European Women in Mathematics
Proceedings of the eighth general meeting

International Centre for Theoretical Physics
Trieste, Italy, 12-17 December 1997

2

Hindawi Publishing Corporation
http://www.hindawi.com




European Women in Mathematics

Proceedings of the eighth general meeting

The Abdus Salam
International Centre for Theoretical Physics

Trieste, Italy, 12-17 December 1997

Hindawi Publishing Corporation
http://www.hindawi.com



This Volume contains the proceedings of the 8th general meeting of the European
Women in Mathematics held at The Abdus Salam International Centre for Theoretical
Physics on 12-17 December 1997. ISBN 977-5945-00-3. This book was printed with
support from the School of Mathematical and Computing Sciences, Chalmers Univer-
sity of Technology and Goteborg University, and from the European Union.

Copyright and reprinting. Material in this book may be reproduced by any means for
educational and scientific purposes without fee or permission with the exception of
reproduction by services that collect fees for delivery of documents and provided that
the customary acknowledgment of the source is given. This consent dose not extend
to other kinds of copying for general distribution, for advertising or promotional pur-
poses, or for resale. Requests for permission for commercial use of material should be
addressed to Hindawi Publishing Corporation, P.O. Box 4073, Stony Brook, NY 11790-
0903, USA. Requests can also be made by e-mail to permission@hindawi.com.

© 1999 Hindawi Publishing Corporation. All rights reserved.



Contents

Pre Al . e s vii
PART I: EWM and the 8th general meeting ..........covviiiiiiiiiriiranrnnrnnnnnns 1
1. European Women in MathematiCS ......covviiriiriiinasranranrsrrnsrnssnssnnnss 3
Opening words of Professor Narasimhan..................cooiiiiiiiiiiiinan... 5
Media coverage of the EWM Trieste meeting........ocuuiveuiniiiineiiieeiinaennnnns 7

Women and mathematics: East-West-North-South, Marjatta Ndcditdnen and
Marie DeMUOVA . ...ttt ettt ettt et et e e e e e aeaees 9

The EWM-video: Women and mathematics across cultures, Marjatta Nddtdnen.. 19

Report on the poster session, Laura Fainsilber ................c.ccoeiiiiiiiiienennnn. 27
Other activities of EWM since the Madrid meeting................c.ccoiviiiiiiann.. 33
EWM workshop on moduli spaces in mathematics and physics.................... 37

The mathematical part of EWM meetings, Capi Corrales Rodrigdnez and

Laura TedeSchini-Lalli. . ........ ...t 41
PART II: The Mathematical Part........covoiiiiiaieiranenrannsrasnarasesrasnarnses 45
2. p-adic numbers: A short course organized by Catherine Goldstein.......... 47
p-adic numbers and non-archimedean valuations, Capi Corrales Rodrigdriez.... 49
Some p-adic model theory, Frangoise Delon ...............ccoeueiiiiiineinnnnnnn. 63

Some applications of p-adic points of view to elliptic curves, Catherine Goldstein 77

Poster abstract: p-adics and Pro-pP GrOUDS . ... euereeeen e eaenraaeaanneens 99
Poster abstract: Schonemann-Eisenstein irreducibility criterion................... 101
Poster abstract: Quadratic forms over the p-adics.............ccovviiiiiiiiean.... 103
Poster abstract: p-adic numbers in dynamical systems ..............cooeeiiiiian.. 105
3. Representations: A short course organized by Michéle Vergne.............. 107
Quantization: motivations, constructions and examples, M. Welleda Baldoni .. ... 109
Orbit method for SI(2,R), Pascale HAVINCK ...........uuuuiuiiiiiiiiiiiienrnannnns 113
Representations of the symmetric groups, Christine Bessenrodt .................. 123

Finite dimensional algebras and singularity theory, Idun Reiten................... 135



vi

4. Symmetries: An interdisciplinary workshop organized by Ina Kersten and

N} Y AV L2 27 3ol £ L7 143
Symmetries of the Painlevé equations and the connection with projective

differential geometry, Ljudmila Bovrdag .............ccouuuiiuiiiiiiiiiiiiiiainannns 145
Symmetry and symmetry breaking in particle physics, Tsou Sheung Tsun........ 161
Symmetric attractors and symmetric fractals, Emilia Petrisor ..................... 169

Twistor correspondence and symmetries of the self-dual Yang-Mills equations,

TAIANA IVANOVA . . oo oot e et e e et e et aaeananas 177
Some properties of Hamiltonian symmetries, Inna S. Yemelyanova............... 193
g-dimensional formulas for the cyclic polyene Hubbard model, Ufuk Taneri..... 205

Hamiltonians of the Calogero-Sutherland type models associated to the root

systems and corresponding Fock spaces, Valentina Golubeva..................... 217
PART IILI: APPediCeS ...cureiiieii i eii e tieearaaearaaearasnssnasnsrnasnssnasnasnnnnnns 231
5. Appendix A: Committees, Coordinators and Participants..................... 233
L0800 311501 1 (< S 235
{000 T0) 11 =1 0 ) 3 237
List of participants in EWM’ 07 ... .ottt eiaeens 241
6. Appendix B: Report of general assembly and EWM statutes ............c..... 251
Decisions taken during the general assembly.............coviiiiiiiii i ninen., 253

European Women in Mathematics: Statutes........coooveiiiiiiiiiiii e eiaeaanns. 257



PREFACE

During the meeting of European Women in Mathematics in Madrid 1995 it was de-
cided to organise the next general meeting of EWM in 1997, continuing the bi-annual
rhythm, but without knowing where the meeting actually would take place. We are
extremely grateful to Professor Narasimhan, director of the Mathematics Group at
the International Centre of Theoretical Physics in Trieste, for accepting to house the
meeting and to have it organised in collaboration with ICTP.

The Centre has a long and fruitful tradition for encouraging people—from develop-
ing countries in particular—to take up or continue a research career in mathematics
or physics. The Centre provides wonderful working conditions and organises interna-
tional meetings.

With the help of ICTP the information about the EWM meeting was widely distributed
and we reached out to many more women mathematicians around the world than
ever before. Besides the usual channels for information—the regional coordinators,
the EWM web-page, the EWM Newsletter and the EWM e-mail network—a poster was
produced at ICTP and the announcement was mailed to about 1500 addresses around
the world and also put on the ICTP web-page.

The interest in the meeting was overwhelming. More than 150 mathematicians ap-
plied to participate. The meeting was attended by about 100 participants from about
30 countries, most European countries were represented as well as Chile, Egypt, India,
Iran, Kyrgyzstan, Nepal, Tunisia, Uzbekistan and West Bank. The total list of mathe-
matical fields represented was also quite impressive. The research topics and fields
of interests of the participants covered mathematics in the broadest sense, from pure
mathematics to all kinds of applied mathematics, history of mathematics and didactic
methods.

Over several years we have experimented with improvements in ways of commu-
nicating mathematics to each other at EWM meetings. As a result we have sessions
with different topics, starting with an introductory talk. It is a big challenge to organ-
ise a session and to be a speaker addressing such a broad audience. At the Trieste
meeting one of the sessions was on p-adic Numbers, organised by Catherine Gold-
stein, another one on Representation of Groups, organised by Michele Vergne, and the
third one an interdisciplinary session on Symmetries, organised by Ina Kersten and
Sylvie Paycha. While the speakers of the two first sessions had all been invited ahead
of time, only two speakers were invited for the last, the extra activities that were de-
cided during the meeting involved inputs from participants and thereby broadened
the interdisciplinary aspect.

For the first time a Poster Session was included in an EWM meeting. It was organ-
ised by Capi Corrales and Laura Fainsilber who encouraged the participants to make
non traditional posters, also including some personal information. Indeed, the poster
session became a very colourful and important part of the conference. Besides the
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mathematical activities an EWM meeting usually contains a topic for general discus-
sion. At this meeting the topic was Women and Mathematics: East-West-North-South,
organised by Marjatta Nddtdnen and Marie Demlova. As an introduction the video
Women and Mathematics across Cultures was shown. This video includes four inter-
views that were filmed during the previous EWM meeting in Madrid.

It is always difficult to obtain sufficient funding. We did not obtain enough to sup-
port all of those who were dependent on financial support from outside and who
could not participate without. We are grateful for the support we received from the
European Union, the ICTP, UNESCO, University of Trieste, University of Gothenburg
and Chalmers Technical University, the European Mathematical Society, and a private
donation of Else Hoeyrup. ICTP offered to fully support two women mathematicians
(later on this became three) coming from developing countries to take part in the EWM
meeting and furthermore to stay as visitors at the Centre for a period of two months.
We received more than 50 applications for these special stipends. It was extremely
difficult to choose among the many well qualified women. Besides the three chosen
who spent two months at the Centre, three other participants benefitted from joint
agreements between their university and ICTP. Of great value was of course the gen-
eral support of ICTP by letting us use their facilities: conference and meeting rooms,
library, computers, photocopying equipment, and guest houses. Moreover, we had the
precious help of two of its staff members; Sharon Laurenti collaborated with us un-
til October when Livia Zetto took over, she became responsible for most of the local
organisation.

In our experience it is a different task to organise an EWM meeting than to organ-
ise any other mathematical conference. From the many letters and applications we
received and from our personal experience we know that EWM can make a difference.
On top of the mathematical concerns and practical matters it also becomes a more
personal project to make the meeting a success. We shall never forget how Livia Zetto
participated whole-hearted in our goals of reaching out and making the meeting a
success. The intensive collaboration between the three of us over the last couple of
months before the meeting took place worked out very well. Only when it was over
we had time to reflect on how special this collaboration had been to all of us.

In our opinion, the meeting was a success, both from a mathematical and a non-
mathematical point of view. We wish to thank all the organisers, the speakers, the
participants and the ICTP staff for letting this happen.

Bodil Branner and Emilia Mezzetti.

The complete EWM organising committee of the Trieste meeting consisted of Chris-
tine Bessenrodt (Germany), Bodil Branner (Denmark), Marie Demlova (Czech Repub-
lic), Emilia Mezetti (Italy), Rosa-Maria Miro Roig (Spain), Marjatta Ndatanen (Finland),
Sylvie Paycha (France), Ragni Piene (Norway), Caroline Series (United Kingdom), Inna
Yemelyanova (Russia).

These proceedings contain reports on all the mathematical talks that were held
at the meeting, as well as articles on the other events: the poster session, the EWM
video, the discussion on women in mathematics, and information about the life and
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structure of the association. They are available both on paper and in electronic form,
via the web page of EWM:
http://www.math.helsinki.fi/EWM/

or of the Electronic Publishing House
http://math.hindawi.com/ewm-97

We wish to thank the organisers and all those who gave talks in Trieste and wrote
articles for these proceedings, as well as those who worked on the Proceedings of
the 1995 EWM meeting in Madrid, namely Bodil Branner, Nuria Fagella, and Christian
Mannes, for providing us with an inspiring precedent and with a TeX style.

The editors, Laura Fainsilber and Catherine Hobbs


http://www.math.helsinki.fi/EWM/
http://math.hindawi.com/ewm-97
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EUROPEAN WOMEN IN MATHEMATICS

EWM is an affiliation of women bound by a common interest in the position of women
in mathematics. Our purposes are:

e To encourage women to take up and continue their studies in mathematics.

e To support women with or desiring careers in research in mathematics or math-

ematics related fields.

e To provide a meeting place for these women.

e To foster international scientific communication among women and men in the

mathematical community.

e To cooperate with groups and organizations, in Europe and elsewhere, with sim-

ilar goals.

Our organization was conceived at the International Congress of Mathematicians in
Berkeley, August 1986, as a result of a panel discussion organized by the Association
for Women in Mathematics, in which several European women mathematicians took
part. There have since been seven European meetings: in Paris (1986), in Copenhagen
(1987), in Warwick (England) (1988), in Lisbon (1990), in Marseilles (1991), in Warsaw
(1993), in Madrid (1995) and in Trieste (1997). The next meeting will be in 1999 in
Hannover.

At the time of writing, there are participating members in the following countries:
Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Germany,
Greece, Italy, Latvia, Lithuania, Malta, the Netherlands, Norway, Poland, Portugal, Ro-
mania, Russia, Spain, Sweden, Switzerland, Turkey, Ukraine, and the United Kingdom,;
contacts in Albania, Brazil, Chile, Egypt, India, Iran, Khirghistan, Nepal, Tunisia, Uzbek-
istan, the West Bank. Activities and publicity within each country are organized by
regional co-ordinators. Each country or region is free to form its own regional or na-
tional organization, taking whatever organizational or legal form is appropriate to the
local circumstances. Such an organization, Femmes et Mathematiques, already exists
in France. Other members are encouraged to consider the possibility of forming such
local, regional or national groups themselves.

There is also an e-mail network and a web page:

http://www.math.helsinki.fi/EWM,
where you will find this report as well as the proceedings of the previous general
meeting in Madrid in 95, the yearly Newsletters, access to a bibliography on women
mathematicians, and more. To subscribe to the ewme-all e-mail network send the
following command (typing your own personal names instead of firstname(s) and
lastname): join ewme-all firstname(s) lastname as the only text in the body of a mes-
sage addressed to:
mailbase@mailbase.ac.uk.

You will then receive confirmation of your subscription.


http://www.math.helsinki.fi/EWM
mailto:mailbase@mailbase.ac.uk.

EUROPEAN WOMEN IN MATHEMATICS

For further information contact:

The secretary of EWM: Riitta Ulmanen,
Department of Mathematics,

P.O. Box 4 (Yliopistonkatu 5),

FIN-00014, University of Helsinki, Finland,;
email:ewm@www.math.helsinki.fi,

Tel 358 9 191 22853, Fax 358 9 191 23213

May, 1998.


file:ewm@www.math.helsinki.fi

OPENING WORDS OF PROFESSOR NARASIMHAN

Director of ICTP

On behalf of the International Centre for Theoretical Physics, I would like to welcome
all the participants in the 8th General Meeting of European Women in Mathematics.
The ICTP is particularly happy to host this activity and be associated with it.

Since for many of you this is the first visit to ICTP, I would like to give some infor-
mation about the activities in Mathematics at the ICTP. As you may be aware, the main
function of the ICTP is to foster the development of science in Third World countries
and to help the scientists in these countries who work under various handicaps, like
isolation.

The Mathematics Section of the ICTP organises 3 to 4 conferences/schools each year
in fields of Mathematics cultivated in the developing countries. We have 300 to 400
participants in these conferences/schools.

The other major activity of the Mathematics Section is the visiting programme for
research. Each year a field of Mathematics is chosen as a theme for emphasis, and
around half the number of visitors would be in the field of emphasis. At the same
time we invite 3 to 4 established mathematicians in this field to visit the Centre during
the year, so that the younger mathematicians staying here can interact with them and
profit by it. We have approximately 100 visitors each year under this programme.

Each year, a generous contribution from the Commission of the European
Communities—within the framework of the “Training and Mobility of Researchers: Eu-
roconferences” programme—makes it possible to provide financial support for young
mathematicians from European countries to participate in the conferences in Mathe-
matics organized by ICTP. This has been mutually beneficial for mathematicians from
these countries and those from the developing countries. In addition to visitors from
developing countries, we have also a number of mathematicians coming to the Centre
from Europe. This year the Mathematics Section had 151 visitors from Europe.

I would particularly like to thank the staff of the Mathematics Section for all the
committed help they have given in organizing the Meeting.

I wish you a pleasant stay in Trieste and a fruitful meeting.






MEDIA COVERAGE OF THE EWM TRIESTE MEETING

Transcripts of press cuttings about the Meeting

The 8th General Meeting of EWM in Trieste was mentioned in the Italian press and
in the ICTP’s own news service. The following articles are transcripts of some of the
articles which appeared.

“We Are Women, We Can Count,” from ICTP Monthly update
of activities and events, December 1997

The 8th General Meeting of European Women in Mathematics will be held at the
Centre between 12-16 December. More than 150 mathematicians are expected to at-
tend, including three men. The meeting, which takes place every other year, is being
co-sponsored by ICTP, European Mathematical Society, UNESCO Venice Office for Sci-
ence and Technology in Europe, Universita di Trieste and Ent regionale per il diretto
all studio universitario. Previous meetings of European Women in Mathematics have
been held in Madrid, Warsaw, Copenhagen and Paris.

