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Preface

Nonlocal problems concerning the conditions of the existence of different classes of solu-
tions play an important role in the qualitative theory of differential equations. Here
belong the problem of boundedness, periodicity, almost periodicity, stability in the sense
of Poisson, and the problem of the existence of limit regimes of different types, conver-
gence, dissipativity, and so on. The present work belongs to this direction and is dedicated
to the study of asymptotically stable in the sense of Poisson (in particular, asymptotically
almost periodic) motions of dynamical systems and solutions of differential equations.

There is series of works of known authors dedicated to the problem of asymptotically
stability in the sense of Poisson.

First the notion of asymptotically almost periodicity of functions it was introduced
and studied in the works of Fréchet [1, 2]. Later these results were generalized for asymp-
totically almost periodic sequences in the works of Fan [3] and Precupanu [4] and for
abstract asymptotically almost periodic functions in the works of Ararktsyan [5] and Pre-
cupanu [4] and also Khaled [6], Cioranescu [7], Dontvi [8, 9], Mambriani and Manfredi
[10], and Manfredi [11, 12], Marchi [13, 14], Ruess and Summers [15–18], Seifert [19],
Vesentini [20] and see also the bibliography therein.

Other series of works Antonishin [21], Arendt and Batty [22], Barac [23], Barbalat
[24], Khaled [6], Bogdanowicz [25], Buşe [26], Casarino [27], Chen and Matano [28],
Chepyzhov and Vishik [29], Coppel [30], Corduneanu [31], Dontvi [8, 9, 32], Draghichi
[33], Fink [34], Gerko [35], Gheorghiu [36], Grimmer [37], Guryanov [38], Nacer [39],
Henriquez [40], Hino, Murakami and Yoshizawa [41], Hino and Murakami [42, 43],
Jordan and Wheeler [44], Jordan, Madych and Wheeler [45], Yao, Zhang, and Wu [46],
Lovicar [47], Manfredi [48–51], Miller [52, 53], Muntean [54, 55], Puljaev and Caljuk
[56, 57], Risito [58], Ruess and Phong [59], Sandberg and Zyl [60], Seifert [19, 61–
63], Staffans [64], Shen and Yi [65], Taam [66], Tudor [67], Utz and Waltman [68],
Vuillermot [69], Yamaguchi [70], Yamaguchi and Nishihara [71], Yuan [72], Yoshizawa
[73], Zaidman [74, 75], Zhang [76] (see also the bibliography therein) is dedicated to the
problem of asymptotically almost periodicity of solutions of differential (both ODEs and
PDEs), functional-differential and integral equations.

At last, in the works of Khaled [6], Bhatia [77], Bhatia and Chow [78], Bronshteyn
and Černii [79], Gerko [35, 80], Hino and Murakami [42], Millionshchikov [81, 82],
Nemytskii [83, 84], Ruess and Summers [85], Seifert [19, 63], Sibirskii [86] and oth-
ers they are studied motions of dynamical systems that are close by their properties to
asymptotically almost periodic ones.

From the above said it follows that the problem of asymptotically stability in the sense
of Poisson was studied earlier mainly for asymptotically periodicity and asymptotically
almost periodicity of motions of dynamical systems and solutions of differential and
integral equations. In this domain there were obtained important results, however the
problem was not studied thoroughly.



iv Preface

In the present work there is studied the general problem the asymptotically Poisson
stability of motions of dynamical systems and solutions of differential equations.

From the point of view of applications motions of dynamical systems are natu-
rally divided on transitional (nonstabilized) and stabilized. By transitional we mean the
motions that under unlimited increasement of time asymptotically approach to some
established motion, that is, a motion that possesses some property of recurrence and
stability.

When we try to define a nonstabilized motion exactly we come to the notion of the
asymptotically stability in the sense of Poisson motion. Such motions are of interest for
applications and are met, for instance, in systems possessing stable oscillatory regime
(e.g., under the phenomenon of convergence).

The used in the present work method of study is based on the results of the topolog-
ical theory of dynamical systems and can be applied for various types of asymptotically
stability in the sense of Poisson. The idea of applying the methods of the theory of dynam-
ical system while studying nonautonomous differential equations in itself is not new. It
is successfully applied for solution of different problems in the theory of linear and non-
linear nonautonomous differential equations. First such approach to nonautonomous
differential equations was applied in the works of Deysach and Sell [87], Miller [52],
Millionshchikov [81], Seifert [61], Sell [88, 89], Shcherbakov [90–92], later in the works
of Bronshteyn [93], Zhikov [94] and many other authors. It consists in natural binding
with every nonautonomous equation a pair of dynamical systems and a homomorphism
of the first onto the second. In this case, roughly saying, we enclose the information about
the right-hand side of the equation in one dynamical system and the information about
the solutions of this equations we put in the second system.

The offered work consists of five chapters.
In first chapter there are introduced and studied asymptotically almost periodic mo-

tions of abstract dynamical systems. There are given various criterions of asymptoti-
cally periodicity and asymptotically almost periodicity of motions. Applying the obtained
results to the dynamical system of shifts (Bebutov system) in the space of continuous
functions, we get the known results of Fréchet [1, 2]. We also consider the system of shifts
in the space of locally summable functions, Sp asymptotically almost periodic functions
(asymptotically almost periodic function in the sense of Stepanov) and establish series of
their most important properties.

The second chapter is dedicated to asymptotically almost periodic solutions of oper-
ator equations. The notion of compatibility with respect to the character of recurrence of
motions introduced by Shcherbakov [92] for the stable in the sense of Poisson motions is
generalized on asymptotically stable by Poisson motions. Namely, the notion of compat-
ibility of motions with respect to the character of recurrence in limit is introduced. There
is established that compatible with respect to the recurrence in limit motions belong to
the same classes of asymptotically stability by Poisson. There are obtained various tests
of asymptotically stability in the sense of Poisson of solutions of operator equations.
There are studied homoclinic and heteroclinic trajectories of dynamical systems. There
are established tests of convergence of asymptotically almost periodic systems.

In Chapter 3 there are studied asymptotically almost periodic solutions of differ-
ential equations. There are given tests of the existence of compatible in limit solutions
of different classes of differential equations. For asymptotically almost periodic systems
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there is established an analogue of the second theorem of Bogolyubov [95] (the averaging
principle on the semiaxis). There are studied bilaterally asymptotically almost periodic
solutions of some classes of equations and asymptotically almost periodic systems with
convergence.

The fourth chapter is dedicated to asymptotically almost periodic linear systems with
generalized perturbations. There are studied bounded on the semiaxis and asymptotically
almost periodic distributions. There are given necessary and sufficient conditions of solv-
ability of linear asymptotically almost periodic equations in the space of asymptotically
almost periodic distributions. There are given tests of the existence of weakly asymptoti-
cally almost periodic solutions of linear and quasilinear differential equations.

In the fifth chapter there are studied asymptotically almost periodic solutions of
functionally differential equations both with finite and infinite delay. There are estab-
lished tests of the existence of asymptotically almost periodic solutions of integral equa-
tions of Volterra. There are given the conditions of convergence of some evolutionary
equations with asymptotically almost periodic coefficients.

The given in the work results belong mainly to the author (besides Chapter 4, in
which there are presented the results of Dontvi Isaac (excepting Section 4.6)) and are
published in his works [8, 9, 32, 96, 97] and a part of these results (Sections 2.5–2.7,
3.5–3.8, 5.4, and 5.6-5.7) is published for the first time here.

For the best dividing of the material and outlining of the places that are of impor-
tance, we emphasize not only lemmas and theorems but as well many corollaries, remarks
and examples.

The author hopes that the offered book will be useful both for both experts and
young researchers who are interested in dynamical systems and their applications.

The reader needs no deep knowledge of special branches of mathematics. Despite
this, however, it will be helpful for the reader to known the fundamentals of the qualitative
theory of differential equations.

Not having a usual practice of English, the quality of the English of this book is
certainly affected. The reader may excuse this fact.
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Notation

∀ for every;
∃ exists;
:= equals (coincides) by definition;
0 zero, and also zero element of any additive group (semigroup);
N is the set of all natural numbers;
Z is the set of all integer numbers;
Q is the set of all rational numbers;
R is the set of all real numbers;
C is the set of all complex numbers;
S is one of the sets R or Z;
S+(S−) is the set of all nonnegative (nonpositive) numbers from S;
X × Y is the Decart product of two sets;
Mn is the direct product of n copies of the set M;
En is the real or complex n-dimensional Euclidian space;
{xn} is a sequence;
x ∈ X is an element of the set X ;
∂X is the boundary of the set X ;
X ⊆ Y the set X is a part of the set Y or coincides with it;
X
⋃
Y is the union of the sets X and Y ;

X \ Y is the complement of the set Y in X ;
X
⋂
Y is the intersection of the sets X and Y ;

∅ the empty set;
(X , ρ) is a full metric space with the metric ρ;
M is the closure of the set M;
f −1 is the mapping inverse to f ;

f (M)
is the image of the set M ⊆ X in the mapping f : X → Y , that is,
{y ∈ Y : y = f (x), x ∈M};

f ◦ g is the composition of the mappings f and g, that is, ( f ◦g)(x) = f (g(x));
f |M is the restriction of the mapping f on the set M;

f (·, x)
is the partial mapping defined by the function f when the second
argument is x;

IdX is the the identity mapping of X into X ;
Im( f ) is the range of values of the function f ;
D( f ) is the domain of definition of the function f ;
|x| or ‖x‖ is the norm of the element x;
(x, y) an ordered pair;

C(X ,Y)
is the set of all continuous mappings of the space X in the space Y
endowed with the compact-open topology;
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Ck(U ,M)
is the set of all k times continuously differentiable mappings of the
manifold U into the manifold M;

f : X → Y is a mapping of X into Y ;
B(M, ε) is an open ε-neighborhood of the set M in the metric space X ;
B[M, ε] is a closed ε-neighborhood of the set M in the metric space X ;
{x, y, ..., z} is a set consisting of x, y, ..., z;
1,n is a set consisting of 1, 2, ...,n;
{x∈X | R(x)} is the set of all the elements from X possessing the property R;

f −1(M)
is the preimage of the set M ⊆ Y in the mapping f : X → Y , that is,
{x ∈ X : f (x) ∈M};

F(t, ·) := f t
is the partial mapping given by the function f when the second
argument is t;

ρ(ξ,η) is a distance in the metric space X ;
lim
n→+∞ xn is the limit of a sequence;

εk ↓ 0 is a monotonically decreasing to 0 sequence;
lim
x→a f (x) is the limit of mapping f as x → a;
⋃{Mλ : λ ∈ Λ} is the union of the family of sets {Mλ}λ ∈ Λ;
⋂{Mλ : λ ∈ Λ} is the intersection of the family of sets {Mλ}λ ∈ Λ;
(H , 〈·, ·〉) is a Hilbert space with the scalar product 〈·, ·〉;
C(X) is the set of all compacts from X ;
(X , T,π) is a dynamical system;
(X ,P) is the cascade generated by positive powers of P;
ωx(αx) is the ω(α)-limit set of the point x;
αϕx is the α-limit set of the entire trajectory ϕx ∈ Φx;

Φx
is the set of all entire trajectories of the dynamical system (X , T,π)
issuing from the point x as t = 0;

Ws(M) is the stable manifold (the domain of attraction) of the set M;
M is st. L+ the set M is stable in the sense of Lagrange in positive direction;
D+
x (J+

x ) is a positive (positive limit) prolongation of the point x;
xt is the position of the point x in the moment of time t;

pri
is the projection of X1×X2 onto the component of Xi with the index
i (i = 1, 2);

D+(M) is a positive prolongation of the set M;
J+(M) is a positive limit prolongation of the set M;
Σ+
x is a positive semitrajectory of the point x;

Σ+(M) is a positive semitrajectory of the set M;
H+(x) is a closure of the positive semitrajectory of the point x;
Σx is the trajectory of the point x;
H(x) is the closure of the trajectory of the point x;
Ω is the closure of the union of all ω-limit points of (X , T,π);
Mx is the set of all directing sequences of the point x;
Nx is the set of all proper sequences of the point x;

Lx
is the set of all sequences {tn} ∈ Mx satisfying the condition |tn| →
+∞;

β(A,B) is the semideviation of the set A from the set B (A,B ∈ 2X);
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Dm
L1 (R+)

are the spaces of functions ϕ : R+ → En possessing m − 1 usual
derivatives, and Dm−1ϕ is absolutely continuous and Djϕ ∈ L1(R+),
0 ≤ j ≤ m;

D∞L1
(R+)

is the space of infinitely differentiable functions, all the derivatives of
which belong to L1(R+).

D(Q)
is the space of infinitely differentiable functions ϕ : Q → En with the
compact carrier;

Dm(Q)
the space of functions ϕ : Q → En with m continuous derivatives and
the compact carrier;

Cm(Q)
is the array of all the functions ϕ : Q → En having continuous
derivatives up to order m inclusively;

Cm(Q)
family of all the functions ϕ from Cm(Q), for which all derivatives Dmϕ
admit a continuous prolongation onto Q;

D ′(Q) is the space adjoint to D(Q);
β′m(R+) is the space adjoint to Dm

L1 (R+) (0 ≤ m < +∞);
βm(R+) is the set of all multiplicators in β′m(R+);
βmapp(R+) is the space of all asymptotically almost periodic functions ϕ ∈ βm(R+);

β∞app(R+)
is the space of all the functions that are asymptotically almost periodic
together with their derivatives;

β′mapp(R+)
is the space of distributions f ∈ β′m(R+), the shifts of which {τn f | h ∈
R+} form a relatively compact set in β′m(R+);

AP(R+)
denotes the set of all asymptotically almost periodic functions from
C(R+,En);

APm
is the set of all m times continuously differentiable functions from
C(R+,En) that are asymptotically almost periodic together with their
derivatives up to the order m inclusively;

(X ′, R,π′) is the dynamical system adjoint to (X , R,π);

D = D(R)
is the space of all finite continuously differentiable functions ϕ : R →
Rn;

X ′ is the space of all linear continuous functionals on X ;

Cb(T,En)
is the Banach space of all continuous and bounded functions f : T→ En

with the sup-norm;
(C∗b (T,En))n is the space adjoint to (Cb(T,En))n;
U(t,A) is the operator of Cauchy;
GA(t, τ) is the function of Green;
D(A) is the domain of definition of the operator A.





1 Asymptotically Almost Periodic
Motions

1.1. Some Notions and Denotations

Let us give some notions and denotations used in the theory of dynamical systems [86,
92, 93, 98–100] which we will apply in the present book.

Let X be a topological space, R (Z) a group of real (integer) numbers, R+ (Z+) a
semigroup of nonnegative real (integer) numbers, S one of subsets of R or Z, and T ⊆ S

(S+ ⊆ T, where S+ = {s | s ∈ S, s ≥ 0} is a semigroup of additive group S).

Definition 1.1. The triplet (X , T,π), where π : X × T → X is a continuous mapping
satisfying the following conditions:

π(0, x) = x (x ∈ X , 0 ∈ T), (1.1)

π
(
τ,π(t, x)

) = π(t + τ, x) (x ∈ X ; t, τ ∈ T) (1.2)

are called a dynamical system. In that case if T = R+ (R) or Z+ (Z) then the system
(X , T,π) is called a semigroup (group) dynamical system. If T = R+ (R) the dynamical
system is called flow and if T ⊆ Z then (X , T,π) is called cascade.

To be short we will write instead of π(t, x) just xt or πtx. Further, as a rule, X will be
a complete metric space with the metric ρ.

Definition 1.2. The function π(·, x) : T → X with fixed x ∈ X is called motion of the
point x and the set Σx := π(T, x) is called trajectory of this motion or of the point x.

Let T ⊆ T′ (T′ is a subsemigroup from S).

Definition 1.3. The motion π(·, x) : T → X is called extendible on T′ if there exists a
continuous mapping γ : T′ �→ X such that

(1) γ|T = π(·, x);
(2) π(t, γ(s)) = γ(t + s) for all t ∈ T and s ∈ T′.

Denote by Φx := {(γ, T′) : γ is a extension on T′ of motion π(·, x)}.



2 Asymptotically Almost Periodic Motions

Definition 1.4. If for any point x ∈ X and (γ1, T′), (γ2, T′′) ∈ Φx from the equality
γ1(t0) = γ(t0) it follows γ1(t) = γ2(t) for all t ∈ T′

⋂
T′′, then (X , T,π) is said to be

a semigroup dynamical system with uniqueness.

Remark 1.5. We will suppose that any semigroup dynamical system, considering in this
book, possesses the property of uniqueness.

Definition 1.6. A nonempty set M ⊆ X is called positively invariant (resp., negatively
invariant, invariant) if π(t, M) ⊆ M (resp., π(t, M) ⊇ M, π(t, M) = M) for all t ∈ T.

Definition 1.7. A closed invariant set not containing proper subset which would be closed
and invariant is called minimal.

Definition 1.8. A point p ∈ X is calledω-limit point of the motion π(·, x) and of the point
x ∈ X if there exist a sequence {tn} ⊂ T such that tn → +∞ and p = limn→+∞ π(tn, x).

The set of all ω-limit points of the motion π(·, x) is denoted by ωx and is called
ω-limit set of this motion.

Definition 1.9. A point x and motion π(·, x) are called stable in the sense of Lagrange
in positive direction and denoted st. L+ if H+(x) := Σ

+
x is a compact set, where Σ+

x :=
π(T+, x) and T+ := {t | t ∈ T, t ≥ 0}.

Definition 1.10. A point x and motion π(·, x) are called stable in the sense of Lagrange
and denoted st. L if H(x) := Σx is a compact set, where Σx := π(T, x).

Definition 1.11. A point x ∈ X is called fixed point or stationary point if xt = x for all
t ∈ T and τ-periodic if xτ = x (τ > 0, τ ∈ T).

Definition 1.12. Let ε > 0. A number τ ∈ T is called ε-shift (ε-almost period) of x if
ρ(xτ, x) < ε (ρ(x(t + τ), xt) < ε for all t ∈ T).

Definition 1.13. A point x ∈ X is called almost recurrent (almost periodic) if for every
ε > 0 there exists l = l(ε) > 0 such that on every segment from T of length l there exists
ε-shift (ε-almost period) of the point x.

Definition 1.14. If a point x ∈ X is almost recurrent and the set H(x) = Σx is compact,
then the point x is called recurrent.

Definition 1.15. A point x ∈ X is called positively Poisson stable if x ∈ ωx.

Definition 1.16. The motion π(·, x) : T→ X of the semigroup dynamical system (X , T,π)
is called continuable onto S, if there exists a continuous mapping ϕ : S → X such
that πtϕ(s) = ϕ(t + s) for all t ∈ T and s ∈ S. In that case by αϕ we will denote
the set {y | ∃tn → −∞, tn ∈ S−, ϕ(tn) → y}, where ϕ is an extension onto S of
the motion π(·, x). The set αϕ is called α-limit set of ϕ and its points are called α-limit
for ϕ.
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Along with the dynamical system (X , T,π) let us consider (Y , T, σ), where Y is a
complete metric space with metric d.

Definition 1.17. Following [100], one will say that the sequence {tn} ⊂ T directs a point
x ∈ X to the point p ∈ X if p = limn→+∞ xtn. The sequence {tn} is called proper sequence
of the point x if x = limn→+∞ xtn.

By Mx,p is denoted the set of all the sequences directing x to p, by Nx -the set of all
proper sequences of the point x (i.e., Nx :=Mx,x) and Mx := ∪{Mx,p : p ∈ X}.

Definition 1.18. A point x ∈ X is called [100] comparable by the character of recurrence
with y ∈ Y or, in short, comparable with y if for every ε > 0 there exists δ > 0 such that
δ-shift of the point y is ε-shift for x ∈ X .

In the work [100], it is shown that the point x ∈ X is comparable with y ∈ Y if and
only if Ny ⊆ Nx.

Definition 1.19. A point x ∈ X is called [100] uniformly comparable by the character of
recurrence with y ∈ Y or, in short, uniformly comparable with y if for every ε > 0 there
exists δ > 0 such that for any t ∈ T every δ-shift of the point yt is ε-shift for xt, that is,
δ > 0 is such that for every two numbers t1, t2 ∈ T for which d(yt1, yt2) < δ is held the
inequality ρ(xt1, xt2) < ε.

In the case when y ∈ Y is stable in the sense of Lagrange (i.e., Σy is a relatively
compact set) in [100] is proved that x ∈ X is uniformly compared with y ∈ Y if and only
if My ⊆Mx.

Definition 1.20. Points x1 and x2 from X are called positively proximal (distal) if

inf
{
ρ
(
x1t, x2t

)
: t ∈ T+

} = 0
(

inf
{
ρ
(
x1t, x2t

)
: t ∈ T+

}
> 0
)
. (1.3)

Definition 1.21. A setA ⊆ X is called [86] uniformly Lyapunov stable in positive direction
with respect to the set B ⊆ X (denotation-un. st. L+B) if A ⊆ B and for every ε > 0 there
exists δ(ε) > 0 such that the inequality ρ(p, r) < δ (p ∈ A, r ∈ B) implies ρ(pt, rt) < ε
for all t ∈ T+.

Definition 1.22. Let (X , T1,π) and (Y , T2, σ) (S+ ⊆ T1 ⊆ T2 ⊆ S) be two dynamical
systems. The mapping h : X → Y is called homomorphism (resp., isomorphism) of
the dynamical system (X , T1,π) onto (Y , T2, σ) if the mapping h is continuous (resp.,
homeomorphic) and h(π(t, x)) = σ(t,h(x)) for all x ∈ X and t ∈ T1. In that case
(X , T1,π) is called an extension of the dynamical system (Y , T2, σ) and (Y , T2, σ) is the
factor of (X , T1,π). The dynamical system (Y , T2, σ) is also called (see, e.g., [93, 100])
base of the extension (X , T1,π).

Definition 1.23. The triplet ((X , T1,π), (Y , T2, σ),h), where h is a homomorphism of
(X , T1,π) onto (Y , T2, σ), we will call nonautonomous dynamical system.
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Let t ∈ T. Denote mapping πt : X → X by the equality πt(x) = π(t, x). If F ⊆ T

and M ⊆ X , then assume E∗(M, F ) := {πt|M : t ∈ F } where by the line is denoted the
closure in XM and E(M, F ) := {ξ | ξ ∈ E∗(M, S), ξ(M) ⊆M}.

Definition 1.24. A dynamical system (X×Y , T, λ) is called direct product of the dynamical
systems (X , T,π) and (Y , T, σ) if λ(t, (x, y)) = (π(t, x), σ(t, y)) for all (x, y) ∈ X × Y and
t ∈ T.

1.2. Poisson Asymptotically Stable Motions

Definition 1.25. A motion π(·, x) is called asymptotically stationary (resp., asymptoti-
cally τ-periodic, asymptotically almost periodic, asymptotically recurrent, asymptotically
Poisson stable) if there exists a stationary (resp., τ-periodic, almost periodic, recurrent,
Poisson stable) motion π(·, p) such that

lim
t→+∞ ρ(xt, pt) = 0. (1.4)

Denote by Px := {p | p ∈ ωx ∩ωp, limt→+∞ ρ(xt, pt) = 0}. It is clear that the motion
π(·, x) is asymptotically Poisson stable if and only if Px �= ∅. From the definition of
asymptotical Poisson stability, generally speaking, does not follow that Px consists from
a single point. The lemma below points out a simple condition with which Px consists
strictly from one point.

Lemma 1.26. Let x ∈ X be asymptotically Poisson stable. If points from ωx are mutually
distal in positive direction, then Px consists from one point.

Proof . In virtue of asymptotical Poisson stability of π(·, x) the set Px is not empty. As-
sume that in Px there are two different points p1 and p2. Under the conditions of Lemma
1.26 p1 and p2 are positively distal. On the other hand from (1.4) we have

lim
t→+∞ ρ

(
p1t, p2t

) = 0. (1.5)

The equality (1.5) contradicts to the positive distality of the points p1 and p2. The lemma
is proved. �

Lemma 1.27. Let x ∈ X be almost periodic. Then the following statements hold:

(1) for every ε > 0 there exists l = l(ε) > 0 such that on every segment of length l from
T there is a number τ such that ρ(p(t + τ), pt) < ε for all p ∈ H(x) and t ∈ T;

(2) H(x) is uniformly Lyapunov stable (in positive direction) with respect to H(x).

Proof . Let x ∈ X be almost periodic, p ∈ H(x) and ε > 0. Then there exists l = l(ε/2) > 0
such that on every segment of length l from T there is a number τ for which

ρ
(
x(t + τ), xt

)
<
ε

2
(1.6)
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for all t ∈ T. For p ∈ H(x) there exists a sequence {tn} ⊂ T such that p = limn→+∞ xtn.
From (1.6) it follows that

ρ
(
x
(
t + τ + tn

)
, x(t + tn)

)
<
ε

2
(1.7)

for all t ∈ T and n ∈ N. Passing to the limit in (1.7) as n→ +∞, we obtain

ρ
(
p(t + τ), pt

)
< ε (1.8)

for all t ∈ T and p ∈ H(x). The statement (1) is proved.
Let us prove the second statement of the lemma. Let ε > 0 and l = l(ε/2) be the same

that in the proof of statement (1) of Lemma 1.27. Since the set H(x) is compact, then on
H(x) the integral continuity is uniform. This means that for ε/3 and l(ε/3) there exists
δ = δ(ε) > 0 such that

ρ(pt, qt) <
ε

3
(1.9)

for all t ∈ [0, l] as soon as ρ(p, q) < δ (p, q ∈ H(x)). Let now t ≥ l, p and q ∈ H(x) and
ρ(p, q) < δ. Then on the segment [t − l, t] ⊂ T there is a number τ such that

ρ
(
r(t + τ), rt

)
<
ε

3
(1.10)

for all r ∈ H(x) and t ∈ T. Present the number t as s + τ, where s ∈ [0, l]. Then for
t = s + τ

ρ(pt, qt) = ρ
(
p(s + τ), q(s + τ)

)

≤ ρ
(
p(s + τ), ps

)
+ ρ(ps, qs) + ρ

(
qs, q(s + τ)

)
.

(1.11)

From the last inequality and inequalities (1.9) and (1.10) it follows that

ρ(pt, qt) < ε (1.12)

for all t ≥ l. From (1.9) and (1.12) we obtain the second statement of lemma. �

Lemma 1.28. Let the point x ∈ X be almost periodic, then on ωx the dynamical system
(X , T,π) is distal, that is,

inf
{
ρ(pt, qt) : t ∈ T

}
> 0 (1.13)

for all p, q ∈ H(x) (p �= q).

Proof . Assume that the statement of Lemma 1.28 does not take place. Then there exist
p, q ∈ ωx = H(x) (p �= q) and tn ∈ T such that

ρ
(
ptn, qtn

)
�→ 0 (1.14)

as n → +∞. According to Lemma 1.27 H(x) is un. st. L with respect to H(x) and,
consequently, for the number 0 < ε < ρ(p, q) there is δ = δ(ε/3) such that

ρ(pt, qt) <
ε

3
(1.15)
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for all t ∈ T as soon as ρ(p, q) < δ (p, q ∈ H(x)). From (1.14) it follows that for n big
enough ρ(ptn, qtn) < δ and, consequently,

ρ
(
p
(
tn + t

)
, q
(
tn + t

))
<
ε

3
(1.16)

for all t ∈ T. By the number ε/3 and tn ∈ T we chose τ ≥ tn such that

ρ(rτ, r) <
ε

3
(1.17)

for all r ∈ H(x) (according to Lemma 1.27 such τ there exists). Then,

ρ(p, q) ≤ ρ(pτ, p) + ρ(pτ, qτ) + ρ(qτ, q) (1.18)

and according to (1.16) and (1.17) ρ(p, q) < ε. This fact contradicts to the choice of ε.
The lemma is proved. �

Corollary 1.29. If the motion π(·, x) is asymptotically almost periodic, then Px consists of a
single point.

Proof . The formulated statement follows from Lemmas 1.26 and 1.28. �

Remark 1.30. (1) In the case of asymptotical almost periodicity the point p, figuring in
the definition of asymptotical almost periodicity is defined uniquely.

(2) If the a motion is asymptotically recurrent but not asymptotically almost peri-
odic, then the statement formulated above (Corollary 1.29), generally speaking, does not
take place.

1.3. Criterion of Asymptotical Almost Periodicity

Theorem 1.3.1. The point x ∈ X is asymptotical stationary (resp., asymptotically τ-peri-
odic, asymptotically almost periodic) if and only if the following conditions hold:

(1) x is st. L+;
(2) Σ+

x is un. st. L+Σ+
x ;

(3) ωx coincides with the stationary point (resp., τ-periodic trajectory, closure of the
almost periodic trajectory).

Proof . Necessity. Let the point x be asymptotically stationary (resp., asymptotically τ-
periodic, asymptotically almost periodic). Then there exists a stationary (resp., τ-peri-
odic, almost periodic) point p such that equality (1.4) takes place. From equality (1.4) it
follows that x is st. L+ (since an almost period point is st. L+) and ωx = ωp = H(p). So,
we only must show that Σ+

x is un. st. L+Σ+
x . From equality (1.4) and almost periodicity of

the point p it follows that for every ε > 0 there exist numbers β ≥ 0 and l > 0 such that
on every segment of length l there is a number τ for which

ρ
(
x(t + τ), xt

)
< ε (1.19)

for all t ≥ β and t + τ ≥ β.
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Let ε > 0. From the said above it follows that for the number ε/3 there exists a pair of
numbers β(ε/3) and l(ε/3) such that on every segment of length l(ε/3) there is a number
τ for which

ρ
(
x(t + τ), xt

)
<
ε

3
(1.20)

for all t ≥ β and t + τ ≥ β. On the compact set H+(x) the continuity integral is uniform.
Therefore, there exists γ(ε) > 0 such that for every points x1, x2 ∈ Σ+

x from the inequality
ρ(x1, x2) < γ it follows that

ρ
(
x1t, x2t

)
<
ε

3
(1.21)

for all t ∈ [β,β + l]. Note that γ can be chosen smaller than ε. Let x1 and x2 be from Σ+
x ,

that is, xi = xti (ti ∈ T+, i = 1, 2). Then,

ρ
(
x1t, x2t

) ≤ ρ
(
x1(t + τ), x1t

)
+ ρ
(
x1(t + τ), x2(t + τ)

)
+ ρ
(
x2(t + τ), x2t

)
. (1.22)

Choose τ ∈ [β − t,β − t + l] ⊂ T+, then from the last inequality and inequalities (1.20)
and (1.21) it follows that

ρ
(
x1t, x2t

)
< γ (1.23)

for all t ≥ β. In virtue of the uniform integral continuity on Σ+
x the numbers β and γ

(γ < ε) we can choose δ < γ so that from the inequality ρ(x1, x2) < δ (x1, x2 ∈ Σ+
x ) would

follow ρ(x1t, x2t) < γ for all t ∈ [0,β]. Let now ρ(x1, x2) < δ, (x1, x2 ∈ Σ+
x , δ < γ < ε) and

t ∈ T+. Then ρ(x1t, x2t) < ε.
Sufficiency. Let x be st. L+, Σ+

x be un. st. L+Σ+
x , and let ωx coincide with the stationary

point (resp., τ-periodic trajectory, closure of the almost periodic trajectory). Under the
conditions of Theorem 1.3.1 for every natural n there exist βn ≥ 0, ln > 0, and τn ∈
[n,n + ln] such that

ρ
(
x
(
t + τn

)
, xt
)
<

1
n

(1.24)

for all t ≥ βn and t+τn ≥ βn. By the L+ stability of x the sequence {xτn} can be considered
convergent. Assume p := limn→+∞ xτn, then p ∈ ωx and by Lemma 1.27 the point p is
almost periodic.

Let us show that the sequence {xτn} converges to p uniformly on T+, that is,

lim
n→+∞ sup

{
ρ
(
x
(
t + τn

)
, pt
)

: t ∈ T+
} = 0. (1.25)

In fact, since {xτn} is convergent, it is fundamental. Let ε > 0 and δ(ε) > 0 be chosen
from the uniform stability L+Σ+

x of the set Σ+
x . Then there exists N(ε) > 0 such that

ρ(xτn, xτm) < δ for all n,m ≥ N(ε) and, consequently,

ρ
(
x
(
t + τn

)
, x
(
t + τm

))
< ε (1.26)

for all t ∈ T+. Passing to the limit in (1.26) as m → +∞ (for fixed n ∈ N and t ∈ T+), we
obtain

ρ
(
x
(
t + τn

)
, pt
) ≤ ε (1.27)
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for all t ∈ T+ and n ≥ N(ε). Now we will show that p ∈ Px. In fact,

ρ(xt, pt) ≤ ρ
(
xt, x
(
t + τn

))
+ ρ
(
x
(
t + τn

)
, pt
) ≤ 1

n
+ ε (1.28)

for all n ≥ N(ε) and t ≥ βn and, consequently, p ∈ Px. The theorem is proved. �

Lemma 1.31 (see [86]). If the set A is un. st. L+B, then A is un. st. L+B.

Lemma 1.32 (see [86]). If Σ+
x is un. st. L+Σ+

x and ωx �= ∅, then ωx is a minimal set.

Remark 1.33. The statements of [86, Lemmas 1.3.2 and 1.3.3] are proved for group sys-
tems in the case when T = R. However, it is not difficult to verify that the reasoning in
[86] allows us to prove these statements also in the case when T = Z, R+ or Z+.

Corollary 1.34. If the point x is st. L+ and Σ+
x is un. st. L+Σ+

x , thenωx is a nonempty compact
minimal set consisting of almost periodic motions.

Lemma 1.35. If x is st. L+ and tn → t0 (t0 ∈ T), then

lim
n→+∞ sup

{
ρ
(
x
(
t + tn

)
, x
(
t + t0

))
: t ∈ T

} = 0. (1.29)

Proof . Let x be st. L+ and tn → t0. Suppose that equality (1.29) does not take place. Then
there exist a subsequence {tn} and ε0 > 0 such that

ρ
(
x
(
tn + tn

)
, x
(
t0 + tn

)) ≥ ε. (1.30)

Since the point x is st. L+, the sequence {π(x, tn)} can be considered convergent. Put
x = limn→+∞ xtn. Then

ε0 ≤ ρ
(
x
(
tn + tn

)
, x
(
t0 + tn

)) = ρ
((
xtn
)
tn,
(
xtn
)
t0
)
. (1.31)

Passing to the limit in inequality (1.31) as n → +∞, we get the inequality ε0 ≤ 0, which
contradicts to the choice of ε0. The lemma is proved. �

Lemma 1.36. If (X , T,π) is the group dynamical system (T = R or Z), then under the
conditions of Theorem 1.3.1 the set ωx is an almost periodic minimal set of (X , T+,π) (i.e.,
ωx is a minimal set and every point p ∈ ωx is almost periodic).

Proof . In fact, using Lemmas 1.32, 1.35, and some results from the work [101], we can
show that every point p ∈ ωx will be almost periodic in (X , T,π) too. �

Remark 1.37. Let (X , T,π) be a semigroup dynamical system (T = R+ or Z+) and X be
an almost periodic minimal set. According to the results [93, 101] on the space X there
exists a unique group dynamical system (X , S, π̃) such that

(1) π̃|S+×X = π;

(2) (X , S, π̃) is an almost periodic minimal set.
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Theorem 1.3.2. The following statements are equivalent:

(1) the point x ∈ X is asymptotically almost periodic;
(2) for every ε > 0 there exist numbers β ≥ 0 and l > 0 such that on every segment of

length l there is a number τ for which inequality (1.19) holds for every t ≥ β and
t + τ ≥ β;

(3) the point x is st. L+ and Σ+
x is un. st. L+Σ+

x ;
(4) from any sequence tn → +∞ we can extract a subsequence {tkn} such that

{π(tkn , x)} converges uniformly with respect to t ∈ T+, that is, there exists p ∈ X
such that (1.25) is fulfilled.

Proof . Note that the implication (1)⇒(2) follows from the definition of asymptotical
almost periodicity (see the proof of Theorem 1.3.1).

Let us show that (3) follows from (2). From condition 2. it follows that the point x is
st. L+. Really, let ε > 0. For the number ε/2 there exist numbers β ≥ 0 and l > 0 such that
on every segment of length l there is a number τ for which

ρ
(
x(t + τ), xt

)
<
ε

2
(1.32)

for all t ≥ β and t + τ ≥ β. Let us show that M = π([β,β + l], x) approximates Q =
{π(t, x) : t ≥ β} with the exactness of ε/2. Really, if t ≥ β, then exists τ ∈ [β− t,β− t + l]
such that (1.29) holds and, consequently, Q ⊆ S(M, ε/2). Since the set M is closed and
compact, it possesses a finite ε/2-net, which in virtue of the inclusion Q ⊆ S(M, ε/2) is a
ε/2-net of the set Q. As the space X is complete, the set Q is compact. It remains to note
that Σ+

x = π([0,β], x)∪Q. At last, from the proof of necessity of Theorem 1.3.1 it follows
condition (2) and stability L+ of the point x we give the uniform stability L+Σ+

x of the set
Σ+
x .

Let x be st. L+, Σ+
x be un. st. L+Σ+

x and tn → +∞. Since the point x is st. L+, from {tn}
we can extract a subsequence {tkn} such that xtkn → p. In virtue of the uniform stability
L+Σ+

x of the set Σ+
x , reasoning as well as in the proof of necessity of Theorem 1.3.1, we

obtain equality (1.25).
Let us show that (4) implies (3). Suppose the contrary, that is, that there exist a

number ε0 > 0, sequences δn ↓ 0, {t(i)n } (i = 1, 2), and {tn} such that

ρ
(
xt(1)
n , xt(2)

n

)
< δn, ρ

(
x
(
t(1)
n + tn

)
, x
(
t(2)
n + tn

)) ≥ ε0. (1.33)

It is obvious that from (4) it follows that x is st. L+, hence the sequence {xt(i)n } (i = 1, 2)
can be considered convergent. Assume xi = limn→+∞ xt

(i)
n (i = 1, 2). From inequality

(1.33) it follows that x1 = x2 = x. Let us show that the sequence {xt(i)n } converges to x
uniformly w.r.t. t ∈ T+. Two cases are possible:

(a) the sequence {t(i)n } is bounded and without loss of generality it can be considered
convergent. Then the needed statement follows from Lemma 1.35;

(b) the sequence {t(i)n } is unbounded. By (4) the sequence {xt(i)n } can be considered

convergent uniformly with respect to t ∈ T+. So, we showed that x = limn→+∞ xt
(i)
n (i =

1, 2) and the convergence in the last equality is uniform with respect to t ∈ T+. Then for
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the number ε0/2 there is a natural number n0 such that

ρ
(
x
(
t(1)
n + t

)
, x
(
t(2)
n + t

))
<
ε0

2
(1.34)

for all t ∈ T+ and n ≥ n0. In particular, for t = tn,

ρ
(
x
(
t(1)
n + tn

)
, x
(
t(2)
n + tn

))
<
ε0

2
(1.35)

Inequality (1.35) contradicts to inequality (1.33). The obtained contradiction proves the
required statement.

At last, let us show that from (3) it follows (1). Let the point x ∈ X be st. L+

and Σ+
x be un. st. L+Σ+

x . Then according to Corollary 1.34 the set ωx is a nonempty
compact minimal set consisting of almost periodic motions. By Theorem 1.3.1 the point
x is asymptotically almost periodic. The theorem is completely proved. �

1.4. Asymptotically Periodic Motions

Theorem 1.4.1. For the asymptotic τ-periodicity of the point x ∈ X it is necessary and
sufficient that the sequence {π(kτ, x)}+∞

k=0 would be convergent.

Proof . Necessity. Let the point x ∈ X be asymptotically τ-periodic, that is, there exists a
τ-periodic point p such that equality (1.4) takes place. Then

ρ
(
x(kτ), p(kτ)

) = ρ
(
x(kτ), p

)
. (1.36)

Passing to the limit in (1.36) as k → +∞ and taking into consideration (1.4), we will
obtain the required result.

Sufficiency. Let {π(kτ, x)}+∞
k=0 be convergent. Assume p = limk→+∞ π(kτ, x). Note

that

pτ =
(

lim
k→+∞

x(kτ)
)
τ = lim

k→+∞
(
x(kτ)

)
τ = lim

k→+∞
x(k + 1)τ = p. (1.37)

So, the point p is τ-periodic. Let us show that x is st. L+. In fact, let {tn} ⊂ T+. Then
tk = mkτ + tk (mk, tk ∈ T+, τ > 0 and tk ∈ [0, τ)). The sequence {tk} can be consid-
ered convergent and let t0 := limk→+∞ tk. Then limk→+∞ xtk = limk→+∞ x(mkτ + tk) =
limk→+∞(x(mkτ))tk = pt0.

In virtue of stability L+ of x the integral continuity on the set H+(x) is uniform.
Taking in consideration also the fact that limk→+∞ x(kτ) = p, we get

lim
k→+∞

sup
{
ρ(x(kτ + t), pt) : t ∈ [0, τ]

} = 0 (1.38)

and, consequently,

ρ(xt, pt) = ρ
(
x(kτ + t̃ ), pt̃

) ≤ sup
{
ρ
(
x(kτ + t̃ ), pt̃

) | t̃ ∈ [0, τ]
}

, (1.39)

where t = kτ + t̃ (k = [t], t̃ ∈ [0, τ]). Passing to the limit in (1.39) as t → +∞ (k = [t] →
+∞ as t → +∞), we obtain equality (1.4). The theorem is proved. �
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Corollary 1.38. The point x is asymptotically stationary if and only if the sequence
{x(kτ)}∞k=0 converges for every τ ∈ T+.

Theorem 1.4.2. Let T = R+ or R. The point x is asymptotically stationary if and only if the
sequence {π(tn, x)} converges, where tn :=∑n

k=1 1/k.

Proof . The necessity is obvious, let us prove the sufficiency. Let the point x ∈ X be such
that the sequence {xtn}, where tn =

∑n
k=1 1/k, is convergent. Put p = limn→+∞ xtn and

show that

lim
t→+∞ ρ(xt, p) = 0. (1.40)

It is obvious that to prove (1.40) it is enough to prove that for every sequence {t′k} ⊂ T,
t′k → +∞, there takes place

lim
k→+∞

ρ
(
xt′k, p

) = 0. (1.41)

By the sequence {t′k} we will define the sequence

tnk := max
{
tn | tn ≤ t′k

}
. (1.42)

The sequence {tnk} defined by (1.42) possesses the next property:

tnk ≤ t′k < tnk+1. (1.43)

From (1.43), it follows that 0 ≤ t′k−tnk < tnk+1−tnk = 1/(nk + 1). From the last inequality it
follows that limk→+∞(t′k − tnk ) = 0. It remains to note that π(t′k, x) = π(t′k − tnk ,π(tnk , x)).
Since {xtnk} and {t′k − tnk} converges, then the sequence {xt′k} is convergent too, and
obviously limk→+∞ xt′k = p. The theorem is proved. �

Remark 1.39. If (X , T,π) is a cascade (T = Z+ or Z) and the point p ∈ X is m-periodic,
then obviously the set {p, π(1, p), . . . ,π((m − 1), p)} is its trajectory consisting from
exactly m different points.

Lemma 1.40 (see [102]). Let T = Z+ or Z and x ∈ X be a st. L+ point. The set ωx consists
of a finite number of points if and only if there exists an m-periodic point p ∈ X such that
ωx = {p, π(1, p), . . . ,π(m− 1, p)}.

Theorem 1.4.3. Let T = Z+ or Z. The point x is asymptotically m-periodic if and only if
the point x is st. L+ and its ω-limit set ωx consists of exactly m different points.

Proof . The necessity of the formulated statement directly follows from the definition of
asymptotical m-periodicity and Remark 1.39.

Sufficiency. Let the point x ∈ X be st. L+ and ωx = {p1, p2, . . . , pm}, and pi �= pj as
i �= j, i, j = 1, 2, . . . ,m. Then

lim
n→+∞ ρ

(
xn,ωx

) = 0. (1.44)
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From equality (1.44) it follows that

δ(n) := min
{
ρ
(
xn, pjn

)
: 1 ≤ j ≤ m

}
�→ 0 (1.45)

as n→ +∞. Let ρ0 > 0 be such that

ρ
(
pin, pjn

) ≥ ρ0 (1.46)

for all n ∈ T and i, j = 1, 2, . . . ,m, i �= j. Since the point x is st. L+ on the set H+(x), there
is held the condition of the uniform integral continuity. Let us choose for the number
ρ0/3 a number γ(ρ0/3) > 0, γ(ρ0/3) < ρ0/3 from the condition of the uniform integral
continuity. Then

ρ
(
π(x, 1),π(p, 1)

)
<
ρ0

3

(
x, p ∈ H+(x)

)
, (1.47)

as soon as ρ(x, p) < γ. From (1.45), it follows that for γ(ρ0/5) there is n0 such that δ(n) <
γ(ρ0/5) for all n ≥ n0. Then there exists j0 ∈ [1,m] ⊂ T such that

ρ
(
xn0, pj0n0

)
< γ
(
ρ0

5

)

. (1.48)

Assume

Δ = sup
{

Δ̃ | ρ(xn, pj0n
)
< γ
(
ρ0

5

)

, n ∈ [n0,n0 + Δ̃
]
}

. (1.49)

(a) If Δ = +∞, then ρ(xn, pj0n) < γ(ρ0/5) for all n ∈ N and, consequently. for all
j �= j0

ρ
(
xn, pjn

) ≥ ρ
(
pjn, pj0n

)− ρ(xn, pj0n
) ≥ ρ0 − ρ0

3
= 2ρ0

3
> γ
(
ρ0

5

)

. (1.50)

Therefore,

ρ
(
xn, pj0n

) = min
1≤ j≤m

ρ
(
xn, pjn

) = δ(n) �→ 0 (1.51)

as n→ +∞. And in this case the theorem is proved.
(b) Let us show that the case when Δ < +∞ is not possible. In fact, if we suppose that

Δ < +∞ and put n′0 = n0 + Δ, then we have

ρ
(
xn′0, pj0n

′) < γ
(
ρ0

5

)

, ρ
(
x(n′ + 1), pj0 (n′ + 1)

) ≥ γ
(
ρ0

5

)

, (1.52)

ρ
(
x(n′ + 1), pj0 (n′ + 1)

)
<
ρ0

5
. (1.53)

Since δ(n′ + 1) < γ(ρ0/5), then there exists pi0 �= pj0 such that

ρ
(
x(n′ + 1), pi0 (n′ + 1)

) ≥ γ
(
ρ0

5

)

(1.54)
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and hence

ρ
(
pj0 (n′ + 1), pi0 (n′ + 1)

)

≤ρ(pj0 (n′+1), x(n′+1)
)

+ρ(x(n′+1), pi0 (n′+1))<γ+
ρ0

5
<
ρ0

3
+
ρ0

5
< ρ0.

(1.55)

The last contradicts to the choice of the number ρ0. The theorem is completely proved.
�

Remark 1.41. The analogue of Theorem 1.4.2 for flows does not take place.

The said above is confirmed by the next example.

Example 1.42. Let us consider the dynamical system defined on the unit circle by the
following rule. Let the center of the circle be a stationary point, the boundary of the circle
be the trajectory of the periodic motion with the period τ = 1. The rest of motions will
be not special. And besides we assume that every semitrajectory Σ+

x is not un. st. L+Σ+
x for

every inner point x of the circle that is different from the center. The described dynamical
system is given by the system of differential equations, which in polar coordinates is looks
as following:

ṙ = (r − 1)2

ϕ̇ = r.
(1.56)

It is easy to see that ω-limit set of the point x is a trajectory of 1-periodic point, but the
point x itself is not asymptotically 1-periodic, since Σ+

x is not un. st. L+Σ+
x (see Theorem

1.3.1).

1.5. Asymptotically Almost Periodic Functions

1.5.1. Dynamical Systems of Shifts in the Spaces of Continuous Functions

Below we give one general method of constructing of dynamical system in the spaces of
continuous functions. The given method is used while getting many known dynamical
systems in functional spaces (see, e.g., [92, 93, 100]).

Let (X , T,π) be a dynamical system on X , Y be a complete pseudometric space and
P be its complete pseudometrics. By C(X ,Y) we denote the family of all continuous
functions f : X �→ Y endowed with the compact-open topology which is given by the
following family of pseudometrics:

d
p
K ( f , g) = sup

x∈K
p
(
f (x), g(x)

) (
p ∈ P , K ∈K(X)

)
, (1.57)

where K(X) is the family of all compact subsets of X . Define for every τ ∈ T a mapping
στ : C(X ,Y) �→ C(X ,Y) as follows: (στ f )(x) = f (π(x, τ)) (x ∈ X). Note the next
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properties of mapping στ :

(a) σ0 = idC(X ,Y);

(b) στ1 ◦ στ1 = στ1+τ2 ;

(c) στ is continuous.

As a rule, further we use the denotation στ f = f (τ).

Lemma 1.43. The mapping σ : C(X ,Y)× T �→ C(X ,Y) defined by the equality σ( f , τ) =
στ f ( f ∈ C(X ,Y), τ ∈ T) is continuous.

Proof . Let f ∈ C(X ,Y), τ ∈ T and { fν}, {τν} be arbitrary directedness converging to f
and τ, respectively. Then for K ∈K(X) we have

d
p
K

(
σ
(
fν, τν
)
, σ( f , τ)

)

= sup
x∈K

p
(
σ
(
fν, τν
)
(x), σ( f , τ)(x)

)

= sup
x∈K

p
(
fν
(
π
(
x, τν
))

, f
(
π(x, τ)

))

≤ sup
x∈K

p
(
fν
(
π
(
x, τν
))

, f
(
π
(
x, τν
)))

+ sup
x∈K

p
(
f
(
π
(
x, τν
))

, f
(
π(x, τ)

))

≤ sup
x∈K , s∈Q

p
(
fν
(
π(x, s)

)
, f
(
π(x, s)

))
+ sup

x∈K
p
(
f
(
π
(
x, τν
))

, f
(
π(x, τ)

))

≤ sup
m∈π(K ,Q)

p
(
fν(m), f (m)

)
+ sup

x∈K
p
(
f
(
π
(
x, τν
))

, f
(
π(x, τ)

))

= d
p
π(K ,Q)

(
fν, f
)

+ sup
x∈K

p
(
f
(
π
(
x, τν
))

, f
(
π(x, τ)

))
,

(1.58)

whereQ = {τν}. Passing to the limit in inequality (1.58) we get the necessary affirmation.
�

Corollary 1.44. (C(X ,Y), T, σ) is a dynamical system.

Definition 1.45. The dynamical system (C(X ,Y), T, σ) is called a dynamical system of
shifts (dynamical system of translations or dynamical system of Bebutov) in the space of
continuous functions C(X ,Y).

Let us give some examples of dynamical systems of the type (C(X ,Y), T, σ) that are
met in applications.

Example 1.46. Assume X = T and by (X , T,π) denote a dynamical system on T, where
π(x, t) = x + t. The dynamical system (C(T,Y), T, σ) is called a dynamical system of
Bebutov [86, 92, 93, 99, 100]. The dynamical system of Bebutov is a useful means of
study of general properties of continuous functions. Below, we use it to establish series of
properties of almost periodic functions.

Example 1.47. Assume X = T ×W , where W is some metric space and by (X , T,π) we
denote a dynamical system on T×W defined by the following way π((s,w), t) = (s+t,w).
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The given above construction allows us in a natural way define on C(T × W ,Y) the
dynamical system of shifts (C(T×W ,Y), T, σ).

Example 1.48. Let W = Cn, Y = Cm, and A(T × Cn, Cm) be the set of all functions
f ∈ C(T×Cn, Cm) that are holomorphic with respect to the second argument. It is easy
to check that the set A(T × Cn, Cm) is a closed invariant set of the dynamical system
(C(T×Cn, Cm), T, σ) and, consequently, on A(T×Cn, Cm) there is induced a dynamical
system (A(T×Cn, Cm), T, σ).

1.5.2. Asymptotically Almost Periodic Functions of Fréchet.

In this section we will give the Fréchet definition [1, 2] of asymptotical almost periodicity
of continuous functions and also some their properties. Let B be a Banach space with the
norm | · |. In the space C(R, B) with the help of the metric of Bebutov we can define the
compact-open topology

ρ(ϕ,ψ) = sup
L>0

min
{

max
|t|≤L
∣
∣ϕ(t)− ψ(t)

∣
∣;L−1

}
. (1.59)

Consider the dynamical system of Bebutov (C(R, B), R, σ).

Definition 1.49. One will say that the function ϕ ∈ C(R, B) possesses the property A, if
the motion σ(·,ϕ) generated by the function ϕ possesses this property in the dynamical
system (C(R, B), R, σ).

In the quality of the property A there can stand stability L+, uniform stability L+,
periodicity, almost periodicity, asymptotical almost periodicity and so on.

Note that the equality

lim
t→+∞ ρ

(
σ(ϕ, t), σ(p, t)

) = 0 (1.60)

is equivalent to the equality

lim
t→+∞
∣
∣ϕ(t)− p(t)

∣
∣ = 0, (1.61)

where ϕ, p ∈ C(R, B).
From the remarks above it follows that the function ϕ ∈ C(R, B) is asymptotically

stationary (resp., asymptotically τ-periodic, asymptotically almost periodic, asymptoti-
cally recurrent) if and only if there exist functions p and ω from C(R, B) such that

(a) ϕ(t) = p(t) + ω(t) for all t ∈ R;
(b) limt→+∞ |ω(t)| = 0;
(c) p is stationary (resp., τ-periodic, almost periodic, recurrent).

Here p is called the main part of ϕ, and ω is called correction.

Remark 1.50. From Corollary 1.29 it follows that the functions p and ω from the condi-
tions (a), (b), and (c) are defined uniquely, if ϕ is asymptotically almost periodic.
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From the above said and Theorems 1.3.1, 1.3.2, 1.4.1, and 1.4.2 we get the following
statements.

Theorem 1.5.1. The function ϕ ∈ C(R, B) is asymptotically stationary (resp., asymptot-
ically τ-periodic, asymptotically almost periodic) if and only if the function ϕ is st. L+, the
set Σ+

ϕ is un. st. L+Σ+
ϕ and ωϕ consists of a stationary function (resp., trajectory of τ-periodic

function, closure of the trajectory of almost periodic function).

Theorem 1.5.2. Let ϕ ∈ C(R, B). The following statements are equivalent:

(1) the function ϕ is asymptotically almost periodic;
(2) ϕ is st. L+ and Σ+

ϕ is un. st. L+Σ+
ϕ ;

(3) for every ε > 0 there exist numbers β ≥ 0 and l > 0 such that on every segment of
length l there is a number τ for which the inequality |ϕ(t + τ)− ϕ(t)| < ε is held
for all t ≥ β and t + τ ≥ β;

(4) from any sequence {tn}, tn → +∞ there can be extract a subsequence {tnk} such
that the sequence {ϕ(tnk )}, where ϕ(tnk )(t) = ϕ(t + tnk ) for all t ∈ R, converges
uniformly with respect to t ∈ R+.

Theorem 1.5.3. The function ϕ ∈ C(R, B) is asymptotically τ-periodic (resp., asymptot-
ically stationary) if and only if the sequence {ϕ(tn)} converges in C(R, B), where tn := nτ
(resp., tn :=∑n

k=1 1/k).

Lemma 1.51. Let ϕ ∈ C(R, B). The following statements are equivalent:

(1) the function ϕ is st. L+;
(2) the function ϕ is relatively compact on R+ (i.e., ϕ(R+) is a relatively compact set)

and uniformly continuous on R+.

Corollary 1.52. Every asymptotically almost periodic function is relatively compact and
uniformly continuous on R+.

Definition 1.53. Let ϕ ∈ C(R, B). They say that the function ϕ has a average value M{ϕ}
on R+, if there exists a limit of the expression (1/L)

∫ L
0 ϕ(t)dt as L→ +∞. So,

M{ϕ} := lim
L→+∞

1
L

∫ L

0
ϕ(t)dt. (1.62)

Lemma 1.54. Let ω ∈ C(R, B) and limt→+∞ |ω(t)| = 0. Then M{ω} = 0.

Proof . Let ε > 0. Then there exists A > 0 such that |ω(t)| < ε for all t ≥ A and,
consequently, for L > A

∣
∣
∣
∣

1
L

∫ L

0
ω(t)dt

∣
∣
∣
∣ =
∣
∣
∣
∣

1
L

∫ A

0
ω(t)dt +

1
L

∫ L

A
ω(t)dt

∣
∣
∣
∣

≤ 1
L

∫ A

0

∣
∣ω(t)

∣
∣dt +

ε

L
|L−A|.

(1.63)
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Passing to the limit in inequality (1.63) as L→ +∞, we obtain

lim sup
L→+∞

∣
∣
∣
∣

1
L

∫ L

0
ω(t)dt

∣
∣
∣
∣ ≤ ε. (1.64)

Since ε > 0 is arbitrary, from inequality (1.64) it follows that on R+ there exists average
value of the function ω and that it equals to zero. The lemma is proved. �

Corollary 1.55. Let ϕ ∈ C(R, B) be asymptotically almost periodic. Then ϕ has average
value on R+ and M{ϕ} =M{p}, where p is the main part of ϕ.

Theorem 1.5.4. If every function ϕk ∈ C(R, Bk) (k = 1, 2, . . . ,m) is asymptotically almost
periodic, then the function ϕ = (ϕ1,ϕ2, . . . ,ϕm) ∈ C(R, B1)×C(R, B2)×· · ·×C(R, Bm)
is asymptotically almost periodic too.

Proof . The formulated statement follows directly from Theorem 1.5.1. In fact, put B =
B1 ×B2 × · · · ×Bm and define the norm x ∈ B by the equality ‖x‖ := ∑m

k=1 |xk|k,
where | · |k is the norm on Bk (k = 1, 2, . . . ,m). Then ϕ ∈ C(R, B). Let ϕk ∈ C(R, Bk)
(k = 1, 2, . . . ,m) be asymptotically almost periodic and tn → +∞. Then there exists a

subsequence tln such that {ϕ(tln )
k } uniformly converges on R+ to some function ϕ̃k (k =

1, 2, . . . ,m) and hence ϕ(tln ) = (ϕ
(tln )
1 ,ϕ

(tln )
2 , . . . ,ϕ

(tln )
m ) uniformly converges to the function

ϕ̃ = (ϕ̃1, ϕ̃2, . . . , ϕ̃m) ∈ C(R, B) on R+. �

Corollary 1.56. Let ϕk ∈ C(R, B) (k = 1, 2, . . . ,m) be asymptotically almost periodic.
Then ϕ := ϕ1 + ϕ2 + · · · + ϕm ∈ C(R, B) is asymptotically almost periodic too.

Proof . By Theorem 1.5.4 the function ϕ̃ = (ϕ1,ϕ2, . . . ,ϕm) ∈ C(R, Bm) is asymptotically
almost periodic, that is, there exist functions p̃ = (p1, p2, . . . , pm) ∈ C(R, Bm) and ω̃ =
(ω1, ω2, . . . ,ωm) ∈ C(R, Bm) such that (p1, p2, . . . , pm) ∈ C(R, Bm) is almost periodic,

lim
t→+∞
(∣
∣ω1(t)

∣
∣ +
∣
∣ω2(t)

∣
∣ + · · · +

∣
∣ωm(t)

∣
∣
) = 0 (1.65)

and ϕ̃ = p̃ + ω̃. Then the function ϕ = ϕ1 + ϕ2 + · · · + ϕm can be presented in the form
ϕ = p + ω, where ω := ω1 + ω2 + · · · + ωm and p := p1 + p2 + · · · + pm. The function
p is almost periodic in virtue of the almost periodicity of functions p1, p2, . . . , pm and
|ω(t)| → 0 as t → +∞ and therefore ϕ is asymptotically almost periodic. �

Theorem 1.5.5. Let {ϕk} ⊂ C(R, B) be a sequence of asymptotically almost periodic func-
tions and ϕk → ϕ uniformly on R+ as k → +∞, that is, limt→+∞ sup{|ϕk(t) − ϕ(t)| | t ∈
R+} = 0. Then ϕ also is asymptotically almost periodic.

Proof . Let ε > 0 and k(ε) ∈ N be such that

∣
∣ϕk(t)− ϕ(t)

∣
∣ <

ε

3
(1.66)
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for all t ∈ R+ and k ≥ k(ε). Since the function ϕk(ε) is asymptotically almost periodic,
then for the number ε/3 there are numbers β(ε) ≥ 0 and l(ε) > 0 such that on every
segment of length l(ε) from R there exists a number τ such that

∣
∣ϕk(ε)(t + τ)− ϕk(ε)(t)

∣
∣ <

ε

3
(1.67)

for all t ≥ β(ε) and t + τ ≥ β(ε). From inequalities (1.66) and (1.67) it follows that

∣
∣ϕ(t + τ)− ϕ(t)

∣
∣

≤ ∣∣ϕ(t + τ)− ϕk(ε)(t + τ)
∣
∣ +
∣
∣ϕk(ε)(t + τ)− ϕk(ε)(t)

∣
∣ +
∣
∣ϕk(ε)(t)− ϕ(t)

∣
∣

<
ε

3
+
ε

3
+
ε

3
= ε

(1.68)

for all t ≥ β(ε) and t + τ ≥ β(ε). The theorem is proved. �

Corollary 1.57. Let {ϕk} ⊂ C(R, B) be a sequence of asymptotically almost periodic func-
tions and the series

∑+∞
k=1 ϕk converges uniformly with respect to t ∈ R+ and S ∈ C(R, B) is

the sum of this series. Then S is an asymptotically almost periodic function.

Let AP(R+, B) := {ϕ | ϕ ∈ C(R+, B), ϕ be asymptotically almost periodic} and

‖ϕ‖ = sup
{|ϕ(t) : t ∈ R+

}
. (1.69)

Theorem 1.5.6. AP(R+, B) is a linear space and by equality (1.69) there is defined a
complete norm on AP(R+, B), that is, (AP(R+, B),‖ · ‖) is a Banach space.

