condition (7.15) and hence o7 is
a lower function of the problem. Similarly, 0>(t) = r, satisfies condition (7.15) with
reversed inequalities and so, 0, is an upper function of this problem. Moreover, g fulfils
both the inequalities in (7.27) with »r = 1 and

ho(t) = [ ()| (IrlF + (max {|r1 |, n})"),  w(s) = (Il + 1)(1 +5).

Hence, by Theorem 7.22, our problem has a solution u such that r; < u(t) < r, for
t € [0, T]. Note that since the growth restrictions in Theorem 7.22 are only one sided,
the function g can have not only the quadratic term cy? but also terms with y® and y°.

7.2. Dirichlet problem with time singularities

First we will study the singular problem (7.2) under the assumption that
f € Car ((0, T] x R?) has a time singularity at ¢ = 0, (7.28)

that is, there exist x, y € R such that

r | f(t,x,y)|dt = 0 fore € (0,T].
0

We want to prove the existence of a solution to (7.2) or the existence of a w-solution u to
(7.2) satistying

there exists r > 0 such that |u/(t)| <r fort e (0,T]. (7.29)

According to Definition 7.1 and assumption (7.28), a w-solution u of problem (7.2) has a
continuous derivative on (0, T] but u” need not exist at the singular point t = 0. However,
condition (7.29) guarantees that 1’ must be bounded near t = 0. Those who are interested
in the existence of a w-solution u with 1" possibly unbounded near t = 0 can find nice
results in Agarwal, Lii, and O’Regan [3], Agarwal and O’Regan [4, 5, 7, 12], Kiguradze
[117, 119], Kiguradze and Shekhter [120], Lomtatidze [129], Lomtatidze and Malaguti
[130], or Lomtatidze and Torres [131].

If we modify theorems of Section 1.2 for the Dirichlet problem (7.2) with time sin-
gularities, we can extend the results of Section 7.1 and obtain the existence of w-solutions
or solutions of (7.2). To this aim we present here the version of Theorem 1.4 for t, = 0,
n = 2,and A = R2. Consider a sequence of regular problems

u” + filtbu,u’) =0, u(0) = u(T) =0, (7.30)

where fi € Car([0, T] x R?), k € N.
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Theorem 7.24. Let assumption (7.28) hold. Assume

for each k € N and each (x, y) € R?,
fult,x,y) = f(t,x, ) ae. on [0, T]\ Ay,

(7.31)
where /Ay = [0, %) N[0, T];
there exists a bounded set QO ¢ C'[0, T]
such that for each k € N (7.32)
the regular problem (7.30) has a solution uy € Q.
Then
there exist a function u € C[0, T] and a subsequence
{ur,} © {ux} such that }im l|uk, — ull, = 0; (7.33)
}1}2 w, (t) = u'(t) locally uniformly on (0, T1; (7.34)
u e ACL.(0,T] and
(7.35)

u is a w-solution of problem (7.2) satisfying (7.29).
Assume, moreover, that there exist y € L [0,T], 4 >0, & € N, and A € {—1,1} such that
A fio (t, g, (), uy, (£)) = y(t)  foreach € €N, € > €, and fora.e.t € (0,1].  (7.36)

Then u is a solution of problem (7.2), that is, u € AC'[0, T].

If f(t,x, y) in (7.2) has one-sided sublinear growth in x and y, we use Theorem 7.24
to modify Theorem 7.9 as follows.

Theorem 7.25. Let assumption (7.28) hold and let o, € [0, 1). Assume that there exists a
nonnegative function h € L, [0, T] such that

f(t,x, y)signx < h()(1+ |x]* + Iylﬁ) fora.e.t € [0,T] andallx,y € R.
Then problem (7.2) has a w-solution u satisfying estimate (7.29).
Proof. Choose an arbitrary k € N and for x, y € R define the auxiliary function

f(t,x,y) fora.e.t € [0,T] \ Ag,

0 fora.e. t € Ay,

fi(tsx, ) ={
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where Ax = [0, T] N[0, 1/k). We see that f; € Car([0, T]xR?) fulfils condition (7.31) and
inequality (7.13) with a(t) = 0 and g = f;. Consider the approximate regular problem

u” + filt,u,u’) =0, u(0) = u(T) = 0. (7.37)

Let us put a(t) = 0 and ¢(y) = y. By Theorem 7.9, we deduce that problem (7.37) has a
solution u. In this way we get a sequence {ux} of solutions of (7.37), k € N, satisfying

—u () signue(£) < h(D) (1 + |up(8) |+ [up(0)|F)
fora.e.t € [0, T] and all k € N. So, by Lemma 7.5, there exists r > 0 such that
llukllo + el =70 k€N
Define the set
Q={xeC0,T]:lIxllw+llxlle < r}.

Then condition (7.32) is valid and, by Theorem 7.24, we can find a subsequence {uy, } C
{ur} satistying conditions (7.33)—(7.35). O

Example 7.26. Let k € N, o € [1,00), let ¢ € C(R?) be positive and let ho, hy,h; €
L,[0, T]. Consider problem (7.2), where

. x2k“<p(x, )’)
tot

f6x,y) = +ho() + h()x'” + ha(1) '

for a.e. t € [0,T] and all x, y € R. The first term of f is singular at t = 0. Further, f
satisfies

f(t,x, y)signx < h(t)(1+ x| + | y|?)

fora.e.t € [0,T], x,y € R, where h = |hg| + |h1 | + |h2]. Therefore, by Theorem 7.25, the
problem has a w-solution satistying (7.29).

If f(t,x, y) in (7.2) has one-sided linear growth in x and y, we can decide about the
existence of a w-solution by means of the following modification of Theorem 7.12.

Theorem 7.27. Let assumption (7.28) hold. Assume that there exist nonnegative functions
ho,hi,h, € L; [0, T] such that ||hill1 + |l < 1 and

f(t,x, y)signx < hy(t) + h(t)|x| + ha(t) |yl  forae t € [0,T] andallx,y € R.
Then problem (7.2) has a w-solution u satisfying estimate (7.29).

Proof. For k € N consider problem (7.37). Put a(t) = 0 and ¢(y) = y. Using Theorem
7.12 and Lemma 7.7 we argue as in the proof of Theorem 7.25. O
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Example 7.28. Letk € N,a € [1,0),a,b € R, |a| + |b| < 1/2,1let ¢ € C(IR?) be positive
and let hy € L,[0, 1]. Consider problem (7.2), where T' = 1 and

x2k+1

flt,x,y) = _% + ho(t) + %(ax-i— by)

for a.e. t € [0,1] and all x, y € R. The first term of f is singular at ¢t = 0. Further, f
satisfies

, lal, . 10l
f(t,x,y)signx < |h0(t)|+ﬂ|x|+ \/Elyl

for a.e. t € [0,1], x,y € R. Therefore, by Theorem 7.27, the problem has a w-solution
satisfying estimate (7.29).

The next theorem shows that if f(t,x, y) keeps its sign for small t and x, we get a
solution of problem (7.2).

Theorem 7.29. Let all conditions of Theorem 7.25 or Theorem 7.27 be fulfilled and let u be
a w-solution of problem (7.2) satisfying estimate (7.29). Further assume that

there exist A € {—1,1}, & € (0, T) such that

7.38
Af(t,x,y) <0 forae t €(0,6)andallx € (=6,0), y € [-r,r]. ( )

Then u is a solution of problem (7.2).

Proof. For k € N consider problem (7.37). By the proof of Theorem 7.25 or Theorem
7.27 there exist r > 0 and a sequence of approximate solutions {uy, } satisfying conditions
(7.33), (7.34) and lug, |l + IIu,'Q llo < rfor £ € N. The function u in (7.33) is a w-solution
of problem (7.2) and fulfils estimate (7.29). To prove that u is a solution, we will describe
the behaviour of u’ at the singular point t = 0. Since u(0) = 0, there exists 7; € (0,6)
such that |u(t)| < § for t € (0,7,). Then condition (7.38) gives

A (t) =Af(Hu(t),u' (1)) <0 forae. t e (0,1;)

and hence, u’ is strictly monotonous on (0,7%;). Using estimate (7.29) we see that
limy_os u/'(t) € [—1,7].
Let lims_o. ' (¢) # 0. Then

there exists # € (0,7;) such that

(7.39)
u(t) >0 on (0,7) (or u(t) <0on (0,%)).

Let lim—o+ ¢/ (¢) = 0. Since u’ is strictly monotonous on (0,7;), we have #/(t) # 0 for
t € (0,71). This implies (7.39). Moreover, conditions (7.33) and (7.39) yield &, > 0 such
that

ur,(t) >0 on (0,7] (or uk,(£) < 0on (0,7])
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foreach ¢ € N, € > ¢,. Hence, under the assumptions of Theorem 7.25 or Theorem 7.27,
we have

A2 fi, (8, uke(t),u,'w(t)) > y(t) forae.te (0,7], £= 4,

where A, = — sign u, (¢). Provided the assumptions of Theorem 7.25 hold, we put y(t) =
—h(t)(1 + r* + rf) and if the assumptions of Theorem 7.27 are fulfilled, we put y(t) =
—hy(t) = (r +1) (h(¢) + hy(t)). Consequently, inequality (7.36) holds and Theorem 7.24
implies u € AC'[0, T], that is, u is a solution of problem (7.2). |

Example 7.30. Letk € N, a € [1,0),a,b € R, |a| < 1/6,b < 0 and let ¢ € C(R?) be
positive. Consider problem (7.2), where T' = 1 and

2k+1
Fltyxy) = - U eloy) %(ax+ty+b)

ta
fora.e.t € [0,1] and all x, y € R. Then f satisfies

: 16l lal
f(t,x, y)signx < N + N lx| + V| yl
for a.e. t € [0,1] and all x,y € R. Therefore, by Theorem 7.27, the problem has a
w-solution satisfying estimate (7.29). We can check that there exists § > 0 such that
f(t,x,y) <0fora.e.t € [0,0] andall x € [-5,6], y € [-r,r]. Hence, by Theorem 7.29,
u is a solution of the problem.