“Centre Hosts Women Mathematicians,” from ICTP Monthly update
of activities and events, January 1998

Last month, more than 100 women gathered at the ICTP for the 8th General Meet-
ing of European Women in Mathematics (EWM). Among the technical subjects dis-
cussed were symmetries, group theories and p-adic numbers. In addition, general
and group sessions—as well as a video-focussed on the plight of women in this
largely male-dominated discipline. While women mathematicians continue to con-
front problems of isolation and serious roadblocks to promotion, not all the news
is bad. Although the percentage of women mathematicians teaching in many north-
ern European universities—including those in Austria and Germany—remains below
10 percent, the percentage of women mathematicians in many southern European
universities—including those in Italy, Portugal and Spain—now ranges between 40
and 50 percent. The next meeting of the EWM will be held in 1999 in Germany.

“Questa ¢ matematica per I'altra meta del cielo,”
from I Piccolo, Thursday 11th December

Donne e matematica a Trieste. Bel trinomio, e proprio il caso di dirlo. Da domani fino
al 16 dicembre, il Centro internazionale di fisica teorica di Miramare ospitera I’ottavo
meeting di European Women in Mathematics.

La scelta della citta per I'edizione italiana di questo appuntamento biennale non
¢ casuale. La coordinatrice italiana dell’associazione ¢, infatti, Emilia Mezzetti, una
triestina doc. Nata a Trieste, studi classici al Liceo Dante, si laurea in matematica
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all’Universita della stessa citta nel 1973. E ora docente di Geometria presso il Di-
partimento di scienze matematiche del medesimo ateneo. I’abbiamo incontrata per
farci spiegare cos’@ Ewm. “E un’associazione di donne interessate alla situazione fem-
minile nella comunita matematica. Nel 1986, a Berkeley, al Congresso internazionale
dei matematici, un’assemblea dell’Association for Women in Mathematics, attiva in
america da oltre vent’anni, valutava la presenza delle donne matematiche nel mondo.
Li, alcune europee si confrontarono sulla situazione nel vecchio continente. Fu, in
pratica, la nascita di Ewm, sancita ufficialmente ad Helsinki nel 1993.”

Perché una societa matematica di sole donne? La ricerca di qualita, in ogni disci-
plina, non prescinde forse dal sesso? “A parte il fatto che gli uomini possono farne
parte come ‘supporting members,’ il problema é-dice-I’enorme divario delle percentu-
ali di donne attive nelle varie comunita matematiche europee. Per esempio, malgrado
il successo dei movimenti femministi, pochissime donne nord-europee iniziano una
carriera matematica (circa 4 per cento contro il 31-40 per cento in Italia).

“Situazione di quasi parita, invece nei paesi slavi. Di fatto, pero, le giovani matem-
atiche nord-europee vedono pochi modelli da imitare e non hanno spesso forza e
determinazione sufficienti per continuare la carriera. Non a caso il meeting di Trieste
si concludera con un dibattito sul tema: ‘Donne e matematica: Est-Ovest-Nord-Sud.’”

Quante donne parteciperanno? “Piu di 150. Circa una trentina italiane. Alcune, gio-
vanissime, ancora indecise se intraprendere la carriere scientifica. Qualche curiosita:
une donna arrivera dal Nepal, una dal Kirghizistan e una dall’'Uzbekistan. Rimarreno
a Trieste per circa due mesi.”



WOMEN AND MATHEMATICS: EAST-WEST-NORTH-SOUTH

MARJATTA NAATANEN AND MARIE DEMLOVA

University of Helsinki, Finland and Czech Technical University, Czech Republic

Introduction. Before the discussion the video “Women and Mathematics across
Cultures, EWM—European Women in Mathematics” was shown (a description of which
is given in the next article). After the video the participants were divided into seven
groups:

e France, Italy, Portugal, Spain and Turkey;

e Russia, Ukraine, Georgia, Romania and Bulgaria;

e Germany and Switzerland;

¢ Scandinavia, Estonia, Czech Republic, Poland and the Netherlands;

e Great Britain, Malta and Greece;

¢ non-European countries.

In general discussion suggestions, ideas and experiences were collected. The general
discussion was led by Rosa Maria Miro Roig and Marjatta Naatanen.

OUTLINE OF THE REPORT.

General situation.

Suggestions.

Situation in non-European countries.

Russia.

Two short reports (Great Britain, Malta, Greece and Germany, Switzerland).

vk W

1. General situation. The problem of women mathematicians turned out to be very
similar regardless of culture. The general opinion was that there is no equality between
women and men. Women are struggling to meet several fulltime commitments and a
lot of expectations from the society.

For women, a friendly supportive atmosphere is important. Women mathematicians
are often isolated, hence a supportive network of women is of great importance.

Many countries, for example those of the third world, share lack of resources, prob-
lems with communication (e-mail not available or filtered, lack of travelling possibili-
ties and low salaries of scientists). In those countries women mathematicians are even
more isolated and family commitments heavier than in western European countries.
Another matter of great common concern was the diminishing number of mathemat-
ics students—mathematics is loosing its attraction even if its importance in most
fields is growing.

As the situation stands outstanding women do manage to arrive at high positions
but they have to be of a much higher calibre that their male counterparts.

Because of —rather that in spite of —the fact that we have gone a long way to improve
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the conditions of female mathematicians we realise that there is still along way to go.

2. Suggestions. General suggestions that arose form the general discussion in
Trieste.
¢ Women scientists should be visible.

Women should be scientifically visible, for example they should be invited to
give talks. Several successful attempts were carried out, e.g., in Norway.
Women should be visible in the media. In some countries women seem to have
a negative image in the media. One problem with the media is that they do not
always respect the private life of the interviewed persons.

e Access to scientific information should be guaranteed. This will help women
mathematicians to feel less isolated, especially women from the countries with
lack of resources. Women should get a fair share of funding.

e Increase the number of women mathematicians in higher positions.

Flexible paths for career development are recommended; also the possibility
of early permanent jobs seems to support women.

Recommended quota to ensure that a fair percentage of qualified women rise
at each stage to the next (for example: are nominated professors).

Special positions for women; this requires positive atmosphere in public opin-
ion and not too tight a job market.

Special lecture series and awards for women.

Making it easier for women to obtain part-time employment, even as scientists
on jobs with large responsibilities.

Pregnancy should be treated on the same level as military service i.e. time spent
on maternity leave should not be counted against a woman when it comes to
comparing the number of papers she has published with a person who has not
had time away from their studies.

Financial help for graduate students with children.

Try to change attitudes of employees to choose math graduates, try to make
mathematics more attractive to students.

¢ Increase of the number of female students of mathematics.

Attitudes of teachers at primary and secondary schools should be changed into
encouraging girls to study mathematics and not discouraging them.

Organize special meetings, programmes, summer schools for girls.

Women scientists could meet with female students to encourage and inspire
them. Several successful and unsuccessful attempts were carried out, e.g., in
Norway.

The mathematical level of primary school teachers is very important.

Attempts that have been tried with success/without success in some countries.

Special positions for women. It was successfully done in Sweden but requires
special conditions: e.g., a good atmosphere in the society, not too tight a job
market. The success was sometimes limited by the lack of female candidates.
Women’s counsellor at universities to guarantee that women are treated fairly.
This has been introduced in Germany; at some universities with success, in oth-
ers without success.
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Scholarships for women trying to get back into scientific life, e.g., for women

there should be no age limit. In France several women mathematicians have

restarted research. In Germany women prefer not to apply for such grants, there
is a general fear that having such a grant in a CV makes a bad impression.

Change of curricula at all levels.

- University: combining mathematics with other fields like computer science,
management, information technology, economics, natural sciences, biology
and languages was tried with success in Poland.

- High school: different streams (for example math and technical science, nat-
ural science and biology, economics, culture and languages) all with at least
some mathematics, is being tested in the Netherlands and has been successful
in Estonia and Poland.

Early mathematics education with good teachers and good books is advisable.

In Ukraina they start with children of age 4.

Campaigns for girls to choose mathematics and exact sciences. Open hours for

girls to visit technical universities. This was tried in several countries with bigger

or smaller success.

Single sex schools seem to encourage girls to better achievements in mathemat-

ics, this is an experience obtained in UK.

Girls prefer to compete either in groups or for example by e-mail (then they are

not stressed by time-limits). This is a widely obtained experience.

Trying to improve the conditions of women via political parties was tried in

Greece with some success.

Suggestions for the work of EWM arising from the general discussion.

EWM should be more active in spreading out information about positions that
women can apply for in different countries.

For the third world countries EWM could give moral support, spread informa-
tion, for example the Newsletter, and to give contacts.

EWM should try to create scholarships for women in isolated places.

EWM can serve to create supportive networks of women.

EWM should ensure a good proportion of female speakers at conferences when
possible.

EWM could use its influence to promote exchange visits between foreign univer-
sities especially for researchers that find they cannot share their interests with
their colleagues in their departments.

More information about the situation of women in mathematics in different coun-
tries together with statistical data can be found in “Round Table D: Women and Mathe-
matics” edited by Kari Hag, contained in the Proceedings of the European Mathematical
Congress, Budapest 1996.

3. The non-European countries: Chile/Brazil, India, Iran, Kyrgystan and Uzbek-
istan, Nepal, Palestine, Tunisia. The common problems (social, family, etc.) for
women with a career all over the world are shared by all. In these discussions ad-
ditional problems were brought to light that are particular to each country. These
problems are not exclusively women’s problems, but are rather problems that stand
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in the way of the development of mathematics in general in these countries. We can
sum up the problems as arising from the limited availability of resources, the diffi-
culty in communication and travel and the limited provision made by the institutions
and/or goverments for the advancement of education.

The problem arising from the availability of very few resources poses a greater
difficulty to women. Few resources can be partially compensated for by better com-
munication, which implies the presence of good means for it and often the need for
travel. For those women who have families, we know how difficult travel can be. Men
are at an advantage here and hence can develop better in their fields. Moreover in
some countries travel is more difficult because of the expense and the difficulties in
getting visas.

The limited means of communication makes an additional obstacle in some coun-
tries. Also, the use of e-mail can be limited for political reasons. The filtering of incom-
ing e-mail often results in never receiving the messages. In Nepal e-mail services are
provided by private companies and its use can be quite costly on the individual. In-
stitutions do not provide e-mail service. These limitations in communication pose an
additional difficulty of acquiring information about activities in mathematics around
the world.

In what follows is a presentation of the different situations in each country and the
conditions of mathematical activity and of women in mathematics there.

CHILE/BRAZIL. The conditions in Chile are rather poor. The situation of Brazil is
better but still not a good one. Many women in Brazil tend to study mathematics up to
the masters degree and do not continue. Often they end up being teachers in schools.
Getting a position at a university with a Ph.D. is not difficult for women but attaining
higher positions is.

INDIA. The situation of women in mathematics in India is worsened by the atmo-
sphere in the Indian society. It is considered fair and necessary for a wife to follow
her husband and leave her research career. There are examples where a wife was not
allowed to defend her Ph.D. thesis because her husband did not approve of it.

IRAN. The introduction of a Ph.D. programme in mathematics about ten years ago
(after the Iran/Iraq war) has been a very important factor in the development of mathe-
matics in Iran. Women are encouraged to seek a programme of study in mathematics
and do not feel discriminated against. Their attaining of higher positions is solely
hindered by their commitments to their family. The resources in mathematics are ad-
equate. The presence of a resource center for scientific research in Tehran helps a lot
in providing and finding material upon the request of the individual researcher.

KYRGYSTAN AND UZBEKISTAN. As in other countries of the former Soviet Union
the situation is Kyrgystan and Uzbekistan is very difficult for there is a lack of all
sorts of resources. Salaries of all scientists are very low, especially of women. There is
no possibility of getting literature, no journals are ordered by libraries. The situation
of women scientists is even worse for usually women have the duty to make their
families survive.
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NEPAL. Up to 50 years ago there was no provision made by the goverment of Nepal
for the education of girls. The rate of illiteracy in Nepal stands at 60% now. These
factors have had adverse effect on the development of women in many fields, also
in mathematics. In the past 50 years improvements were introduced and many pro-
grammes of scholarships for girls have been developed. The Ph.D. programme in Nepal
is 20 years old. At the present there are only 4000 women in Nepal holding gradu-
ate degrees. Of these 30 are in mathematics. Of these 30 women 50% are working in
schools and 12 of them are working at the university. Only 2 of the 12 hold Ph.D.
degree. There is no woman in full professor postion. Resources are inadequate and
for any advancement in mathematical research outside contacts have to be sought.

PALESTINE. The situation in Palestine is quite bleak. It is worth noting that the
universities in Palestine offer undergraduate programmes in almost all fields. Al-
though there have been some attempts, only very few fields have started graduate
programmes. Only one graduate programme in mathematics leading to a masters de-
gree is offered and it is a joint programme with a university in Britain. In universities a
lot of emphasis is placed on teaching (an average teaching load is 12 hours per week),
although research is expected. Research on teaching and community development is
preferred. This places an extra burden on those who want to do research in the pure
fields. Also the fields of interest of mathematicians are very diverse, hence everyone
feels isolated. The only way to develop is to seek outside contacts.

TUNISIA. There is mathematical activity in Tunis. The mathematics department of
the university in Tunis has more than 100 faculty members of which 20% are women.
Itis not a problem for women to choose an education in mathematics nor is it difficult
to acquire a position at the university. The problem is in their ability to get into higher
positions. For 20 years only one woman was able to become a full professor and now
there are only 4 in that position. The difficulty lies in the many commitments a woman
has in her family and it is not a problem of discrimination. The Tunisian goverment
strongly encourages education and makes special provisions for women in education.
School and university education in Tunisia is free.

4. Russia. The situation of women in mathematics in general does not differ much
from the situation in other countries. One of the main problems is the lack of re-
sources. The latest research shows that in general there is no equality between women
and men in mathematics in Russia. Women suffer more from the lack of scientific in-
formation and the lack of adequate equipment. Most women think that they have
smaller chance of publication. Another problem, typical of Russia, arises from the
fact that Russia is a very large country and to be in contact is rather difficult.

Research was done by Vitalina Koval (1989) to map the situation of women in science.
There are some facts appearing in her report: The percentage of women in science and
scientific service has increased from 42% in 1940 to 53% nowadays. At the same time
the salaries in science have decreased: In 1940 the salary of a scientist was 142% of
the average salary level, in 1997 it was only 75% of the average salary level. There are
only 34.4% women among the scientists with Ph.D., and there are only 14.9% women
among the scientists who achieved the highest scientific degree in Russia—Doctor
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of Sciences. Only 7.7% of full professors in mathematics are women, but almost half
(41.7%) of women among scientists without Ph.D degrees are women.

Last year an International conference of women-mathematicians was held on the
Black Sea near the city of Novorossiysk. A questionnaire was spread among the par-
ticipants and the following facts have come up from it (more than 50 participants
responded). The respondents had rather high qualification, 76% of them had a scien-
tific degree; more than a half of them had at least ten publications during the last 5
years. Since the economic situation of women mathematicians is very difficult 64% of
women have an extra job. In spite of this 56% of them are satisfied with their work,
practically all (96%) want to keep their work. Due to bad conditions 43% would be
ready to work abroad. Almost all respondents stressed that in the whole there was no
equality of men and women in mathematics in Russia.

5. Two short reports characterizing the situation in Europe. Two short reports
were chosen to show the typical situation in Europe; one describes UK together with
Malta and Greece and the second one deals with the situation in German speaking
countries—Germany and Switzerland.