Proof . The linearity of the space AP(R+, B) follows from Corollary 1.56. From Corollary
1.52 it follows that the right-hand side of equality (1.69) is a finite number for every
function ϕ ∈ AP(R+, B). At last, let us show that norm (1.69) is complete. Let {ϕk} ⊂
AP(R+, B) be a fundamental sequence. Then it is fundamental also in the spaceC(R+, B)
(with respect to the metric of Bebutov) and, consequently, {ϕk} is convergent in
C(R+, B). So, there exists a function ϕ ∈ C(R+, B) such that ϕk → ϕ uniformly on
compact subset from R+.

Let now ε > 0. Since {ϕk} is fundamental with respect to norm (1.69), there exists a
number N(ε) > 0 such that

∣
∣ϕm(t)− ϕn(t)

∣
∣ < ε (1.70)

for all t ∈ R+ and m,n ≥ N(ε). Let us fix t ∈ R+, n ≥ N(ε) and pass to the limit in
inequality (1.70) as m→ +∞. Then we get

∣
∣ϕ(t)− ϕn(t)

∣
∣ ≤ ε (1.71)

for all t ∈ R+ and n ≥ N(ε). So, ϕn → ϕ uniformly on R+ and by Theorem 1.5.5 the
function ϕ is asymptotically almost periodic. The theorem is proved. �
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Denote by P (R, B) the Banach space of all almost periodic functions from C(R, B)
with the norm

‖ϕ‖ = sup
{|ϕ(t) : t ∈ R

}
, (1.72)

and by C0(R, B) the Banach space of all functions ϕ ∈ C(R+, B) satisfying the condition
limt→+∞ |ϕ(t)| = 0 and endowed with norm (1.69).

Theorem 1.5.7. The continuously differentiable asymptotically almost periodic function
ϕ ∈ AP(R, B) has an asymptotically almost periodic derivative ϕ′ if and only if it is
uniformly continuous on R+.

Proof . The necessity follows from Corollary 1.52. Sufficiency. Let ϕ ∈AP(R, B) be con-
tinuously differentiable and ϕ′ be uniformly continuous on R+. Consider the sequence
{ϕn} ⊂AP(R, B) defined by the equality

ϕn(t) = n
[

ϕ
(

t +
1
n

)

− ϕ(t)
]

= n
∫ 1/n

0
ϕ′(t + τ)dτ. (1.73)

Note that

∣
∣ϕn(t)− ϕ′(t)∣∣ =

∣
∣
∣
∣n
∫ 1/n

0

[
ϕ′(t + τ)− ϕ′(t)]dτ

∣
∣
∣
∣

≤ max
0≤τ≤1/n

∣
∣ϕ′(t + τ)− ϕ′(t)∣∣,

(1.74)

and hence ϕn → ϕ′ uniformly on R+, since ϕ′ is uniformly continuous on R+. According
to Theorem 1.5.5 ϕ′ ∈AP(R, B). �

Lemma 1.58. Let ϕ ∈ C(R, B) be continuously differentiable, having a uniformly continu-
ous derivative ϕ′ and limt→+∞ |ϕ(t)| = 0. Then limt→+∞ |ϕ′(t)| = 0.

Proof . Let {ϕn} ⊂ C(R, B) be the sequence defined by equality (1.73). From inequality
(1.74) it follows that ϕn → ϕ′ uniformly on R+. Besides, from equality (1.73) it follows
that

lim
t→+∞
∣
∣ϕn(t)

∣
∣ = 0 (1.75)

for all n ∈ N. Let ε > 0. Then there exists a number n(ε) ∈ N such that

∣
∣ϕ′(t)− ϕn(t)

∣
∣ <

ε

2
(1.76)

for all t ∈ R+ and n ≥ n(ε). From (1.75) it follows that for n(ε) there is L(ε) > 0 such that

∣
∣ϕn(ε)(t)

∣
∣ <

ε

2
(1.77)

for all t ≥ L(ε). Then

∣
∣ϕ′(t)

∣
∣ ≤ ∣∣ϕ′(t)− ϕn(ε)(t)

∣
∣ +
∣
∣ϕn(ε)(t)

∣
∣ <

ε

2
+
ε

2
= ε (1.78)

for all t ≥ L(ε). The lemma is proved. �
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Lemma 1.59. Let ϕ ∈ C(R, B) be asymptotically almost periodic (i.e., ϕ = p + ω, where
p ∈ P (R, B) and ω ∈ C0(R, B)) and uniformly continuous on R+. Then p and ω are
continuously differentiable, p′ ∈ P (R, B), ω′ ∈ C0(R, B) and ϕ′ = p′ + ω′.

Proof . Under the conditions of Lemma 1.59 along with the function ϕ, according to
Theorem 1.5.7, its derivative ϕ′ also is asymptotically almost periodic. Let {τn} be such
that τn → +∞ and ϕ(τn) → p. Since ϕ is asymptotically almost periodic, the sequence
{ϕ′(t + τn)} can be considered convergent. Assume p̃(t) = limn→+∞ ϕ′(t + τn) and note
that

ϕ
(
t + τn

) = ϕ
(
τn
)

+
∫ t

0
ϕ′
(
τ + τn

)
dτ. (1.79)

Passing to the limit in equality (1.79) as n→ +∞, we obtain

p(t) = p(0) +
∫ t

0
p̃(τ)dτ. (1.80)

Equality (1.80) implies that p is continuously differentiable and p′ = p̃. Since p̃ ∈ ωϕ′
and ϕ′ is asymptotically almost periodic, then p′ ∈ P (R, B). Therefore ω = ϕ − p is
uniformly continuous on R+ together with its derivative ω′ = ϕ′ − p′ and by Lemma 1.58
ω′ ∈ C0(R, B). The lemma is proved. �

Theorem 1.5.8. Let ϕ ∈ AP(R, B) (i.e., ϕ = p + ω, where p ∈ P (R, B) and ω ∈
C0(R, B)) and F(t) := ∫ t0 ϕ(τ)dτ has a compact values on R+ (i.e., F(R+) is a relatively
compact set). The function F is asymptotically almost periodic if and only if the integral
∫ +∞

0 ω(τ)dτ converges, that is, there exists a finite limit

lim
t→+∞

∫ t

0
ω(τ)dτ. (1.81)

Proof . Let ϕ,F ∈AP(R, B), where F(t) = ∫ t0 ϕ(τ)dτ, and F = P + Ω (P ∈ P (R, B) and
Ω ∈ C0(R, B)). Since F′ = ϕ, then according to Lemma 1.59 P′ = p, Ω′ = ω and, conse-
quently, Ω(t) = Ω(0) +

∫ t
0 ω(τ)dτ. Since |Ω(t)| → 0 as t → +∞, then limt→+∞

∫ t
0 ω(τ)dτ =

−Ω(0).
Conversely. Suppose that there exists a finite limit limt→+∞

∫ t
0 ω(τ)dτ = c. Let us

choose the sequence {τn} → +∞ such that ϕ(τn) → p and consider the sequence Fn defined
as follows:

Fn(t) =
∫ t

0
ϕ(t + τ)dτ + F

(
τn
)
. (1.82)

Since the function F has a compact values on R+, then the sequence {F(τn)} can be
considered convergent. Put

A = lim
n→+∞F

(
τn
)
. (1.83)
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Passing to the limit in equality (1.82) as n → +∞, we get F̃(t) = ∫ t0 p(τ)dτ + A. Besides,
note that Fn(t) ∈ F(R+) for all t ≥ −τn, that is, the function Fn has a compact values on
[−τn, +∞[ and, consequently, F̃ has a compact values on R (F̃(t) ∈ F(R+) for all t ∈ R).
Therefore P(t) := ∫ t0 p(τ)dτ = F̃(t) − A has a compact values and hence it is almost
periodic [92, 93, 100]. The function F(t) = ∫ t0 ϕ(τ)dτ can be presented in the form

F(t) = P(t) + c +
[∫ t

0
ω(τ)dτ − c

]

. (1.84)

Since limt→+∞[
∫ t

0 ω(τ)dτ − c] = 0 and P + c is almost periodic, then F is asymptotically
almost periodic. �

Lemma 1.60. Let ϕk ∈ AP(R, Bk) (k = 1, 2, . . . ,m) and Φ ∈ C(Q, B), where Q =
ϕ1(R+)× ϕ2(R+)× · · · × ϕm(R+). The function ϕ defined by the equality

ϕ(t) := Φ(ϕ1(t),ϕ2(t), . . . ,ϕm(t))
(
t ∈ R+

)
(1.85)

is asymptotically almost periodic.

Proof . In virtue of the asymptotical almost periodicity of the functions ϕ1, ϕ2, . . . , ϕm the
set Q+ = ϕ1(R+) × ϕ2(R+) × · · · × ϕm(R+) is compact and, consequently, the function
Φ ∈ C(Q, B) is uniformly continuous on Q+. Let pk be an almost periodic function such
that ϕk = pk +ωk for ωk ∈ C0(R, Bk) (k = 1, 2, . . . ,m). Then pk(R) ⊂ ϕk(R+) and hence
Q̃ = p1(R)× p2(R)× · · · × pm(R) ⊂ Q+ is a compact set.

Let ε > 0, δ(ε) be chosen from the uniform continuity of Φ on Q+ and L(ε) > 0 be
such that

∣
∣ϕk(t)− pk(t)

∣
∣ < δ(ε) (1.86)

for all t ≥ L(ε) and k = 1, 2, . . . ,m. Assume p(t) := Φ(p1(t), p2(t), . . . , pm(t)) andω(t) :=
ϕ(t) − p(t). Note that the function p ∈ C(R, B) is almost periodic, as the functions
pk ∈ C(R, Bk) (k = 1, 2, . . . ,m) are almost periodic and Φ is uniformly continuous on
Q+ ⊃ Q̃ = p1(R)× p2(R)× · · · × pm(R). Besides,

∣
∣ω(t)

∣
∣ = ∣∣Φ(ϕ1(t), . . . ,ϕm(t)

)−Φ
(
p1(t), . . . , pm(t)

)∣
∣ < ε (1.87)

for all t ≥ L(ε). The lemma is proved. �

Lemma 1.61. Let {ϕk} ⊂ AP(R, B) and ϕ = limk→+∞ ϕk in AP(R, B). Then M{ϕ} =
limk→+∞M(ϕk).

Proof . Let ε > 0 and k(ε) > 0 be such that

∣
∣ϕk(t)− ϕ(t)

∣
∣ < ε (1.88)

for all t ∈ R+ and k ≥ k(ε). Since

∣
∣M
{
ϕk
}−M{ϕ}∣∣ ≤M

{∣
∣ϕk(t)− ϕ(t)

∣
∣
}

, (1.89)
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then from (1.88) it follows the inequality

∣
∣M
{
ϕk
}−M{ϕ}∣∣ ≤ ε (1.90)

holds for all k ≥ k(ε). The lemma is proved. �

Lemma 1.62. If ϕ ∈AP(R+, B), then

M{ϕ} = lim
T→+∞

1
T

∫ t+T

t
ϕ(s)ds. (1.91)

And the limit (1.91) exists uniformly on t ∈ R+.

Proof . Let ϕ ∈AP(R+, B), p ∈ P (R, B), and ω ∈ C0(R+, B) such that ϕ = p+ω. Then
the equality

M{p} = lim
T→+∞

1
T

∫ t+T

t
p(s)ds (1.92)

takes place uniformly with respect to t ∈ R. Let ε > 0. Then for ω there is L(ε) > 0 such
that

∣
∣ω(t)

∣
∣ <

ε

2
(1.93)

for all t ≥ L(ε) and, consequently,

∣
∣
∣
∣

1
T

∫ T

0
ω(s + t)ds

∣
∣
∣
∣

≤ 1
T

∫ L(ε)

0

∣
∣ω(s + t)

∣
∣ds +

1
T

∫ T

L(ε)

∣
∣ω(s + t)

∣
∣ds ≤ ‖ω‖

T
L(ε) +

ε

2
T − L(ε)

T

(1.94)

for all t ≥ 0, where ‖ω‖ = sup{|ϕ(t)| : t ∈ R+}. From (1.94) it follows that

∣
∣
∣
∣

1
T

∫ T

0
ω(s + t)ds

∣
∣
∣
∣ < ε (1.95)

for all t ∈ R+ and T > 2L(ε)‖ω‖/ε. Let ε > 0. Then for ω from (1.92) and (1.95) it follows
(1.91). The lemma is proved. �

1.6. Asymptotically Sp Almost Periodic Functions

1.6.1. Dynamical Systems of Shifts in the Space L
p
loc(R; B;μ).

Let S ⊆ R, (S, B;μ) be a space with measure and μ is the Radon measure, B-is a Banach
space with the norm | · |.
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Definition 1.63. A function f : S → B is called [103] a step-function if it takes no more
than a finite number of values. In this case, it is called measurable, if f −1({x}) ∈ B for
every x ∈B, and integrable if in addition μ( f −1({x})) < +∞. Then there is defined

∫

f dμ =
∑

x∈B

μ
(
f −1({x}))x. (1.96)

The sum in the right-hand side of equality (1.96) is finite by assumption.

Definition 1.64. A function f : S → B is said to be measurable if there exists a sequence
{ fn} of step-functions measurable and such that fn(s) → f (s) with respect to the measure
μ almost everywhere.

Definition 1.65. A function f : S → B is called integrable, if there exists a sequence { fn}
of step-functions, integrable and such that for every n the function ϕn(s) = | fn(s)− f (s)|
is integrable and

lim
n→+∞

∫
∣
∣ fn(s)− f (s)

∣
∣dμ(s) = 0. (1.97)

Then
∫
fndμ converges in the space B and its limit does not depend on the choice of the

approximating sequence { fn} with the above mentioned properties. This limit is denoted
by
∫
f dμ or

∫
f (s)dμ(s).

Let 1 ≤ p ≤ +∞. By Lp(S; B,μ) there is denoted the space of all measurable functions
(classes of functions) f : S → B such that | f | ∈ Lp(S; R;μ), where | f |(s) = | f (s)|. The
space Lp(S; B;μ) is endowed with the norm

‖ f ‖Lp =
∣
∣
∣
∣

∫ ∣
∣
∣
∣ f (s)|pdμ(s)|1/p, ‖ f ‖∞ = supess

∣
∣ f (s)

∣
∣. (1.98)

Lp(S; B;μ) with norm (1.98) is a Banach space.
Denote by L

p
loc(R; B;μ) the set of all function f : R → B such that fl ∈ Lp([−l, l];

B;μ) for every l > 0, where fl is the restriction of the function f onto [−l, l].

Definition 1.66. The function f : R → B is called decomposable, if for arbitrary s ∈ R

one has f (s) =∑N
i=1 ϕi(s)gi, where gi ∈B and ϕi is a scalar continuous function with the

compact support (i = 1, 2, . . . ,N).

Lemma 1.67 (see [103]). The following statements hold:

(1) every continuous functions f : S→B with compact support is integrable;
(2) in the space Lp(R;μ; B) the set of step-functions with compact support are dense.

In the space L
p
loc(R; B;μ) we define a family of seminorms ‖ · ‖l,p by the following

rule:

‖ f ‖l,p = ‖ fl‖Lp([−l,l];B;μ) (l > 0). (1.99)
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Family of seminorms (1.99) defines a metrizable topology on L
p
loc(R; B;μ). The metric

that gives this topology can be defined, for instance, by the next equality

dp(ϕ,ψ) =
∞∑

n=1

1
2n

‖ϕ− ψ‖n,p

1 + ‖ϕ− ψ‖n,p
. (1.100)

Let us define a mapping σ : L
p
loc(R; B;μ) × R → L

p
loc(R; B;μ) as follows: σ( f , τ) =

f (τ) for all f ∈ L
p
loc(R; B;μ) and τ ∈ R, where f (τ)(s) := f (s + τ) (s ∈ R).

Lemma 1.68. (L
p
loc(R; B;μ), R, σ) is a dynamical system.

Proof . It is enough to show the mapping σ is continuous. Let fn → f in the space
L
p
loc(R; B;μ) and let tn → t0. We will show that σ( fn, tn) → σ( f , t0) as n → +∞, that

is,

[∫

|t|≤l

∣
∣ fn
(
tn + s

)− f
(
t0 + s

)∣
∣pdμ(s)

]1/p

�→ 0, (1.101)

as n→ +∞ for every l > 0.
Note that

[∫

|t|≤l

∣
∣ fn
(
tn + s

)− f
(
t0 + s

)∣
∣pdμ(s)

]1/p

≤
[∫

|t|≤l

∣
∣ fn
(
tn + s

)− f
(
tn+s
)∣
∣pdμ(s)

]1/p

+

[∫

|t|≤l

∣
∣ fn
(
tn+s
)− f
(
t0 +s
)∣
∣pdμ(s)

]1/p

.

(1.102)

Besides, since tn → t0, there exists l0 > 0 such that |tn| ≤ l0 and |tn + s| ≤ |tn| + |s| ≤
l0 + l = L for all n = 1, 2, 3, . . ., and, consequently,

[∫

|s|≤l

∣
∣ fn
(
tn + s

)− f
(
tn + s

)∣
∣pdμ(s)

]1/p

≤
[∫

|t|≤L

∣
∣ fn(t)− f (t)

∣
∣pdμ(t)

]1/p

�→ 0

(1.103)

as n→ +∞, since fn → f in L
p
loc(R; B;μ).

To estimate the second integral in the right-hand side of inequality (1.102) we will
use Lemma 1.67. Let ε > 0 and g : R → B be a continuous function with the compact
support such that

[∫

|s|≤l+l0

∣
∣g(s)− f (s)

∣
∣pdμ(s)

]1/p

≤ ε. (1.104)
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Then,

[∫

|t|≤l

∣
∣ f
(
t + hn

)− f (t)
∣
∣pdt

]1/p

≤
[∫

|t|≤l

∣
∣ f
(
t + hn

)− g(t + hn
)∣
∣pdt

]1/p

+

[∫

|t|≤l

∣
∣g
(
t + hn

)− g(t)
∣
∣pdt

]1/p

+

[∫

|t|≤l

∣
∣ f (t)− g(t)

∣
∣pdt

]1/p

≤ 2

[∫

|t|≤L

∣
∣ f (s)− g(s)

∣
∣pds

]1/p

+

[∫

|t|≤l

∣
∣g
(
t + hn

)− g(t)
∣
∣pdt

]1/p

≤ 2ε + max
|t|≤l
∣
∣g
(
t + hn

)− g(t)
∣
∣ · 2l

(1.105)

(where L := l + l0 and l0 := sup{hn | n ∈ N}) and, consequently,

lim
n→+∞

[∫

|t|≤l

∣
∣ f
(
t + hn

)− f (t)
∣
∣pdt

]1/p

≤ 2ε (1.106)

(because max|t|≤l |g(t + hn) − g(t)| → 0 as hn → 0). Since ε is arbitrary, from the last
relation we obtain

lim
n→+∞

[∫

|t|≤l

∣
∣ f
(
t + hn

)− f (t)
∣
∣pdt

]1/p

= 0. (1.107)

From (1.102)–(1.107), it follows the continuity of the mapping σ . The lemma is proved.
�

1.6.2. Stepanoff Asymptotically Almost Periodic Functions

Definition 1.69. A function ϕ ∈ L
p
loc(R; B;μ) is called Sp almost periodic (almost periodic

in the sense of Stepanoff [104]), if the motion σ(·,ϕ) is almost periodic in the dynamical
system (L

p
loc(R; B;μ), R, σ). Analogously there is defined asymptotical Sp almost period-

icity of functions.

Theorem 1.6.1. Let ϕ ∈ L
p
loc(R; B;μ). The following statements are equivalent:

(1) ϕ is Sp almost periodic;
(2) for every ε > 0 there exists l > 0 such that on every segment of length l in R there

is a number τ for which

∫ t+1

t

∣
∣ϕ(s + τ)− ϕ(s)

∣
∣pds < εp (1.108)

for all t ∈ R;
(3) ϕ is st. L and Σϕ is un. st. LΣϕ in the dynamical system (L

p
loc(R; B;μ), R, σ);
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(4) from an arbitrary sequence {tn} ⊂ R there can be extract a subsequence {tkn} such
that the sequence {ϕ(tkn )} uniformly converges in the space L

p
loc(R; B;μ), that is,

there exists a function ϕ̃ ∈ L
p
loc(R; B;μ) such that

lim
n→+∞

sup
t∈R

∫ t+1

t

∣
∣ϕ
(
s + tkn

)− ϕ̃(s)
∣
∣pds = 0. (1.109)

Remark 1.70. If the space B is finite-dimensional, then the stability in the sense of
Lagrange of the function ϕ ∈ L

p
loc(R; B;μ) is equivalent to the following two conditions:

sup
t∈R

∫ t+1

t

∣
∣ϕ(s)

∣
∣pds < +∞, lim

h→0
sup
t∈R

∫ t+1

t

∣
∣ϕ(s + h)− ϕ(s)

∣
∣pds = 0. (1.110)

Theorem 1.6.2. Let ϕ ∈ L
p
loc(R+; B;μ). The following statements are equivalent:

(1) the function ϕ is asymptotically Sp almost periodic, that is, the motion σ(·,ϕ) is
asymptotically almost periodic in the dynamical system (L

p
loc(R+; B;μ), R, σ);

(2) there exist an Sp almost periodic function p and a function ω ∈ L
p
loc(R+; B;μ)

such that p ∈ L
p
loc(R; B;μ), ϕ = p + ω and limt+∞

∫ t+1
t |ω(s)|pds = 0;

(3) the function ϕ is st. L+ and Σ+
ϕ is un. st. L+Σ+

ϕ in the dynamical system (L
p
loc(R+;

B;μ), R, σ);
(4) for every ε > 0 there exist numbers β ≥ 0 and l > 0 such that on every segment of

length l there is a number τ for which

∫ t+1

t

∣
∣ϕ(τ + s)− ϕ(s)

∣
∣pds < εp (1.111)

for all t ≥ β and t + τ ≥ β;
(5) from every sequence {tn}, tn → +∞, there can be extract a subsequence {tkn} such

that the sequence {ϕ(tkn )} converges uniformly with respect to t ∈ R+ in the space
L
p
loc(R+; B;μ), that is, there exists a function ϕ̃ ∈ L

p
loc(R+; B;μ) such that

lim
n→+∞

sup
t∈R+

∫ t+1

t

∣
∣ϕ
(
s + tkn

)− ϕ̃(s)
∣
∣pds = 0. (1.112)



2
Asymptotically Almost Periodic
Solutions of Operator Equations

In this chapter we introduce the notion of comparability of motions of dynamical system
by the character of their recurrence under limit. While studying asymptotically stable in
the sense of Poisson motions this notion plays the same role that the notion of compara-
bility by the character of recurrence of stable in the sense of Poisson motions introduced
by B. A. Shcherbakov (see, e.g., [92, 100]).

2.1. Comparability of Motions by the Character of Recurrence

Let (X , T,π) and (Y , T, σ) be dynamical systems, x ∈ X and y ∈ Y . Denote by L+∞
x,p the

set of all sequences {tn} ∈Mx,p such that tn → +∞. Assume L+∞
x (M) := ∪{Lx,p : p ∈M}

and L+∞
x = L+∞

x (X).

Definition 2.1. A point x ∈ X is called comparable by the character of recurrence with
y ∈ Y with respect to M ⊂ Y or, in short, comparable with y with respect to the set M if
L+∞
y (M) ⊆ L+∞

x .

Denote by H(M) := {π(t, x) : x ∈M, t ∈ T}. Let (Y , S, σ) be a group dynamical
system.

Lemma 2.2. If L+∞
y,q ⊆ L+∞

x,p , then L+∞
y,σ(t,q) ⊆ L+∞

x,π(t,p) for all t ∈ T ⊆ S.

Proof . Let t ∈ T and {tn} ∈ L+∞
y,σ(t,q), then tn → +∞ and σ(tn, y) → σ(t, q) as n → +∞

and, consequently, {tn − t} ⊂ T and {tn − t} ∈ L+∞
y,q . In fact, limn→+∞ σ(tn − t, y) =

σ(−t, limn→+∞ σ(tn, y)) = σ(−t, σ(q, t)) = q. So, {tn − t} ∈ L+∞
x,p ⊆ L+∞

y,p , and hence
{tn− t} ∈ L+∞

x,p . Repeating the reasoning above it is easy to show that {tn} ∈ L+∞
x,π(t,p). The

lemma is proved. �

Corollary 2.3. Under the conditions of Lemma 2.2 if L+∞
y (M) ⊆ L+∞

x , then L+∞
y (ΣM) ⊂

L+∞
x , where ΣM := {π(x, t) : x ∈M, t ∈ T}.

Lemma 2.4. If L+∞
y,q ⊆ L+∞

x , then there exists a unique point p ∈ ωx such that L+∞
y,q ⊆

L
+∈ f ty
x,p .
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Proof . Let {tn} ∈ L+∞
y,q , then ytn → q. According to the conditions of the lemma there

exists a point p ∈ ωx such that xtn → p. Let us show that L+∞
y,q ⊆ L

+∈ f ty
x,p . Suppose that

there exists {t′n} ∈ Ly,q \ Lx,p, then there is a point p ∈ ωx (p �= p) such that {xt′n}
converges to p. Let us compose the sequence {tk} by the following rule:

tk =
⎧
⎨

⎩

tn, if k = 2n− 1

t′n, if k = 2n.
(2.1)

From the definition of the sequence {tk} it follows that tk → +∞ and ytk → q. Under
the conditions of Lemma 2.4 L+∞

y,q ⊆ L+∞
x and, consequently, {tk} ∈ L+∞

x , that is, {xtk}
is convergent. On the other hand, it has two different limit points p and p. The obtained
contradiction proves the inclusion L+∞

y,q ⊆ L+∞
x,p . To complete the proof of Lemma 2.4 it

is sufficient to note that in the lemma the point p is uniquely defined because for two
different points p1 and p2 there takes place the equality L+∞

x,p1
∩ L+∞

x,p2
= ∅. �

Theorem 2.1.1. If a point x is comparable with y with respect to the set M, then there exists
a continuous mapping h : σ(ΣM , T) → ωx satisfying the condition

h
(
σ(q, t)

) = π
(
h(q), t

)
(2.2)

for all q ∈ σ(ΣM , T) and t ∈ T.

Proof . Let the point x be comparable with y with respect to the set M. According to
Corollary 2.3 L+∞

y (ΣM) ⊆ L+∞
x . Let q ∈ ΣM . By Lemma 2.4 there exists a single point

p ∈ ωx such that L+∞
y,q ⊆ L+∞

x,p . Assume h(p) = q. So, the mapping h : ΣM → ωx is well
defined. From Lemma 2.2, it follows that h satisfies (2.2). Let us show that the mapping
h is continuous. Let {qk} → q (qk, q ∈ ΣM). Show that {pk} = {h(qk)} converges to

p = h(q). For every k ∈ N choose {t(k)
n } ∈ L+∞

y,qk , then pk = h(qk) = limn→+∞ xt
(k)
n . Let

εk ↓ 0. For every k ∈ N we will choose nk ∈ N such that the following inequalities would
fulfill simultaneously

ρ
(
xt(k)
nk , pk

)
< εk, d

(
yt(k)
nk , qk

)
< εk (2.3)

(it is clear that such nk exist). Assume t′k := t(k)
nk and let us show that the sequence {t′k}

belongs to L+∞
y,q . For this aim we will note that

d
(
yt′k, q

) ≤ d
(
yt′k, qk

)
+ d
(
qk, q
)
< εk + d

(
qk, q
)
. (2.4)

Passing to limit in (2.4) as k → +∞ we will obtain {t′k} ∈ L+∞
y,q . Since L+∞

y,q ⊆ L+∞
x,p , then

{t′k} ∈ Lx,p. As

ρ
(
pk, p
) ≤ ρ

(
pk, xt′k

)
+ ρ
(
xt′k, p

)
< εk + ρ

(
xt′k, p

)
, (2.5)

then passing to limit in (2.5) and taking into consideration that {t′k} ∈ L+∞
x,p we will obtain

pk → p. The theorem is proved. �
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Let a point x be comparable with y with respect to M. Note that at the point of view
of applications (see, e.g., [92, 93, 100]) the following cases are the most important.

(1) L+∞
y,y ⊆ L+∞

x,x .
As it is shown in [100, 105], the inclusion L+∞

y,y ⊆ L+∞
x,x takes place if and only if

Ny ⊆ Nx. As it was mentioned in Section 1.2 of Chapter 1, the inclusion Ny ⊆ Nx takes
place if and only if x is comparable by recurrence with y.

(2) L+∞
y ⊆ L+∞

x and L+∞
y,y ⊆ L+∞

x,x .
Assume M+

y = {{tn} : {tn} ∈My , tn ∈ T+}.

Definition 2.5. One will call the point x strongly comparable (in the positive direction)
with y if L+∞

y,y ⊆ L+∞
x,x and L+∞

y ⊆ L+∞
x .

The next theorem takes place.

Theorem 2.1.2. The following statements are equivalent:

(1) the point x is strongly comparable with y;
(2) there exists a continuous mapping h : H+(y) → H+(x) satisfying the condition

(2.2) for all q ∈ H+(y) and t ∈ T+, and besides h(y) = x;
(3) M+

y ⊆M+
x .

Proof . Let us show that from (1) it follows (2). In fact, according to Theorem 2.1.1 there
exists a continuous mapping h : H+(y) → H+(x) with the properties needed. Suppose
that the condition (2) is fulfilled. And let {tn} ∈M+

y . Then there exists a point q ∈ H+(y)
such that ytn → q. In virtue of the condition

{
h
(
ytn
)} = {h(y)tn

} = {xtn
}
�→ h(q) (2.6)

and, consequently, {tn} ∈M+
x . At last, we will show from (3) it follows (1). It is clear that

to prove (1) it is sufficient to see that L+∞
y,y ⊆ L+∞

x,x . If we suppose that the inclusion L+∞
y,y ⊆

L+∞
x,x , does not take place, then there exists {tn} ∈ L+∞

y,y \ L+∞
x,x . Since L+∞

y,y ⊆ L+∞
y ⊆ L+∞

x ,
there exists a point p �= x such that {tn} ∈ L+∞

x,p . Let us compose the sequence {t′k} by the
following condition:

t′k =
⎧
⎨

⎩

tn, if k = 2n− 1

t′n, if k = 2n
(2.7)

for every k ∈ N. It is easy to see that {t′k} ∈ M+
y,y and, consequently, {t′k} ∈ M+

x . So,
the sequence {xt′k} is convergent. From this fact it follows that x = p. The last equality
contradicts to the choice of p (p �= x). The theorem is proved. �

Remark 2.6. From Theorem 2.1.2 and from the results of the works [100, 105] it follows
that the strong comparability of the point x with y is equivalent to their uniform com-
parability if the point y is st. L+. In general case these notions are apparently different
(though we do not know the according example).

(3) L+∞
y ⊆ L+∞

x .
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Definition 2.7. One will say that the point x is comparable in limit (in the positive direc-
tion) with the point y if L+∞

y ⊆ L+∞
x .

2.2. Comparability in Limit of Asymptotically Poisson Stable Motions

Let (X , T,π) and (Y , T, σ) be dynamical systems, x ∈ X , and y ∈ Y .

Theorem 2.2.1. Let the point y be asymptotically Poisson stable. The point x is comparable
in limit with y if and only if there exists a continuous mapping h : ωy → ωx satisfying the
condition

h
(
σ(t, q)

) = π
(
t,h(q)

)
(2.8)

for all q ∈ ωy , t ∈ T and

lim
n→+∞ ρ

(
π
(
tn, x
)
,π
(
tn,h(q̃)

)) = 0 (2.9)

for all q̃ ∈ Py and {tn} ∈ L+∞
y .

Proof . Necessity. Let the point x be comparable in limit with y. According to Theorem
2.1.1 there exists a continuous mapping h : ωy → ωx satisfying (2.8). Let us show that
(2.9) takes place too. Let q̃ ∈ Py and {tn} ∈ L+∞

y . Then there exists a point q ∈ ωy such
that ytn → q. By the definition of the mapping h we have h(q) = limn→+∞ xtn. On the
other hand, q = limn→+∞ ytn = limn→+∞ q̃tn as q̃ ∈ Py . Hence, h(q) = h(limn→+∞ ytn) =
h(limn→+∞ q̃tn) = limn→+∞ π(tn,h(q̃)). So, limn→+∞ xtn = h(q̃) = limn→+∞ π(tn,h(q̃)).
From this it follows (2.9).

Sufficiency. Let exist a continuous mapping h : ωy → ωx satisfying (2.8) and (2.9).
Let us take an arbitrary sequence {tn} ∈ L+∞

y , then there exists a point q ∈ ωy such that
the sequence {ytn} converges to q. Let y ∈ Py . Note that

h(q) = h
(

lim
n→+∞ ytn

)
= h
(

lim
n→+∞ σ

(
tn, q
)) = lim

n→+∞π
(
tn,h(q)

)
(2.10)

and, consequently,

ρ
(
xtn,h(q)

) ≤ ρ
(
xtn,h(q)tn

)
+ ρ
(
h(q)tn,h(q)

)
. (2.11)

Passing to limit in (2.11) and taking into consideration (2.10) and (2.9), we get the
equality h(q) = limn→+∞ xtn, that is, {tn} ∈ L+∞

x and L+∞
y ⊂ L+∞

x . The theorem is
proved. �

Corollary 2.8. Let the point y be st. L+ and asymptotically Poisson stable. The point x is
comparable in limit if and only if there exists a continuous mapping h : ωy → ωx satisfying
(2.8) and

lim
t→+∞ ρ

(
xt,h(q)t

) = 0 (2.12)

for all q ∈ Py .



Asymptotically Poisson Stable Solutions 31

Proof . The sufficiency of Corollary 2.8 it follows from Theorem 2.2.1. Let us prove the
necessity. Let the point x be comparable in limit with y. According to Theorem 2.2.1
there exists a continuous mapping h : ωy → ωx satisfying (2.8) and (2.9). Suppose that
(2.12) does not take place. Then there exist q ∈ Py , tn → +∞, and ε0 > 0 such that

ρ
(
xtn,h(q)tn

) ≥ ε0. (2.13)

By st. L+ of the point y from the sequence {tn}we can choose a subsequence {tkn} ∈ L+∞
y .

According to Theorem 2.2.1 the equality

lim
n→+∞ ρ

(
xtkn ,h(q)tkn

) = 0 (2.14)

is held. Passing to limit with respect to the subsequence {tkn} in (2.13) and taking into
consideration (2.14), we obtain ε0 ≤ 0. The last contradicts to the choice of the number
ε0. So, the obtained contradiction proves our statement. �

The theorem given below shows that the introduced notion of comparability in limit
plays the same role while studying asymptotically Poisson stable motions as it does the
notion of comparability in the sense of Shcherbakov for Poisson stable motions [92, 100].

Theorem 2.2.2. Let y be asymptotically stationary (resp., asymptotically τ-periodic, asymp-
totically almost periodic, asymptotically recurrent). If the point x is comparable in limit
with y, then the point x is also asymptotically stationary (resp., asymptotically τ-periodic,
asymptotically almost periodic, asymptotically recurrent).

Proof . Let x be comparable in limit with y. According to Corollary 2.8 there exists a
continuous mapping h : ωy → ωx satisfying (2.8) and (2.12). As y is st. L+, then ωy is
compact and, consequently, the mapping h is uniformly continuous. Let q ∈ Py , then
p = h(q) ∈ Px and by [105, Theorem 9] the point p is stationary (resp., τ-periodic,
almost periodic, recurrent). The theorem is proved. �

2.3. Asymptotically Poisson Stable Solutions

Let us consider the problem of existence of asymptotically Poisson stable solutions for
operator equations.

Let h : X → Y be a homomorphism of the system (X , T,π) onto (Y , T, σ).
Consider the operator equation

h(x) = y, (2.15)

where y ∈ Y . Along with (2.15) we will consider the family of “ω-limit” equations

h(x) = q,
(
q ∈ ωy

)
. (2.16)

Theorem 2.3.1. If a solution x of (2.15) is st. L+ and every (2.16) admits at most one
solution from ωx, then x is comparable in limit with y ∈ Y .

Proof . Let {tn} ∈ L+∞
y . Then there exists a point q ∈ ωy such that ytn → q. In virtue

of st. L+ of the solution x the sequence {xtn} is relatively compact. Let p be an arbitrary
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limit point of the sequence {xtn}, then there exists a subsequence {tkn} ⊆ {tn} such that
the sequence {xtkn} converges to p. Since h is continuous and homomorphic, there takes
place the equality h(p) = q. So, p is a solution of (2.16), p ∈ ωx and, consequently,
every limit point p of the sequence {xtn} is a solution of (2.16). Under the conditions of
Theorem 2.3.1, (2.16) has at most one solution from ωx. Hence, the sequence {xtn} has
exactly one limit point. As the sequence {xtn} is relatively compact, it converges. So, the
sequence {tn} ∈ L+∞

x and we proved the inclusion L+∞
y ⊂ L+∞

x . �

Corollary 2.9. Let x be st. L+ solution of (2.15) and y be asymptotically stationary (resp.,
asymptotically τ-periodic, asymptotically almost periodic, asymptotically recurrent). If
every (2.16) admits at most one solution from ωx, then x is asymptotically stationary (resp.,
asymptotically τ-periodic, asymptotically almost periodic, asymptotically recurrent).

Proof . The formulated statement follows from Theorems 2.2.2 and 2.3.1. �

Definition 2.10. A solution x ∈M (M ⊆ X) of (2.15) is called separated in the set M if x
is a unique solution of (2.15) from M or there exists a number r > 0 such that whatever
would be a solution p ∈M (p �= x) of (2.15), ρ(xt, pt) ≥ r for all t ∈ T.

Lemma 2.11. Let a set M ⊆ X be a compact set. If every solution x ∈ M of (2.15) is
separated in M, then (2.15) has finite number of solutions from M.

Proof . Suppose the contrary, that is, in the set M there exists the infinite set {xn} of
different solutions of (2.15). By compactness of M we can extract a convergent subse-
quence from the sequence {xn}. Without loss of generality we can consider that {xn}
is convergent. Let p = limn→+∞ xn. Since h is continuous and M is closed, h(p) = y and
p ∈M. So, p is a solution of (2.15), but obviously it is not separated inM that contradicts
to the condition. The lemma is proved. �

Lemma 2.12. Let a point y ∈ Y be recurrent, M ⊆ X be a compact invariant set, and
y ∈ h(M). If solutions from M of every (2.16) are separated in the set M, then there exists a
number r > 0 such that ρ(p1t, p2t) ≥ r > 0 for all t ∈ T and p1, p2 ∈M with h(p1) = h(p2)
and p1 �= p2.

Proof . By Lemma 2.11 for every q ∈ ωy (2.16) has finite number of solutions from M.
Denote by n(q) the number of different solutions of (2.16) from M. Let us show that the
number n(q) does not depend on the point q ∈ ωy . In fact, for the point q ∈ ωy there
exists a sequence {tn} ∈ L+∞

y such that the sequence {ytn} converges to q. Consider the
sequence {ξn} ⊆ MM defined by the equality ξn(x) = π(x, tn) for all x ∈ M. According
to theorem of Tikhonoff [106] the sequence {ξn} is relatively compact in MM . Without
loss of generality we can consider that {ξn} converges in MM . Assume ξ := limn→+∞ ξn.
Denote by x1, x2, . . . , xn(y) solutions of (2.15) that are from M and xi := ξ(xi) for all
i = 1, 2, . . . ,n(y), that is, xi = limn→+∞ xitn. Since h is continuous and homomorphic,
the points x1, x2, . . . , xn(y) are the solutions of (2.16). Let us show that the points xi (i =
1, 2, . . . ,n(y)) are different. As ξ(x) = limn→+∞ ξn(x) for all x ∈ M and M is invariant,
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then, in particular,

ξ
(
π
(
t, xi
)) = lim

n→+∞π
(
tn,π
(
t, xi
)) = lim

n→+∞π
(
t,π
(
tn, xi
)) = π

(
t, xi
)
. (2.17)

Assume r := inf{ρ(π(xi, t),π(xj , t)) : i �= j, t ∈ T}. Then under the conditions of
Lemma 2.12 r > 0. Since ρ(π(xi, t),π(xj , t)) ≥ r > 0 for all t ∈ T and i �= j (1 ≤ i,
j ≤ n(y)), then the inequality

ρ
(
π
(
t + tn, xi

)
,π
(
t + tn, xj

)) ≥ r (2.18)

is fulfilled. Passing to limit in inequality (2.18) and taking into consideration (2.17), we
obtain

ρ
(
π
(
xi, t
)
,π
(
x j , t
)) ≥ r (2.19)

for all t ∈ T and i �= j (1 ≤ i, j ≤ n(y)). From (2.19) it follows that xi are different. So,
n(q) ≥ n(y). From the recurrence of y it follows that y ∈ ωq. Repeating the reasoning
above we obtain the inequality n(y) ≥ n(q). Hence, n(q) = n(y) for all q ∈ ωy . From
(2.19) it follows that the number r > 0 possesses the needed properties. �

Lemma 2.13. Let a point y ∈ Y be asymptotically recurrent and x be a st. L+ solution of
(2.15). If for every q ∈ ωy all the solutions from ωx of (2.16) are separated in ωx, then there
exists a unique solution p ∈ ωx of (2.16) such that p ∈ Px.

Proof . According to Lemma 2.11, under the conditions of Lemma 2.13, (2.16) has a finite
number n of solutions p1, p2, . . . , pn from ωx. Let us show that

lim
t→+∞ inf

{
ρ
(
xt, pit

)
: 1 ≤ i ≤ n

} = 0. (2.20)

Suppose the contrary. Then there exist ε0 > 0 and {tn} → +∞ such that

ρ
(
xtk, pitk

) ≥ ε0 (2.21)

for all i = 1, 2, . . . ,n and k = 1, 2, . . . . Since the point x is st. L+ and y is asymptotically
recurrent, the sequences {xtk}, {pitk} (i = 1, 2, . . . ,n), and {ytk} can be considered
convergent. Assume p := limk→+∞ xtk, q := limk→+∞ ytk, and pi := limk→+∞ pitk. From
(2.21) it follows that p �= pi (i = 1,n). On the other hand, p ∈ ωx, h(p) = q, and by
Lemma 2.12 Xq ∩ ωx = {p1, p2, . . . , pn}, where Xq = h−1(q). So, p ∈ {p1, p2, . . . , pn}.
The last inclusion contradicts to the condition that pi �= p (i = 1, 2, . . . ,n). So, (2.20) is
proved.

Let us show that there exists a number 1 ≤ i0 ≤ n for which pi0 ∈ Px, that is,

lim
t→+∞ ρ

(
xt, pi0 t

) = 0. (2.22)

For a number ε, 0 < ε < r/3, (r > 0 is the number the existence of which is guaranteed by
Lemma 2.12) we will find L(ε) > 0 such that

inf
{
ρ
(
xt, pit

)
: 1 ≤ i ≤ n

}
< ε (2.23)
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for all t ≥ L(ε). Let t0 > L(ε), then there exists 1 ≤ i1 ≤ n such that

ρ
(
xt0, pi1 t0

)
< ε. (2.24)

Assume δ(t0) := sup{δ̃ : ρ(xt, pi1 t) < ε for all t ∈ [t0, t0 + δ̃]}. Let us show that δ(t0) =
+∞. Suppose the contrary, then

ρ
(
xt′0, pi1 t

′
0

) ≥ ε, (2.25)

where t′0 = t0 + δ(t0), and there exists i2 �= i1 (1 ≤ i2 ≤ n) such that

ρ
(
xt′0, pi2 t

′
0

)
< ε. (2.26)

On the other hand,

ρ
(
xt′0, pi2 t

′
0

) ≥ ρ
(
pi2 t

′
0, pi1 t

′
0

)− ρ(pi1 t′0, xt′0
)
> r − ε > 2ε. (2.27)

Inequality (2.27) contradicts to the assumption. So, we found L(ε) > 0 and pi0 ∈
{p1, p2, . . . , pn} such that

ρ
(
xt, pi0 t

)
< ε (2.28)

for all t ≥ L(ε). Assume p := pi0 and let us show that the point p does not depend on the
choice of ε. In fact, if we suppose the contrary, then we can find numbers ε1 and ε2, points
p1 and p2 (p1 �= p2), and L(ε1) > 0 and L(ε2) > 0 satisfying the conditions mentioned
above. Assume L := max(L(ε1),L(ε2)), then

ρ
(
p1t, p2t

) ≤ ρ
(
p1t, xt

)
+ ρ
(
xt, p2t

) ≤ ε1 + ε2 <
2r
3
< r. (2.29)

Inequality (2.29) contradicts to the choice of r (see Lemma 2.12). The lemma is proved.
�

Theorem 2.3.2. Let a point y ∈ Y be asymptotically almost periodic (resp., asymptotically
recurrent) and let x be a st. L+ solution of (2.15). If for every q ∈ ωy all the solutions fromωx
of (2.16) are separated in ωx, then x is asymptotically almost periodic (resp., asymptotically
recurrent).

Proof . According to Lemma 2.13 there exists a unique point p ∈ ωx such that p ∈ Px.
To complete the proof of Theorem 2.3.2 it remains to note that under the conditions of
Theorem 2.3.2 the set ωx consists of almost periodic (resp., recurrent) motions. The last
statement it follows from [107, Theorem 3, page 111] (the case of T = Z see in [94]) and
[93, Theorem 14.7]. The theorem is proved. �

Definition 2.14. One will say that a solution x of (2.15) is Σ+-stable if for every ε > 0, one
can find δ > 0 such that if ρ(xt1, xt2) < δ and

sup
{
d
(
y
(
t + t1

)
, y
(
t + t2

))
: t ∈ T+

}
< δ

(
t1, t2 ∈ T+

)
, (2.30)
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then

sup
{
ρ
(
x
(
t + t1

)
, x
(
t + t2

))
: t ∈ T+

}
< ε. (2.31)

Theorem 2.3.3. Let a point y be asymptotically almost periodic and a point x be st. L+. If x
is a Σ+-stable solution of (2.15), then it is asymptotically almost periodic.

Proof . Let x be a solution of (2.15) satisfying the conditions of Theorem 2.3.3 and ε > 0.
Choose δ > 0 out of the condition of Σ+-stability of x. From Theorem 1.3.2 it follows that
to show that the point x is asymptotically almost periodic it is sufficient to show that from
every sequence {tn} → +∞ we can extract a subsequence {tkn} such that {xtkn} converges
uniformly with respect to t ∈ T+.

Let {tn} → +∞. In virtue of the statements that we have done concerning x and y,
the sequences {xtn} and {ytn} can be considered convergent, moreover, the second one
can be considered uniformly with respect to t ∈ T+. So, there is a number n0 ∈ N such
that

sup
{
d
(
y
(
t + tn

)
, y
(
t + tm

))
: t ∈ T+

}
< δ, (2.32)

ρ
(
xtn, xtm

)
< δ (2.33)

for all m,n ≥ n0. By the choice of the number δ from inequalities (2.32) and (2.33) it
follows that for m,n ≥ n0

sup
{
ρ
(
x
(
t + tn

)
, x
(
t + tm

))
: t ∈ T+

}
< ε. (2.34)

From (2.34) and the completeness of the spaceX it follows that {xtn} converges uniformly
with respect to t ∈ T+. The theorem is proved. �

Theorem 2.3.4. If a point y ∈ Y is τ-periodic, x is a st. L+ solution of (2.15) and the
set M = {π(nτ, x) : n ∈ N} is un. st. L+M, then the solution x is asymptotically almost
periodic.

Proof . Let us consider a cascade (Xy ,π) generated by positive powers of the mapping
π : Xy → Xy , where Xy = h−1(y) and π(z) := π(τ, z) for all z ∈ Xy . Note that the point
x ∈ Xy is st. L+ in discrete dynamical system (Xy ,π) too. Besides, under the conditions of
the theorem the positive semitrajectory {π(nτ, x) : n ∈ Z+} of x ∈ Xy in the dynamical
system (Xy ,π) is un. st. L+ with respect to itself and, according to Theorem 1.3.2, the
point x is asymptotically almost periodic in the dynamical system (Xy ,π), that is, there
exists an almost periodic in (Xy ,π) point p ∈ Xy such that

lim
k→+∞

ρ
(
π(kτ, x),π(kτ, p)

) = 0. (2.35)

Further let us show that from (2.35) it follows (1.4). Suppose the contrary. Then there
exists {tn} ⊆ T+ (tn → +∞) and a positive number ε0 such that

ρ
(
xtn, ptn

) ≥ ε0. (2.36)
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Denote by kn the integer part of tn after the division by τ. Then tn = knτ + tn, where tn ∈
[0, τ[ and, consequently, {tn} can be considered convergent. Assume t := limn→+∞ tn.
Since the point x is st. L+ and also taking into consideration (2.35), we can consider that
the sequences {π(knτ, x)} and {π(knτ, p)} converge to the same point p. Note that

ε0 ≤ ρ
(
π
(
tn, x
)
,π
(
tn, p
)) = ρ

(
π
(
knτ + tn, x

)
,π
(
knτ + tn, p

)) = ρ
(
π
(
tn,π
(
knτ, x

))
,

π
(
tn,π
(
knτ
)
, p
)) ≤ ρ

(
π
(
tn,π
(
knτ, x

))
,π
(
t, p
))

+ ρ
(
π
(
t, p
))

,π
(
tn,π
(
knτ, p

))
.
(2.37)

Passing to limit in (2.37) as n → +∞, we will obtain ε0 ≤ 0. The last contradicts to
the choice of the number ε0. The necessary statement is proved. To finish the proof of
the theorem is sufficient to show the point p ∈ Xy is almost periodic in the dynamical
system (X , T,π). In fact, as we know [86, 93, 99], the point p ∈ X is almost periodic
if and only if from every sequence {tn} ⊂ T we can extract a subsequence {tkn} such
that {π(tkn , x)} converges uniformly with respect to t ∈ T. Let {tn} ⊂ T be an arbitrary
sequence. Then tn = lnτ + tn where ln ∈ Z and tn ∈ [0, τ[. The sequence {tn} can
be considered convergent. Assume t := limn→+∞ tn. Since the point p ∈ Xy is almost
periodic in (Xy ,π), then from the sequence {ln} we can extract a subsequence {lkn} such
that

lim
n,m→+∞ sup

{
ρ
(
π
(
lknτ + s, p

)
,π
(
lkmτ + s, p

))
: s ∈ Z

} = 0. (2.38)

From (2.38) and the uniform integral continuity on {π(p, t) : t ∈ T} := H(p) it follows
that

lim
n,m→+∞ sup

{
ρ
(
π
(
lknτ + s, p

)
,π
(
lkmτ + s, p

))
: s ∈ T

} = 0. (2.39)

Taking into consideration the completeness of the space X and (2.39), we make the
conclusion that the sequence {π(lknτ, p)} converges uniformly with respect to t ∈ T and,
hence, the sequence {π(tkn , p)} also converges uniformly on T. The theorem is completely
proved. �

2.4. Asymptotically Periodic Solutions

Theorem 2.4.1. Let x be a st. L+ solution of (2.15) with an asymptotically τ-periodic point
y and q = limk→+∞ σ(kτ, y). If the equation

h(x) = q (2.40)

admits at most one solution from ωx, then the solution x is asymptotically τ-periodic.

Proof . Let us prove that the sequence {π(kτ, x)} is convergent. Since x is st. L+, then for
the convergence of the sequence {π(kτ, x)} it is sufficient that it would contain at most
one limit point. Let x1 be x2 be two arbitrary limit points of the sequence {π(kτ, x)}.
Then there exist sequences {kin} (i = 1, 2) such that xi = limn→+∞ π(kinτ, x) (i = 1, 2).
Since {σ(kτ, y)} → q, then h(x1) = h(x2) = q x1, x2 ∈ ωx. According to the conditions of
Theorem 2.4.1 x1 = x2 and, consequently, the sequence {π(kτ, x)} is convergent and by
Theorem 1.4.1 the point x is asymptotically τ-periodic. �
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Corollary 2.15. Let x be a st. L+ solution of (2.15) with the asymptotically stationary point
y and q := limt→+∞ σ(t, y). If (2.40) admits at most one solution from ωx, then the solution
x is asymptotically stationary.

Proof . The formulated statement it follows from Theorem 2.4.1 and Corollary 1.38. �

Theorem 2.4.2. Let x be a st. L+ solution of (2.15), T = R or R+, and the set Xy be
homeomorphic to R. If the point y is τ-periodic, then the solution x is asymptotically τ-
periodic.

Proof . Let the point y be τ-periodic. Without loss of generality we can assume that Xq =
R for every q ∈ ωy . According to Theorem 1.4.1 for the asymptotical τ-periodicity of the
point x it is sufficient to show that {π(kτ, x)} is convergent. Let us consider the function
ϕ(t) = π(t + τ, x)− π(t, x). Logically, two cases are possible:

(a) there exists t ∈ T such that ϕ(t) = 0 and, consequently, π(t + τ, x) = π(t, x).
From this it follows that π(t + τ, x) = π(t, x) for all t ∈ T, where x = π(t, x),
and, consequently, x is asymptotically τ-periodic;

(b) the function ϕ(t) keeps the sign. It is not difficult to see that in this case the
sequence {π(kτ, x)} is monotone and, consequently, convergent. The theorem
is proved.

�

Theorem 2.4.3. Let x be a st. L+ solution of (2.15) with the asymptotically τ-periodic point
y. If all solutions of (2.40) from ωx are separated in ωx, then the solution x is asymptotically
m0τ-periodic, where m0 is some integer number.

Proof . According to Lemma 2.11, (2.40) has only finite number of solutions p1, p2, . . . ,
pn0 from ωx. Let us consider a cascade (Xy ,π) generated by positive powers of π :=
π(τ, ·) : Xy → Xy (π(x) := π(x, τ) for all x ∈ Xy). Since x is a st. L+ solution of (2.15),
then the trajectory {πkx | k ∈ N} = {π(kτ, x) | k ∈ N} of the point x ∈ X is relatively
compact in the dynamical system (Xy ,π). Note that every limit point of the sequence
{π(kτ, x)} is a solution of (2.40) and belongs to ωx and, in virtue of the said above, it
is contained in the set {x1, x2, . . . , xn0}. Hence, in the dynamical system (Xy ,π) the ω-
limit set ωx of the point x consists of finite number of points. Let ωx = {x1, x2, . . . , xm0}
(m0 ≤ n0). Then, according to Theorem 1.4.3, the point x is asymptotically m0-periodic
in the system (Xy ,π) and, consequently, the sequence {π(m0kτ, x)} is convergent. By
Theorem 1.4.1 the point x is asymptotically m0τ-periodic in the system (X , T,π). The
theorem is proved. �

2.5. Homoclinic and Heteroclinic Motions

Everywhere in this section we will assume that T = R or Z. Denote by P(X) the set of all
Poisson stable points of the dynamical system (X , T,π), that is, P(X) := {x | x ∈ X , x ∈
ωx ∩ αx}, where αx := ⋂t≤0

⋃
τ≤t π(x, τ).

Definition 2.16. A point x ∈ X (or a motion π(·, x)) is called heteroclinic, if there exist
points p1, p2 ∈ P(X) such that x ∈ Wu(p1) ∩Ws(p2), where Ws(p) := {x | x ∈ X ,
limt→+∞ ρ(xt, pt) = 0} and Wu(p) := {p ∈ X | limt→−∞ ρ(xt, pt) = 0}. If p1 = p2 = p,
then the point x is called homoclinic.
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Remark 2.17. (1) It is convenient to denote a heteroclinic (resp., homoclinic) point by
(x; p1, p2) ((x; p)), where p1 and p2 (p1 = p2 = p) are Poisson stable points figuring in
the definition of the heteroclinic (resp., homoclinic) point x.

(2) Note, that the point x is heteroclinic, if it is asymptotically Poisson stable in
positive and negative directions, that is, it is Poisson bistable.

(3) According to Corollary 1.29, if the points p1 and p2, figuring in the definition of
the heteroclinic point (x; p1, p2), are almost periodic, then they are uniquely defined. If
they are recurrent, then, generally speaking, they are not (see, i.e., [93, page 157]).

Denote by L±∞x,p := {{tn} | {tn} ∈ Lx,p, tn → ±∞}, L±∞x := ∪{L±∞x,p | p ∈ X}, Lx :=
{{tn} | |tn| → +∞, {tn} ∈Mx} and L∞x := L+∞

x ∪ L−∞x .

Definition 2.18. Let (X , T,π) and (Y , T, σ) be dynamical systems, x ∈ X , y ∈ Y . One
will say that the point x is comparable in limit in positive (resp., negative) direction with
respect to the character of recurrence with the point y, if L+∞

y ⊆ L+∞
x (resp., L−∞y ⊆ L−∞x ).

If x is comparable in limit with y both in positive and negative direction, then we will say
that x is comparable in limit with respect to the character of recurrence with y. At last, if
Ly ⊆ Lx, then we will say that x is strongly comparable in limit with y.

Remark 2.19. If the point x is strongly comparable in limit with the point y, then it is
comparable in limit with y. The inverse fact, generally speaking, does not take place.

Theorem 2.5.1. Let a point y be Lagrange stable (stable in the sense of Lagrange). Then:

(1) if (y; q1, q2) is a heteroclinic point and x is comparable in limit with y, then there
exist points p1, p2 ∈ P(X) such that (x; p1, p2) is heteroclinic and, besides, the
point p1 (resp., p2) is uniformly comparable with the point q1 (resp., q2);

(2) if (y; q) is a homoclinic point and x is strongly comparable in limit with the point
y, then there exists p ∈ P(X) such that (x; p) is a homoclinic point and the point
p is uniformly comparable with q.

Proof . (1) Let L∞y ⊆ L∞x and y ∈Wu(q1)∩Ws(q2). Then L±∞y ⊆ L±∞x and, according to
Corollary 2.8, there exist continuous mappings

h1 : αy �→ αx, h2 : ωy �→ ωx (2.41)

such that x ∈Ws(p1)∩Wu(p2),h1(σ(t, q)) = π(t,h1(q)) (q ∈ αy , t ∈ T), and h2(σ(t, q))
= π(t,h2(q)) (q ∈ ωy , t ∈ T), where pi = hi(qi) (i = 1, 2).

In virtue of the compactness of H(y), the mappings h1 and h2 are uniformly contin-
uous and, consequently, the point pi is uniformly comparable with qi (i = 1, 2).

(2) Let Ly ⊆ Lx and y ∈ Wu(q) ∩Ws(q). Then L±∞y ⊆ L±∞x and, according to the
first statement of the theorem, the point x is heteroclinic, that is, there exist p1, p2 ∈ P(X)
such that x ∈Wu(p1)∩Ws(p2) and p1, p2 are uniformly comparable with q. Let us show
that p1 = p2. For this aim we choose a sequence {tn} ∈ Ly , for which tn → ±∞ as
n→ ±∞ and σ(tn, q) → q as n→ ±∞.

Note that {tn} ∈ Lx∩Lp1∩Lp2 , xtn → p1 as n→ −∞, and xtn → p2 as n→ +∞. Since
{tn} ∈ Lx, the sequence {xtn} is convergent and, consequently, p1 = p2. The theorem is
proved. �
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Definition 2.20. Let (y; q1, q2) be a heteroclinic point. If the points q1 and q2 are stationary
(resp., periodic, almost periodic, recurrent), the point y is called bilaterally asymptotically
stationary (resp., bilaterally asymptotically periodic, bilaterally asymptotically almost
periodic, bilaterally asymptotically recurrent).

Definition 2.21. If (y; q) is a homoclinic point and q is stationary (resp., periodic, almost
periodic, recurrent), then the point y is called stationary (resp., periodic, almost periodic,
recurrent) homoclinic point.

From Theorem 2.5.1 follows the following statement.

Corollary 2.22. Let y ∈ Y be Lagrange stable. Then the following statements hold:

(1) if (y; q1, q2) is bilaterally asymptotically stationary (resp., periodic, almost peri-
odic, recurrent) and x is comparable in limit with y, then x is also bilaterally
asymptotically stationary (resp., periodic, almost periodic, recurrent);

(2) if (y; q) is a stationary (resp., periodic, almost periodic, recurrent) homoclinic
point and x is strongly comparable in limit with y, then x is a stationary (resp.,
periodic, almost periodic, recurrent) homoclinic point.

Let h : X → X be a homomorphism of the dynamical system (X , T,π) into (Y , T, σ).
Let us consider an operator equation

h(x) = y, (2.42)

where y ∈ Y . Along with (2.42) consider the family of limiting equations

h(x) = q
(
q ∈ Δy

)
, (2.43)

where Δy = αy ∪ ωy .

Theorem 2.5.2. Let y ∈ Y be Lagrange stable and x ∈ X be a Lagrange stable solution of
(2.42). Then the following statements take place:

(1) if there are fulfilled the following conditions:
(a) for any q ∈ ωy (2.43) has at most one solution from ωx;
(b) for any q ∈ αy (2.43) has at most one solution from αx,

then the solution x is comparable in limit with y;
(2) if (2.43) has at most one solution from Δx for any q ∈ Δy , then the solution x is

strongly comparable in limit with y.

Proof . The first statement of the theorem, basically, follows from Theorem 2.3.1. The
second one is proved using the same reasoning that in Theorem 2.3.1 and we do not give
it here. �

Remark 2.23. Let a point y be Lagrange stable and x be a Lagrange solution of (2.42).
Then the following statement hold:
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(1) if the first condition of Theorem 2.5.2 is fulfilled and y is bilaterally asymptoti-
cally stationary (resp., periodic, almost periodic, recurrent), then x is also bilat-
erally asymptotically stationary (resp., periodic, almost periodic, recurrent);

(2) if the second condition of Theorem 2.5.2 is fulfilled and y is a asymptotically
stationary (resp., periodic, almost periodic, recurrent) homoclinic point, then
x is also a asymptotically stationary (resp., periodic, almost periodic, recurrent)
homoclinic point.