Similarly, we could modify other theorems of Section 7.1 in order to get a solution
or a w-solution to problem (7.2). However, we switch our attention to the more general
singular problem (7.1).

Dirichlet problem with ¢-Laplacian

As before, we assume that f fulfils condition (7.28) and we are interested in the existence
of a solution to problem (7.1) or of a w-solution u to (7.1) satisfying estimate (7.29). Since
problem (7.1) contains ¢-Laplacian, we cannot now use theorems of Section 1.2 directly
but we need to generalize them for problems with ¢-Laplacian. Consider the sequence of
regular problems

(p(u)) + filtsu,u') = 0, u(0) = u(T) =0, (7.40)
where fi € Car([0,T] x R?), k € N.

Theorem 7.31 (first principle for ¢-Laplacian and time singularities). Let assumptions
(7.28) and (7.31) hold. Further assume that

there exists a bounded set Q C C'[0, T] such that
(7.41)
the regular problem (7.40) has a solution uy € Q for each k € N.
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Then assertions (7.33) and (7.34) are valid, $(u') € ACyc(0, T] and u is a w-solution of
problem (7.1).

If, moreover, condition (7.36) is satisfied, then u is a solution of problem (7.1), that is,
¢(u') € AC[0, T'].

Proof

Step 1. Convergence of the sequence of approximate solutions.

Condition (7.41) implies that the sequence {ux} is bounded and equicontinuous on
[0, T]. By the Arzela-Ascoli theorem assertion (7.33) is true and #(0) = u(T) = 0. Since
{u} is bounded, we get, due to assumption (7.31), that for each 7 € (0, T] there exist
k. € Nand h, € L,[0, T] such that, for each k > k.,

| fic(s, uk(s), up(s)) | < he(s) forae.se[r,T]. (7.42)

Hence, problem (7.40) yields for k > k., t;,t, € [1, T],

>

904 (2)) = 3 (1)) | = | [ s

which implies that the sequence {¢(u})} is equicontinuous on [7, T]. By virtue of the
uniform continuity of ¢ ~! on compact intervals, the sequence {u; } is also equicontinuous
on [7, T]. The Arzela-Ascoli theorem implies that for each compact subset KX C (0,T] a
subsequence of {u} } uniformly converging to ' on K can be chosen. Therefore, using
the diagonalization theorem, we can choose a subsequence {uy,} satisfying both (7.33)
and (7.34).

Step 2. Convergence of the sequence of approximate nonlinearities.

Let V) be the set of all ¢ € [0, T] such that f(t,-,-) : R? — R is not continuous and
let 'V, be the set of all t € [0, T] such that the equality in (7.31) is not satisfied. Then
meas(V; U V,) = 0. Choose an arbitrary 7 € (0, T] \ (V; U V,). Then there exists £, € N
such that for £ > £, we have

oo (7w, (7), 1, (7)) = f (7, 1k, (7), 143, (7))
and, by (7.33) and (7.34), the equality
lim fi, (7, uk, (7), g, (1) = f (7, u(7), 4/ (7))
holds. Hence,
}Ergofkg(t, ug, (1), up, (1)) = f(t,u(t),u'(t)) forae. te[0,T] (7.43)

Step 3. The function u is a w-solution of problem (7.1).
Choose an arbitrary 7 € (0, T] and integrate the equality

($(uj, (1)) + fie, (tuge, (), 14, (1)) =0 forace. t € [0, T1.
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We get

T
(0 () = (0 () + | s (9, (9) s = 0.

Applying conditions (7.42), (7.43), and the Lebesgue dominated convergence theorem
on [, T], we can deduce (having in mind that 7 is arbitrary) that the limit u solves the
equation

oW (T)) — ¢ (' (1)) + ITf(s,u(s),u'(s))ds =0 forte(0,T]. (7.44)

This immediately yields that ¢(u") € ACi,(0, T] and u is a w-solution of (7.1).

Step 4. The function u is a solution of problem (7.1).
Assume, moreover, that condition (7.36) holds. Due to assumption (7.41) there is a
¢ € (0, ) such that for each £ € N

], o 90, (90) s = 1900, (00) = 9, ) | = c.

So, by the Fatou lemma, using also condition (7.36) and equality (7.43), we deduce
that f(t,u(t),u’(t)) € L,[0,n]. Further, by virtue of assumption (7.41) and assertions
(7.33) and (7.34), the functions u and u’ are bounded on [#, T]. Hence, assumption
(7.28) implies f(t,u(t),u’(t)) € L[y, T], which together with the above arguments
yields f(t, u(t), u'(t)) € L]0, T]. Therefore, due to equality (7.44) we have that ¢(u') €
AC[0, T], that is, u is a solution of problem (7.1). O

Now, using Theorem 7.31, we will extend Theorem 7.20 which is based on the exis-
tence of lower and upper functions to problem (7.1). Note that lower and upper functions
to problem (7.1) are understood in the sense of Definition 7.15.

Theorem 7.32. Assume that (7.28) holds. Let 01 and 0, be a lower function and an upper
function of problem (7.1) and let 01(t) < 03(t) for t € [0, T]. Assume that there exist a
nonnegative function h € L1[0, T] and a positive function w € C[0, o) fulfilling condition
(7.17), further assume that

there exists b >0 such that w(s) > b for s € [0, ); (7.45)

f(tx, y)signx < w([@(y)[) (A1) +1y])

(7.46)
fora.e. t € [0,T] and all x € [01(¢),02(t)], y € R.

Then problem (7.1) has a w-solution u satisfying estimate (7.16) and ||t/ || < oo.
If, moreover, condition (7.38) with r > ||u' |l holds, then u is a solution of problem
(7.1).
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Proof

Step 1. Choose an arbitrary k € N and denote A = [0, T] N [0, 1/k), Ay = {t € Ak :
01(t) = 02(1)}, Ay = {t € Ax : 01(t) < 02(¢)}. Define a function gi by

((¢(03(1)) if x > 05 (1),

(x — a1 (1) (¢(a5(1) + (02(t) — x) (¢ (0] (1))’
ge(t,x) = 1 0x(t) — 01(t)

if 01(t) < x < 0o(t),

’

L (¢(01 (1)) ifx < a1(t)

fora.e.t € Ay and all x € R, and a function f; by

ftx,p) ift € [0,T]\ A,

filt,x,y) =1 =(p(a1(1))" ift € Ap, (7.47)
—gi(t,x) ift € A

forae. t € [0,T] and all x,y € R. Then fi € Car([0, T] x R?) and condition (7.31)
is valid. Consider problem (7.40) with f; defined in this proof. Then o) and o, are also
lower and upper functions to this problem. Moreover, due to inequalities (7.45), (7.46),
and formula (7.47), fi satisfies inequality (7.24) with g(t,x,y) = fi(t,x,y), a(t) = 0,
» =1+ 1/b,and

ho(t) = h(t) + | (¢(a1(1)) | + | ($(05())) .

Hence, for each k € N, Theorem 7.20 gives a solution ux of problem (7.40). More-
over, each solution uy satisfies estimate (7.16) and [|u;|l» < r, where r > 0 is given by
Lemma 7.18 for ry = max{ |01/, [|02]| } and for A = B = 0.

Step 2. Define a set
Q={xeC0,T]:01 <x<00n[0,T],||x |l < r}.

Then condition (7.41) is valid and, by Theorem 7.31, we can find a subsequence {u,} C
{ug} such that assertions (7.33) and (7.34) hold and the function u € C[0,T] with
¢(u') € ACoc(0,T] is a w-solution of problem (7.1). Since {ux,} C Q, we see that u
fulfils estimate (7.16) and ||t/ || < 7.

Step 3. Let condition (7.38) hold. Similarly to the proof of Theorem 7.29, we can show
that there exist # > 0 and €, > 0 such that either u,(¢) > 0 on (0,#] for each ¢ € N,
€ = £, or ug,(t) < 0on (0,1] foreach £ € N, € = ¢;. Denote

wo = max {w(s) : s € [0,4(r)]},
y(1) = = (@(oi(1)] = [(¢(05(0))"| — wolh(t) +7]
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fora.e. t € [0, T]. Since
— e (8, 1age, (), 14y, (1)) sign g, (t) = y(t)

for a.e. t € [0,7] and all € > £, we see that fi, fulfils condition (7.36) with A =
— sign uy, (t). Therefore, Theorem 7.31 implies u € AC'[0, T], that is, u is a solution
of problem (7.1). O

Example 7.33. Letk,n € N,c € R,a € [1,), ¢ € (0,0), ¢ € C(R?), and v € C(R).
Further, assume that ¢ is nonnegative and y(x) = 0 if x < 0 and y(x) < 0if x > 0.
Consider problem (7.1), where

f(t,x,y) — (t _ €)2n+1 _ x2n+1 + cx2y¢(y) 7 x2k+1¢(x,y) + tiav/(x)

fora.e. t € [0,T] and all x, ¥ € R. The last term of f is singular at t = 0. We can find
constant functions 0 (t) = r; < 0 and 0,(¢) = r, > 0 which are lower and upper functions
of the problem. Moreover, f satisfies inequalities (7.38) and (7.46). Indeed, we can choose
8 > 0 sufficiently small and put A = 1, r = max{|r|,n}, w(s) = (lc|r* + 1)(1 +s),
h(t) = |t—¢|?>"*. By Theorem 7.32, our problem has a solution u such that r; < u(t) <r,
fort € [0,T].

We continue with a generalization of Theorem 1.5 to problem (7.1).