5.1. Report of the group Great Britain, Malta and Greece.

Irene Sciriha, Malta

Our group consisted of four members from British universities, three from Malta and
on from Greece. We started by comparing the percentages of female Ph.D. graduates,
of those qualifying in math and of those reaching the grade of full professors in the
various countries. The fraction in Britain is very low with 17% female Ph.D.s, 7% of
the Ph.D.s in math are female and only 3 out of 267 full professors are female. In
Malta the fractions are close to zero in each category. In Greece the number of women
compares well with that of men and the problem lies elsewhere since mathematicians
find it hard to find employment because there are too many qualified mathematicians.
So many have to do unrelated jobs like driving taxis and working in restaurants.

This data led us to search the reasons causing these differences. Why is mathe-
matics so popular in Greece but the number of undergraduates is dwindling in many
universities of the UK and in Malta? One possible reason is the importance given to
the subject at secondary level in Greece. The proliferation of new degree courses in
nearly related subjects like Computer Science, Information Technology, Business Stud-
ies and Accountancy in Malta may have contributed to the reduction in the number
of undergraduates opting to study mathematics. However even in Greece, the number
of women qualified in Mathematics that actually make it to the higher grades is low.
Besides, men seem to find it much easier to obtain financial aid than women do.

To encourage more people to take up Maths in Malta and the UK, fun problem ses-
sions for pre-university students should be organised. Besides efforts should be made
to dispel the fear often expressed for the subject by most pre-university students.

In Malta, a problem facing Math graduates is that the type of occupation offered to
them is mainly teaching. Whereas in the UK there are many math graduates working
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as statisticians, in the Accountancy, Financial, Insurance and Nuclear Fuel fields, these
occupations seem to be filled with graduates in Engineering and Economics in Malta.
It was suggested that besides a PR exercise to alter the attitude of employers towards
the Math graduates to obtain more attractive job openings presently taken up by
graduates in other fields, a restructuring of the degrees directed towards numerate
Maths, say, could help to offer more options.

The ethics by which employers should be guided was next discussed. It was gener-
ally agreed that a woman faces a number of drawbacks mainly because of the many
full-time commitments she is expected to see to. Whereas asking a female candidate
whether she is married and has children is considered unethical, some members felt
that asking how long the candidate intended to stay is acceptable. Besides, pregnancy
should be treated on the same level as a service to the country like ‘military service.’

In the UK there was no discrimination positive or otherwise with female undergrad-
uates. The negative bias starts when looking for an occupation or for a post-doc when
male counterparts seem to be favoured. Whereas a woman having children should
be given all the legal support to obtain optimum conditions, care should be taken to
prevent a social problem: that of parents working long hours and neglecting their chil-
dren. We should expect as a fundamental right legislation enabling the time available
to work to be co-ordinated with the time that parents need to be at home with their
children. It is important that females are not penalised because of unfair expectations
by society. Positive discrimination in favour of women is not very flattering and the
ones who benefit from it may tend to lose as regards the prestige they enjoy. The opin-
ion that the best person for a particular job should be chosen was expressed, however
the action adopted in Sweden to appoint a female professor in every department to
promote the idea of a role model was considered as a positive step that should be
copied.

A problem encountered in Malta is due to the small size of its population and the
isolation of the island that inhibits cross fertilisation of ideas. There is only one Uni-
versity and so there are restrictions that deter women from proceeding with their
studies. Among these are the lack of diversity of branches of specialisation, the atti-
tude of predominantly male selection boards that give male candidates bonus points
(perhaps not openly) and the lack of financial support.

5.2. Minutes of the session on Germany and Switzerland.

Anke Wich, Germany

1. Prologue. There were participants form Germany and Switzerland and the prob-
lems and attempts to overcome them seemed very similar in both countries.

In order to understand the below discussion one had better know what stages there
are in a “typical” German curriculum vitae. We usually attend school for 13 years,
starting at the age of six, till we get our Abitur, which enables us to go to university.
What may happen there till one finally reaches the tenured position of a professor is
explained in the following table. In particular note that the Habilitation is a precondi-
tion of reaching professorship. Periods are to be understood as counted in years.
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period | certificate/title aspired to | typical position | period of payment
5-6 Diplom student -
2-5 Doktor assistant (BAT2) 5
3-7 Habilitation assistant (C1, C2) 7
Professor permanent

Moreover, it might be of interest that Germany is a federal republic and cultural and
educational decisions are usually taken on a county (Land) level. Consequently situa-
tions and policies might vary largely from county to county. The counties mentioned
here are those represented by the participants.

2. Situation-statistics. In the latest EWM statistics on women engaged in mathe-
matics Switzerland occupies the very last place, Germany the second last.

The WWW-site of the DMV (German Mathematical Society) recently published a sur-
vey (http://www-dmv.math.tu-berlin.de/archiv/memoranda/statistikMW.html) yield-
ing numbers of women involved in mathematics at German universities. This survey
basically was an initiative of C. Bessenrodt as the EWM regional coordinator in Ger-
many and as the representative of the EMS Committee on Women and Mathematics
and was only rudimentarily supported by the DMV.

By an unofficial list of female habilitations since 1919, the first woman ever to re-
ceive her habilitation in Germany was Emmy Noether (Gottingen) in 1919, and there
have been 90 since. This is to be compared to an average number of 40 men per an-
num in recent years. The percentage of women to receive their habilitation has not
significantly increased within the last decade.

3. Attempted Remedies. A brief outline of some of the initiatives taken by German
universities and counties to increase the percentage of their female professors.

FUNDING-HABILITATIONSSTIPENDIUM AND WIEDEREINSTIEGSFORDERUNG. These
are grants given to scientists holding a doctoral degree and striving for a habilitation.

The Habilitiationsstipendium (grant for a habilitation) is given to applicants of both
sexes for a period of three years, and it amounts to DM 3000.- per month. Yet for
instance in the county of Sachsen-Anhalt the aim is to have a percentage of 65% of
women among the scientists receiving it, and since at the moment the committee
giving the grants consists of equally many women and men they manage to realize
that aim.

The Wiedereinstiegsforderung is meant for women who due to family reasons had
to interrupt their careers and now wish to (re-)start their habilitation. It is paid for a
period of two years and amounts to DM 2000.- per month.

Yet women prefer not to apply for these grants, in particular the Wiedereinstiegs-
forderung, as they are problematic, seen from various angles: they are not generally
respected; there is a general fear that having them in your CV makes a bad impression.
The problem is that they are just temporary fundings; once terminated they leave you
to a still uncertain future, just some two or three years older than before. Moreover
they require the habilitation to take place within the period the grant is being paid
and thus are only appropriate during the final period of a habilitation process. We are
still lacking appropriate funding for the beginning post doc period.
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Thus all in all a permanent solution would be highly preferable.

WOMEN’S COUNSELLOR—FRAUENBEAUFTRAGTE. In the meantime most German
and Swiss universities have Frauenbeauftragte, at least one, in most cases one per
faculty plus an overall one for the whole university. They act as a counsellor and ac-
tive support to women who come up with particular problems and generally watch
out that women are not discriminated against. There are faculties, for instance at the
TU Darmstadt, where the Frauenbeauftragte has a right to take the part of a coun-
sellor in every employment procedure, be it for assistant jobs or professorships (cf.
Frauenforderplan).

Results seem to vary widely. For women at those universities it is certainly a great
relief just to know there is someone whom they can contact in cases of emergency. And
there have been many cases where the Frauenbeauftragte was able to help where there
would have been no solution without her (e.g., discrimination against female students
during oral examinations). For the Frauenbeauftragten themselves life sometimes is
not so pleasant since (male) reactions to their existence—as holders of that very job,
not personally of course—are still ambiguous. Yet acceptance seems to have been
improving.

There also have been complaints about rather, to say the least, inefficient Frauen-
beauftragte, who then, by generalisation, might endanger the whole concept. On the
other hand a devoted Frauenbeauftragte will invest a lot of time she might have turned
into academic qualification otherwise.

QUOTA—THE HESSIAN FRAUENFORDERPLAN. In the county of Hessen there is a
quota on the employment of women in public institutions. At universities the aim is
to have the same percentage of female assistants at a faculty as of women receiving
their diplomas from that faculty. Moreover the percentage of female professors at a
faculty should equal the percentage of women holding a habilitation all over Germany.

Up to now it does work out very well for the assistant level, but not at all for the
professoral level. In Darmstadt for example, there is not a single female professor.
Rumour has it that the committees who have to work out the ranking of applicants
for a professorship never place a woman among the top three of them—unless they
want to have her in the first place—for fear she might be appointed by the ministry
(who takes the final decision) for political reasons (Being pro-women is politically
correct and might make a nice feature for the next election ... ).

4. East-West. The one thing we could definitely say here is that the system in the
former GDR much more encouraged and enabled women to pursue both, family life
and their careers. It was considered normal that a woman had a full time job as well
and, at the same time, that state facilities should take care of her children. Hence
day nurseries and schools were provided, offering three meals, educational and en-
tertainment programs in extremely small groups (sometimes 5 children per tutor).
Nowadays, if you want to have your children to be taken care of during th whole day,
you have to find a private nurse and pay an enormous amount of money. Moreover,
the former GDR provided permanent post doc jobs, and less mobility was required
from women who wanted to pursue their academic careers.
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5. Immediate actions to be taken.

e Convince the DMV to order a survey on what has become of those women who
have benefitted from the Wiedereinstiegs- or Habilitationsstipendien: Were they
able to still pursue their mathematical careers?

e Encourage a doctoral thesis (statistics/history) on the development of women in
Swiss and German mathematics.



THE EWM VIDEO: WOMEN AND MATHEMATICS
ACROSS CULTURES

MARJATTA NAATANEN

University of Helsinki, Finland

1. How it came about. The video “Women and mathematics across cultures” came
out in 1996. The EWM video was made by the initiative of Marjatta Ndatanen (Fin-
land), in collaboration with many people, especially Bodil Branner (Denmark), Kari
Hag (Norway) and Caroline Series (UK). The filming was done mainly in Madrid with
the indispensable help of Capi Corrales (Spain). The project started in 1995 and ended
up with a 25-minute video.

Why a video?
The push to make the video came from my 3-fold frustration
e the experience from a predominantly male group making a video on a Finnish
mathematician and ending up with Finland looking like a country with hardly
any women
¢ experiences with people in womens’ studies coming to us with a long set of ques-
tions expecting us to provide them with their research material, questions we
often do not even find to be relevant. The last “straw” was when they refused,
not wanting to “risk their careers,” to work on the concrete case of extremely bad
and unfair publicity a female candidate for a Rectorship got in Finland
e like all of us, I am extremely busy, and do not have time to go around talking
about our situation. I wanted to get our own voice heard without “interpreters.”
I thought that if we made a video, then despite our busy-ness, using modern tech-
nology we could just send the video to convey the message for those who want to
hear.

How was it made?

There was no money, I had very little experience, but I succeeded in getting the
small but very important initial support—a sympathetic and influential person from
the predominantly male video group mentioned above helped to get the small initial
funding, and Bodil Branner and Kari Hag agreed to join the project. Ilona Ikonen, a
video student, came to the Madrid EWM meeting to do the interviews. We had prob-
lems all the time, the rented equipment did not work, too few people to do the job
etc. Fortunately Capi Corrales was good in creative problem solving. The women who
kindly agreed to tell their story all did it very well and many people helped in many
ways.

The preliminary editing was done in Copenhagen by Bodil Branner, Kari Hag and
myself, again with minimal cost at Bodil’s home. Kari had undertaken the organizing
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of the round table in Budapest EMS-meeting and she got financing from her university
to complete part of the video which could be used at the roundtable. The biggest
single task was the coloured map of Europe, to get the statistics and the colors I
wanted. Later, I got money from the Finnish Cultural Foundation to make the part
introducing EWM and to complete the project. Caroline Series joined our group via
e-mail to write good texts in proper English.

Since we had problems with the sound, finally I had to add a full written text for
the interviews so that people can easily understand what is being said. This I made by
listening several times to the video, almost learning it by heart.

How has it been used?

The video has been mailed to all EWM coordinators and contact people in about
30 countries. It has been shown in different countries in mathematical meetings, con-
gresses, some schools, teachers’ meetings, science meetings, in series of mathematical
videos, to some journalists, diplomats, politicians. The response has been quite posi-
tive. The best comment was when a woman came to me and said that earlier she did
not understand what women mathematicians were talking about, why should they
have special problems? After watching the video she felt moved and changed her
opinion, seeing how hard these women are trying to be able to pursue their work in
mathematics, the subject they love.

2. The full text of the video. The idea of EWM—European Women in Mathematics—
began in 1986 at the International Congress of Mathematicians in Berkeley, California,
where several women mathematicians from Europe were taking part in a panel dis-
cussion organised by AWM, the Association for Women in Mathematics.

EWM started to grow as a network and over the next years organised meetings in
Paris, Copenhagen, Warwick, Lisbon, Marseilles, Warsaw and Madrid. The meetings in-
volved mathematical talks and general discussions and the network provided a meet-
ing place for women mathematicians right across Europe, including the east.

We started to collect statistics and found surprising facts about the uneven spread
of women mathematicians in different countries. In 1993, EWM was legally established
with its base and main office in Helsinki.

There are, in 1996, over 200 members and 23 countries are represented. Each coun-
try or region is free to form its own organisation appropriate to local circumstances
where activities are organised by a regional coordinator. EWM acts as a coordinating
umbrella. Secretarial work is handled from Helsinki, mainly by e-mail.

EWM also has an e-mail network which enables its members to keep in touch, a
newsletter and a homepage on the internet.

http://www.math.helsinki.fi/EWM

The purposes of EWM are to encourage women to take up careers in research in
mathematics, to foster international scientific communication among such women,
and to promote equal opportunity and equal treatment of women in the mathematical
community.

Itis an organisation for women, but men are welcome as supporting members. EWM
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organises meetings every other year. Meetings involve mathematical talks and dis-
cussions on topics, for example “creativity” and “family versus career,” of general
interest to women mathematicians. It is an organisation for women, but men are wel-
come as supporting members. We have been experimenting with new, non traditional
and more “user friendly” methods of giving talks and learning mathematics. At the
Madrid meeting in 1995, women who have studied and worked as mathematicians
in different cultures described some of their personal experiences. It is dangerous
to make generalisations, but there are interesting differences and indications as to
why for example Latin countries have more women mathematicians than Northern
European countries and why an organization like EWM is needed even nowadays in
societies like ours.

The coloured map of Europe illustrates that the Latin countries have many more
women mathematicians than the Scandinavian ones.

The map would change if the percentage of full professors in mathematics were
used as criterion. Countries like France, Georgia, Italy and Poland would stand out
with percentages ranging from 8 to 16.

The Madrid interviews.

Laura Fainsilber, France

Algebra and Number Theory

Born 1965, University studies USA and France: MIT, UC Berkeley, Paris 6, Ph.D. 1994
Besancon.

(end of written text)

“So T have travelled a lot, I have been in different departments with very different
atmospheres and at first I did not feel that being a woman in mathematics was at all
an issue and I did not think that I should be singled out or anything. I knew I was in
a minority but I did not want to be treated separately or anything like that.

And then I started thinking it was a problem in Berkeley when I saw that most of
my friends who were women were flunking the exams and were dropping out of the
graduate programs.

Then when I came back to France I felt the atmosphere was very different because
the way people interact was very different and my situation was also different.

When I came back I was amongst students who knew less than I did and I was being
paid more attention and that made a difference I think in the way I felt about doing
math and I felt much more confident because I was getting a lot more contact with
professors than I had otherwise and so I decided I would rather stay in France and
not go back to the States.”

(Written) Post-doc: Switzerland 1994-95, Besancon (France)1995-96 Single, no chil-
dren.

“I think the difference I felt between Besancon and Geneva is similar to the difference
between Southern countries like Spain and Italy where there are a lot of women; they
do not feel isolated but there are other problems that come up and women in Northern
countries where they are very few and their problems are not the same but the isolation
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is tremendous and because there are these two extremes it makes it difficult but
interesting for a society like EWM to bring these people together. The people from
the North need to see groups of women who work together, it is impressive.

I do not know, one thing I was thinking of was the structure of academic careers.
I think in countries that give permanent positions rather early women have a better
chance than in countries where you go from postdoc to postdoc and have to wait a
long time while you are having children and while raising them at a time that is really
crucial for women—it is a difficult time for men too.