Theorem 2.5.3. Let x be a Lagrange stable solution of (2.42) and y is bilaterally asymptoti-
cally stationary (resp., periodic, almost periodic, recurrent), and for any q ∈ Δy solutions
of (2.43) from Δx are separated in Δx. Then the solution x is bilaterally asymptotically
stationary (resp., m0τ-periodic for a certain integer m0, almost periodic, recurrent).

Proof . The formulated statement follows from Theorems 2.3.2 and 2.4.3. �

2.6. Asymptotically Almost Periodic Systems with Convergence

Definition 2.24. Let (X , T,π) be a dynamical system on X . The system (X , T,π) is called
[108, Chapter 1] point dissipative, if there exists a nonempty compact K ⊆ X such that

lim
t→+∞ ρ(xt,K) = 0 (2.44)

for all x ∈ X . In this case if (2.44) takes place uniformly with respect to x on compact
subsets from X , then (X , T,π) is called compactly dissipative.

If the space X is locally compact, then from the point dissipativity of (X , T,π) it
follows its compact dissipativity [109, Chapter I].

If the dynamical system (X , T,π) is compactly dissipative, then there exists a maximal
compact invariant set J , called the center of Levinson of (X , T,π), which is a orbitally
stable global attractor [110] of the system (X , T,π) and J := D(ΩX) [108, 111] where
ΩX = ∪{ωx | x ∈ X} and D(ΩX) is the positive prolongation [110] of ΩX .

Remark 2.25. (1) Let T+ ⊆ T1 ⊆ T2, (X , T1,π) and (Y , T2, σ) be two compactly dis-
sipative dynamical systems and h : X → Y be a homomorphism of (X , T1,π) onto
(Y , T2, σ). Then JY ⊇ h(JX), where JX (resp., JY ) is the center of Levinson of (X , T,π)
(resp., (Y , T, σ)).

(2) Let 〈(X , T1,π), (Y , T2, σ),h〉 be a nonautonomous dynamical system and the
systems (X , T1,π) and (Y , T2, σ) be compactly dissipative. Then h : JX → JY is a homeo-
morphism, if h is one-to-one, that is,Xy∩JX consists of exactly one point whatever would
be y ∈ JY , where Xy := {x | x ∈ X ,h(x) = y}.

Definition 2.26. A nonautonomous dynamical system 〈(X , T1,π), (Y , T2, σ), h〉 is called
convergent, if the following conditions are fulfilled:

(1) (X , T1,π) and (Y , T2, σ) are compactly dissipative;
(2) JX ∩ Xy contains exactly one point, which we will denote by xy (i.e., JX ∩ Xy =

{xy}), for any y ∈ JY .
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Below, in this chapter and the following ones, we will suppose that (Y , T2, σ) is
compactly dissipative and JY is minimal (i.e., every trajectory from JY is dense in JY ).
It is so, if there exists an asymptotically almost periodic (resp., asymptotically recurrent)
point y0 ∈ Y such that Y = H+(y0) = {y0t | t ∈ T+}. Obviously, in this case JY =
ωy0 .

Lemma 2.27. Let (X , T1,π) be compactly dissipative. Then the following conditions are
equivalent:

(1) 〈(X , T1,π), (Y , T2, σ),h〉 is a convergent nonautonomous dynamical system;
(2) (a) limt→+∞ ρ(x1t, x2t) = 0 for every x1, x2 ∈ X such that h(x1) = h(x2);

(b) for every ε > 0 there exists δ > 0 such that from the inequality ρ(x1, x2) <
δ (h(x1) = h(x2) and x1, x2 ∈ JX) follows that ρ(x1t, x2t) < ε for all t
∈ T+.

Proof . Let us show that (1) implies (2). First of all, let us establish that (a) is true. If we
suppose that it does not take place, then there are ε0 > 0, y0 ∈ Y , x1, x2 ∈ Xy0 , and
tk → +∞ such that

ρ
(
x1tk, x2tk

) ≥ ε. (2.45)

Without loss of generality we can suppose that the sequences {xitk} (i = 1, 2), and {y0tk}
are convergent. Assume xi := limk→+∞ xitk (i = 1, 2) and y := limn→+∞ y0tn. Note that
y ∈ JY and xi ∈ JX (i = 1, 2). Besides, h(x1) = limk→+∞ h(x1)tk = limk→+∞ h(x2)tk =
h(x2) = limk→+∞ y0tk = y and, consequently, x1, x2 ∈ JX∩Xy . In virtue of the convergence
of 〈(X , T1,π), (Y , T2, σ),h〉we have x1 = x2, and this contradicts to (2.45). The statement
(a) is proved.

Now let us prove (b). Suppose the contrary. If (b) does not take place, then there
exist ε0 > 0, sequences δn ↓ 0, {xik} (i = 1, 2) and tk → +∞ such that ρ(x1

k , x2
k) < δk (xik ∈

JX ,h(x1
k) = h(x2

k)) and

ρ
(
x1
ktk, x2

ktk
) ≥ ε0. (2.46)

By the compact dissipativity of (X , T1,π) the sequences {xik} and {xiktk} (i = 1, 2) can be
considered convergent. Assume x0 := limk→+∞ x1

k = limk→+∞ x2
k and xi := limk→+∞ xiktk

(i = 1, 2). Note that xi ∈ JX (see [111, 112]). In addition, h(x1) = limk→+∞ h(x1
k)tk =

limk→+∞ h(x2
k)tk = h(x2), that is, there exists y ∈ JY (y = h(x1) = h(x2)) such that

x1, x2 ∈ JX ∩ Xy . Since 〈(X , T1,π), (Y , T2, σ),h〉 is convergent, we have x1 = x2. This
contradicts to (2.46).

Inversely. Let (2) be fulfilled. Let us show that (1) takes place. If we suppose that it
is not so, then there exist y0 ∈ JY and x1, x2 ∈ JX ∩ Xy0 (x1 �= x2). According to [113,
Theorem 1], the points x1 and x2 are mutually recurrent and, consequently, the function
ϕ(t) := π(x1t, x2t) (for all t ∈ T) is recurrent. On the other hand, under the conditions
of the lemma, ϕ(t) → 0 as t → +∞. Frow this it follows that ϕ(t) ≡ 0. The last contradicts
to our assumption. The obtained contradiction completes the proof. �
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Theorem 2.6.1. A nonautonomous dynamical system 〈(X , T1π), (Y , T2, σ),h〉 is conver-
gent if and only if the following conditions hold:

(1) for any compact K ⊆ X the set Σ+
K := {xt : x ∈ K , t ∈ T+} is relatively compact;

(2) for any ε > 0 and compact subset K ⊆ X there exists δ = δ(ε,K) > 0 such that
ρ(x1, x2) < δ (h(x1) = h(x2) and x1, x2 ∈ K) implies ρ(x1t, x2t) < ε for all t ≥ 0;

(3) limt→+∞ ρ(x1t, x2t) = 0 for all x1, x2 ∈ X (h(x1) = h(x2)).

Proof . The necessity of the first condition is obvious. The necessity of the second and
third statements follows from Lemma 2.27.

Inversely. Let conditions (1)–(3) of the theorem be fulfilled and x0 ∈ X . According
to condition (1), the set Σ+

x0
is relatively compact and, consequently, ωx0 �= ∅ is compact

and invariant. Since h(ωx0 ) ⊆ ΩY ⊆ JY and JY is minimal, then h(ωx0 ) = JY . Assume
M := ωx0 . Then My := M ∩ Xy (y ∈ JY ) is not empty. Let us show now that for any
x ∈ X the equality ωx = M takes place. Denote by N := ωx ∪ ωx0 . In the same way that
in Lemma 2.27 we prove that Ny := N ∩ Xy consists of exactly one point for arbitrary
y ∈ JY . Since h(ωx) = h(ωx0 ) = h(N) = JY , then ωx ∩ Xy = ωx0 ∩ Xy = N ∩ Xy for
all y ∈ JY and, consequently, ωx = ωx0 . So, ωx = M for all x ∈ X and, consequently,
(X , T,π) is point dissipative.

Now let K ⊆ X be an arbitrary compact subset. According to condition (1), Σ+
K is

relatively compact and, according to [112, 114], Ω(K) �= ∅ is compact, invariant and

lim
t→+∞ sup

{
ρ
(
xt,Ω(K)

)
: x ∈ K

} = 0, (2.47)

where

Ω(K) =
⋂

t≥0

⋃

τ≥t
πτK. (2.48)

In the same way that in Lemma 2.27 we show that (N ∪ Ω(K)) ∩ Xy consists of exactly
one point for arbitrary y ∈ JY . Since h(Ω((K)) = JY , then Ω(K) = M. So, the system
(X , T1,π) is compactly dissipative and Ω(K) = M for every compact K ⊆ M, and,
consequently, JX = M. As My consists of exactly one point for any y ∈ JY , then the nonau-
tonomous system 〈(X , T1,π), (Y , T2, σ),h〉 is convergent. The theorem is proved. �

Corollary 2.28. Let (X , T1,π) be locally compact (i.e., for every x ∈ X there exist δx > 0 and
lx > 0 such that πtB(x, δx) is locally compact for all t ≥ lx). A nonautonomous dynamical
system 〈(X , T1,π), (Y , T2, σ),h〉 is convergent if and only if the following three conditions
are fulfilled:

(1) for every x ∈ X the set Σ+
x is relatively compact;

(2) for every ε > 0 and compact subset K ⊆ X there exists δ = δ(ε,K) > 0 such that
ρ(x1, x2) < δ (h(x1) = h(x2) and x1, x2 ∈ K) implies ρ(x1t, x2t) < ε for all t ≥ 0;

(3) limt→+∞ ρ(x1t, x2t) = 0 for all x1, x2 ∈ X (h(x1) = h(x2)).

Proof . The necessity of condition (1) is obvious and conditions (2) and (3) follow from
Lemma 2.27. Concerning the sufficiency, it follows from Theorem 2.6.1. We should note
that from conditions (1)–(3) follows the point dissipativity of (X , T1,π) and in virtue
of the local compactness of (X , T1,π), according to [112], it is compactly dissipative. It
means that condition (1) of Theorem 2.6.1 is fulfilled. �
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Remark 2.29. If a spaceX is locally compact, then the system (X , T1,π) is locally compact.
Obviously, the inverse statement does not take place.

Theorem 2.6.2. A nonautonomous dynamical system 〈(X , T1,π), (Y , T2, σ),h〉 is conver-
gent if and only if the following conditions hold:

(1) Σ+
K is relatively compact for any compact subset K from X ;

(2) every semitrajectory Σ+
x is asymptotically stable, that is,

(a) for every ε > 0 and x ∈ X there exists δ = δ(ε, x) > 0 such that ρ(x, x) <
δ (h(x) = h(x)) implies ρ(xt, xt) < ε for all t ∈ T+;

(b) there exists γ(x) > 0 such that ρ(x, x) < γ(x) (h(x) = h(x)) implies
limt→+∞ ρ(xt, xt) = 0.

Proof . Let 〈(X , T1,π), (Y , T2, σ),h〉 be convergent. Condition (1) is obvious. Let us show
that every semitrajectory is asymptotically stable. If we suppose that it is not so, then there
exist x0 ∈ X , ε0 > 0, xk → x0 (h(xk) = h(x0)), and tk → +∞ such that

ρ
(
xktk, x0tk

) ≥ ε0. (2.49)

Since (X , T1,π) is compactly dissipative, then the sequences {xktk} and {x0tk} can be
considered convergent. Put x := limk→+∞ xktk and x := limk→+∞ x0tk. From (2.49) it
follows that x �= x. Note, that x, x ∈ D(ΩX) = JX . Without loss of generality {y0tk} can
be considered convergent. Assume y := limk→+∞ y0tk. Then h(x) = limk→+∞ h(xk)tk =
limk→+∞ y0tk = y and h(x) = limk→+∞ h(x0)tk = limk→+∞ y0tk = y. From this follows
that x, x ∈ JX ∩ Xy (y ∈ JY ). On the other hand, by the convergence of 〈(X , T1,π),
(Y , T2, σ),h〉, the set JX ∩ Xy contains at most one point. Consequently, x = x. The last
contradicts to (2.49) and so the asymptotical stability of every semitrajectory of Σ+

x is
proved. Condition (b) follows from Lemma 2.27.

Inversely. First of all, let us show that if x ∈ Xy (y := h(x)), then

lim
t→+∞ ρ

(
xt, xt

) = 0 (2.50)

for all x ∈ Xy . Suppose that it is not so. Denote by Gy the set of all the points x ∈ Xy ,
for which (2.50) takes place. In virtue of our assumption Gy �= Xy . Note that under the
conditions of Theorem 2.6.2, Gy is open in Xy . Assume Γy := ∂Gy and let x ∈ Γy . Then
B(x, γ(x))∩ Gy �= ∅ and B(x, γ(x))∩ (Xy \ Gy) �= ∅. It is easy to see that these relations
cannot be held simultaneously and, consequently, Γy = ∅ for every y ∈ Y .

Let us show now that for arbitrary compact K ⊆ X and ε > 0 there exists δ =
δ(ε,K) > 0 such that ρ(x1, x2) < δ (h(x1) = h(x2) and x1, x2 ∈ K) implies ρ(x1t, x2t) < ε
for all t ∈ T+. Suppose the contrary. Then there exists a compact subset K0 ⊆ X , ε0 > 0,
δn ↓ 0, {xik} ⊆ K0 (i = 1, 2, h(x1

k) = h(x2
k)), and tk → +∞ such that

ρ
(
x1
k , x2

k

)
< δk, ρ

(
x1
ktk, x2

ktk
) ≥ ε0. (2.51)

By the compactness of K0 we consider that the sequences {xik} (i = 1, 2) are convergent.
Put x := limk→+∞ x1

k = limk→+∞ x2
k ∈ K0. Since the semitrajectory Σ+

x is asymptotically
stable, then for ε0/3 and x there exists δ(ε0/3, x) > 0 such that ρ(x, x) < δ(ε0/3, x) (h(x) =
h(x)) implies ρ(xt, xt) < ε/3 for all t ∈ T+. Since xik → x (i = 1, 2) as k → +∞, there exists
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k ∈ N such that ρ(xik, x) < δ(ε0/3, x) for all k ≥ k and, consequently, ρ(xikt, xt) < ε0/3 for
all t ∈ T+. From the last inequality we obtain

ρ
(
x1
kt, x

2
kt
) ≤ 2ε0

3
< ε0 (2.52)

for all t ∈ T+ and k ≥ k. Since (2.51) contradicts to (2.52), the necessary statement is
proved. Now, to finish the proof of Theorem 2.6.2 it is sufficient to refer to Theorem 2.6.1.

�

The following theorem takes place.

Theorem 2.6.3. Let a point y0 ∈ Y be asymptotically stationary (resp., asymptotically τ-
periodic, asymptotically almost periodic, asymptotically recurrent) so that Y = H+(y0) and
the nonautonomous dynamical system 〈(X , T1,π), (Y , T2, σ),h〉 be convergent. Then the
following statements take place:

(1) the Levinson center JX of the dynamical system (X , T1,π) is homeomorphic to ωy0

and, consequently, it is a minimal set consisting of the stationary motion (resp.,
τ-periodic motions, almost periodic motions, recurrent motions);

(2) any point x ∈ X is asymptotically stationary (resp., asymptotically τ-periodic,
asymptotically almost periodic, asymptotically recurrent), and ωx = JX for all
x ∈ X and, consequently, Ws(JX) = X ;

(3) for every ε > 0 and compact subset K ⊆ X there exists δ = δ(ε,K) > 0 such that
ρ(x1, x2) < δ implies ρ(x1t, x2t) < ε for all t ∈ T+ and x1, x2 ∈ K , for which
h(x1) = h(x2).

Proof . Under the condition of Theorem 2.6.3 the dynamical system (Y , T, σ) is com-
pactly dissipative and JX = ωy0 . Thus, if 〈(X , T1,π), (Y , T2, σ),h〉 is convergent, then
JX and JY = ωy0 are homeomorphic and, consequently, JX is a minimal set consisting
of the stationary motion (resp., τ-periodic motions, almost periodic motions, recurrent
motions).

Sinceωx ⊆ JX for every x ∈ X , then in virtue of the minimality of JX we haveωx = JX .
As JX ∩ Xy consists exactly of one point for every y ∈ JY = ωy0 and ωh(x) = ωy0 , then
according to Theorem 2.3.1 the point x is comparable in limit with y = h(x). Since every
point y ∈ H+(y0) = Y is asymptotically stationary (resp., asymptotically τ-periodic,
asymptotically almost periodic, asymptotically recurrent), then from Corollary 2.9 it fol-
lows that the point x possesses the same property.

The third statement of the theorem it follows from Theorem 2.6.1. �

2.7. Some Tests of Convergence

Definition 2.30. A set M ⊆ X is called uniformly stable with respect to the homomor-
phism h : X → Y (un. st. h), if for every ε > 0 there exists δ > 0 such that ρ(x1, x2) < δ
implies ρ(x1t, x2t) < ε for all t ∈ T+ and x1, x2 ∈ M, for which h(x1) = h(x2). If X un.
st. h, then the dynamical system (X , T1,π) is called uniformly stable with respect to the
homomorphism h.
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Lemma 2.31. Let a homomorphism h : X → Y satisfy the following conditions:

(1) there exists a continuous section γ : Y → X , that is, there exists a continuous
mapping γ : Y → X for which h ◦ γ = IdY ;

(2) limt→+∞ ρ(x1t, x2t) = 0 for all x1, x2 ∈ X (h(x1) = h(x2)).

Then the following statements hold:

(1) if (Y , T2, σ) is point dissipative, then (X , T1,π) is point dissipative and in this case
ΩX and ΩY are homeomorphic;

(2) if (Y , T2, σ) is compactly dissipative and every compact subset K ⊆ X is uniformly
stable with respect to h, then (X , T1,π) is compactly dissipative, and JX and JY are
homeomorphic and, consequently, 〈(X , T1,π), (Y , T2, σ),h〉 is convergent.

Proof . Let (Y , T1, σ) be point dissipative. Then ΩY = ∪{ωy | y ∈ Y} is a nonempty
compact invariant set and, consequently, M := γ(ΩY ) ⊆ ΩX also is nonempty, compact
and invariant. For x ∈ X and y := h(x) we have limt→+∞ ρ(xt, γ(y)t) = 0. Hence, Σ+

x

is a relatively compact set. Besides, ωX ⊆ ωγ(Y) ⊆ γ(ΩY ) = M. From this it follows that
ΩX ⊆ M. So, (X , T1,π) is point dissipative and γ(ΩY ) = ΩX . Since γ : ΩY → ΩX separates
points and ΩY is compact, then ΩY and ΩX are homeomorphic.

Let (Y , T2, σ) be compactly dissipative. Then, according to the said above, (X , T,π)
is point dissipative. Let us assume that M := γ(JY ) and we will show that M is orbitally
stable. Suppose that it is not so. The there exist ε0 > 0, xk → x0 ∈ M, and tk → +∞ such
that

ρ
(
xktk, M

) ≥ ε0. (2.53)

Note that h(xk) = yk → y0 := h(x0) ∈ h(M) = h ◦ γ(JY ) = JY and, in virtue of the
compact dissipativity of (Y , T2, σ) the sequence {yktk} can be considered convergent.
Put y := limk→+∞ yktk. It is clear that y ∈ JY and γ(y) = limk→+∞ γ(h(xk))tk. Since
γ : JY → γ(JY ) = M separates points and h◦γ = IdY , then γ : JY → M is a homomorphism
and γ ◦ h(x) = x for all x ∈ M and, consequently, γ(h(xk)) → γ(h(x0)) = x0 ∈ M. From
the last relation it follows that

lim
k→+∞

ρ
(
xk, γ ◦ h(xk

)) = 0. (2.54)

Let ε > 0 and δ = δ(ε) > 0 be the numbers from the uniform stability of the com-
pact set K = {xk} ∪ γ ◦ h{xk} with respect to the homomorphism h. From (2.54) it
follows that for k large enough there takes place ρ(xk, γ ◦ h(xk)) < δ and, consequently,
ρ(xkt, (γ ◦ h)(xk)t) < ε for all t ∈ T+. In particular,

ρ
(
xktk, γ ◦ h(xk

)
tk
)
< ε (2.55)

for k large enough. Since ε is arbitrary, from (2.55) it follows that limk→+∞ xktk =
limk→+∞ γ ◦ h(xk)tk = γ(y) ∈ M. The last contradicts to (2.53). The obtained con-
tradiction shows that M is orbitally stable. So, (X , T,π) is point dissipative, ΩX ⊆ M,
M is nonempty, compact, invariant, and orbitally stable. According to [111, Lemma 7],
(X , T1,π) is compactly dissipative and JX ⊆ M. To finish the proof of the lemma it is
sufficient to refer to Lemma 2.27 and Remark 2.25. �



46 Asymptotically Almost Periodic Solutions of Operator Equations

Let (Y , S, σ) be a group dynamical system, (X , S+,π) be a semigroup dynamical
system, and h : X → Y be a homomorphism of (X , S+,π) onto (Y , S, σ). Let us consider
the nonautonomous dynamical system 〈(X , S+,π), (Y , S, σ),h〉 and denote by Γ(Y ,X) the
set of all continuous sections of the homomorphism h. The equality

d
(
γ1, γ2

) = sup
y∈Y

ρ
(
γ1(y), γ2(y)

)
(2.56)

defines a full metric on Γ(Y ,X).
Assume X×̇X := {(x1, x2) | x1, x2 ∈ X , h(x1) = h(x2)} and let V : X×̇X → R+ be a

mapping satisfying the following conditions:

(a) a(ρ(x1, x2)) ≤ V(x1, x2) ≤ b(ρ(x1, x2)) for all (x1, x2) ∈ X×̇X , where a, b ∈ K
and Im a = Im b (K := {a | a : R+ → R+, a is continuous, strictly monotone
increasing, and a(0) = 0});

(b) V(x1, x2) = V(x2, x1) for all (x1, x2) ∈ X×̇X ;
(c) V(x1, x2) ≤ V(x1, x3)+X(x3, x2) for all x1, x2, x3 ∈ X such that h(x1) = h(x2) =

h(x3);
(d) there exist N > 0 and γ > 0 such that

V
(
x1t, x2t

) ≤ Ne−γtV
(
x1, x2

) (∀(x1, x2
) ∈ X×̇X , t ∈ S+

)
. (2.57)

From conditions (a)–(c) it follows that on every fiber Xy := h−1(y) the mapping V
defines a metric that is topologically equivalent to ρ. The following lemma takes place.

Lemma 2.32 (see [115]). Let V : X×̇X → R+ satisfy the conditions (a)–(c). Then on
Γ(Y ,X) the equality

p
(
γ1, γ2

) = sup
y∈Y

V
(
γ1(y), γ2(y)

)
(2.58)

defines a complete metric, topologically equivalent to (2.56).

Lemma 2.33. Let 〈(X , S+,π), (Y , S, σ),h〉 be a nonautonomous dynamical system satisfy-
ing the following conditions:

(1) Γ(Y ,X) �= ∅;
(2) there exists a function V : X×̇X → R+ satisfying the conditions (a)–(c)

and

(3) V(x1t, x2t) ≤ Ne−γtV(x1, x2) (∀(x1, x2) ∈ X×̇X , t ∈ S+),

where N , γ > 0.
Then there exists a unique invariant continuous section of h, that is, there exists γ ∈

Γ(Y ,X), such that πt ◦ γ = γ ◦ σt for all t ∈ T+.
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Proof . Let us denote by St : Γ(Y ,X) → Γ(Y ,X) the mapping defined by the equality
(Stγ)(y) := πtγ(σ−t y) for all t ∈ S+, γ ∈ Γ(Y ,X) and y ∈ Y . It is easy to check that
{St}t≥0 is a commutative semigroup with respect to the composition. Note that

p
(
Stγ1, Stγ2

) = max
y∈Y

V
(
πtγ1
(
σ−t y
)
,πtγ2

(
σ−t y
))

≤ Ne−γt max
y∈Y

V
(
γ1
(
σ−t y
)
, γ2
(
σ−t y
)) ≤ Ne−γt p

(
γ1, γ2

)
.

(2.59)

From inequality (2.59) it follows that the mappings St are contractions for t ∈ S+ large
enough. From this, in virtue of the commutativity of {St}t≥0, it follows that there exists a
common fixed point γ of the semigroup {St}t≥0 which is an invariant section of h, that is,
πt ◦ γ = γ ◦ σt for all t ∈ S+. �

Theorem 2.7.1. Let a nonautonomous dynamical system 〈(X , S+,π), (Y , S, σ),h〉 satisfy
the conditions:

(1) Γ(Y ,X) �= ∅.
(2) there exists a function V : X×̇X → R+ satisfying the conditions (a)–(d).

Then (X , S+,π) is compactly dissipative, and JX and JY are homeomorphic. Conse-
quently, 〈(X , S+,π), (Y , S, σ),h〉 is convergent.

Proof . Note, that for x1, x2 ∈ X (h(x1) = h(x2),

a
(
ρ
(
x1t, x2t

)) ≤ V
(
x1t, x2t

) ≤ Ne−γtV
(
x1, x2

) ≤ Ne−γtb
(
ρ
(
x1, x2

))
. (2.60)

Hence, limt→+∞ a(ρ(x1t, x2t)) = 0 and limt→+∞ ρ(x1t, x2t) = 0. Let ε > 0 and δ(ε) =
b−1(N−1a(ε)). Since ρ(x1, x2) < δ(ε) (h(x1) = h(x2)) implies ρ(x1t, x2t) < ε for all t ∈ S+,
the system (X , S+,π) is uniformly stable with respect to h. Now to complete the proof of
the theorem it is sufficient to refer to Lemmas 2.31 and 2.33. �

Remark 2.34. Lemma 2.32 and Theorem 2.7.1 take place also when Y is not compact. In
this case we will denote by Γ(Y ,X) the set of all continuous bounded sections.

Corollary 2.35. Let y0 ∈ Y be asymptotically stationary (resp., asymptotically τ-periodic,
asymptotically almost periodic, asymptotically recurrent) and Y = H(y0). If for the dynam-
ical system 〈(X , S+,π), (Y , S, σ),h〉 the conditions of Theorem 2.7.1 are fulfilled, then it is
convergent and, besides,

(1) the Levinson center JX of the dynamical system (X , S+,π) is homeomorphic to ωy0

and consists of the stationary motion (resp., τ-periodic motions, almost periodic
motions, recurrent motions).

(2) any point x ∈ X is asymptotically stationary (resp., asymptotically τ-periodic,
asymptotically almost periodic, asymptotically recurrent).

(3) for every ε > 0 there exists δ > 0 such that ρ(x1, x2) < δ implies ρ(x1t, x2t) < ε for
all t ∈ S+ and x2, x2 ∈ X for which h(x1) = h(x2).

Proof . The formulated statement it follows from Theorems 2.7.1, 2.6.2, and Remark 2.34.
�
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In conclusion, note that convergent dynamical systems are in a way the simplest dis-
sipative dynamical systems. If a nonautonomous system 〈(X , S+,π), (Y , S, σ),h〉 is con-
vergent and JX (resp., JY ) is the Levinson center of (X , S+,π) (resp., (Y , S, σ)), then JX
and JY are homeomorphic. From this we see that on the one hand, the Levinson center
of a convergent system can be described fully enough and, on the other hand, it can be
notably complicated.



3
Asymptotically Almost Periodic
Solutions of Ordinary Differential
Equations

3.1. Some Nonautonomous Dynamical Systems

Example 3.1. Let En be an n-dimensional real or complex Euclidian space with the norm
| · |. Consider a differential equation

du

dt
= f (t,u), (3.1)

where f ∈ C(R × En,En). Along with (3.1) let us consider also its H-class [92, 93, 98,
100, 107, 116]

dv

dt
= g(t, v), (3.2)

where g ∈ H( f ) = { f (τ) : τ ∈ R} and f (τ)(t,u) := f (t + τ,u). In this example we
suppose that the function f is regular, that is, for every (3.2) the conditions of existence,
uniqueness, and nonlocal extensibility of its solutions on R+ are held. Denote by ϕ(t, v, g)
a solution of (3.2) passing through the point v ∈ En as t = 0. Then the mapping
ϕ : R+ × En ×H( f ) → En is well defined and the following conditions are fulfilled (see,
i.e., [88, 89, 93]):

(1) ϕ(0, v, g) = v (for all v ∈ En and g ∈ H( f );
(2) ϕ(t,ϕ(τ, v, g), gτ) = ϕ(t + τ, v, g) (for all v ∈ En, g ∈ H( f ) and t, τ ∈ R+);
(3) ϕ : R+ × En ×H( f ) → En is continuous.

Let us put Y := H( f ) and by (Y , R, σ) denote a dynamical system of shifts on Y
induced by the dynamical system of shifts (C(R × En,En), R, σ). Put X := En × Y and
define a mapping π : X × R+ → X as follows: π((v, g), τ) = (ϕ(τ, v, g), gτ) (i.e., π :=
(ϕ, σ)). Then it is easy to verify that (X , R+,π) is a dynamical system of shifts on X and
h = pr2 : X → Y is a homomorphism of (X , R+,π) onto (Y , R, σ) and, consequently,
〈(X , R+,π), (Y , R, σ),h〉 is a nonautonomous dynamical system generated by (3.1).

Remark 3.2. Also we will consider the case Y = H+( f ) = { f (τ)|τ ∈ R+}, a semi-group
dynamical system (H+( f ), R+, σ), and a semigroup nonautonomous dynamical system
〈(X , R+,π), (H+( f ), R+, σ), h〉.

Example 3.3. Let us consider differential equation (3.1) with the right-hand side f ∈
C(R × W ,En), where W is some open set from En. Denote Y := C(R ×W ,En) and
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by (Y , R, σ) denote a dynamical system of shifts on Y . By X denote the set of all pairs
(ϕ, f ) from C(R+,W) × C(R ×W ,En) such that ϕ is a solution of (3.1). Obviously, X
is invariant with respect to shifts in the dynamical system of shifts (C(R+,En) × C(R ×
W ,En), R+,π), where π((ϕ, f ), τ) = (ϕ(τ), f (τ)). From general properties of differential
equations it follows the closeness of X in C(R+,En) × C(R ×W ,En) and, consequently,
on X there is induced a dynamical system of shifts (X , R+,π). The mapping h := pr2 :
X → Y is a homomorphism of the dynamical system (X , R+,π) on (Y , R, σ). Hence
〈(X , R+,π), (Y , R, σ),h〉 is a nonautonomous dynamical system.

Example 3.4. Let ϕ ∈ C(R+,En) be a solution of (3.1), Q := ϕ(R+), fQ := f |R×Q
and H( fQ) := σ( fQ, R), where σ(·, fQ) is a motion generated by fQ in the dynamical
system of shifts (C(R × Q,En), R, σ). Assume Y := H( fQ) and X := H+(ϕ, fQ), where
H+(ϕ, fQ) is the closure of the positive semitrajectory of (ϕ, fQ) in the product dynamical
systems (C(R+,En), R+, σ) × (C(R × Q,En), R, σ). Then the mapping h := pr2 : X → Y
is a homomorphism of (X , R+,π) onto (Y , R, σ), where (Y , R, σ) (resp., (X , R+,π)) is a
dynamical system on Y (resp., X) induced by the dynamical system (C(R × Q,En, R, σ)
(resp., (C(R+,En), R+, σ)×(C(R×Q,En), R, σ)). So, 〈(X , R+,π), (Y , R, σ),h〉 is a nonau-
tonomous dynamical system.

Example 3.5. Let us denote by L
p
loc(R×W ,En) the space of all the functions f : R×W →

En that satisfy the following two conditions (the conditions of Carathéodory):

(a) for every fixed t ∈ R the function f is continuous with respect to x ∈W ;
(b) for every fixed compactQ ⊆W there exists a positive functionmQ ∈ L

p
loc(R, R)

such that
| f (t, x)| ≤ mQ(t)

for all t ∈ R and x ∈ Q.

Let us define with the help of family of seminorms a topology in the space L
p
loc(R ×

W ,En). The family of seminorms is defined as follows. Let l > 0 and Q be an arbitrary
compact subset from W . Assume that

‖ f ‖p[−l,l]×Q :=
∫

|t|≤l
max
x∈Q
∣
∣ f (t, x)

∣
∣pdt. (3.3)

Define a mapping σ : L
p
loc(R×W ,En)×R → L

p
loc(R×W ,En) by the equality σ(τ, f ) :=

f (τ). We can show (see, e.g., [117]) that the triple (L
p
loc(R ×W ,En), R, σ) is a dynamical

system.

The following lemma takes place.

Lemma 3.6. Let Q be a compact subset from En, S1, S2, . . . , Sm, . . . is an increasing sequence
of intervals in R, for which

⋃∞
m=1 Sm = R and ϕm ∈ C(R,Q) (m ∈ N). Suppose that the

following conditions are fulfilled:

(1) for every m ∈ N in L
p
loc(Sm × En,En) there exists a function fm such that the

restriction of the function ϕm on Sm is a solution of the differential equation

dx

dt
= fm(t, x), (3.4)
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(2) for every segment S ⊆ R and every ε there exists n0 ∈ N such that S ⊆ Sm and

∫

(S)
max
x∈Q
∣
∣ fm(t, x)− f (t, x)

∣
∣dt < ε (3.5)

for all m ≥ n0.

Then the following statements take place:

(1) the set of functions Φ = {ϕn : n ∈ N} is relatively compact in C(R,Q);
(2) the limit φ of every convergent subsequence of the sequence {ϕn} is a Q-compact

solution of (3.1) (i.e., ϕ(R) ⊆ Q) defined on the whole axis R;
(3) if a real number t0 ∈ R is such that the sequence {ϕn(t0)} ⊆ En converges to

some point x0 ∈ Q and ϕ is the unique not extensible solution of (3.1) satisfying
the initial condition ϕ(t0) = x0, that is, then ϕ is a Q-compact solution of (3.1)
defined on the whole axis R and the sequence {ϕn} converges to ϕ in the space
C(R,Q).

Proof . The formulated lemma is a generalization of [92, Lemma 3.1.5] and is proved in
the same way. So, we omit its proof. �

Assume that Y := L
p
loc(R ×W ,En) and by (Y , R, σ) denote a dynamical system of

shifts on Y . By X denote the set of all pairs (ϕ, f ) ∈ C(R+,En) × L
p
loc(R ×W ,En) such

that ϕ is a solution of (3.1). From general properties of differential equations follows
that X is closed and invariant in C(R+,En) × L

p
loc(R × W ,En) and, consequently, on

X there is induced a dynamical system of shifts (X , R+,π). The mapping h = pr2 :
X → Y is a homomorphism of (X , R+,π) onto (Y , R, σ) and, consequently, the triple
〈(X , R+,π), (Y , R, σ),h〉 is a nonautonomous dynamical system.

Example 3.7. Let us denote by CH(R × Cn, Cn) the set of all continuous with respect to
t ∈ R and holomorphic with respect to z ∈ Cn functions f : R × Cn → Cn, which is
endowed with the topology of uniform convergence on compact subsets from R × Cn.
Consider (3.1) with the right-hand side f ∈ CH(R×Cn, Cn) and its H-class. Denote by
ϕ(t, z, g) a solution of (3.2) passing through the point z as t = 0 and defined on R+. Note
that the mapping ϕ : R+×Cn×H( f ) → Cn satisfies conditions (1)–(3) from Example 3.1
and, besides, for every t ∈ R+ and g ∈ H( f ) the mapping U(t, g) = ϕ(t, ·, g) : Cn → Cn

is holomorphic [118]. Put Y := H( f ) and by (Y , R, σ) denote a dynamical system of
shifts on Y . Let X = Cn × Y and (X , R+,π) be a dynamical system on X , where π :=
(ϕ, σ). At last, if h = pr2 : X → Y , then 〈(X , R+,π), (Y , R, σ),h〉 is a nonautonomous
dynamical system. From the above mentioned fact that the mappings U(t, g) : Cn → Cn

are holomorphic it follows that for any y ∈ Y and t ∈ R+ the mapping πt : Xy → Xσ(t,y)

(Xy := h−1(y)) is holomorphic.

3.2. Compatible in Limit Solutions

Let us consider the problem of dependence of the property of recurrence in limit of
solutions for differential equations on the according property of the right-hand sides of
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equations. Namely, we will study the problem of asymptotically periodicity (resp., asymp-
totically almost periodicity, asymptotically recurrence) of solutions, if the right-hand side
of equation possesses the same property.

It is well known [92] that, if the right-hand side of a differential equation is Pois-
son stable with respect to the time (resp., periodic, almost periodic, recurrent) func-
tion, then under certain conditions among bounded solutions of that equation there
exists a solution which is compatible with respect to recurrence with the right-hand
side.

So, we can see a notably common and deep dependence, in virtue of which the
character of the recurrence of solutions of differential equations is compatible with the
recurrence of the right-hand side of equations (see, e.g., [92, 93, 100]).

The given below results show that an analogous dependence of the recurrence in limit
of the right-hand side of differential equations also takes place when the right-hand side
is asymptotically Poisson stable.

Definition 3.8. Let f ∈ C(R ×W ,En) and Q be a compact subset from W . One will
say that the function f is asymptotically stationary (resp., τ-periodic, almost periodic,
recurrent, stable in the sense of Poisson) with respect to the variable t ∈ R uniformly
with respect to x ∈ Q, if the motion σ(·, fQ) generated by the function fQ := f |R×Q in the
dynamical system of shifts (C(R×Q,En), R, σ) is asymptotically stationary (resp., asymp-
totically τ-periodic, asymptotically almost periodic, asymptotically recurrent, asymptot-
ically Poisson stable).

Remark 3.9. Function f ∈ C(R ×W ,En) is asymptotically stationary (resp., asymptoti-
cally τ-periodic, asymptotically almost periodic, asymptotically recurrent, asymptotically
Poisson stable) with respect to the variable t ∈ R uniformly with respect to x on compact
subsets from W , if for every compact Q ⊆W the function fQ is asymptotically stationary
(resp., asymptotically τ-periodic, asymptotically almost periodic, asymptotically recur-
rent, asymptotically Poisson stable) with respect to t ∈ R uniformly with respect to x ∈ Q
if and only if there exist functions P,R ∈ C(R×W ,En) such that f (t, x) = P(t, x)+R(t, x)
for all (t, x) ∈ R ×W . In this case the function P is stationary (resp., τ-periodic, almost
periodic, recurrent, Poisson stable) with respect to t ∈ R uniformly with respect to x on
compact subsets from W and limt→+∞ |R(t, x)| = 0 �→ limt→+∞ |R(t, x)| = 0 uniformly
with respect to x on compact subsets from W .

Definition 3.10. A solution ϕ of (3.1) one will call compatible in limit, if it is compa-
rable in limit (in the positive direction) with the function fQ := f |R×Q, where Q =
ϕ(R+), that is, the motion σ(·,ϕ) generated by the function ϕ in the dynamical system
(C(R+,En), R+, σ) is comparable in limit with the motion σ(·, fQ) generated by the func-
tion fQ in the dynamical system (C(R×Q,En), R, σ).

Definition 3.11. A function ϕ ∈ C(R,En) is called bounded on S ⊆ R, if the set ϕ(S) ⊂ En

is bounded.

Theorem 3.2.1. Let ϕ be a bounded on R+ compatible in limit solution of (3.1) and Q :=
ϕ(R+). Then:
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(1) if the right-hand side f of (3.1) is asymptotically recurrent with respect to the
variable t ∈ R uniformly with respect to x ∈ Q, then the solution ϕ is asymptoti-
cally recurrent;

(2) if the right-hand side f is asymptotically almost periodic with respect to t ∈ R

uniformly with respect to x ∈ Q, then the solution ϕ is asymptotically almost
periodic;

(3) if f is asymptotically τ-periodic with respect to to t ∈ R uniformly with respect to
x ∈ Q, then the solution ϕ is asymptotically τ-periodic;

(4) if f is asymptotically stationary with respect to t ∈ R uniformly with respect to
x ∈ Q, then the solution ϕ is asymptotically stationary.

Proof . The validity of the formulated statement it follows from the corresponding defi-
nitions, [92, Lemma 3.1.1] and Theorem 2.2.2 applied to the nonautonomous dynamical
system from Example 3.4. �

Along with (3.1) let us consider the family of “ω-limit” equations

dv

dt
= g(t, v),

(
g ∈ ωf

)
, (3.6)

where f ∈ C(R×W ,En) andωf is aω-limit set of the function f in the dynamical system
(C(R×W ,En), R, σ).

Theorem 3.2.2. Let ϕ be a bounded on R+ solution of (3.1) and fQ := f |R×Q is st. L+,
where Q := ϕ(R+). If every equation of family (3.6) admits at most one solution from ωϕ,
then ϕ is compatible in limit.

Proof . Since fQ is st. L+, then according to [92, Lemma 3.1.6] the solution ϕ is st. L+. Let
〈(X , R+,π), (Y , R, σ),h〉 be a nonautonomous dynamical system constructed in Example
3.4. Consider an operator equation

h
(
ψ, fQ
) = fQ. (3.7)

Along with (3.7) consider the family of equations

h
(
ψ, gQ
) = gQ,

(
gQ ∈ ωfQ

)
. (3.8)

From the said above it follows that the point (ϕ, fQ) ∈ X is st. L+. According to
the conditions of Theorem 3.2.2, every equation of family (3.8) has at least one solution
from ω(ϕ, fQ). From Theorem 2.3.1 it follows that L+∞

fQ
⊆ L+∞

(ϕ, fQ). To finish the proof of
Theorem 3.2.2 it remains to note that L+∞

(ϕ, fQ) = L+∞
ϕ ∩ L+∞

fQ
and, consequently, L+∞

fQ
⊆

L+∞
ϕ . The theorem is proved. �

Remark 3.12. According to [92, Lemma 3.4.2], the function fQ is st. L+ (resp., L) if and
only if the following conditions are fulfilled:

(1) fQ is bounded on R+ × Q (resp., R × Q), that is, there exists M > 0 such that
| f (t, x)| ≤M for all (t, x) ∈ R+ ×Q (resp., (t, x) ∈ R×Q);

(2) the function fQ is uniformly continuous on R+ ×Q (resp., R×Q).
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Note that every theorem on the compatibility in limit of a solution of (3.1) together
with Theorem 3.2.1 gives various tests of existence of asymptotically stationary (resp.,
asymptotically periodic, asymptotically almost periodic, asymptotically recurrent) solu-
tions of (3.1).

For example from Theorem 3.2.2 follow the next statements.

Corollary 3.13. Let f be asymptotically stationary (resp., asymptotically τ-periodic, asymp-
totically almost periodic, asymptotically recurrent) with respect to the variable t ∈ R uni-
formly with respect to x ∈ Q := ϕ(R+) and ϕ be a bounded on R+ solution of (3.1). If
every equation of family (3.6) admits at most one solution from ωϕ, then ϕ is asymptotically
stationary (resp., asymptotically τ-periodic, asymptotically almost periodic, asymptotically
recurrent).

Corollary 3.14. Let ϕ be a bounded on R+ solution of (3.1) and f ∈ C(R×W , R) (W ⊆ R)
be asymptotically recurrent with respect to t ∈ R uniformly with respect to x ∈ Q = ϕ(R+).
If some function gQ from ωfQ ( fQ := f |R×Q) is strictly monotone with respect to x uniformly
with respect to time t, then ϕ is compatible in limit in the positive direction.

Proof . From the asymptotical recurrence of f and strict monotonicity of gQ ∈ ωfQ it
follows that every function from ωfQ possesses the property of strict monotonicity with
respect to x ∈ Q uniformly with respect to t ∈ R. According to [119], every equation of
family (3.8) admits at most one solution from ωϕ and by Theorem 3.2.2 ϕ is compatible
in limit. �

Corollary 3.15. Let ϕ be a bounded on R+ solution of (3.1) and f ∈ C(R ×W , R) be
asymptotically stationary (resp., asymptotically τ-periodic, asymptotically almost periodic,
asymptotically recurrent) with respect to t ∈ R uniformly with respect to x ∈ Q. If some
function gQ ∈ ωfQ is strictly monotone with respect to x ∈ Q uniformly with respect to
t ∈ R, then ϕ is asymptotically stationary (resp., asymptotically τ-periodic, asymptotically
almost periodic, asymptotically recurrent).

Note that if f is asymptotically almost periodic, then Corollary 3.14 reinforces the
result of the work [36].

3.3. Linear Differential Equations

In this section we study linear differential equations satisfying the condition of Favard.
We establish the relation between the condition of Favard and regularity and weak regu-
larity. We study also the linear differential equations with asymptotically almost periodic
coefficients. Denote by [En] the Banach space of all linear bounded operators A acting
on En with operator norm and by Cb(I ,En) the Banach space of all continuous and
bounded functions f : I �→ En with sup-norm, where I ⊆ R is an interval from R (i.e.,
I = [a, b], [a, b), (a, b] or (a, b) and a, b ∈ R∗ := R

⋃{−∞, +∞}.
Let E and F be a pair of subspaces from Cb(I ;En).

Definition 3.16. An equation

dx

dt
= A(t)x, (3.9)
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or differential operator

(
LAx
)
(t) = dx(t)

dt
− A(t)x(t), (3.10)

where A ∈ C(R; [En]), is called (see, e.g., [107]) (E, F)-admissible (resp., regular), if for
every f ∈ F the equation

LAx = f (3.11)

has at least one (resp., exactly one) solution ϕ ∈ E.

Definition 3.17. If LA is (Cb(R;En),Cb(R;En)) regular (resp., admissible), then one sim-
ply will say that LA is regular (resp., admissible or weakly regular).

Definition 3.18. Recall that a linear bounded operator P : En → En is called a projection,
if P2 = P, where P2 := P ◦ P.

Definition 3.19. Let U(t,A) be the operator of Cauchy (a solution operator) of linear
(3.9). Following [120] one will say that (3.9) has an exponential dichotomy (is hyper-
bolic) on I ⊆ R, if there exists a projection P(A) ∈ [En] satisfying the following condi-
tions:

(1) P(A)U(t,A) = U(t,A)P(A) for all t ∈ I ;
(2) there exist constants ν > 0 and N > 0 such that

∥
∥UP(t, τ;A)

∥
∥ ≤ Ne−ν(t−τ) (∀t ≥ τ; t, τ ∈ I

)
, (3.12)

∥
∥UQ(t, τ;A)

∥
∥ ≤ Neν(t−τ) (∀t ≤ τ : t, τ ∈ I

)
, (3.13)

where UP(t, τ;A) := U(t,A)P(A)U−1(τ,A), UQ(t, τ;A) := U(t,A)Q(A)U−1(τ,
A) and Q(A) := E − P(A) (E is the identity operator in [En]).

Theorem 3.3.1 (see [120]). Let A ∈ Cb(R+, [En]). Equation (3.9) satisfies the condition of
exponential dichotomy on R+ if and only if for every function f ∈ Cb(R+,En) (3.10) admits
at least one solution ϕ ∈ Cb(R+,En).

Theorem 3.3.2 (see [107, 120]). LetA ∈ Cb(R, [En]). Equation (3.9) satisfies the condition
of exponential dichotomy on R if and only if for every function f ∈ Cb(R,En) (3.10) admits
a unique solution ϕ ∈ Cb(R,En).

Theorem 3.3.3 (see [120]). Let A ∈ [En]. Equation (3.10) admits a unique solution ϕ ∈
Cb(R,En) for every function f ∈ Cb(R,En) if and only if the spectrum σ(A) of the operator
A does not intersect the imaginary axis, that is, σ(A) ∩ iR = ∅, where i2 = 1, iR := {ix |
x ∈ R} and σ(A) is the spectrum of operator A.
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3.3.1. Equations with Periodic Operator-Function

Lemma 3.20. Let A ∈ [En] and

LAx = dx

dt
− Ax. (3.14)

For the differential operator (3.14) to be regular it is necessary and sufficient that the equa-
tion

LAx = 0 (3.15)

would have no nonzero, bounded on R solutions.

Proof . If operator (3.14) is regular, then, obviously, (3.15) has no nonzero, bounded on
R solutions.

Inversely. Let (3.15) have no nonzero solutions from Cb(R,En). Then the spectrum
of the operator A does not intersect with the imaginary axis. In fact, if iβ ∈ σ(A) (β ∈ R),
then there exists x0 ∈ En (x0 �= 0) such that

x(t) = eiβtx0 (t ∈ R) (3.16)

is a nonzero, bounded on R solution of (3.15) and this contradicts to the condition.
So, the spectrum of the operator A does not intersect the imaginary axis. According to
Theorem 3.3.3 the operator LA is regular.

Let us consider an equation of the type

dx

dt
= A(t)x, (3.17)

in which the operator A(t) is a τ-periodic operator-function, that is, for some τ > 0

A(t + τ) = A(t) (t ∈ R). (3.18)

The Cauchy operator U(t) of (3.17) satisfies the system

U ′(t) = A(t)U(t),

U(0) = E.
(3.19)

It is easy to see that the operator

U1(t) = U(t + τ)U−1(τ) (3.20)

satisfies the same system. In virtue of the uniqueness of the solution of system (3.19) we
have U1(t) = U(t), which implies U(t + τ) = U(t)U(τ).

Definition 3.21. The operator U(τ) is called monodromy operator of (3.17).

Since the operator U(τ) is reversible, then there exists the operator S := lnU(τ) for
which U(τ) = eS .
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Let us introduce and consider the operator

Γ := 1
τ

lnU(τ). (3.21)

Then U(τ) = eτΓ.
Assume now

Q(t) := (t)e−tΓ. (3.22)

The operator-function Q(t) is τ-periodic:

Q(t + τ) = U(t + τ)e−(t+τ)Γ = U(t)U(τ)e−tΓ = U(t)e−Γt = Q(t). (3.23)

On the segment [0, τ] this operator-function is continuous, differentiable, and has
continuous inverse operator Q−1(t).

From equality (3.22) it follows the Floquet presentation of the Cauchy operator

U(t) = Q(t)etΓ (3.24)

in the form of the product of periodic differentiable operator-function Q(t) having
bounded inverse operator Q−1(t) by the operator exponent etΓ with the constant oper-
ator Γ. �

From the said above the theorem on the presentation of Floquet follows.

Theorem 3.3.4 (see [120]). The operator of Cauchy U(t) of (3.17) admits presentation
(3.24), where Q(t) is a periodic differentiable operator-function having bounded inverse
operator Q−1(t), and Γ is a constant operator.

Definition 3.22. The operator L ∈ C(R; [En]) is called an operator-function of Lyapunov,
if there are fulfilled the next conditions:

(1) L(t) and L̇(t) are bounded on R;
(2) L(t) has a bounded inverse operator L−1(t) and the operator-function L−1(t) is

bounded on R.

Definition 3.23. The linear transformation

x(t) = L(t)y(t), (3.25)

with the operator-function of Lyapunov L(t) is called a transformation of Lyapunov.

Definition 3.24. Equation (3.17) is called reducible, if with the help of some transforma-
tion of Lyapunov it can be transformed into linear equation

dy

dt
= By, (3.26)

with the constant operator B.
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Theorem 3.3.5 (see [120]). Let the operator-function A(t) be τ-periodic. Then (3.17) is
reducible.

Proof . Let us show that Q(t) defined by equality (3.22) is an operator-function of Lya-
punov. In fact, sinceQ(t) andQ−1(t) are continuous with respect to t ∈ R and τ-periodic,
they are bounded on R. Now we will show that dQ/dt is also bounded on R. For this aim
we note that

dQ

dt
= d

dt

(
U(t)e−Γt

) = dU

dt
e−Γt +U(t)

d

dt
e−Γt

= A(t)U(t)e−Γt +U(t)
(− Γe−Γt

) = A(t)Q(t)−Q(t)Γ.

(3.27)

From equality (3.27) it follows that dQ/dt is bounded with respect to t ∈ R.
In (3.17) we make a transformation

x(t) = Q(t)y(t). (3.28)

Then

dx

dt
= dQ

dt
y(t) +Q(t)

dy

dt
= [A(t)Q(t)−Q(t)Γ

]
y +Q(t)

dy

dt
, (3.29)

consequently,

A(t)Q(t)y = A(t)Q(t)−Q(t)Γy +Q(t)
dy

dt
. (3.30)

Therefore,

dy

dt
= Γy. (3.31)

The theorem is proved. �

Theorem 3.3.6. Let A(t + τ) = A(t) (t ∈ R). For the equation

dx

dt
= A(t)x + f (t) (3.32)

to have a unique solution bounded on R for any bounded on R function f , it is necessary
and sufficient that the spectrum of the operator Γ := (1/τ) lnU(t) would not intersect the
imaginary axis.

Proof . In (3.32) we make the change of the variables x(t) = Q(t)y(t). Then with respect
to y we obtain the equation

dy

dt
= Γy +Q−1(t) f (t), (3.33)
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from which it follows that (3.32) has a unique bounded on R solution for any bounded
on R function f exactly when the equation

dy

dt
= Γy + g(t) (3.34)

has single bounded on R solution for every bounded on R function g ∈ Cb(R;En). The
last, according to Theorem 3.3.3, takes place if and only if the spectrum of the operator Γ
does not cross the imaginary axis. The theorem is proved. �

Corollary 3.25. Let A(t) be τ-periodic. The operator

LAx = dx

dt
−A(t)x (3.35)

is regular if and only if the spectrum of the operator Γ does not intersect the imaginary axis.

Remark 3.26. Note that the spectrum of the operator Γ does not intersect the imaginary
axis if and only if the spectrum of the operator of monodromy U(τ) = eτΓ does not
intersect the unit circle.

Corollary 3.27. LetA(t) be τ-periodic. Operator (3.35) is regular if and only if the equation

LAx = 0 (3.36)

has no nonzero bounded on R solutions.

Proof . The last statement it follows from Theorem 3.3.5, Lemma 3.20, and the fact that
(3.36) and (3.31) at the same time either have or have no bounded on R solutions. �

Let A(t+ τ) = A(t). Then H(A) = {A(s) : s ∈ [0, τ)} and, hence, there takes place the
next corollary.

Corollary 3.28. Let A(t+τ) = A(t). For the operator (3.35) to be regular it is necessary and
sufficient that every equation

LBx = 0,
(
B ∈ H(A)

)
, (3.37)

where LBx := (dx/dt)− B(t)x, would have no nonzero, bounded on R solutions.

In the next section we generalize the last statement for operators with almost periodic
operator-function A(t).

3.3.2. Equations with Almost Periodic Operator-Function

3.3.2.1. Limiting Equations

Let f ∈ C(R;En).

Definition 3.29. A function g ∈ C(R;En) is called ω(resp., α)-limit for f , if there exists a
sequence tn → +∞ (resp., −∞) such that f (tn) → g in the topology of the space C(R;En).
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By ωf (resp., α f ) there is denoted the set of all ω (resp., α)-limit functions for f and
Δ f := ωf

⋃
α f . Assume that

H+( f ) := { f (τ) : τ ∈ R+
}

, H−( f ) := { f (τ) : τ ∈ R−},

H( f ) := H+( f )∪H−( f ),
(3.38)

where by bar there is denoted the closure in the topology of the space C(R;En).
LetA ∈ C(R; [En]). Consider a differential equation

dx

dt
= A(t)x. (3.39)

Denote by U(t,A) the operator of Cauchy of (3.39) and

ϕ(t,A, x) = U(t,A)x. (3.40)

Lemma 3.30. The function U(t,A) is continuous with respect to A ∈ C(R; [En]) uniformly
with respect to t on compact subsets from R.

Proof . Let {An} ⊆ C(R; [En]), An → A uniformly on compact subsets from R and l > 0.
Then there exists a number M(l) > 0 such that

max
|t|≤l
∥
∥An(t)

∥
∥ ≤M(l) (n ∈ N). (3.41)

Since U(t,An) is the solution of the system

U̇
(
t,An
) = An(t)U

(
t,An
)
,

U
(
0,An
) = E,

(3.42)

then from ‖U(t,A)‖ ≤ exp{∫ tt0 ‖A(t)‖ds} it follows that

max
|t|≤l
∥
∥U(t,An)

∥
∥ ≤ e2lM(l) (n ∈ N). (3.43)

Assume now that Vn(t) := U(t,A)−U(t,An) and note that Vn(t) satisfies to the system

V ′
n(t) = A(t)Vn(t) + [A(t)− An(t)]U(t,An),

Vn(0) = 0,
(3.44)

therefore,

Vn(t) = U(t,A)
∫ t

0
U−1(τ,A)

[
A(τ)− An(τ)

]
U
(
τ,An
)
dτ. (3.45)

Let K(l) := max|t|≤l{‖U(t,A)‖,‖U−1(t,A)‖}. From (3.43) and (3.45) it follows the
inequality

max
|t|≤l
∥
∥Vn(t)

∥
∥ ≤ K2(l)2 le2lM(l) max

|t|≤l
∥
∥A(t)− An(t)

∥
∥. (3.46)
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Passing to the limit in (3.46) as n→ +∞ we obtain

lim
n→+∞

max
|t|≤l
∥
∥U(t,A)−U(t,An)

∥
∥ = 0. (3.47)

The lemma is proved. �

Corollary 3.31. For every fixed t ∈ R the mapping Ut : C(R; [En]) → [En] defined by the
equality Ut(A) := U(t,A) is continuous.

Lemma 3.32. If (3.39) is hyperbolic on R+, then every equation

ẏ = B(t)y, (3.48)

where B ∈ ωA is hyperbolic on R.

Proof . Let B ∈ ωA. Then there exists tn → +∞ such that B = limn→+∞A(tn). Assume

P
(
A(tn)) = U

(
tn,A
)
P(A)U−1(tn,A

)
, (3.49)

Q
(
A(tn)) = U

(
tn,A
)
Q(A)U−1(tn,A

)
, (3.50)

where P(A) and Q(A) is a pair of mutually complimentary projectors from the def-
inition of exponential dichotomy. Projectors {P(A(tn))} and {Q(A(tn))} are uniformly
bounded and, hence, they can be considered convergent. Put P(B) := limn→+∞ P(A(tn))
and Q(B) := limn→+∞Q(A(tn)). Note that

P2(A(tn)) = P
(
A(tn)), (3.51)

P
(
A(tn)) +Q

(
A(tn)) = E. (3.52)

Passing to the limit in (3.51) as t → +∞ we get P2(B) = P(B). In the same way we show
that Q2(B) = Q(B). At last, from (3.52) it follows that P(B) + Q(B) = E. So, P(B) and
Q(B) is a pair of mutually complimentary projectors. Let us show that they can be taken
as projectors in the definition of the exponential dichotomy on R of (3.48). In fact, let
t ≥ τ and t, τ ∈ R. Then for tn large enough the numbers t and τ belong to the interval
(−tn, +∞). From the equality

U
(
t,A(tn))P

(
A(tn))U−1(τ,A(tn)) = U

(
t + tn,A

)
P(A)U−1(τ + tn,A

)
(3.53)

and inequality (3.12), taking into consideration the above said and Lemma 3.30, we
obtain the inequality

∥
∥U(t,B)P(B)U−1(τ,B)

∥
∥ ≤ Ne−ν(t−τ). (3.54)

Similarly we prove that

∥
∥U(t,B)Q(B)U−1(τ,B)

∥
∥ ≤ Neν(t−τ) (3.55)

when t ≤ τ and t, τ ∈ R. The lemma is proved. �
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Corollary 3.33. Let (3.39) be hyperbolic on R+ and B ∈ ωA. The (3.48) has no nonzero
bounded on R solutions.

Corollary 3.34. Let (3.39) be hyperbolic on R+ and A be Poisson stable in the positive
direction [92], that is, A ∈ ωA. Then (3.39) is hyperbolic on R.

Lemma 3.35. Let (3.39) be hyperbolic on R and B ∈ H(A). Then (3.48) is also exponential
dichotomic on R.

Corollary 3.36. Let (3.39) be hyperbolic on R and B ∈ H(A). Then (3.48) has no nonzero
bounded on R solutions.

Naturally the question whether the statement inverse to Corollary 3.36 is true or not
arises.

As the example below shows, in general case it is not. In fact, the scalar equation

dx

dt
= (arctan t)x (3.56)

does not nonzero solutions from Cb(R, R) and for every b ∈ H(a) = {arctan(t + τ) : τ ∈
R}⋃{π/2,−π/2} the equation

dx

dt
= b(t)x (3.57)

also does not have nonzero solutions fromCb(R, R) and however (3.56) be not hyperbolic
on R. In fact, if it was not so, then

Es + Eu = En, (3.58)

where Es := {x ∈ En | limt→+∞ |ϕ(t, x, a)| = 0}, Eu := {x ∈ En | limt→−∞ |ϕ(t, x, a)| = 0}
and ϕ(t, x, a) := x exp(

∫ t
0 a(s)ds) (in our example a(t) := arctan t).

But in our example En = R (n = 1), Es = {0} and Eu = {0}. Hence, (3.58) takes no
place.

Note that (3.56) is hyperbolic on R+ and on R−. We can easily check it using Theorem
3.3.1.

3.3.2.2. Criterion of Regularity of Almost Periodic Differential Operators

The following lemma takes place.

Lemma 3.37 (see [92]). Let {ϕn}, { fn} ⊆ C(R;En), and {An} ⊆ C(R; [En]). If for each
n ∈ N the function ϕn satisfies the differential equation

dx

dt
= An(t)x + fn(t), (3.59)

An → A and fn → f uniformly on compact subsets from R, then,
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(1) if {ϕn} is uniformly bounded on R, then it is relatively compact in C(R;En);
(2) if ϕn → ϕ in the topology C(R;En), then ϕ is a solution of the differential equation

dx

dt
= A(t)x + f (t); (3.60)

(3) if ϕn(0) → x0, then {ϕn} converges in C(R;En) and ϕ = limn→+∞ ϕn is a solution
of (3.60) with the initial condition ϕ(0) = x0.

Theorem 3.3.7 (see [121]). Let the operator function A ∈ C(R; [En]) be almost periodic.
The differential operator

LAx = dx

dt
−A(t)x (3.61)

is regular, if and only if every equation

LBx = 0
(
B ∈ H(A)

)
(3.62)

does admit nonzero solutions from Cb(R;En).