Theorem 7.34 (second principle for ¢-Laplacian and time singularities). Let the assump-
tions of Theorem 7.31 be satisfied with (7.36) replaced by the assumption that there exist
yeLi[0,T],n>0,y€eR, & eN,and A € {—1,1} such that

A fio (8, g, (2), uy,, (2)) sign (g, (t) — ) = w(2)

(7.48)
foreach € € N, € = €, and for a.e. t € (0,7].

Then the assertions of Theorem 7.31 remain valid.

Proof. By Theorem 7.31 there exist a sequence {uy, } and a function u such that assertions
(7.33) and (7.34) hold and u is a w-solution of problem (7.1) with ¢(u") € ACi0c(0, T'.
Arguing as in step 4 of the proof of Theorem 7.31 we see that to show ¢(u') € ACI[0, T],
it suffices to prove that f(¢,u(t),u'(t)) € L[0,#]. Put M = V; U V, U V3 U V4, where

Vi ={te[0,n]: f(t -, -): R* — Ris not continuous},

V, = {t € [0,7] : tis an isolated zero of u’ — p},

Vs =1{t e [0,1]: (p(u' (1)) + f(t,u(t), ' (t)) = 0is not fulfilled},
V4 = {t € [0,7] : the equality in condition (7.31) is not fulfilled}.

Then meas(.M) = 0. Choose an arbitrary s € (0, T] \ M.
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(a) Let u/(s) # y. Assume, for example, that sign(u'(s) — y) = 1. Then, there exists
€y € N such that for each £ > £, we have sign(u]'ce(s) —y) = 1 and so, due to properties
(7.31), (7.33), (7.34), and since s & V; U V4, we get

%LHOZ S (55 uk, (5), 1y, (5)) sign (uy, (s) —y) = f(s,u(s),u'(s)) sign (u'(s) —y).  (7.49)
If sign(u/(s) — y) = —1, we get equality (7.49) in the same way.

(b) Let s be an accumulation point of the set V, of isolated zeros of ' — y. Then
there is a sequence {s,,} C (0, T] such that ¥'(s,) = y and limy. sm = s. Since v’ is

continuous on (0, T, we get u'(s) = y. Therefore, ¢(u'(sp)) = (' (s)) = P(y),
o S0 2) = 9 (9) _
m= oo Sm—S
and, by virtue of s € V3, we get 0 = (¢(1'(5))) = —f(s,u(s), u'(s)). Since s & V; U Vy,

we have by properties (7.31), (7.33), and (7.34)
}1}2 o (5 1, (), ug,, () sign (ug, (s) — y) = f (s, u(s),u'(s)) }Lnolo sign (uy, (s) —y) = 0.

So, we have proved that equality (7.49) is valid for a.e. s € [0, 7].
Further, by assumption (7.41), there exist ¢ > 0 and ¢y, € N such that for £ > ¢,

J: A fi (5, g, (), 1y, (5)) sign (ug, (s) — y)ds < J [ (u, () — o(y)|'ds
< [¢(u, (0)) = ¢ | + [ ¢, () — $(p) |

<,

and hence, due to assumption (7.48), we can use the Fatou lemma to deduce that A f (¢,
u(t),u'(t)) sign(u'(t) — y) € L1[0,#], and, consequently, f(t,u(t),u’(t)) € L,[0,]. O

Now, we are ready to extend Theorem 7.22 with the second form of Nagumo condi-
tion to problem (7.1).

Theorem 7.35. Assume that (7.28) holds. Let 01 and 0, be a lower function and an upper
function of problem (7.1) and let 0,(t) < 03(t) for t € [0,T]. Assume that there exist
a,a; € [0,T], a1 < az, y1,y2 € R, a nonnegative function h € L,[0,T], and a positive
function w € C[0, o) fulfilling conditions (7.17), (7.45) and

ft,x, y)sign (y — y1) < w([¢(y) = ¢(y1) [) (h(t) + |y = 31])

fora.e. t € [0,a;] and all x € [al(t),az(t)], yeR,
(7.50)
f(t.x, y)sign (y = y2) = —w(|$(y) = ¢(y2) [) (h() + |y = y21)

fora.e. t € [a1,T] and all x € [al(t),az(t)], yeR.

Then problem (7.1) has a solution u satisfying estimate (7.16).
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Proof. Choose an arbitrary k € N and consider problem (7.40) with f; defined by (7.47).
Letus put g(t,x,y) = fi(t,x,y),a(t) =0, = 1+1/b,and

ho(t) = h(t) + [ (¢(a1(1))" | + | ($(a5(1)) "]

Here, b > 0 is given by (7.45). Using Theorem 7.22 and Lemma 7.19 and arguing similarly
to the proof of Theorem 7.32 we show that conditions (7.31) and (7.41) are valid. So, by
Theorem 7.34, we get a w-solution u of problem (7.1). By Theorem 7.22, u also satisfies
estimates (7.16) and (7.29), where r > 0 is the constant found by Lemma 7.19 for ry =
max{]|o1llw, 1021l }. Moreover, the first inequality in (7.50) gives

= fue (8, g, (8), 1, (1)) sign (u, (t) — y1) = y(t) forae. t € [0,as],
where

y(t) = —wo(h(t) + 1+ [3]) = [ (@(o{()) | = [ ($(a3()) |,
wo = max {w(s) :s € [0,¢(r) + [¢(y1) |1}

So, using Theorem 7.34 with A = —1, 4 = ay, and y = y;, we get that u is a solution of
problem (7.1). O

Example 7.36. Assumethatn € N,¢,d € R,a € [1, %), ¢ € (0, %). Choose a; € (0,1/2),
a, = T/2, hy, hy, hs € L]0, T], where hy(t) > € a.e. on [0, T]. Let h3 be nonnegative a.e.
on [0, T] and vanish a.e. on [0, T/2]. Consider problem (7.1) where ¢(y) = y and

fltx,y) ==t y+h(t)y+c(y*+1) —h(t)(x* ' —d) + hs(t)y’

for a.e. t € [0,T] and all x, y € R. The first term is singular at ¢ = 0. Let y; = y, = 0.
We can find constant functions g1 (¢t)=r; < 0 and 0, (¢)=r, > 0 which are lower and upper
functions of the problem. Moreover, f satisfies the conditions of Theorem 7.35. We see it
ifweputw(s) = (lc|+1)(s+1), K = (|r1|+r2)?* '+|d|,and h(t) = a;“+|h (t)|+Kha(t)+1.

7.3. Dirichlet problem with space singularities

Many papers studying problem (7.1) or (7.2) with a space singularity at x = 0 concern the
case that the nonlinearity f is positive. Such problems are referred to as positone ones in
literature, see Agarwal and O’Regan [11, 12] or Stanék [185]. The positivity of f implies
that each solution of (7.2) is concave and hence positive on (0, T'), and if, moreover, f
has a space singularity at x = 0 but not at y, then each solution has only two singular
points 0, T which are of type I. This makes the study of such problems easier than of
those having sign-changing f or space singularities at y because the latter problems can
generate solutions with singular points of type II. First we will study the singular problem
(7.2) with a positive nonlinearity f satisfying

feCar([0,T] x D), whereD = (0,00) X R,
7.51
f has a space singularity at x = 0, (731)

that is, limsup,_o, | f(t,x, y)| = o fora.e. t € [0, T] and some y € R. In this case, we
can use theorems of Section 1.3 and extend the existence results of Section 7.1. To this
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aim we present here the version of Theorem 1.8 for ¢p = 0, n = 2, and A = [0, 0) X R.
We will consider the sequence of regular problems

u” + filtbu,u’) =0, u(0) = u(T) =0, (7.52)
where fi € Car([0, T] x R?).

Theorem 7.37. Assume that (7.51) holds and that

2

filt,x,y) = f(t,x,y) forae. t € [0,T], foreach k > T

1
k)

there exists a bounded set Q C C'[0, T] such that

I (7.53)
and for each (x, y) € [0,00) X R, x = o lyl =

the regular problem (7.52) has a solution u; € Q (7.54)

and up(t) = 0 fort € [0,T), k > %
Then there exist u € C[0, T] and a subsequence {ux,} C {ux} such that

}im ur, (1) = u(t) uniformly on [0, T].

If, moreover, the set of singular points 8 = {s € [0, T] : u(s) = 0} is finite, then

lim w () = u'(t) locally uniformly on [0, T] \ 8.

f£— o0

If, in addition,

on each interval [a,b] C [0,T] \ 4§
7.55
the sequence { fi, (t, ux, (t), uy, (1))} is uniformly integrable, (7.53)

then u € ACL ([0, T] \ 8) and u is a w-solution of problem (7.2).
Finally, if there exists a function v € L[0, T] such that

fieo (tsu, (£), 1, (8)) = w(t)  forae t € [0,T] andall€ € N, (7.56)
then u € AC'[0, T] and u is a solution of problem (7.2).
The following lemma will be useful in the subsequent proofs.

Lemma 7.38. Let ¢ > 0. Then there exists n§ > 0 such that for each function u € AC'[0, T]
satisfying

u(0)=u(T)=0, —-u"(t)=¢ foraetecl0,T]
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the estimate
T
nt fort e [0,5],

u(t) > (7.57)
n(T —1t) fortE[ ,T].

03

is valid.

Proof. Let G(t,s) be the Green function of the problem —v"'(¢) = 0, v(0) = v(T) = 0,
that is,

t(TT_S) for0<t<s<T,
G(t,s) =
S(TT_ 2 forO0<s<t<T.

Let u be an arbitrary function fulfilling —u"'(¢) > e fora.e. t € [0, T] and u(0) = w(T) =
0. Then we have

T T
u(t) = — L Gt $)u' (s)ds > eL G(t, $)ds

X nt fort e [0,%],

=—et(T—1t) =
2 T

n(T—t) forte [E’T]’

if we choose 1 < &(T/4). O

If f(t,x, y) in (7.2) has one-sided sublinear growth in x and y, we use Theorem 7.37
to modify Theorem 7.9 as follows.