I found this year just after the Ph.D. very difficult partially because I was isolated
in Geneva, partially finding my bearings and my motivation and getting to start to
work on my own after the Ph.D., and a lot of women do get lost at that stage—in
addition to the ones that got lost before—so I think that areas where they already
have a permanent position at that stage, even if they fumble around for a few years it
does not matter as much because they have a permanent position. It is clear in France
of all the women I know that some do excellent work and are quite impressive but
maybe a lot of them do have a few years where things do not always fall together.”

How would you compare working in mathematics and in other fields?

“In math the type of work we do is different from other fields in that it is very
individual. It is not ill defined but there isn’t a lab and an experiment that is going on,
the teaching is a continuous thing and that is well defined and it’s clearly visible from
the outside. The mathematics depends so much on the concentration we can give to
it and the sort of quiet atmosphere and the self-confidence of the individual that it
makes us probably more sensitive to anything that goes wrong.

There is clearly, at least in France there is clearly the fact that it is essentially a
masculine field so you can position yourself in different ways—go into it because it
is a masculine field and you want to, or you can try to ignore it. But it is clear that
when you meet people they say: “You are a mathematician?! You don’t look like a
mathematician” you: “Really?” They are very surprised and I do not think they have
the same reaction towards male mathematicians. You go around in the departments
except in Besancon and a few other places you see people around and you go to
conferences there are one or two women in the room, that makes the atmosphere
different from other fields.

(written) Mara D. Neusel, Germany

Invariant Theory

Born 1964, University studies Germany: Doktor 1992 Géttingen (geometric topology)
mid 1992-1995 unemployed; stipends and/or visiting positions at Pedagogicheskii Uni-
versitet Yaroslavl (Russia), University of Kassel (Germany), University of Ziirich (Switzer-
land), University of Minnesota Minneapolis (USA), Institut fiir experimentelle Mathe-
matik Essen (Germany), Yale University (USA), MIT (USA) since mid 1995 assistant at
University of Magdeburg (Germany). Married, no children.

“What I want to discuss is I think the most powerful weapon against women in math
in Germany:
In Germany women have been allowed to study at the university for about 90-100



THE EWM VIDEO: WOMEN AND MATHEMATICS ACROSS CULTURES 23

years, so this means they have the right to enter the university to attend the lectures
and so on. This does not mean that the professors are aware of them, it is quite the
contrary, they ignore them. For example, I spent after my Ph.D. a little bit of time in
German-speaking Switzerland and it is the same there, women are just ignored, and I
spent a little bit of time in Russia and in the United States and there it is quite different.
At the departments I visited there were at least some women and the atmosphere was
not so chilly, so hostile.

And after studies?

“To come back to this young female Ph.D., suppose against all probability she is
stubborn enough to try to find her way into the mathematical community, to stick
it out, then she has to face the problem that usually vacant jobs are not announced
publicly in Germany. The area is so narrow and the deadline is two weeks after the
announcement appears, so that it is obvious that the decision is already made. Without
definite details, I want to remark that at the university where I studied, Gottingen, only
two women achieved their Habilitation Thesis, this was Emmy Noether and Helene
Braun and the last one 53 years ago.

I think that is quite impressive.

At the stage for applying for professorships in addition to all committees being
dominated by men, the committees who choose referees whose opinions are solicited
for ranking the candidates are also dominated by men so it is little wonder that so
few women appear at the top of such lists, in Germany!

It seems to me that the status of position correlates inversely to the number of
women who hold this position, so status times number of women is constant. And
Germans believe that the worth of position is founded on its technological achieve-
ments, scientific advances, so of course Germany is incapable of allowing women to
hold such important positions as full professorships at university.

I think this is quite an interesting question for a social historian.

When I think about that old boys’ club in Germany I think we do need strong young
womens’ club to combat it.”

Why did you choose mathematics?
“I have a very simple answer to this question: I just love it.”

(written) Marjorie Batchelor, USA, lives in UK,
Coalgebras and Supergeometry

“You have invited me to come and say a little bit of my experiences of being a woman
mathematician in America and in England, particularly comparing how women are
received in those two countries.”

(written) Born 1952, University studies USA and England: AB Smith College, Warwick
University, Ph.D. 1978 MIT (USA)

Research Fellow, New Hall, Cambridge, 1979-1982. SERC Advanced Fellowship 1985-
1993. Visiting Professor, Tufts University, 1989-1990. SERC Research Assistant, 1993-
1994. Retired March 1994. Began informal apprenticeship as violin maker. Began part-
time work for local music shop March 1996. Continues to work on the research as an
amateur. Marvried, 3 sons (born 1980, 1982, 1985).
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“I think it is always dangerous to attempt to make comparisons on how women are
treated in country X and country Y on basis of personal experience.

For example I was always treated with great courtesy both as a student and as a
visitor at MIT and certainly I was treated with great courtesy at Tufts and I think it
is very dangerous to compare that particularly since at Cambridge I was hunting for
jobs and I never actually looked for jobs or applied for jobs in the States, and I have no
doubt whatsoever that my reception would have been different in the States if I had
been hunting for jobs—but I think there are some differences, some real differences.

I am particularly aware in Britain of the absence of concern about actually making
sure that equal opportunities and affirmative action are in fact implemented.

In the States it has been a law for some time and it is a law which seems to bite, not in
that it is universally respected but at least those people who are hiring are frightened
of the law, frightened enough to make it affect their judgement, moreover and more
important than that, frightened of being taken to task for not observing the law.

They would very much like to make a good impression, it is politically correct and
they would like to be seen to be favouring women or at least giving them a fair chance
whenever possible which has a very positive affect on hiring I think, they listen to you,
quite keen to see if there is any chance that you would be a candidate for them.

Now that does not mean that there aren’t any number of examples in the States
where women have been very badly done by, just as there are many examples I am
sure of men who have been very badly done by as well, but there is the consideration
at least that they are concerned that they should look good.

For example when MIT lost Michele Vergne not only the math department but the
entire university was in great pains to at least be seen to be doing something.”

Did you have the same experience in England?

“Now that has not been my experience in Britain, and I would say that in other
respects I found reactions at least in England to be substantially behind reactions
that I have found in the States.

For example when it became clear that my own future was in danger I decided to go
round and ask my senior colleagues for help. Had they any ideas what I might apply
for or how I might find further work, and I was dismayed that half of them should
look at me with some surprise and say: “Well, does it matter? Your childern are not
in private education, do you need the money? Your husband has a job.”

Now these people were not unkind and I counted them as my friends and I still do,
it just did not occur to them that that would not be the done thing to say.

The other statement that I got back from them was: “Well, gee, I'd love to help you
but I can’t lie for you, your CV just does not compare with that of the 30-year-old
competitors for this job (30 year-old men, implied).

Now that I found also something that I think would not have been said, it might have
been thought but it would not have been openly said in the States, given that I have
been working halftime for most of the last 10 years and it is not entirely reasonable
to compare performance in 10 years working halftime with performance of 10 years
working fulltime.

It was not so much that it was said but that the problem of comparing CV’s for
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people who have worked halftime just had not occurred to the people who judged
me.

I am unhappy just saying negative things I've found and I'd like to take the oppor-
tunity to say also some of the positive things.

There is a very great deal that people can do in a small way to make things much eas-
ier for women who are trying to survive in math, and that is what I call the transitivity
of respect:

If mathematician A respects mathematician B and mathematician B respects mathe-
matician C then mathematician A will also respect mathematician C and if C is a young
woman trying to make a name and B happens to be one of the big names in the field
then you’ll find that most of the other mathematicians will indeed respect the woman
in question.

That is of enormous help and I have been on the receiving end of that sort of help
a number of times.

(written) Isabel Salgado Labouriau, Brazil, lives in Portugal.

Singularity theory, Dynamical systems, applications to Biology

Born 1954, grew up in Brazil. University studies: Brazil and England, Universidade de
Brasilia, Warwick. Ph.D. 1982 Warwick

Universidade do Porto (Portugal) since 1982, 1 year visits to Warwick 1989-90, Sao
Carlos (Brasil) 1995-96. Married, no children.

“I studied in Brazil, started studying math in Brazil and then later on went to do
graduate work in England. And that was the first time someone told me that there
was any problem with being a woman and being a mathematician, until that moment
it was a profession a woman could choose or not.

Back in Portugal it’s very similar to Brazil, you have lots of women doing math. So
it didn’t strike me as very important except everything that is international related to
your career, then you notice that being a woman is an issue.

What is your impression of the situation in England?

“I have this feeling that it works on the guilty feelings of these women for instance
in England that are trying to have a mathematical career and it makes it very hard for
them, much harder than it was for me.

You have more women doing math in all the latin countries. I have no idea why that
is, it is an observation of fact, but I have no explanation for that.

You certainly have a different way of organizings the society. Maybe you have no-
ticeably, comparing for example with England, more women who have a career, so
naturally you have more that do math, but I have no idea why is that so.

Imean one would expect the opposite and then you discover, when I went to England,
you see it was very funny, I was going to this 1st world country coming from the 3rd
world, everything was going to be much better and then I realized that it was not, it
was the opposite, in social terms it was much worse in England than it was in Brazil.

In Brazil if you want to work you work and it is natural.

It is difficult to find out, I think that would be interesting for a sociologist to study
but I am not a sociologist.
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After England, Portugal was like going home in many respects, and one of them was
working in this department where you have more women than men which was a sort
of feeling of coming back to normal.”

(End of video)

The video “Women and Mathematics across Cultures, EWM—European Women in
Mathematics,” now equipped with subtitles, is available from the EWM office in Helsinki.
The cassettes are in VHS. The cost varies due to the system (PAL, SECAM, NTSC) and
the mailing cost.

For details, please contact:

Riitta Ulmanen,

ewm®@helsinki.fi


mailto:ewm@helsinki.fi

REPORT ON THE POSTER SESSION

LAURA FAINSILBER

1. The plan. As an introduction, here is a part of the message that was sent to
participants before the meeting:

“We hope that we can turn the Poster Session into something more inspiring and
creative than is usually seen. We are depending on all of you to make this a success.

We encourage everyone of you to make a poster. Really everyone: no matter if you are
a senior researcher having obtained a lot of results already or if you are a beginner still
in the process of picking a topic to work on. We believe that this is the best way in which
such a large and broad group of mathematicians can communicate their mathematical
interests to each other and quickly make contacts.

Please keep in mind that the aim of the posters, beyond the presentation of results, is
to introduce ourselves, explain the type of problems we are working on, and to give a
context in which others can ask questions. We would also like the posters to contain a
photo of you, and some information about yourself.

Please, make your poster up to 60 cm high and 70 cm wide (at most six A4 pages). You
can either prepare your poster in advance or you can produce your poster after arrival.
But be aware that there is not much time for preparation. We will provide paper, pens
and glue; please bring the photo and ideas.

On Thursday evening, there will be a poster preparation workshop. We plan to form
small groups according to fields of interest. Each group will make a large poster to
serve as a general map of the mathematical area, in which the particular interests of
the individual members of the group will appear in more detail. The idea is both to learn
about each other’s mathematics and to understand relationships between specialities.

On Friday evening, we will formally open the poster session and it will remain open
for the rest of the meeting.

Title and abstract. Many of you have already sent a title and a short abstract of a
poster. If you have not already done so we ask you to give us this information as soon as
possible. Please sent the information to Livia Zetto (zetto@ictp.trieste.it), the secretary
at ICTP who has been associated with our meeting. This will help us make a pre-plan
for how to order the posters and you will make our planning easier by providing us
with this information. But we will not be excluding anybody from contributing to the
meeting by a poster in the very last minute”.

2. Goals and results. The poster session had several functions, for each participant
and for the group as a whole.

One was to reflect on making good communicative posters. We often have to present
our work in this form at conferences, we practice giving talks, but have little training
in turning our work into an informative 60 cm X 70 cm board. The exercise here was
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particularly difficult since the posters were meant for non-specialists. At the same
time, there was less pressure than at a specialised meeting, so we had a good oppor-
tunity to practice and experiment.

It was important for each participant, not only the speakers, to have an opportunity
to expose her work. One effect was to spark contact between participants with close
research interests who may not otherwise know of each others work since the talks
are meant for and attended by a general audience. Another was for the readers to
come in contact with fields far from their own. This consolidates the interdisciplinary
aspect of EWM meetings, and enables us to get to know each other mathematically as
well as socially.

For the group as a whole, the richness and diversity of all the posters gave a both
global and detailed picture of who constitutes EWM. It was quite impressive for each
person, whether or not she had contributed a poster, to realize how much we repre-
sent.

3. What actually happened. The evening before the start of the conference, we held
a poster preparation meeting. We first made a list of topics on a blackboard, and tried
to group participants according to specialities. The idea was to make group posters
that would represent rather wide areas. In fact, the specialities were quite spread out
and this was difficult to realize. Many had work to do on their personal posters and
found an opportunity to improve the graphics with some of the material available.
Others discussed their field with their “mathematical neighbors” but the evening was
barely enough to share our understanding of the objects we deal with, let alone put it
on paper. One team did manage to produce a collective poster.

After the first day of the conference, and a little extra time to finish up our posters,
the exhibition was assembled in the main hall. We tried to arrange the posters ac-
cording to fields. The poster session was officially opened after dinner and continued
until the end of the week. Since our lecture room opened into the main hall, there was
ample opportunity to see the posters (though maybe not enough time to read them).
All in all, 60 posters were presented (for 98 participants).

Most posters gave a combination of personal and mathematical information. There
were a few posters on women in mathematics and on educational themes, as well as
four panels on mathematicians from an Italian exhibition “Women scientists of the
Occident. Two centuries of History.”

4. What makes a good poster? The first ingredient of course is the mathematics.
Then there are many things we can do to help get it across and to introduce ourselves.

Many of the posters were both informative and pleasant to read. No single recipe
came out of the session, not even agreement on what may have been “the best” posters.
What did come out, is that it is difficult and takes care and time to express one’s work
in very few very simple words and images, and that there are several different ways to
do it very well. Different approaches work well for different fields of course, depending
on the availability of pictures and on the accessibility of the material.

Most posters were based on a paper, or on a shortened and simplified version of
the written exposition of a result. Of course, this is the format in which we are used
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to presenting mathematics, and it is probably the most informative for those who are
already interested in a subject and have time to read. But some other ingredients can
also attract a wider audience and make it more accessible.

The clarity of the poster was important: that it be written big enough (even by hand)
and that the general layout be easy to see from a distance made the posters more
accessible.

Some of the successful recipes included graphics, for instance pictures of the author,
drawings, computer-generated illustrations of mathematical objects, a diagram of the
mathematical field, with connections to other fields and problems.

A mixture of personal and professional information made them attractive and fa-
cilitated contact with the author. One participant told the story, with photographs, of
how she had convinced her family to let her come.

Strategies also depended on the level of advancement of the authors. Some posters,
especially by Ph.D. students, concentrated on stating a problem, by defining the ob-
jects and stating some important properties. One experienced mathematician men-
tioned her most important result, gave a list of good reference texts in her field, and
indicated how to contact her, in a very simple and effective poster.

5. Next time. Here are a few suggestions to improve on the poster session for the
next meeting.

We start with a practical issue, very simple but not so easy to achieve in practice: to
have good lighting of the posters. Since the hall at ICTP was not meant as a place to
read, the lighting was not sufficient to take a good look at the posters in the evening.

It is good that they be in a place where one naturally spends time between lectures,
and where one has room to walk around and chat. It would be better to have more of
an opening ceremony, when everyone is there and takes a first look at the posters, as
well as an occasion later on to meet with the authors, once participants have had time
to read some posters and get interested (since the authors and the participants are
the same people, this could involve several shifts where some of the authors stand
nearby their poster).

Deciding how to arrange the posters, and in particular trying to gather posters that
were “mathematically close”, turned out to be a challenge, overcome only with the
help of guessing and random decisions. A possible activity for the first evening, as a
way for the participants to introduce themselves, would be to try to draw collectively
a “map” of the specialities represented at the meeting. It would be interesting both
to discover one’s neighbours and to understand links between fields that are further
away from one’s own. This map could then be posted, along with a geographical map
showing where participants come from, and also help to lay out the posters.