Proof . The necessity of this statement it follows from Theorem 3.3.2 and Corollary 3.36.
Inversely. Let every (3.62) have no nonzero solutions from Cb(R,En) and A ∈

C(R; [En]) be almost periodic. Then there exists ωi → +∞ (i→ +∞) such that

lim
i→+∞

sup
t∈R

∥
∥A
(
t + ωi

)− A(t)
∥
∥ = 0. (3.63)

Consider differential operators

LAix =
dx

dt
−Ai(t)x (3.64)

with continuous ωi-periodic coefficients Ai(t):

Ai(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(t), if
1
i
≤ t ≤ ωi,

it
[
A(t)− A(ωi

)]
+ A
(
ωi
)
, if 0 ≤ t ≤ 1

i
.

(3.65)

Let us show that

lim
i→+∞

max
|t|≤ωi

∥
∥Ai(t)− A(t)

∥
∥ = 0. (3.66)
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In fact,

max
|t|≤ωi

∥
∥Ai(t)− A(t)

∥
∥

≤ max
1/i≤t≤ωi

∥
∥Ai(t)− A(t)

∥
∥ + max

−ωi+1/i≤t≤0

∥
∥Ai(t)− A(t)

∥
∥

+ max
0≤t+ωi≤1/i

∥
∥Ai(t)−A(t)

∥
∥ + max

0≤t≤1/i

∥
∥Ai(t)−A(t)

∥
∥

≤ max
1/i≤t+ωi≤ωi

∥
∥A
(
t + ωi

)− A(t)
∥
∥ + max

0≤t+ωi≤1/i

∥
∥Ai(t)− A(t)

∥
∥ + max

0≤t≤1/i

∥
∥Ai(t)− A(t)

∥
∥

≤ max
1/i≤t+ωi≤ωi

∥
∥A
(
t + ωi

)− A(t)
∥
∥ + max

0≤t+ωi≤1/i

∥
∥Ai(t)− A(t)

∥
∥ + max

0≤t≤1/i

∥
∥Ai(t)− A(t)

∥
∥.

(3.67)

Besides,

max
0≤t≤1/i

∥
∥Ai(t)− A(t)

∥
∥

= max
0≤t≤1/i

∥
∥it
[
A(t)−A(ωi

)]
+A
(
ωi
)−A(t)

∥
∥

= max
0≤t≤1/i

∥
∥(it−1)A(t)+(−it+1)A

(
ωi
)∥
∥ = max

0≤t≤1/i

∥
∥(−it + 1)

[
A(t)−A(ωi

)]∥
∥

≤ 2 max
0≤t≤1/i

∥
∥A(t)− A(0)

∥
∥ + 2
∥
∥A(0)−A(ωi

)∥
∥,

(3.68)

max
0≤t+ωi≤1/i

∥
∥Ai(t)− A(t)

∥
∥

= max
0≤t+ωi≤1/i

∥
∥Ai
(
t + ωi

)− A(t + ωi
)

+ A
(
t + ωi

)− A(t)
∥
∥

≤ max
0≤t+ωi≤1/i

∥
∥Ai
(
t + ωi

)− A(t + ωi
)∥
∥ + max

0≤t+ωi≤1/i

∥
∥A
(
t + ωi

)−A(t)
∥
∥

≤ max
0≤t≤1/i

∥
∥Ai(t)−A(t)

∥
∥ + sup

t∈R

∥
∥A
(
t + ωi

)−A(t)
∥
∥.

(3.69)

From (3.63) and (3.67)–(3.69) it follows equality (3.66).
Let us show that each of operators LAi (i ∈ N) is reversible and their norms ‖L−1

Ai ‖
are uniformly bounded. For this aim we note that there exists δ > 0 such that

∥
∥LAiϕ

∥
∥ ≥ δ‖ϕ‖ (i ∈ N). (3.70)

Let us suppose the contrary. Then there exists {ϕk} ⊆ Cb(R;En) (‖ϕk‖ = 1 for every
k ∈ N) and δk → 0 (δk > 0 ) such that

∥
∥LAik ϕk

∥
∥ ≤ δk (k ∈ N). (3.71)

Since ‖ϕk‖ = sup{|ϕk(t)| : t ∈ R} = 1, then there exists tk ∈ R such that

∣
∣ϕk
(
tk
)∣
∣ ≥ 1

2
(k ∈ N). (3.72)

Let us present tk in the form tk = nkωik + τk, where |τk| ≤ (1/2)ωik .
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Denote by ψk the functions defined by the equality

ψk(t) = ϕk
(
t + nkωk

)
(t ∈ R). (3.73)

Note that

∥
∥ψk
∥
∥ = ∥∥ϕk

∥
∥ = 1, (3.74)

(
LAkψk

)
(t) = ψk

′(t)−Ak(t)ψk(t)

= ϕk
′(t + nkωk

)− Ak
(
t + nkωk

)
ϕ
(
t + nkωk

) = (LAkϕk
)(
t + nkωk

)
.

(3.75)

From (3.71) and (3.75) it follows that

∥
∥LAkψk

∥
∥ ≤ δk (k ∈ N). (3.76)

So, we found a sequence {τk} ⊆ [−ωik /2, ωik /2] such that

∣
∣ψk
(
τk
)∣
∣ ≥ 1

2
,

∥
∥ψk
∥
∥ = 1,

∥
∥LAkψk

∥
∥ ≤ δk. (3.77)

Consider a sequence Bk(t) := A(t+τk). In virtue of the almost periodicity of the operator-
function A(t) the sequence {Bk} can be considered convergent in Cb(R; [En]). Assume
B := limk→+∞ Bk. Obviously B ∈ H(A). Let us construct the sequence Ãk(t) := Aik (t+τk).
We will show that there takes place the equality

lim
k→+∞

max
|t|≤ωik /2

∥
∥Aik
(
t + τk

)−A(t + τk
)∥
∥ = 0. (3.78)

In fact, if |t| ≤ ωik /2, then |t + τk| ≤ ωik and, consequently,

max
|t|≤ωik /2

∥
∥Aik
(
t + τk

)−A(t + τk
)∥
∥ ≤ max

|s|≤ωk

∥
∥Aik (s)− A(s)

∥
∥. (3.79)

Passing to the limit as k → +∞ in (3.79) and taking into consideration (3.66), we obtain
(3.78). Then

max
|t|≤ωik /2

∥
∥Aik
(
t + τk

)− B(t)
∥
∥

≤ max
|t|≤ωik /2

∥
∥Aik
(
t + τk

)−A(t + τk
)∥
∥ + max

|t|≤ωik /2
∥
∥A
(
t + τk

)− B(t)
∥
∥,

(3.80)

consequently, Aik (t + τk) → B(t) in the topology of the space C(R; [En]). Put

fk(t) := ψk
′(t + τk

)− Ãk(t)ψk
(
t + τk

)
(3.81)

for all t ∈ R. From (3.77) it follows that ‖ fk‖ → 0.
Let us consider the differential equation

dx

dt
= Ãk(t)x + fk(t), (3.82)
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It is obvious that ψk(t + τk) is a solution of (3.82) and |ψk(t + τk)| ≤ 1 for all t ∈ R.
According to Lemma 3.37, the sequence {ψk(t + τk)} can be considered convergent. Put
ψ(t) := limk→+∞ ψk(t + τk). By the same lemma

dψ(t)
dt

= B(t)ψ(t) (t ∈ R) (3.83)

and ‖ψ‖ ≤ 1. Besides, from (3.77) it follows that |ψ(0)| ≥ 1/2 and, consequently, ψ is
a nonzero solution from Cb(R;En) of (3.83), and B ∈ H(A). The last contradicts to the
condition of the theorem. The obtained contradiction shows the required statement.

So, there exists δ > 0 such that (3.70) holds. Obviously, every equation

LAix = 0 (3.84)

has no nonzero solutions from Cb(R;En). According to Corollary 3.27 there exists L−1
Ai .

From inequality (3.70) it follows that
∥
∥L−1

Ai

∥
∥ ≤ δ−1 (i ∈ N). (3.85)

Let now f ∈ Cb(R;En). Consider nonhomogeneous equations

LAix = f (i ∈ N). (3.86)

Every of these equations has a unique solution ϕi from Cb(R;En), and
∥
∥ϕi
∥
∥ ≤ δ−1‖ f ‖. (3.87)

According to Lemma 3.37, the sequence {ϕi} is relatively compact in C(R;En). To be
simple, we consider it convergent and put ϕ := limi→+∞ ϕi. By Lemma 3.37

dϕ(t)
dt

= A(t)ϕ(t) + f (t), (3.88)

and |ϕ(t)| ≤ δ−1‖ f ‖ for all t ∈ R. So, for every f ∈ Cb(R;En) (3.88) has a unique
solution in Cb(R;En). The theorem is proved. �

3.3.3. Equations Satisfying the Condition of Favard in the Positive Direction

3.3.3.1. General Definitions

Let us consider equations

dx

dt
= A(t)x, (3.89)

dy

dt
= B(t)y, (3.90)

where A and B ∈ C(R; [En]).

Definition 3.38. One says that (3.89) satisfies the condition of Favard in the positive (resp.,
negative) direction, denoting it by Φ+(resp., Φ−), if for every B ∈ ωA(resp., αA) (3.90)
has no nonzero bounded on R solutions.
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Definition 3.39. If (3.89) satisfies the condition Φ+ and Φ−, then one say that (3.89)
satisfies the two-sided (or weak condition of Favard) and denote it Φ.

Definition 3.40. If for each B ∈ H(A) (3.90) has no nonzero bounded on R solutions,
then one says that (3.89) satisfies the condition of Favard (or reinforced condition of
Favard) and denote it F .

Between the introduced notions there exists a close relation. We study this question
below. Here we only note that from the weak condition of Favard, generally speaking, the
condition of Favard does not follow (the inverse is obvious). The last is confirmed by the
example

dx

dt
= (arctan t)x. (3.91)

It is easy to check that (3.91) satisfies the condition Φ but does not satisfy the condition
F , since (3.91) has nonzero bounded on R solutions.

Definition 3.41. They say that a function f ∈ C(R;En) is stable by Lagrange in the
positive (resp., negative) direction, denoting it L+ (resp., L−), if H+( f ) (resp., H−( f ))
is compact in C(R;En).

Definition 3.42. If the function f ∈ C(R;En) is st. L+ and st. L−, then they say that f is
stable by Lagrange and denote it st. L.

3.3.3.2. Some Properties of Equations Satisfying the Condition of
Favard in the Positive Direction

Lemma 3.43. Let A ∈ C(R; [En]) be st. L+ (resp., L−) and (3.89) satisfy the condition Φ+

(resp., Φ−). Then, if ϕ(t,A, x) is bounded on R+ (resp., R−), then

lim
t→+∞
∣
∣ϕ(t,A, x)

∣
∣ = 0

(
resp., lim

t→−∞
∣
∣ϕ(t,A, x)

∣
∣ = 0

)
. (3.92)

Proof . Suppose the contrary, that is, there exist ε0 > 0 and tk → +∞ such that
|ϕ(tk,A, x)| ≥ ε0. Without loss of generality we can consider that the sequences
{ϕ(tk,A, x)} and {A(tk)} are convergent in En and C(R; [En]), respectively. Assume x0 =
limk→+∞ ϕ(tx,A, x) and B = limk→+∞A(tk). Then according to Lemma 3.37, ϕ(t,B, x0) =
limk→+∞(t + tk,A(tk), x) is a nontrivial bounded on R solution of (3.90) and B ∈ ωA.
The last contradicts to the condition of Lemma 3.43. The second case is considered in the
similar way. �

Lemma 3.44. Let A ∈ C(R; [En]) be st. L+ and let (3.89) satisfy the condition Φ+. If
ϕ(t,A, x) is unbounded on R+, then limt→+∞ |ϕ(t,A, x)| = +∞.
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Proof . Let us suppose the contrary, that is, for some L > 0 there exist sequences {sk},
{tk}, and {lk} satisfying the next conditions:

(1) sk < tk < lk < sk+1;
(2) {sk} → +∞ as k → +∞;
(3) |ϕ(τ,A, x)| > L for all τ ∈ (sk, lk);
(4) |ϕ(sk,A, x)| = |ϕ(lk,A, x)| = L;
(5) |ϕ(tk,A, x)| = max{|ϕ(t,A, x)| : t ∈ [sk, lk]}.

Assume

xk := ϕ(tk,A, x)
∣
∣ϕ
(
tk,A, x

)∣
∣ =
∣
∣ϕ
(
tk,A, x

)∣
∣−1 · ϕ(tk,A, x

)
. (3.93)

Then there are held the relations:

(a) |xk| = 1;
(b) |ϕ(t,A(tk), xk)| = |ϕ(tk,A, x)|−1 · |ϕ(t + tk,A, x)| ≤ 1

for all t ∈ [sk − tk, lk − tk]. Let us show that {sk − tk} → −∞ ({lk − tk} → +∞). In fact,
under the conditions of Lemma 3.44 the sequences {A(tk)} and {xk} can be considered
convergent. Put x0 = limk→+∞ xk and B := limk→+∞ A(tk). If we suppose that {sk − tk} �→
−∞, then it can be considered convergent. Assume τ0 := limk→+∞{sk − tk}. Passing to the
limit in the equality

∣
∣ϕ
(
sk − tk,A(tk), xk

)∣
∣ = ∣∣ϕ(tk,A, x

)∣
∣−1 · ∣∣ϕ(sk,A, x

)∣
∣ = L

∣
∣ϕ
(
tk,A, x

)∣
∣−1

, (3.94)

we obtain that ϕ(τ0,B, x0) = 0. From the last equality it follows that x0 = 0 that contra-
dicts to the condition (a). In the same way it is proved that {lk − tk} → +∞. From the
said above and the condition (b) it follows that |ϕ(t,B, x0)| ≤ 1 holds for all t ∈ R, and
|x0| = 1. So, ϕ(t,B, x0) is a nontrivial bounded on R solution of (3.90). The obtained
contradiction proves the lemma. �

Lemma 3.45. Let A ∈ C(R; [En]) be st. L+ and (3.89) satisfy the condition Φ+. If a solution
ϕ(t,A, x) is unbounded on R+, then there exists c > 0 such that

max
0≤t≤τ

∣
∣ϕ(t,A, x)

∣
∣ ≤ c

∣
∣ϕ(τ,A, x)

∣
∣ (3.95)

for all τ ∈ R+.

Proof . Suppose the contrary. Then for every k ∈ N there is Lk ≥ k such that

max
0≤t≤Lk

∣
∣ϕ(t,A, x)

∣
∣ ≥ k

∣
∣ϕ
(
Lk,A, x

)∣
∣. (3.96)

Choose τk ∈ [0,Lk] so that the equality

∣
∣ϕ
(
τk,A, x

)∣
∣ = max

0≤t≤Lk

∣
∣ϕ(t,A, x)

∣
∣ (3.97)

holds. Then inequality (3.96) takes the form

∣
∣ϕ
(
τk,A, x

)∣
∣ ≥ k

∣
∣ϕ
(
Lk,A, x

)∣
∣. (3.98)
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Put

xk := ϕ(τk,A, x)
∣
∣ϕ
(
τk,A, x

)∣
∣ =
∣
∣ϕ
(
τk,A, x

)∣
∣−1 · ϕ(τk,A, x

)
. (3.99)

Then

∣
∣xk
∣
∣ = 1,

∣
∣ϕ
(
t,A(τk), xk

)∣
∣ = ∣∣ϕ(τk,A, x

)|−1 · ∣∣ϕ(t + τk,A, x
)∣
∣ (3.100)

for all t ∈ [τk,Lk − τk]. Reasoning in the same way that in Lemma 3.44 and taking into
consideration the relations

(a) |ϕ(Lk − τk,A(τk), xk)| = |ϕ(τk,A, x)|−1 · |ϕ(Lk,A, x)| ≤ k−1,
(b) |ϕ(−τk,A(τk), x)| = |ϕ(τk,A, x)|−1 · |x|,

we obtain that {τk} → +∞ and {Lk − τk} → +∞. Without loss of generality we can
consider that the sequences {A(τk)} and {xk} are convergent. Let x0 := limk→+∞ xk and
B := limk→+∞A(τk). It is clear that B ∈ ωA, |x0| = 1 and |ϕ(t,B, x0)| ≤ 1 for all t ∈ R.
The last contradicts to the condition of the lemma. �

3.3.3.3. Scalar Equations

Below we suppose that the space En is one-dimensional (En = R), that is, A = a ∈
C(R; R).

Lemma 3.46. Let a ∈ C(R; R) be st. L+. If (3.89) satisfies the condition Φ+ and the
solutions ϕ(t, a, x) of (3.90) as x �= 0 are unbounded for t ∈ R+. Then solutions of every
(3.90) with B = b ∈ ωa are bounded on R−.

Proof . Let b ∈ ωa. Then there exists tk → +∞ such that b = limk→+∞ a(tk). define a
sequence

xk := ϕ
(
tk, a, x

)

αk
, (3.101)

where αk := max{ϕ(t, a, x) : t ∈ [0, tk]}. For it there are fulfilled the following conditions:

(1) |xk| = 1;
(2) |ϕ(t, a(tk), xk)| = α−1

k |ϕ(t + tk, a, x)| ≤ 1

for all t ∈ [−tk, 0]. In virtue of (1) the sequence {xk} can be considered convergent.
Assume x0 := limk→+∞ xk. Passing to the limit in inequality (2) we get |ϕ(t, b, x0)| ≤ 1 for
all t ∈ R−. In this case, by Lemma 3.45, |xk| ≥ c−1 > 0 and, consequently, |x0| ≥ c−1 >
0. To finish the proof of the lemma it is sufficient to use the fact that (3.89) is a linear
homogeneous scalar equation. �

Lemma 3.47. Let a be st. L+ and (3.89) satisfy the condition Φ+. If all solutions of (3.89)
are bounded on R+, then there exist numbers N , ν > 0 such that

∣
∣ϕ(t, b, x)

∣
∣ ≤ N e−νt|x| (3.102)

for all x ∈ R, b ∈ H+(a) and t ∈ R+.
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Proof . The proof of the formulated statement may be done by repeating exactly the
reasoning from the work [122]. �

Lemma 3.48. Let a be st. L+ and (3.89) satisfy the condition Φ+. Then (3.89) is hyperbolic
on R+.

Proof . Logically, two cases are possible:
(a) all solutions of (3.89) are bounded on R+ and then Lemma 3.48 follows from

Lemma 3.47;
(b) all nontrivial solutions of (3.89) are unbounded on R+. According to Lemma 3.44

when x �= 0 there takes place the equality

lim
t→+∞
∣
∣ϕ(t, a, x)

∣
∣ = +∞, (3.103)

hence, in (3.89) we can change of variables: y = 1/x. In this case it turns in the next
equation

dy

dt
= −a(t)y. (3.104)

Together with (3.104) we consider the family of equations

dx

dt
= −b̃(t)x,

(
b̃ ∈ ω(−a)

)
. (3.105)

Let us show that (3.104) satisfies the conditions of Lemma 3.47. Let b̃ ∈ ω(−a). Then there

exists b̃ ∈ ωa such that b̃ = −b. By Lemma 3.46, every solution of (3.90) is bounded for
t ∈ R− and, consequently, according to the condition of the lemma they are unbounded
on tR+. From Lemmas 3.43 and 3.44 it follows that for every x �= 0 and b ∈ ωa there are
fulfilled the conditions

lim
t→−∞

∣
∣ϕ(t, a, x)

∣
∣ = 0, (3.106)

lim
t→+∞
∣
∣ϕ(t, a, x)

∣
∣ = +∞. (3.107)

Note that

ϕ(t, b̃, x) = ϕ(t,−b, x) = 1
ϕ(t, b, 1/x)

, (3.108)

therefore, from (3.106) and (3.107) it follows that for any x �= 0 and b̃ ∈ ω(−a) there are
held the equalities

lim
t→+∞ | ϕ(t, b̃, x) = 0, lim

t→−∞ | ϕ(t, b̃, x) = +∞, (3.109)

that is, (3.104) satisfies the condition Φ+. It is not difficult to establish that all solutions of
(3.104) are bounded on R+. Consequently, according to Lemma 3.47 there are numbers
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N > 0 and ν > 0 such that

∣
∣ϕ(t, b̃, x)

∣
∣ ≤ Ne−νt|x| (3.110)

for all t ∈ R+, x ∈ R and b̃ ∈ H+(−a).
Let x �= 0 and b ∈ H+(a). Then there exists b̃ ∈ H+(−a) such that b̃ = −b̃ and,

consequently, there takes place the inequality

∣
∣ϕ(t,−b̃, x)

∣
∣ = ∣∣ϕ(t, b, x)

∣
∣−1 ≤ Ne−νt|x|−1. (3.111)

Last inequality implies that |ϕ(t, b, x)| ≥ Ne−νt|x| for all x ∈ R, b ∈ H+(a) and t ∈ R+.
And, hence,

∣
∣ϕ(t, b, x)

∣
∣ = ∣∣ϕ(t − τ, b(τ), ϕ(τ, b, x)

∣
∣ ≥ N−1e−ν(t−τ)

∣
∣ϕ(τ, b, x)

∣
∣ (3.112)

for t ≥ τ. Therefore,

∣
∣ϕ(τ, b, x)

∣
∣ ≤ Ne−ν(t−τ)

∣
∣ϕ(t, b, x)

∣
∣ (3.113)

for τ ≥ t ≥ 0. The lemma is proved. �

3.3.3.4. Equations of General Type

Lemma 3.49. Let A be st. L+. If (3.89) satisfies the condition of Φ+ and A is a down-
triangular matrix, then (3.89) is hyperbolic on R+.

Proof . Let us prove it by induction by the dimensionality n of the space En. In the case
when n = 1 the fact that Lemma 3.49 is true follows from Lemma 3.48. Suppose that the
lemma is true when k(k < n).

(I) Consider k + 1—dimensional system

x′1 = a11(t)x1,

x′2 = a21(t)x1 + a22(t)x2,

. . .

x′k+1 = ak+1,1(t)x1 + · · · ak+1,k+1(t)xk+1.

(3.114)

According to Theorem 3.3.1 for (3.89) to be hyperbolic on R+ it is necessary to show that
for every bounded on R+ function f ∈ Cb(R+;En) the equation

dx

dt
= A(t)x + f (t) (3.115)

has at least one solution ϕ ∈ Cb(R+;En).
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(II) Let us show that the system

x′1 = a11(t)x1 + f1(t),

x′2 = a21(t)x1 + a22(t)x2 + f2(t),

. . .

x′k+1 = ak+1,1(t)x1 + · · · ak+1,k+1(t)xk+1 + fk+1(t)

(3.116)

has at least one bounded on R+ solution.
(III) In fact, it is easy to see that the equation

x′1 = a11(t)x1, (3.117)

and the system

x′2 = a22(t)x2,

x′3 = a32(t)x2 + a33(t)x3,

. . .

x′k+1 = ak+1,2(t)x2 + · · · ak+1,k+1(t)xk+1

(3.118)

satisfy the condition of exponential dichotomy on R+ by definition. Using this fact it is
easy to see that system (3.116) has at least one bounded on R+ solution. The lemma is
proved. �

Lemma 3.50 (see [123]). Let A be st. L+. Then

(1) there exists a st. L+ down-triangular matrix P such that (3.89) can be reduced to
the equation

dx

dt
= P(t)x; (3.119)

(2) for any Q ∈ ωP there exists B ∈ ωA such that (3.90) can be reduced to the
equation

dx

dt
= Q(t)x. (3.120)

From this lemma directly it follows that.

Corollary 3.51. For Lyapunov’s transformation there are preserved the next properties:
exponential dichotomy on R+ and R, regularity, the condition Φ+, Φ−, and F .

Theorem 3.3.8. Let A be st. L+. For (3.89) to be hyperbolic on R+ it is necessary and
sufficient that (3.89) would satisfy the condition Φ+.

Proof . Let A be st. L+ and let (3.89) be hyperbolic on R+. According to Corollary 3.33,
(3.89) satisfies the condition Φ+.

Sufficiency. Let A be st. L+ and (3.89) satisfy the condition Φ+. According to Lemma
3.50, (3.89) can be brought to triangular form (3.119) with L+ stable matrix P. Let us
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show that (3.119) satisfies the condition of Lemma 3.49. In fact, let Q ∈ ωP . By Lemma
3.50 there exists B ∈ ωA such that (3.90) can be reduced to (3.120). Since the relation
of reduction is symmetric, then (3.120) has a nontrivial bounded on R solution if and
only if (3.90) has such solutions. So, in our case every (3.120), where Q ∈ ωP , has no
nontrivial bounded on R solutions. According to Lemma 3.49, (3.119) is hyperbolic on
R+, and, consequently, (see Corollary 3.51), (3.89) is hyperbolic on R+. The theorem is
proved. �

Remark 3.52. All results of this chapter naturally can be formulated and proved for equa-
tions satisfying the condition Φ+.

3.3.4. Equations Satisfying the Condition of Favard

Let E and F be a pair of subspaces from Cb(I ;En). Recall that an equation

dx

dt
= A(t)x, (3.121)

or differential operator

LAx = dx

dt
−A(t)x, (3.122)

where A ∈ C(R; [En]), is called (E,F)-admissible (resp., regular), if for every f ∈ F the
equation

LAx = f (3.123)

has at least one (resp., exactly one) solution ϕ ∈ E.
If LA(Cb(R;En), Cb(R;En)) is regular (resp., admissible), then we simply will say that

LA is regular (resp., admissible or weakly regular).
From the results of the previous subsections it follows.

Theorem 3.3.9. Let A ∈ C(R; [En]) be st. L. (3.121) satisfies the condition Φ, if and only if
it is hyperbolic on R+ and R−.

3.3.4.1. Scalar Equations

In this section we suppose that the space En is one-dimensional (En = R) and A = a ∈
C(R; R). Let us introduce the following notation:

λ(t, τ, a) := 1
t − τ

∫ t

τ
a(s)ds, (3.124)

Λ+(a) := lim
τ→+∞
t−τ→+∞

λ(t, τ, a), λ+(a) := lim
τ→+∞
t−τ→+∞

λ(t, τ, a),

Λ−(a) := lim
τ→+∞
t−τ→+∞

λ(t, τ, a), λ−(a) := lim
τ→+∞
t−τ→+∞

λ(t, τ, a).
(3.125)



74 Asymptotically Almost Periodic Solutions of Ordinary Differential Equations

Note that λ+(a) ≤ Λ+(a); λ−(a) ≤ Λ−(a) and Λ+(−a) = −λ+(a); Λ−(−a) = −λ−(a);
λ+(−a) = −Λ+(a); λ−(−a) = −Λ−(a).

Lemma 3.53. Let a be st. L+ (resp., L−). Equation (3.121) satisfies the condition Φ+ (resp.,
Φ−), if and only if there holds the inequality Λ+(a)λ+(a) > 0 (resp., Λ−(a)λ−(a) > 0).

Proof . Let a be st. L+ and (3.121) satisfy the condition Φ+. According to Theorem 3.3.8,
(3.121) is hyperbolic on R+ and, consequently, there exist positive numbers N and ν such
that there takes place one of the following inequalities:

∣
∣ϕ(t, a, x)

∣
∣ ≤ Ne−ν(t−τ)

∣
∣ϕ(τ, a, x)

∣
∣ (3.126)

for all t ≥ τ ≥ 0 and x ∈ R or
∣
∣ϕ(t, a, x)

∣
∣ ≤ Neν(t−τ)

∣
∣ϕ(τ, a, x)

∣
∣ (3.127)

for all t ≤ τ ≤ 0 and x ∈ R.
Let inequality (3.126) be fulfilled. Then it is not difficult to see that λ+(a) ≤ Λ+(a) ≤

−ν. It implies the inequality Λ+(a)λ+(a) > 0. If there takes place inequality (3.127), then
Λ+(a) ≥ λ+(a) ≥ ν > 0 and, consequently Λ+(a)λ+(a) > 0.

Inversely. Let a be st. L+ and Λ+(a)λ+(a) > 0. Logically, two cases are possible:
(a) Λ+(a) ≥ λ+(a) > 0. Assuming

μ(a) := lim
t→+∞

1
t

∫ t

0
a(s)ds, (3.128)

let us show that for every function b ∈ ωa the inequality μ(b) > 0 holds. Indeed. Since
λ+(a) > 0, then for every number ε ∈ (0, λ+(a)) there exists T(ε) > 0 such that

λ(t, τ, a) ≥ λ+(a)− ε (3.129)

for all τ ≥ T(ε) and t − τ ≥ T(ε). Let b ∈ ωa. Then there exists tm → +∞ such that
b = limm→+∞ a(tm), and t is an arbitrary fixed number from [T(ε), +∞). Hence,

1
t

∫ t

0
a
(
s + tm

)
ds = 1

t

∫ t+tm

tm
a(s)ds ≥ λ+(a)− ε (3.130)

for all tm ≥ T(ε). Passing to the limit in (3.130) as m→ +∞, we obtain the inequality

1
t

∫ t

0
b(s)ds ≥ λ+(a)− ε (3.131)

for all t ≥ T(ε). From here it follows that μ(b) ≥ λ+(a)−ε. Note that all nonzero solutions

dx

dt
= b(t)x (3.132)

are unbounded on R+, if μ(b) > 0 and, consequently, (3.121) satisfies the condition Φ+.
(b) λ+(a) ≤ Λ+(a) < 0. Then Λ+(−a) ≥ λ+(−a) > 0 and, on the basis of the previous

point, the equation

dx

dt
= −a(t)x (3.133)
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satisfies the condition Φ+ and, hence, (see the proof of Lemma 3.47), (3.104) also satisfies
the condition Φ+.

The second case is proved in the same way. The lemma is proved. �

From the proved theorem it follows that for L stable function a, if (3.121) satisfies
the condition Φ, one of the next four cases are possible:

(1) Λ+(a) ≥ λ+(a) > 0 and Λ−(a) ≥ λ−(a) > 0;
(2) Λ+(a) ≥ λ+(a) > 0 and λ−(a) ≤ Λ−(a) < 0;
(3) λ+(a) ≤ Λ+(a) < 0 and Λ−(a) ≥ λ−(a) > 0;
(4) λ+(a) ≤ Λ+(a) < 0 and λ−(a) ≤ Λ−(a) < 0.

The following lemma gives the geometric description of each case.

Lemma 3.54. Let a be st. L and (3.121) satisfy the condition Φ. Then the following condi-
tions (a)–(d) are respectively equivalent to conditions (1)–(4).

For every x �= 0:

(a) limt→+∞ |ϕ(t, a, x)| = +∞ and limt→−∞ |ϕ(t, a, x)| = 0;
(b) limt→+∞ |ϕ(t, a, x)| = +∞ and limt→−∞ |ϕ(t, a, x)| = +∞;
(c) limt→+∞ |ϕ(t, a, x)| = 0 and limt→−∞ |ϕ(t, a, x)| = 0;
(d) limt→+∞ |ϕ(t, a, x)| = 0 and limt→−∞ |ϕ(t, a, x)| = +∞.

Proof . Let a be st. L, Λ+(−a) ≥ λ+(a) > 0, λ−(a) ≤ Λ−(a) < 0 and x �= 0 (x ∈ R).
Let us show that ϕ(t, a, x) is unbounded on R+. Suppose the contrary. Since (3.121)
satisfies the condition Φ, then by Theorem 3.3.8 there exist positive numbers N and ν
such that (3.126) holds and, consequently, λ+(a) ≤ Λ+(a) ≤ −ν < 0. the last contradicts
to our condition. So, ϕ(t, a, x) is unbounded on R+ and (3.121) satisfies the condition
Φ+. According to Lemma 4.12, limt→+∞ |ϕ(t, a, x)| = +∞. In the same way we can prove
that limt→−∞ |ϕ(t, a, x)| = 0.

Conversely. Let a be st. L, (3.121) satisfy the condition Φ and for every x �= 0 (x ∈ R)

lim
t→+∞
∣
∣ϕ(t, a, x)

∣
∣ = +∞, lim

t→−∞
∣
∣ϕ(t, a, x)

∣
∣ = 0. (3.134)

As (3.121) satisfies the condition Φ+, then by Theorem 3.3.8, (3.121) is hyperbolic on
R+, hence there exist positive numbers N and ν such that there takes place one of the
next inequalities: (3.126) or (3.127). Note that (3.126) cannot take place as the solution
ϕ(t, a, x) is unbounded on R+. So, for the solution ϕ(t, a, x) inequality (3.127) holds. It
implies that

∣
∣ϕ(t, a, x)

∣
∣ ≥ N−1eν(t−τ)

∣
∣ϕ(τ, a, x)

∣
∣ (3.135)

for all t ≥ τ ≥ 0. Therefore, Λ+(a) ≥ λ−(a) ≥ ν > 0. In the same way we can prove that
there takes place the inequality Λ−(a) ≥ λ−(a) > 0.

The other three statements are proved by the same pattern. The lemma is proved. �

Corollary 3.55. Let a be st. L. Equation (3.121) satisfies the condition F if and only if one
of conditions (1), (2) or (4) holds.
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Theorem 3.3.10. Let a be st. L. Differential operator (3.122) is regular if and only if one of
conditions (1) or (4) holds.

Proof . Let a be st. L and differential operator (3.122) be regular. Then (3.121) is hyper-
bolic on R, and, consequently, there exist positive numbers N and ν such that one of
inequalities (3.126) and (3.127) holds. Let us consider each case separately.

Let inequality (3.126) be held. Then for λ+(a) ≤ Λ+(a) ≤ −ν < 0 and λ−(a) ≤
Λ−(a) ≤ −ν < 0. If (3.127) takes place, then for t ≥ τ

∣
∣ϕ(t, a, x)

∣
∣ ≥ N−1eν(t−τ)

∣
∣ϕ(τ, a, x)

∣
∣, (3.136)

which implies that Λ+(a) ≥ λ+(a) ≥ ν > 0 and Λ−(a) ≥ λ−(a) ≥ ν > 0.
Inversely. Let be fulfilled one of (1) or (4). According to Lemma 3.53, (3.121) satisfies

the condition Φ. Let us consider both cases separately. Let be fulfilled condition (1). Since
(3.121) satisfies the condition Φ−, then according to Theorem 3.3.8, (3.121) is hyperbolic
on R−. Let f ∈ Cb(R; R). Then by Theorem 3.3.1 (see also Remark 3.52), (3.123) has
at least one bounded on R− solution. According to Lemma 3.54 from condition (1) it
follows that all solutions of (3.121) are bounded on R− and, consequently, all solutions
of the nonhomogeneous (3.123) are bounded on R−. Theorem 3.3.1 implies that (3.123)
has at least one bounded on R+ solution ϕ. By Lemma 3.54 under the condition (1) all
nonzero solutions of (3.121) are unbounded on R+ and, consequently, ϕ is the single
bounded on R solution of (3.123).

In the same way there is proved the second case. �

Theorem 3.3.11. Let a be st. L. Differential operator (3.122) is weakly regular if and only if
there takes place one of the following three conditions: (1), (3), or (4).

Proof . Let a be st. L and differential operator (3.122) be weakly regular. Then it is
(Cb(I ; R),Cb(I ; R))-admissible, where I = R+ or R−. According to Theorem 3.3.1,
(3.121) is hyperbolic on R+ and R−. By Theorem 3.3.9, (3.121) satisfies the condition Φ
and, hence, there takes place one of the cases (1)–(4). Let us show that (2) is impossible.
In fact, assume

f0(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t ≤ 0,

t(1− t), 0 ≤ t ≤ 1,

0, t ≥ 1,

(3.137)

and f (t) = f0(t)e
∫ t

0 a(s)ds. Obviously, f ∈ Cb(R; R). According to our assumption, (3.123)
has at least one solution ϕ ∈ Cb(R; R). Then there exists x0 ∈ R such that

ϕ(t) =
(

x0 +
∫ t

0
f0(s)ds

)

e
∫ t

0 a(s)ds. (3.138)
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From equalities (3.137) and (3.138) it follows that

ϕ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

e
∫ t

0 a(s)dsx0, t ≤ 0,

e
∫ t

0 a(s)ds
(

x0 +
1
6

)

, t ≥ 1.
(3.139)

From (3.139) it follows that for t ≤ 0 and t ≥ 1 ϕ is the solution of the homogeneous
(3.121) and, consequently, all nonzero solutions of (3.123) are bounded at least one of
the semiaxis R+ or R−. So, (2) is impossible.

Conversely. Let one of the conditions (1), (3), or (4) be fulfilled. If there holds (1)
or (4), then by Theorem 3.3.10 differential operator (3.122) is regular and the theorem is
proved. Let now (3) be fulfilled. According to Lemma 3.53, (3.121) satisfies the condition
Φ and from Lemma 3.54 it follows that all nonzero solutions of (3.121) are bounded on
R. Since (3.121) satisfies the condition Φ, then by Theorem 3.3.9, (3.121) is hyperbolic
on R+ and R−. Let f ∈ Cb(R; R). By Theorem 3.3.1, (3.123) has at least two solutions
one of which is bounded on R+ and other is bounded on R−. Therefore, all solutions of
(3.123) are bounded on R. The theorem is proved. �

Corollary 3.56. Let a be st. L. Differential operator (3.122) is weakly regular, if and only if
(3.123) satisfies the condition F .

Corollary 3.57. Let a be st. L and (3.121) satisfy the condition F . Then either differential
operator (3.122) or

L(−a)x = dx

dt
+ a(t)x (3.140)

is weakly regular.

Corollary 3.58. Let a be st. L. Equation (3.121) is hyperbolic on R, if and only if equations
(3.121) and (3.133) satisfy the condition F .

Corollary 3.59. Let a be st. L. Equation (3.121) satisfies the condition F , if and only if
differential operator (3.122) is weakly regular.

3.3.4.2. Triangular Systems

In this section we consider the matrix A = (ai j) upper triangular (ai j = 0 for i > j).

Lemma 3.60. Let A be st. L+ (resp., st. L−). Equation (3.121) satisfies the condition Φ+

(resp., Φ−), if and only if for every i = 1, 2, . . . ,n the differential equation

dx

dt
= aii(t)x (3.141)

satisfies the condition Φ+ (resp., Φ−).
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Proof . Let for every i = 1, 2, . . . ,n (3.141) satisfies the condition Φ+. Let us show that
(3.121) satisfies the condition Φ+ too. Suppose the contrary. Then there exists B ∈ ωA
such that

dy

dt
= B(t)y (3.142)

has nonzero solution ϕ ∈ Cb(R;En). Let ϕ = (ϕ1,ϕ2, . . . ,ϕn), ϕk0 (1 ≤ k0 ≤ n) is the last
nonzero component. Then ϕk0 ∈ Cb(R; R) and

dϕk0 (t)
dt

= bk0k0 (t)ϕk0 (t). (3.143)

Since B ∈ ωA, there exists tm → +∞ such that B := limm→+∞A(tm). Obviously,

bk0k0 = lim
m→+∞ a

(tm)
k0k0

, (3.144)

consequently, bk0k0 ∈ ωak0k0
. So, we found 1 ≤ k0 ≤ n such that (3.141) does not satisfy

the condition Φ+ for i = k0. The last contradicts to our condition.
Inversely. Let A be st. L+ and (3.121) satisfy the condition Φ+. Let us show that for

every i = 1, 2, . . . ,n (3.141) satisfies the condition Φ+. The proof will be carried out by
induction by the dimensionality n of the system. For n = 1 the statement is obvious.
Suppose that the lemma is true for all n ≤ k− 1. Let us show that it is true also for n = k.
The fact that (3.121) with A ∈ C(R; [Rk]) satisfies the condition Φ+ for i = 1 implies that
(3.141) also satisfies the condition Φ+ for i = 1. In fact, if we suppose the contrary, then
there exists b11 ∈ ωa11 such that the equation

dx

dt
= b11(t)x (3.145)

has a nonzero solution ϕ1 ∈ Cb(R; R). As b11 ∈ ωa11 , there exists tm → +∞ such that b11 =
limm→+∞ a

(tm)
11 . In virtue of the L+ stability of the matrix A, the sequence {A(tm)} can be

considered convergent. Put B := limm→+∞A(tm). Then the function ϕ = (ϕ1, 0, 0, . . . , 0) ∈
Cb(R; Rk) is a nonzero solution of (3.142). The last contradicts to the condition. So,
(3.141) satisfies the condition Φ+ for i = 1. Let us show that (3.121) with the matrix

Ã = (aik
)k
i, j=2 (3.146)

satisfies the condition Φ+. Suppose the contrary. Then there exists B̃ ∈ ωÃ such that

dx

dt
= B̃(t)x (3.147)

has a nonzero solution ϕ̃ = (ϕ2,ϕ3, . . . ,ϕk) ∈ Cb(R; Rk−1). As A ∈ C(R; [Rk]) is st. L+

and B̃ ∈ ωÃ, then there exists tm → +∞ such that

B̃ := lim
m→+∞ Ã

(tm), B := lim
m→+∞A

(tm), (3.148)

and b̃i j = bi j (i, j = 2, 3, . . . , k). Consider the equation

dx

dt
= b11(t)x + b12(t)ϕ2(t) + · · · + b1kϕk(t). (3.149)
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Since (3.141) for i = 1 satisfies the condition Φ+, then from Theorems 3.3.9, 3.3.8,
and Lemma 3.32 it follows that (3.149) has a bounded on R solution ϕ1. It is easy to see
that the function (ϕ1,ϕ2, . . . ,ϕk) ∈ Cb(R; Rk) is a nonzero solution of (3.142), where B ∈
ωA. The last contradicts to the condition of the lemma. So, differential equation (3.121)
with the matrix (3.146) satisfies the condition Φ+. In virtue of the inductive assumption
for every i = 2, 3, . . . ,n (3.141) satisfies the condition Φ+. In the same way the second
case can be considered. The lemma is proved. �

Corollary 3.61. Let A ∈ C (R; [Rn]) be st. L. Equation (3.121) satisfies the condition Φ, if
and only if for every i = 1, 2, . . . ,n (3.141) satisfies the condition Φ.

Lemma 3.62. Let A ∈ C (R; [Rn]) be such that (3.121) is (Cb(R; Rn), Cb(R; Rn)) admissi-
ble and B ∈ C(R; [Rm]) be such that (3.142) is (Cb(R; Rm), Cb(R; Rm)) admissible. Then
equation

dx

dt
= C(t)x, (3.150)

where

C =
(
A 0

C′ B

)

(3.151)

is (Cb(R; Rn+m), Cb(R; Rn+m)) admissible.

The proof is obvious.

3.3.4.3. Systems of General Form

Lemma 3.63. Let ϕ ∈ C(R;En). The following conditions are equivalent:

(a) limt→+∞ |ϕ(t)| = 0 (resp., limt→−∞ |ϕ(t)| = 0);
(b) ϕ is st. L+ (resp., L−) and ωϕ = {θ} (resp., αϕ = {θ}), where θ ∈ C(R;En) is a

function that is identically equal to zero.

Proof . Let limt→+∞ |ϕ(t)| = 0. Then ϕ(R+) is a compact set in En. Let us show that ϕ is
uniformly continuous on R+. Suppose the contrary. Then there exist ε0 > 0, δm → 0 and

t(i)m → +∞ (i = 1, 2) such that

∣
∣t(1)
m − t(2)

m

∣
∣ < δm,

∣
∣ϕ
(
t(1)
m

)− ϕ(t(2)
m

)∣
∣ ≥ ε0. (3.152)

Passing to the limit in (3.152) we get ε0 ≤ 0. The last contradicts to the choice of
the number ε0. So, ϕ has compact values on R+ (i.e., the set ϕ(R+) is a relatively compact
set) and, consequently [92], it is st. L+. Let ψ ∈ ωϕ then there exists tm → +∞ such that
ψ(t) = limm→+∞ ϕ(t + tm) for every t ∈ R and, hence, ψ ≡ 0.

Inversely. Let ϕ be st. L+ and ωϕ = {θ}. Let us show that limt→+∞ |ϕ(t)| = 0. Suppose
the contrary. Then there exists ε0 > 0 and tm → +∞ such that

∣
∣ϕ
(
tm
)∣
∣ ≥ ε0. (3.153)
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In virtue of the L+ stability of the function ϕ, the sequence {ϕ(tm)} can be considered
convergent on C(R;En). Assume ψ := limm→+∞ ϕ(tm). From inequality (3.153) it follows
that |ψ(0)| ≥ ε0. Besides, ψ ∈ ωϕ = {θ} and, consequently, ψ ≡ 0.

The last contradicts to the choice of the number ε0. The lemma is proved. �

Consider the differential operator

L∗Ax =
dx

dt
+ A∗(t)x, (3.154)

that is formally adjoint to operator (3.122), where A∗(t) is the matrix adjoint to A(t).

Lemma 3.64. Let LA and L∗A : C1
b(R;En) → Cb(R;En) and A ∈ Cb(R; [En]). Then

KerL∗A ∩ ImLA = {0}, (3.155)

where KerL∗A is the kernel of the operator L∗A , and ImLA is the domain of values of the
operator LA.

Proof . Let ϕ ∈ KerL∗A ∩ ImLA. Then L∗Aϕ = 0 and there exists ψ ∈ C1
b(R;En) such that

LAψ = ϕ. Consider the function γ ∈ Cb(R; R) defined by the equality

γ(t) := 〈ϕ(t),ψ(t)
〉

, (t ∈ R), (3.156)

where 〈·, ·〉 is the scalar product in En. Then

·
γ(t) = ∣∣ϕ(t)

∣
∣2

(t ∈ R). (3.157)

From equality (3.157) it follows that there exist limits

lim
t→+∞ γ(t) = α, lim

t→−∞ γ(t) = β. (3.158)

Let us show that α = β = 0. Since A ∈ Cb(R; [En]), then ϕ is uniformly continuous
on R and, consequently [92], it is st. L, ωϕ �= ∅, and αϕ �= ∅. Let ϕ̃ ∈ ωϕ. Then there
exists tm → +∞ such that ϕ̃ = limm→+∞ ϕtm . Note that ψ is st. L, therefore γ is also st. L
and, consequently, {γtm} can be considered convergent onC(R; R). Put γ̃ := limm→+∞ γtm .
From (3.158) it follows that γ̃(t) = α for all t ∈ R. Passing to the limit in the equality

γ′
(
t + tm

) = ∣∣ϕ(t + tm
)∣
∣2

(3.159)

and taking into consideration the above said, we obtain γ̃′(t) = |ϕ̃(t)|2. Hence ϕ̃(t) = 0
for all t ∈ R. So, ϕ is st. L and ωϕ = {θ}. According to Lemma 3.63, limt→+∞ |ϕ(t)| = 0.
In the same way we prove that limt→−∞ |ϕ(t)| = 0. Note that

∣
∣γ(t)

∣
∣ = ∣∣〈ϕ(t),ψ(t)

〉∣
∣ ≤ ∣∣ψ(t)

∣
∣
∣
∣ϕ(t)

∣
∣. (3.160)

Since ψ ∈ Cb(R;En), then

lim
|t|→+∞

γ(t) = 0. (3.161)
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But the nondecreasing function γ ∈ C(R; R) satisfies condition (3.161) if and only if
γ ≡ 0. From (3.157) it follows that ϕ ≡ 0. �

Corollary 3.65. Let A ∈ Cb(R; [En]) and ImLA = Cb(R;En). Then KerL∗A = {θ}.

Lemma 3.66. Let A be st. L and ImLA = Cb(R;En). Then for every B ∈ H(A) there takes
place the equality ImLB = Cb(R;En).

Proof . Let ImLA = Cb(R;En) and B ∈ H(A). Logically, two cases are possible:
(1) there exists τ ∈ R such that B = A(τ). In this case the lemma is obvious;
(2) B ∈ �A. According to Theorem 3.3.9, (3.121) satisfies the condition Φ and

from Theorem 3.3.8 and Lemma 3.32 it follows that (3.142) satisfies the condition of
exponentially dichotomy on R. The lemma is proved. �

Corollary 3.67. LetA be st. L and ImLA = Cb(R;En). Then for every B ∈ H(A) there takes
place the equality KerL∗B = {θ}, that is, the equation

dx

dt
= −A∗(t)x (3.162)

satisfies the condition Φ.

Lemma 3.68. Equation (3.121) is hyperbolic on R+ (resp., R−, R), if and only if (3.162) is
hyperbolic R+ (resp., R−, R).

Corollary 3.69. Let A be st. L+ (resp., L−). Equation (3.121) satisfies the condition Φ+

(resp., Φ−), if and only if (3.121) satisfies the condition Φ+ (resp., Φ−).

The formulated statement follows from Theorem 3.3.9 and Lemma 3.68.

Corollary 3.70. Let A be st. L. Equation (3.121) satisfies the condition Φ, if and only if
(3.162) also does.

Lemma 3.71 (see [124]). If (3.121) with the help of Lyapunov’s transformation x(t) =
L(t)y(t) can be reduced to (3.142), then (3.162) can be reduced to the equation

dy

dt
= −B∗(t)y (3.163)

with the help of Lyapunov’s transformation x(t) = L−1∗ (t)y(t).

Corollary 3.72. If with the help of Lyapunov’s unitary transformation x(t) = L(t)y(t)
(3.121) can be reduced to (3.142), then with the help of the same transformation (3.162)
can be reduced to (3.163).
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Lemma 3.73. Let (3.121) be hyperbolic on R+ and all nonzero solutions of (3.121) are
unbounded on R+ (resp., R−). Then there exists positive numbers N and ν such that

∥
∥U
(
t,−A∗

)∥
∥ ≤ Ne−ν|t| (3.164)

for all t ∈ R+ (resp., R−).

Proof . Let (3.121) be hyperbolic on R+ and all nonzero solutions of (3.121) be
unbounded on R+. Then there exist positive projectors P and Q (P +Q = E) and positive
numbers N and ν such that

∥
∥U(t,A)PU−1(τ,A)

∥
∥ ≤ Ne−ν(t−τ) (t ≥ τ ≥ 0), (3.165)

∥
∥U(t,A)QU−1(τ,A)

∥
∥ ≤ Neν(t−τ) (0 ≤ t ≤ τ). (3.166)

Since all nonzero solutions of (3.121) are unbounded on R+, then P = 0 and, conse-
quently, ‖U(t,A)U−1(τ,A)‖ ≤ Ne−ν(t−τ) (t ≥ τ ≥ 0). In particular, for all t ∈ R+ there
takes place inequality ‖U−1(t,A)‖ ≤ Ne−νt. Let U(t,−A∗) be the Cauchy operator of
(3.162). Then [116] U(t,−A∗) = U−1∗ (t,A). Therefore, inequality (3.164) holds for all
t ∈ R+.

In the same way we consider the second case. The lemma is proved. �

Corollary 3.74. Let (3.121) be hyperbolic on R+ and R−. If all nonzero solutions of (3.121)
are unbounded on R+ and R−, then there exist positive numbers N and ν such that for all
t ∈ R there is fulfilled inequality (3.164).

Corollary 3.75. Let A be st. L+ (resp., L−,L) and (3.121) satisfy the condition Φ+ (resp.,
Φ−,Φ). If all nonzero solutions of (3.121) are unbounded on R+ (resp., R−, R+, and R−),
then there exist positive numbers N and ν such that inequality (3.164) holds for all t ∈ R+

(resp., R−, R).

Lemma 3.76. Let A be st. L and satisfy the condition Φ. If all solutions of (3.121) are
bounded on R+ (resp., R−, R), then the operator LA is weakly regular.

Proof . Let A be st. L, (3.121) satisfy the condition Φ, all nonzero solutions of (3.142)
be bounded on R+, and f ∈ Cb(R;En). Since (3.121) satisfies the condition Φ+, (3.123)
has at least one solution from Cb(R+,En) and, consequently, all solutions of (3.123) are
bounded on R+. Besides, (3.121) satisfies the condition Φ− and therefore (3.123) has at
least one bounded on R− solution ϕ. Obviously, ϕ ∈ Cb(R;En). In the same way we can
consider the other two cases. The lemma is proved. �

Corollary 3.77. Let A be st. L, (3.121) satisfy the condition Φ and every nonzero solution of
(3.162) be unbounded on R+ (resp., R−, R+, and R−). Then operator LA is weakly regular.

This statement follows from Lemma 3.76 and Corollary 3.75.
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Lemma 3.78. Let A be st. L and (3.121) satisfy the condition Φ. If (3.121) has nonzero
solution ϕ0 bounded on S (S = R+, R− or R), then there exists unitary Lyapunov’s trans-
formation x(t) = L(t)y(t) that brings (3.121) to the triangular form (3.142) with the
triangular matrix

B(t) = (bi j(t)
)n
i, j=1, (3.167)

and in this case (3.145) is (Cb(R; R),Cb(R; R))-admissible, if ϕ0 ∈ Cb (R; Rn), and
(Cb(R; R),Cb(R; R))-regular otherwise.

Proof . Let A be st. L, (3.121) satisfy the condition Φ and ϕ0 be a nonzero bounded on S

solution of (3.121). Let x(1), x(2), . . . , x(n) be a base of the space of solutions of (3.121) and
x(1) = ϕ0. Applying to this basis the theorem of Perrone [124], we get the first statement
of the lemma. From the same theorem (see also [116]) it follows that

b11(t) = d

dt
ln
∣
∣ϕ0(t)

∣
∣. (3.168)

To finish the proof of the lemma it is enough to apply Lemma 3.54. �

Theorem 3.3.12. Let A be st. L. The differential operator LA is weakly regular, if and only if
(3.162) satisfies the condition F .

Proof . Let A be st. L and LA be weakly regular. According to Corollary 3.67, (3.162)
satisfies the condition F .

Inversely. Let (3.162) satisfy the condition F . Let us show that the differential oper-
ator LA is weakly regular. We will prove it by the induction by the dimensionality n of the
system. For n = 1 the validity of the theorem follows from Corollary 3.56. Suppose that
it is true for all n ≤ k − 1. Show now that it is true for n = k too. Logically, two cases are
possible.

(1) All nonzero solutions of (3.162) are unbounded on R+. According to Corollary
3.77, the differential operator LA is weakly regular and the lemma is proved.

(2) There exists a nonzero bounded on R+ (and, consequently, unbounded on R−)
solution ϕ0. By Lemma 3.78, with the help of the unitary Lyapunov’s transformation
(3.162) can be reduced to the triangular form

·
v1 = b11(t)v1 − b12(t)v2 − · · · − b1n(t)vn,
·
v2 = − b22(t)v2 − · · · − b2n(t)vn,

. . .
·
vn = − bnn(t)vn,

(3.169)

and equation

·
u1 = b11(t)u1 (3.170)

is (Cb(R; R),Cb(R; R))-regular. Consider the matrix

−B̃(t) = (− bi j
)n
i, j=2. (3.171)
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Let us show that the equation

·
x = −B̃(t)x (3.172)

satisfies the condition F . Under the condition of the theorem (3.162) satisfies the con-
dition F and, hence, (3.169) satisfies it too. Corollary 3.61 implies that (3.172) satisfies
the condition Φ. Suppose that (3.172) does not satisfy the condition F . Then there exists
a nonzero solution (ϕ2,ϕ3, . . . ,ϕn) ∈ Cb(R; Rn−1) of (3.172). Since (3.170) is (Cb(R; R),
Cb(R; R)) regular, (3.169) has nonzero from Cb(R; Rn) too. The last contradicts to the
condition of the theorem. So, (3.172) satisfies the condition F and, in virtue of the
inductive assumption the equation

·
y = B̃∗(t)y (3.173)

is (Cb(R; Rn−1),Cb(R; Rn−1)) admissible. Since (3.170) also is (Cb(R; R),Cb(R; R)) regu-
lar, (3.170) is (Cb(R; Rn−1),Cb(R; Rn−1)) regular too. By Lemma 3.62, equation

·
y = B∗(t)y, (3.174)

where

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b11 0 0 · · · 0

b12 b22 0 · · · 0

· · · · · · · · · · · · · · ·
b1n b2n b3n · · · bnn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3.175)

is (Cb(R; Rn),Cb(R; Rn)) admissible. From Lemma 3.71 it follows that the operator LA is
weakly regular. The theorem is proved. �

Corollary 3.79. Let A be st. L. The differential operator LA is regular, if and only if (3.121)
and (3.162) satisfy the condition F .

Corollary 3.80. Let A be st. L. Equation (3.121) satisfies the condition F , if and only if the
operator L∗A is weakly regular.

3.3.5. Correct Differential Operators

Let A ∈ C(R; [En]). Consider the differential operator

LAx = dx

dt
−A(t)x (3.176)

in the space Cb(R;En), considering that it is defined on such functions as x ∈ Cb(R;En)
for which LAx ∈ Cb(R;En).
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Definition 3.81. The operator LA is called correct, if there exists a positive number δ > 0
such that the estimation

∥
∥LAu

∥
∥ ≥ δ‖u‖ (3.177)

is true for all u, LAu ∈ Cb(R;En).

Definition 3.82. The operator LA is called uniformly correct, if there exists a positive
number δ > 0 such that

∥
∥LBu

∥
∥ ≥ δ‖u‖ (3.178)

for every B ∈ H(A) and u, LBu ∈ Cb(R;En).

Obviously, any uniformly correct operator LA is correct. The inverse statement appar-
ently is not true, though the respective example is unknown for us.

There takes place.

Theorem 3.3.13. Let the operator-function A ∈ C(R; [En]) be almost periodic and the
operator LA be correct. Then LA is uniformly correct too.

Proof . Let A ∈ C(R; [En]) be almost periodic and B ∈ H(A). Since the operator LA is
correct, then there exists a positive number δ > 0 such that inequality (3.177) holds. For
the number δ/2 in virtue of the almost periodicity of A there exists a number τ ∈ R such
that

∥
∥A(t + τ)− B(t)

∥
∥ < ε (t ∈ R). (3.179)

Let u, LBu ∈ Cb(R;En). Then
∥
∥LBu

∥
∥ = ∥∥L[A(τ)+B−A(τ)]u

∥
∥

≥ ∥∥LA(τ)u
∥
∥− sup

t∈R

∣
∣
[
B(t)−A(t + τ)

]
u(t)
∣
∣ ≥ δ‖u‖ − δ

2
‖u‖ = δ

2
‖u‖.

(3.180)

The theorem is proved. �

Lemma 3.83. Let A ∈ C(R; [En]) and operator LA be correct. Then there exists a number
γ > 0 such that LB is correct, if

∥
∥B(t)−A(t)

∥
∥ < γ (t ∈ R). (3.181)

Proof . The formulated statement is proved in the same way that Theorem 3.3.13. �

Corollary 3.84. The set of correct operators LA forms an open set (by the operator norm) in
the set of all differential operators (3.176).

Corollary 3.85. The set of uniformly correct operators LA with the almost periodic function
A(t) is open in the set of all almost periodic differential operators.
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Theorem 3.3.14. Let A ∈ C(R; [En]) be st. L. The next conditions are equivalent:

(1) the operator LA is uniformly correct;
(2) the differential equation

dx

dt
= A(t)x (3.182)

satisfies the condition F .

Proof . Let LA be uniformly correct. Then there exists δ > 0 such that for every ∈ H(A)
there is fulfilled inequality (3.178). Let us show that (3.182) satisfies the condition F .
Suppose the contrary. Then there exists B ∈ H(A) and nonzero function ϕ ∈ Cb(R;En)
such that

LBϕ = 0. (3.183)

From (3.178) and (3.183) it follows that δ ≤ 0. The last contradicts to the choice of the
number δ.

Inversely. LetA be st. L and (3.182) satisfy the condition F . Let us show that the oper-
ator LA is uniformly correct. Suppose the contrary, that is, there exist {ϕm} ⊆ Cb(R;En),
{Bm} ⊆ H(A), and αm → 0 (αm > 0) such that

∥
∥ϕm
∥
∥ = 1,

∥
∥LBmϕm

∥
∥ ≤ αm (3.184)

for all m ∈ N. Condition (3.184) implies the existence of the sequence {tm} ⊆ R such
that

∣
∣ϕm
(
tm
)∣
∣ ≥ 1

2
, (3.185)

∣
∣
∣
∣
∣

dϕm(t)
dt

− Bm(t)ϕm(t)

∣
∣
∣
∣
∣
≤ αm (3.186)

for all t ∈ R. Define the sequence {ψm} by the equality

ψm(t) = ϕm
(
t + tm

)
(t ∈ R). (3.187)

From (3.186) it follows that
∣
∣
∣
∣
∣

dψm(t)
dt

− Bm
(
t + tm

)
ψm(t)

∣
∣
∣
∣
∣
≤ αm (3.188)

for all t ∈ R. Let us show that {ψm} is relatively compact in C(R;En). In fact, it is easy to
see that for every m ∈ N the function ψm is a solution of the differential equation

dx

dt
= Bm

(
t + tm

)
x + gm(t), (3.189)

where gm(t) := ψ′m(t)− Bm(t + tm)ψm(t) for all t ∈ R. From (3.188) it follows that gm →
0 in the topology C(R;En). In virtue of the L stability of the operator-function A(t),

the sequence {B(tm)
m } can be considered convergent in C(R; [En]). Note that ‖ψm‖ ≤ 1
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and by Lemma 3.37 the sequence {ψm} is relatively compact in C(R;En). Without loss of

generality the sequences {ψm} and {B(tm)
m } can be considered convergent. Assume ψ0 :=

limm→+∞ ψm and B0 := limm→+∞ B
(tm)
m . By Lemma 3.37 ψ0 is a bounded on R solution of

the equation

du

dt
= B0(t)u. (3.190)

From inequality (3.185) it follows that ψ0 �≡ 0. The last contradicts to the condition of
the theorem. The theorem is proved. �

Theorem 3.3.15. Let A ∈ C(R; [En]) be st. L and (3.182) satisfy the condition F . Then
there exists a positive number γ > 0 such that the equation

·
x = B(t)x (3.191)

also satisfies the condition F , if

∥
∥B(t)− A(t)

∥
∥ < γ (t ∈ R), (3.192)

where B ∈ C(R; [En]).