Theorem 7.39. Let (7.51) hold and let €,y,8 € (0,), a,3 € [0, 1). Assume that there
exist a nonnegative function go € L[0,T] and a function v € C(0, ) positive and
nonincreasing on (0, o) satisfying

JT (" + ) y(t)dt < oo,

0
e< f(t,x,y) < t'(T — t)‘sw(x) +go()(1+x*+ Iylﬁ)
fora.e. t € [0,T] andallx € (0,0), y € R.

Then problem (7.2) has a solution positive on (0, T).
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Proof

Step 1. Construction of approximate regular problems.
Choose an arbitrary k € Nand fora.e. t € [0, T] and all x, y € R define the auxiliary
function

fltay)  iflxl = %

fk(t>x>)’) = 1 1
f(t,E,y) if |x] < o
We see that f; € Car([0, T] x R?) fulfils condition (7.53) and
e < fi(t,x,y)
5 1 1\ " B
<t"(T -1ty X +g()| 1+ X +x]+ |yl
< h(t)(1 + |x|*+ |yIF)

fora.e.t € [0,T] and all x, y € R, where h(t) = (T — t)°y(1/k) + 2go(t). Consider the
approximate regular problem

u” + filt,u,u’) =0, u(0) = u(T) = 0. (7.58)
Puta(t) = 0 and ¢(y) = y. Then, by Theorem 7.9, problem (7.58) has a solution u.

Step 2. Convergence of the sequence {ux} of approximate solutions.
Lemma 7.38 yields 7 € (0, 1) such that

uy(t) > 2 (7.59)

n(T—t) forte [g,T].

nt fort e [O,Z],

Clearly ux > 0 on (0, T). Further, the inequality #(T — t)5W(uk(t)) < ¥/(t) holds for a.e.
t € [0, T], where

(T — 0y(nt) ifr e [0, g]
v(t) = T
DT — Py (q(T— 1) ift e [E’ T].
Since w(1/k) < w(x) if x € (0, 1/k], we have

St 2, y) < (T = 1) () +go(1) (2 +x* + | y|F)
fora.e.t € [0,T] and all x € (0, ), y € R. Therefore,

—u (1) < Y(t) + go(£) (2 + uf (£) + |uy(8) |ﬁ) fora.e. t € [0, T].
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We can find s € (0, o) such that

T
J F0dt < .
0

Thus, |9 +goll1 < 32+ llgoll1. Consider the sequence {ux} of solutions of problem (7.58),
k € N. The functions u, k € N, satisfy condition (7.8) for ¢(y) = y, a(t) = 0, hy = Y+go,
with ¢ = 54 + llgoll; and h; = go. By Lemma 7.5 there exists > 0 such that

[kl + |uplle <7 fork e N

Defineaset Q = {x € C'[0, T] : ||x]le + [|x'|lc < r}. Then condition (7.54) is valid and,
by Theorem 7.37, we can find a function u € C[0, T] and a subsequence {uk,} C {uy}
such that

}im ug,(t) = u(t) uniformly on [0, T].

Step 3. The function u is a solution of problem (7.2).

By estimate (7.59), u satisfies estimate (7.57), and u € C[0, T] is positive on (0, T').
By virtue of assumption (7.51), we know that f has only a singularity at x = 0. The set §
of singular points is finite because it consists of two points 0 and T. Hence, Theorem 7.37
yields

}Lnolo up, (t) = u'(t) locally uniformly on (0, T).

Let us choose an arbitrary interval [a, b] C (0, T). Then there exists €y € N such that for
each € > ¢, the inequality ux, > 1/¢ is valid on [a, b] and

e (6 1k, (), 1z, (£)) < (T — t)‘sw(é) +g0(0)(2+ "+ 1) =: (1)
for a.e. t € [a,b]. Using Criterion A.1 and the fact that ¢ € L;[a, b], we get that the
sequence { fi, (f, ug, (1), u,'q(t))} is uniformly integrable on [a, b]. This yields that condi-
tion (7.55) holds and consequently, u € ACIIOC(O, T) is a w-solution of problem (7.2).
Moreover, condition (7.56) is also satisfied because the inequality 0 < fi, (£, ug, (1), u,’Q (1))
holds for a.e. t € [0, T] and for all ¢ € N. Due to Theorem 7.37, u is a solution of problem
(7.2). O

Example 7.40. Let hy,h, € L[0,T] be nonnegative. For a.e. t € [0,T] and all x,y €
(0, 0) X R define a function

t3/2(T _ t)3/2

fltxy) = 1+ == (1) VX + HONE

The second term of f has a space singularity at x = 0. Further, f satisfies the conditions
of Theorem 7.39 withe = 1, a = f=1/2,y =6 =3/2, y(x) =x %, and gy = 1 + hy + h,.
Therefore, by Theorem 7.39, the problem

t3/2(T _ t)3/2
u?

12

u +1+

+h(OVa+ha(O\lwl =0, u(0) = u(T) =0,

has a solution positive on (0, T').
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Now, we will present conditions ensuring solvability of problems with space singu-
larities in the variables x and y and with singular points both of type I and of type II.
The main difficulty in the study of singular points of type II is the fact that their location
in [0, T] is not known. This is why there are only few papers concerning solvability of
such problems in mathematical literature and no results about w-solutions are known.

Consider problem (7.2) under the assumption that f satisfies

feCar([0,T] x D), whereD = (0,00) x (R {0}),
7.60
f has space singularities at x = 0 and y = 0, (7.60)

that is,

limsup | f(t,x,y)| = forae.t € [0,T] and some y € R\ {0},
x—0+
limsup | f(t,x,y)| = o forae.t € [0,T] and some x € (0, ).
y—=0
Conditions for solvability of problem (7.2), provided f(t,x, y) is positive and has one-
sided linear growth in x and y, are formulated in the next theorem which extends
Theorem 7.12.

Theorem 7.41. Let (7.60) hold and let €,y,6 € (0, o). Assume that there are nonnegative
functions g, hy, hy € L1[0, T and functions yy, y, € C(0, o) positive and nonincreasing on
(0, 00) satisfying Tlhy|l1 + lh2lly < 1 and

T T
J (" + %)y, (t)dt < oo, J Yo (t)dt < oo,
0 0

e< f(t,x,y) = (T = )°yi(x) +ya(lyl) + g() + i ()x + ha ()| y|
fora.e.t €[0,T] andallx € (0,), y € (R\ {0}).

Then problem (7.2) has a solution positive on (0, T).

Proof. Due to condition (7.60), f has also a space singularity at its last variable y and
hence, we cannot use Theorem 7.37, where condition (7.51) is involved. We will use some
arguments from the proof of Theorem 1.8.

Step 1. Construction of approximate regular problems.
Choose an arbitrary k € Nand fora.e. t € [0, T] and all x, y € R define the auxiliary
functions

[ . 1
N f(tIxl,y) iflx| = o
felbxy) =1 1

tai) 1f|x| <7,
Yy
L k k
(7.61)

(> . 1

fk(t)x,)’) 1f|)/| > E,
fk(fax))/) = k[~ 1 1 o 1 1 . 1

Z(R(en ) 0o ) = Rlexg) =) i<
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We see that fi € Car([0, T] x R?) fulfils

fi(t,x, ) = f(t,x,y) forae.t e [0,T]andallx € [%,00), lyl € [%,00). (7.62)

Further,
e < fi(t,x,y)
< 0(T - 0y, (%) ; WZG) Lg()+ hl(t)<|x| ; i) ; hz(t)<|y| + %)

fora.e.t € [0,T] and allx, y € R. Puta(t) =0, ¢(y) = y,and

ho(t) = /(T — )y, (%) + M%) () + () + ho(e).

Then, by Theorem 7.12, problem (7.58) with fi defined by (7.61) has a solution .

Step 2. Convergence of the sequence {ux} of approximate solutions.

Lemma 7.38 gives 7 € (0,1) such that u; satisfies estimate (7.59). Clearly, ux > 0
on (0,T) and ux has a unique maximum point #, € (0, T). Integrating the inequality
€ < —uy (1) we get

et —t) <u(t) = |u ()| fort e [0,4],

(7.63)
e(t—tr) < —up(t) = |up(t)| forte [t T].
Denote
(T = 0y (nt) ift e [0, %]
Ui () = T
O(T - 0y (g(T - 1)) it e [E’ T],
N ety — 1)) ift € [0, %],
lllzk( ) =
va(e(t—t)) ift e[, T
Then

(T — )%y (e (t)) < 91 (t),  wa(|up(0)]) < Pak(t)

for a.e. t € [0, T]. Since y;(1/k) < yy(x) if x € (0,1/k] and y,(1/k) < yu(lyl) if [y] <
1/k, we have

fitx,y) < (T = %y (x) + ya(lyl) + g() + () (x + 1) + ha () 1y + 1)
fora.e.t € [0,T] and all x € (0, ), y € R. Therefore,

—u (1) < Y1 (8) + Yok (1) + g(8) + by () (uie(t) + 1) + ha(8) (| u (1) | + 1)
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for a.e. t € [0, T]. Without loss of generality we may assume that ¢ < 1 and we can find
21, 26 € (0, 00) such that

T T
j (0t < 3, J Fu(Ddt < 50, keN.
0 0

Thus, |91 + Yok + gll1 < 501 + 302 + ligll1 =: 5. Consider the sequence {u} of solutions
of problems (7.58), k € N. The functions uy, k € N, satisfy condition (7.12) for a(t) = 0,
¢(y) = y,and hg = U1 + Yok + g + hy + hy. By Lemma 7.7 there exists r € (1, %) such
that [luglle + [yl < r for k € N. By the Arzela-Ascoli theorem, we can find a function
u € C[0, T] and a subsequence {ug,} C {ux} such that

}im uk,(t) = u(t) uniformly on [0, T].