Given the success of the poster session in Trieste, the effort we had put into our
posters, and the richness represented by the whole, the question came up of how we
could give the posters a more permanent form and preserve them. One suggestion
was to form a booklet with reduced versions of the posters, a sort of “poster session
proceedings,” another was to put them on the web. For this time, the poster session
remained an ephemeral event, some authors took their posters home, the others were
carried to Helsinki, and we publish here abstracts of the ones that had to do with
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p-adic methods, in relation with the session on the p-adics. Maybe a poster session
is essentially an ephemeral form of math presentation, as some of its interest comes
from the combination of all the independent contributions. Still, it would be worth-
while to think about ways to make it durable by reflecting it in another medium.

6. List of posters.

e Polina Agranovich, Ukraine, Polynomial representation of subharmonic functions
in the half-plane with masses on a finite system of rays.

e Saloua Aouadi Mani, Tunisia, DKT finite element approximation of geometrically
exact shell models.

e Irina Astashova, Russia, On asymptotic properties of one-dimensional Schrodin-
ger equations.

e Shanti Bajracharya, Nepal, Analytical and group theoretic study of special func-
tions.

e Karin Baur, Switzerland, Construction of a covering in complex projective space.

o Eva Bergkvist, Sweden, Polynomial convexity.

e Eva Bergqvist and Catarina Rudclv, Sweden, The University of Umeaa (without
polar bears and reindeer).

e FEva Bergqvist and Catarina Ruddlv, Sweden, Women in mathematics in Sweden.

e Audrienne Bezzina, Malta, Women in mathematics.

¢ Andrea Blunck, Germany, The projective line over a ring.

e Larissa Bourlakova, Russia, The first integrals and the Lyapunov functions.

e Rachel Camina, UK, p-adics and pro-p-groups.

o Constanta-Dana Constantinescu, Rumania, Applications of p-adic numbers in the
theory of dynamical systems.

e Claudia-Paula Curt, Rumania, Starlike and convex mappings of order p defined
on the unit ball of C".

e Susanna De Maron, Italy, Great mathematicians, from Hypatia to Florence
Nightingale—Italian women mathematicians. (Part of an exhibition on women sci-
entists of the Occident).

e Marie Demlova Czech Republic Research activities—Teaching—References.

e Laura Fainsilber, Sweden, Quadratic forms over the p-adics.

e Lisbeth Fajstrup, Denmark, Geometrical methods in computer science.

e Barbara Fantechi, Italy, Deformation theory; Gromov-Witten invariants.

e (Cettina Gauci, Malta, Chaos theory.

e Fateme-Helen Ghane, Iran, Degree one maps of the circle with non-trivial and
non-persistent rotation sets.

e Danielle Gondard-Cozette, France, Fields of interest—Methods of proofs—
Sample of results—Papers.

e Sandra Hayes, Germany, The real dynamics of Bieberbach’s example.

e Helle Hein, Estonia, Optimisation of geometrically nonlinear plastic shallow
shells.

e Shirin Hejazian, Iran, Derivations of JB*-algebras.

e Catherine Hobbs, UK, Applications of singularity theory to oscillating integrals.

e Tatiana Ivanova, Russia, The infinitesimal symmetries of the self-dual Yang-Mills
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equations.

Magdalena Jaroszewska, Poland, Quality assessment in higher education.
Sudesh Kaur Khanduja, India, Generalised Schonemann-Eisenstein irreducibility
criterion.

Lyudmila Kirichenko, Ukraine, The sufficient conditions of transition to the be-
forehand given limit distribution.

Bettina Kuerner, Germany, Construction of a bilinear form f for a linear group G
such that G € O*(V, f).

Olga Kuznetsova, Ukraine, Strong summability. Sidon type inequalities. Integra-
bility of multiple trigonometric series.

Nadia Larsen, Denmark, Faithful representations of crossed products by actions
of Nk,

Maria Leftaki, Greece, Some periodic and symmetric orbits of a charged particle
moving in the field of two revolving parallel magnetic dipoles.

Gulbadan Matieva, Kyrgystan, Teaching experience—Research—Publications.
“On the geometry of partial mappings of Euclidean space.”

Emilia Mezzetti, Italy, On threefolds which are covered by a family of lines of
dimension two.

Clementina Mladenova, Bulgaria, Formulation of multibody system dynamics on
a Lie group.

Sanghamitra Mohanty, India, Fractal geometry of circular mappings.

Marjatta Ndiditdnen, Finland, Examples of symmetric Fuchsian groups.
Constanta Olteanu, Sweden, Particular case of the movement of electroconductor
viscous fluids around the plane board with incidence.

Luisa Paoluzzi, Italy, Determining 3-orbifolds and singular sets via Heegaand di-
agrams.

Sylvie Paycha, France, Some mathematics around path integrals.

Emilia Viorica Petrisor, Rumania, Symmetric periodic orbits in the dynamics of
reversible diffeomorphisms.

Dorina Raducanu, Rumania, On some classes of holomorphic functions of ¢"
into the complex plane.

Mukhaya Rasulova, Uzbekistan, The solution of the Poisson-Boltzmann equation
for self-consistent potential of infinite, random, nonlinear and non-uniform sys-
tems.

Helen Robinson, UK, Division algebras and fibrations of spheres by great spheres.
Jacqueline Rojas Arancibia, Chile, From conical sextuplets to canonical curves in
P3.

Olga Rozanova, Russia, Energy estimations and blow-up of solutions in a system
of atmosphere dynamics.

Catarina Ruddlv, Sweden, Rational approximation in C"*, n > 2.

Irene Sciriha, Malta, Nut graphs-maximally extending cores.

Silke Slembek, Germany, Constructivist tendencies in algebra—The algorithm of
Grete Henry-Hermann.

Tamara Stryzhak, Ukraine.

Sorayya Talebi, Iran, Derivations of reversible jC-algebras.
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Betul Tanbay, Turkey, M-ideals and the Schur property.

Ufuk Taneri, Turkey, Exploitation of the symbolic computation in the evaluation
of the group theoretical characteristics.

Rodica Tomescu, Rumania, A limit theorem for the specialty sequence.
Lyudmila Turowska, Ukraine, Representations of twisted generalised Weyl con-
structions.

Tatiana Vasilieva, Russia, The use of regularisation methods for an aerodynamics
inverse problem.

Hilda Irene van der Veen, the Netherlands, Soil plasticity and Eigenproblems.
Anke Wich, Germany, Sketched geometries.

Corinna Wiedhorn, Germany, Groups, parabolic systems and flag-transitive ge-
ometries.

Inna Yemelyanova, Russia, Symmetries and differential equations.



OTHER ACTIVITIES OF EWM SINCE THE MADRID MEETING

BODIL BRANNER, LAURA FAINSILBER AND SYLVIE PAYCHA

Here is a list of activities that EWM has been involved with in the last few years. We
refer to specific reports for more details on each of them. Some of the information is
available on the web site.

1. Meetings and events

1.1. Interdisciplinary workshops.

e Renormalization: Paris, June 14 and 15, 1996. Organized with femmes et mathe-
matiques by Sylvie Paycha. See the 4th EWM Newsletter.

e Moduli spaces in mathematics and physics: Oxford, July 2 and 3, 1998. Organized
by Frances Kirwan, Sylvie Paycha, Tsou Sheung Tsun. See the report in the following

pages.

1.2. International events.

¢ Round table at the 2nd European Congress of Mathematicians, Budapest, July 1996.
Organized by Kari Hag. See the proceedings of the congress.

¢ Round table at the International Congress of Mathematicians, Berlin, August 1998.

Organized and moderated by Srinivasan, Bhama, University of Illinois at Chicago,
U.S.; Christine Bessenrodt, University of Madgeburg, Germany; Bettye Anne Case,
Florida State University, U.S. In collaboration with AWM (Association for Women in
Mathematics) and the committee on women in mathematics of the European Mathe-
matical Society.

Events and policies: Effects on women in mathematics.

The panellists are women in mathematics from several different countries. Each will
discuss impacts she has noted on the work and lives of women in the mathematical
sciences which may result from various national policies, practices, and events. Do
some of these events cause more women or fewer to participate in mathematics?

1.3. Regional associations and meetings.

e In France, femmes et mathematiques runs one or two-day meetings every few
months, with mathematical talks for a general mathematical audience, and lectures
and debates on themes related to women in mathematics, often in dialogue with
women outside mathematics, for example other educators, sociologists, psychoan-
alysts, musicians. Most of the meetings take place in Paris; once a year a major meet-
ing is organized in another city (Bordeaux in November 1998, with mathematics and
musical composition.)

Every January since 1996, femmes et mathematiques gathers women graduate stu-
dents and recent Ph.D.’s for the forum des jeunes mathematiciennes where they give
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short talks on their research. This is an opportunity for many young women who are
not usually in contact with the association to present their work, gain experience and
visibility, meet other women mathematicians, and become aware of issues, in particu-
lar about recruitment and careers of women mathematicians in France. It takes place
right before the start of the ‘recruitment season’ and has been very successful. Short
write-ups of the talks are published in the journal of femmes et mathematiques.

¢ RAWM: The Russian Association for Women in Mathematics has organized sever-
alinternational conferences in the last few years. See the EWM newsletter number 5
and the web site of Women in Science and Education,

http://mars.biophys.msu.ru/awse.

e The Franco-Russian Meeting was organized jointly by femmes et mathematiques
and RAWM in Luminy, France, Dec 2-6 1996. It gathered 11 Russian and 20 French
women mathematicians around mathematical talks, introductory and specialized, and
discussions. See the report in Newsletter number 4.

e BWM: British Women in Mathematics have organised one-day workshops roughly
every 15 months, featuring women mathematicians as speakers. The next BWM day
is planned for September 16th 1999 in Edinburgh. See the last 3 EWM Newsletters for
brief reports on the BWM days which have been held so far.

e In Germany, members of EWM have been working with the womens’ delegate
(frauenbeauftragten) at several universities (see Newsletter 4). A meeting of German
women mathematicians: Tagung deutscher Matematekerinnen, will take place Octo-
ber 16th and 17th in Darmstadt, with talks in pure and applied mathematics, and a
discussion on the theme of the role model function of women in mathematics and
the natural sciences. It is organized by Christine Bessenrodt, Andrea Blunck, Roxana
Brechner, Eva Hermann, and Bettina Kuerner, with both public and industry funding.

Bettina Kuerner is also building a web site for German Women in Mathematics at

http://www.mathematik.tu-darmstadt.de/ewm/

e A Nordic Summer school for female Ph.D. students, was organized by Gerd Brandell
at the mathematics department of Luleaa university in Sweden, June 15-20, 1996. The
Program included three minicourses of 6 hours each, on Holomorphic Dynamics in the
Complex Plane by Bodil Branner, Enumerative Algebraic Geometry by Ragni Piene, and
On the Foundations of Mathematics, from Set Theory to Constructivism by Jan Smith,
as well as lectures and seminar talks given by the participants.

2. Publications and videos

e Women and mathematics across cultures. This video film, produced in 1996, briefly
introduces EWM, provides some statistics, and allows four women mathematicians to
share their personal experiences about the impact of cultural differences on the status
of women in the profession. Its making was motivated by questions such as: Why are
there many more women mathematicians in Italy and Brazil than in Norway, England
or Germany? What is it about Latin culture that encourages women mathematicians,
while that of Northern Europe mitigates against them?

The film was directed by Marjatta Naitdanen in collaboration with Bodil Branner
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(Technical University of Denmark), Kari Hag (UNIT-NTH, Trondheim, Norway), and
Caroline Series (University of Warwick, UK).

See the article and the full text of the video in these proceedings.

e Video on the Franco-Russian conference in Luminy: produced with femmes et math-
ematiques by Sylvie Paycha and Christine Charreton.

e Proceedings of the Madrid meeting. Editors: Bodil Branner and Nuria Fagella. Avail-
able from the regional coordinators or on the web site of EWM.

e Proceedings of the workshop on renormalization, edited by Sylvie Paycha, with
femmes et mathematiques.

e Newsletter number 4 was edited by Cathy Hobbs and came out in January 1997,
number 5 was edited by Ewa Bergqvist, Nadia Larsen, Catarina Rudalv, Ufuk Taneri,
and Anke Wich and came out in April 1998. They were distributed via e-mail and
are available from the web page. They both contain information on the life of the
association, reports on general and regional meetings of EWM, on events and policies
in various countries regarding women in mathematics.

e femmes et mathematiques now publishes a journal, since 1996. It contains news
of the association, mathematical survey articles (written versions of the talks given at
meetings), and articles on education and women.

e RAWM has published articles, abstracts and proceedings of the conferences of
Women Mathematicians that took place in Voronezh in 1995 and in Nizhny Novgorod
in 1996.

e A bibliography of math books written or edited by women, gathered by Mara Neusel
and containing about 1200 references, is accessible from the web page.
Raphaéle Supper has gathered a bibliography of ressources on women in mathematics,
which appeared as supplement to number 1 of the journal of femmes et mathema-
tiques.

3. Communication and information.
e Olga Caprotti has developped a web site

http://www.math.helsinki.fi/EWM/

which makes a lot of information about EWM easily available, both general information
for people outside the association, and detailed reports such as these proceedings.
See the article by Olga in Newsletter 5.

e The e-mail network reaches 245 people, some members, some not. It is used to cir-
culate EWM information, such as the newsletters, job and conference announcements,
and sometimes for questions and discussion.

4. Projects for the future.

e The 9th General meeting is being planned by Christine Bessenrodt, Polina Agra-
novich, Ina Kersten, Olga Kounakovskaya, Irene Pieper-Seier, Ufuk Taneri and Tsou
Sheung Tsun. It will take place at Kloster Loccum near Hannover, Germany August
30-Sept. 5, 1999.

¢ Developing communication with the regional coordinators. One way to do that is
to start a news bulletin: every 3 months the international coordinators could write
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to all the regional coordinators and ask for brief news about recent local events. The
idea is to hear about activities but also what new policies or events may affect women
in mathematics in particular regions or universities.

e femmes et mathematiques has two projects related to World Mathematical Year
2000: a book entitled “Regards de mathematiciennes” and a video entitled “Mathe-
maticiennes aux quatre coins du monde.”

e We are open to suggestions for WMY2000. Contact Kari Hag.

e We would like to develop more “networking” structure: links and exchange pro-
grams between women mathematicians, between Europeans and non-European, men-
toring for younger women.

e We would like to find funding sources for the association, in addition to looking
for funding for each separate event.



EWM WORKSHOP ON MODULI SPACES
IN MATHEMATICS AND PHYSICS

Oxford, 2 and 3 July 1998

Supported by the London Mathematical Society and ‘Algebraic Geometry in Europe.’

Organising committee: Frances Kirwan (Oxford), Sylvie Paycha (Clermont-Ferrand),
Tsou Sheung Tsun (Oxford).

This interdisciplinary workshop was organized around 7 talks giving different
points of view on the notion and use of moduli spaces. Various areas of mathemat-
ics and mathematical physics were represented: algebraic geometry, quantum field
and gauge theory, and dynamical systems. The different perspectives presented here
contributed to the richness of the meeting which was attended by about 20 mathemati-
cians, including a good number of graduate students, from various countries in Eu-
rope and another 20 from Oxford and other universities in Britain. Special efforts were
made by the speakers to present their topic in a form accessible to non-specialists.

Many participants expressed their wish for other such topical small scale meetings
to take place in the future and some concrete proposals were made during the meeting.

The small scale of this meeting made possible many informal discussions among
participants between the talks. At the end of the meeting, one of them nearly forgot
her train, so engrossed was she with the discussions!

The contents of the talks will appear in proceedings which we hope will be readable
by non-specialists who wish to have an idea what moduli spaces are.

The following are the abstracts of the talks.