Proof . Let A ∈ C(R; [En]) be st. L and (3.182) satisfy the condition F . According to
Theorem 3.3.14, there exists a positive number δ > 0 such that inequality (3.178) holds
for every B ∈ H(A). Assume γ = δ/2. Let B ∈ C(R; [En]) be such that inequality (3.192)
be fulfilled. Then for every ϕ ∈ Cb(R;En) from the domain of definition of LB

∥
∥LBϕ

∥
∥ = ∥∥LBϕ− (B −A)ϕ

∥
∥ ≥ ∥∥LAϕ

∥
∥− ∥∥(B − A)ϕ

∥
∥ ≥ δ‖ϕ‖ − γ‖ϕ‖ =

(
δ

2

)

‖ϕ‖.
(3.193)

Let C ∈ H(B). Then there exists {tm} ⊆ R such that C = limm→+∞ B(tm) in C(R; [En]).
Note that for each m ∈ N and for all ϕ ∈ Cb(R;En)

∥
∥LB(tm)ϕ

∥
∥ = ∥∥LBϕ(−tm)

∥
∥ ≥
(
δ

2

)
∥
∥ϕ(−tm)

∥
∥ =
(
δ

2

)

‖ϕ‖. (3.194)

The last inequality can be rewritten in the form

∣
∣
∣
∣
∣

dϕ(t)
dt

− B(t + tm
)
ϕ(t)

∣
∣
∣
∣
∣
≥
(
δ

2

)

‖ϕ‖ (t ∈ R). (3.195)

Passing to the limit in inequality (3.195) as m→ +∞, we get

∥
∥LCϕ

∥
∥ ≥
(
δ

2

)

‖ϕ‖ (3.196)

for all C ∈ H(A). From inequality (3.196) and Theorem 3.3.14 the necessary statement
follows. The theorem is proved. �
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Corollary 3.86. The set of all (3.182) with the st. L operator-function A satisfying the
condition F forms an open set (in the uniform topology) in the space of all equations of
form (3.182).

Theorem 3.3.16. Let A ∈ C(R; [En]) be st. L. The operator LA is weakly regular, if and only
if the operator

L∗Ax =
dx

dt
+A∗(t)x (3.197)

is uniformly correct.

Proof . The formulated statement is the sequence of Theorems 3.3.12 and 3.3.14. �

So, Theorem 3.3.16 establishes the duality of the notions of uniform correctness and
weak regularity.

3.3.6. Linear Equations with Asymptotically Almost Periodic Coefficients

Let C(R, [En]) be the space of all the continuous matrix-functions A : R→ [En] with the
compact-open topology.

Let us consider a differential equation

dx

dt
= A(t)x, (3.198)

where A ∈ C(R, [En]). Along with (3.198) we consider a nonhomogeneous equation

dy

dt
= A(t)y + f (t), (3.199)

where f ∈ C(S,En), and the family of “ω-limit” equations

dz

dt
= B(t)z

(
B ∈ ωA

)
. (3.200)

Theorem 3.3.17. Let ϕ be a bounded on R+ solution of (3.199), the matrix A ∈ C(R, [En])
and the function f be st. L+. If every equation of family (3.200) has no nontrivial bounded
on R solutions, then ϕ is compatible in limit.

Proof . Along with (3.199) let us consider the family of equations

dv

dt
= B(t)v + g

(
(B, g) ∈ ω(A, f )

)
. (3.201)

Let us show that every equation of family (3.201) has at most one solution from ωϕ.
Suppose the contrary. Then there exist (B, g) ∈ ω(A, f ) and ψ1,ψ2 ∈ ωϕ that are solutions
of (3.201). Note that ψ = ψ1 − ψ2 �≡ 0 is a bounded on R solution of (3.200). The
latter contradicts to the condition of the theorem. So, the conditions of Theorem 3.2.2
are fulfilled and, consequently, ϕ is compatible in limit. �
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Corollary 3.87. Let ϕ be a bounded on R+ solution of (3.199), the matrix A and the
function f be mutually asymptotically stationary (resp., asymptotically τ-periodic, asymp-
totically almost periodic, asymptotically recurrent). If every equation of family (3.200) has no
nontrivial bounded on R solutions, then ϕ is asymptotically stationary (resp., asymptotically
τ-periodic, asymptotically almost periodic, asymptotically recurrent).

In the case when A and f are asymptotically almost periodic, Corollary 3.87 is a
generalization for asymptotic almost periodicity of the known Favard theorem [116] (the
first theorem of Favard).

Theorem 3.3.18. Let A and f be st. L+. If (3.198) is hyperbolic on R+, then the following
statement hold:

(1) the homogeneous (3.199) has at least one bounded on R+ solution ϕ. This solution
is given by formula

ϕ(t) :=
∫ +∞

0
G(t, τ) f (τ)dτ, (3.202)

where G(t, τ) is the main Green function [120] for (3.198);
(2) every bounded on R+ solution of (3.199) is compatible in limit.

Proof . The first statement of the theorem it follows from [120]. Let us prove the second
one. In virtue of Lemma 3.32 and Corollary 3.33 every (3.200) has no nontrivial bounded
on R solutions. According to Theorem 3.3.17 every bounded on R+ solution of (3.198)
is compatible in limit. �

Note that Theorems 3.3.17 and 3.3.18 give sufficient conditions for the existence
of bounded on R+ and compatible in limit solutions of (3.199). However, at first look
these theorems essentially differ. The first one states that if there exists a bounded on
R+ solution, then it is compatible in limit, and a priori we do not know whether under
the conditions of theorem there exists at least one bounded on R+ solution. The second
theorem states that if its conditions are fulfilled, then there always exists at least one
bounded on R+ solution. The rest of their conclusions coincides. With the reference to the
said above there arises the following question. Under the conditions of Theorem 3.3.17,
does at least one bounded on R+ solution of (3.199) exist? Theorem 3.3.8 answers to this
question.

Below we investigate the problem of the existence of asymptotically almost periodic
solutions of linear differential equations with asymptotically almost periodic coefficients.

Theorem 3.3.19. Let A ∈ C(R, [En]) be asymptotically almost periodic. The following
statements are equivalent:

(1) equation (3.198) is hyperbolic on R+;
(2) for any asymptotically almost periodic function f ∈ C(R,En) (3.199) has at least

one asymptotically almost periodic solution.

Proof . Let (3.198) be hyperbolic on R+ and f ∈ C(R,En) be an arbitrary asymptotically
almost periodic function. According to Theorem 3.3.18, (3.198) has at least one bounded
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on R+ compatible in limit solution ϕ. From Corollary 3.87 it follows that ϕ is asymptot-
ically almost periodic. So, from condition (1) follows condition (2). Let us show that the
contrary also takes place. Since the matrix A is asymptotically almost periodic, there exist
a (unique) almost periodic matrix P ∈ ωA and a matrix R ∈ C(R, [En]) such that

(1) A(t) = P(t) + R(t) for all t ∈ R;
(2) limt→+∞ ‖R(t)‖ = 0.

Let g ∈ C(R,En) be an arbitrary almost periodic function. According to the state-
ment, the equation

dy

dt
= A(t)y + g(t) (3.203)

has at least one asymptotically almost periodic solution ϕ. Since the matrix P is almost
periodic and ϕ is asymptotically almost periodic, there exists a sequence {tn} → +∞ such
that {A(tk)} → P, g(tk) → g and ϕ(tk) → q, where q ∈ ωϕ is an almost periodic function.
Note that q is an almost periodic solution of the equation

dz

dt
= P(t)z + g(t). (3.204)

So, we showed that for any almost periodic function g (3.204) has at least one almost
periodic solution. From the results of the work [125] follows that the equation

du

dt
= P(t)u (3.205)

is hyperbolic on R. According to Lemma 3.32 every equation of family (3.200) is hyper-
bolic on R. By Theorem 3.3.8, (3.199) is hyperbolic on R+. The theorem is proved. �

Assume

M(A) := lim
L→+∞

1
L

∫ L

0
A(s)ds. (3.206)

Theorem 3.3.20. Let A be asymptotically almost periodic. If the spectrum of the matrix
M(A) does not intersect the imaginary axis, then there exists a number ε0 > 0 such that for
every ε, |ε| ≤ ε0 the equation

dx

dt
= εA(t)x + f (t) (3.207)

has at least one asymptotically almost periodic solution for any asymptotically almost peri-
odic function f .

Proof . Let us consider a family of equations

dy

dt
= εB(t)y

(
B ∈ ωA

)
. (3.208)
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According to Corollary 1.55, M(A) = M(P), where P is an almost periodic matrix from
ωA such that limt→+∞ ‖A(t) − P(t)‖ = 0. From the results of [125, (see page 258)] it
follows the existence of a number ε0 > 0 such that for every ε, 0 < |ε| ≤ ε0, the equation

dz

dt
= εP(t)z (3.209)

is hyperbolic on R. Then by Lemma 3.32 every equation of family (3.208) is hyperbolic
on R. Consequently, every (3.208) for 0 < |ε| ≤ ε0 has no nontrivial bounded on R

solutions. In virtue of Theorem 3.3.8 the equation

dx

dt
= εA(t)x (3.210)

is hyperbolic on R+ and from Theorem 3.3.19 it follows that for 0 < |ε| ≤ ε0 (3.207)
has at least one asymptotically almost periodic solution for any asymptotically almost
periodic function f . �

Let us consider a scalar equation with the asymptotically almost periodic function
a ∈ C(R, R)

dx

dt
= a(t)x. (3.211)

Along with (3.211) consider the nonhomogeneous equation

dy

dt
= a(t)y + f (t), (3.212)

where f ∈ C(R, R).

Theorem 3.3.21. Equation (3.212) has at least one asymptotically almost periodic solution
for every asymptotically periodic function f if and only if M(a) �= 0 (M(a) is the average
value of the function a).

Proof . Necessity. Let (3.212) have at least one asymptotically almost periodic solution
ϕ for every asymptotically almost periodic function f . According to Theorem 3.3.19,
(3.211) is hyperbolic on R+. For distinctness, let the solutions of (3.211) be bounded
on R+. Then there exist positive numbers N and ν such that

∣
∣ϕ(t, a, x)

∣
∣ ≤ Ne−νt|x| (3.213)

for all t ≥ 0. Since

ϕ(t, a, x) = x exp
(∫ t

0
a(s)ds

)

, (3.214)

we have

1
t

ln
∣
∣ϕ(t, a, x)

∣
∣ = ln |x|

t
+

1
t

∫ t

0
a(s)ds (3.215)
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(x �= 0). Passing to limit in (3.215) as t → +∞ and taking into consideration (3.213),
we get M(a) �= 0. By analogy, we consider the case when all the solutions of (3.211) are
unbounded on R+.

Sufficiency. LetM(a) �= 0. Then it is easy to verify thatM(a) =M(b) for any function
b ∈ ωa. Let b be an arbitrary function from ωa. Since M(b) �= 0 and

M(b) = lim
t→+∞

1
t

ln
∣
∣ϕ(t, b, x)

∣
∣ (3.216)

for all x �= 0, it is obvious that the equation

dz

dt
= b(t)z (3.217)

has no nontrivial bounded on R solutions. Hence, by Theorem 3.3.8, (3.211) is hyper-
bolic on R+. To complete the proof of the theorem it is enough to refer to Theorem 3.3.19.

�

Theorem 3.3.21 is a generalization of one theorem of Massera (see, i.e., [125, page
43]) for the case of asymptotical almost periodicity.

3.4. Semilinear Differential Equations

In this section we establish the conditions, under which the existence of a compatible
in limit solution of a nonlinear equation can be established by the linear terms of the
right-hand side of the equation.

Let L some set of sequences {tk} → +∞ and r > 0. Denote Cr(L) := {ϕ : ϕ ∈
Cb(R+,En), L ⊆ L+∞

ϕ and ‖ϕ‖ ≤ r}.

Lemma 3.88. Cr(L) is a subspace of the metric space Cb(R+,En).

Proof . Obviously, to prove the formulated statement it is sufficient to prove that Cr(L)
is closed in Cb(R+,En). Let {ϕk} ⊆ Cr(L) and ϕ = limk→+∞ ϕk. Let us take an arbitrary
ε > 0 and {tk} ∈ L. Since ϕk → ϕ in the metric Cb(R+,En), then ‖ϕ‖ ≤ r. Let us show
that {tk} ∈ L+∞

ϕ . For ε > 0 there is k0 = k0(ε) such that

∥
∥ϕ− ϕk

∥
∥ <

ε

4
(3.218)

for all k ≥ k0. Since
∣
∣ϕ
(
t + tl
)− ϕ(t + tr

)∣
∣

≤ ∣∣ϕ(t + tl
)− ϕk0

(
t + tl
)∣
∣+
∣
∣ϕk0

(
t + tl
)− ϕk0

(
t+tr
)∣
∣+
∣
∣ϕk0

(
t+tr
)− ϕ(t+tr

)∣
∣

≤ 2
∥
∥ϕ− ϕk0

∥
∥ +
∣
∣ϕk0

(
t + tl
)− ϕk0

(
t + tr
)∣
∣,

(3.219)

then for l and m large enough we have

ρ
(
ϕ(tl),ϕ(tm)) < ε, (3.220)
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where ρ is the metric defining an open compact topology in C(R+,En), that is,

ρ(ϕ,ψ) = sup
l>0

{
min
{

max
0≤t≤l
∣
∣ϕ(t)− ψ(t)

∣
∣, l−1

}}
. (3.221)

As the space C(R+,En) is complete, we conclude that the sequence {ϕ(tk)} is convergent
and, consequently, L ⊆ L+∞

ϕ . The lemma is proved. �

Lemma 3.89. Let ϕ ∈ C(R+,En), F ∈ C(R × En,En) and L ⊆ L+∞
ϕ ∩ L+∞

FQ , where Q :=
ϕ(R+) and FQ := F|R×Q. If FQ satisfies the condition of Lipschitz with respect to the second
variable with the constant L > 0, then L ⊆ L+∞

g , where g(t) := F(t,ϕ(t)) for all t ∈ R+.

Proof . Let {tn} ∈ L. Note that

∣
∣g
(
t + tl
)− g(t + tr

)∣
∣

= ∣∣F(t + tl,ϕ
(
t + tl
))− F(t + tr ,ϕ

(
t + tr
))∣
∣

≤ ∣∣F(t + tl,ϕ
(
t + tl
))− F(t + tl,ϕ

(
t + tr
))∣
∣ +
∣
∣F
(
t + tl,ϕ

(
t + tr
))− F(t + tr ,ϕ

(
t + tr
))∣
∣

≤ L
∣
∣ϕ
(
t + tl
)− ϕ(t + tr

)∣
∣ + max

x∈Q
∣
∣F
(
t + tl, x

)− F(t + tr , x
)∣
∣.

(3.222)

Passing to limit in inequality (3.222) as l, r → +∞, we obtain that the sequence {g(tk)} is
fundamental in the space C(R+,En). Since the space C(R+,En) is complete, the sequence
{g(tk)} is convergent, that is, {tk} ∈ L+∞

g . The lemma is proved. �

Let us consider a differential equation

dx

dt
= A(t)x + f (t) + F(t, x), (3.223)

where A ∈ C(R, [En]), f ∈ C(R+,En) and F ∈ C(R×W ,En).
Let E+ be the set of all initial points x ∈ En of solutions from Cb(R+,En) of (3.198).

Then E+ is a subspace of the space En. Denote by P+ a projector that projects En onto E+.

Lemma 3.90. Let A ∈ C(R, [En]) be st. L+. If (3.198) is hyperbolic on R+, then for any
function f ∈ C(R+,En) that is st. L+ (3.199) has the unique compatible in limit solution
ϕ+ ∈ Cb(R+,En) satisfying to the condition P+ϕ+(0) = 0. Besides, there exists a constant
M > 0 (not depending on f ) such that ‖ϕ+‖ ≤M‖ f ‖.

Proof . The formulated lemma directly it follows from [126, Lemma 6.3] and Theorem
3.3.18. �

Let ϕ+ be a compatible in limit solution of (3.199) the existence of which is guar-
antied by Lemma 3.90. Assume Q := ϕ+(R+) and by Qr denote a neighborhood of the set
Q ⊂ En of radius r > 0.

Theorem 3.4.1. Let A ∈ C(R, [En]), f ∈ C(R+,En) and F ∈ C(R+ × W ,En). If the
following conditions are fulfilled:
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(1) A, f , and FQr are st. L+;
(2) equation (3.198) is hyperbolic on R+;
(3) |F(x, t)| ≤ rM−1 for all x ∈ Qr and t ∈ R+ (M is the constant, the existence of

which is guarantied by Lemma 3.90);
(4) F satisfies the condition of Lipschitz with respect to x ∈ Qr with the constant of

Lipschitz L < M−1.

Then (3.223) has the unique solution ϕ ∈ C(R+,Qr) satisfying the condition P+ϕ(0) = 0
and this solution is compatible in limit.

Proof . In (3.223) let us make a change of the variables: x(t) = y(t) +ϕ+(t). Then for y(t)
we get the differential equation

dy

dt
= A(t)y + F

(
t, y + ϕ+(t)

)
. (3.224)

Let L = L+∞(A, f ,FQr ), where FQr = F|R×Qr . Define an operator

Φ : Cr(L) �→ Cr(L) (3.225)

as follows. If ϕ ∈ Cr(L), then L ⊆ L+∞
ϕ and, consequently, L ⊆ L+∞

ϕ+ϕ+
. According to

Lemma 3.89 L ⊆ L+∞
g , where g(t) := F(t,ϕ(t) + ϕ+(t)). By Lemma 3.90, the equation

dz

dt
= A(t)z + F

(
t,ϕ(t) + ϕ+(t)

)
(3.226)

has the unique solution ψ ∈ Cb(R+,En) that is compatible in limit (and, consequently,
L ⊆ L+∞

ψ ) and satisfies the condition P+(ψ+(0)) = 0. Besides, it is subordinated to the
estimate

‖ψ‖ ≤M‖g‖ =M sup
t≥0

∣
∣F
(
t,ϕ(t) + ϕ0(t)

)∣
∣ ≤M sup

t≥0
max
x∈Qr

∣
∣F(t, x)

∣
∣ ≤MrM−1 = r.

(3.227)

So, ψ ∈ Cr(L). Let Φ(ϕ) := ψ. From the said above follows that Φ is well defined. Let
us show that the operator Φ is a contraction. In fact, it is easy to note that the function
ψ := ψ1 − ψ2 = Φ(ϕ1)−Φ(ϕ2) is a solution of the equation

du

dt
= A(t)u + F

(
t,ϕ1(t) + ϕ+(t)

)− F(t,ϕ2(t) + ϕ+(t)
)
, (3.228)

with the initial condition P+ψ(0) = 0 and, by Lemma 3.90, it is subordinated to the
estimate

∥
∥Φ
(
ϕ1
)−Φ

(
ϕ2
)∥
∥ ≤M sup

t≥0

∣
∣F
(
t,ϕ1(t) + ϕ+(t)

)− F(t,ϕ2(t) + ϕ+(t)
)∣
∣

≤ML
∥
∥ϕ1 − ϕ2

∥
∥ = α

∥
∥ϕ1 − ϕ2

∥
∥.

(3.229)

Since α = ML < MM−1 = 1, then Φ is a contraction and, consequently, there exists the
unique function ϕ ∈ Cr(L) such that Φ(ϕ) = ϕ. To finish the proof of the theorem it is
sufficient to assume that ϕ := ϕ + ϕ+ and note that ϕ is desired solution. The theorem is
proved. �
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Theorem 3.4.2. Let A, f be st. L+ and the following conditions be held:

(1) equation (3.198) is hyperbolic on R+;
(2) FQr = F|R×Qr is st. L+;
(3) F satisfies the condition of Lipschitz with respect to the second variable with the

constant L > 0.

Then there exists a number ε0 > 0 such that for every |ε| ≤ |ε0| equation

dx

dt
= A(t)x + f (t) + εF(t, x) (3.230)

has the unique compatible in limit solution ϕε ∈ C(R+,Qr) satisfying the condition
P+ϕε(0) = 0. Besides, the sequence {ϕε} converges ϕ+ as ε → 0 uniformly with respect to
t ∈ R+.

Proof . Since the function FQr is st. L+, there exists a constant N > 0 such that |F(t, x)| ≤
N for all t ∈ R+ and x ∈ Qr . Assume ε0 := min((LM)−1, r(NM)−1). Then

∣
∣εF(t, x)

∣
∣ ≤ |ε|∣∣F(t, x)

∣
∣ ≤ ε0N < r(NM)−1N < rM−1 (3.231)

for all t ∈ R+ and x ∈ Qr . Obviously, the constant of Lipschits for the function εF is
less than M−1. According to Theorem 3.4.1 for every |ε| ≤ ε0 (3.230) has the unique
compatible in limit solution ϕε satisfying the condition P+ϕε(0) = 0.

Let us estimate the difference ϕε(t)− ϕ+(t) = ψε(t). It is clear that

dψε(t)
dt

= A(t)ψε(t) + εF
(
t,ψε(t) + ϕ+(t)

)
(3.232)

and, by Lemma 3.90,

∥
∥ψε
∥
∥ ≤M sup

t≥0

∣
∣εF
(
t,ψε(t) + ϕ+(t)

)∣
∣ ≤M|ε| sup

t≥0
max
x∈Qr

∣
∣F(t, x)

∣
∣ ≤M|ε|N = |ε|(MN).

(3.233)

Passing to limit in inequality (3.233) as ε → 0, we get the necessary statement. The
theorem is proved. �

Corollary 3.91. Let A and f be asymptotically stationary (resp., asymptotically τ-periodic,
asymptotically almost periodic). If the following conditions are fulfilled:

(1) F is asymptotically stationary (resp., asymptotically τ-periodic, asymptotically
almost periodic) with respect to t ∈ R uniformly with respect to x ∈ Qr ;

(2) equation (3.198) is hyperbolic on R+;
(3) F satisfies the condition of Lipschitz with respect to x ∈ Qr .

Then there exists ε0 > 0 such that for every |ε| ≤ ε0 (3.230) has the unique asymptotically
stationary (resp., asymptotically τ-periodic, asymptotically almost periodic) solution ϕε ∈
C(R+,Qr) satisfying the condition P+ϕε(0) = 0. Besides, the sequence {ϕε} converges to ϕ+

as ε → 0 uniformly with respect to t ∈ R+

The formulated statement generalizes the theorem of Biryuk (see, e.g., [116]) for
asymptotically almost periodic differential equations.
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3.5. Averaging Principle on Semiaxis for Asymptotically
Almost Periodic Equations

Let us consider a differential equation

dx

dt
= ε f (t, x) (3.234)

with the right-hand side f ∈ C(R+×En,En), ε > 0 is a small parameter. Suppose that for
every x ∈ En on R+ there exists an average value with respect to time t of the function f
and let

f0(x) := lim
L→+∞

1
L

∫ L+t

t
f (z, x)dz. (3.235)

Suppose that the average equation

dx

dt
= ε f0(x) (3.236)

has a stationary solution x0(t) ≡ x0 and let the following conditions be fulfilled:

(C1) the function f is bounded on R+×B[x0, r] (B[x0, r] := {x | |x− x0| ≤ r}) and
limit (3.235) exists uniformly with respect to t ∈ R+ and x ∈ B[x0, r];

(C2) there exist f ′x (t, x) and f ′0 (x) bounded on R+ × B[x0, r] and B[x0, r], respec-
tively;

(C3) the vector-functions f (t, x) and f0(x) have continuous with respect to x ∈
B[x0, r] derivatives and the equality

f ′0 (x) = lim
L→+∞

1
L

∫ L+t

t
f ′x (τ, x)dτ (3.237)

takes place uniformly with respect to x and t;
(C4) the spectrum of the operator A = f ′0 (x0) does not intersect the imaginary axis.

For every x ∈ B[x0, r]

f0(x + h)− f0(x) = f ′0 (x)h + R(x,h), (3.238)

where |R(x,h)| = o(|h|) for every x, x + h ∈ B[x0, r]. Assume A = f ′0 (x0) and B(h) :=
R(x0,h). Then from (3.238) we get

f0(x + h) = Ah + B(h). (3.239)

It is possible to show [120] that

∣
∣B
(
h1
)− B(h2

)∣
∣ ≤ C(σ)

∣
∣h1 − h2

∣
∣ (3.240)

for all |h1|, |h2| ≤ σ and C(σ) → 0 as σ → 0.
Transforming (3.234) with the help of (3.239) and of change of variables h = x− x0,

we obtain

dh

dt
= εAh + ε

(
f
(
t, x0 + h

)− [ f0
(
x0 + h

)− B(h)
])

(3.241)
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or, after introducing the denotation g(t,h) := f (t, x0 + h)− ( f0(x0 + h)− B(h)),

dh

dt
= εAh + εg(t,h). (3.242)

Consider the functions V(t,h) := f (t, x0 + h)− f0(x0 + h) and v(t,h; ε), where

v(t,h; ε) :=
∫ +∞

0
V(s + t,h)e−εsds. (3.243)

Let us make a change of the variable in (3.242) by the next formula:

h := z − εv(t, z; ε). (3.244)

Under the made above assumptions replacement (3.244) is invertible ([120]). With
the help of replacement (3.244), (3.242) takes the following form:

dz

dτ
= Az + F(τ, z; ε) (3.245)

(τ = εt). In the same way that in [120] we show that

∣
∣F(τ, z; ε)− B(z)

∣
∣ = O(ε) (3.246)

for ε small enough and besides, F satisfies the condition of Lipschitz

∣
∣F
(
τ, z1; ε

)− F(τ, z2; ε
)∣
∣ ≤ μ(σ)

∣
∣z1 − z2

∣
∣ (3.247)

for all |z1|, |z2| ≤ σ (μ(σ) → 0 as σ → 0).
From the results of the work [120] it follows that

lim
ε↓0

εv(t, z; ε) = 0, lim
ε↓0

εv′z(t, z; ε) = 0. (3.248)

Applying to (3.245) Theorem 3.4.1 (from the said above it is clear that for (3.245)
all the conditions of Theorem 3.4.1 are fulfilled), we obtain that for a sufficiently small
r0 > 0 and ε0 > 0 (3.245) has at least one solution z(τ) satisfying the condition |z(τ)| ≤ r0

for all τ ∈ R+. If with the help of the inverse transformation (3.244), taking into account
(3.248), we return to (3.234), then we get the following theorem.

Theorem 3.5.1. Let the function f ∈ C(R × En,En) satisfy the conditions (C1)–(C4) and
f0(x0) = 0. If the spectrum of the operator A = f ′0 (x0) does not cross the imaginary axis,
then for a sufficiently small r0 > 0 there exists ε0 > 0 such that for every 0 < ε < ε0 (3.234)
has at least one solution xε(t) satisfying the condition

sup
t∈R+

∣
∣xε(t)− x0

∣
∣ ≤ r0. (3.249)

Suppose that besides the enumerated in Theorem 3.5.1 conditions the function
f (t, x) and its derivative f ′x (t, x) are asymptotically almost periodic with respect to t ∈ R+

uniformly with respect to x ∈ B[x0, r].
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From the definition of the function v(t, z; ε) it follows that the function itself and its
derivative v′z(t, z; ε) are asymptotically almost periodic with respect to t ∈ R+ uniformly
with respect to z ∈ B[0, r0]. Since

F(τ, z; ε) = (I − εv′z
)−1
[

f0
(
x0 + z

)
+ f
(
τ

ε
, x0 + z − εv

)

+ εv − f
(
τ

ε
, x0 + z

)]

−Az,

(3.250)

F also is asymptotically almost periodic with respect to τ ∈ R uniformly with respect to
z ∈ B[0, r0]. From the said above and from Corollary 3.91 is what follows.

Theorem 3.5.2. Let the conditions of Theorem 3.5.1 be held and in addition the function
f (t, x) and its derivative f ′x (t, x) be asymptotically almost periodic with respect to t ∈ R

uniformly with respect to x ∈ B[x0, r]. Then for r0 > 0 small enough there exists ε0 > 0 such
that for every 0 < ε < ε0 (3.234) has at least one asymptotically almost periodic solution
xε(t) satisfying condition (3.249).

3.6. Nonlinear Differential Equations

In this section besides the theorems that follow from general results we will also give
some theorems on the existence of asymptotically periodic (resp., asymptotically almost
periodic, asymptotically recurrent) solutions that follow from the according theorems
about compatible solutions.

Let ϕ ∈ Cb(R,En) and M ⊂ Cb(R,En).

Definition 3.92. Following to [116, page 432], we will say that a function ϕ is separated in
M, if M consists from one function ϕ or if there exists a number r > 0 such that for every
function ψ ∈M that differs from ϕ the inequality

∣
∣ψ(t)− ϕ(t)

∣
∣ ≥ r, (3.251)

takes place for all t ∈ R.

Theorem 3.6.1. Let ϕ ∈ C(R+,En) be a bounded on R+ solution of (3.1) and f be asymp-
totically stationary (resp., asymptotically τ-periodic, asymptotically almost periodic, asymp-
totically recurrent) with respect to t ∈ R uniformly with respect to x ∈ Q = ϕ(R+). If all
the solutions from ωϕ of every equation of family (3.6) are separated in ωϕ, then ϕ is asymp-
totically stationary (resp., asymptotically k0τ-periodic for some natural k0, asymptotically
almost periodic, asymptotically recurrent).

Proof . Since f is asymptotically recurrent with respect to t ∈ R uniformly with respect
to x ∈ Q, then fQ = f |R×Q is st. L+. By [92, Lemma 3.1.1], the solution ϕ is st. L+.
Consider the nonautonomous dynamical system 〈(X , R+,π), (Y , R, σ),h〉 constructed in
Example 3.4. Under the conditions of our theorem the point (ϕ, fQ) ∈ X is st. L+. Let us
show that all the solutions from ω(ϕ, fQ) of every equation of family (3.8) are separated in
ω(ϕ, fQ). In fact, let gQ ∈ ωfQ (ψ0, gQ) ∈ ω(ϕ, fQ) be a solution of (3.8). Obviously, ψ0 ∈ ωϕ is
a solution of (3.6) (gQ = g|R×Q). According to the condition of the theorem, there exists
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a number r = r(gQ) > 0 such that for every solution ψ ∈ ωϕ of (3.6) that differs from ψ0

inequality (3.251) is held.
Let now (ψ, gQ) ∈ ω(ϕ, fQ) be an arbitrary, different from (ψ0, gQ), solution of (3.6).

Then it is clear that the distance between the points (ψ0, gQ) and (ψ, gQ) is not less than
r. So, all the solutions from ω(ϕ, fQ) of every (3.8) are separated in ω(ϕ, fQ). According
to Theorems 2.3.2 and 2.4.3 the solution (ϕ, fQ) of (3.7) is asymptotically stationary
(resp., asymptotically τk0-periodic for some natural k0, asymptotically almost periodic,
asymptotically recurrent). From the said above follows that ϕ is asymptotically stationary
(resp., asymptotically k0τ-periodic for some natural k0, asymptotically almost periodic,
asymptotically recurrent). The theorem is proved. �

Remark 3.93. Note that the problem about asymptotical almost periodicity of solutions
for differential equations it was studied before, in particular, in the works [34, 73]. In
these works for almost periodic right-hand side f and under almost the same conditions
that in Theorem 3.6.1 there was proved the asymptotical almost periodicity of the solu-
tion ϕ.

Definition 3.94. According to [30], the solution ϕ ∈ C(R+,En) of (3.1) we will call Σ+-
stable, if for every ε > 0 there is δ such that for t1, t2 ∈ R+ and Q = ϕ(R+) from the
inequalities

ρ
(
ϕ(t1),ϕ(t2)) < δ and sup

t≥0
max
x∈Q

∣
∣ f
(
t + t1, x

)− f
(
t + t2, x

)∣
∣ < δ (3.252)

follows the inequality

sup
t≥0

ρ
(
ϕ(t+t1),ϕ(t+t2)) < ε. (3.253)

Theorem 3.6.2. Let ϕ be a bounded on R+ solution of (3.1) and f be asymptotically almost
periodic with respect to t ∈ R uniformly with respect to x ∈ Q = ϕ(R+). If ϕ is Σ+-stable,
then it is asymptotically almost periodic.

Proof . If ϕ is a bounded on R+ solution of (3.1) and f is asymptotically almost periodic
with respect to t uniformly with respect to x ∈ Q = ϕ(R+), then (ϕ, fQ) is a st. L+ solution
of (3.7). It is easy to see that from the Σ+-stability of the solution ϕ of (3.1) it follows
the Σ+-stability of the solution (ϕ, fQ) of (3.7). By Theorem 2.3.3 the solution (ϕ, fQ) is
asymptotically almost periodic and, consequently, the solution ϕ is also asymptotically
almost periodic. The theorem is proved. �

Remark 3.95. In the work [106] there is proved a statement analogous to Theorem 3.6.2
with the additional assumption of almost periodicity with respect to t of the right-hand
side.



100 Asymptotically Almost Periodic Solutions of Ordinary Differential Equations

Theorem 3.6.3. Let ϕ be a bounded on R+ solution of (3.1), f be asymptotically τ-periodic
with respect to t ∈ R uniformly with respect to x ∈ Q = ϕ(R+) and gQ(t, x) :=
limk→+∞ fQ(kτ + t, x). If the equation

dy

dt
= gQ(t, y) (3.254)

admits at most one solution from ωϕ, then the solution ϕ is asymptotically τ-periodic.

Proof . Under the conditions of the theorem (ϕ, fQ) is a st. L+ solution of (3.7) and
equation

h
(
ψ, gQ

) = gQ (3.255)

has at most one solution from ω(ϕ, fQ), where h is a homomorphism of the dynamical
systems from Example 3.4. According to Theorem 2.4.1, the solution (ϕ, fQ) of (3.7) is
asymptotically τ-periodic and, consequently, the solution ϕ of (3.1) is asymptotically τ-
periodic. The theorem is proved. �

Let us consider a differential equation of the second order

x′′ = f (t, x), (3.256)

where f ∈ C(R × En,En), and give a criterion of the existence of its compatible in limit
solutions.

Theorem 3.6.4. Let f ∈ C(R×En,En) be continuously differentiable with respect to x ∈ En

and let exists r0 > 0 such that

(1) | f (t, x)| ≤ A(r) < +∞ for all (t, x) ∈ R+ × B[0, r] and 0 ≤ r ≤ r0;
(2) f is asymptotically Poisson stable with respect to t ∈ R uniformly with respect to

x ∈ B[0, r0];
(3) there exists positive numbers m and M(r) such that for all (t, x) ∈ R+ × B[0, r],

0 < r ≤ r0, mI ≤ f ′x (t, x) ≤M(r)I (I is a unit matrix from [En]) and the matrix
f ′x (t, x) is self-adjoint.

Then for an arbitrary r, 0 ≤ r ≤ r0, (3.256) has at least one bounded on R+ solution ϕ such

that L+∞
f̂
⊆ L+∞

ϕ , where f̂ is a restriction of the function f on R× B[0, r].

The proof of Theorem 3.6.4 bases upon the following lemma.

Lemma 3.96. Let M > 0 and f ∈ Cb(R+,En). By the formula

ϕ(t) = − 1
2
√
M

{

e
√
Mt
∫ +∞

t
e−
√
Mτ f (τ)dτ + e−

√
Mτ
∫ t

0
e
√
Mτ f (τ)dτ

}

, (3.257)

there is defined a bounded on R+ solution of the equation

x′′ =Mx + f (t), (3.258)
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and this is a unique solution which may be estimated as follows:

‖ϕ‖ ≤ 1
M
‖ f ‖, (3.259)

where ‖ f ‖ := sup{| f (t)| : t ∈ R+}. If, besides, f is asymptotically Poisson stable, then ϕ is
compatible in limit.

Proof . The fact that the function ϕ defined by equality (3.257) is a solution of (3.258) and
can be estimated by (3.259) can be proved by a simple calculation. The second statement
follows from Theorem 3.3.18. �

Proof . The proof of Theorem 3.6.4. Let 0 < r ≤ r0. Assume L = L+∞
f̂

, Br(L) = {ϕ | ϕ ∈
Cb(R+,En), ‖ϕ‖ ≤ r, and L ⊆ L+∞

ϕ }. Further, define an operator Φ from Br(L) to Br(L)
by the equality

(Φϕ)(t) = − 1
2
√
M

{∫ +∞

t
e
√
M(t−τ)F

(
τ,ϕ(τ)

)
dτ +

∫ t

0
e−
√
M(t−τ)F

(
τ,ϕ(τ)

)
dτ
}

, (3.260)

where F(t, x) := f (t, x)−Mx. Let ϕ ∈ Br(L). Consider a differential equation

d2x

dt2
=Mx + f

(
t,ϕ(t)

)−Mϕ(t). (3.261)

Note that F′x(t, x) = f ′x (t, x)−MI , and since f ′x (t, x) is self-adjoint, we have

∥
∥F′x(t, x)

∥
∥ = sup

|ξ|=1

∣
∣
(
F′x(t, x)ξ, ξ

)∣
∣ = sup

|ξ|=1

∣
∣
(
f ′x (t, x)ξ, ξ

)−M∣∣

= sup
|ξ|=1

∣
∣M − ( f ′x (t, x)ξ, ξ

)∣
∣ ≤M(r)−m

(3.262)

for all t ∈ R+ and x ∈ B[0, r]. From inequality (3.262) follows that

∣
∣F
(
t, x1
)− F(t, x2

)∣
∣ ≤ (M −m)

∣
∣x1 − x2

∣
∣ (3.263)

for all t ∈ R+ and x1, x2 ∈ B[0, r].
By Lemma 3.89, L ⊂ L+∞

g , where g(t) := F(t,ϕ(t)). According to Lemma 3.96,
(3.261) has a unique solution ψ ∈ Cb(R+,En) such that L+∞

g ⊆ L+∞
ψ and, consequently,

L ⊆ L+∞
ψ . By the same lemma

‖ψ‖ ≤ 1
M
‖g‖ = 1

M
sup
t≥0

∣
∣F
(
t,ϕ(t)

)∣
∣ ≤ 1

M
sup
t≥0

∣
∣F
(
t,ϕ(t)

)− F(t, 0)
∣
∣ +

1
M

sup
t≥0

∣
∣F(t, 0)

∣
∣

≤ 1
M

(M −m)‖ϕ‖ +
A(0)
M

≤ M −m
M

r +
A(0)
M

.

(3.264)

From inequality (3.264) it follows that ψ ∈ Br(L), if mr ≥ A(0). Put ψ := Φϕ. From
the above said it follows that ΦBr(L) ⊆ Br(L). In addition, according to Lemma 3.88
Br(L) is a closed subspace of the complete metric space Cb(R+,En). Let us show that
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Φ : Br(L) → Br(L) is a contracting mapping. Let ϕ1,ϕ2 ∈ Br(L) and ψi := Φϕi (i = 1, 2).
Then ψ := ψ1 − ψ2 satisfies equation

d2x

dt2
=Mx + F

(
t,ϕ1(t)

)− F(t,ϕ2(t)
)
, (3.265)

and can be estimated like this:

‖ψ‖ = ∥∥ψ1 − ψ2
∥
∥ ≤M−1 sup

t≥0

∣
∣F
(
t,ϕ1(t)

)− F(t,ϕ2(t)
)| ≤ M −m

M

∥
∥ϕ1 − ϕ2

∥
∥,

(3.266)

that is,

∥
∥Φϕ1 −Φϕ2

∥
∥ ≤ α

∥
∥ϕ1 − ϕ2

∥
∥ (3.267)

for all ϕ1,ϕ2 ∈ Br(L), where α = M−1(M −m) < 1. Consequently, there exists a unique
fixed point of the operator Φ that, obviously, is the desired solution. The theorem is
proved. �

Corollary 3.97. Let A ∈ Cb(R+, [En]) be a self-adjoint matrix-function. If there exist
positive numbers m and M such that for all t ∈ R+

mI ≤ A(t) ≤MI , (3.268)

then for any function f ∈ Cb(R+,En) the equation

x′′ = A(t)x + f (t) (3.269)

admits at least one bounded on R+ compatible in limit solution.

Corollary 3.98. Let the conditions of Theorem 3.6.4 be fulfilled and the function f be
asymptotically stationary (resp., asymptotically τ-periodic, asymptotically almost periodic,
asymptotically recurrent) with respect to t ∈ R uniformly with respect to x ∈ B[0, r0].
Then (3.256) has at least one asymptotically stationary (resp., asymptotically τ-periodic,
asymptotically almost periodic, asymptotically recurrent) solution.

3.7. Bilaterally Asymptotically Almost Periodic Solutions

Let ϕ ∈ C(R,En) and (C(R,En), R, σ) be a dynamical system of shifts on C(R,En).

Definition 3.99. A function ϕ is called bilaterally asymptotically stationary (resp., bilater-
ally asymptotically periodic, bilaterally asymptotically almost periodic, bilaterally asymp-
totically recurrent), if the motion σ(·,ϕ) generated by the function ϕ in the dynamical
system (C(R,En), R, σ) is bilaterally asymptotically stationary (resp., bilaterally asymp-
totically periodic, bilaterally asymptotically almost periodic, bilaterally asymptotically
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recurrent), that is, if there exist stationary (resp., periodic, almost periodic, recurrent)
functions p1, p2 ∈ C(R,En) such that

ϕ(t) =
⎧
⎨

⎩

p1(t) + r1(t), t ∈ R−,

p2(t) + r2(t), t ∈ R+,
(3.270)

where r1, r2 ∈ C(R,En) and limt→−∞ |r1(t)| = limt→+∞ |r2(t)| = 0. In this case we will use
such notation: (ϕ; p1, p2).

A typical example of bilaterally asymptotically stationary (constant) function is the
function ϕ(t) = arctan t.

Theorem 3.7.1. Let A ∈ C(R, [En]) and f ∈ C(R,En) be st. L and ϕ ∈ C(R,En) be a
bounded on R solution of (3.199). If every equation of family

dy

dt
= B(t)y,

(
B ∈ ΔA

)
, (3.271)

where ΔA := ωA ∪ αA, has no nonzero bounded on R solutions, then the solution ϕ is
strongly compatible in limit, that is, L(A, f ) ⊆ Lϕ, where Lϕ := {{tn} : limn→±∞ |tn| =
+∞ and {ϕ(tn)} converges}.

Proof . The formulated statement it follows from Theorem 2.5.2 if we apply it to the
nonautonomous dynamical system from Example 3.4 (see the proof of Theorem 3.3.17).

�

Corollary 3.100. Let A ∈ C(R, [En]) and f ∈ C(R,En) be bilaterally asymptotically
stationary (resp., bilaterally asymptotically jointly periodic, bilaterally asymptotically almost
periodic, bilaterally asymptotically jointly recurrent) and ϕ be a bounded on R solution of
(3.199). If every equation of family (3.271) has no nonzero bounded on R solutions, then
the solution ϕ is bilaterally asymptotically stationary (bilaterally asymptotically periodic,
bilaterally asymptotically almost periodic, bilaterally asymptotically recurrent).

Definition 3.101. A function ϕ ∈ C(R,En) is called stationary (resp., periodically, almost
periodically, recurrently) homoclinic, if in the dynamical system (C(R,En), R, σ) the
motion σ(·,ϕ) is stationary (resp., periodically, almost periodically, recurrently) homo-
clinic, that is, there exists a stationary (resp., periodic, almost periodic, recurrent) func-
tion p ∈ C(R,En) such that

ϕ(t) = p(t) + ω(t) (t ∈ R), (3.272)

where ω ∈ C(R,En) and lim|t|→+∞ |ω(t)| = 0. Here we use the notation (ϕ; p).

Definition 3.102. Let (ϕi; pi) (i = 1, 2) be stationary (resp., periodically, almost peri-
odically, recurrently) homoclinic functions from C(R,Eni) (i = 1, 2). One will say that
(ϕ1; p1) and (ϕ2; p2) are jointly stationary (resp., periodically, almost periodically, recur-
rently) homoclinic, if the functions p1 ∈ C(R,En1 ) and p2 ∈ C(R,En2 ) are stationary
(resp., jointly periodic, jointly almost periodic, jointly recurrent).
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Corollary 3.103. Let A ∈ C(R, [En]) and f ∈ C(R,En) be jointly stationary (resp., jointly
periodically, jointly almost periodically, jointly recurrently) homoclinic and ϕ be a bounded
on R solution of (3.199). If every equation of family (3.271) has no nonzero bounded
on R solutions, then the solution ϕ is stationary (resp., periodically, almost periodically,
recurrently) homoclinic.

Corollaries 3.100 and 3.103 follow from Theorems 3.7.1 and 2.5.1.

Remark 3.104. Under the conditions of Theorem 3.7.1 and Corollaries 3.100 and 3.103,
generally speaking, one cannot assure the existence of at least one bounded on R solution
of (3.199). The next equation confirms it:

dx

dt
= (arctan t)x + f (t). (3.273)

With reference to the said above the following result of [127] is interesting: let A ∈
C(R, [En]) be st. L and every equation of family (3.271) have no nonzero bounded on R

solutions and f ∈ Cb(R, En). For the existence of at least one bounded on R solution of
(3.199) it is necessary and sufficient that

∫ +∞

−∞

〈
f (t),ψ(t)

〉
dt = 0 (3.274)

for every bounded on R solution ψ of equation

dy

dt
= −A∗(t)y, (3.275)

where A∗(t) is the adjoint matrix for A(t) and 〈, 〉 is the scalar product in En.
Denote by E0 = {x ∈ En : sup{ϕ(t, x,A) |: t ∈ R} < +∞}, where ϕ(t, x,A) :=

U(t,A)x, and P0 is a projection that projects En onto E0.

Definition 3.105. Recall (see, e.g., [128]) that (3.198) is called weakly regular if for every
function f ∈ Cb(R, En) there exists at least one solution ϕ ∈ Cb(R,En).

There takes place.

Lemma 3.106. Let A ∈ C(R, [En]). If A is bounded on R and (3.198) is weakly regular,
then for every f ∈ Cb(R,En) there exists a unique solution ϕ0 ∈ Cb(R,En) of (3.199)
satisfying the following conditions:

(1) P0ϕ0(0) = 0;
(2) there exists a positive constant K (constant of the weakly regularity of (3.198))

not depending on f such that ‖ϕ0‖ ≤ K‖ f ‖.

The formulated statement can be proved in the same way that [126, Lemma 6.3, page
515].

Theorem 3.7.2. Let a matrix-function A ∈ C(R, [En]) be st. L and (3.198) be weakly
regular. Then
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(1) for any bounded on R function f (3.199) has at least one bounded on R solution;
(2) if f ∈ C(R,En) is st. L, then every bounded on R solution of (3.199) is strongly

compatible in limit;
(3) if f ∈ C(R,En) is st. L, then there exists a unique strongly compatible in limit

solution ϕ0 of (3.199) such that P0ϕ0(0) = 0 and ‖ϕ0‖ ≤ K‖ f ‖, where K is the
constant of weak regularity of (3.198).

Proof . The first statement of the theorem is obvious. Let us prove the second one. Let
A ∈ C(R, [En]), f ∈ C(R,En) be st. L and (3.198) be weakly regular. Then it is hyperbolic
on R+ and R−, and, according to Theorem 4.4.1 from [128], every equation of family
(3.271) has no nontrivial bounded on R solutions. According to Theorem 3.7.1 every
bounded on R solution is strongly compatible in limit.

The third statement of the theorem it follows from the second one and from Lemma
3.106. The theorem is proved. �

Theorem 3.7.3 (see [93, 129]). Let A ∈ C(R, [En]) be st. L. Then the following statements
hold:

(1) if for every B ∈ ωA (3.200) has no nontrivial bounded on R solutions, then for
every B ∈ ωA n

s
A = nsB, where nsA = dimEsA and EsA := {x | x∈En, |ϕ(t, x,A)| →

0 as t → +∞};
(2) if for every B ∈ αA (3.200) has no nontrivial bounded on R solutions, then for

every B ∈ αA n
u
A = nuB, where nuA = dimEuA and EuA = {x | x ∈ En, |ϕ(t, x,A)| →

0 as t → −∞}.

Theorem 3.7.4 (see [125, 128]). Let A ∈ C(R, [En]) be almost periodic and the spectrum
of the matrix

A := lim
1

2T

∫ T

0
A(t)dt (3.276)

does not intersect the imaginary axis. Then for ε small enough equation

dx

dt
= εA(t)x (3.277)

is hyperbolic on R. Besides, nsε = ns and nuε = nu for sufficiently small ε, where nsε :=
nsεA, nuε := nuεA, us := nsA and nu := nuA.

Theorem 3.7.5. Let A ∈ C(R, [En]) be bilaterally asymptotically almost periodic and the
spectrums of the matrixes

A± := lim
T→±∞

1
T

∫ T

0
A(t)dt (3.278)

does not intersect the imaginary axis. Then for sufficiently small ε:
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(1) for arbitrary B ∈ ΔA = ωA ∪ αA equation

dy

dt
= εB(t)y (3.279)

has no nontrivial bounded on R solutions;
(2) nsε = n+ (n+ := nsA+

) and nuε = n− (n− := nuA−).

Proof . If A is bilaterally asymptotically almost periodic, then there exist almost periodic
matrixes P+, P− ∈ C(R, [En]) such that

A(t) = P+(t) + R+(t)
(
resp., A(t) = P−(t) + R−(t)

)
(3.280)

for all t ∈ R+ (resp., t ∈ R−) and limt→+∞ ‖R+(t)‖ = 0 (resp., limt→−∞ ‖R−(t)‖ = 0).
From Theorem 3.7.4 it follows that for ε small enough equation

z′ = εP±(t)z (3.281)

is hyperbolic on R and nαεP± = nαA± = nα± (α = s,u). Since ωεA = ωεP+ and αεA = αεP− , the
first statement of the theorem it follows from the hyperbolicity on R of (3.281).

According to Theorem 3.7.3, nsεA = nsεP+
and nuεA = nuεP− . Since for sufficiently small ε

we have nαεP± = nα± (α = s,u), then for the same ε nsεA = ns+ and nuεA = nu−. The theorem is
proved. �

Corollary 3.107. Let A ∈ C(R, [En]) be bilaterally asymptotically almost periodic and the
spectrums of the matrixes A+ and A− does not intersect the imaginary axis. Then

(1) if n+ + n− ≥ n, then for sufficiently small ε (3.277) is weakly regular;
(2) if n+ + n− = n, then for sufficiently small ε (3.277) is hyperbolic on R.

Proof . The formulated statement follows from Theorem 3.7.5 and from the results of
work [128, (see Problems 32 and 35 on page 107)], and also Theorem 3.3.12. �

Remark 3.108. n+ = nsA+
(resp., n− = nuA−) coincides with the number of eigen-values of

the matrix A+ (resp., A−) having negative (resp., positive) real parts.

Theorem 3.7.6. Let A ∈ C(R, [En]) and f ∈ C(R,En) be bilaterally asymptotically almost
periodic and the spectrums of the matrixes A+ and A− does not intersect the imaginary axis.
Then

(1) if n+ + n− ≥ n, then for ε small enough (3.207) has at least one bounded on R

solution and every bounded on R solution of (3.207) is bilaterally asymptotically
almost periodic;

(2) if A and f are jointly stationary (resp., periodically, almost periodically) homo-
clinic, then for ε small enough (3.207) has a unique bounded on R solution, that
is, stationary (resp., periodically, almost periodically) homoclinic.

Proof . The theorem follows from Corollary 3.107, Theorem 3.7.2 and Corollaries 3.100
and 3.103. �
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Theorem 3.7.7. Let a matrix-function A ∈ C(R, [En]) be bounded on R, (3.198) be weakly
regular and a function F ∈ C(R× En,En) satisfy the following condition: |F(t, x)| ≤ c(|x|)
for all t ∈ R and x ∈ En, where c : R+ → R+ is a nondecreasing function. If {r > 0 :
Kc(r) ≤ r} �= 0, where K is the constant of weak regularity of (3.198), then the equation

dx

dt
= A(t)x + F(t, x) (3.282)

has at least one bounded on R solution.

Proof . For every function f ∈ Cb(R,En) (3.200) has a unique solution ψ ∈ Cb(R,En)
such that

P0ψ(0) = 0, ‖ψ‖ ≤ K‖ f ‖, (3.283)

where K is the constant of weak regularity for (3.198). Let ϕ ∈ Cb(R,En). Consider a
differential equation

dy

dt
= A(t)y + F

(
t,ϕ(t)

)
. (3.284)

Since |F(t,ϕ(t))| ≤ c(|ϕ(t)|) ≤ c(‖ϕ‖), the function f (t) := F(t,ϕ(t)) is bounded on R

and, consequently, (3.284) has a unique bounded on R solution ψϕ satisfying conditions
(3.283) and, in particular,

∥
∥ψϕ
∥
∥ ≤ K‖ f ‖ = K sup

t∈R

∣
∣F
(
t,ϕ(t)

)∣
∣ ≤ Kc(‖ϕ‖). (3.285)

Define an operator Φ : Cb(R,En) → Cb(R,En) as follows: (Φϕ)(t) := ψϕ(t) (ϕ ∈
Cb(R,En) and t ∈ R). Let us show that if r0 > 0 satisfies the condition Kc(r0) ≤ r0, then
the ball B[0, r0] = {ϕ ∈ Cb(R,En) : ‖ϕ‖ ≤ r0} passes into itself under the mapping Φ. In
fact, ‖Φϕ‖ ≤ Kc(‖ϕ‖) ≤ Kc(r0) ≤ r0. Consider now Cb(R,En) as a subset embedded in
C(R,En). First of all, note that every ball B[0, r] ⊂ Cb(R,En) is a convex, bounded, and
closed subset of C(R,En).

The mapping Φ : B[0, r0] → B[0, r0] is continuous in the topology C(R,En). In fact,
let {ϕk} ⊆ Br0 and ϕk → ϕ inC(R,En). Consider the sequence (Φϕk)(t) := ψϕk (t) (t ∈ R).
Note that fk(t) := F(t,ϕk(t)) → f (t) = F(t,ϕ(t)) in the topology C(R,En). If we suppose
that it is not so, then there are ε0 > 0 and L0 > 0 such that

max
|t|≤L0

∣
∣F
(
t,ϕk(t)

)− F(t,ϕ(t)
)| ≥ ε0. (3.286)

Consequently, there exists {tk} ⊂ [−L0,L0] such that

∣
∣F
(
tk,ϕk

(
tk
))− F(tk,ϕ

(
tk
))∣
∣ ≥ ε0. (3.287)

Since the sequence {tk} is bounded, it can be considered convergent. Let t0 := limk→+∞ tk.
Since

∣
∣ϕk
(
tk
)− ϕ(t0

)∣
∣ ≤ ∣∣ϕk

(
tk
)− ϕ(tk

)∣
∣ +
∣
∣ϕ
(
tk
)− ϕ(t0

)∣
∣

≤ max
|t|≤L0

∣
∣ϕk(t)− ϕ(t)

∣
∣ +
∣
∣ϕ
(
tk
)− ϕ(t0

)∣
∣,

(3.288)
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then passing into limit as k → ∞ we get ϕk(tk) → ϕ(t0). In this case from inequality
(3.287) it follows that ε0 ≤ 0. It contradicts to the choice ε0. So, fk → f in C(R,En) and,
besides, ‖ fk‖ := supt∈R

|F(t,ϕk(t))| ≤ c(‖ϕk‖) ≤ c(r0), that is, | fk(t)| ≤ c(r0) (t ∈ R)
and, consequently, | f (t) ≤ c(r0) (t ∈ R). On the other hand, Φϕk is a bounded on R

solution of the equation

du

dt
= A(t)u + fk(t). (3.289)

In addition, the functions Φϕk and their derivatives are uniformly bounded on R and,
hence, the sequence {Φϕk} is relatively compact in C(R,En). Since fk → f in C(R,En),
every limiting function of the sequence {Φϕk} is a bounded on R solution of (3.199) sat-
isfying conditions (3.283). But in virtue of Lemma 3.106, (3.199) has exactly one bounded
on R solution satisfying conditions (3.283). From this it follows that the sequence {Φϕk}
converges in C(R,En), and the continuity of Φ is established.

Let now prove that the mapping Φ : B[0, r0] → B[0, r0] is completely continuous in
the topology C(R,En). For this aim we note that

(Φϕ)′(t) = A(t)(Φϕ)(t) + F
(
t,ϕ(t)

)
(3.290)

and, consequently,

∣
∣(Φϕ)′(t)

∣
∣ ≤ a

∣
∣(Φϕ)(t)

∣
∣ +
∣
∣F
(
t,ϕ(t)

)∣
∣ ≤ ar0 + r0 (t ∈ R), (3.291)

where a := sup{‖A(t)‖ : t ∈ R}. From this follows that Φ(B[0, r0]) is relatively compact
in the topology C(R,En). According to the theorem of Tikhonoff-Shauder, the mapping
Φ has at least one fixed point ϕ ∈ B[0, r0]. Obviously, ϕ is a bounded on R solution of
(3.282). The theorem is proved. �

Theorem 3.7.8. Let A ∈ C(R,En) and F ∈ C(R× En,En) be st. L and the next conditions
be satisfied:

(1) equation (3.198) is weakly regular;
(2) |F(t, x)| ≤ c(|x|) (t ∈ R, x ∈ En) and {r > 0 : Kc(r) ≤ r} �= ∅, where

c : R+ → R+ is a nondecreasing function, and K is the constant of the weak
regularity of (3.198);

(3) the restriction F0 of the function F on R × B[0, r0] satisfies the condition of Lip-
schitz with respect to the second variable with the constant of Lipschitz L < K−1,
where r0 is some positive number satisfying the inequality Kc(r0) ≤ r0.

Then (3.282) has at least one bounded on R weakly compatible in limit solution.

Proof . Let L := L(A,F0) and Cr0 (L) := {ϕ : ϕ ∈ Cb(R,En),‖ϕ‖ ≤ r0 L ⊂ L+∞
ϕ }. Like

in Lemma 3.88 it is proved that Cr0 (L) is a closed subset of Cb(R,En). The operator Φ :
Cb(R,En) → Cb(R,En) defined in the same way that in the proof of Theorem 3.7.3 maps
Cr0 (L) into itself. In fact, if ϕ ∈ Cr0 (L), then, as in Lemma 3.89, it is proved that the
function f (t) = F(t,ϕ(t)) (t ∈ R) also belongs to Cr0 (L). According to Theorem 3.7.2,
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Φϕ is the unique bounded on R strongly compatible in limit solution of (3.199) satisfying
to conditions (3.283). Since for arbitrary ϕ1,ϕ2 ∈ Cr0 (L)

(
Φϕ1 −Φϕ2

)′
(t) = A(t)

[(
Φϕ1 −Φϕ2

)
(t)
]

+ F(t,ϕ1(t)
)− F(t,ϕ2(t)

)
, (3.292)

we have
∥
∥Φϕ1 −Φϕ2

∥
∥ ≤ K sup

t∈R

∣
∣F
(
t,ϕ1(t)

)− F(t,ϕ2(t)
)∣
∣ ≤ KL

∥
∥ϕ1 − ϕ2

∥
∥. (3.293)

From the last inequality it follows that Φ : Cr0 (L) → Cr0 (L) is a contraction, hence it has a
unique stationary point that, in virtue of the proved above facts, is a strongly compatible
in limit solution. The theorem is proved. �

Definition 3.109. A function f ∈ C(R × En,En) is called asymptotically almost periodic
(resp., bilaterally, asymptotically, almost periodic) with respect to the variable t ∈ R

uniformly with respect to x on compacts from En, if the motion σ(t, f ) of the dynamical
system (C(R×En,En), R, σ) generated by the function f is asymptotically almost periodic
(resp., bilaterally asymptotically almost periodic).

Definition 3.110. Let Q be a compact from En. A function f ∈ C(R × Q,En) is said
to be asymptotically almost periodic with respect to the variable t ∈ R uniformly with
respect to x ∈ Q (resp., bilaterally asymptotically almost periodic), if the motion σ(t, f )
of the dynamical system (C(R×Q,En), R, σ) generated by the function f is asymptotically
almost periodic (resp., bilaterally asymptotically almost periodic).

Corollary 3.111. If in the conditions of Theorem 3.7.4 the functions A ∈ C(R, [En]) and
F0 = F|R×B[0,r0] are bilaterally asymptotically stationary (resp., asymptotically jointly peri-
odic, asymptotically almost periodic, asymptotically jointly recurrent), then (3.282) admits
at least one bilaterally asymptotically stationary (resp., asymptotically periodic, asymptoti-
cally almost periodic, asymptotically recurrent) solution.

Corollary 3.112. If in the conditions of Theorem 3.7.4 the functions A ∈ C(R, [En]) and
F0 := F|R×B[0,r0] are stationary (resp., jointly periodically, almost periodically, jointly recur-
rently) homoclinic, then (3.282) admits at least one stationary (resp., periodically, almost
periodically, recurrently) homoclinic solution.

Theorem 3.7.9. Let ϕ ∈ C(R,En) be a bounded on R solution of (3.1) and the function f ∈
C(R× En,En) be bilaterally asymptotically stationary with respect to t ∈ R uniformly with
respect to x ∈ Q = ϕ(R) (resp., bilaterally asymptotically periodic, bilaterally asymptotically
almost periodic, bilaterally asymptotically recurrent) and the following two conditions be
held:

(1) for any function g ∈ ωfQ all the solutions of (3.2) from ωϕ are separated in ωϕ;
(2) for any function g ∈ α fQ all the solutions of (3.2) from αϕ are separated in αϕ.

The solution ϕ is bilaterally asymptotically stationary (resp., bilaterally asymptotically peri-
odic, bilaterally asymptotically almost periodic, bilaterally asymptotically recurrent).