So, we have u(0) = u(T) = 0 and u satisfies estimate (7.57). By estimate (7.59), ux(T/2) =
(nT)/2 for k € N. Since the inequality |lu; ||~ < r holds for k € N, we have (4yT)/(2r) <
tr < T — (nT)/(2r) for k € N. Therefore, we can choose the above subsequence so that
limp—o tx, = t, € (0, T).

Step 3. Convergence of the sequence { fr} of approximate nonlinearities.
Let us choose an arbitrary interval [a,b] C (0, T) \ {t,}. By virtue of estimates (7.59)
and (7.63), there exists £y € N such that for each £ > ¢

W) = U, (0] =~ forae t e [abl, (7.64)
AELAOLE

Fio (6, (8,1, (D) < /(T — )y, (%) " 1,/2%) () + (O + hy(Dr = o(t)

fora.e. t € [a, b].
(7.65)

Since ¢ € L,[a, b], the sequence {”1,@} is equicontinuous on [a, b]. Having in mind that
[a, b] is arbitrary and using the Arzela-Ascoli theorem and the diagonalization theorem,
we can choose the subsequence {uy,} in such a way that

}im u, (t) = ' (t)  locally uniformly on (0, T) \ {t,}.

By estimate (7.63), u'(t) # 0 for t € (0,T) \ {t,}. Denote § = {0,t,,T} and U
Vi UV, U 4, where

Vi={tel[0,T]: f(t,-,-): D — Ris not continuous},
V, = {t € [0, T] : the equality in condition (7.62) is not fulfilled}.
Choose an arbitrary t € [0,T] \ U. Then there exists £, € N such that for each ¢

¢ estimates (7.64) hold. Since t &€ V; U V,, we have equality fi, (¢, ukf(t),u,'(z(t))
f(t, ug, (t), 'k, (¢)) and consequently,

v

}ijgfke(t’ uk, (1), uy, (1)) = f(tut),u'(1)). (7.66)

Since meas(U) = 0, equality (7.66) holds for a.e. t € [0, T].
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Step 4. The function u is a solution of problem (7.2).

First, we will prove that u is a w-solution of (7.2). Choose an arbitrary interval
[a,b] € (0,T) \ {t,}. Since condition (7.65) holds for each ¢ > £, we get by equality
(7.66) and the Lebesgue dominated convergence theorem on [a, b] that f(t, u(t),u'(t)) €
L,[a, b] and if we pass to the limit in

¢
u, (1) — u,(a) + L Sro (55 uk,(s), 1, (s))ds = 0, t € [a,b],

we get

u'(t) —u'(a) + th(s,u(s),u’(s))ds =0, t€]ab].

Having in mind that [a,b] € (0, T) \ {t,} is an arbitrary interval, we conclude that u is a
w-solution of problem (7.2).
Finally, we will show that u is a solution of (7.2). For each ¢ > ¢;, we have

T
JO fke(t) ukz(t),u;(e(t))dt = u]/{g(o) - ulrcg(T) <2r,
fio (6 ug, (8), 1, (1)) = & forae. t e [0,T].

Hence, by (7.66) and the Fatou lemma, we have f(t, u(t), u'(t)) € L; [0, T]. Consequently,
u € AC'[0, T1, that is, u is a solution of problem (7.2). O

Remark 7.42. Notice the fact that the point t, in the proof of Theorem 7.41 is a singular
point of type II, because we do not know its position in (0, T).

Example 7.43. Let c € (0,0). Fora.e.t € [0,T] and allx, y € R\ {0}, define a function

flt,x,y) = \/ﬁ(l+;j) +\/ﬁ+ 6\/1t7T<%+ |)/|)-

The first term has a space singularity at x = 0 and the second at y = 0. We can see that f
satisfies the conditions of Theorem 7.41 if we put

1
y=2 8==, w@w== =",
2 Iyl
1 1
g(t) =T -t h(t) = 6T ViT’ hy(t) = 6T

and choose ¢ > 0 sufficiently small.

7.4. Dirichlet problem with mixed singularities

In this section, we will study problems having the so-called mixed singularities, that is,
both time and space ones. Moreover, in some theorems we omit the assumption that the
nonlinearity f in the differential equation is positive. In literature we can find results
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about the solvability of singular Dirichlet problems with sign-changing nonlinearities
which mostly concern w-solutions. Here, we will prove the existence of solutions to prob-
lem (7.1) provided f has mixed singularities. We assume that -4, 4, are closed intervals
containing 0 and

f€Car((0,T) x D), where D = (A;\ {0}) X (A2 )\ {0}),

f has time singularitiesat t = O and at t = T, (7.67)

and space singularities at x = 0 and at y = 0,

that is, there exists (x, ) € D such that

JOS | f(t,x,y)|dt = o, JTT | f(t,x,y)|dt = o fore € (0,%),

—&

limsup | f(t,x,y)| = fora.e.t € [0,T] and some y € #4, \ {0},
x—0

limsup | f(t,x,y)| = 0 fora.e. t € [0,T] and some x € A; \ {0}.
y—0

Since problem (7.1) contains ¢-Laplacian and has mixed singularities, we cannot use
theorems of Sections 1.2 and 1.3. Hence, we will prove their new generalized version.
In order to do it we will consider the sequence of regular problems

(p(u)) + filtyuyu') = 0,  u(0) = ax, u(T) = by, (7.68)
where fi € Car([0, T] X R?), ax, by € R, k € N.

Theorem 7.44 (principle for ¢-Laplacian and mixed singularities). Let (7.67) hold, let
& >0, yx > 0 for k € N and assume that

115?0 & =0, 1113)10 Nk = 0; (7.69)
1 1 2
filt,x,y) = f(t,x,y) forae te [*, T — f], foreach k > -
k k T
(7.70)
and for each (x, y) € A1 X Az, x| = &, |y = nis
there exists a bounded set QO ¢ C'[0, T] such that
the regular problem (7.68) has a solution uy € Q (7.71)

and (ug(), (1)) € AL X As fort € [0,T], k> %
Then there exist u € C[0, T] and a subsequence {uy,} C {uy} such that

}im ug, (1) = u(t) uniformly on [0, T].
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Further assume that there is a finite set 8 = {s1,...,s,} C (0,T) such that

the sequence {¢(uy)} is equicontinuous

on each interval [a,b] € (0,T) \ 4. (7.72)
Thenu € CH((0,T)\ 8) and
}lfg up, (t) = u'(t) locally uniformly on (0,T) \ 8.
Assume, in addition, that limy_.. ar = 0, limy_. . bx = 0 and that
8=1s€(0,T):u(s) =0o0ru'(s) =0oru'(s) does not exist}. (7.73)

Then ¢p(u') € ACoc((0,T) \ 8) and u is a w-solution of problem (7.1).
Denote sy = 0 and sy41 = T. Moreover, let there be 1 € (0, T/2), Ao, pho> A i1 - - > Ayt
pvs1 € {=1,1}, €y € Nand y € L,[0, T such that

Aifiep (s g, (), uz,, () signug (t) = y(t)

7.74
forae.t € (si—n,s) N (0, T), andallie {0,...,v+1}, €= ¢, (7.74)
.Uifke(t, ukg(t))u],q(t)) sign u,’(e(t) > y(t)

7.75
fora.e t € (si,si+n)N(0,T), andalliec{0,...,v+1}, €= &. ( )

Then ¢(u') € AC[0,T] and u is a solution of problem (7.1). Moreover, (u(t),u'(t)) €
A1 X A, holds for t € [0, T].

Proof

Step 1. Convergence of the sequence {ug, }.
Assume that conditions (7.67), (7.70), and (7.71) hold. By (7.71) there exists r > 0
such that the sequence {u;} of solutions to problem (7.68) satisfies

2
llukl|co <7 fork > T
Hence, the sequence {ux} is bounded and equicontinuous on [0, T]. Due to the Arzela-
Ascoli theorem, this yields the existence of a function u € C[0, T] and a subsequence
{uk,} C {ur} such that lime_. . ug, (£) = u(t) uniformly on [0, T].

Step 2. Convergence of the sequence {uy,}.

Assume, in addition to step 1, that condition (7.72) holds and choose an arbitrary
interval [a,b] € (0,T) \ 4. Then {¢(u;)} and consequently {u}} is equicontinuous on
[a,b]. Since {u;} is also bounded on [4, b], we can use the Arzela-Ascoli theorem and
choose a subsequence {u, } such that it uniformly converges on [0, T] and lim,_.« ul’w (t)=
u/(t) uniformly on [a,b]. Using the diagonalization theorem we deduce that we can
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choose the uniformly converging on [0, T'] subsequence {uy,} so that
}1}2 u, (t) = u'(t) locally uniformly on (0, T) \ 4.

Therefore, u € C((0,T) \ 8).

Step 3. Convergence of the approximate nonlinearities { fi, }.
Assume, in addition to step 2, that lim_« ax = 0, lim_« bx = 0, and that condition
(7.73) holds. Then u(0) = u(T) = 0. Define U = V; U V, U &, where

Vi={te€(0,7T): f(t,-,-): D — Ris not continuous},
V, = {t € (0, T) : the equality in condition (7.70) is not fulfilled}.

Choose an arbitrary t € (0,T) \ U. Then there exists £y € N such that for all £ > £, we
have t € [1/ke, T — 1/ke], lug, ()| = &k, Iu,'q(t)\ > 1k, and

i (6 i, (8), 3, (8)) = f (&, w, (£), wg, (1)),
Since ¢ is an arbitrary element in (0, T') \ U and meas(U) = 0, we get
}Lnolo Sro (G ug, (1), (1) = f(tu(t),u'(t)) ae onl0,T]. (7.76)
Step 4. The function u is a w-solution.
Now, choose an arbitrary interval [a, b] C (0, T) \ 4. Then there exist £* € N, ¢* > 0,
and n* > 0 such that for all £ > €*
| fuo (£, u, (£), 1, (1)) | < h(t) forae. t € [a,b],
where
h(t) =sup{| f(t,x,y)| :e* <|x| <r, y* < |yl <r} € L[a,b].