1. Frances Kirwan (Oxford): Introduction to moduli spaces. Classification prob-
lems in algebraic geometry (and other parts of geometry) often break down into two
steps. The first step is to find as many discrete invariants as possible (for example,
if we want to classify compact Riemann surfaces then the obvious discrete invariant
is the genus). The second step is to fix values of the discrete invariants and to try to
construct a moduli space; that is, an algebraic variety (or other appropriate space in
other parts of geometry) whose points correspond to the equivalence classes of the
objects to be classified, in some natural way. This talk will attempt to explain how
this idea can be made more precise, and to describe some ways to construct moduli
spaces.

2. Claire Voisin (Paris): Hodge theory and deformations of complex structure.
This talk will introduce to the theory of variations of Hodge structure, that is the way
the Hodge decomposition of a projective or Kdhler compact variety varies with the
complex structure, and its applications: in one direction, the theory of periods helps
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understanding properties of the moduli space (Torelli type theorems, obstructions,
curvature properties flatness ... ). In the other direction, deforming the variety allows
to establish strong Hodge theoretic statements for the generic fiber (Noether-Lefschetz
type theorems, (non)-triviality of the Abel-Jacobi map, Nori’s connectivity theorem).

3. Rosa-Maria Miro-Roig (Barcelona): Moduli spaces of vector bundles on alge-
braic varieties. Moduli spaces are one of the fundamental constructions of Algebraic
Geometry and they arise in connection with classification problems. In my talk, I will
restrict my attention to moduli spaces of stable vector bundles on smooth algebraic
projective varieties. Roughly speaking a moduli space of stable vector bundles on an
algebraic projective variety X is a scheme whose points are in “natural bijection" to
isomorphic classes of stable vector bundles on X.

Once the existence of the moduli space is established, the question arises as what can
be said about its local and global structure. More precisely, what does the moduli space
look like, as an algebraic variety? Is it, for example, connected, irreducible, rational or
smooth? What does it look as a topological space? What is its geometry? Until now,
there is no a general answer to these questions.

The goal of my talk is to review some of the known results about moduli spaces of
H-stable vector bundles on a smooth, irreducible, projective, algebraic variety (X, H).
In particular, the properties which nicely reflect the general philosophy that moduli
spaces inherit a lot of geometrical properties of the underlying variety.

4. Tsou Sheung Tsun (Oxford): Some uses of moduli spaces in particle and field
theory. In this talk I shall try to give an elementary introduction to certain areas of
mathematical physics where the idea of moduli space is used to help solve problems
or to further our understanding. In the wide area of gauge theory, I shall mention
instantons, monopoles and duality. Then, under the general heading of string theory,
I shall indicate briefly the use of moduli space in conformal field theory and M-theory.

5. Ragni Piene (Oslo): On the use of moduli spaces in curve counting. In enumer-
ative algebraic geometry one works with various kinds of parameter spaces—Chow
varieties, Hilbert schemes, moduli spaces of maps. We shall discuss these spaces and
how they can be used to attack curve counting problems—in particular the problem
of counting curves on a surface. This classical problem turns out to be of interest to
theoretical physicists. Their interest has triggered quite a lot of work on the problem,
in the context of both algebraic and symplectic geometry, but even more, their point
of view has provided the mathematicians with new insight and new methods.

6. Mary Rees (Liverpool): Teichmiiller distance and meromorphic 1-forms. This
work arose out of a need to analyse a function of the form d(x,T(x)). (It uses some
quite ancient theory, which was nontheless new to me.) Here, d is the Teichmiiller
distance function on a Teichmiiller space § = 9(S) of a surface S,and 7:J — J is a
function. An example is given by T(x) = x - g, where g is an element of the modu-
lar group of S, which acts on 7. (I was actually motivated by a different, less classi-
cal example.) After introducing Teichmiiller space (mostly for marked spheres), and
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Teichmiiller distance, I shall show a connection with holomorphic and meromorphic
1-forms (on a different surface S’: a hyperelliptic curve in the case when S is a marked
sphere). I shall look at bases of the first cohomology of a surface S’ in terms of homolo-
morphic and meromorphic 1-forms. I shall use this to show how to find the second
derivative of the Teichmuiller distance function on J(S).

7. Tatiana Ivanova (Dubna): Moduli space of self-dual Gauge fields, holomorphic
bundles and cohomology sets. The solution space of the self-dual Yang-Mills equa-
tions in Fuclidean four-dimensional space R* is considered. We discuss the Penrose-
Ward correspondence between complex vector bundles over R* with self-dual con-
nections and holomorphic bundles over the twistor space of R*. The moduli space of
self-dual Yang-Mills fields is described in terms of Cech and Dolbeault cohomology
sets.






THE MATHEMATICAL PART OF EWM MEETINGS

CAPI CORRALES AND LAURA TEDESCHINI LALLI

“We reproduce here an article originally written for the proceedings of the Madrid
meeting in 1995, in the hope that it will continue to inspire those preparing presen-
tations for EWM meetings and other occasions.”

The organization of the scientific part of an EWM meeting is quite different from
that of most mathematical meetings. Starting at the EWM meeting in Luminy in 1991
we decided to experiment with the format trying to reach the following main goals: to
learn mathematics which is new to us; to learn how to transmit mathematics; to learn
how to discuss mathematics with other mathematicians not necessarily specialists
in the same field as we are; and finally to be able to establish scientific links which
women, isolated for a number of reasons, can refer to at any stage in their professional
career. We have been using the following structure as a model.

1. Before the meeting

STEP 1. A scientific committee, chosen by the standing committee of EWM, se-
lects three topics in mathematics. Several considerations are taken into account when
choosing the topics:

- the topics should be in the avantgarde of current research;

- the topics should involve beautiful mathematics;

- the topics should try to include also branches of mathematics where, historically,

for whatever reasons, the presence of women seems more difficult to detect.

STEP 2. Once the topics are chosen, the scientific committee chooses a coordina-
tor for each topic. Several considerations are taken into account when choosing the
coordinators:

- their knowledge of the field;

- their commitment to the project of making the transmission of mathematics a

main goal of their work;

- their ability and will to work in team with others.

STEP 3. The coordinator selects the speakers for her topic. Several considerations
are taken into account when choosing the speakers:

- their knowledge of the field;

- their ability, or their will to improve their ability, to transmit knowledge.

STEP 4. Coordinators and speaker work together as a team in preparing the
talks. The different talks form a whole, and the level of difficulty should be progres-
sive. Once a speaker has been assigned a talk she is invited to give a written draft of
her lecture to the coordinator. To ensure crossfield dissemination, and, above all,
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understandability, the coordinator then distributes these drafts among a few women
mathematicians NOT specialists in the topic, who will read them and point out
passages where assumptions are taken for granted, or needing an example, or oth-
erwise remaining obscure, etc. We call the crucial function of these professionals
“stupid readers,” or “naive readers.” The coordinator sends the comments of the non-
specialists back to the speakers. The speakers make the appropriate corrections and
changes and return the text to the coordinators, who send them again to the readers
for a final check.

2. The lectures. Many are the questions that frame our work within the mathemat-
ical talks. Here are a few of them:

- how do we create an atmosphere in which the audience feels free to ask questions?

- how do we balance the inevitably different levels of knowledge about the topic in
a general mathematical audience?

- how do we balance the flow of questions with the flow of the speaker?

- how do we manage to be understood by non-specialists without decaffeinating
our expositions?

- mathematics is difficult; how can we make something clear and at the same time
keep its richness, depth and not hide its difficulties?

Common sense is a main tool we count on, but we know it is not sufficient. Common
sense, patience, and, as scientists, the will and inclination to experiment, try and find
by searching. Several strategies have been tested, and as our experience develops, so
does the number of strategies that we see work adequately towards answering the
above questions. Here are a few:

- one or two women volunteer to concentrate to their fullest ability in the talk
and ask questions when they do not follow the speaker, or think this is the case
for many in the audience. We label this other crucial function “planted idiots.”
We think it works best if the planted idiot is actually naive in the field. Other
questions are welcome as always;

- the speaker knows ahead of time that when a question is posed by someone in
the audience, if someone else knows a more clear or direct way of answering it,
this person will speak up. In this way the flow and rhythm of the talk is easier
to mantain; and, since the speaker knows this might happen, she does not feel
intruded or judged when it does;

- if interdisciplinary connections or other interesting discussions start taking place
along the course of a talk, the coordinator of that topic should channel it into
organizing a side discussion later, making sure there is a time and a space allowed
for it and announced.

3. Writing and publishing the lectures. It is our experience that this is the step
where we should be more cautious, since mathematicians have the habit of writing
only for specialists. Hence, a process analogue to that of step 4 (before the meeting)
is followed: each speaker sends a draft of the text to the coordinator. The coordinator
should distribute this draft again among “naive readers,” who will make sure the textis
faithful to the version and comments agreed on before the actual talk. The coordinator
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receives the comments of the non-specialists and sends them back to the speaker. The
speaker makes the appropriate corrections and returns the new corrected text to the
coordinator, who, in turn, sends them again to the readers for a final check.

4. Conclusion. As one can deduce from the above summary, the mathematical part
of an EWM meeting is conceived as a learning experience for ALL THE PERSONS taking
part in it. Ideally:

- everyone will learn new mathematics, even the specialists. The advantage of
speaking clearly to an interdisciplinary audience of mathematicians is that such
situation rarely fails to give as fruit the bringing out of connections or points of
view thus far unknown to us;

- the speakers will improve their ability as lecturers and mathematical writers;

- everyone will improve her ability to speak about what she works on.

Unfortunately, it is still the case in many European universities that women are
singularities within the mathematical departments. Frequently this has a well known
inhibiting effect on us, resulting in lack of self-consciousness or defensiveness, both
particularly negative when we start our professional path. And if we are inhibited, we
do not speak about mathematics, and if we do not speak about mathematics we do
not learn how to speak about mathematics, and the loop traps us. The vicious circle of
communication, well-known to many, creates a steady isolation which becomes sterile
and depressing, as opposed to the temporary isolation which is necessary to all cre-
ative work. In fact, we think many problems arise for women in mathematical research
from the different types of isolation (communication, life passages ... ) adding to the
second, necessary one, and making it seem unbearable.

5. Other forms: The interdisciplinary workshops. As we went on planning this
EWM meeting we came across words which seem to have different meaning in different
branches of mathematics. But often the use of the same words in mathematics points
to a common root, a core idea. We think (!) it is one of our original contributions
to organize workshops around a word, or an idea, to re-walk paths and rediscover,
if not build, common ground on both language and conceptual basis. The first such
encounter took place in Madrid, on “Moduli spaces,” with speakers from algebraic
geometry, number theory, hyperbolic geometry and quantum field theory. In Madrid
the next interdisciplinary workshop was put forward, on the words “Renormalization
Group.” It will hopefully take place in June, 1996 in Paris, with contributions from
statistical physics, quantum field theory, markov processes, holomorphic dynamics
and real dynamical systems. These workshops are kept more informal, with several
persons responsible for illustrating what they deem necessary to the core idea, or the
strength of the results that follow in their field. Everybody else is welcome to “pitch
in” in workshop style.

“The Renormalization workshop did indeed take place, as did a workshop on moduli
spaces in mathematics and physics in Oxford in July 1998. See the report in these
proceedings.”

6. Poster sessions. Up to now, we have only once experienced a poster session. We
think it is quite a challenge to our creativity to rethink poster sessions in a way that
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makes them a good communication tool. We are working on it.
“Since this article was written, we have had another poster session, in Trieste. See the
report in these Proceedings.”
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THE MATHEMATICAL PART

The mathematical programme constituted the main part of the EWM meeting and
the mathematical papers form the main part of these Proceedings.

Included are edited versions of seven lectures given on the two chosen topics: Rep-
resentations and p-Adic Numbers, six contributions which formed the basis of an
interdisciplinary discussion on Symmetries and the abstracts of four of the posters
which were on display at the meeting.

The talks were meant for a wide audience of mathematicians from all fields. The
intent was both to introduce classical tools and fundamental questions in the fields,
and to explain current research topics to non-specialists.






p-ADIC NUMBERS

A short course organized by CATHERINE GOLDSTEIN

The p-adic numbers were introduced at the turn of the century by the mathemati-
cian Kurt Hensel. From the beginning, they were seen both as useful tools (for instance
in proofs) and as the missing pieces in order to get a more organized and coherent
picture of the (mathematical) world. Hensel constructed them partly to provide arith-
metics with as powerful a technique as power series expansion in function theory, but
the mere possibility of this transfer was suggested by a broader program, for the pro-
motion of which Leopold Kronecker, the advisor of Hensel, among others, was partic-
ularly important: to include in the same framework the theories of algebraic numbers,
that is numbers z which are solutions of polynomial equations with rational coeffi-
cients P(z) = 0, and of algebraic functions, that is functions f which are solutions of
polynomial equations P(z, f(z)) = 0. The first offered links to arithmetics, the second
to complex analysis and Riemann surfaces.

Both the use of p-adic numbers for techniques and their role in an unified perspec-
tive are still operative today. The field of rational numbers can be completed either in
the well-known manner to give rise to the real numbers or, for each prime p, to the
various fields of p-adic numbers. An interesting suggestion is then to use simultane-
ously all the completions in order to enrich our understanding of the rational. Precise
versions of this principle, some of its failure and adaptations will be discussed in
the following papers. It suggests in any case to develop for each p-adic field meth-
ods, objects, tools which are used in the real field: one can hope for p-adic geometry,
for p-adic differential equations, for p-adic physics. All these projects have received
some attention from mathematicians, although with very different levels of depth and
success.

In what follows, we won’t be able to do justice to all these works, but we hope to
give some incentive to explore them more closely. The first paper provides the basic
definitions and intuitions which can help us understand what can be kept from our
real habits, and what should be revised, sometimes drastically—making us in turn
reconsider with a new curiosity the real situation. The second paper takes the point of
view of model theory to give a more precise meaning to the idea that global situations
(typically on the field of rational numbers) are more complicated than the local ones
(typically on the field of real numbers or of p-adic numbers). The third paper discusses
some applications of p-adic ideas in a geometrical environment, with, as a goal, an
accessible introduction to some features of the recent proof of Fermat last theorem.
In all three papers, examples will also be given to show how p-adic techniques are
used in a variety of problems, classical or recent, p-adic or not. The missing pieces
here are the more analytic aspects and the recent connections with physics. For some
insights on these aspects, see G. Christol, p-adic Numbers and Ultrametricity, In From
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Number Theory to Physics, 440-475, Springer, 1992.

We were very pleased to discover during the poster session several devoted to some
aspects of p-adic numbers. They witness other aspects of the work on p-adics and, in
particular, of on-going research activities linked to them in various areas, here: group
theory, quadratic forms, valuation theory, dynamical systems. The corresponding ab-
stracts will be found at the end of this chapter.

CATHERINE GOLDSTEIN
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1. Brief historical introduction. Over the last century, p-adic numbers and p-adic
analysis have come to play a central role in number theory. This is due mainly to
two reasons: they provide a very adequate language to describe congruences among
integers, and they allow us to use the tools of analysis and calculus in the study of
rational numbers, without having to choose between R and C as frameworks.

Out of the many ways of looking at p-adic numbers, perhaps the most direct one
is to consider them as analogous to the real numbers. To do this, all we need is to
reconsider our idea of what an absolute value is. From an algebraic point of view,
there is no reason, for example, to consider the usual absolute value on Q as a given,
that is, as the only one. Any function which assigns to each pair of rational numbers a
third one and satisfies the same basic properties as the regular absolute value, should
be just as good. If we start with the usual absolute value on Q and complete Q as a
metric space by adding the limits of all Cauchy sequences, we obtain the field of real
numbers R; starting with a different absolute value, we get something else. What this
something else is will be the subject of this talk.

This idea of first considering new ways to measure the “distance” between two ra-
tional numbers, and then constructing the corresponding completions, did not arise
from a theoretical desire to generalize, but from several concrete situations in alge-
bra and number theory. It turns out that each of the new metrics we will be able to
construct on Q will be connected to a specific rational prime p, and will codify a great
deal of arithmetical information related to that prime p. The first mathematician to
introduce the p-adic numbers was Hensel in the 1920’s, although E. Kummer used
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already the p-adic methods from 1894 on, as André Weil beautifully explains in his
introduction to the complete works of E. Kummer (see [4] in the bibliography).