Proof . The formulated theorem it follows from Theorem 3.6.1. �
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Theorem 3.7.10. Let f ∈ C(R × En,En) and the conditions (C1)–(C4) be fulfilled with
respect to t ∈ R and x ∈ B[x0, ρ]. If the spectrum of the matrixA = f ′0 (x0) does not intersect
the imaginary axis and f is stationary (resp., τ-periodically, almost periodically) homoclinic
with respect to t ∈ R uniformly with respect to x ∈ B[0, ρ] together with its derivative f ′x ,
then for sufficiently small ρ0 > 0 there exists ε0 > 0 such that for every 0 < ε < ε0 (3.234)
has a unique stationary (resp., τ-periodically, almost periodically) homoclinic solution xε(t)
satisfying the condition

sup
t∈R

∣
∣xε(t)− x0

∣
∣ ≤ ρ0. (3.294)

Proof . From equality (3.243) it follows that along with the function v(t,h) := f (t, x0 +
h)− f0(x0 + h) the function v(t,h, ε) is also stationary (resp., τ-periodically, almost peri-
odically) homoclinic with respect to t ∈ R uniformly with respect to z ∈ B[0, ρ0]. From
equality (3.250) it follows that the function F defined by the equality (3.250) is stationary
(resp., τ-periodically, almost periodically) homoclinic with respect to τ ∈ R uniformly
with respect to z ∈ B[0, ρ0] too. From (3.246) and (3.247) follows that we can apply
Theorem 3.7.8 and Corollary 3.112 to (3.245). So, (3.245) has at least one stationary
(τ-periodically, almost periodically) homoclinic solution zε(t) taking values in the ball
B[0, ρ0]. It is easy to notice that condition (3.247) assures the uniqueness of such solution.
To complete the proof of the theorem it is sufficient to note that the desired solution of
(3.234) is the function

xε(t) := x0 + zε(t)− εv
(
t, zε(t), ε

)
. (3.295)

The theorem is proved. �

3.8. Asymptotically Almost Periodic Equations with Convergence

Applying the results of Sections 2.6 and 2.7 to the nonautonomous dynamical system
constructed in Example 3.1 generated by (3.1), we obtain series of criterions and tests of
convergence of (3.1).

Consider differential (3.1) with the regular right-hand side f ∈ C(R× En,En).

Definition 3.113. Equation (3.1) is said to be convergent, if the generated by it dynamical
system (see Example 3.1 and Corollary 3.2) is convergent.

Let us make this definition precise. Everywhere in this chapter we assume that the
right-hand side f ∈ C(R× En,En) of (3.1) is asymptotically stationary (resp., asymptot-
ically τ-periodic, asymptotically almost periodic, asymptotically recurrent) with respect
to t ∈ R uniformly with respect to x on compact subsets from En.

Remark 3.114. According to the given above definition, (3.1) is convergent, if the next
conditions are held:
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(1) there exists a positive number R such that

lim sup
t→+∞

∣
∣ϕ(t,u, g)

∣
∣ < R (3.296)

for all u ∈ En and g ∈ H+( f );
(2) for any g ∈ ωf (3.2) has exactly one bounded on R solution.

Note that the given by us definition of convergence essentially differs from the con-
ventional (see, i.e., [116]). Usually, the convergence of (3.1) is understood as the presence
of a unique bounded on R globally uniformly asymptotically stable solution of (3.1). In
this case the unique bounded solution is called a limit regime of (3.1).

From the results of the works [88, 89, 130] it follows that, if (3.1) possesses the prop-
erty of convergence in the sense [116, Chapter 4], then every (3.2) possesses this property,
too, for every g ∈ H+( f ) and, consequently, the nonautonomous system generated by
(3.1) (see Corollary 3.2) is convergent. At the same time, it is easy to construct exam-
ples of nonconvergent in the sense [116, Chapter 4] equations that generate convergent
nonautonomous dynamical systems. The thing is that (3.1) can have “limit regime” that
is not a solution of (3.1). However, if the right-hand side f of (3.1) does not depend on
t (resp., is τ-periodic with respect to t, almost periodic with respect to t, recurrent with
respect to t), then the given by us definition coincides with the conventional definition
(it follows from the results below).

The following statements take place.

Theorem 3.8.1. Equation (3.1) is convergent if and only if the following conditions are
fulfilled:

(1) for any g ∈ H+( f ) every solution ϕ(t,u, g) (u ∈ En) of (3.2) is bounded on R+;
(2) limt→+∞ |ϕ(t,u1, g)− ϕ(t,u2, g)| = 0 for all g ∈ H+( f ) and u1,u2 ∈ En;
(3) for every ε > 0 and r > 0 there exists δ = δ(ε, r) > 0 such that |u1 − u2| < δ

implies |ϕ(t,u1, g) − ϕ(t,u2, g)| < ε for all t ∈ R+, g ∈ H+( f ) and u1,u2 ∈ En

such that |u1|, |u2| ≤ r.

Theorem 3.8.2. For the convergence of (3.1) it is necessary and sufficient that the following
conditions would hold:

(1) for any g ∈ H( f ) every solution ϕ(t,u, g) (u ∈ En) of (3.2) is bounded on R+;
(2) for arbitrary g ∈ H+( f ) and u ∈ En the solution ϕ(t,u, g) of (3.2) is asymptoti-

cally stable, that is, there are held the two following conditions:
(a) for every ε > 0 there exists δ = δ(ε,u, g) > 0 such that |v − u| < δ implies

|ϕ(t, v, g)− ϕ(t,u, g)| < ε for all t ∈ R+;
(b) there exists γ = γ(u, g) > 0 such that |v−u| < γ implies limt→+∞ |ϕ(t, v, g)−

ϕ(t,u, g)| = 0.

The formulated statements follow from Theorems 2.6.1 and 2.6.2.

Remark 3.115. (1) In the case of almost periodicity of f , Theorem 3.8.1 generalizes and
refines the criterion of almost periodic convergence of Zubov [131].
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(2) In the case of periodicity f , Theorem 3.8.2 coincides with the theorem of
Krasovskii-Pliss [132].

Theorem 3.8.3. Let A ∈ C(R, [En]),F ∈ C(R × En,En) and the following conditions be
fulfilled:

(1) a = sup{‖A(t)‖ : t ∈ R+} < +∞;
(2) there are positive numbers N and ν such that

∥
∥U(t,A)U−1(τ,A)

∥
∥ ≤ Ne−ν(t−τ) (t ≥ τ, t, τ ∈ R+

)
; (3.297)

(3) |F(t,u)| ≤M + ε|u|(u ∈ En, t ∈ R+) and 0 ≤ ε ≤ ε0 < ν2(Na)−1.

Then the (3.313) is dissipative, that is, there is a number R0 > 0 such that

lim sup
t→+∞

∣
∣ϕ(t, ν,B,G)

∣
∣ < R0

(
ν ∈ En, (B,G) ∈ H+(A,F)

)
, (3.298)

where ϕ(·, ν,B,G) is a solution of the equation

ν̇ = B(t)ν +G(t, ν), (3.299)

satisfying the initial condition ϕ(0, ν,B,G) = ν.

Proof . For all B ∈ H+(A) we will define on En a norm | · |B by the equality

|u|B :=
∫ +∞

0

∣
∣U(t,B)u

∣
∣dt. (3.300)

As well as in the [109, proof of Theorem 2.39], it is possible to check that

1
a
|u| ≤ |u|B ≤ N

ν
|u| (u ∈ En

)
. (3.301)

We put

u(t) := ∣∣ϕ(t,u,B,G)
∣
∣
Bt
=
∫ +∞

0

∣
∣U
(
s,Bt
)
ϕ(t,u,B,G)

∣
∣ds. (3.302)

Since

ϕ(t,u,B,G) = U(t,B)
(

u +
∫ t

0
U−1(τ,B)G

(
τ,ϕ(τ,u,B,G)

)
dτ
)

, (3.303)
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then

u(t) =
∫ +∞

0

∣
∣U(s + t,B)

(

u +
∫ t

0
U−1(τ,B)G

(
τ,ϕ(τ,u,B,G)

)
dτ
)
∣
∣ds

≤
∫ +∞

0

∣
∣U(s + t,B)u

∣
∣ds +

∫ +∞

0

∣
∣
∣
∣

∫ t

0
U(s + t,B)U−1(τ,B)G

(
τ,ϕ(τ,u,B,G)

)
dτ
∣
∣
∣
∣ds

≤ N

ν
e−νt|u| +

∫ +∞

0

∫ t

0
Ne−ν(s+t−τ)(M + ε

∣
∣ϕ(τ,u,B,G)

∣
∣
)
dτ ds

= N

ν
e−νt|u| +

N

ν
e−νt
(
M

ν

(
eτt − 1

)
+ ε
∫ t

0

∣
∣ϕ(τ,u,B,G)

∣
∣eντdτ

)

≤ N

ν
e−νt|u| +

NM

ν2

(
1− e−νt) +

Nε

ν
e−νt
∫ t

0
a
∣
∣ϕ(τ,u,B,G)

∣
∣
Bτ
eντdτ

= N

ν
e−νt|u| +

NM

ν2

(
1− e−νt) +

aNε

ν
e−νt
∫ t

0
u(τ)eντdτ.

(3.304)

Let ϕ(t) := u(t)eνt. From the inequality (3.304) follows that

ϕ(t) ≤ N

ν
|u| +

NM

ν2

(
eνt − 1

)
+
aεN

ν

∫ t

0
ϕ(τ)dτ, (3.305)

and by [120, Theorem 9.3] ϕ(t) ≤ ψ(t) (t ∈ R), where ψ is a solution of the integral
equation

y(t) = N

ν
|u| +

NM

ν2

(
eνt − 1

)
+
aεN

ν

∫ t

0
y(τ)dτ. (3.306)

Solving the latter equation, we find that

ψ(t) =
(
N

ν
|u| +

NM

ν2 − aεN
)

e(aεN/ν)t +
NM

ν2 − aεN eνt (3.307)

and, consequently,

u(t)eνt ≤
(
N

ν
|u| +

NM

ν2 − aεN
)

e(aεN/ν)t +
NM

ν2 − aεN eνt. (3.308)

From the inequalities (3.304) and (3.308) we obtain

∣
∣ϕ(t,u,B,G)

∣
∣ ≤ a

∣
∣ϕ(t,u,B,G)

∣
∣
Bt
≤ a
(
N

ν
|u| +

NM

ν2 − aεN
)

e−((ν2−aεN)/ν)t +
aNM

ν2 − aεN .

(3.309)

Therefore,

lim
t→+∞ sup

∣
∣ϕ(t,u,B,G)

∣
∣ ≤ aMN

ν2 − aεN , (3.310)

(u ∈ En, (B,G) ∈ H(A,F), and ν − (aεN/ν) > 0). The theorem is proved. �
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Theorem 3.8.4. Suppose that the following conditions are fulfilled:

(1) A ∈ C(R, [En]), f ∈ C(R,En), and F ∈ C(R × En,En) are asymptotically sta-
tionary (resp., asymptotically τ-periodic, asymptotically almost periodic, jointly
asymptotically recurrent);

(2) there are positive numbers N and ν such that
∥
∥U(t,A)U−1(τ,A)

∥
∥ ≤ Ne−ν(t−τ) (t ≥ τ, t, τ ∈ R+

)
; (3.311)

(3) |F(t,u)| ≤M + ε|u| (u ∈ En, t ∈ R+) and 0 ≤ ε ≤ ε0 < ν2(Na)−1;
(4) the function F satisfies the condition of Lipschitz with respect to the space variable

uniformly with respect to t ∈ R with the small enough constant of Lipschitz.

Then (3.282) is convergent.

Proof . According to Theorem 3.8.3 the (3.282) is dissipative. We note that under the
condition of Theorem 3.8.4 any ω-limiting equation

y′ = B(t)y + g(t) +G(t, y)
(
(B, g,G) ∈ ω(A, f ,F)

)
(3.312)

admits at most one bounded no R solution (see [109, Theorem 5.24]). Now to finish the
proof it is sufficient to refer to Remark 3.114. �

Theorem 3.8.5. Let f ∈ C(R × En,En) be asymptotically stationary (resp., asymptotically
τ-periodic, asymptotically almost periodic, asymptotically recurrent) with respect to t ∈ R

uniformly with respect to x on compacts from En. If there exists α > 0 such that

Re
〈

(u− v), f (t,u)− f (t, v)
〉 ≤ −α|u− v|2 (3.313)

for all u, v ∈ En and t ∈ R, then (3.1) is convergent.

Proof . Let Y = H( f ), X = En × Y and 〈(X , R+,π), (Y , R, σ),h〉 be a nonautonomous
dynamical system from Example 3.1. Define on X×̇X a function V as follows:

V
(
(u, g), (v, g)

) = |u− v|. (3.314)

The function V , obviously, satisfies the conditions (a)–(c) of Lemma 2.33. Let us show
that it satisfies the condition (d) of this lemma too. For this aim we note that for every
g ∈ H( f ) we have

Re
〈

(u− v), g(t,u)− g(t, v)
〉 ≤ −α|u− v|2 (3.315)

for all u, v ∈ En and t ∈ R. Assume ϕ(t) := |ϕ(t,u, g) − ϕ(t, v, g)|2. Then from (3.315)
we get ϕ′ ≤ −2αϕ(t) and, consequently,

∣
∣ϕ(t,u, g)− ϕ(t, v, g)

∣
∣ ≤ e−αt|u− v| (3.316)

for all t ∈ R+,u, v ∈ En and g ∈ H( f ). So, the function V satisfies the condition (d) of
Lemma 2.33 and, consequently, there exists a unique invariant section γ ∈ Γ(H( f )),En×
H( f )) of the homomorphism h. Besides, from (3.315) it follows that

lim
t→+∞
∣
∣ϕ(t,u, g)− ϕ(t, v, g)

∣
∣ = 0 (3.317)
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for all g ∈ H( f ) and u, v ∈ En. Now to complete the proof of the theorem, like in the
previous theorem, it is sufficient to apply Lemma 2.31 to the nonautonomous dynamical
system 〈(X , R+,π), (Y , R, σ),h〉, where Y = H( f ). The theorem is proved. �

Remark 3.116. Theorem 3.8.4 remains valid, if condition (3.313) one replace by the fol-
lowing one:

Re
〈
W(u− v), f (t,u)− f (t, v)

〉 ≤ −α|u− v|2 (3.318)

for all t ∈ R and u, v ∈ En, where W is some self-adjoint positively defined matrix.

In this case, while proving the theorem, instead of inequality (3.316) we should use
the next inequality:

∣
∣ϕ(t,u, g)− ϕ(t, v, g)

∣
∣ ≤ Ne−αt|u− v|w, (3.319)

for all t ∈ R+ and u, v ∈ En, where |u|w := √〈Wu,u〉 and N is some positive constant
depending only on the matrix W .

Corollary 3.117. Let the following conditions be held:

(1) f ∈ C(R× En,En) is asymptotically stationary (resp., asymptotically τ-periodic,
asymptotically almost periodic, asymptotically recurrent) with respect to t ∈ R

uniformly with respect to x on compact subsets from En;
(2) f is continuously differentiable with respect to x ∈ En;
(3) the maximal proper number Λ(t, x) of the matrix

f
′∗
x (t, x)Q +Q f ′x (t, x) (3.320)

satisfies the inequality Λ(t, x) ≤ −α < 0, (t ∈ R, x ∈ En), where α > 0 and Q is
some self-adjoint positively defined matrix.

Then (3.1) is convergent and, in particular, all the solutions of (3.1) are asymptotically
stationary (resp., asymptotically τ-periodic, asymptotically almost periodic, asymptotically
recurrent).

Proof . The formulated statement it follows from Theorem 3.8.5 and Corollary 3.116. For
this it is sufficient to notice that under the conditions of Corollary 3.117, according to [54,
Theorem 1], there exist numbers N and ν such that

∣
∣ϕ(t,u, g)− ϕ(t, v, g)

∣
∣
Q ≤ Ne−νt|u− v|Q (3.321)

for all t ∈ R and u, v ∈ En. �

In the case of asymptotical almost periodicity of f , Corollary 3.117 reinforces the
general result of the work [23].

Remark 3.118. (a) Theorem 3.8.5 takes place also in the case if in (3.299) the stationary
matrixW is replaced by a self-adjoint operator-functionW ∈ C(R, [En]) satisfying some
additional conditions, analogous to those from [115, Theorem 2].

(b) Theorem 3.8.5 takes place for equations in an arbitrary Hilbert space too.





4 Asymptotically Almost Periodic
Distributions and Solutions of
Differential Equations

4.1. Bounded on Semiaxis Distributions

For arbitrary m = 2, 3, . . . by Dm
L1 (R+) denote the space of functions ϕ : R+ → En having

m− 1 usual derivatives, in this case the derivative Dm−1ϕ (the derivative of order m− 1)
is absolutely continuous, Djϕ ∈ L1(R+) for 0 ≤ j ≤ m. By D∞L1

(R+) denote the space
of infinitely differentiable functions, all the derivatives of which belong to L1(R+). In
Dm
L1

(R+), m < +∞, introduce a norm

‖ϕ‖m = max
0≤ j≤m

∫ +∞

0

∣
∣Dj(t)

∣
∣dt, (4.1)

and inD∞L1
(R+) introduce a locally convex topology defined by the family of norms ‖·‖m,

m = 0, 1, 2 . . . .
If ϕ ∈ Dm

L1 (R+), then

ϕ(t) =
∫ +∞

t
D jϕ(s)ds + c, (4.2)

where c ∈ En. From inequality (4.2) follows that limt→+∞ ϕ(t) = c, and since ϕ is sum-
mable, then c = 0 and limt→+∞ ϕ(t) = 0. If ϕ ∈ Dm+1

L1 (R+), then the functions Djϕ(t),
j = 0, 1, . . . ,m, tend to zero on infinity and

Djϕ(t) =
∫ +∞

t
D j+1ϕ(s)ds

(
j = 1,m

)
. (4.3)

So,

sup
t∈R+

∣
∣Djϕ(t)

∣
∣ ≤ ‖ϕ‖m+1,

(
j = 1,m

)
. (4.4)

Lemma 4.1. Dm
L1 (R+) (0 ≤ m < +∞) is a Banach space and D∞L1 (R+) is a space of Fréchet.

Proof . For m = 0 D0
L1 (R+) = L1(R+) is a Banach space. Let us show that if for m ≤ q the

spaces Dm
L1 (R+) are complete, then D

q+1
L1 (R+) is complete too. In fact, let {ϕn} be some

sequence of Cauchy in D
q+1
L1 (R+). Then {ϕn} is a Cauchy sequence in D

q
L1 (R+) and by an

inductive supposition there exists such ϕ ∈ D
q
L1 (R+) that ϕn → ϕ in D

q
L1 (R+).
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Consider now a sequence of absolutely continuous functions {Dqϕn}. Since in virtue
of (4.4)

sup
t∈R+

∣
∣Dqϕn(t)−Dqϕm(t)

∣
∣ ≤ ∥∥ϕn − ϕm

∥
∥
q+1, (4.5)

then the sequence {Dqϕn} converges to some function ψ at every point t ∈ R+. By
the supposition, the sequence of derivatives {Dq+1ϕn} converges to L1(R+). From here
it follows that ψ is absolutely continuous, {Dqϕn} converges uniformly to ψ on R+, and
{Dq+1ϕn} converges to Dψ in L1(R+). On the other hand, if ϕn → ϕ in D

q
L1 (R+), then

Dqϕn → Dqϕ in L1(R+) and ψ = Dqϕ. Consequently, ϕ ∈ D
q+1
L1 (R+) and ϕn → ϕ

D
q+1
L1 (R+).

Since the topology in the space D∞L1 (R+) is defined by a countable family of norms, it
can be metrizable. Show that it is complete. In fact, let {ϕn} be some sequence of Cauchy
in D∞L1 (R+). Then {ϕn} is a sequence of Cauchy in every of the spaces Dm

L1 (R+) (m < +∞)
and, consequently, there exists ξm ∈ Dm

L1 (R+) such that limn→+∞ ϕn = ξm in Dm
L1 (R+).

From here, we have ξ0 = ξ1 = · · · and, therefore, ξ0 ∈ Dm
L1 (R+) and ϕn → ξ0 in D∞L1 (R+).

The lemma is proved. �

Let Q be an open nonempty set in R. Denote by D(Q) the set of infinitely differen-
tiable functions ϕ : Q → En with a compact support. The convergence in D(Q) is defined
as follows. The sequence {ϕk} converges to ϕ, if there exists a compact K ⊂ Q such that
the support suppϕk of all function ϕk is contained in K and for every m

max
x∈K
∣
∣Dmϕk(x)−Dmϕ(x)

∣
∣ �→ 0, (4.6)

as k → +∞. The linear space D(Q) with the introduced above convergence turns to a
locally convex vector topological space [133–135]. By D ′(Q) denote an adjoint space to
D(Q) with a strong topology.

Let m ∈ Z+. By Dm(Q) we will denote the space of the functions ϕ : Q → En with m
continuous derivatives and a compact support. If Q is a compact set, then by the equality

‖ϕ‖m = max
1≤ j≤m

sup
x∈Q

∣
∣Djϕ(x)

∣
∣ (4.7)

there is defined a norm on Dm(Q) and it becomes a Banach space. If Q is a compact,
then in D(Q) we introduce a locally convex topology defined by the family of seminorms
‖ · ‖m.

Let now Q1 ⊂ Q2 be compact subsets in Q (Q is not obligatory a compact set). Then
Dm(Q1) is a subspace of the space Dm(Q2) and, hence, in Dm(Q) we can introduce the
topology of a strictly inductive limit of the subspaces Dm(Q1).

The space D(Q) is contained in Dm(Q). The topology of the space D(Q) is thinner
than the one induced from Dm(Q). The subspace D(Q) is dense in Dm(Q).

Let Q =]0, +∞[ and Q = R+ = [0, +∞[. Denote by Cm(Q) the family of all the
functions ϕ : Q → En having continuous derivatives up to the order m inclusively.
The family of all the functions ϕ from Cm(Q), for which all derivatives Dmϕ admit a
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continuous extension onto Q, denote by Cm(Q). A norm in Cm(Q) (m < +∞) introduce
by the formula:

‖ϕ‖Cm(Q) = max
0≤ j≤m

sup
t∈Q

∣
∣Djϕ(t)

∣
∣. (4.8)

Assume C(Q) := C0(Q) and C(Q) := C0(Q).
The collection of finite in Q functions of the class Cm(Q) denoted by Cm0 (Q) (C0(Q)

:= C0
0(Q)). The family of all the functions of the class Cm(Q), turning to zero on the

boundary Q together with all the derivatives of the order m inclusively, denote by Cm0 (Q)
(C0(Q) := C0

0(Q)).
Note that D(Q) := C∞0 (Q) and the space D(Q) is dense in Dm

L1 (R+) (0 ≤ m ≤ +∞).
The space β′m(R+), adjoint to Dm

L1 (R+) (0 ≤ m < +∞), is a Banach space with the
norm

‖ f ‖′m = sup
ϕ∈Dm

L1 (R+),‖ϕ‖≤1

∣
∣〈 f ,ϕ〉∣∣. (4.9)

The restriction of any functional f ∈ β′m(R+) on Dm+1
L1 (R+) belongs to β′m+1(R+)

and f is completely defined by its restriction, because C∞0 (R+) is dense in Dm
L1 (R+). The

operator of restriction establishes an algebraic isomorphism between β′m(R+) and some
subspace in β′m+1(R+). So, we can consider that β′m(R+) ⊂ β′m+1(R+). For f ∈ β′m(R+)
it follows that ‖ f ‖′m+1 ≤ ‖ f ‖′m and, consequently, the topology in β′m(R+) is thinner
than the one induced from β′m+1(R+). The operator of restriction establishes an algebraic
isomorphism between β′m(R+) (0 ≤ m < +∞) and some subspace in β′∞(R+), so that we
can consider that β′m(R+) ⊂ β′∞(R+). The topology β′m(R+) is thinner that one induced
from β′∞(R+).

Let f ∈ β′∞(R+). There exists such neighborhood of zeroU in D∞
L1 (R+) that |〈 f ,ϕ〉|

≤ 1 for ϕ ∈ U . Then there exists an integer nonnegative number p and such b > 0, that
{ϕ | ϕ ∈ D∞

L1 (R+), ‖ϕ‖p ≤ b} ⊂ U . Hence, f is continuous on D∞
L1 (R+) endowed

with the topology induced from D
p
L1 (R+). Since D∞

L1 (R+) is dense in D
p
L1 (R+), then f ∈

β′ p(R+). So, we proved the following statement.

Lemma 4.2. β′∞(R+) = ⋃0≤m<+∞ β′
m(R+).

From the density of D(R+) in Dm
L1 (R+) follows that the restriction on Dm(R+) of

some functional f ∈ β′m(R+) defines a distribution in D ′m(R+), and f is well defined
by its restriction. Consequently, the space β′m(R+) can be identified with some subspace
of the space D ′m(R+) of the distributions of the power ≤ m. We will call elements of the
space β′∞(R+) bounded on R+ distributions. Note, that since β′0(R+) is adjoint to the
space D0

L1 (R+) = L1(R+), then β′0(R+) = L∞(R+). From Lemma 4.2 we conclude that
every bounded on R+ distribution has finite order.

Next we consider multiplicators in the spaces β′m(R+). For α ∈ βm(R+), ϕ ∈
Dm

L1 (R+) (0 ≤ m < +∞) there takes places the inclusion αϕ ∈ Dm
L1 (R+) and the bilinear

mapping (α,ϕ) → αϕ of the product βm(R+) × Dm
L1 (R+) is continuous in Dm

L1 (R+). The
product α f of the distribution f ∈ β′m(R+) onto the function α ∈ βm(R+) can be defined
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as follows:

〈α f ,ϕ〉 = 〈 f ,αϕ〉, (
ϕ ∈ Dm

L1

(
R+
))
. (4.10)

So, functions from βm(R+) are multiplicators in β′m(R+). For m < +∞ the bilinear
mapping (α, f ) → α f from βm(R+) × β′m(R+) into β′m(R+) is continuous. In fact, let
fn → f , that is, 〈 fn,ϕ〉 → 〈 f ,ϕ〉 for every ϕ ∈ Dm

L1 (R+) and αn → α in βm(R+). Then
∣
∣
〈
αn fn,ϕ

〉− 〈α f ,ϕ〉∣∣ = ∣∣〈αn fn − αn f ,ϕ
〉

+
〈
αn f − α f ,ϕ

〉∣
∣

≤ ∣∣〈 fn − f ,αnϕ
〉∣
∣ +
∣
∣
〈
f ,
(
αn − α

)
ϕ
〉∣
∣

≤ ∥∥αnϕ
∥
∥
m

∥
∥ fn − f

∥
∥′
m + ‖ f ‖′m

∥
∥
(
αn − α

)
ϕ
∥
∥
m

(4.11)

and, consequently, αn fn → α f . Form = ∞ this bilinear mapping is separately continuous
in any case.

Differentiation in β′m(R+) is defined in the usual in the theory of distributions way
and has usual properties. If f ∈ β′m(R+), then D f ∈ β′m+1(R+), as the operator of
differentiation from β′m(R+) is adjoint to the operator −D : Dm+1

L1 (R+) → Dm
L1 (R+).

Note that for α ∈ β′m+1(R+) and f ∈ β′m(R+) there takes place the equality

D(α f ) = (Dα) f + α(D f ). (4.12)

Let h ∈ R+. The shift Q + h of the open set Q ⊂ R+ is open. For ϕ ∈ Dm
L1 (Q) let

(τhϕ)(t) := ϕ(t + h) so that τhϕ ∈ Dm
L1 (Q + h). The shift operator of functions on h

τh : Dm
L1 (Q) �→ Dm

L1 (Q + h) (4.13)

is an isomorphism. The shift operator of distributions on h (denote it also by τh) we
define as an operator from β′m(Q) in β′m(Q + h) by the equality 〈τh f ,ϕ〉 = 〈 f , τhϕ〉 for
all f ∈ β′m(Q) and ϕ ∈Dm

L1 (Q).

4.2. Asymptotically Almost Periodic Distributions

Definition 4.3. A function ϕ ∈ βm(R+) is called asymptotically almost periodic, if {τhϕ |
h ∈ R+} is a relatively compact set in βm(R+).

The space of all asymptotically almost periodic functions from ∈ βm(R+) denote by
βmaap(R+) and let β∞aap(R+) be the space of all the functions that are asymptotically almost
periodic together with all their derivatives.

Definition 4.4. One will say that a distribution f ∈ β′∞(R+) is asymptotically almost
periodic if the shifts {τh f | h ∈ R+} form a relatively compact set in β′∞(R+).

Let β′maap(R+) be the space of the distributions f ∈ β′m(R+), the shifts of which

{τh f | h ∈ R+} form a relatively compact set in β′m(R+). Then β′maap(R+) ⊂ β′m+1
aap (R+)

and β′maap(R+) ⊂ β′∞aap(R+) (0 ≤ m < +∞).

Lemma 4.5. The subset β′maap(R+) (0 ≤ m < +∞) is closed in β′m(R+).
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Proof . If fn ∈ β′maap(R+) and fn → f in β′m(R+), then

∥
∥τh f − τh fn

∥
∥′
m = sup

ϕ∈Dm
L1 (R+),‖ϕ‖m≤1

∣
∣
〈[
τh f − τh fn

]
,ϕ
〉∣
∣

= sup
ϕ∈Dm

L1
(R+),‖ϕ‖m≤1

∣
∣
〈[
fn − f

]
, τhϕ
〉∣
∣

≤ sup
ϕ∈Dm

L1
(R+),‖ϕ‖m≤1

∣
∣
〈[
f − fn

]
,ϕ
〉∣
∣ = ∥∥ f − fn

∥
∥′
m.

(4.14)

From the last inequality it follows that for every ε > 0 the set of shifts {τh f | h ∈ R+}
possesses a relatively compact ε-net and, hence, f ∈ β′maap(R+). The lemma is proved. �

Denote by V∗ the space of measures with a compact support, by V 1 the space of the
functions of bounded variation with a compact support, by Vm (m = 2, 3, . . . ) the space
of functions α with some compact support possessing m − 2 usual derivatives, so that
Dm−2α absolutely continuous and Dm−1α is the function of bounded variation, V∞ =
D(R+). If α ∈ Vm+1, then Dα ∈ Vm.

Lemma 4.6 (see [8, 136]). Let m, q ∈ Z+ and α ∈ Vm+q. Then α ∗ f ∈ βq(R+) for any
f ∈ β′m(R+) (∗ is a convolution) and the operator f → α∗ f from β′m(R+) is continuous
in βq(R+). If α ∈ D(R+), then α ∗ f ∈ β∞(R+) for every f ∈ β′∞(R+) and the operator
f → α∗ f from β′∞(R+) is continuous in β∞(R+).

Let α ∈D(R+). From Lemma 4.6 it follows that the convolution operator f → α∗ f
from β′∞(R+) is continuous in β∞(R+). Hence, for f ∈ β′∞aap(R+) the shifts

{
τh(α∗ f ) | h ≥ 0

} = {α∗ {τh f
} | h ∈ R+

}
(4.15)

form a relatively compact set in β∞(R+), that is, α∗ f ∈ β∞aap(R+).
Since the operator of differentiation of distributions

D : β′m
(
R+
)
�→ β′m+1(

R+
)

(4.16)

is continuous and permutable together with its shifts, then the derivative of any asymp-
totically almost periodical distribution is an asymptotically almost periodic distribution.

Corollary 4.7. If α ∈ βmaap(R+) and f ∈ β′maap(R+), then α f ∈ β′maap(R+).

Proof . This statements it follows from the fact that the bilinear mapping (α, f ) → α f
from βm(R+)× β′m(R+) is continuous in β′m(R+) for m < +∞. �

Lemma 4.8 (see [8, 136]). Let q ≥ 0 be an integer number and f ∈D ′(R+). The following
statements are equivalent:

(1) f ∈ β′m(R+) (0 ≤ m < +∞);
(2) α∗ f ∈ βq(R+) for every α ∈ Vm+q;
(3) There exist ξ ∈ β0(R+) and η ∈ β∞(R+) such that f = Dmξ + η.
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Lemma 4.9. Let q > 0 be an integer number and f ∈ D′(R+). The next statements are
equivalent:

(1) f ∈ β′maap(R+) (0 ≤ m < +∞);

(2) α∗ f ∈ β
q
aap(R+) for every α ∈ Vm+q;

(3) There exist ξ ∈ β0
aap(R+) and η ∈ β∞aap(R+) such that f = Dmξ + η.

Proof . If f ∈ β′maap(R+) and α ∈ Vm+q, then by Lemma 4.6 α ∗ f ∈ βq(R+). The

convolution operator f → α ∗ f acting from β′m(R+) into βq(R+) is continuous and
there takes place the equality (4.15), therefore α∗ f is asymptotically almost periodic. So,
from (1) it follows (2).

Let (2) take place. In virtue of Lemma 4.9 every distribution f ∈ D ′(R+) can be
presented in the form

f = Dmξ + η, (4.17)

where ξ ∈ β0(R+) and η ∈ β∞(R+) are given by the formulas

ξ = Dq
(
αm+q ∗ ξ

)
, η = ξm+q ∗ f . (4.18)

From (4.17) and (4.18) it follows that

f = Dm+q(αm+q ∗ ξ) + ξm+q ∗ f . (4.19)

Since αm+q ∈ Vm+q, then αm+q ∗ f ∈ β
q
aap(R+), and, consequently, the function

ξ ∈ β0
aap(R+), since ψ = αm+q ∗ f ∈ β

q
aap(R+). Then ξ = Dqψ ∈ β0

aap(R+). From
ξm+qD(R+) it follows that the function η = ξm+q ∗ f is infinitely differentiable. Since
Djξm+q ∈ Vm+q for any integer j, the function Djh = (Djξm+q) ∗ ξ belongs to β

q
aap(R+)

and hence η ∈ β∞aap(R+). So, from (2) it follows (3).
To prove the implication (3)→(1) it is sufficient to prove that ξ ∈ β0

aap(R+) implies
Dmξ ∈ β′maap(R+), since the operator of differentiation Dm of the distributions from

β′0(R+) = β0(R+) is adjoint to the operator of differentiation (−1)mDm : Dm
L1 (R+) →

D0
L1 (R+). Lemma is proved. �

Definition 4.10. One will say that a distribution f is 0-asymptotically almost periodic, if
f ∈ β′0aap(R+) and r-asymptotically almost periodic for 1 ≤ r < +∞, if f ∈ β′raap(R+)

and f �∈ β′r−1
aap(R+).

Lemma 4.11. For r ≥ 1 the derivative of r-asymptotically almost periodic distribution
(r + 1) is asymptotically almost periodic.

Proof . Let r ≥ 1 and f be an r-asymptotically almost periodic distribution. Then D f ∈
β′r+1
aap(R+). It remains to show that D f /∈ β′raap(R+). Let D f ∈ β′raap(R+), then

f = Dr−1(αr ∗Dξ
)

+ ξ ∗ f . (4.20)

If D f ∈ β′raap(R+), then we would have αr ∗ (Dξ) ∈ β′raap(R+) and, consequently, f ∈
β′r−1
aap(R+), that contradicts to the choice of f . The lemma is proved. �
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4.3. Asymptotically Almost Periodic Solutions of Linear Differential
Equations with Distribution Perturbations

Let us consider a differential equation

dx

dt
= A(t)x, (4.21)

and along with (4.21) we will consider the nonhomogeneous equation corresponding to
it

dx

dt
= A(t)x + f (t). (4.22)

Let now A(t) = (αi j(t))ni, j=1 be such that αi j ∈ βmaap(R+) and f ∈ β
′m+1
aap (R+).

The following lemma takes place.

Lemma 4.12. Let { fk} ⊂ L∞(R+) and fk → f in L∞loc (i.e., for any l > 0 esssup{| fk(t) −
f (t)| | t ∈ [0, l]} → 0 as k → +∞), Ak → A uniformly on compact subsets from R+ and
xk → x.

Then ϕ(t, xk,Ak, fk) → ϕ(t, x,A, f ) uniformly on compact subsets from R+, where
ϕ(t, x,A, f ) is the solution of (4.22) passing through the point x as t = 0.

Proof . The formulated statement results from the equality

ϕ
(
t, xk,Ak, fk

) = U
(
t,Ak
)
xk +
∫ t

0
U
(
t,Ak
)
U−1(τ,Ak

)
fk(τ)dτ (4.23)

by passing to limit, taking into account the theorem of Lebesgue on the passing to limit
under integral and also the properties of the Cauchy operator (see, i.e., [128]). �

Theorem 4.3.1. Let (4.21) be hyperbolic on R+, αi j ∈ β0
aap(R+) and f ∈ β′0aap(R+).

Then (4.22) has at least one asymptotically almost periodic solution ψ. This solution can
be presented in the form

ψ(t) =
∫ +∞

0
GA(t, τ) f (τ)dτ. (4.24)

Proof . Formula (4.24) gives a bounded on R+ solution of (4.22). Let hk → +∞, {A(hk)} →
B and { f (hk)} → g. Since ψ is bounded on R+, the sequence {ψ(hk)} is bounded. Let
hkm → +∞ be such that {ψ(hkm)} converges and x0 = limm→+∞ ψ(hkm). Then, according
to [92, Lemma 3.1.1] {ψ(t + hkm)} converges to some function ψ∗, which we can easily
see is a bounded R solution of (3.201). Since (4.21) is hyperbolic on R+, (3.200) by
Lemma 3.32 is hyperbolic on R, and, consequently, (3.201) has a unique bounded on
R solution. Therefore the sequence {ψ(t + hk)} converges to ψ∗ uniformly on compact
subsets from R+. Let us show that

sup
{∣
∣ψ
(
t + hk

)− ψ∗(t)
∣
∣ : t ∈ R+

}
�→ 0 (4.25)
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as k → +∞. Suppose that it is not so. Then there exist ε0 > 0 and {τk} ⊂ R+ such that

∣
∣ψ
(
τk + hk

)− ψ∗(τk
)∣
∣ ≥ ε0. (4.26)

In virtue of asymptotical almost periodicity of f the sequence {g(τk)} can be con-
sidered converging to L∞loc(R+). Let g = limk→+∞ g(τk). Then f (τk+hk) → g in L∞loc(R+).
Without the loss of generality we can consider that {ψ∗(τk)} also converges in L∞loc(R+)
and {B(τk)} converges in C(R, [En]). Assume ψ = limk→+∞ ψ∗(τk) and B = limk→+∞ Bτk . It
is easy to see that ψ is a unique bounded on R solution of the equation

dy

dt
= B(t)y + g(t). (4.27)

On the other hand, reasoning in the same way that behind we notice that {ψ(τk+hk)}
also converges to ψ. Hence ψ(0) = limk→+∞ ψ(τk + hk) = limk→+∞ ψ∗(τk). The last
contradicts to (4.26). The obtained contradiction shows that there takes place (4.25) and,
consequently, ψ is asymptotically almost periodic. The theorem is proved. �

Theorem 4.3.2. Let (4.21) be hyperbolic on R+, A(t) = (αi j(t))ni, j=1, αi j ∈ βmaap(R+) and

f ∈ β′m+1
aap (R+). Then (4.22) has at least one asymptotically almost periodic generalized

solution ψ ∈ β′maap(R+).

Proof . Since the derivative of any distribution from β′maap(R+) belongs to β′m+1
aap (R+), then

L
(
β′maap
(
R+
)) ⊂ β′m+1

aap

(
R+
)
, (4.28)

where (L f ,ϕ) = ( f ,L∗ϕ) and (L∗ϕ)(t) = ϕ′(t) + A∗(t)ϕ(t) for all f ∈ β′m(R+) and
ϕ ∈ βm(R+).

Let us prove the inverse inclusion. For that it is sufficient to show that (4.22) has a
solution in β′maap(R+), for any f ∈ β′m+1

aap (R+). Let f ∈ β′m+1
aap (R+) be r-asymptotically

almost periodic so that r ≤ m+ 1. If r = 0, then by Theorem 4.3.1, (4.22) has at least one
asymptotically almost periodic solution.

Show that if for an arbitrary r-asymptotically almost periodic f ∈ β′m+1
aap (R+) for all

r ≤ q− 1 (4.22) has a solution in β′maap(R+), then it has solutions in β′m+1
aap (R+) also in the

case when f is q-asymptotically almost periodic. In fact, according to Lemma 4.9 there
exist ξ ∈ β0

aap(R+) and η ∈ β∞aap(R+) such that f = Dqξ+η. The equation Lx = η has and
asymptotically almost periodic solution. Making a replacement of variables x = z+Dq−1ξ
in the equation Lx = Dqξ, we get an equivalent equation

Lz = −A(t)Dq−1z, (4.29)

where A(t)Dq−1z has the rank ≤ q − 1. Hence the equation Lx = f has solutions in
β′maap(R+) for any f ∈ β′m+1

aap (R+). So, L(β′maap(R+)) = β′m+1
aap (R+). The theorem is proved.

�
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4.4. Asymptotically Almost Periodic Distributions

Recall that AP(R+) defines the set of all asymptotically almost periodic functions from
C(R+,En), that is, functions ϕ ∈ C(R+,En) that can be presented in the form of the sum
p + ω, where p ∈ C(R+,En) is almost periodic and limt→+∞ |ω(t)| = 0.

ByAPm(R+) let us denote the set of allm-times continuously differentiable functions
from C(R+,En) that are asymptotically almost periodic together with their derivatives up
to the order m inclusively, that is,

APm
(
R+
) = {ϕ | Dkϕ ∈ AP

(
R+
)
, k = 0,m

}
. (4.30)

By the equality

‖ϕ‖m = max
0≤ j≤m

sup
t∈R+

∣
∣Djϕ(t)

∣
∣, (4.31)

there is defined a norm on APm(R+), and with this norm APm(R+) is a Banach space.
The convolution of two functions ϕ,ψ ∈ APm(R+) define by the equality

(ϕ∗ ψ)(t) = lim
T→+∞

1
T

∫ T

0

〈
ϕ(t + s),ψ(s)

〉
ds, (4.32)

that is, (ϕ∗ ψ)(t) =M{〈ϕ(t + s),ψ(s)〉}. There takes place.

Lemma 4.13. For ϕ,ψ ∈ APm(R+)

ϕ∗ ψ = p ∗ q, (4.33)

where p and q are the main parts of the functions ϕ and ψ, respectively.

Proof . Note that
〈
ϕ(t + s),ψ(s)

〉 = 〈p(t + s) + ω(t + s), q(s) + ω(s)
〉

= 〈p(t + s), q(s)
〉

+
〈
ω(t + s), q(s)

〉
+
〈
p(t + s),ω(s)

〉
+
〈
ω(t + s),ω(s)

〉

= 〈p(t + s), q(s)
〉

+ ω(t, s),
(4.34)

where ω(t, s) = 〈ω(t + s), q(s)〉 + 〈p(t + s),ω(s)〉 + 〈ω(t + s),ω(s)〉 and, consequently,
ω(t, s) → 0 as s → +∞ (for every t ∈ R+). From (4.32) and (4.34) it follows equality
(4.33). The lemma is proved. �

Lemma 4.14. Let ϕ,ψ ∈ APm(R+) (m ≥ 1). Then

Dj(ϕ∗ ψ) = (Djϕ
)∗ ψ. (4.35)

Proof . Since h−1[ϕ(t + h) − ϕ(t)] (t ∈ R+) as h ↓ 0 has the limit ϕ′(t) (uniformly with
respect to t ∈ R+), then

〈
ϕ(s + t + h)− ϕ(s + t)

h
,ψ(t)

0

�→ 〈ϕ′(s + t),ψ(t)
〉

(4.36)
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as h ↓ 0 (uniformly with respect to s ∈ R+ for every t ∈ R+) and hence

ϕ′ ∗ ψ = lim
h→0

ϕh ∗ ψ, (4.37)

where ϕh(t) := h−1[ϕ(t + h)− ϕ(t)].
On the other hand, from the relation
〈(

ϕ(s + t + h)− ϕ(s + t)
)

h
,ψ(s)

0

=
[〈
ϕ(s + t + h),ψ(s)

〉− 〈ϕ(s + t),ψ(s)
〉]

h
, (4.38)

it follows that

(ϕh ∗ ψ)(t) =
[
Ms{
〈
ϕ(s + t + h),ψ(s)

〉} −Ms
{〈
ϕ(s + t),ψ(s)

〉}]

h
. (4.39)

Passing to the limit in (4.39) and taking into consideration (4.37), we obtain

(ϕ∗ ψ)′ = ϕ′ ∗ ψ. (4.40)

Repeating this process we get the desired relation. Lemma is proved. �

Denote byAP′m(R+) the space adjoint toAPm(R+). The restriction of any functional
f ∈ AP′m(R+) (m < +∞) on APm+1(R+) belongs to AP′m+1(R+) and f is well defined
by its restriction. The restriction operator establishes an isomorphism betweenAP′m(R+)
and some subspace in AP′m+1(R+). That is why we can consider that AP′m(R+) ⊂
AP′m+1(R+), and as m < +∞ AP′m(R+) ⊂ AP′∞(R+).

Lemma 4.15. AP′∞(R+) = ⋃0≤m<+∞ AP′
m(R+).

Proof . Behind was noted thatAP′m(R+) ⊂ AP′∞(R+). Further, if f ∈ AP′∞(R+), then in
AP∞(R+) there exists a neighborhood of zero U such that |〈 f ,ϕ〉| ≤ 1 for ϕ ∈ U . Hence,
there exists an integer nonnegative number m and b > 0 such that from ϕ ∈ AP∞(R+),
‖ϕ‖m ≤ b it follows that ϕ ∈ U . Therefore the functional f is continuous on the space
AP∞(R+) endowed with the topology induced from APm(R+). Since AP∞(R+) is dense
in APm(R+), then f ∈ AP′m(R+). The lemma is proved. �

In APm(R+) derivative, shifts and product by the function are defined in a usual way:
the operator D of differentiation of functionals from AP′m(R+) is the operator adjoint to
the operator −D : APm+1(R+) → APm(R+); the operator τh of shift of functionals from
AP′m(R+) is the operator adjoint to the shift operator τh : APm(R+) → APm(R+); the
multiplicators on AP′m(R+) are the functions α ∈ APm(R+), and the product operator
of functionals from AP′m(R+) on α is the operator adjoint to the product operator on α
in the space APm(R+).

The action of the asymptotically almost periodic function distribution g∈AP′∞(R+)
on the function ϕ ∈ AP∞(R+) we define by the equality

〈g ∗ ϕ〉(t) = 〈g,ϕ(t)〉, (4.41)

that is, 〈g ∗ ϕ〉 : t → 〈g,ϕ(t)〉 = ψ(t).
Note that AP′∞(R+) is not a normed space (The space AP∞(R+) is countable nor-

med: ‖ · ‖k, k = 0, 1, . . . .).
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Lemma 4.16. The function ψ defined by rule (4.41) belongs to AP∞(R+), if g ∈ AP′∞(R+).

Proof . Note that
∣
∣ψ(t + τ)− ψ(t)

∣
∣ = ∣∣〈g,ϕ(t+τ)〉− 〈g,ϕ(t)〉∣∣ = ∣∣〈g,ϕ(t+τ) − ϕ(t)〉∣∣. (4.42)

From Lemma 4.15 for g ∈ AP′∞(R+) it follows the existence of m ≥ 0 such that g ∈
AP′m(R+), hence we have

∣
∣
〈
g,ϕ(t+τ) − ϕ(t)〉∣∣ ≤ ‖g‖′m

∥
∥ϕ(t+τ) − ϕ(t)

∥
∥ < ε, (4.43)

only if ‖ϕ(t+τ) − ϕ(t)‖ < ε/‖g‖′m. From equality (4.42) for the first derivative ψ we get the
equality |ψ′(t + τ)− ψ′(t)| = |〈g,ϕ′(t+τ) − ϕ′(t)〉| and, consequently,

∣
∣ψ′(t + τ)− ψ′(t)∣∣ ≤ ‖g‖′m

∥
∥ϕ′(t+τ) − ϕ′(t)∥∥ < ε, (4.44)

if ‖ϕ′(t+τ) − ϕ′(t)‖ < ε/‖g‖′m. Repeating this process further we obtain the necessary
statement. The lemma is proved. �

Let f , g ∈ AP′∞(R+), then the convolution f ∗ g is defined by the equality 〈g ∗
f ,ϕ〉 = 〈 f , g ∗ ϕ〉 (ϕ ∈ AP∞(R+)).

Lemma 4.17. Let f , g ∈ AP′∞(R+). Then

(1) τh(g ∗ f ) = (τhg)∗ f ;
(2) D(g ∗ f ) = (Dg)∗ f .

Proof . For ϕ ∈ AP∞(R+) we have
〈
τh(g ∗ f ),ϕ

〉 = 〈g ∗ f , τhϕ
〉 = 〈 f ,

〈
g, τhϕ

〉〉 = 〈 f ,
〈
τhg,ϕ

〉〉 = 〈(τhg
)∗ f ,ϕ

〉
. (4.45)

Let now prove the second statement. Let ϕ ∈ AP∞(R+), then
〈
D(g ∗ f ),ϕ

〉 = 〈g ∗ f ,−Dϕ〉 = 〈 f , 〈g,−Dϕ〉〉 = 〈 f , 〈Dg,ϕ〉〉 = 〈(Dg)∗ f ,ϕ
〉
.

(4.46)

The lemma is proved. �

4.5. Solvability of the Equation x′ = A(t)x + f (t) in the Class of Asymptotically
Almost Periodic Distributions AP′m(R+)

In this section we will consider (4.22) with A(t) = (αi j(t))ni, j=1, where αi j ∈ APm(R+),
and f ∈ AP′m+1(R+).

Define the operator L : APm+1(R+) → APm(R+) by the equality

(Lx)(t) = dx

dt
(t)−A(t)x(t). (4.47)

By L∗ denote the operator formally adjoint to L, defined by the equation

(
L∗y
)
(t) = dy

dt
(t) + A∗(t)y(t). (4.48)
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Lemma 4.18. There takes place the equality

M
{〈
x(t),−ϕ̇(t)− A∗(t)ϕ(t)

〉} =M
{〈
f (t),ϕ(t)

〉}
, (4.49)

or, which is the same,

〈
x,L∗ϕ

〉 = 〈 f ,ϕ〉 (4.50)

for all ϕ ∈ APm+1(R+) and x ∈ APm(R+) (m ≥ 1).

Proof . Let ϕ ∈ APm+1(R+) and x ∈ APm(R+). Then

1
T

∫ T

0

〈
ẋ(t)− A(t)x(t),ϕ(t)

〉
dt = 1

T

∫ T

0

〈
f (t),ϕ(t)

〉
dt. (4.51)

Since

∫ T

0

〈
ẋ(t),ϕ(t)

〉
dt = 〈x(t),ϕ(t)

〉|T0 +
∫ T

0

〈
x(t),−ϕ̇(t)

〉
dt, (4.52)

then

1
T

∫ T

0

〈
x(t),− ˙ϕ(t)− A∗(t)ϕ(t)

〉
dt +

1
T

〈
x(t),ϕ(t)

〉|T0 =
1
T

∫ T

0

〈
f (t),ϕ(t)

〉
dt. (4.53)

Note that |〈x(T),ϕ(T)〉 − 〈x(0),ϕ(0)〉| ≤M and hence

∣
∣
∣
∣

1
T

〈
x(t),ϕ(t)

〉
∣
∣
∣
∣

T

0
≤ M

T
�→ 0 (4.54)

as T → +∞. From that it follows equality (4.49). The lemma is proved. �

Let now f ∈ AP
′m+1(R+).

Definition 4.19. An asymptotically almost periodic distribution x ∈ AP
′m(R+) one will

call a generalized solution of (4.22), if 〈x,L∗ϕ〉 = 〈 f ,ϕ〉 for any ϕ ∈ APm+1(R+).

Theorem 4.5.1. If homogeneous (4.21) is hyperbolic on R+, then for every asymptotically
almost periodic distribution f ∈ AP

′m+1(R+) (4.22) has at least one generalized asymptoti-
cally almost periodic solution η ∈ AP

′m(R+).

Proof . Let Φ : APm+1(R+) → APm(R+) be the linear operator defined by the equation

(Φ f )(t) :=
∫ +∞

0
GA(t, τ) f (τ)dτ, (4.55)
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where GA(t, τ) is the main function of Green of (4.21). Let ϕ ∈ APm(R+) and f ∈
APm+1(R+). Then η = Φ f defines a regular distribution η ∈ AP

′m(R+), and

〈η,ϕ〉 =M
{〈
η(t),ϕ(t)

〉} =M
{〈∫ +∞

0
GA(t, τ) f (τ)dτ,ϕ(t)

0}

=M
{∫ +∞

0

〈
GA(t, τ) f (τ),ϕ(t)

〉
dτ
}

=M
{∫ +∞

0

〈
f (τ),G∗A(t, τ)ϕ(t)

〉
dτ
}

= lim
T→+∞

1
T

∫ T

0

∫ +∞

0

〈
f (τ),G∗A(t, τ)ϕ(t)

〉
dτ dt

= lim
T→+∞

1
T

∫ T

0

〈

f (τ),
∫ +∞

0
G∗A(t, τ)ϕ(t)dt

0

dτ =M
{〈

f (τ),
∫ +∞

0
G∗A(t, τ)ϕ(t)dt

0}

,

(4.56)

consequently

〈η,ϕ〉 =M
{〈

f (τ),
∫ +∞

0
G∗A(t, τ)ϕ(t)dt

0}

, (4.57)

where G∗A(t, τ) is the adjoint operator for GA(t, τ).
Along with (4.21) the equation

dy

dt
= −A∗(t)y. (4.58)

is hyperbolic on R+ too. According to Theorem 3.3.18 the equation

(
S∗ϕ
)
(t) =

∫ +∞

0
G∗A(t, τ)ϕ(t)dt (4.59)

correctly defines a mapping from APm(R+) into APm+1(R+). Let us show that the oper-
ator S∗ : APm(R+) → APm+1(R+) is continuous. In fact, from inequality (3.4.20) from
[128] it follows that

∫ +∞

0

∥
∥G∗A(t, τ)

∥
∥dt ≤ 2N

ν

(
τ ∈ R+

)
, (4.60)

where N , ν are the constants of hyperbolicity of (4.58). From inequality (4.60) we have

∥
∥Φ∗ϕ

∥
∥

0 = sup
t∈R+

∣
∣
∣
∣

∫ +∞

0
G∗A(t, τ)ϕ(t)dt

∣
∣
∣
∣ ≤
∫ +∞

0

∥
∥G∗A(t, τ)

∥
∥dt · ‖ϕ‖0 ≤ 2N

ν
‖ϕ‖m.

(4.61)

So, Φ∗ϕ is a solution of the equation

dy

dt
= −A∗(t)y + ϕ(t) (4.62)

and, consequently, Φ∗(APm(R+)) ⊆ APm+1(R+) and ‖Φ∗ϕ‖m ≤ cm · ‖ϕ‖m, where cm is
some positive constant depending only on m and the matrix A(t).
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So, Φ∗ is a linear bounded operator acting from APm(R+) into APm+1(R+). Thus we
have the equality

〈Φ f ,ϕ〉 = 〈η,ϕ〉 = 〈 f ,Φ∗ϕ
〉

, (4.63)

which takes place and has sense for every ϕ ∈ APm(R+) and f ∈ APm+1(R+), where
η = Φ f . From equality (4.63) follows that

〈
η,L∗ϕ

〉 = 〈Φ f ,L∗ϕ
〉 = 〈 f ,Φ∗(L∗ϕ

)〉
. (4.64)

Let now ϕ ∈ APm+1(R+). Then

Φ∗(L∗ϕ
)
(τ) = Φ∗(ϕ̇(t) + A∗(t)ϕ(t)

)
(τ)

=.

∫ +∞

0
G∗A(t, τ) ˙ϕ(t)dt +

∫ +∞

0
G∗A(t, τ)A∗(t)ϕ(t)dt.

(4.65)

From (4.65) integrating by parts we obtain

∫ +∞

0
G∗A(t, τ) ˙ϕ(t)dt = G∗A(t, τ)ϕ(t)|+∞0 −

∫ +∞

0

∂

∂t
G∗A(t, τ)ϕ(t)dt (4.66)

= −G∗A(0, τ)ϕ(0)−
∫ +∞

0
G∗A(t, τ)A∗(t)ϕ(t)dt + ϕ(t) (4.67)

and, consequently,

(
Φ∗L∗ϕ

)
(τ) = −G∗A(0, τ)ϕ(0) + ϕ(τ). (4.68)

Define by P a projector which projects En on

E+ =
{

x | x ∈ En, sup
t≥0

∣
∣U
(
t,−A∗)x∣∣ < +∞

}

,

B = {ϕ | ϕ ∈ APm+1
(
R+
)
,Pϕ(0) = 0

}
,

(4.69)

where by bar it is denoted the closure in APm+1(R+). Then from equality (4.68) it follows
that Φ∗L∗ is the identical operator in B and hence

L∗Φ∗ = IdAPm(R+), Φ∗L∗ = IdB, (4.70)

where IdAPm(R+) and IdB are identical operators in APm(R+) and B, respectively. Now let
us denote by L = (L∗)′ and Φ = (Φ∗)′ the operators adjoint to L∗ and Φ∗, respectively.
Then L ◦Φ = IdB′ , where B′ is the space adjoint to B and IdB′ is the identical operator
in B′. Note that L|AP′m+1(R+) = L and Φ|AP′m(R+) = Φ, where L|AP′m+1(R+) and Φ|AP′m(R+)

are the restrictions of the operators L on AP
′m+1(R+) and Φ on AP

′m(R+).
To finish the proof of the theorem we only need to note that

〈
x,L∗ϕ

〉 = 〈 f ,ϕ〉 (4.71)
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for every f ∈ B′ ⊇ AP
′m+1(R+). In fact,

〈
x,L∗ϕ

〉 = 〈Φ f ,L∗ϕ
〉 = 〈LΦ f ,ϕ

〉 = 〈 f ,ϕ〉. (4.72)

The theorem is proved. �

4.6. Dynamical Systems of Shifts in the Spaces of Distributions and
Asymptotically Almost Periodic Functions in the Sobolev Spaces

4.6.1. Adjoint Dynamical System

Let X be a vector topological space and (X , R,π) be a dynamical system on X . By X ′

denote the adjoint space of all linear continuous forms defined on X .
By X ′w we denote X ′ with the weak topology and by X ′c we denote X ′ with the

topology of compact convergence. Then f j → 0 in X ′w if and only if 〈 f j , x〉 → 0 for
every x ∈ X , and f j → 0 in X ′c if and only if for every compact set A ⊆ X we have
sup{|〈 f j , x〉| : x ∈ A} → 0.

At the first sight the topology of compact convergence seems stronger than the weak
topology. Nevertheless, for a large class of spaces (e.g., Fréchet spaces), where can be
applied the theorem of Banach-Steinhaus [133, 134], these topologies are equivalent.

In this section we will consider only such spaces X for which the weak topology
and the topology of compact convergence are equivalent on X ′. For this it is sufficient
that X would be the space of Fréchet though there exist and other spaces possessing this
property.

Let h ∈ R. Let us define a mapping τh (“h-shift”) of the space X ′w into itself by the
equality

(
τh f
)
(x) = f

(
π(x,h)

)
(4.73)

for all x ∈ X and f ∈ X ′w. It is easy to verify that the obtained family of mappings
{τh | h ∈ R} possesses the following properties:

τ0 = IdX ′w , (4.74)

τh1 ◦ τh2 = τh1+h2 (h1,h2 ∈ R), (4.75)

τh : X ′w �→ X ′w is continuous. (4.76)

Define a mapping π′ : X ′w ×R→ X ′w by the equality

π′( f ,h) := τh f (4.77)

for every f ∈ X ′w and h ∈ R. From (4.74)–(4.75) it follows that

π′( f , 0) = f , π′
(
π′
(
f ,h1
)
,h2
) = π′

(
f ,h1 + h2

)
(4.78)

for any f ∈ X ′w and h1,h2 ∈ R.

Lemma 4.20. (X ′w, R,π′) is a dynamical system.



132 Asymptotically Almost Periodic Distributions. . .

Proof . It is sufficient to prove the continuity of π′. Let f j → f in X ′w and t j → t in
R. Then for an arbitrary x ∈ X we have π′( f j , t j)(x) = f j(π(x, t j)). Define a mapping
B : X × X ′w → X by the equality B(x, f ) = f (x). Let us show that this mapping is
continuous. Let xk → x and fk → f . Then

∣
∣ fn
(
xn
)− f (x)

∣
∣ ≤ ∣∣ fn

(
xn
)− f

(
xn
)∣
∣ +
∣
∣ f
(
xn
)− f (x)

∣
∣

≤ sup
{
fn(x)− f (x)

∣
∣ : x ∈ Q

}
+
∣
∣ f
(
xn
)− f (x)

∣
∣,

(4.79)

where Q = {xn} ∪ {x}. Taking into account the equivalence of the weak topology and
the topology of compact convergence on X ′ and inequality (4.6.7), we conclude that B is
continuous. Note that

π′
(
f j , t j
)
(x) = f j

(
π
(
x, t j
)) = B

(
π
(
x, t j
)
, f j
)
�→ B

(
π(x, t), f

)
. (4.80)

Since π(x, t j) → π(x, t) and B is continuous, then π′( f j , t j)(x) → f (π(x, t)) = π′( f , t)(x)
for every x ∈ X , that is, π′( f j , t j) → π′( f , t) in X ′. The lemma is proved. �

Definition 4.21. A dynamical system (X ′, R,π′) is called an adjoint system for (X , R,π).

4.6.2. Dynamical Systems of Shifts on D and D ′

Recall (see Section 4.1) that by D =D(R) we denoted the space of all finite and infinitely
differentiable functions ϕ : R → Rn. The space D with the introduced in it convergence
is a locally convex vector topological space but not the space of Fréchet.

Define for every h ∈ R a mapping τh : D →D by the following rule:

(
τhϕ
)
(x) := ϕ(x + h) (4.81)

for all ϕ ∈D and x ∈ R. Conditions (4.74)–(4.76) are verified easily. With the help of the
family of mappings {τh}h∈R, we define a mapping σ : R×D �→D by formula (4.77). It is
easy to see that σ satisfies identities (4.78). Let us show that σ : R×D �→D is continuous.