Therefore, we can apply the Lebesgue dominated convergence theorem and get f (¢, u(t),
u'(t)) € Li[a,b] and

b b
L!LIB:J' fke (S’ ukg(s)’u;(g(s))ds = J f(s,u(s), u'(s))ds.
Integrating the equality

($(up, () + fieo (1, (1), 11, (1)) =0 forae. t € [0, 7], (7.77)

we get

¢ (uy, (1) — ¢(u,(a) + L fieo (8, uk, (5), 1, (5))ds = 0 fort € [a,b],

which for £ — o leads to

¢(u' (1)) - st, ),u'(s))ds =0 fort € [a,b].
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Since [a, b] can be an arbitrary interval in (0, T') \ 8, we deduce that ¢(u") € ACioc((0, T)\
4) and u is a w-solution of problem (7.1).

Step 5. The function u is a solution.

Assume, in addition to step 3, that there exist 7 € (0, T/2), Ags .. . s Ayt1, Hos - - - > Yv+1 €
{—1,1}, & € N, and v € L;[0,T] such that conditions (7.74) and (7.75) are valid.
Since u is a w-solution of problem (7.1), it remains to prove that ¢(u') € AC[0, T].
By step 3, f(t,u(t),u'(t)) € Li[a,b] for each [a,b] C (0,T) \ 8. So, it suffices to prove
f(t,u(t),u' (t)) € Lilci,di] fori = 0,...,v + 1, where (¢;,di) = (si — #,si + 1) N (0, T).
Choose an arbitrary i € {0,...,v+ 1} and ¢t € (¢;,d;) \ 8. Then v’ (t) # 0. If we use
equality (7.76) and the fact that {u,’cg} locally uniformly converges to u’ on (0,T) \ 4, we
obtain

}1}2 fr (8, uke(t),u,'w(t)) signuy (t) = f(t,u(t),u'(¢)) signu'(¢)

for a.e. t € [c;, di]. If we multiply equality (7.77) by signuy, (¢) and then integrate over
[ci» di], we get for £ > £,

d;
[ o0, 9 sign 05| = 1, () ) + 911, e ) =200,

Therefore, the Fatou lemma yields f (¢, u(t),u'(t)) € Li[c;, d;], by conditions (7.74) and
(7.75). Hence, f(t,u(t),u'(t)) € L;[0, T] and ¢(u") € AC[O, T]. O

Remark 7.45. (i) Theorem 7.44 guarantees the existence of a solution u which can change
its sign.

(ii) According to Step 4 of the proof of Theorem 7.44, we can claim that Theorem 7.44
remains valid if we replace (7.75) with

e (i, (), 1, (1)) = y(8)
forae.t € (si—n,si+1n) N (0,T) (7.78)
andalli € {0,...,v+ 1}, € > ¢,.

(iii) If f has no singularity at y = 0, then we put 7 = 0 for k € N in Theorem 7.44.
Moreover, due to step 3 of the proof of Theorem 7.44, the set § in (7.73) consists only of
the zeros of u. This will be accounted for in the next theorem. We will assume that

f € Car ((0, T) X D) can change its sign, D = (0,0) X R,

. . .. (7.79)
and f has mixed singularitiesatt =0, t = T, x = 0.

Theorem 7.46. Let (7.79) hold. Let o, and o, be a lower function and an upper function of
problem (7.1) and let

0<o01(t) <0a(t) forte (0,T).
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Assume that there exist ai,a; € [0, T], a; < a, a nonnegative function h € L,[0, T], and a
positive function w € CI0, oo) fulfilling conditions (7.17), (7.45) and

ft,x, y)signy < w(|p(y)]) (h(t) +|y|)

fora.e. t €[0,ax] and allx € [0y 1], yeR,
. (7.80)
fltxy)signy = —w([¢(y)|) (h(t) + Iyl)
fora.e. t € (a1, T] and all x € [0y 0], yeRr.

Then problem (7.1) has a solution u satisfying estimate (7.16).
Proof. Choose an arbitrary k € N such that k > 2/T, and denote
1 1
= [og)u(r-or]
Ap = {teA:o(t) =oa(t)}, A= {t € Ac:o(t) <or(t)).
Further, define

{al(t) if x < o1 (1),
a(t,x) =

X ifo1(t) < x
fort € [0,T] and x € R,

(¢(a3(1)))’ ifx > 0y(1),

gilt,x) = 1 (x=01(0)($(05(1))" + (0a(t) = ) ($(0](1))’
0y (t) — o1 (1)

ifO’l(t) <x= Uz(t),
(¢(ai (D))’

fora.e.t € Ay and x € R, and

f(talt,x),y) ifte[0,T]\ Ag,
filt,x,y) =1 —(¢(a1(1)))" ift € Axy (7.81)
fgk(t,x) ift € A

forae. t € [0,T] and x, y € R. Then fi € Car([0,T] x R?) and f; satisfies inequalities
(7.27) where g(t,x,y) = fi(t,x,¥), y1 = y2 = 0, ¢ = 1+ 1/b with b given by (7.45)
and ho(t) = h(t) + 1(¢(a1 (1)) + 1(¢(a5(t)))’|. Consider problem (7.40) with fi defined
by (7.81). We see that 01 and o, are also lower and upper functions to problem (7.40).
Hence, for each k € N, Theorem 7.22 gives a solution uj of problem (7.40). Moreover,
each solution wuy satisfies estimate (7.16) and |||l < 7, where r > 0 is the constant
found in Lemma 7.19 for ry = max{||01|l«, |02l }. Define

Q={xeC'0,T]:o1 <x<0on[0,T], [|X|le < r}.
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Let us put A; = [0,0), A, = R,ex = max{o,(1/k),01(T — 1/k)} and, according to
Remark 7.45(iii), we have #x = 0 for k € N. Then conditions (7.70) and (7.71) are valid
and, by Theorem 7.44, we can find a subsequence {uy,} C{ux} uniformly converging on
[0, T] to a function u € C[0, T'].

Choose [a,b] C (0,T). Then there exists ky € N such that for k > ko we have
la,b] C [1/k, T — 1/k] and

| fic(t, uk(£), up (£)) | < h(t) forae.t € [a,b],
where

h(t) =sup {| f(t,x, y)| : 11 < x < aa(2), |yl <7}

and r; = min{o(t) : t € [a,b]} > 0. Since h € L,[a,b], we see that the sequence
{¢(u,)} is equicontinuous on [a,b]. Further, ar = 0, by = 0, k € N. According to
Remark 7.45(iii), the set 8 C (0, T) consists only of the zeros of u. Since u is posi-
tive on (0, T'), 4§ is empty and we see that conditions (7.72) and (7.73) hold. Hence, by
Theorem 7.44, u is a w-solution of problem (7.1).

Denote wy = max{w(s) : s € [0,¢(r)]} and

() = =[(9(01(0))'| = [(¢(e3(0))"| = wol () +7].
The first inequality in (7.80) implies that
— fio (1, g, (), 1, (1)) signi, (£) > w(2)
fora.e. t € [0,ay] and all € > £, and similarly the second inequality in (7.80) gives
Jre (2, ukl(t),u;(e(t)) sign uy, (t) = y(t)

fora.e.t € [a;, T] and all £ = &. So,if weputv = 0,40 = —1,50 = 0and A, = 1,5 = T,
n = min{a,, T — a1}, we get inequalities (7.74) and (7.75). Therefore, by Theorem 7.44,
u is a solution of problem (7.1). O

Example 7.47. Suppose thata, B € [1,0),a € R, b € (0,1/+/2),¢c € (0,0),d € (0,1/b—
2b). Consider problem (7.1) where ¢(y) = y and

t(T —t)
X

ftx,y)=((T-t)P—t%+a)(x—bt(T —t))y+cy> —d+

for a.e. t € [0,T] and all x, y € R. The first term of f has time singularities at t = 0,
t = T and the last term of f has a space singularity at x = 0. Let us put 01(¢) = bt(T — 1),
0(t) =1 = (T*>/4)(1/d +b), w(s) = (c+ 1)(s+1),a; = T/3, a, = T/2. If we choose a
sufficiently large positive constant K and put h(t) = K, we can check that all conditions
of Theorem 7.46 are fulfilled. Therefore, our problem has a solution u satisfying (7.16).