Kummer kept all through his life an epistolar relation with his student Kronecker,
who wrote a thesis under his direction. Kronecker, in turn, was the teacher of Hensel.
Hensel not only studied with Kronecker and Kummer, but he was also a student of
Weierstrass and he knew well Cantor’s definition of the real numbers (which was not
the case for many of the mathematicians of his time), and Weber and Dedekind’s
ideas on the analogies between number fields and fields of functions. I explain all
this because you will soon see it makes a lot of sense that it would be precisely a
mathematician knowing all these tools who would introduce the notions and notations
of p-adic numbers and p-adic methods.

Let us start with the simplest analogy, the one which probably motivated Hensel:
the analogy between the ring of integers Z with its field of fractions @, and the ring
of polynomials with complex coefficients C[ X ] with its field of fractions C(X).

An element f(X) of C[X] is a rational function, that is, a quotient of two polynomi-
als, f(X) =P(X)/Q(X), with P(X), Q(X) € C[X] and Q(X) =+ 0. Similarly, a rational
number r € Q is a quotient of two integers, ¥ = a/b, with a, b € Z, b + 0. The prop-
erties of both rings are very similar in terms of factorization: any polynomial can be
expressed uniquely as P(X) = (X — 1) (X —x2) - - - (X — ¢y ), with &, xq,...,00 € C,
while any integer can be expressed uniquely as +1 times a product of primes. This
is precisely the analogy Hensel investigated: that between the primes p € Z and the
polynomials (X — «) € C[X].

Suppose we are given a specific polynomial P(X) and an element & € C. We can use
a Taylor expansion to write the polynomial in the form

PX)=ap+a1(x—a)+az(x—c)’+---+a, X—ax)" witha; €

the same strategy works for integers—w.l.o.g., we consider only positive integers—
given a positive integer m and a prime p, we can always write m in base p, say,

Mm=ao+a1p+axp’+---+app", witha;€Z0<a;<p-1.

Both expansions give us “local” information. The expansion of P(X) in powers of
(X — o) tells us if P(X) vanishes at «, and to what order. The expansion of m in base
p shows if m is divisible by p and to what order.

Now, for polynomials, this can all be pushed to quotients. Taking f(X) = P(X)/
Q(X) in C(X) and «x € C, there is always a Laurent expansion—which can be obtained
by division of the expansions of P(X) and Q (X)—of the type

FfX)=ayx-o)V+ana(x—o)N* 1 +..., witha;eC.

This last object is more complicated than the previous Taylor expansion, since

(1) we can have N < 0, which would indicate that the multiplicity of &« as a root
of Q(X) is larger than its multiplicity as a root of P(X), or, in the language of
analysis, that f(X) has a pole at « of order —N; and

(2) the expansion will usually not be finite. Nevertheless it can be shown that the
series f(x) converges when x is close enough to, but different from, «.
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Let us see an example. We consider the rational function f(X) = X/(X—1), and we
consider its expansions for different values of «. For & = 0, we get

X
=-X-X*-X3-X*-...
(X-1)

which means that f(0) = 0 with multiplicity one. For « = 1,

X a+X-1) o
XD oo - XD

so f(X) has a pole of order one at & = 1. Finally, for & = 2 we have neither a pole nor
a zero, since

X
(X-1)

=2-(X-2)+(X—-2)2+---

The core of the matter is that every rational function can be expanded into a series
of this type in terms of each of the “primes” (X — «). On the other hand, not every
series comes from the expansion of a rational function, as we learned in calculus. As
examples we have the expansions of sinx,cosx or exp(x).

From an algebraic point of view, we read the situation in the following way: we have
two fields, namely C(X) and the field which consists of all Laurent series in (X — )
(it turns out that the set of all Laurent series in (X — «) is also a field), which we
call C((X — x)), and an inclusion or injective application C(X) — C((X — «)) between
these two fields given by: f(x) —(expansion of f(X) in powers of (X — «)). There
are infinitely many of these inclusions, one for each « , and each of them gives us
information about the behaviour of f(X) near . Hensel's idea was to extend the
analogy between Z and C[X] in such a way that it would include the construction of
expansions for the rational numbers analogous to the ones we have constructed for
the rational functions.

As was seen before, we already know the expansion for a positive integer m: it is
just the base p representation of p,

m=ap+a1p+ap’+---+anp”, witha; €2, 0<a;<p-1,

which, as in the case of polynomials, is a finite expression.

To pass from positive integers to positive rationals, we just do as in the case of
polynomials: we find the expansions for numerator and denominator and we divide
formally. Let us see an example: we take p = 3, and consider the rational number
24/17. Since

24=0+2.3+2.3°

=2p+2p?
and

17=2+2.3+1.32
=242p+p2,
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we get

24/17 = 2p +2p?)/(2+2p +p?)
=p+p3+2p°+p +pd+2pP+- ...

This process works for any positive rational number a/b, and the resulting series
a/b =Zi-nya;pt,witha; €Z,0 < a; < p -1, reflects the properties of a/b with respect
to the prime p, in the sense that if a/b is in its lowest terms, N < 0= p |band p } a;
N=0=>ptab;N>0=p|aandp tb. This is called the local behaviour of a/b at p
Or near p.

Now, since our formal expressions can be multiplied, all we are missing in order
to get the expansion of any rational number is the expansion of —1. We find that for
any p,

“1=(p-D+(p-Dp+(p-1)p*+---

In this way we have obtained, in a formal way—i.e., we have no idea of whether these
things converge in any form, or even if they make sense—, that every rational number
x can be written as a Laurent series in powers of p truncated on the left,

a/b=anp™ +anapNt+- -

which we call the p-adic expansion of x (which, if x is an integer, is just its expansion
in base p). It turns out that the set of all Laurent series in powers of p truncated on
the left, with the operations of sum and multiplication, is a field larger than Q, just as
C((X —«x)) was afield. We call it the field Q, of p-adic numbers, and now we are ready
to complete the analogy we had before, since what we have done is just to define an
inclusion of fields Q — Q, by means of the application x — (p-adic expansion of x).
Before going on, let us see in a chart a summary of the analogy studied by Hensel:

Summary of the analogy studied by Hensel.
7cQ - Qp CIX]cC(X) = C((X—w)

reQisr=a/b,witha,beZb +0. f(X)eC[X]is f(X)=P(X)/Q(X),
P(X),Q(X) eC[X], Q(X)=#0

FACTORIZATION

a=xpy-pz---Pn,Pi Primes in 7 P(X) =a(X—a1)(X—x2) -+ - (X —xtn)
with &, x1,...,06, € C
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ANALOGY STUDIED BY HENSEL

primes p € 7 polynomials (X — x) € C[X].
Given a prime p € Z Given x € C,
m=ag+ap+ap’®+---+app™ P(X)=ao+a1(x— &) +az(x—n)?
+ o tran(X—o)"
witha;€Z,0<a;<p-1 with a; € C.

(w.lo.g.,, m > 0)

Taking a/b > 0in Q Taking f(X) = P(X)/Q(X) €
C(X) and x e C,

a/b=7> . yaipt S(X) = an(x — N + ansi(x -
N+ 4,

witha; €Z,0<a;<p-1 witha; e C...

The above analogy has led us to a definition of a p-adic number (an element of the
field Q) as a formal object, something which is not very satisfactory. We will put
remedy to this by showing how to construct Q, as an analogue to the field of real
numbers.

2. p-adic distances and valuations. We just mentioned that the definition of a p-
adic number as a formal object is not very satisfactory. Let us explain with an example
why. Formally, the number € = 4+5.7+4.72+0.73 + - . ., would give us, in some way,
a solution to the equation x2 -2 = 0 in the sense that if we multiply the series by itself
(as if it were an absolutely convergent series), we obtain

C>=16+40.7+57.72+40.73 + - - -
C?-2=14+40.7+57.7°+40.73 + - - .
=(2+40)7+57.7°+40.73 + - - -
=0+42.7+57.72+40.7% + - - -
=0+0.7+(6+57)72+40.73 +- - -
=0+0.7+0.72+ (9+40)73 + - - -

=0

But we cannot avoid asking the natural question: does it make sense to say that “were
we to continue this process indefinitely, the number T = 4 + 5.7 + 4.7° +
0.73 + - - -, would give us a solution to the equation x2 —2 = 0?” To give this sen-
tence some meaning, we need a new notion of convergence, according to which the
sequence xo =4, X1 =4+5.7, Xxo =4+5.7+4.7%, x3=4+5.7+4.72+0.73, etc., will
converge to C. What we have in our example is a sequence of integers xo,X1,...,Xn,..-
in which, for each fixed n, x2 — 2 is divisible by 7"*!. The analogy with real numbers
lead us to say that two integers are 7-adically “close” if their difference is divisible by a
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large exponent of 7. With this notion of “being close,” we can now say that the squares
of the integers in the sequence xg,x1,...,Xn,... obtained above converge 7-adically to
2 when n grows.

Let us replace 7 by an arbitrary prime p, and then analyze for a minute what we
just did. We have introduced, for each fixed prime p, what seems to be a new notion
of distance between rational numbers: two rational numbers are considered “p-close”
if their difference is divisible by a large power of p. How can we know whether this
makes sense? Intuitively we see that if these new notions were in one way or another
measures of distances between integers, associated to each of them we would also
have a new “type” of absolute value, given by how far an integer is from 0 under each
of these new “distances.” This open a doorway for us, indicating the way to proceed.

Let us start with the definition of an absolute value on a field k, and then explore
the possibilities, from our point of view, of such a definition in the concrete case of Q.

DEFINITION. An absolute value on a field k is a function | - | : k — R* that satisfies
the following conditions,
(i) |x|=0if and only if x = 0;
(ii) |xyl=I|x|-1y]| forall x,y in k;
(iii) |x+y| < |x|+[y], for all x,y in k.
We say that an absolute value is non-archimedean if it satisfies the additional con-
dition:
(iv) |x+y| <max{|x|,|yI|} for all x,y in k;
otherwise we say it is archimedean.

EXAMPLE 1. We take the field Q of rational numbers with the ordinary absolute
value defined by
X if x = 0;
[x| =

-x ifx<0O.

This value is archimedean, since for x = y = 1, for example, condition (iv) is not
satisfied.

EXAMPLE 2. Let us try to construct an absolute value on Q associated with the
notion of p-closeness defined before. From the defnition we gave of p-closeness, we
deduce that a rational number x in smallest terms will be p-small (or p-close to zero) if
its numerator is divided by a large power of p, and it will be p-large if its denominator
is divided by a large power of p. Hence, all we need to focus on is the power of p
“dividing” x (numerator or denominator). We do it the following way.

e Step 1: each rational number x can be written as x = p" (a/b), with a,b,v € Z,a,b
relatively prime. Since the integer v is determined by p and x, it makes sense to denote
it by v, (x). Hence, we write x = p?»*)(a/b), with (p,ab) = 1, and we set v, (0) = .

« Step 2: we study the basic properties of the function v, : Q — R we just defined.
They are two: for all rational x,y we have

(@) vp(xy) =vp(x) +v,(y), and

(b) vp(x+y) =min{v, (x),v,(¥)}.

Functions from a field into de real numbers satisfying these two properties are called
valuations on the field. The valuation v, is called the p-adic valuation on Q.



p-ADIC NUMBERS AND NON-ARCHIMEDEAN VALUATIONS 55

o Step 3: this is the really astute step. If we compare the two properties a) and b)
of the valuation with conditions ii) and iv) in the definition of absolute value, we see
that they are very similar, except that in one the product has been turned into a sum
(as when taking a logarithm), and in the other the inequality appears reversed. We can
“unreverse” the inequality by changing the sign of v,, and then change the sum into
a product by putting it into a exponent. This suggests the following definitions, the
crucial ones:

e For any rational number x we define the p-adic absolute value by

Ix|p:=p~r™ if x # 0, and we set |0, = 0.
e For any two rational numbers x,y we define their p-adic distance by
X =y lpi=p P>, 0], =0.

It is not difficult to check that |x — |, is indeed a non-archimedean absolute value
on Q, that it satisfies conditions (i)-(iv) in the definition. Hence, we have constructed
infinitely many new notions of absolute value for the field Q, one for each choice of
prime p. Around 1920, Ostrowski and Artin proved that the only absolute values (up
to equivalence, where two absolute values are equivalent if they give way to the same
metric on the field) one can define on the field Q are precisely the ordinary absolute
value (which we will denote by |- |.) and the p-adic absolute values | - |,.

EXAMPLE 3. This third example will serve both to show the generality of the theory
we are developing, and to confirm Hensel’s intuition on the similarity between Q and
the field of rational functions.

o Step 1: First, for each polynomial P(X) € C[X] (or k[X], k any field) we define the
valuation v (P) = —deg(P), and we extend this definition to rational functions by
Voo (f (X)) = Vo (P(X)/Q(X)) = Ve (P) — 1 (Q) = deg(Q) —deg(P). As in the p-adic
case, using this valuation we can construct a non-archimedean absolute value on the
field C(X) defined by | f|e. = e V=) for each f(X) € C(X).

e Step 2: Now we can get other non-archimedean absolute values on k(X) by imitat-
ing the definition of the p-adic absolute values, since k[ X] is a unique factorization
domain. Just choose any irreducible polynomial P(X) in k[ X] and proceed as before,
defining first a valuation on k(X) by counting the multiplicity of P(X) as a factor of
the different polynomials in k[X], and then constructing from it the corresponding
absolute value on k(X).

EXAMPLE 4. Let Q(i) be the field obtained by adjoining i = /1 to the rational
numbers, so Q(i) = {(a+bi)/(c+di) | a,b,c,d € Z} = {a+bi|a,b € Q}. The “inte-
gers” in this field are the elements of Z[i] = {a+bi | a,b € Z}. It is not too difficult to
check that this ring is a unique factorization domain with three types of primes:

(i) 1+1iis prime (since 1+i=1i(1-1) andiis aunitin Z[i],1+1iand 1—1 give rise

to the same prime in the ring Z[1]);

(ii) if p € Z is a prime number and p =3 (mod 4), then p is a prime in Z[i];

(iii) if p € Z is a prime number and p =1 (mod 4), then there are two primes x +iy
and x —iy in Z[i] satisfying (x +iy)(x —iy) = p.
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In each of the three cases, we can use a prime 7t € Z[i] to construct a 7r-adic valua-
tion v, and from it a 7r-adic absolute value | - | on Q(i) as before: || = ¢ V7(® for
some fixed constant ¢ > 1 and each «x € Q(i).

Keeping in mind these four examples, an in particular the second one, the p-adic
absolute values and distances, we return to our task of viewing the p-adic fields Q,
as analogues of the real numbers.

3. The p-adic numbers. When we complete Q with respect to the ordinary absolute
value—by adding all the limits of Cauchy sequences—we know we obtain the field of
real numbers R. When we complete Q with respect to a p-adic distance—by adding
also the limits of all Cauchy sequence with distances taken p-adically—we obtain
precisely the p-adic field Q, defined in section 1, namely

Qp={aNpN+aN+1pN“+---Iaiez,Osaisp—l,NeZ}

4. An application: the study of diophantine equations. A simple but quite spec-
tacular example of how powerful the introduction of p-adic tools can be, is found in
the study of diophantine equations. We all know that finding the integer solutions to
diophantine equations—equations given by polynomials with integer coefficients—is
a problem central in number theory and that it can be very difficult—think, for exam-
ple, of the amount of time and work it has taken to solve Fermat’s equation. Since the
time of Kummer and Hensel, we know that when looking for the integer solutions of
a polynomial equation, it can be very useful to search first its possible solutions mod
m for different integer values of m, a problem that, for each value of m consists of
checking finitely many possibilities. What do we mean by “working modulo m”?

Using the notation introduced by Gauss, we will say that two integers a and b are
congruent modulo a third positive integer m, and we write a = b (mod m), if a and b
produce the same remainder when divided by m. Another way of saying it is that m
divides a — b. For example, we write 31 = 3 (mod 4)—“31 is congruent to 3 modulo
4”—and we read “31 and 3 produce the same remainder when divided by 4,” or “4
divides 31 -3.”