Let ϕk → ϕ in D and hk → h in R. Since ϕk → ϕ and hk → h, then there exists a
compact K ⊂ R such that

−hk + suppϕk ⊆ K (k = 1, 2, . . .) (4.82)

and, consequently, supp τhkϕk ⊆ K (k = 1, 2, . . .). Let us show that the sequence
{σ(hk,ϕk)} converges to σ(h,ϕ) in D . In fact, let x ∈ K . Then

∣
∣Djσ

(
hk,ϕk

)
(x)−Djσ(h,ϕ)(x)

∣
∣

= ∣∣Djϕk
(
x + hk

)−Djϕ(x + h)
∣
∣

≤ ∣∣Djϕk
(
x + hk

)−Djϕ
(
x + hk

)∣
∣ +
∣
∣Djϕk

(
x + hk

)−Djϕ(x + h)
∣
∣

≤ max
y∈K ′
∣
∣Djϕk(y)−Djϕ(y)

∣
∣ + max

z∈K
∣
∣Djϕ

(
z + hk

)−Djϕ(z + h)
∣
∣,

(4.83)
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where K ′ is a compact from R such that suppϕk ⊆ K ′. From inequality (4.83) we can
easily see that to finish the proof of the convergence of {σ(hk,ϕk)} to σ(h,ϕ) in D it is
easy to show that for every j ∈ Z+ there takes place the equality

lim
k→+∞

max
x∈K
∣
∣Djϕ

(
x + hk

)−Djϕ(x + h)
∣
∣ = 0. (4.84)

Suppose the contrary, that is, there exist j0 ∈ Z+, ε0 > 0, and {xk} ⊆ K such that
∣
∣Dj0ϕ

(
xk + hk

)−Dj0ϕ
(
xk + h

)∣
∣ ≥ ε0. (4.85)

Since K is a compact, then without loss of generality we can consider that xk → x0 and
passing to the limit in (4.85) as k → +∞ we obtain that

0 = ∣∣Dj0ϕ
(
x0 + h

)−Dj0ϕ
(
x0 + h

)∣
∣ ≥ ε0. (4.86)

The last inequality contradicts to the choice of ε0. Hence, the needed assertion is proved.
So, the mapping σ : R×D �→ D is continuous and consequently the triplet (D , R, σ) is
a dynamical system of shifts on D .

Denote by D ′ the set of all linear continuous forms on D endowed with the weak
topology, that is, fk → f in D ′ if and only if ( fk,ϕ) → ( f ,ϕ) for every ϕ ∈ D . Defined
in this way topology on D ′ turns it into locally convex vector topological space. As
we mentioned above, the space D is not a space of Fréchet, nevertheless the weak and
compact convergence on D ′ coincide. In fact, let fk → f in the weak topology and M is
an arbitrary compact set from D . Then according to [134, 135], there exists a compact
K ⊂ R such that M ⊂ Dk ⊂ D , where Dk is the set of all functions from D , the
supports of which are in K . Since ( fk,ϕ) → ( f ,ϕ) for every ϕ ∈ D , then in particular
( fk,ϕ) → ( f ,ϕ) also as ϕ ∈ Dk. Therefore, { fk} is weakly convergent on Dk. But the
space Dk is a space of Fréchet and for these spaces the weak topology and the topology of
the compact convergence are equivalent. That is why fk → f is uniformly on M.

Resuming all the said above we conclude that on the space D ′ there is defined a
dynamical system (D ′, R, σ ′) that is adjoint to (D , R, σ).

4.6.3. Dynamical Systems on the Local Spaces

Definition 4.22. The space F ⊆ D ′ is called [137] semilocal, if ϕu ∈ F for every u ∈ F
and ϕ ∈ C∞0 = C∞0 (R). If F contains every distribution u ∈ D ′, for which ϕu ∈ F for
every ϕ ∈ C∞0 , then F is called local.

The least local space containing F we denote by Floc. Floc is the space defined by the
following rule [138]:

Floc := {u | u ∈D ′, ϕu ∈ F for every ϕ ∈ C∞0
}
. (4.87)

Let us denote by F c the set of al u ∈ F with the compact support [135]. If F is
semilocal, then according to [138]:

F c = Floc ∩ E ′, Floc =
(
F c
)

loc, (4.88)

where E ′ :=D
′c, here D

′c is the set of all u ∈D ′ with the compact support.
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Let F ⊆ D ′ be semilocal normed subspace of the space D ′ with the norm ‖ · ‖F .
Further we will omit the index F , if it is clear what norm is meant. On the space Floc

we can define a topology τ by a family of seminorms as following. If ϕ ∈ C∞0 , then the
mapping pϕ : Floc → R+ defined by the equality

pϕ(u) = ‖ϕu‖, (4.89)

gives some seminorm on Floc. The family of seminorms P = {pϕ | ϕ ∈ C∞0 } defines on
Floc some topology.

Lemma 4.23. Let F ⊆ D ′ be a semilocal normed subspace of the space D ′ such that
multiplication by a function from C∞0 is continuous (i.e., for every ϕ ∈ C∞0 there exists
a positive constant M(ϕ) > 0 such that ‖uϕ‖ ≤ M(ϕ)‖u‖ for every u ∈ F ). Then the
topology τ generated by the family of seminorms P on Floc is metrizable.

Proof . Denote by ϕk ∈ C∞0 a function satisfying the following two conditions:

[−k, k] ⊆ suppϕk ⊆
[− (k + 1), k + 1

]
, (4.90)

ϕk(x) = 1 for all x ∈ [−k, k]. (4.91)

It is well known [135] that such functions exist. Let us consider a countable family of
seminorms P ′ = {pk = pϕk | k = 1, 2, . . .}. Let us show that the family of seminorms
P ′ is separating on Floc [133, 134]. In fact, let u ∈ Floc be not equal to zero. Then there
exists ϕ ∈ C∞0 such that pϕ(u) = ‖uϕ‖ > 0. Since ϕ ∈ C∞0 , then there exists a number k
such that suppϕ ⊆ [−k, k] and, consequently, ϕϕk = ϕ. Then we have

0 < ‖uϕ‖ = ∥∥uϕϕk
∥
∥ ≤M(ϕ)

∥
∥uϕk
∥
∥ =M(ϕ)pk(ϕ). (4.92)

So, pk(ϕ) > 0. Hence, the family of seminorms {pk} is separating and the formula

d(u, v) =
∞∑

k=1

1
2k

pk(u− v)
1 + pk(u− v)

(4.93)

defines an invariant metric on Floc which is compatible with the topology τ [133, 134].
The lemma is proved. �

Remark 4.24. Floc with the metric (4.93) is a complete metric space if F is a Banach
space.

Lemma 4.25. Let (D ′, R, σ ′) be a dynamical system of shifts on D ′. If the restriction σ ′ on
F × R is continuous in F × R, where F is a subspace of D ′ satisfying the conditions of
Lemma 4.23, then the restriction σ ′ on Floc ×R is continuous in the topology Floc ×R.

Proof . Let up → u in Floc and hp → h. Let us show that σ ′(up,hp) → σ ′(u,h) in Floc.
Since hp → h, then there exists h0 > 0 such that |hp| ≤ h0 for all p = 1, 2, . . . . Let A ⊂ R.
Denote by B[A,h0] = {x + y | x ∈ A, |y| ≤ h0}. Let us estimate

pk
(
σ ′
(
up,hp

)− σ ′(u,h)
) = ∥∥σ ′(up,hp

)− σ ′(u,h)ϕk
∥
∥, (4.94)
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for this aim we choose ϕ ∈ C∞0 so that ϕ(x) = 1 for all x ∈ B[[−k, k],h0]. Then

ϕ(x + τ)ϕk(x) = ϕk(x) ∀x ∈ [−k, k], |τ| ≤ h0. (4.95)

So,

pk
(
σ ′
(
up,hp

)− σ ′(u,h)
)

= ∥∥[σ ′(up,hp
)− σ ′(u,h)

]
ϕk
∥
∥ = ∥∥σ ′(up,hp

)
ϕk − σ ′(u,h)ϕk

∥
∥

= ∥∥σ ′(up,hp
)
σ
(
ϕ,hp
)
ϕk − σ ′(u,h)σ(ϕ,h)ϕk

∥
∥

= ∥∥σ ′(upϕ,hp
)
ϕk − σ ′(uϕ,h)ϕk

∥
∥ = ∥∥[σ ′(upϕ,hp

)− σ ′(uϕ,h)
]
ϕk
∥
∥

≤M
(
ϕk
)∥
∥σ ′
(
upϕ,hp

)− σ ′(uϕ,h)
∥
∥.

(4.96)

Since ϕ ∈ C∞0 , then upϕ→ uϕ in F and, consequently,

lim
p→+∞

∥
∥σ ′
(
upϕ,hp

)− σ ′(uϕ,h)
∥
∥ = 0. (4.97)

From (4.96) and (4.97) it follows that

lim
p→+∞ pk

(
σ ′
(
up,hp

)− σ ′(u,h)
) = 0 (4.98)

for every k = 1, 2, . . . . The lemma is proved. �

Corollary 4.26. The triplet (Floc, R, σ ′) is a dynamical system of shifts on Floc, where
F is a semilocal normed subspace of D ′ in which multiplication by functions from C∞0 is
continuous.

4.6.4. Dynamical Systems of Shifts and Asymptotically Almost
Periodic Functions in the Sobolev Spaces Hs

Let k : R→ R be a continuous positive function satisfying to the inequality

k(ξ)k−1(η) ≤ C
(
1 + |ξ − η|)l (ξ,η ∈ R) (4.99)

for some constant C and l depending only on the function k. Denote by Lk,p the set of all
measurable in R functions u : R→ Rn for which the integral

‖u‖p =
∫
∣
∣u(ξ)

∣
∣pkp(ξ)dξ, (4.100)

is finite, where 1 ≤ p ≤ +∞. If k(ξ) = 1, then the space Lk,p coincides with the space
Lp. The spaces Lk,p and Lp are isometrically isomorphic [137, 138]. In particular, Lk,p is a
reflexive Banach space.

Let Hk,p be the family of those distributions u ∈ D ′, the Fourier-image of which
û = F u belongs to the space Lk,p. The topology on Hk,p is given with the help od the
norm

‖u‖ =
(∫
∣
∣û(ξ)

∣
∣pkp(ξ)dξ

)1/p

. (4.101)
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It is known [137, 138] that the operator of Fourier F establishes an isometric iso-
morphism between Hk,p and Lk,p. Therefore Hk,p is a reflexive Banach space.

Let (D ′, R, σ ′) be a dynamical system of shifts on D ′. Let us show that the restriction
on R×Hk,p of the mapping σ ′ : R×D �→D ′ is continuous in the topology R×Hk,p. In
fact, if uk → u in Hk,p and hr → h in R, then

∥
∥σ ′
(
hr ,ur

)− σ ′(h,u)
∥
∥ ≤ ∥∥σ ′(hr ,ur

)− σ(hr ,u
)∥
∥ +
∥
∥σ ′
(
hr ,u
)− σ ′(h,u)

∥
∥. (4.102)

There is known [137, page 18] that the space Hk,p is invariant with respect to the shifts τa
(a ∈ R), and for u ∈ Hk,p there take place the equalities

‖u‖ = ∥∥τau
∥
∥, lim

|a|→0

∥
∥τau− u

∥
∥ = 0. (4.103)

From (4.102) and (4.103), it follows that σ ′(hr ,ur) → σ ′(h,u) in Hk,p as k →∞.

Corollary 4.27. The triplet (Hk,p, R, σ ′) is a dynamical systems of shifts on Hk,p.

So, in the space D ′ we take a Banach subspace Hk,p such that the restriction σ ′ on
R × Hk,p is continuous in the topology R × Hk,p. From [137, 138] it follows that the
subspace Hk,p is semilocal and the operation of multiplication by functions from C∞0 is

continuous. According to Lemma 4.23 on the subspace H
k,p
loc given by formula (4.87), the

family of seminorms (4.89) defines a metrizable topology.

Corollary 4.28. The triplet (H
k,p
loc , R, σ ′) is a dynamical system of shifts on H

k,p
loc .

Proof . The formulated statement follows from the above said and Lemma 4.25. �

By Hs and Hs
loc we denote spaces Hk,p and H

k,p
loc , respectively, in the case when k(ξ) =

(1 + |ξ|2)s and p = 2. From Corollaries 4.27 and 4.28 it follows that on the spaces Hs

and Hs
loc there are defined the dynamical systems of shifts (Hs, R, σ ′) and (Hs

loc, R, σ ′),
respectively.

As well as for continuous functions, the dynamical systems (H
k,p
loc , R, σ ′) and

(Hs
loc, R, σ ′) give a useful means of the study of general properties of functions from H

k,p
loc

involving the general theory of dynamical systems.

For example, a function u ∈ H
k,p
loc we will call almost periodic (resp., asymptotically

almost periodic), if the motion σ ′(·,u) generated by the function u in the dynamical

system (H
k,p
loc , R, σ ′) is almost periodic (resp., asymptotically almost periodic).

4.7. Weakly Asymptotically Almost Periodic Functions

Let T = R or R+. Denote by Cb(T,En) the Banach space of all continuous and bounded
functions f : T → En endowed with the norm ‖ f ‖ = sup{| f (t)| : t ∈ T}. Note that the
space Cb(T,En) is isomorphic to the space (Cb(T,E))n := Cb(T,E) × Cb(T,E) × · · · ×
Cb(T,E).
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Denote by τh f the shift of the function f ∈ (Cb(T,E))n, that is, (τh f )(x) := f (x+h),
(C∗b (T,E))n is the adjoint space for (Cb(T,E))n. If ϕ ∈ (C∗b (T,E))n and f ∈ (Cb(T,E))n,
then 〈ϕ, f 〉 ∈ En. By the sign ⇀ we will denote the weak convergence of sequences in
(Cb(T,E))n.

Definition 4.29. A function f ∈ (Cb(R+,En))n is called weakly asymptotically almost
periodic, if the set of shifts {τh f : h ∈ R+} forms a relatively compact set in the weak
topology (Cb(R+,En))n.

The set of all weakly asymptotically almost periodic functions we denote by Aw.
Taking into account the equivalence of the properties of compactness and countable

compactness (see, i.e., [139, Theorem 1.2]), we obtain the following statement.

Lemma 4.30. f ∈ (Cb(R+,En))n is a weakly asymptotically almost periodic function if
and only if for every sequence {hk} ⊂ R+ there exist a subsequence {hkm} and a function
g ∈ (Cb(R+,E))n such that τhkm f ⇀ g, that is, 〈ϕ, τhkm 〉 → 〈ϕ, g〉 for every function ϕ ∈
(C∗b (R+,E))n.

Lemma 4.31. If f = limk→+∞ fk g = limk→+∞ gk in the weak topology Cb(R+,E), then
f g = limk→+∞ fkgk in the weak topology Cb(R+,E).

Proof . According to Theorem of Gelfand-Neimark [140] the space Cb(R+,E) is isomet-
rically isomorphic to the ring C(Ω) of all complex-valued functions on the compact
Hausdorff space Ω (where Ω is the space of maximal ideals).

Taking into account all the above said, without loss of generality we can consider
that fk, gk ∈ C(Ω). Since the weak convergence of { fk} in C(Ω) is equivalent to its
boundedness and point convergence, then fkgk ⇀ f g. The lemma is proved. �

Theorem 4.7.1. The set Aw is a closed subalgebra of (Cb(R+,E))n and is invariant with
respect to shifts.

Proof . From the definition it follows that if f ∈ Aw, then τh f ∈ Aw (h ∈ R+). Since
Aw is a convex subset of (Cb(R+,E))n, then according to [139, Theorem 1.1] for proving
the closure of Aw in the weak topology it is sufficient to prove its closure in the topology
(Cb(R+,E))n. Suppose that f = limk→+∞ fk ({ fk} ⊂ Aw), that is, ‖ fk − f ‖ → 0 for
k → +∞, where ‖ · ‖ is the norm in (C(R+,E))n, and let {hm} ⊂ R+. Then there exists a
subsequence {hmp} ⊂ {hm} and elements gm such that limp→+∞ τhmp fk = gk in the weak
topology (k = 1, 2, . . . ). If we show that there exists g = limk→+∞ gk, then it will imply that
g = limp→+∞ τhmp f in the weak topology and, consequently, f ∈ Aw. From the theorem
of Hahn-Banach it follows that

∥
∥gr − gs

∥
∥ = sup

{∣
∣
〈
ϕ, gr − gs

〉∣
∣ : ‖ϕ‖ ≤ 1

}

= sup
‖ϕ‖≤1

lim
p→+∞

∣
∣
〈
ϕ, τhmp

(
fr − fs

)〉∣
∣ ≤ ∥∥ fr − fs

∥
∥. (4.104)

Then {gk} is fundamental and, consequently, there exists limk→+∞ gk = g.
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To finish the proof of the theorem let us show that if f 1, f 2 ∈Aw, then f 1 · f 2 ∈Aw.
Let f 1, f 2 ∈Aw and {hm} ⊂ R+. We choose a subsequence {hmp} and elements F1,F2 in
Cb(R+,E) such that

lim
p→+∞ τhmp f

1 = F1, lim
p→+∞ τhmp f

2 = F2 (4.105)

in the weak topology. To conclude that

lim
p→+∞ τhmp f

1 · τhmp f 2 = F1 · F2 (4.106)

in the weak topology it is enough to refer to Lemma 4.31. The theorem is proved. �

Corollary 4.32. Aw equipped with the norm ‖ f ‖ := sup{| f (t)| : t ∈ R+} is a Banach
space.

Let M ⊂ En be an open set. Denote by Cb(R+×M;En) = (Cb(R+×M;E))n the set of
all continuous functions defined on R+ ×M with values in En and bounded on every set
R+×K , where K ⊂M is a compact set. For the function f ∈ (Cb(R+×M;E))n by τh f we
denote the shift of the function f with respect to t on h, that is, (τh f )(t, p) := f (t + h, p),
and τh f := f h.

Definition 4.33. A function f ∈ (Cb(R+ × M;E))n one will call weakly asymptotically
almost periodic with respect to t uniformly with respect to p ∈ M, if for every subse-
quence {tk} ⊂ R+ there exist a subsequence {tkm} and a function g ∈ Cb(R+ ×M;En)
such that 〈ϕ, f (tkm )(·, p)〉 → 〈ϕ, g(·, p)〉 as m→ +∞ for every ϕ ∈ (C∗b (R,E))n uniformly
with respect to p on every compact subset K ⊂M.

Lemma 4.34. The function f ∈ (Cb(R+×M;E))n is weakly asymptotically almost periodic
with respect to t uniformly with respect p ∈ M if and only if f (·, p) ∈ (Cb(R+,E))n

is weakly asymptotically almost periodic for every p ∈ M and the mapping M � p →
f (·, p) ∈ (Cb(R+,E))n is continuous.

Proof . Necessity. Let f be weakly asymptotically almost periodic with respect to t uni-
formly with respect to p ∈ M. Then from the respective definition it follows that f (·, p)
is weakly asymptotically almost periodic for every p ∈ M. Suppose that the mapping
p → f (·, p) is not continuous in some point p0 ∈ M. Then there exist ε0 > 0, {tk} ⊂
R+, {pk} ⊂ K ⊂M such that K is a compact set, pk → p0, and

∣
∣ f
(
tk, pk

)− f
(
tk, p0

)∣
∣ ≥ 4ε0 (4.107)

for all k ∈ N. Since f is weakly asymptotically almost periodic with respect to t ∈ R+

uniformly with respect to p ∈ M, then there exist {tkm} and g ∈ (C(R+ ×M;E))n such
that τtkm f ⇀ g. Then for every ϕ ∈ (C∗b (R+,E))n and compact set K we will have

∣
∣
〈
ϕ, τtkm f (·, p)

〉− 〈ϕ, g(·, p)
〉∣
∣ < ε0 (4.108)
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for n > n1 and any p ∈ K . For ϕ = δ0 (δ0 is the measure of Dirac concentrated at the
point 0) we have

∣
∣τtkm f

(
0, pkm

)− g(0, pkm
)∣
∣ < ε, (4.109)

∣
∣τtkm f

(
0, p0
)− g(0, p0

)∣
∣ < ε

(
n > n1

)
. (4.110)

Further, the continuity of g at the point (0, p0) imply that there is n2 > n1 such that

∣
∣g
(
0, pkm

)− g(0, p0
)∣
∣ < ε

(
m > n2 > n1

)
. (4.111)

From inequalities (4.109)–(4.111), we get that for every m > n2

∣
∣τtkm f

(
0, pkm

)− τtkm f
(
0, p0
)∣
∣

≤ ∣∣τtkm f
(
0, pkm

)− g(0, pkm
)∣
∣ +
∣
∣τtkm f

(
0, p0
)− g(0, p0

)∣
∣

+
∣
∣g
(
0, pkm

)− g(0, p0
)∣
∣ < 3ε,

(4.112)

and that contradicts to inequality (4.107).
Sufficiency. Let {tk} be a sequence of real numbers. Let us take a countable dense

everywhere set {pi} from M. As f (·, pi) ∈Aw, we can find a subsequence {tkm} such that
τtkm f (·, pi) ⇀ g(·, pi) for every i ∈ N. By [139, Theorem 1.1] from the convex envelop
of the sequence {τtkm f } we can construct a subsequence {Hm} such that {Hm(·, p)}
converges uniformly on R+ to g(·, p) uniformly with respect to p ∈ K . From this and
from the continuity of p → f (·, p) we obtain that {Hm(·, p)} satisfies the criterion of
Cauchy uniformly with respect to p on the compact subset K ⊂ M. So, there exists
g(·, p) ∈ (Cb(R+ ×M;E))n (p ∈M) such that for every compact K ⊂M we have

lim
m→+∞

sup
p∈K

∣
∣Hm(·, p)− g(·, p)

∣
∣ = 0. (4.113)

Consequently, p → g(·, p) is continuous. For every fixed ϕ ∈ (C∗(R+,E))n we have

〈
ϕ, τtkm f (·, p)

〉
�→ 〈ϕ, g(·, p)

〉
(4.114)

uniformly with respect to p ∈ K ⊂M. The lemma is proved. �

Lemma 4.35. If the mapping p → f (·, p) (p ∈ M) is continuous, then for every compact
subset K ⊂M and ε > 0 there exist p1, p2, . . . , pm ∈ K and polynomials Qi on En (i = 1,m)
such that

∣
∣
∣
∣ f (t, p)−

m∑

i=1

f
(
t, pi
)
Qi(p)

∣
∣
∣
∣ < ε (4.115)

for every t ∈ R+ and p ∈ K .
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Proof . Let K be a compact subset from M and ε > 0. The set { f (·, p) : p ∈ K} is
compact and therefore there exists a finite ε/2 net { f (·, pi) | i = 1,m}. Assume Ui = {p :
‖ f (·, p)− f (·, pi)‖ < ε/2}. Let gi (i = 1,m) be the elements of the decomposition of the
unit for the covering {Ui} from K . Then

∣
∣
∣
∣ f (t, p)−

m∑

i=1

f
(
t, pi
)
gi(p)
∣
∣
∣
∣ <

ε

2
. (4.116)

Now if we approximate gi onK with the polynomialQi (i = 1,m), we obtain the statement
of the lemma. The lemma is proved. �

Lemma 4.36. If f ∈ (Cb(R+×M;E))n is weakly asymptotically almost periodic with respect
to t uniformly with respect to p ∈M, y ∈Awk and Q := y(R+) ⊂M, then W ∈Aw, where
W(t) := f (t, y(t)) for all t ∈ R.

Proof . Let ε > 0. By Lemma 4.35 there is g ∈ (Cb(R+,E))n such that |W(t) − g(t)| < ε
for all t ∈ R+, and

g(t) =
m∑

i=1

f
(
t, pi
) ·Qi

(
y(t)
)
. (4.117)

Since f (·, pi) ∈ Aw, Qi are some polynomials and Aw is a subalgebra of the algebra
(Cb(R+,E))n, then g ∈ Aw. As ε is arbitrary and Aw is a closed set, then W is weakly
asymptotically almost periodic. The lemma is proved. �

Let f ∈ (Cb(R+ × M,E))n. By H+( f ) we denote the set of all weakly limit points
{τn f : h ∈ R+}, that is,

H+( f ) := {g | g ∈ (Cb
(
R+ ×M,E

))n
,∃{tk

} ⊂ R+, τtk f ⇀ g
}
. (4.118)

Let us establish some additional properties of weakly asymptotically almost periodic
functions.

Lemma 4.37. If f ∈ (Cb(R+ × M,E))n is weakly asymptotically almost periodic. With
respect to t uniformly with respect to p ∈ M, then all functions in H+( f ) are weakly
asymptotically almost periodic with respect to t uniformly with respect to p ∈M too.

Proof . Let g ∈ H+( f ), τtk f ⇀ g. By Lemma 4.34 and Theorem 4.7.1 we have g(·, p) ∈
Aw for every p ∈M. For fixed p, q ∈M we will have

∣
∣g(t, p)− g(t, q)

∣
∣ = lim

k→+∞
∣
∣τtk f (t, p)− τtk f (t, q)

∣
∣ ≤ ∥∥ f (·, p)− f (·, q)

∥
∥ (4.119)

for every t ∈ R+. Hence, the mapping p → g(·, p) is continuous and according to
Lemma 4.34 g ∈ H+( f ) is weakly asymptotically almost periodic with respect to t uni-
formly with respect to p ∈M. The lemma is proved. �

Lemma 4.38. If f ∈ (Cb(R+×M,E))n is weakly asymptotically almost periodic with respect
to t uniformly with respect to p ∈M, then H+(g) ⊆ H+( f ) for every g ∈ H+( f ).
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Proof . Let g ∈ H+( f ). Then there exists {tk} ⊂ R+ such that τtk f ⇀ g. Let us show that
for every h ∈ R+, τtk+h f ⇀ τhg. In fact, {τtk+h f } is a relatively compact sequence in the
weak topology, since f ∈ Aw. We will show that {τtk+h f } weakly converges. For this it is
sufficient to show that it contains a single limiting point. Suppose that it is not so. Then
there exist g1, g2 ∈ H+( f ) and {tik + h} ⊂ {tk + h} such that τtik+h f ⇀ gi (i = 1, 2), and,
consequently,

gi(t, p) = lim
k→+∞

τtik+h f (t, p). (4.120)

Since

τhg(t, p) = lim
k→+∞

τtk+h f (t, p) (4.121)

for every t ∈ R+ and p ∈ M, {tik + h} ⊆ {tk + h}, then we get g1(t, p) = g2(t, p) =
g(h)(t, p). So, τtk+h f ⇀ τhg and therefore H+(g) = {g(h)|h ∈ R+} ⊆ H+( f ), as τhg ∈
H+( f ) for all h ∈ R+ and H+( f ) is closed. From this it follows that H+(g) is a compact
set in the weak topology. The lemma is proved. �

Corollary 4.39. The convergence {ψk} → y is weak in (Cb(R+,E))n if and only if {ψk} is
bounded and 〈ϕ,ψk〉 → 〈ϕ, y〉 for every ϕ ∈ (C∗b (R+,E))n, ϕ = (β,β, . . . ,β), where β is a
linear multiplicative functional.

Proof . This statement follows from the theory of the maximal ideals of Gelfand-Neimark
and from the specific character of the weak convergence in C(Ω), where Ω is a compact
Hausdorff space [140]. �

Following [141], we denote by f̂ the function defined by the next rule: f̂ (s, p) =
〈ϕ, fs(·, p)〉 for ϕ ∈ (C∗b (R+,E))n and f ∈ (Cb(R+ ×M;E))n.

Lemma 4.40. If f ∈ (Cb(R+×M;E))n is weakly asymptotically almost periodic with respect
to t uniformly with respect to p on compact subsets from M and ϕ ∈ (C∗b (R+,E))n,ϕ =
(β,β, . . . ,β) (β is a linear multiplicative functional), then f̂ ∈ H+( f ). If τtk f ⇀ g, then

τtk f̂ ⇀ ĝ.

Proof . The set of measures of Dirac {δs | s ∈ R+} ⊂ (C∗b (R+,E))n is dense on the set
of all linear continuous multiplicative functionals in weak∗ topology (C∗b (R+,E))n [140].
Therefore, there exists {tk} such that δtk ⇀ ϕ, that is, 〈ϕ, f (t)(·, p)〉 =
limk→+∞〈δtk , f (t)(·, p)〉. Hence, limk→+∞ f (t + tk, p) = 〈ϕ, f (t)(·, p)〉. But that does not

mean that τtk f (t, p) → f̂ (t, p). Extracting, if necessary, a subsequence {τtkm f } from

{τtk f }, we obtain ftnk ⇀ f̂ .
Since (Cb(R+,E))n � y → ŷ ∈ (C(R+,E))n is a linear isometry, we conclude that the

second statement of the lemma takes place too. The lemma is proved. �

Lemma 4.41. If the mapping p → f (·, p) (p ∈ M) is continuous, y ∈ (C(R+,E))n, Q :=
y(R+) is a compact subset in M and ϕ ∈ (C∗b (R+,E))n, then f̂ (s, ŷ(s)) = 〈ϕ,w(s)〉 for
s ∈ R+, where w(t) := f (t, y(t)).
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Proof . Let τ, η, ψ, χ be the mappings defined by the formulas

τ : C∗b
(
R+,E

)
�→ (C∗b

(
R+,E

))n
, τ(ϕ) := (β(ϕ),β(ϕ), . . . ,β(ϕ)

)
,

χ : C∗b
(
R+,E

)
�→ En, χ(ϕ) := 〈τ(ϕ),w(s)

〉
,

η : C∗b
(
R+,E

)
�→ En, η(ϕ) := 〈τ(ϕ), y(s)

〉
,

ψ : C∗b
(
R+,E

)× En �→ En, ψ(ϕ, p) := 〈τ(ϕ), f (s)(·, p)
〉
.

(4.122)

Let us consider weak∗ topology in C(R+,E). Then χ, η, ψ are continuous mappings. So,
β → ψ(β,η(β)) is also continuous. Since on the space of measures of Dirac ψ(β,η(β)) =
χ(β), then the same equality takes place on the set of multiplicative functionals too. The
lemma is proved. �

4.8. Linear and Semilinear Differential Equations with Weakly
Asymptotically Almost Periodic Coefficients

Theorem 4.8.1. Let f ∈ (Cb(R+ ×M,E))n be weakly asymptotically almost periodic with
respect to t uniformly with respect to p ∈ M. If for every function g ∈ Ω f := {g | ∃hk →
+∞, τhk f ⇀ g} the equation

du

dt
= g(t,u) (4.123)

has at most one solution on R with the values in the compact set K ⊂ M ⊂ En and ψ ∈
(Cb(R+,E))n is a solution of the equation

dx

dt
= f (t, x) (4.124)

such that ψ(R+) ⊆ K , then ψ is a weakly asymptotically almost periodic function.

Proof . Let K ⊂ M be a compact set such that ψ(R+) ⊆ K and {tk} ⊂ R+ (tk → +∞).
Then there exist a subsequence {tkm} and a function g ∈ (Cb(R+ × M,E))n such that
f (tkm ) ⇀ g and on compact subsets from R the sequence {ψ(tkm )} uniformly converges to
the function y ∈ (Cb(R+,E))n and y(R) ⊆ K . To finish the proof of the theorem it is
sufficient to show that ψ(tkm ) ⇀ y.

Suppose that {ψ(tkm )} �⇀ y. According to Lemma 4.30 there exists a multiplicative
functional ϕ such that {〈ϕ,ψ(tkm )〉} does not converge to 〈ϕ, y〉, where ϕ ∈ (C∗b (R+,E))n.
From the definition of g and y it follows that ẏ = g(t, y), and from Lemma 4.34, taking
into account the relation 〈ϕ, ẏs〉 = ̂̇y(s), we get

̂̇y(t) = ĝ
(
t, ŷ(t)

)
(4.125)

for all t ∈ R. According to Lemma 4.40 ŷ ∈ H+(y) and, consequently, ŷ ⊆ K . Similarly,
for t ∈ R

̂̇ψ(t) = f̂
(
t, ψ̂(t)

)
. (4.126)
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Since {〈ϕ,ψ(tkm )〉} does not converge to 〈ϕ, y〉, there exist ε > 0 and a subsequence {rm} ⊂
{tkm} such that

∣
∣
〈
ϕ,ψ(rm)〉− 〈ϕ, y〉∣∣ ≥ ε (4.127)

for all m ∈ N and {ψ̂(rn)} uniformly converges to the function z ∈ (Cb(R+,E))n on every

compact subset from R. By Lemma 4.40 f̂ (rm) ⇀ ĝ and ĝ ∈ H+( f ). Therefore, taking into
account (4.126),

ż(t) = ĝ
(
t, z(t)

)
, (4.128)

(z(R) ⊆ K) for all t ∈ R. Then from equalities (4.125) and (4.128) it follows that in K the
functions z and y are solutions of the same equation, and by the condition of the theorem
z = y.

On the other hand, from inequality (4.127) we have

∣
∣z(0)− ŷ(0)

∣
∣ = lim

m→+∞
∣
∣ψ̂(rm)(0)− 〈ϕ, y〉∣∣ = lim

m→+∞
∣
∣〈ϕ,ψ(rm)〉− 〈ϕ, y〉∣∣ ≥ ε. (4.129)

The obtained contradiction shows that ψ(tkm) ⇀ y. Theorem is proved. �

Lemma 4.42. Let I = [a, b] ⊂ R, A, Ak ∈ C(I , [E]n) and the following conditions be held:

(1) ‖Ak(t)‖ ≤M for all t ∈ [a, b] and k ∈ N, where M is some positive constant;
(2) Ak(t) → A(t) for all t ∈ I .

Then the following statements hold:

(1) there exists L > 0 such that ‖U(t,Ak)‖ ≤ L for all t ∈ I and k ∈ N, where
U(t,Ak) is a Cauchy operator of the equation

dx

dt
= Ak(t)x. (4.130)

(2) for every t ∈ I U(t,Ak) → U(t,A) as k → +∞.

Proof . Since U(t,Ak) is a solution of the system

U ′(t,Ak
) = Ak(t)U

(
t,Ak
)

U
(
0,Ak
) = IdEn ,

(4.131)

then from [128, inequality (3.1.3)] it follows that

∥
∥U
(
t,Ak
)∥
∥ ≤ eM[b−a] := L (k ∈ N). (4.132)

Let us prove the second statement of the lemma. Assume Vk(t) = U(t,A)−U(t,Ak)
and note that Vk(t) satisfies the system

V ′
k(t) = A(t)Vk(t) +

[
A(t)−Ak(t)

]
U
(
t,Ak
)

Vk(0) = 0.
(4.133)
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Therefore

Vk(t) = U(t,A)
∫ t

0
U−1(τ,A)

[
A(τ)−Ak(τ)

]
U
(
τ,Ak
)
dτ. (4.134)

Let K := max{‖U(t,A)‖,‖U−1(t,A)‖ : a ≤ t ≤ b}. From (4.132) and (4.134) it follows
the inequality

∥
∥Vk(t)

∥
∥ ≤ K2L

∣
∣
∣
∣

∫ t

0

∥
∥Ak(τ)−A(τ)

∥
∥dτ
∣
∣
∣
∣. (4.135)

Passing to the limit in inequality (4.135), taking into consideration the theorem of
Lebesgue on the limit passage under the integral sign [142], we will obtain the needed
statement. The lemma is proved. �

Lemma 4.43. If A ∈Aw(R+, [En]) and (3.198) is hyperbolic on R+, then every equation

dy

dt
= B(t)y, (4.136)

where B ∈ ωA = {B | ∃tk → +∞,A(tk) ⇀ B}, is hyperbolic on R.

Proof . Let B ∈ ωA. Then there exists tk → +∞, A(tk) ⇀ B. Let P(A), Q(A) and N1, N2, ν1,
ν2 be projectors and constants taking part in the definition of the hyperbolicity of (3.198)
on R+. We put

P
(
A(tk)) = U

(
tk,A
)
P(A)U−1(tk,A

)
, (4.137)

Q
(
A(tk)) = U

(
tk,A
)
Q(A)U−1(tk,A

)
. (4.138)

From inequalities (3.12) and (3.13), it follows that the operators P(A(tk)) and Q(A(tk))
are uniformly bounded and, consequently, {P(A(tk ))} and {Q(A(tk))} can be considered
convergent. Assume P(B) := limk→+∞ P(A(tk)) and Q(B) := limk→+∞Q(A(tk)). Note that

P2(A(tk)) = P
(
A(tk)), (4.139)

P
(
A(tk)) +Q

(
A(tk)) = IdEn (4.140)

for all k ∈ N. Passing to the limit in (4.139) as k → +∞, we get P2(B) = P(B). Similarly it
is proved thatQ2(B) = Q(B). Finally, from (4.140) it follows that P(B) +Q(B) = IdEn . So,
P(B) and Q(B) are a pair of mutually complimentary projectors. Let us show that they
can be taken as projectors in the definition of the hyperbolicity on R of (4.136). In fact,
let t ≥ τ and t, τ ∈ R. Then for sufficiently large tk the numbers t and τ belong to the
interval ]− tk, +∞[. From the equalities

U
(
t,A(tk))P

(
A(tk))U−1(τ,A(tk))

= U
(
t,A(tk))U

(
tk,A
)
P(A)U−1(tk,A

)
U−1(τ,A(tk))

= U
(
t + tk,A

)
P(A)U−1(τ + tk,A

)

(4.141)
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and inequality (3.12), taking into account the above said and Lemma 4.42, we get the
inequality ‖U(t,B)P(B)U−1(τ,B)‖ ≤ N1e−ν1(t−τ).

Similarly it is proved that ‖U(t,B)Q(B)U−1(τ,B)‖ ≤ N2eν2(t−τ) for t ≤ τ and
t, τ ∈ R. The lemma is proved. �

Corollary 4.44. Let A ∈ Aw(R+, [En]) and (4.136) be hyperbolic on R+. Then for every
B ∈ ωA (4.123) has no nonzero bounded on R solutions.

Theorem 4.8.2. Let (3.198) be hyperbolic on R+ and A(t) ∈ Aw(R+, [En]). If f ∈
Aw(R+, [En]), then (3.200) has at least one weakly asymptotically almost periodic solution.
This solution is defined by equality (3.202).

Proof . Note that every weakly asymptotically almost periodic function f ∈ Aw is
bounded on R+, that is why from [120] it follows that by equality (3.202) there is given
a bounded on R+ solution of (3.200). According to Corollary 4.44 for every B ∈ ωA and
g ∈ ωf (3.201) has no more than one bounded on R solution. Then by Theorem 4.8.1
this solution is weakly asymptotically almost periodic. �

Theorem 4.8.3. Let A ∈ Aw(R+, [En]) and (3.198) be hyperbolic on R+. If F ∈ Cb(R+ ×
En,En) is weakly asymptotically almost periodic with respect to t uniformly with respect to x
on compact subsets from En and satisfies the condition of Lipschitz with respect x uniformly
with respect to t ∈ R+ with a small enough constant of Lipschitz, then (3.282) has at least
one weakly asymptotically almost periodic solution.

Proof . Let us consider the mapping

Φ : Aw
(
R+,En

)
�→Aw

(
R+,En

)
(4.142)

defined by the equality

(Φy)(t) =
∫ +∞

0
GA(t, τ)F

(
τ, y(τ)

)
dτ. (4.143)

According to Lemma 4.34 and Theorem 4.8.2, the equality (4.143) well defines the oper-
ator Φ : Aw(R+,En) → Ak(R+,En). From the estimation ‖GA(t, τ)‖ ≤ Ne−ν|t−τ| and the
condition of Lipschitz for F it follows that Φ is a contractive mapping, if (2N/ν)L < 1,
where L is the constant of Lipschitz of the function F. Then the single fixed point of
the mapping Φ will be a weakly asymptotically almost periodic solution of (3.282). The
theorem is proved. �

Corollary 4.45. Let A ∈ Awk(R+, [En]), (3.198) be hyperbolic on R+ and F ∈ Cb(R+ ×
En,En) be weakly asymptotically almost periodic with respect to t uniformly with respect to
x on compact subsets from En and satisfy the condition of Lipschitz with respect x uniformly
with respect to t ∈ R+. Then there exists a number ε0 > 0 such that for every |ε| ≤ ε0

equation

dx

dt
= A(t)x + εF(t, x) (4.144)
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has at least one weakly asymptotically almost periodic solution ϕε, and ‖ϕε‖ → 0 as ε → 0.

Remark 4.46. Every asymptotically almost periodic in the sense of Fréchet function is
weakly asymptotically almost periodic. Further, if p ∈ Cb(R,En) is weakly almost peri-
odic [139] (i.e., the set of all shifts {pτ | τ ∈ R} of the function p is relatively compact
in the weak∗ topology Cb(R,En)) and ω ∈ C0(R,En), then the function ϕ = p + ω is
weakly asymptotically almost periodic. Note that there exist weakly asymptotically almost
periodic functions that are not asymptotically almost periodic in the sense of Fréchet. To
confirm the above said it is enough to consider the function ϕ(t) := sin(t+ln(1+|t|))+e−t .
The function p(t) := sin(t+ ln(1 + |t|)) is weakly almost periodic but not almost periodic
in the sense of Bohr (see, i.e., [139]).



5 Asymptotically Almost Periodic
Solutions of Functionally Differential,
Integral, and Evolutionary Equations

5.1. Functional Differential Equations (FDEs) and Dynamical Systems

Let r > 0, C([a, b],En) be a Banach space of all continuous functions ϕ : [a, b] → En with
the norm sup. If [a, b] := [−r, 0], then assume C := C([−r, 0],En). Let α ∈ R, β ≥ 0
and u ∈ C([α − r,α + β],En). For every t ∈ [α,α + β] define ut ∈ C by the relation
ut(θ) := u(t + θ), −r ≤ θ ≤ 0.

Example 5.1 (Autonomous functionally differential equations (autonomous
FDEs)). Consider a differential equation

dx(t)
dt

= f
(
xt
)
, (5.1)

where f ∈ C(C,En). Concerning (5.1) we will suppose that the conditions of existence,
uniqueness and nonlocally continuability of solutions on R+ are fulfilled. Let ϕ ∈ C and
x be the solution of (5.1) satisfying the initial condition

x(s) = ϕ(s)
(
s ∈ [−r, 0]

)
. (5.2)

Define a mapping π : R+ × C → C by the rule π(t,ϕ) = xt, where x is the solution
of the Cauchy problem (5.1)–(5.2). From the general properties of FDEs [143, 144] it
follows that π is continuous π(0,ϕ) = ϕ (ϕ ∈ C) and π(t2,π(t1,ϕ)) = π(t1 + t2,ϕ) for
all ϕ ∈ C and t1, t2 ∈ R+ and, consequently, (C, R+,π) is a semigroup dynamical system
on C.

Example 5.2 (Nonautonomous FDEs with uniqueness). Denote by C(R × C,En) the set
of all continuous functions f : R × C → En with the compact-open topology and by
(C(R× C,En), R, σ) the dynamical system of shifts on C(R× C,En) (see Example 1.47).
Let us consider a differential equation

dx(t)
dt

= f
(
t, xt
)
, (5.3)

where f ∈ C(R×C,En).
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Definition 5.3. The function f ∈ C(R× C,En) is called regular, if for every g ∈ H( f ) :=
{ f (τ) : τ ∈ R}, where f (τ) := σ(τ, f ), for the equation

dy(t)
dt

= g
(
t, yt
)
, (5.4)

there are held the conditions of the existence, uniqueness and nonlocally continuability
of solutions on R+.

Let f ∈ C(R × C,En) be regular. Put Y := H( f ) and by (Y , R, σ) denote the
dynamical system of shifts on Y induced by the dynamical system (C(R × C,En), R, σ).
Define a mapping π : R+ × X → X , where X := C × Y , by the equality π(τ, (ψ, g)) :=
(yτ , g(τ)), where y is the solution of (5.4) satisfying the initial condition

y(s) = ψ(s)
(
s ∈ [−r, 0]

)
. (5.5)

From the theorem on continuous dependence of solutions on the initial data and
the right-hand side (see, i.e., [143, Chapter 2]) it follows that the mapping π is contin-
uous. Further, assume φ(τ,ψ, g) = yτ , where y : [−r, +∞[→ En is the solution of (5.4)
satisfying the condition (5.5) and yτ ∈ C is defined by the equality yτ(s) := y(s + τ)
(s ∈ [−r, 0]). It is easy to verify that the equality φ(t,φ(τ,ψ, g), gτ) = φ(t + τ,ψ, g) takes
place for all t, τ ∈ R+, ψ ∈ C and g ∈ H( f ). Therefore π(τ,π(t, x)) = π(t + τ, x)
for all t, τ ∈ R+ and x ∈ X = C × H( f ). At last, note that π(0, x) = x for all x ∈
X = C × H( f ) and, consequently, (X , R+,π) is a semigroup dynamical system on X :=
C × H( f ). Assume h := pr2 : X → Y . It is easy to verify that h is a homomorphism
of (X , R+,π) onto (Y , R, σ) and, consequently, the triplet 〈(X , R+,π), (Y , R, σ),h〉 is a
nonautonomous dynamical system generated by (5.3) with a regular right-hand side f .

Example 5.4 (Nonautonomous FDEs without uniqueness). Let Rr := [−r, +∞[ and
C(Rr ,En) be the space of all continuous functions f : Rr → En with the topology
of uniform convergence on compacts and (C(Rr ,En), R+, σ) be a dynamical system of
shifts on C(Rr ,En) (see Example 1.46). Assume Y := C(R × C,En) and by (Y , R, σ)
denote a dynamical system of shifts on C(R × C,En). Further, let X := {(ϕ, f ) : ϕ ∈
C(Rr ,En), f ∈ C(R × C,En), and ϕ be a solution of (5.3)}. Obviously, X is positively
invariant (with respect to shifts) set of the product dynamical system (C(Rr ,En), R+, σ)×
(C(R × C,En), R, σ). Besides, the results of works [145, 143] imply that X is closed in
C(Rr ,En)×C(R×C,En) and, consequently, onX there is induced a semigroup dynamical
system (X , R+,π). It is easy to see that the mapping h := pr2 : X → Y is a homomor-
phism of the dynamical system (X , R+,π) onto (Y , R, σ) and, consequently, 〈(X , R+,π),
(Y , R, σ),h〉 is a nonautonomous dynamical system generated by (5.3) the right-hand
side of which is not regular.

In the previous examples there was realized the concept of FDEs with finite delay. In
the next example we will consider an FDE with nonlimited delay. But previously we will
introduce some functional spaces.
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5.1.1. The Space of Hale

Let B be a vector space of functions φ : R− → En (R− =] − ∞, 0]) with the seminorm
| · |B.

For β ≥ 0 and φ ∈ B by φβ denote the restriction φ on ]−∞,−β] and Bβ := {φβ|φ ∈
B}. On Bβ define the seminorm | · |β by the equality

|η|β := inf
{|ψ|B : ψ ∈ B ψβ = η

}
. (5.6)

If x :] −∞, a[ → En (a > 0), then for every t ∈ [0, a[ we can define a function xt by the
relation xt(s) := x(t + s) (s ∈ R−). For numbers a and τ (a > τ) by Aaτ we denote the class
of functions x :]−∞, a[→ En such that x is continuous on [τ, a[ and xτ ∈ B.

Definition 5.5. B is called a space of Hale (see, e.g., [146]), if the following conditions are
fulfilled:

(1) if x ∈ Aaτ , then xτ ∈ B for all t ∈ [τ, a[ and xt is continuous with respect to t;
(2) for every φ ∈ B and β ≥ 0 if |φ|B = 0, then |τβφ|β = 0, where τβ is the linear

operator acting from B to Bβ and defined by the equality τβφ(θ) := φ(θ + β)
(θ ∈]−∞,−β]);

(3) if the sequence {φk} ⊆ B is uniformly bounded on R− with respect to the
seminorm | · |B and converges to φ uniformly on compact subsets of R−, then
φ ∈ B and |φk − φ|B → 0, when k → +∞;

(4) there exists a number K > 0 such that for all φ ∈ B and β ≥ 0

|φ|B ≤ K
(

sup
−r≤θ≤0

∣
∣φ(θ)

∣
∣ +
∣
∣φβ
∣
∣
β

)

; (5.7)

(5) if φ ∈ B, then |τβφ|β → 0 as β → +∞;
(6) |φ(0)| ≤M1|φ|B for some M1 > 0.

5.1.2. Examples of Hales’s Spaces

(a) Cbu(R−,En) := {φ | φ : R− → En, φ is uniformly continuous and bounded}
with the norm sup.

(b) Cν := {φ | φ : R− → En, φ is continuous, φ(θ)eνθ → 0 as θ → −∞} with the
norm |φ|Cν := sup{|φ(θ)|eνθ : θ ∈]−∞, 0]}.

(c) Let r≥ 0, p ≥ 1 and g(θ) be a nondecreasing function, positive, and defined on
R−, satisfying the condition

∫ 0
−∞ g(θ)dθ < +∞. B consists of measurable in the

sense of Lebesgue mappings φ : Rr → En continuous on [−r, 0] with the norm

|φ|B :=
{

sup
−r≤θ≤0

∣
∣φ(θ)

∣
∣p +
∫ 0

−∞

∣
∣φ(θ)

∣
∣pg(θ)dθ

}1/p

. (5.8)

Example 5.6 (FDEs with unlimited delay). Let B be a space of Hale and W ⊆ B. Consider
differential (5.3) where f ∈ C(R×W ,En). As well as in the case of FDEs from Examples
5.2 and 5.4, under some standard assumptions, by (5.3) we can construct two nonau-
tonomous dynamical systems: the first one when the right-hand side f is regular and the
second one when it is not.
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5.2. Asymptotically Almost Periodic Solutions of FDEs

Applying the results of Chapter 2 to nonautonomous dynamical systems constructed in
Examples 5.2–5.6 (as it was done in Chapter 3 for ordinary differential equations), we can
obtain series of tests of the existence of asymptotically almost periodic solutions for FDEs
with finite and infinite delay.

Definition 5.7. A solution φ ∈ C(T,En) (T = R+ or R) of (5.1) one will call compact
on T, if the set {σ(τ,φ) := φτ | τ ∈ T} (where φτ is the shift of the function φ on τ) is
relatively compact in C(T,En).

As we know [143], this will take place if and only if the function φ is bounded and
uniformly continuous on T.

Let φ ∈ C(T,En) and the set {σ(τ,φ) | τ ∈ T} be relatively compact in C(T,En).

Assume QT

φ := {φ̃τ | τ ∈ T}, where φ̃τ := φτ|[−r,0] ∈ C([−r, 0],En) and by bar it is

denoted the closure in C. Then QT

φ is a compact subset in C. Put Q+
φ := QR+

φ and Qφ :=
QR

φ .

Theorem 5.2.1. Let φ ∈ C(Rr ,En) be a compact on R+ solution of (5.3) and f be asymp-
totically stationary (resp., asymptotically τ-periodic, asymptotically almost periodic, asymp-
totically recurrent) with respect to the variable t ∈ R uniformly with respect to ϕ ∈ Q+

φ . If for
every g ∈ ωf (5.4) admits at most one solution from ωφ, then φ is asymptotically stationary
(resp., asymptotically τ-periodic, asymptotically almost periodic, asymptotically recurrent).

Let φ ∈ C(R,En) and M ⊂ C(R,En).

Definition 5.8. One will say that the function φ is separated in M (see Section 3.6), if M
consists only from the function φ or if there exists a number r > 0 such that for every
function μ ∈M (μ �= ϕ) there is fulfilled the inequality

max
−r≤θ≤0

∣
∣φ(t + θ)− μ(t + θ)

∣
∣ ≥ r. (5.9)

Theorem 5.2.2. Let φ ∈ C(Rr ,En) be a compact on R+ solution of (5.3) and f be asymp-
totically stationary (resp., asymptotically τ-periodic, asymptotically almost periodic, asymp-
totically recurrent) with respect to t ∈ R uniformly with respect to ϕ ∈ Q+

φ . If for every
g ∈ ωf all solutions from ωφ of (5.4) are separated in ωφ, then φ is asymptotically station-
ary (resp., asymptotically k0τ-periodic for some natural k0, asymptotically almost periodic,
asymptotically recurrent).

Theorem 5.2.3. Let φ ∈ C(Rr ,En) be compact on R+ solution of (5.1), f be asymptoti-
cally τ-periodic with respect to t ∈ R uniformly with respect to ϕ ∈ Q+

φ , and g(t,ϕ) :=
limk→+∞ f (t + kτ,ϕ) (uniformly with respect to t ∈ [0, τ] and ϕ ∈ Q+

ϕ). If the equation

dy

dt
= g
(
t, yt
)

(5.10)

admits at most one solution from ωφ, the solution φ is asymptotically τ-periodic.
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Denote by D := D(C,En) the Banach space of all linear continuous operators C →
En with the operator norm. Let us consider a linear equation

dx

dt
= A
(
t, xt
)
, (5.11)

where A : R× C → En is continuous and linear with respect to the second variable, that
is, A ∈ C(R, D). Along with (5.11) let us consider the corresponding nonhomogeneous
equation

dx

dt
= A
(
t, xt
)

+ f (t), (5.12)

where f ∈ C(R,En).
For A ∈ C(R, D) denote by ωA its ω-limit set in the dynamical system of shifts

(C(R, D), R, σ).

Theorem 5.2.4. Let φ be compact on R+ solution of (5.12), A ∈ C(R, D), and f ∈
C(R,En) be jointly asymptotically stationary (resp., asymptotically τ-periodic, asymptoti-
cally almost periodic, asymptotically recurrent). If every equation of the family

dy

dt
= B
(
t, yt
)
, (5.13)

where B ∈ ωA, has no nontrivial compact on R solutions, then φ is asymptotically stationary
(resp., asymptotically τ-periodic, asymptotically almost periodic, asymptotically recurrent).

Related to Theorem 5.2.4 naturally arises the following question: under the condi-
tions of Theorem 5.2.3, will (5.12) admit at least one compact on R+ solution? The answer
to this question follows from the results given in the next chapter.

5.3. Linear FDEs

Using some ideas and methods developed for the study of dissipative dynamical systems,
we can obtain series of conditions equivalent to the asymptotical stability of linear nonau-
tonomous dynamical system with infinite-dimensional phase space. As applications we
will get the according statements for linear FDEs.

Let (X ,h,Y) be a vectorial fiber bundle with the fiber E (E is a Banach space) and
‖ ·‖ : X → R+ is the norm on X compatible with the metric X , that is, ‖ ·‖ is continuous
and ‖x‖ := ρ(x, θy), where x ∈ Xy , θy is the zero element of Xy and ρ is a metric on X .

Definition 5.9. The system (X , S+,π) one will call locally compact (completely continu-
ous), if for every x ∈ X there exist δx > 0 and lx > 0 such that the set πtB(x, δx) (t ≥ lx) is
relatively compact.

Definition 5.10. Recall [98, 109] that the nonautonomous system 〈(X , S+,π), (Y , S+,
σ),h〉 is called linear, if (X ,h,Y) is a vectorial fibering and for every y ∈ Y and t ∈ S+

the mapping πt : Xy → Xσ(y,t) is linear.
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Theorem 5.3.1. If the linear nonautonomous system 〈(X , S+,π), (Y , S+, σ),h〉 is locally
compact (i.e., (X , S+,π) is locally compact) and Y is compact, then the next conditions are
equivalent:

(1) limt→+∞ ‖xt‖ = 0 for all x ∈ X ;
(2) all motions (X , S+,π) are relatively compact and in (X , S+,π) there is no nontriv-

ial compact continuable onto S motions;
(3) there exist positive numbers N and ν such that ‖xt‖ ≤ Ne−νt‖x‖ for all x ∈ X ,

t ∈ S+.

Proof . The equality limt→+∞ ‖xt‖ = 0 imply that Σ+
x is relatively compact and ωx ⊆

θ = {θy | y ∈ JY , where θy is the zero element of Xy and JY is the Levinson center of
the dynamical system (Y , S+, σ)}. So, the dynamical system (X , S+,π) is point dissipative
and according to [112] is compactly dissipative. Denote by JX the Levinson center of the
dynamical system (X , S+,π) and we will show that JX = θ. Obviously, θ is compact and
invariant set and, consequently, θ ⊆ JX . From the last inclusion it follows that h(JX) = JY .
If we suppose that JX �= θ, then JX\θ �= ∅ and hence there is x0 ∈ JX\θ. Since in JX all
motions are continuable onto S [109, 113], there exists a continuous mapping ϕ : S→ JX
such that ϕ(0) = x0 and πtϕ(s) = ϕ(t + s) for all s ∈ S and t ∈ S+. On the other hand, in
virtue of the linearity of the system 〈(X , S+,π), (Y , S+, σ),h〉 along with the point x0 all
points λx0 also belong to the set JX (λ ∈ R), as JX is the maximal compact invariant set
in X . But λx0 ∈ JX for all λ ∈ R if and only if x0 ∈ θ. The obtained contradiction shows
that JX = θ. So, in (X , S+,π) there is no nontrivial compact continuable onto S motions
(since they all are in JX). So, we showed that from (1) it follows that (2).

Let us prove that (2) implies (3). Let condition (2) be fulfilled. Then the system
(X , S+,π) is locally dissipative. By the compactness of Y and local dissipativity of
(X , S+,π) there is δ > 0 such that

lim
t→+∞ sup

{‖xt‖ : ‖x‖ < δ} = 0. (5.14)

From (5.14) by standard reasoning (see, i.e., [109, 122, 147]) we can show that there
are N , ν > 0 such that ‖xt‖ ≤ Ne−νt‖x‖ for all x ∈ X and t ∈ S+. At last, it is obvious that
(1) follows from (3). The theorem is proved. �

Linear nonautonomous FDEs [143, 144] present an important classes of linear non-
autonomous systems with infinite-dimensional phase space satisfying the condition of
local completely continuity.

Along with (5.11) we consider the family of (5.13), where B ∈ H+(A) :=
{A(τ) : τ ∈ R+}, by bar there is denoted the closure inC(R, D) (C(R, D) is endowed with
the topology of uniform convergence on compact subsets from R) and A(τ)(t) = A(t+τ).

Let φ(t,ϕ,B) be the solution of (5.13) passing through the point ϕ ∈ C as t = 0,
defined for all t ∈ R+. Assume Y = H+(A) and by (Y , R+, σ) denote the semigroup
dynamical system of shifts on H+(A). Let X := C × Y , (X , R+,π) be the semigroup
dynamical system on X defined by the following rule: π(τ, (ϕ,B)) := (φ(τ,ϕ,B),Bτ) and
h := pr2 : X → Y . Then the nonautonomous system 〈(X , R+,π), (Y , R+, σ),h〉 is linear.
Let us notice one important property of the constructed nonautonomous dynamical
system. There takes place the following lemma.
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Lemma 5.11. Let H+(A) be compact in C(R, D). Then for every point x ∈ X = C ×
H+(A) there exists a neighborhood Ux of the point x and a number lx > 0 such that πtUx is
relatively compact for all t ≥ lx, that is, the dynamical system (X , R+,π) is locally completely
continuous.

Proof . The formulated statement follows from [143, Lemmas 2.2.3 and 3.6.1] and from
the compactness of H+(A). �

Applying Theorem 5.3.1 to the constructed linear nonautonomous dynamical system
and taking into consideration Lemma 5.11, we will get the next statement.

Theorem 5.3.2. Let H+(A) be compact. Then the following statements are equivalent:

(1) the zero solution of (5.11) is uniformly exponentially stable, that is, there exist
positive numbers N and ν > 0 such that ‖φ(t,ϕ,B)‖ ≤ Ne−νt‖ϕ‖ for all ϕ ∈ C,
B ∈ H+(A) and t ∈ R+;

(2) for any B ∈ H+(A) the zero solution of (5.13) is asymptotically stable;
(3) for any B ∈ H+(A) all solutions of (5.13) are compact (bounded) on R+ and for

any B ∈ ωA (5.13) has no nonzero compact (bounded) on R solutions.

Remark 5.12. (1) The nonzero solution of (5.11) is uniformly exponentially stable if and
only if there exist positive numbers N and ν such that ‖φ(t,ϕ,A(τ))‖ ≤ Ne−νt‖ϕ‖ for all
ϕ ∈ C and t, τ ∈ R+.

(2) Let exist positive numbers N and ν such that ‖φ(t,ϕ,A(τ))‖ ≤ Ne−νt‖ϕ‖ for all
ϕ ∈ C and t, τ ∈ R+. Then ‖φ(t,ϕ,A)‖ ≤ Ne−ν(t−τ)‖φ(τ,ϕ,A)‖ for all ϕ ∈ C and t ≥ τ
(t, τ ∈ R+).

(3) Let (X , S+,π) be a dynamical system, X be compact and X := H+(x0) =
{x0t | t ∈ S+}, where x0 ∈ X . Then (X , S+,π) is compactly dissipative and JX = ωx0 ,
where JX is the Levinson center of (X , S+,π).

5.4. Semilinear FDEs

Denote by Ut(·, s) the Cauchy operator [143, 144] (fundamental matrix) of (5.11) and
by φ(t,ϕ,A, f ) the solution of (5.12) passing through the point ϕ ∈ C as t = 0. Then
according to the formula of variation of constants (see, e.g., [143, page 177]):

φ(t,ϕ,A, f ) = φ(t,ϕ,A) +
∫ t

0
Ut(·, s) f (s)ds. (5.15)

Lemma 5.13. Let exist positive numbers N and ν such that

∥
∥φ(t,ϕ,A)

∥
∥ ≤ Ne−ν(t−τ)

∥
∥φ(τ,ϕ,A)

∥
∥ (5.16)

for all t ≥ τ ≥ 0 and ϕ ∈ C. If f ∈ Cb(R+,En), then

(1) all solutions of (5.12) are bounded on R+;
(2) the solution φ(t, 0,A, f ) = ∫ t0 Ut(0, s) f (s)ds of (5.12) can be estimated as:

‖φ‖Cb(R+,C) ≤ eνr
N

ν
‖ f ‖Cb(R+,En). (5.17)
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Proof . Under the conditions of the lemma we have

∥
∥φ(t, 0,A, f )

∥
∥ =
∥
∥
∥
∥

∫ t

0
Ut(·, s) f (s)ds

∥
∥
∥
∥ ≤
∫ t

0

∥
∥Ut(·, s)

∥
∥
∣
∣ f (s)

∣
∣ds ≤

∫ t

0
Ne−ν(t−s)eνr

∣
∣ f (s)

∣
∣ds

≤ Neνr sup
t≥0

∣
∣ f (t)

∣
∣e

−ν(t−s)

ν
|t0 = Neνr‖ f ‖Cb(R+,En)

1− e−νt
ν

≤ N

ν
eνr‖ f ‖Cb(R+,En).