The next theorem deals with problem (7.1) provided f has singularities in all its
variables.
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Theorem 7.48. Letv € (0,T/2), e € (0,9(v)/v), c1,¢2 € (v, ), and let assumption (7.67)
hold with A, = [0, ), A, = [—c1,c2]. Denote

o(t) = min {ct, ¢, (T — )} fort € [0, T]
and assume that
f(t,o(t),0'(t)) =0 forae te[0,T],
0< f(t,x,y) foraete[0,T]andallx € (0,0(t)], y €[ —c1,cal, (7.82)
e < f(t,x,y) forae te[0,Tlandallx € (0,0(t)], y € [—-v,v].
Then problem (7.1) has a solution u satisfying

O<u(t)<o(t), —c=<u(t)<c forte(0,T). (7.83)

Proof

Step 1. Existence of approximate solutions.
Choose k € N, k > 2/T and put ¢, = min{o(1/k),o(T — 1/k)}. For x, y € R define

1) ify >c,

x ife <x,
ak(x) = Bly) =1y it —c<y=<o,

& ifx < e, .
—c ify<—c,

€ if |yl <,
0 ify<-—coryzc,
YD) =9 o -
eu ifv<y<c,
[0 i
+
g1 if —ci<y<—w
L C1 —V

Further, for a.e. t € [0, T] and all x, y € R define auxiliary functions

( - 1 1
fk(t,x,y) = ") e [(1) k) UI(T k)T]) (7.84)
F(bax(),B(y) e [E,T— E]’
(it y) i1yl = 7,
X, V) =1 7.85
B O e B e [ I IR

Then fi € Car([0, T] x R?) and we can find a function my € L;[0, T] such that

| fi(t,x,y)| < mi(t) forae. t€[0,T]andallx € [0,0(f)], y €R.
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Moreover, fi satisfies condition (7.70) with & = min{o(1/k),o(T — 1/k)} and ;. = 1/k.
Due to (7.82), we have

fi(to(8),0'(£)) =0, fi(£,0,0) >0 forae.te [0,T],

and 01 = 0 and o are, respectively, lower and upper functions of problem (7.58) with f
defined by (7.85). Hence, by Theorem 7.16, this problem has a solution uj and

0 <u(t) <o(t) fortel0,T]. (7.86)

Step 2. A priori estimates of approximate solutions.
Since fi(t,x,y) = 0 fora.e. t € [0, T] and all x, y € R, we have

(¢(u (1)) <0 forae. te[0,T].
This yields that ¢(u;) and u are nonincreasing functions on [0, T]. Moreover,
—ca su(t)<c, fortel0,T], (7.87)

because ux(0) = 0(0) = ur(T) = 6(T) = 0and ¢’ (0) = ¢, 0’ (T) = —¢;. Let tx € (0, T)
be a point of maximum of u. Then u; (fx) = 0 and

u(t) =0 forte [0,],
u(t) <0 forte [t T].

(i) Let tx — v = 0. Then there exists ax € [0, #) such that u;(t) < v for t € [ay, tx].
Assuming ai < t; — v and integrating the last inequality in assumption (7.82), we get

e(te —t) < ¢p(u(t)) fort e [t — v, t]. (7.88)
If ar >t — vand u(t) > v for t € [0, ax), then similarly
e(t —t) < ¢p(up(t)) fort € [ag, ti].

Since ¢(up(t)) > ¢(v) > ev > e(ty — t) for t € [tx — v, ax], we get estimate (7.88) again.
Integration of (7.88) over [#; — v, t;] yields the estimate

v
ur (t) = J ¢ (es)ds = vy > 0. (7.89)
0
(ii) Let ty — v < 0. Then #; + v < T and there exists bx € (#, T] such that —u () < v
for t € [t, br]. Assuming by > t; + v and integrating the last inequality in assumption
(7.82), we obtain
e(t —t) < —p(up(r)) fort € [t tx +v]. (7.90)

If by < tx +vand u(t) < —v for t € (bx, T, then similarly

e(t —te) < —¢p(u(t)) fort e [t bil.
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Since —¢(uy (1)) > ¢(v) > ev > e(t — ti) for t € [by, ti +v], we get inequality (7.90) again.
Integration of (7.90) over [f, tx + v] yields estimate (7.89). Using this estimate and the
fact that u is nonincreasing on [0, T] we conclude that

ar(t) < u(t) <o(t) forte0,T],

where

Vo
—t
T
Vo

?(T —t) forte (4, T].

fort € [0, tx],

Step 3. Convergence of the sequence of approximate solutions.
Consider the sequence of solutions {ux}, k > 2/T. Define

Q={xeC0,T]:0<x<0(t), —c; <x <con[0,T]}.

Then condition (7.71) is valid and by Theorem 7.44 we can choose a subsequence {u,} C
{ur} which is uniformly converging on [0, T] to a function u € C[0, T]. By estimates
(7.87) and (7.89) we get 0 < vo/cy < trand tx < T — w/c; < T for k € N. So, we can
choose a subsequence {uy,} in such a way that lime_.. tx, = t, € (0, T) and

a,(t) <u(t) <o(t) fortel0,T], (7.91)
where
Vo
Tt for t € [0,t,],
‘xu(t) = Yo

T (T—1t) forte (t,T].

Put 8 = {t,} and choose [a,b] C (0,t,). Then there exists kg € N such that for k > kg we
have |t — t,| < (t, — b)/2, [a,b] C (1/k, t;),

ur(t) = # =:mo, ¢(u(t)) = = (t, — b) =:my on [a,b].

[NSRNY

Thus, for a.e. t € [a, b]
| fie(t, uk(£), up (£)) | < h(t) € Ly[a,b],

where h(t) = sup{|f(t,x,y)| : my < x < o(t), ¢71(m) < y < c}. If we choose
[a,b] C (t,, T), we argue similarly and obtain also a Lebesgue integrable majorant for f,
k = ko, on [a, b]. So, we have proved that condition (7.72) holds. By Theorem 7.44, we
getu € C'((0,T)\ 4) and lim,-.« uy, (t) = u'(¢) locally uniformly on (0, T) \ 4.
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Step 4. The function u is a solution.
Since u;, is nonincreasing on [0, T'] for k = ko, u is nonincreasing on (0, t,) and on
(ty, T). Therefore,

0<u'(t)<c, fortel0,t,), —c<u(t)<0 forte (t,T] (7.92)

and the limits lim,_, _ u'(¢) and lim,_, + v’ (¢) exist.

(i) Let limy—,,— u'(¢t) = 0. Assume that there exists t* € (0, t,) such that u'(t*) = 0.
Then /' (t) = 0 for t € [t*,t,]. On the other hand, by the last inequality in assumption
(7.82), we get

0<¢'(e(ty—1)) <u'(t) forte [t5t,),

a contradiction. Similarly for lim;_, + u'(t) = 0.

(ii) Let lim;_;,— ' (t) > 0. Since u’ is nonincreasing, we have u’(t) > 0 for t € [0, t,,).
Similarly for lim,_;+ u'(t) < 0. Hence, t, is the unique point in [0, T] where either
u'(t,) = 0 or u'(t,) does not exist. By estimate (7.91), u is positive in (0, 7). This implies
that & satisfies condition (7.73). Having in mind that ay = by = 0, k € N, we get by
Theorem 7.44 that ¢(u') € ACi,((0,T) \ 4) and u is a w-solution of problem (7.1).
Finally, by assumption (7.82) and definition (7.85), we have

S (5 ug, (£), 1, (t)) 20 forae. t € [0,T], £ €N.

Hence, condition (7.78) holds. According to Theorem 7.44 and Remark 7.45, u is a solu-
tion of problem (7.1). Estimates (7.91) and (7.92) yield the required estimate (7.83). [

Example 7.49. Let a1, a2, 81, B2 € (0, 00), and let functions h; € Lioc(0,T), i = 1,2,3,4,
be nonnegative. For a.e. t € [0, T] and all x € (0, ), y € R{0} define

fltxy) = (1=y) (21t F 0 + () 1% + hs(0) +h4(t)|yl|ﬁz).

We can check that f satisfies the conditions of Theorem 7.48.

Bibliographical notes

Modified versions of Theorems 7.25 and 7.27 were published in Kiguradze and Shekhter
[120]. Theorem 7.29 is new. Theorems 7.31 and 7.34 are adapted from Polasek and
Rachinkova [155]. The existence of w-solutions under the assumptions of Theorems
7.32 and 7.35 was proved for ¢(y) = y in Kiguradze and Shekhter [120]. Theorems 7.39
and 7.41 are taken from Rachtnkova and Stryja [166]. Theorems 7.44, 7.46, and 7.48
were proved by Rachtinkova and Stryja in [167, 168], respectively.

The singular Dirichlet problem has been studied almost 30 years and hundreds of
papers have been written till now. From monographs investigating singular Dirichlet
problems we would like to highlight Agarwal and O’Regan [12], Kiguradze and Shekhter
[120], O’Regan [150], or Rachiinkova, Stanék, and Tvrdy [165], where also further
historical and bibliographical notes are presented.






The main goal of this chapter is to present existence results for singular periodic problems
of the form

(¢() = flt,u,u), (8.1)
u(0) = u(T), u'(0) = u'(T), (8.2)

where 0 < T < o, ¢ : R — R is an increasing and odd homeomorphism such that
¢(R) = Rand

f € Car ([0, T] x ((0,0) XR)),
] ) (8.3)
f has a space singularity at x = 0.

In accordance with Section 1.3, this means that

limsup | f(t,x,y)| =« fora.e.t € [0,T] and some y € R.

x—0+

Physicists say that f has an attractive singularity at x = 0 if

limggff(t,x,y) =—o0 fora.e.t€[0,T] andsome y € R

since near the origin the force is directed inward. Alternatively, f is said to have a repulsive
singularity at x = 0 if
limsup f(t,x,y) = o fora.e. t € [0,T] and some y € R.
x—0+

Second-order nonlinear differential equations or systems with singularities appear
naturally in the description of particles subject to Newtonian-type forces or to forces
caused by compressed gases. Their mathematical study started in the sixties by Forbat and
Huaux [93], Huaux [108], Derwidué [70-72], and Faure [89], who considered positive
solutions of equations describing, for example, the motion of a piston in a cylinder closed
at one extremity and subject to a periodic exterior force, to the restoring force of a
perfect gas and to a viscosity friction. The equations they studied may be after suitable
substitutions transformed to

p

u’ +eu == +e(t),
u
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where ¢ # 0 and § # 0 can be either positive or negative. Equations of this form are
usually called Forbat equations and their Liénard-type generalizations like

u” +h(u)u' = g(t,u) +e(t)

are sometimes also referred to as the generalized Forbat equations.

In the setting of Section 1.3, problem (8.1), (8.2) is investigated on the set [0, T'] X +,
where A = [0,00) X R. In contrast to the Dirichlet problem (7.1), where each solution
vanishes at t = 0 and ¢ = T and hence enters the space singularity x = 0 of f, all known
existence results for the periodic problem (8.1), (8.2) under assumption (8.3) concern
positive solutions which do not touch the space singularity x = 0 of the function f.