(5.18)

So, we established (5.17).
The first statement of the lemma follows from the formula (5.15) and inequalities

(5.16) and (5.17). �

Remark 5.14. If T = R+ or R, the operator A ∈ C(R, D) and f ∈ C(R,En) are bounded
on T and ϕ : T→ C is a bounded on T solution of (5.12), then ϕ is compact on T.

The formulated statement follows from the theorem of Artzela-Ascoli.

Corollary 5.15. Under the conditions of Lemma 5.15, if the operator A ∈ C(R, D) is
bounded on R+, then all solutions of (5.12) are compact on R+.

Theorem 5.4.1. Let A ∈ C(R, D) and f ∈ C(R,En) be jointly asymptotically stationary
(resp., asymptotically τ-periodic, asymptotically almost periodic, asymptotically recurrent)
and the zero solution of (5.11) is uniformly exponentially stable, that is, there exist positive
numbers N and ν such that

∥
∥φ
(
t,ϕ,As

)∥
∥ ≤ Ne−νt‖ϕ‖ (5.19)

for all t, s ∈ R+ and ϕ ∈ C. Then for any ϕ ∈ C the solution φ(t,ϕ,A, f ) of (5.12) is
asymptotically stationary (resp., asymptotically τ-periodic, asymptotically almost periodic,
asymptotically recurrent).

Proof . From inequality (5.19), according to Corollary 5.12, it follows (5.16) and by
Lemma 5.13 all solutions of (5.12) are bounded on R+. Moreover, from Remark 5.14
and Corollary 5.15 it follows that all solutions of (5.12) are compact on R+. According
to Lemma 5.3.2 for any B ∈ ωA (5.13) has no nonzero compact on R solutions. Now to
complete the proof of the theorem it is enough to refer to Theorem 5.2.4. �

Theorem 5.4.2. Let A ∈ C(R, D) and f ∈ C(R,En) be asymptotically almost periodic
functions, and function F ∈ C(R × C,En) be asymptotically almost periodic w.r.t t ∈ R

uniformly with respect to ϕ on compacts from C, and let it satisfy the condition of Lipschitz
with respect to ϕ ∈ C with the constant of Lipschitz L < (ν/N)e−νr (constants N and ν
is from (5.19)). If the zero solution of (5.11) is uniformly exponentially stable, then the
equation

dx(t)
dt

= A(t)xt + f (t) + F
(
t, xt
)
. (5.20)

has at least one asymptotically almost periodic solution.
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Proof . Denote byAP(R+, C) the Banach space of all asymptotically almost periodic func-
tions ϕ : R+ → C with the norm sup. Define an operator Φ : AP(R+, C) → AP(R+, C) by
the following rule: Φ(ψ) := ϕ, where ψ ∈ AP(R+, C) and

(Φψ)(t) =
∫ t

0
Ut(·, s)

[
F
(
s,ψs
)

+ f (s)
]
ds, (5.21)

that is, ϕ is a unique asymptotically almost periodic solution of the equation

dx

dt
= A(t)xt + f (t) + F

(
t,ψt
)

(5.22)

satisfying the initial condition ϕ(0) = 0.
Let us show that the mapping Φ is contracting. In fact, let ψ1,ψ2 ∈ AP(R+,En) and

ϕ := ϕ1 − ϕ2 = Φ(ψ1)−Φ(ψ2). Then

ϕ′(t) = A(t)ϕt + F
(
t,ψ1t
)− F(t,ψ2t

)
(5.23)

and ϕ(0) = 0. According to Lemma 5.13

‖ϕ‖AP(R+,En) ≤ N

ν
eνr sup

t≥0

∣
∣F
(
t,ψ1t
)− F(t,ψ2t

)∣
∣

≤ N

ν
eνrL sup

t≥0

∥
∥ψ1t − ψ2t

∥
∥ = N

ν
eνrL
∥
∥ψ1 − ψ2

∥
∥
AP(R+,En)

(5.24)

and hence
∥
∥Φ
(
ψ1
)−Φ

(
ψ2
)∥
∥
AP(R+,En) ≤ Nν−1eνrL

∥
∥ψ1 − ψ2

∥
∥
AP(R+,En). (5.25)

So, the mapping Φ has a unique fixed point ϕ ∈ AP(R+,En), which is the desired solu-
tion. The theorem is proved. �

Corollary 5.16. Let A ∈ C(R, D) and f ∈ C(R,En) be asymptotically almost periodic and
the zero solution of (5.11) be uniformly exponentially stable. If the mapping F ∈ C(R ×
C,En) is asymptotically almost periodic with respect to t ∈ R uniformly with respect to ϕ on
compacts from C and satisfies the condition of Lipschitz with respect to the second argument,
then there exists ε0 > 0 such that for every ε, |ε| ≤ ε0, the equation

dx

dt
(t) = A(t)xt + f (t) + εF

(
t, xt
)

(5.26)

has at least one asymptotically almost periodic solution ϕε, and ϕε → ϕ0 as ε → 0 in the
space AP(R+,En), where ϕ0 is a unique asymptotically almost periodic solution of (5.12)
satisfying the initial condition ϕ0(0) = 0.

Theorem 5.4.3. Let f ∈ C(R × C,En) be asymptotically stationary (resp., asymptotically
τ-periodic, asymptotically almost periodic, asymptotically recurrent) with respect to t ∈ R

uniformly with respect to ϕ on compact subsets from C. If there exists α > 0 such that

Re
〈
ϕ1(0)− ϕ2(0), f

(
t,ϕ1
)− f

(
t,ϕ2
)〉 ≤ −α∣∣ϕ1(0)− ϕ2(0)

∣
∣2

(5.27)

for all t ∈ R and ϕ1,ϕ2 ∈ C, then (5.3) is convergent.
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Proof . The formulated statement is proved by the same scheme that Theorem 3.8.5, that
is why we omit its proof. �

5.5. Integral Equations of Volterra and Generated by the Nonautonomous
Dynamical Systems

5.5.1. Nonlinear Integral Equations of Volterra

Let (C(R,En), R, σ) be the dynamical system of shifts in the space C(R,En) of continuous
on R functions with values in En with the compact-open topology. If on R2 × En we
define a dynamical system by the rule π(τ, ((t, s), x)) := ((t + τ, s + τ), x), then according
to Corollary 1.44 on the spaceC(R2×En,En) of all continuous functions f : R2×En → En

with the compact-open topology naturally there is defined a dynamical system of shifts
(C(R2 × En,En), R, σ). Assume C0(R2 × En,En) := { f | f ∈ C(R2 × En,En), f (t, s, x) =
0 for all s ≥ t x ∈ En} and note that C0(R2 × En,En) is a closed invariant subset of
(C(R2×En,En), R, σ) and, consequently, on C0(R2×En,En) there is defined a dynamical
system of shifts (C0(R2 × En,En), R, σ).

Let us consider an integral equation

x(t) = f (t) +
∫ t

0
F
(
t, s, x(s)

)
ds, (5.28)

where f ∈ C(R,En) and F ∈ C0(R2 × En,En). Denote H(F) := {F(τ) : τ ∈ R}, where
F(τ)(t, s, x) = F(t + τ, s + τ, x) and by bar there is denoted the closure in C0(R2 × En,En).

Definition 5.17. The function F ∈ C0(R2 × En,En) is called regular, if for any G ∈ H(F)
and g ∈ C(R,En) the equation

y(t) = g(t) +
∫ t

0
G
(
t, s, y(s)

)
ds (5.29)

has a unique solution.

Everywhere in this chapter we will consider only (5.28) with the regular right-hand
side F.

From (5.28) it follows that

x(t + τ) = f (t + τ) +
∫ τ

0
F
(
t + τ, s, x(s)

)
ds +
∫ t

0
F
(
t + τ, s + τ, x(s + τ)

)
ds. (5.30)

Denote by ϕ(t, f ,F) the unique solution of (5.28). Then from general properties of the
integral equations of Volterra [148] it follows that the mapping ϕ : R × C(R,En)
× C0(R2 × En,En) → En is continuous. Let us define a mapping F : R × C(R,En) ×
C0(R2 × En,En) → En by the equality

F (τ,ϕ,F)(t) :=
∫ τ

0
F
(
t + τ, s,ϕ(s)

)
ds (5.31)

and a mapping

T : R× C(R,En
)× C0

(
R

2 × En,En
)
�→ C
(
R,En

)
(5.32)
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by the rule

T(τ, f ,F) := f (τ) + F
(
τ,ϕ(·, f ,F),F

)
. (5.33)

From equality (5.30) it follows that

ϕ(t + τ, f ,F) = ϕ
(
t,T(τ, f ,F),F(τ)) (5.34)

for all f ∈ C(R,En) and t, τ ∈ R, and besides

ϕ(τ, f ,F) = T(τ, f ,F)(0). (5.35)

The definition of T directly implies the equality

T(t + τ, f ,F) = T
(
t,T(τ, f ,F),F(τ)) (5.36)

for all t, τ ∈ R and f ∈ C(R,En).

Example 5.18. Put Y := H(F) and let (Y , R, σ) be a dynamical system of shifts on Y .
Denote X := C(R,En) × Y and define a mapping π : X × R → X by the follow-
ing rule: π(τ, (g,G)) := (T(τ, g,G),Gτ) for all (g,G) ∈ X := C(R+,En) × H(F) and
τ ∈ R+. From the above said it follows that the triplet (X , R+,π) is a dynamical system
(more detailed about that see in [148]). Assume h := pr : X → Y . Then the triplet
〈(X , R+,π), (Y , R, σ),h〉 is a nonautonomous dynamical system generated by (5.28).

Let (X , R+,π) be a dynamical system on X = C(R,En) × H(F) constructed in
Example 5.18 and let us define a mapping λ : R+×X → En by the next rule: λ(τ, (g,G)) :=
ϕ(τ, g,G). From equality (5.34) it follows that

λ
(
τ,π(x, t)

) = λ(t + τ, x) (5.37)

for all t, τ ∈ R+ and x ∈ X .
Let λ : T× X → Y be a continuous mapping.

Definition 5.19. One will say that the family of mappings {λ(t, ·) : t ∈ T} from X → Y
separates points, if for every two different points x1, x2 ∈ X there exists t = t(x1, x2) ∈ T

such that λ(t, x1) �= λ(t, x2).

There takes place the following lemma.

Lemma 5.20. Let (X , T,π) be a dynamical system, Y be a full metric space, and λ : T×X →
Y be a continuous mapping satisfying condition (5.37) and (C(T,Y), T, σ) be a dynamical
system of shifts on C(T,Y). If the family of mappings {λ(t, ·) : t ∈ T} separates points,
then the mapping p : X → C(T,Y) defined by the equality p(x) := ϕx ∈ C(T,Y), where
ϕx(t) := λ(t, x) for all t ∈ T, is a homeomorphism of (X , T,π) onto (p(X), T, σ), that is,

(1) h is continuous, one-to-one and h−1 : p(X) → X also is continuous;
(2) p(π(t, x)) = σ(t, p(x)) for all t ∈ T and x ∈ X .
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Proof . Let us show that the mapping h is continuous. Let xk → x0. We will show that
p(xk) → p(x0). Suppose that it is not so. Then there are a number ε0 > 0, a compact set
K0 ⊂ T, and a subsequence mk such that

max
t∈K0

ρ
(
ϕxmk (t),ϕx(t)

) ≥ ε0. (5.38)

Then there exists a subsequence {tk} ⊂ K such that

ρ
(
λ
(
tk, xmk

)
, λ
(
tk, x0
)) ≥ ε0. (5.39)

By the compactness of K0 the sequence {tk} can be considered convergent. Assume t0 =
limk→∞ tk and in inequality (5.38) let us pass to the limit as k → +∞. Then we get ε0 ≤ 0,
and that contradicts to the choice of ε0. The obtained contradiction proves the continuity
of p.

The fact that the family {λ(t, ·) : t ∈ π} separates points imply that the mapping p is
one-to-one. Obviously, p−1 : p(X) → X is continuous.

At last, note that

p
(
π(t, x)

)
(s) = λ

(
s,π(t, x)

) = λ(t + s, x) = ϕx(t + s) = σ
(
t,ϕx
)
(s), (5.40)

that is, p(π(t, x)) = σ(t, p(x)) for all x ∈ X and t ∈ T. The lemma is proved. �

Corollary 5.21. The dynamical system (X , R+,π) constructed in Example 5.18 is homeo-
morphically embedded in the dynamical system of shifts (C(R,En), R+, σ).

Example 5.22. Let 〈(X , R+,π), (Y , R+, σ),h〉 be the nonautonomous dynamical system
constructed in Example 5.18. According to Corollary 5.21 there exists a homeomorphism
p of the dynamical system (X , R+,π) onto (W , R+, σ), where W = p(X). Assume q :=
h ◦ p : W → Y . Then 〈W , R+, σ), (Y , R+, σ), q〉 also is a nonautonomous dynamical
system associated by (5.28).

5.5.2. Linear Integral Equations

Let (C(R2, [En]), R, σ) be the dynamical system of shifts on the space C(R2, [En]) of al
the continuous matrix-functions A : R2 → [En] with compact-open topology, that is,
σ(τ,A) = A(τ) and A(τ)(t, s) := A(t+τ, s+τ). By C0(R2, [En]) we denote the set of all A ∈
C(R2, [En]) satisfying the condition A(t, s) = 0 for all s ≥ t. It is clear that C0(R2, [En]) is
a closed and invariant set in the dynamical system of shifts (C(R2, [En]), R, σ). Hence, on
C0(R2, [En]) there is induced a dynamical system system of shifts (C0(R2, [En]), R, σ).

Let us consider a linear integral equation

x(t) = f (t) +
∫ t

0
A(t, s)x(s)ds, (5.41)

where f ∈ C(R,En) and A ∈ C0(R2, [En]). Denote by ϕ(t, f ,A) the unique solution of
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(5.41) defined on R. Then

ϕ(t + τ, f ,A) = T(τ, f ,A)(t) +
∫ t

0
A(τ)(t, s)ϕ(s + τ, f ,A)ds, (5.42)

where T(τ, f ,A)(t) := f (τ)(t) +
∫ t

0 A(t + τ, s)ϕ(s, f ,A)ds.

Example 5.23. Let Y = H(A) := {A(τ) | τ ∈ R} and (Y , R, σ) be a dynamical system of
shifts. PutX := C(R,En)×H(A) and define a dynamical system (X , R,π) by the following
rule: π(τ, ( f ,A)) = (T(τ, f ,A),A(τ)). Then 〈(X , R,π), (Y , R, σ),h〉, where h := pr2 :
X → Y , is a linear nonautonomous dynamical system generated by (5.41).

5.6. Asymptotically Almost Periodic Solutions for Integral Equations of Volterra

For integral equations of Volterra, as well as for ordinary differential equations and FDEs,
we can obtain series of tests of asymptotical almost periodicity, if we apply the results of
Chapter 2 to the dynamical systems from Examples 5.18, 5.22, and 5.23. Before formu-
lating the according statements we will do the following.

Remark 5.24. (a) Let T = R+ or R and ϕ(t, f ,F) be a solution of (5.28) such that {ϕ(t +
τ, f ,F) | τ ∈ T} ⊂ C(R,En) is relatively compact. If {F(τ) | τ ∈ T} ⊂ C(R2 × En,En) is
relatively compact, then {T(τ, f ,F) : τ ∈ T} also is relatively compact in C(R,En).

(b) Let A ∈ C(R2, [En]) and {A(τ) | τ ∈ T} be relatively compact. If ϕ(t, f ,A)
is a solution of (5.39) such that {ϕ(t + τ, f ,A) : τ ∈ T} is relatively compact, then
{T(τ, f ,A) | τ ∈ T} is relatively compact.

Theorem 5.6.1. Let F ∈ C0(R2×En,En) be asymptotically almost periodic (i.e., the motion
σ(·,F) of the dynamical system (C0(R2 × En,En), R, σ) is asymptotically almost periodic)
and ϕ(t, f ,F) is a solution of (5.28) such that the set {ϕ(t + τ, f ,F) | τ ∈ R+} is relatively
compact in C(R,En). If for every G ∈ ωF = {G | G ∈ C0(R2 × En,En), ∃tn → +∞ such
that F(τn) → G} and g ∈ C(R,En) (5.29) has at most one solution from ωϕ, then the solution
ϕ is asymptotically almost periodic.

Theorem 5.6.2. Let A ∈ C(R, [En]) and f ∈ C(R,En) be asymptotically almost periodic,
B ∈ C(R2, [En]) be asymptotically almost periodic (i.e., the motion σ(τ,B) is asymptotically
almost periodic in (C(R2, [En]), R, σ)). If ϕ is a solution of the equation

dx

dt
(t) = A(t)x(t) + f (t) +

∫ t

0
B(t, s)x(s)ds (5.43)

such that {ϕ(t + τ) | τ ∈ R+} ⊂ C(R,En) is relatively compact and for every Ã ∈ ωA, f̃ ∈
ωf and B̃ ∈ ωB the equation

dy(t)
dt

= Â(t)y(t) + f̃ (t) +
∫ t

0
B̃(t, s)y(s)ds (5.44)

has at most one solution from ωϕ, then ϕ is asymptotically almost periodic.
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Remark 5.25. Every solution ϕ(t, x0, f ,A,B) of (5.43) satisfies the integral equation

x(t) = f̂ (t) +
∫ t

0
Â(t, s)x(s)ds, (5.45)

where f̂ (t) := x0 +
∫ t

0 f (s)ds and Â(t, s) := A(s) +
∫ t
s B(u, s)du.

Consider the integral equation of Volterra of convolutional type

x(t) = f (t) +
∫ t

0
A(t, s)x(s)ds, (5.46)

where f ∈ C(R,En) and A ∈ C(R, [En]).

Definition 5.26. A resolvent of integral equation (5.46) is called [149] a matrix-function
R ∈ C(R, [En]) satisfying the equation

R(t) = −A(t) +
∫ t

0
A(t − s)R(s)ds. (5.47)

The solution of (5.46) is given by the formula

x(t) = f (t)−
∫ t

0
R(t − s) f (s)ds, (5.48)

where R is the resolvent of (5.46).

Definition 5.27. They say [149] that the resolvent R of (5.46) is hyperbolic (satisfies the
condition of exponential dichotomy on R), if there exist a pair of jointly complimentary
projectors P1 and P2 and positive numbers N and ν such that

∥
∥R(t)P1

∥
∥ ≤ Ne+νt (t ∈ R−

)
,

∥
∥R(t)P2

∥
∥ ≤ Ne−νt

(
t ∈ R+

)
.

(5.49)

Theorem 5.6.3. Let f ∈ C(R,En) be bounded on R, A ∈ C(R, [En]) the resolvent R(t) of
(5.47) be hyperbolic on R. Then the solution ϕ of (5.46) is uniformly compatible in limit,
that is, L f ⊆ Lϕ.

Proof . Let us introduce in consideration two operators L and B by the following rules:

(L f )(t) :=
∫ 0

−∞
R(t − s)P2 f (s)ds−

∫ +∞

0
R(t − s)P1 f (s)ds,

(N f )(t) :=
∫ t

−∞
R(t − s)P2 f (s)ds−

∫ +∞

0
R(t − s)P1 f (s)ds.

(5.50)

According to [149] equality (5.48) can be rewritten as follows:

x = f − L f +N f , (5.51)
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and, consequently, x+L f = f +N f . Assuming y := x+L f = f +N f , we can show [149]
that y is a solution of the integral equation

y(t) = f ∗(t) +
∫ t

0
A(t − s)y(s)ds, (5.52)

where f ∗ = (I −A)(I +N) f .
Let us show now that L f ⊆ Ly . Let {τk} ∈ L f . Then |τn| → +∞ and there exists g ∈

C(R,En) such that f (τk) → g is uniform on compact subsets from R. Since y = f +N f , it
is enough to show that (N f )(τk) → Ng is uniform on compact subsets from R. Let K ⊂ R

be some compact set and t ∈ K . Since (N f )(τ) = N( f (τ)),

∣
∣(N f )

(
t + τk

)− (Ng)(t)
∣
∣

≤
∣
∣
∣
∣

∫ t

−∞
R(t − s)P2

[
f
(
s + τn

)− g(s)
]
ds
∣
∣
∣
∣ +
∣
∣
∣
∣

∫ +∞

t
R(t − s)P1

[
f
(
s + τk

)− g(s)
]
ds
∣
∣
∣
∣.

(5.53)

Let us show that

sup
t∈K

∣
∣
∣
∣

∫ t

−∞
R(t − s)P2

[
f
(
s + τk

)− g(s)
]
ds
∣
∣
∣
∣ �→ 0, (5.54)

as k → +∞. Let ε > 0. Since the integral

∫ t

−∞
R(t − s)P2

[
f
(
s + τk

)− g(s)
]
ds =

∫ +∞

0
R(u)P2

[
f
(
t − u + τk

)− g(t − u)
]
du

(5.55)

is absolutely convergent uniformly with respect to k, there exist a number L = L(ε) > 0
such that

∣
∣
∣
∣

∫ +∞

L
R(u)P2

[
f
(
t − u + τk

)− g(t − u)
]
dτ
∣
∣
∣
∣ <

ε

4
(5.56)

for all k ∈ N and t ∈ K . On the other hand,

∣
∣
∣
∣

∫ L

0
R(u)P2

[
f
(
t − u + τk

)− g(t − u)
]
du
∣
∣
∣
∣

≤ sup
0≤u≤L

∣
∣ f
(
t − u + τk

)− g(t − u)
∣
∣
∫ L

0

∥
∥R(u)P2

∥
∥du

≤ sup
s∈K ′
∣
∣ f
(
s + τk

)− g(s)
∣
∣
∫ +∞

0

∥
∥R(u)P2

∥
∥du

N

ν
sup
s∈K ′
∣
∣ f
(
s + τk

)− g(s)
∣
∣,

(5.57)

where K ′ = {t − u | t ∈ K ,u ∈ [0,L]} is some compact subset from R. As fτk → g, then
there is k1(ε) > 0 such that

sup
s∈K1

∣
∣ f
(
s + τk

)− g(s)
∣
∣ <

(νε)
4N

(5.58)
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for all k ≥ k1(ε). From inequalities (5.56) and (5.58) it follows that

sup
t∈K

∣
∣
∣
∣

∫ t

−∞
R(t − s)P2

[
f
(
s + τk

)− g(s)
]
ds
∣
∣
∣
∣ <

ε

2
(5.59)

for all k ≥ k1(ε).
On the analogy, there exists k2(ε) > 0 such that

sup
t∈K

∣
∣
∣
∣

∫ +∞

t
R(t − s)P1

[
f
(
s + τk

)− g(s)
]
ds
∣
∣
∣
∣ <

ε

2
(5.60)

for all k ≥ k2(ε). Put k(ε) := max(k1(ε), k2(ε)). Then from (5.53), (5.59), and (5.60) it
follows that

sup
t∈K

∣
∣(N f )

(
t + τk

)− (Ng)(t)
∣
∣ < ε (5.61)

for all k ≥ k(ε). The theorem is proved. �

Corollary 5.28. Let the resolvent R(t) of (5.47) be hyperbolic on R. Then the next state-
ments take place.

(1) If f is bilaterally asymptotically stationary (resp., bilaterally asymptotically peri-
odic, bilaterally asymptotically almost periodic, bilaterally asymptotically recur-
rent), then the solution ϕ of (5.47) possesses this property too.

(2) If f is stationary (resp., periodic, almost periodic, recurrent) homoclinic, then ϕ
also is.

Proof . This statement follows from Theorem 5.6.3 and Corollary 2.23. �

5.7. Convergence of Some Evolution Equations

(1) Let H be a real Hilbert space, D(A) ⊆H be the domain of definition of the operator
A : H →H .

Definition 5.29. Recall [107, 150] that the operator A is called

(1) monotone, if for every u1,u2 ∈ D(A) : 〈Au1 − Au2,u1 − u2〉 ≥ 0;
(2) semicontinuous, if the function ϕ : R → R defined by the equality ϕ(λ) :=

〈A(u + λv,w)〉 is continuous;
(3) uniformly monotone, if there exists a positive number α such that 〈Au − Av,

u − v〉 ≥ α|u − v|2 for all u, v ∈ D(A) (| · | = √〈·, ·〉 and 〈·, ·〉 is a scalar
product in H).

Note that the family of monotone operators can be partially ordered by including
graphics.

Definition 5.30. A monotone operator is called maximal, if it is maximal among the
monotone operators.
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Let us consider an evolutionary equation

dx

dt
+ Ax = f (t), (5.62)

where f ∈ L1
loc(R, H) and A is a maximal monotone operator with the domain of

definition D(A). According to [150] for every x0 ∈ D(A) there exists a unique weak
solution ϕ(t, x0, f ) of (5.62) satisfying the condition ϕ(0, x0, f ) = x0 and defined on R+.
Let Y := H( f ) = { f (τ) | τ ∈ R}, where by bar it is denoted the closure in L1(R, H). By
(Y , R, σ) we denote the dynamical system of shifts on Y induced by the dynamical system
(L1

loc(R, H), R, σ). Put X := D(A) × Y and define π : R+ × D(A) × Y → D(A) × Y by
the equality π(t, (v, g)) := (ϕ(t, v, g), g(t)) and h := pr2 : X → Y . As it is shown in the
work [39], the triplet 〈(X , R+,π), (Y , R, σ),h〉 is a nonautonomous dynamical system.
Applying to the constructed nonautonomous dynamical systems the results of Chapter 2
we obtain the corresponding statements for (5.62). Let us give one statement of this kind.

Theorem 5.7.1. Let a mapping f ∈ L1
loc(R, H) be asymptotically stationary (resp., asymp-

totically τ-periodic, asymptotically almost periodic, asymptotically recurrent). If the maxi-
mal monotone operator A is semicontinuous and uniformly monotone, then (5.62) is con-
vergent.

Proof . The proof is executed by the same scheme that the proof of Theorem 3.8.5, tak-
ing into account the fact that according to the results of work [39] from the uniform
monotonicity of the operator A it follows the existence of positive numbers N and ν such
that

∣
∣ϕ
(
t,u1, g

)− ϕ(t,u2, g
)∣
∣ ≤ Ne−νt

∣
∣u1 − u2

∣
∣ (5.63)

for all u1,u2 ∈ D(A) and g ∈ H( f ). �

Note that in the almost periodic case Theorem 5.7.1 revises and reinforces one result
from [107, page 164].

Let us give an example of the equation of type (5.62).
Consider an equation

∂2u

∂t2
= Δu− φ

(
∂u

∂t

)

+ f (t) (5.64)

in the open bounded area Ω ⊂ En with the boundary condition u = 0 on ∂Ω. Suppose
that the function φ : R → R satisfies the conditions φ(0) = 0 and 0 < c1 ≤ φ′(ξ) ≤ c2

(ξ ∈ R). Then (5.64) will be rewritten in the form

∂tu = v,

∂tv = �u− φ(v) + f (t).
(5.65)

At last, put H =W1,2
0 (Ω)× L2(Ω) and define on H a scalar product

〈
(u, v),

(
u∗, v∗

)〉 =
∫

Ω

[
vv∗ +∇u∇u∗ + λuv∗ + λu∗v

]
dx, (5.66)



164 Asymptotically Almost Periodic Solutions. . .

where λ is some positive constant depending only on c1 and c2. We can check (see, i.e.,
[151]) that under assumptions made all the conditions of Theorem 5.7.1 are fulfilled, if
f ∈ L1

loc(R, R) is asymptotically stationary (resp., asymptotically τ-periodic, asymptoti-
cally almost periodic, asymptotically recurrent).

(2) Let B be a Banach space, I ⊆ R and D(R, B) be the space of all the infinitely
differentiable finite functions ϕ : R→B and H be a complex Hilbert space.

Consider the equation
∫

R

[〈
u(t),ϕ′(t)

〉
+
〈
A(t)u(t),ϕ(t)

〉
+
〈
f (t),ϕ(t)

〉]
dt = 0, (5.67)

where A ∈ C(R, [H]), f ∈ C(R, H) and 〈·, ·〉 is a scalar product in H . The function
ϕ ∈ C(I , H) is called a solution of (5.67), if equality (5.67) takes place for every ϕ ∈
D(I , H). Let x ∈H and ϕ(t, x,A, f ) be a solution of (5.67) defined on R+ and satisfying
to the condition ϕ(0, x,A, f ) = x.

Denote by (C(R, [H]), R, σ) and (C(R, H), R, σ) dynamical systems of shifts on
C(R, [H]) and C(R, H), respectively, and let (C(R, [H])×C(R, H), R, σ) be their prod-
uct. Put H(A, f ) := {(A(τ), f (τ)) : τ ∈ R} and let (H(A, f ), R, σ) be a dynamical system
of shifts on H(A, f ). Along with (5.67) we will consider the family of equations

∫

R

[〈
u(t),ϕ′(t)

〉
+
〈
B(t)u(t),ϕ(t)

〉
+
〈
g(t),ϕ(t)

〉]
dt = 0, (5.68)

where (B, g) ∈ H(A, f ).
Everywhere in this paragraph we will suppose that the operator function A(t) is self-

adjoint and negatively defined, that is, A(t) = −A1(t) + iA2(t) for all t ∈ R, where A1(t)
and A2(t) are self-adjoint operators and

〈
A1(t)x, x

〉 ≥ α|x|2 (5.69)

for all x ∈H , t ∈ R, | · |2 = 〈·, ·〉, and α > 0.

Lemma 5.31 (see [5]). For all t > 0 there takes place the equality

1
2
d

dt

∣
∣ϕ(t, x,A, f )

∣
∣2 = −〈A1(t)ϕ(t, x,A, f ),ϕ(t, x,A, f )

〉
+ Re
〈
f (t),ϕ(t, x,A, f )

〉
.

(5.70)

Lemma 5.32. For all t ∈ R+ there takes place the inequality

∣
∣ϕ(t, x,A, f )

∣
∣ ≤ |x| +

∫ t

0

∣
∣ f (τ)

∣
∣dτ. (5.71)

Proof . From equality (5.70) it follows that

1
2
d

dt

∣
∣ϕ(t, x,A, f )

∣
∣2 ≤ ∣∣ f (t)

∣
∣
∣
∣ϕ(t, x,A, f )

∣
∣. (5.72)

Assume v(t) := |ϕ(t, x,A, f )|2. Then dv/dt ≤ 2| f (t)|√v(t) and, consequently,
√
v(t) −

√
v(τ) ≤ ∫ tτ | f (s)|ds. Hence, |ϕ(t, x,A, f )| ≤ |x| +

∫ t
0 | f (τ)|dτ. The lemma is proved. �
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Lemma 5.33. Let l, r, and β > 0, x0 ∈ H , A ∈ C(R, [H]) and f ∈ C(R, H). Then there
exists a number M =M( f , l, r,β, x0) > 0 such that

∣
∣ϕ(t, x,B, g)− ϕ(t, x0,A, f

)∣
∣

≤ ∣∣x − x0
∣
∣ +M

∫ t

0

∣
∣B(τ)− A(τ)

∣
∣dτ +

∫ t

0

∣
∣g(τ)− f (τ)

∣
∣dτ

(5.73)

for all t ∈ [0, l] and x ∈ B[x0, r0], if |g(t)− f (t)| ≤ β and Re〈B(t)x, x〉 ≤ 0 for all t ∈ [0, l]
and x ∈H .

Proof . Let v(t) = [ϕ(t, x,B, g)− ϕ(t, x0,A, f )]. Then

∫

R

{〈
v(t),ϕ′(t)

〉
+
〈
A(t)v(t),ϕ(t)

〉
+
〈(
B(t)−A(t)

)
v(t),ϕ(t)

〉
+
〈
g(t)− f (t),ϕ(t)

〉}
dt=0

(5.74)

for every ϕ ∈D(R, H). According to Lemma 5.31

d

2dt

∣
∣v(t)

∣
∣2 = Re

〈
A(t)v(t), v(t)

〉

+ Re
[〈(

B(t)−A(t)
)
ϕ(t, x,B, g), v(t)

〉
+
〈
g(t)− f (t), v(t)

〉]
,

(5.75)

and from Lemma 5.32 we have

∣
∣v(t)

∣
∣ ≤ ∣∣v(0)

∣
∣ +
∫ t

0

∣
∣
(
B(τ)−A(τ)

)
v(τ) + g(τ)− f (τ)

∣
∣dτ

≤ ∣∣v(0)
∣
∣ +
∫ t

0

∣
∣B(τ)−A(τ)

∣
∣
∣
∣ϕ(τ, x,B, g)

∣
∣dτ +

∫ t

0

∣
∣g(τ)− f (τ)

∣
∣dτ.

(5.76)

On the other hand, according to Lemma 5.32 for ϕ(τ, x,B, g) we have

∣
∣ϕ(t, x,B, g)

∣
∣ ≤ |x| +

∫ t

0

∣
∣g(τ)

∣
∣dτ ≤ ∣∣x0

∣
∣ + r + βl + l max

0≤t≤l
∣
∣ f (t)

∣
∣ =M

(
f , l, r,β, x0

)
.

(5.77)

From inequalities (5.76) and (5.77) it follows (5.73). Lemma is proved. �

Put H̃ :=H ×H(A, f ) and by X denote the set of all the pairs (u, (B, g)) from H ×
H(A, f ) such that through the point x ∈ H as t = 0 there passes a solution ϕ(t,u,B, g)
of (5.68) defined on R+.

Lemma 5.34. The set X is closed in H ×H(A, f ).

Proof . Let (x, (A, f )) ∈ X . Then there exists a sequence 〈xk, (Bk, gk)〉 ∈ X such that
xk → x in H , Bk → A in C(R, [H]) and fk → f in C(R, H). Let l, ε > 0. Then there exists
k0 = k0(ε, l) > 0 such that

∣
∣xk − xl

∣
∣ < ε,

∣
∣ fk(t)− fl(t)

∣
∣ < ε

∣
∣Bk(t)− Bl(t)

∣
∣ < ε (5.78)
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for all t ∈ [0, l] and k, l ≥ k0. Assume r := sup{|xk| | k ∈ N}. Then by Lemma 5.32 we
obtain
∣
∣ϕ
(
t, xk,Bk, fk

)− ϕ(t, xl,Bl, fl
)∣
∣

≤ ∣∣xk − xl
∣
∣ +M

∫ t

0

∣
∣Bk(τ)− Bl(τ)

∣
∣dτ +

∫ t

0

∣
∣ fk(τ)− fl(τ)

∣
∣dτ ≤ ε +Mεl + εl

(5.79)

for all t ∈ [0, l] and k, l ≥ k0, where M is some positive constant depending only on r,
l and f . From (5.79) it follows that the sequence {ϕ(t, xk,Bk, fk)} is fundamental in the
space C(R+, H) and, consequently, it is convergent in C(R+, H). From (5.79) it follows
that ϕ(t, xk,Bk, fk) → ϕ(t, x,A, f ) in C(R+, H) as k → +∞. So, (x,A) ∈ X , that is, X ⊆ X .
The lemma is proved. �

Lemma 5.35. The mapping ϕ : R+×X →H given by the rule (t, (u,Bg)) → ϕ(t,u,B, g) is
continuous.

Proof . Let tk → t, xk → x, Bk → B and gk → g. Then
∣
∣ϕ
(
tk, xk,Bk, gk

)− ϕ(t, x,B, g)
∣
∣

≤ ∣∣ϕ(tk, xk,Bk, gk
)− ϕ(tk, x,B, g

)∣
∣ +
∣
∣ϕ
(
tk, x,B, g

)− ϕ(t, x,B, g)
∣
∣

≤ max
0≤t≤l
∣
∣ϕ
(
t, xk,Bk, gk

)− ϕ(t, x,B, g)
∣
∣ +
∣
∣ϕ
(
tk, x,B, g

)− ϕ(t, x,B, g)
∣
∣.

(5.80)

From (5.80) and Lemma 5.33 we get the necessary statement. The lemma is proved. �

Lemmas 5.34, 5.35, and general properties of solutions of the equations of the type
(5.67) allow us to define on X a dynamical system (X , R+,π) in the following way: π(t, x)
:= π(t, (u, (B, g))) = (ϕ(t,u,B, g),B(t), g(t)) for all (u, (B, g)) ∈ X and t ∈ R+.

Put Y := H(A, f ) (resp., Y := H+(A, f )). By (Y , R, σ) (resp., (Y , R+, σ)) we denote
a dynamical system (resp., a semigroup dynamical system) of shifts on Y . Let h := pr2 :
X → Y . Then the triplet 〈(X , R+,π), (Y , R, σ),h〉 (resp., 〈(X , R+,π), (Y , R+, σ),h〉) is a
nonautonomous dynamical system generated by (5.67).

There takes place the following lemma.

Lemma 5.36. For every (B, g) ∈ H(A, f ) = Y and x1, x2 ∈ H ((xi,B, g) ∈ X , i = 1, 2)
there takes place the inequality

∣
∣ϕ
(
t, x1,B, g

)− ϕ(t, x2,B, g
)∣
∣ ≤ e−αt

∣
∣x1 − x2

∣
∣ (5.81)

for all t ∈ R+, that is, the nonautonomous dynamical system 〈(X , R+,π), (Y , R, σ),h〉
(resp., 〈(X , R+,π), (Y , R+, σ),h〉) is contracting.

Proof . The formulated lemma directly follows from Lemma 5.31. In fact, assume ω(t) :=
ϕ(t, x1,B, g)− ϕ(t, x2,B, g). Then

1
2
d

dt

∣
∣ω(t)

∣
∣2 = Re

〈
B(t)ω(t),ω(t)

〉 ≤ −α∣∣ω(t)
∣
∣2

(5.82)

and, consequently, |ω(t)| ≤ |ω(0)|e−αt for all t ∈ R+. Lemma is proved. �
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Theorem 5.7.2. Let A ∈ C(R, [H]) and f ∈ C(R, H) be jointly asymptotically station-
ary (resp., jointly asymptotically τ-periodic, jointly asymptotically almost periodic, jointly
asymptotically recurrent). Then (5.67) is convergent, that is, the nonautonomous dynamical
system 〈(X , R+,π), (Y , R+, σ),h〉 generated by (5.67) is convergent.

Proof . The formulated statement is proved in the same way that Theorem 3.8.5, using
the above constructed nonautonomous dynamical system 〈(X , R+,π), (Y , R+, σ),h〉 and
Lemma 5.35. �

Remark 5.37. Note, that in the case of asymptotical almost periodicity of A(t) and f (t)
Theorem 5.7.2 reinforces one result from the work [5].

Following [5], we will give an example of the boundary problem reduced to a equa-
tion of type (5.67). Let Ω be a bounded domain in Rn; Γ := ∂Ω,Q := R+×Ω, S := R+×Γ.
In Q consider the first initial boundary problem for the equation

∂u

∂t
= Lu + g(t,u), u|t=0 = ϕ(x), u|S = 0. (5.83)

Here Lu := ∑n
i, j=1

∂
∂xi

(ai j(t)
∂u
∂xj

)− a(t, x)u is a uniformly elliptic operator, that is, for

every vector ξ ∈ Rn

λ
n∑

i=1

ξ2
i ≤

n∑

i, j=1

ai j(t, x)ξiξ j ≤ μ
n∑

i=1

ξ2
i , (5.84)

λ > 0. In virtue of the theorem of Riesz the operator A(t) is defined from the condition

〈
A(t)u,ϕ

〉
:= −

∫

Ω

[ n∑

i, j=1

ai j(t, x)
∂u

∂xj

∂ϕ

∂xi
+ a(t, x)uϕ

]

dΩ. (5.85)

In the quality of H we take L2(Ω). Then if we define the solution as usual, we get a
equation of type (5.67).

(3) Let H be a Hilbert space. We consider the equation

ẏ = −y|y| + f (t), (5.86)

where y ∈H and f ∈ C(R, H). The next theorem takes place.

Theorem 5.7.3 (see [152]). For any bounded on R function f ∈ C(R, H) (5.86) has

a unique bounded on R solution ϕ and |ϕ(t)| ≤
√

2‖ f ‖ for all t ∈ R, where ‖ f ‖ =
sup{| f (t)| : t ∈ R}.

Corollary 5.38. For any bounded on R+ function f ∈ C(R, H) (5.86) has at least one
bounded on R+ solution.
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Proof . The formulated statement follows from Theorem 5.7.3. In fact, if F ∈ C(R, H) is
bounded on R+, then the function f ∈ C(R, H), equal to F(t) as t ∈ R+ and F(0) as t ∈
R−, is bounded on R and according to Theorem 5.7.1, (5.86) has a unique bounded on R

solution ϕ. The restriction of the function ϕ on R+ is the desired solution of (5.86). �

Lemma 5.39. If the function f ∈ C(R, H) is bounded on R+, then all solutions of (5.86)
are bounded on R+.

Proof . Let ϕ(t, x, f ) be a solution of (5.86) passing through the point x as t = 0. Then
according to [152, Lemma 1]

∣
∣ϕ
(
t, x1, f

)− ϕ(t, x2, f
)∣
∣ ≤ 2

∣
∣x1 − x2

∣
∣

2 +
∣
∣x1 − x2

∣
∣t

(5.87)

for all t ∈ R+ and x1, x2 ∈H . Hence,

lim
t→+∞
∣
∣ϕ
(
t, x1, f

)− ϕ(t, x2, f
)∣
∣ = 0 (5.88)

for all x1, x2 ∈ H . Now to complete the proof of the lemma it is enough to refer to
Corollary 5.38. �

Lemma 5.40. For any asymptotically almost periodic function f ∈ C(R, H) (5.86) has at
least one asymptotically almost periodic solution.

Proof . Let f ∈ C(R, H) be asymptotically almost periodic and

f (t) = p(t) + ω(t) (5.89)

for all t ∈ R, where function p ∈ C(R, H) is almost periodic and limt→+∞ |ω(t)| = 0.
According to [152, Lemma 4] the equation

dx

dt
= −x|x| + p(t) (5.90)

has a unique almost periodic solution q ∈ C(R, H). Along with (5.89) we consider the
equation

dx

dt
= −x|x| + p(t) + ω̃(t), (5.91)

where ω̃(t) = ω(t) for all t ≥ 0 and ω̃(t) = ω(0) as t < 0. Denote by ϕ̃ the unique bounded
on R solution of (5.91). Let τ ≥ 0. Then ϕ̃(τ)(t) = ϕ̃(t + τ) is a unique bounded on R

solution of the equation

dy

dt
= −y|y| + pτ(t) + ω̃τ(t). (5.92)

According to Theorem 5.7.3

∣
∣ϕτ(t)− qτ(t)

∣
∣ ≤
√

2
∥
∥ω̃τ
∥
∥. (5.93)
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Note that ω̃(τ)(t) = ωτ(t) for all t ≥ 0 and ω̃τ(t) = ωτ(0) as t < 0 and, consequently,

lim
τ→+∞

∥
∥ω̃τ
∥
∥ = 0. (5.94)

From (5.93) and (5.94) it follows that limt→+∞ |ϕ̃(t) − q(t)| = 0. Now to finish the
proof of the lemma it is enough to note that the restriction of the function ϕ̃ on R+ is
asymptotically almost periodic solution of (5.86). �

Corollary 5.41. For any asymptotically almost periodic function f ∈ C(R, H) all solutions
of (5.86) are asymptotically almost periodic.

Proof . The formulated statement follows from Lemma 5.39 and equality (5.88). �

Theorem 5.7.4. If the mapping f ∈ C(R, H) is asymptotically almost periodic, then (5.86)
is convergent.

Proof . Let Y := H+( f ) = { f (τ) | τ ∈ R+} (by bar it is denoted the closure in C(R,H))
and (Y , R+, σ) be a dynamical system of shifts on H+( f ). Put X := H × Y and define
on X a dynamical system (X , R+,π) by the following rule: π(τ, (x, g)) = (ϕ(t, x, g), g(τ)),
where ϕ(t, x, g) is a solution of the equation

du

dt
= −u|u| + g(t) (5.95)

satisfying the initial condition ϕ(0, x, g) = x. Assume h := pr2 : X → Y and consider
the nonautonomous dynamical system 〈(X , R+,π), (Y , R+, σ),h〉. Let us show that the
constructed nonautonomous dynamical system is convergent.

First of all, let us show that the system (X , R+,π) is compactly dissipative. According
to Lemma 5.39 the system (X , R+,π) is point dissipative, since ωx = ω(p,q) = H(p, q) for
any x ∈ X and, consequently, ΩX = H(p, q) is compact.

LetK ⊂ X be an arbitrary compact set and Σ+
K := {πtx | x ∈ K , t ∈ R+}. Let us show

that Σ+
K is relatively compact. Let {xn} ⊂ Σ+

K . Then there exist {xn} ⊂ K and {tn} ⊆ R+

such that xn = π(xn, tn). Let xn := (un, gn) ∈ H ×H+( f ). Since K is a compact set, then
the sequences {un} and {gn} can be considered convergent. Assume u := limn→+∞ un and
g := limn→+∞ gn. By the asymptotical almost periodicity of f we have

lim
n→+∞

sup
t≥0

∣
∣gn(t)− g(t)

∣
∣ = 0. (5.96)

Since g ∈ H+( f ), the solution ϕ(t,u, g) of (5.95) is asymptotically almost periodic and,
hence, the sequence {ϕ(tn,u, g)} can be considered convergent. Let u := limn→+∞ ϕ(tn,
u, g). We will show that xn → x = (u, g). For this aim we note that

∣
∣ϕ
(
tn,un, gn

)− ϕ(tn,u, g
)∣
∣

≤ ∣∣ϕ(tn,un, gn
)− ϕ(tn,u, gn

)∣
∣ +
∣
∣ϕ
(
t,u, gn

)− ϕ(t,u, g)
∣
∣.

(5.97)
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Put wn(t) := |ϕ(t,u, gn)− ϕ(t,u, g)| and δn := sup{|gn(t)− g(t)| : t ∈ R+}. According to
[152, page 73]

dwn(t)
dt

≤ −1
2
w2
n(t) + δn, (5.98)

and taking into consideration that wn(0) = 0, we obtain

wn(t) ≤
√

2δn (5.99)

for all t ∈ R+. From (5.87), (5.96)–(5.99) it follows that

lim
n→+∞

∣
∣ϕ
(
tn,un, gn

)− ϕ(tn,u, g
)∣
∣ = 0, (5.100)

and, consequently, xn = (ϕ(tn,un, gn), gn) → (u, g) = x. So, Σ+
K is relatively compact.

Assume M := H+(K) = Σ+
K and

J := Ω(M) = ∩t≥0∪τ≥tπτM. (5.101)

According to [112] the set J is compact and invariant. From Theorem 5.7.3 and Lemma
5.39 it follows that the unique compact invariant set of the dynamical system (X , R+,π)
is the set ΩX = H(p, q). So, Ω(M) = J = Ω(X) and, hence, (X , R+,π) is compactly
dissipative dynamical system and its Levinson center JX = ΩX . Now to finish the proof
of the theorem it is sufficient to note that by Theorem 5.7.3 JX ∩Xy contains at most one
point for any y ∈ ωf = JY . The theorem is proved. �

(4) Let H be a Hilbert space. In this point we will consider the equation

dx

dt
= f (t, x), (5.102)

where f ∈ C(R×H , H) satisfies the condition

Re
〈
x1 − x2, f

(
t, x1
)− f

(
t, x2
)〉 ≤ −κ∣∣x1 − x2

∣
∣α (5.103)

for all t ∈ R+ and x ∈H (κ > 0 and α > 2). Along with (5.102) we consider the family of
equations

dy

dt
= g(t, y),

(
g ∈ H( f )

)
, (5.104)

where H( f ) := { f (τ) | τ ∈ R}, where f (τ) is the shift of f onto τ with respect to the
variable t and by bar it is denoted the closure in C(R×H , H). Note that along with the
function f any function g ∈ H( f ) satisfies condition (5.103) with the same constants κ
and α. According to the results of [153, Chapter 2], if the function f ∈ C(R ×H , H)
satisfies condition (5.103), then for every u ∈ H and g ∈ H( f ) (5.104) has a unique
solution ϕ(t,u, g) defined on R+ and passing through the point u ∈ H as t = 0; besides,
the mapping ϕ : R+ × H × H( f ) → H is continuous. Put now Y := H( f ) and by
(Y , R, σ) denote a dynamical system of shifts on H( f ). Further, let X := H ×H( f ) and
π : R+ × X → X be the mapping defined by the equality π(t, (u, g)) = (ϕ(t,u, g), g(t)).
Then (X , R+,π) is a semigroup dynamical system. At last, assume h := pr2 : X → Y . Then
〈(X , R+,π), (Y , R, σ), h〉 is a nonautonomous dynamical system generated by (5.102).
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Definition 5.42. As earlier, (5.102) is called convergent if the nonautonomous dynamical
system 〈(X , R+,π), (Y , R, σ),h〉 generated by (5.102) is convergent.

In Chapter 3 we established (see Theorem 3.8.5 and Corollary 3.118) that (5.102) is
convergent, if the right-hand side f is asymptotically almost periodic with respect to t
and satisfies the condition (5.103) with the parameter α = 2. Below we will establish the
convergence of (5.102), when f satisfies condition (5.103) with the parameter α > 2.
Previously, let us give two auxiliary lemmas.

Lemma 5.43. Let f ∈ C(R×H , H) be such that the set { f (τ) | τ ∈ R} is relatively compact
in C(R×H , H) and condition (5.103) is held. Then:

(1) for any u ∈H the solution ϕ(t,u, f ) of (5.102) is compact on R+ (i.e., ϕ(R+,u, f )
is a relatively compact set in H);

(2) for all t ∈ R+ and x1, x2 ∈H

∣
∣ϕ
(
t, x1, f

)− ϕ(t, x2, f
)∣
∣ ≤ (∣∣x1 − x2

∣
∣2−α

+ (α− 2)t
)1/(2−α)

= ∣∣x1 − x2
∣
∣
(
1 +
∣
∣x1 − x2

∣
∣α−2

(α− 2)t
)1/(2−α)

.
(5.105)

Proof . Let us define a function F ∈ C(R×H , H) by the following rule

F(t, x) :=
⎧
⎪⎨

⎪⎩

f (t, x), for (t, x) ∈ R+ ×H ,

f (0, x), for (t, x) ∈ R− ×H .
(5.106)

It is easy to check that the function F possesses the next properties:

(a) {F(τ) | τ ∈ R} is relatively compact in C(R×H , H);
(b) Re〈x1 − x2,F(t, x1)− F(t, x2)〉 ≤ −κ|x1 − x2|α for all t ∈ R and x1, x2 ∈H .

According to [153, Theorem 2.2.3.1] the equation

dx

dt
= F(t, x) (5.107)

has a unique compact on R solution ϕ(t, x0,F) and for every two solutions ϕ(t, x1,F) and
ϕ(t, x2,F) there takes place the inequality

∣
∣ϕ
(
t, x1,F

)− ϕ(t, x2,F
)∣
∣ ≤ (∣∣x1 − x2

∣
∣2−α

+ (2− α)t
)1/(2−α)

(5.108)

for all t ∈ R+, x1, x2 ∈ H and, consequently, limt→+∞ |ϕ(t, x1,F) − ϕ(t, x0,F)| = 0 for
all x ∈ H . The last relation imply that all solutions of (5.107) are compact on R+. Now
to complete the proof of the lema it is enough to note that ϕ(t, x, f ) = ϕ(t, x,F) for all
t ∈ R+. The lemma is proved. �
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Lemma 5.44. Let α, κ and ε be positive numbers. Then on R+ the scalar equation

dx

dt
= −κxα + ε (5.109)

defines a semiflow ϕε(x, t) which has a unique stationary point xε = (ε/κ)1/α and

0 ≤ ϕε(x, t) ≤ xε (5.110)

for all x ∈ [0, xε] and t ∈ R+.

Proof . The proof is obvious. �

Theorem 5.7.5. Let f ∈ C(R ×H , H) be asymptotically almost periodic with respect to
t ∈ R uniformly with respect to x on compact subsets from H and satisfy condition (5.103).
Then (5.102) is convergent.

Proof . Let 〈(X , R+,π), (Y , R+, σ),h〉 be a nonautonomous dynamical system generated
by (5.102). Since Y = H+( f ) and f is asymptotically almost periodic, then (Y , R+, σ) is
compactly dissipative an JY = ωf .

Let us show that for every compact subset K ⊂ H the set ϕ(R+,K ,H+( f )) =
{ϕ(t, x, g) | t ∈ R+, x ∈ K , g ∈ H+( f )} is relatively compact. Let {yn} ⊆ ϕ(R+,K ,
H+( f )). Then there exist {tn} ⊂ R+, {xn} ⊆ K and {gn} ⊆ H+( f ) such that yn =
ϕ(tn, xn, gn). In virtue of the compactness of K and H+( f ) the sequences {xn} and {gn}
can be considered convergent. Assume x := limn→+∞ xn and g := limn→+∞ gn. If the
sequence {tn} is bounded, then the sequence {ϕ(tn, xn, gn)} is relatively compact and the
necessary statement is proved. Let now {tn} be not bounded. Then without loss of gen-
erality we can consider that tn → +∞ as n → +∞. Since according to Lemma 5.43 the set
ϕ(R+, x, g) is relatively compact, the sequence {ϕ(tn, x, g)} can be considered convergent.
Put x := limn→+∞ ϕ(tn, x, g) and show that ϕ(tn, xn, gn) → x as n → +∞. For this aim we
note that

∣
∣ϕ
(
tn, xn, gn

)− ϕ(tn, x, g
)∣
∣

≤ ∣∣ϕ(tn, xn, gn
)− ϕ(tn, x, gn

)∣
∣ +
∣
∣ϕ
(
tn, x, gn

)− ϕ(tn, x, g
)∣
∣.

(5.111)

Let us estimate the terms of the right-hand side of (5.111). By (5.105)

∣
∣ϕ
(
tn, xn, gn

)− ϕ(tn, x, gn
)∣
∣ ≤ ∣∣xn − x

∣
∣. (5.112)

On the other hand, if ωn(t) := |ϕ(t, x, gn)− ϕ(t, x, g)|2, then

ω′n(t) = 2 Re
〈
gn
(
t,ϕ
(
t, x, gn

))− g(t,ϕ(t, x, g)
)
,ϕ
(
t, x, gn

)− ϕ(t, x, g)
〉

≤ 2 Re
〈
gn
(
t,ϕ
(
t, x, gn

))− gn
(
t,ϕ(t, x, g)

)
,ϕ
(
t, x, gn

)− ϕ(t, x, g)
〉

+ 2 Re
〈
gn
(
t,ϕ(t, x, g)

)− g(t,ϕ(t, x, g)
)
,ϕ
(
t, x, gn

)− ϕ(t, x, g)
〉

≤ −2κ
∣
∣ϕ
(
t, x, gn

)− ϕ(t, x, g)
∣
∣α + 2εn

∣
∣ϕ
(
t, x, gn

)− ϕ(t, x, g)
∣
∣

(5.113)
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for all t ∈ R+, where

εn = sup
{∣
∣gn(t, x)− g(t, x)

∣
∣ : x ∈ ϕ(R+, x, g), t ∈ R+

}
. (5.114)

By asymptotical almost periodicity of f ∈ C(R ×H , H) and compactness on R+ of the
solution ϕ(t, x, g), we have εn → 0 as n→ +∞. According to [153, Theorem 1.1.1.2]

ωn(t) ≤ ψn(t, 0), (5.115)

where ψn(t, x) is the solution of the equation

du

dt
= −2κuα/2 + 2εnu1/2 (5.116)

passing through the point x as t = 0. Assume y := u1/2. Then from (5.116) we get

dy

dt
= −κyα + εn. (5.117)

So,
√
ψn(t, x) is a solution of (5.117) and by Lemma 5.43

√
ψn(t, 0) ≤ √xεn = (εn/κ)1/2α

and, consequently,

∣
∣ϕ
(
t, x, gn

)− ϕ(t, x, g)
∣
∣ ≤
(
εn
κ

)1/2α

(5.118)

for all t ∈ R+. From inequalities (5.111), (5.112), and (5.118) it follows that

lim
n→+∞

∣
∣ϕ
(
tn, xn, gn

)− ϕ(tn, x, g
)∣
∣ = 0, (5.119)

and hence {yn} is convergent and the necessary statement is proved.
Since along with the function f ∈ C(R × H , H) every function g ∈ H+( f ) also

satisfies condition (5.103), then according to Lemma 5.36,

∣
∣ϕ
(
t,u1, g

)− ϕ(t,u2, g
)∣
∣ ≤

∣
∣u1 − u2

∣
∣

(
1 +
∣
∣u1 − u2

∣
∣α−2

(α− 2)t
)1/(α−2) (5.120)

for all u1,u2 ∈ H and g ∈ H+( f ). Now to finish the proof of the theorem it is necessary
to refer to Theorem 2.6.1. �

Theorem 5.7.6. Let f ∈ C(R ×H , H) be asymptotically recurrent with respect to t ∈ R

uniformly with respect to x on compacts from H , the space H be finite-dimensional and the
function f satisfy condition (5.103) with the parameter α > 2. Then (5.102) is convergent.

Proof . First of all, let us show that the nonautonomous dynamical system 〈(X , R+,π),
(Y , R+, σ),h〉 generated by (5.102) (see Example 3.1 and Corollary 3.2) is dissipative.
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Assume m := sup{| f (t, 0)| : t ∈ R+} and w(t) := |ϕ(t,u, g)|2, where u ∈ H and
g ∈ H+( f ). Then

w′(t) = 2 Re
〈
g
(
t,ϕ(t,u, g)

)
,ϕ(t,u, g)

〉

= 2 Re
〈
g
(
t,ϕ(t,u, g)

)− g(t, 0),ϕ(t,u, g)
〉

+ 2 Re
〈
g(t, 0),ϕ(t,u, g)

〉

≤ −2κwα/2(t) + 2mw1/2(t).

(5.121)

According to [153, Theorem 1.1.1.2]

∣
∣ϕ(t,u, g)

∣
∣2 ≤ ψ

(
t, |u|2) (5.122)

for all t ∈ R+, where ψ(t, x) (x ≥ 0) is the solution of the equation

dx

dt
= −2κxα/2 + 2mx1/2 (5.123)

passing through the point x as t = 0. It is easy to see that

lim
t→+∞
∣
∣ψ(t, x)

∣
∣ ≤
(
m

κ

)2/(α−1)

(5.124)

for all x ≥ 0. From (5.122) and (5.124) it follows the necessary statement.
Since Y = H+( f ), then (Y , R+, σ) is compactly dissipative and JY = ωf . Further, by

the finite-dimensionality of the space H the dynamical system (X , R+,π) is compactly
dissipative too. Denote by JX its Levinson center and show that for any y ∈ JX the set
JX ∩ Xy contains at most one point. Put V(x1, x2) := |x1 − x2|2. Then

V
(
ϕ
(
t,u1, g

)
,ϕ
(
t,u2, g

)) = ∣∣ϕ(t,u1, g
)− ϕ(t,u2, g

)∣
∣2

,

dV
(
ϕ
(
t,u1, g

)
,ϕ
(
t,u2, g

))

dt

= 2 Re
〈
g
(
t,ϕ
(
t,u1, g

))− g(t,ϕ(t,u2, g
))

,ϕ
(
t,u1, g

)− ϕ(t,u2, g
)〉

≤ −2κ
∣
∣ϕ
(
t,u1, g

)− ϕ(t,u2, g
)∣
∣α = −2κVα/2(ϕ

(
t,u1, g

)
,ϕ
(
t,u2, g

))

(5.125)

for all t ∈ R+. From (5.125) it follows that

∣
∣ϕ
(
t,u1, g

)− ϕ(t,u2, g
)∣
∣ <
∣
∣u1 − u2

∣
∣ (5.126)

for all t > 0 and u1,u2 ∈H (u1 �= u2). Let now g ∈ ωf = JY and (u1, g), (u2, g) ∈ JX ∩Xg .
Then by [113, Theorem 1], the solutions ϕ(t,u1, g) and ϕ(t,u2, g) are jointly recurrent
and if u1 �= u2, then there takes place (5.126) and it contradicts to the recurrence of
|ϕ(t,u1, g) − ϕ(t,u2, g)|. The obtained contradiction proves that JX ∩ Xy contains no
more than one point for any y ∈ JY . The theorem is proved. �
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application à l’étude de l’itération des transformations continues,” Mathematische Zeitschrift,
vol. 48, no. 4-5, pp. 685–711, 1943.

[4] A. Precupanu, “Fonctions et suites asymptotiquement presque-périodiques avec des valeurs
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Parma, vol. 3, no. 3, pp. 367–373, 1974.

[12] B. Manfredi, “Asperiodicity and asquasiperiodicity,” Rivista di Matematica della Università di
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di Matematica della Università di Parma, vol. 16, no. 1-2, pp. 97–103, 1990.

[52] R. K. Miller, “Almost periodic differential equations as dynamical systems with applications to
the existence of A. P. solutions,” Journal of Differential Equations, vol. 1, no. 3, pp. 337–345,
1965.

[53] R. K. Miller, “Asymptotically almost periodic solutions of a nonlinear Volterra system,” SIAM
Journal on Mathematical Analysis, vol. 2, no. 3, pp. 435–444, 1971.

[54] I. Muntean, “Exponential convergence of solutions of differential equations,” Revue Roumaine
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[109] D. N. Cheban, “Global Attractors of Nonautonomous Dissipative Dynamical Systems,” in
Interdisciplinary Mathematical Sciences, vol. 1, River Edge, NJ: World Scientific, 2004.
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