Definition 8.1. A function u : [0,T] — R is called a solution of problem (8.1), (8.2) if
¢(u') € AC[0, T, (u(t),u'(t)) € Afort € [0,T],

(' (1)) = f(tu(t),u' (t)) forae.te[0,T]

and condition (8.2) is satisfied. If u > 0 on [0, T'], then u is called a positive solution.

By Definition 8.1 and assumption (8.3) and with respect to the choice A = [0, ) X
R, we see that each solution of problem (8.1), (8.2) must be nonnegative and can vanish
just on a set of zero measure. The restriction to positive solutions causes that the general
existence principles in Theorems 1.8 and 1.9 about the limit of a sequence of approximate
solutions need not be employed here. On the other hand, the singular problem (8.1),
(8.2) will be also investigated through regular approximate periodic problems governed
by differential equations of the form

(¢(u) = h(t,u,u'), (8.4)

where h € Car([0, T] x R?). As usual, by a solution of the regular problem (8.4), (8.2) we
understand a function u such that ¢(u") € AC[0, T], (8.2) is true, and

(p(u' (1)) = h(t,u(t),u'(t)) forae.te [0,T].

Notice that the requirement ¢(u’) € AC[0, T] implies that u € C'[0, T].

In this chapter, we will extensively utilize the Leray-Schauder degree and its finite
dimensional special case—the Brouwer degree. For the definitions and basic properties
of these notions we refer to Appendix C. In particular, see the Leray-Schauder degree
theorem, the Borsuk antipodal theorem, and Remark C.4.

We will also discuss various special cases of equation (8.1) including the classical one
with ¢(y) = y or those with f not depending on #" or with f depending on u’ linearly.
Let us notice that the assumption that ¢ is an odd function is only technical. We employ
it just to simplify some formulas occurring in this section.



Method of lower and upper functions 135
8.1. Method of lower and upper functions
Regular problems

First, we will consider problem (8.4), (8.2), where h € Car([0, T] x R?). We bring some
results which will be exploited in the investigation of the singular problem (8.1), (8.2).
The lower and upper functions method combined with the topological degree argument
is an important tool for proofs of solvability of regular periodic problems.

Definition 8.2. A function o € C[0, T] is a lower function of problem (8.4), (8.2) if there is
an at most finite set £ C (0, T) such that ¢(¢”) € ACc([0, T] \ %),

o' (t+) := Tliﬂrﬂﬁ'(r) eR, o (t-):= Thf}]_ o'(r) €R foreachte X, (8.5)
((a’ (1)) = h(t,a(t),0'(t)) forae.te [0,T], (8.6)
0(0) =o(T), o' (0)=0(T), o' (t+)>0'(t—) foreachte . (8.7)

If the inequalities in (8.6) and (8.7) are reversed, o is called an upper function of problem
(8.4), (8.2).

Remark 8.3. Tt follows immediately from Definition 8.2 that [0} ||« < o and ||}l < o
hold for each lower function ¢, and each upper function o, of problem (8.4), (8.2).

The role of lower and upper functions is demonstrated by the following maximum
principle.

Lemma 8.4. Let 01 and o, be lower and upper functions of problem (8.4), (8.2) and let
01 < 03 on [0, T]. Then for each f € Car([0,T] x R?) and each d € [61(0),0,(0)] such
that

~

f(t,x,y) < h(t,01(£),0((t)) forae t € [0,T], allx € (— o0,01(t))

o Ul(t) - X
and all y € R such that |y — o1(t)] < ORISR
~ (8.8)
f(t,x,y) > h(t,02(t),05(t)) forae t €[0,T], allx € (02(t), )
’ X — Gz(t)
and all y € R such that |y — a5(1)| < ot
any solution u of the problem
(¢(u)) = fltouu), () =u(T)=d (8.9)

satisfies 0y < u < oy on [0, T1.
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Proof. Let u be a solution of the auxiliary Dirichlet problem (8.9). Denote v = u —0; and
assume that

v(ty) = min {v(¢) : t € [0, T]} < 0.

Since d € [01(0), 02(0)] and thanks to property (8.7), where o = 0, we may assume that
tho € (0, T)\ 2, v (ty) = 0, and there is t; € (ty, T] such that (f5, ;] N2 = & and

—v(t)

v(t) <0, [V ()] < v

for each t € [to, 11 ].

Using property (8.6) and the first inequality in (8.8), we obtain

(¢ (1) = $(a7(1))" < h(t,01(8),0{(t)) — ($(a](1))) <0

for a.e. t € [ty, t1]. Hence,

0> [ (6(u(6) - plof() ds = p(a' (1) ~ (i (0)

0

for a.e. t € [fy, t1], which leads to a contradiction with the definition of ¢y, that is, u > o7
on [0, T]. Similarly we can show that u < 0, on [0, T]. |

Remark 8.5. Let h € Car([0,T] x R) and let 01,0, € C[0, T] be such that o7 < 0, on
[0, T]. Furthermore, assume that there is ¢ € L,[0, T] such that

|h(t,x, y)| < w(t)

fora.e.t € [0, T],and all (x, y) € [01(t), 02(t)] X R. Then it is always possible to construct
a function f € Car([0, T] x R?) having the following properties:
(i) f(t,x,y) = h(t,x, y) whenever x € [01(t), 02(t)],
(ii) thereis ¥ € L;[0, T] such that If(t,x,y)l < y(t) for ae. t € [0,T] and all
(x,y) € R?,

(iii) f satisfies inequalities (8.8).

Indeed, let us define
wit,) = sup  [h(t0i(t),0](1)) — h(t, 0:(1), 2) |

z€R, |0} (1)—z|<(

fori=1,2and (t,{) € [0,T] x [0,1] and

ol(t) — x > - 001@ X iftx<ay(b),
1

h(t,01(1),y) — w <t, o

() —x+1 () —x+1
ft,x, y) = {h(t,x, ) ifx € [01(t), 02(1)],
h(t,0:(8), y) + w3 <t, xi;;(ji)(ti 1) + x:ﬁg? [ ifx> o),

for a.e. t € [0, T] and (x, y) € R2. One can verify that the functions w;,i = 1,2, belong
to the class Car([0, T'] x [0, 1]) and map the set [0, T] X [0, 1] into [0, o). In particular,
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f € Car([0, T] x R?). Furthermore, it is easy to verify that f has properties (i) and (ii).
We will show that f satisfies the first inequality in (8.8). Indeed, let

o1(t) — x

x<al), |ly-a0l< T T

Then, since w; is nondecreasing in the second variable, we have

|h(t) Ul(t), G'{(t)) - h(ta ol(t),y) | < w (t) %),
that is,
h(t,01(), y) < h(t, 01(1), () + wl(t,%)
fora.e. t € [0, T]. Consequently,
7 _ oi(t) —x o1(t) — x
flbxy) =hit.or(®)y) - “’1<t’ o1 (t) —x+ 1) T o) -x+1

< h(t,o1(t),0/(t)) forae.te[0,T].
Similarly, we can show that f satisfies also the second inequality in (8.8).

Now we will transform problem (8.4), (8.2) to a fixed point problem. Having in mind
that the periodic conditions (8.2) can be equivalently written as

u(0) = u(T) = u(0) +u'(0) — u'(T),

we can proceed similarly to the proof of Theorem 7.4.
Let us consider the quasilinear Dirichlet problem

((/)(x’))’ =b(t) ae.on[0,T], x(0)=x(T)=d (8.10)

with b € L;[0,T] and d € R. A function x € C'[0, T] is a solution of (8.10) if and only
if there is y € R such that

Xt = d+ Lt ¢! (y N JO b(r)dr)ds for t € [0, T],

LT ¢! (y n JO b(T)dT)ds —o.

As in the proof of Theorem 7.4, we can see that for each ¢ € C[0, T] there is a uniquely
determined ¢ := y(¢) € R such that

T
[ ¢ Hc+e(s)ds=0.
0
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The functional y : C[0,T] — R is continuous and maps bounded sets to bounded sets
(see steps 3 and 4 of the proof of Theorem 7.4). Thus, we can define an operator X :
Clo,T] — C'[0, T] by

(K@) (1) = L -1 (y(0) + £(s)) ds. (8.11)

Due to the continuity of y and of ¢!, the operator KX is continuous as well. Let N :
C'[0,T] — C[0,T] and F : C'[0,T] — C'[0, T] be given by

t
(N () (E) = L h(s, u(s), u' (s))ds, (8.12)
(F () (1) = u0) + ' (0) — ' (T) + (K (N (w))) (1) (8.13)

In view of the definition of F, a function u € C'[0, T] is a solution to problem (8.4),
(8.2) if and only if it is a fixed point of . Furthermore, since the operators KX and N
are continuous, it follows that # is continuous. The properties of the operator ¥ are
summarized by the following lemma.

Lemma 8.6. Let F : C'[0,T] — C'[0,T] be defined by (8.13). Then F is completely
continuous and u € C'[0, T] is a solution to problem (8.4), (8.2) if and only if F (u) = u.

Proof. It remains to show that ¥ is completely continuous. Let {u,} be an arbitrary
sequence bounded in C!'[0, T]. Denote v, = F (u,) for n € N. Then

vi(8) = ¢~ (p(N (un)) + (N () (1)) fort €[0,T], n€N.

We can see that the sequences {v,} and {v,} are bounded on [0, T]. In particular, the
sequence {v,} is equicontinuous on [0, T]. Further, since h € Car([0, T] x R?), there is
m € L;[0, T'] such that

|h(t,un(t), u, ()| <m(t) forae te€[0,T], alln € N.

So, for t, 1, € [0, T] we get

[904,0)) = 604 (20)] = | (A ) (1) = (W ) ()] = | [ misyas]

Therefore, the sequence {¢(v},,)} is bounded and equicontinuous on [0, T']. Making use
of the Arzela-Ascoli theore