EXAMPLE. Let us look for the integer solutions to the equation x2 + y2 +z2 = N,
where N is an integer of the form 8k + 7. In fact, let us see that this equation has no
solutions in integers.

Any hypothetical solution (a,b,c) would produce a solution mod m for each m,
since if we were to have the numerical equality a2 + b? + c2 = N, then, dividing by m
and keeping the remainder in both sides of the equation would give us

a’+b%+c? =N (mod m),

that is, (a,b,c) would also be a solution mod m for each integer choice of m. But, as
it happens, modulo 8 our equation has no solutions, said differently,

x> +y%+2z>=N (mod 8)

is not solvable, since if we plug into our equation the 8 possible values for x,y and
z, we see that none of the resulting possibilities leads to a solution (the only squares
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mod 8 are 0, 1, 4, and so the possibilities we obtain combining them are 0,1, 2, 3,4, 5,,6
(mod 8), none of them possibly congruent modulo 8 to 7, and thus to N = 8k +7).

Hence, the hypothetical solution (a,b,c) cannot exist, and x2 + y2 +z% = N is not
solvable (which tells us that no integer of the from 8k + 7 can be expressed as a sum
of three squares).

In this way, we have replaced the infinite problem of finding the integer solutions to
a diophantine equation by the problem—finite for each fixed choice of m—of finding
its solutions modulo m. Also, thanks to the Chinese remainder theorem, we know that
finding the solutions mod m to a diophantine equation can in turn be replaced by the
easier one of finding the solutions to the equation modulo the different prime powers
dividing m. “What an economy!,” you may say. We have replaced one single equation
by infinitely many equations! But, we answer, this new equations are all solvable. To
solve the first single equation one has to be very, very clever. To solve these new ones,
one only has to be very, very patient!

Now, Hensel's methods go further: he chooses not to be either stupid and patient
nor quick and clever (and probably unsuccesful) but clever and lazy, so ... he keeps
thinking. In the above examples of polynomials we have used congruences only to
find negative answers, that is, to show when a diophantine equation will not have
solutions. The p-adic methods allow us to find solutions to a given equation modulo
different primes and prime powers in a coherent way, and then use them to construct
solutions in integers. This is known as a local-global method.

Clearly, since Q C Q, for all p, if a diophantine equation with coefficients in Q has
no solutions in some of the p-adic fields Q,, it can’t have them either in Q. We now
ask the reciprocal question: given a diophantine equation, or a system of diphantine
equations with coefficients in Q, can we get any information about its solutions in Q
if we know its solutions in the different Q, and R?

The answer to this question relies largely on one of the most important algebraic
properties of the p-adic numbers (and of other fields that, like Q,, are complete with
respect to a non-archimedean valuation). It basically says that in many circumstances
one can decide quite easily whether a polynomial has roots in 7Z,. The test involves
first the construction of an “aproximate” root to the polynomial, and then verifying a
condition on its derivative, and is called Hensel’s lemma.

HENSEL’S LEMMA. Let P(X) be a polynomial with coefficients in Z,. Suppose that
there exists a p-adic integer a € Z,, such that P(a) = 0(mod pZ,), and P’ (a) +0(mod
pZ,). Then there exists a p-adic integer x € Z, such that a = x(modpZ,) and
P(x) =0.

EXAMPLE. Let us see whether 6 does have a square root in Qs, that is solve the
equation x2—6 = 0 in Qs. In this case, P(X) = x2-6,P’(X) = 2x, and a = 1. We want
to find integers ag,a;,az,...,0 < a; < 4 such that

(@o+arx5+asx5%+--+)° =1+1x5.

Comparing coefficients of 1 = 5° on both sides gives a(z) =1 (mod 5),and henceay =1
or 4. Let us take ay = 1 = a. Then, comparing coefficients of 5 on both sides gives
2a:1x5 = 1x5 (mod 52), and so 2a; =1 (mod 5), and a; = 3. Proceeding this way we
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get a series
&x=1+3.5+0.52+4.53+.--,

where, after the choice of ag, each a; is uniquely determined. Had we chosen a, = 4,
we would have gotten

—x=4+25+0.5%2+1.53+--

which reflects the fact that an element has exactly two square roots in Qs if it has any.

This method of solving the equation x2—6 = 0 in Qs by first solving the congruence
a% —6 =0 (mod 5), and then finding the remaining in a step-by-step process is so
general that is precisely what forms the proof of Hensel’s lemma.

such an approximation technique is essentially the same as Newton’s method for
finding a real root of a polynomial equation with real coefficients. That is why Hensel’s
lemma is often called the p-adic Newton’s lemma.

In one respect, the p-adic Newton’s method (Hensel’s lemma) is better than Newton’s
method in the real case. The p-adic methos is guaranteed to converge, while Newton’s
real method often converges, but not always. For example if we take P(X) = x3 — x,
and make the choice a = 1/-/5, then the situation we get is given by the figure, a
situation which is impossible in Q,.

| ~ ar

ap "~ ao

FIGURE 1. Failure of Newton’s method in the real case (after N. Koblitz [3]).

Hensel’s lemma introduces us to the theory of polynomials on the p-adic fields. As
a consequence of this lemma, given a polynomial with integer coefficients one can
decide easily whether it has roots in Z,, since it is enough to find roots mod p, a finite
verification. The “same” is true for R, where we can usually decide whether there are
roots by sign considerations. Suppose, however, that we want to look for roots in Q.
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If we agree to call R = Q. , we have already noticed that there are no rational roots
if there is some p < o for which there are no p-adic roots (co-adic means real here).
One way of reading this situation is following Hensel’s original analogy: the p-adic
fields (including R) are analogous to fields of Laurent expansions, and correspond to
“local” information about the prime “p.” The fact that roots in Q automatically mean
roots in Q,, for all p, means that a “global” root is also a “local” root at each p, that
is, “everywhere.”

Now, the converse question is the interesting one: could “local” roots be kind of
“patched together” to give a “global” root?

That is, could the existence of solutions in Q, for all primes p guarantee the exis-
tence of a solution on Q? This question suggests what is known as the Local-Global
principle or Hasse-Minkowski principle.

LOCAL-GLOBAL PRINCIPLE. The existence or non-existence of solutions in Q (global
solutions) of a diophantine equation can be detected by studying, for each prime
p < oo, the solutions of the equation in Q, (local solutions).

The simplest example of diophantine equations in which this principle hold is that
of quadratic forms over Q. (We recall here that at the Warwick meeting of EWM in
1988, Eva Bayer spoke to us on the Local-Global principle for different fields.)

HASSE-MINKOWSKI THEOREM. Let F be a quadratic form in n variables (that is, a
homogeneous polynomial of degree 2 inn variables). The equation F = 0 has non-trivial
solutions in Q if and only if it has non-trivial solutions in Q, for each p < .

EXAMPLE 1. Let a,b and c be rational numbers, square-free and pairwise relatively
prime. Then the equation

ax’+by*+cx?=0

has non-trivial solutions in Q if and only if the following conditions are satisfied:
(i) a, b and c are not all positive or all negative;
(ii) for each odd prime p dividing a (or b, or c) there exists an integer r such that
b+7%c =0 (mod p);
(iii) if a,b and c are all odd, then there are two of them whose sum is divisible by 4;
(iv) if a is even (or b, or c) then either b + ¢ or a + b + ¢ is divisible by 8.

EXAMPLE 2. The Hasse-Minkowski principle does not hold for cubic equations.
Selmer gave the example

3x3+4y3+5x3 =0.

He showed that this equation has no integer solutions other than (0,0,0). However, it
can be checked that for every integer m, the congruence

3x3+4y3+5x3=0 (mod m)

has a solution in integers with no common factors.
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5. The peculiarities of the p-adics. Let us now point out some of the more char-
acteristic (and counter-intuitive!) properties of the p-adic valuations.

ALGEBRAIC PECULIARITIES.
(1) Every p-adic number a € Q, has a unique expansion of the type

a=p"™(@agtaip+---+app"+---),

withm=vp,(a)andl1<ap<p-1,0<a,<p-1,n=1,2,3,....

(2) We call Z,, the set of all a € Q, such that |a|, < 1. This is the set of all elements
in Q, whose p-adic expansion has no negative powers, and it is called the ring of p-
adic integers or the ring associated to the p-adic valuation. Its subset pZ, consisting
of those elements in Z, of the forma =a;p+---+a,p™+--- is anideal, in fact its
only maximal ideal. In general, given a valuation on a field k, the set of all elements
in k with valuation > 0 forms a ring, called the ring of the valuation; this ring has a
unique maximal ideal consisting of the elements with valuation > 0. Reciprocally, an
arbitrary ring is called a valuation ring if it coincides with the ring of some valuation
of its field of fractions. In our case, the set of integers Z form a dense subset of the
ring Z,.

(3) In the case of the ordinary absolute value, once we obtain R, we return to the
original question: the resolution of diophantine equations. At this point it seems a
good idea to add to R “numbers” that would provide solutions to equations of the type
of x2+1 = 0. And then something wonderful happens: once we have introduced i =
(—1)Y2 and we have defined the field of complex numbers C, the following properties
are verified:

(i) every polynomial equation with coefficients in C (so in particular in Z) has all of

its solutions in C (we say that C is an algebraically closed field), and

(ii) there is only one way of extending the ordinary absolute value on R to C; with

respect to this absolute value C is complete, i.e., every complex Cauchy sequence

has a limit in C.
Hence, the algebraic process ends in C, algebraic extension of R of degree 2 (meaning
that it is obtained by adding to R the solutions to a polynomial equation of degree 2,
x2+1=0). Cis a field which is algebraically closed and complete with respect to the
ordinary distance (Archimedean). Unfortunately, the case of the p-adic absolute val-
ues is much more complicated. When we add to Q all the limits to Cauchy sequences
with respect to each | - |,, we obtain the field Q, of the p-adic numbers, which is not
algebraically closed (as R was not) (see, for example, [3] in the bibliography). Next,
starting with each Q, in order to obtain an extension which is algebraically closed we
need to add an infinity of fields obtained from solutions to polynomial equations of
degree larger and larger. And not only this. Once we obtain an algebraically closed
extension of Q,, which we denote by le, it turns out that such an extension is not
complete with respect to | - |,. We must add once more the limits of all Cauchy se-
quences (this time with their elements in le), in order to obtain a huge field that will
be, finally, both algebraically closed and complete, and which is denoted by Qp.

GEOMETRIC PECULIARITIES.
(1) Every triangle is isosceles with respect to any p-adic valuation.
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(2) We define

Sr(a) ={x € Qp;lx—al =7}
Dy(a) = {x € Qp;|lx—al <7};

D, (a) = {x € Qp;|x—al <7}.

Its turns out that every point of D, (a) functions as center, that is, D, (a) = D, (b),
for all b € D, (a). Said differently with respect to the p-adic distance, every point of a
closed disc can be chosen as center. This is not the only peculiar behaviour of p-adic
discs. It also happens that given two different discs, they are either disjoint, or one is
striclty contained in the other.

ANALYTIC/TOPOLOGICAL PECULIARITIES.

(1) In general, if we take a point x in a field K, we define the connected component
of x in K to be the union of all connected sets that contain x. It can be described
as the largest connected set containing x. For example, if K = R, then the connected
component of any point x in R is all of R, simply because R is connected. Things
are very different in Q,: the connected component of any point x in Q, is the set
{x} consisting of only that point. What this says is that there are really no interesting
connected sets in Q,: only the sets with one single element are connected. In fact, we
have even more peculiar behaviours in Q,,. For example, every open ball is the disjoint
union of open balls. So that open balls are disconnected in a rather dramatic way in
Qp!

(2) The set Sy (a) is open in a topological sense, because every point x in it has a disc
about it, for example D; (x) contained in S, (a). But then, any union of S’s is open.
Both D, (a) and D; (a), as well as their complements, are such unions: for example,

D, (a) = UcrSal(c),
D,(a) =S,(a)uD, (a).

Hence both D, (a) and D; (a) are simultaneously open and closed.

(3) A set X is called compact if any collection of open sets which covers x has a finite
subcollection which also covers X. We know that this rather un-intuitive definition is
very important in classical analysis. In R, for example, compact sets are precisely
the closed and bounded sets. Another important property in classical analysis is the
local compactness of R: a set X is locally compact if every point has a neighbourhood
which is compact. In the p-adic situation we have that Z, is compact and is Q, locally
compact. Thus Q,, is a locally compact field (so we can have analysis in it) but at the
same time totally discrete (so it will be a different type of analysis).

6. Generalizations to arbitrary fields, rings and groups. All that has been done
can be generalized to arbitrary fields, rings and groups.

6.1. Extensions of valuations and valuation rings to larger fields. Some types of
rings have essentially the same properties as the rings 7, and we are going to call
them Henselian rings, because Hensel’s techniques can be carried on to this type of
rings. These properties are two, and so we say that a ring R is Henselian if it satisfies:
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(i) It has a unique maximal ideal Jl (or equivalently, the set of all non-invertible
elements in R form an ideal different from R), and

(ii) Hensel’s lemma: Let P(X) be a monic polynomial of degree n with coefficients
in R, and P(X) the polynomial we obtain when we consider the coefficients of P
in R/A. If there exist coprime monic polynomials g(X), h(X) with coefficients
in R/M with degrees v, n —r such that P(X) = g(X)h(X), then we can “lift”
g(X) and h(X) back to polynomials G(X), H(X) with coefficients in R such that
P(X)=G(X)H(X).

6.2. General definition of a valuation. The general valuations on fields generalize
the simple facts that we have observed for the field of rational functions and the field
of rational numbers. A one-valued function v on a field k upon a simply ordered group
G is called a valuation if

(i) v(xp) =v(e)+v(B), and

(i) v(x+pB) 2min{v(x),v(B)}.

We make the additional convention that v (0) = . Associated to the valuation v
and the field k we have the following objects:

(a) Valuation group: Im(v), a subgroup of G.

(b) Valuation ring 0(v): set of elements x in K with v(x) = 0 (example: Z,).

(c) Valuation ideal ?(v): set of elements x in K with v (x) > 0, unique maximal ideal
in the valuation ring (example: pZ,).

(d) Residue class field: 0(v)/%(v) (example: Z,/pZ,, isomorphic to F,, the finite
field with p elements)
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Introduction. One could think that Z or Q are “simple” objects, and R or the Q,’s
complicated, as they are constructed starting from Q. But if we think algebraically, the
situation is reversed, Q is complicated while R and the Q,’s are simple. For instance
we are able to solve polynomial equations in R or Q,, while we are unable to decide
whether such equations have an integral solution. This last point is the content of the
negative answer given by Matiyasevich to Hilbert’s tenth problem; in other words the
Diophantine problem over Z is undecidable ([29], see also [28]) and it is conjectured
thatitis impossible over Q as well. On the other hand, R and the Q,’s are “decidable:”
there is an algorithm recognizing, after finitely many steps, not only whether a system
of polynomial equations has a solution, but much more generally whether certain
kinds of assertions, the “first-order sentences” which we are going to define below,
are true or not (see [30]). The first-order logic is the mathematical theory taking the
first-order sentences as its basic objects. In this framework (in which we will work
from now on), the Q,’s are seen as examples of Henselian valued fields with residue
field F,, and value group “almost” Z, (again we are going to define this “almost”). Other
properties of Q,, like local compactness or the fact that the value group is exactly Z,
will not be taken into account in this context.

1. True sentences in Q,. Typical fundamental objects will be expressions, which
will be called formulas, of the form

Vxq13dxpdxs [3x3x§ +XoX1 +x§ —x4=0AX1X02X3 # 0].

How are they done? We see that there are variables (x1,x2,x3,x4), which will here
represent elements of Q, (not subsets, nor functions on Q,) and there are quantifiers
(V or 3) which are applied to some of the variables. Since we are considering Q, as a
ring, these variables can be added or multiplied; also there is a “1,” hence an “n” for
each integer n. This explains for example the coefficient “3” in the monomial 3x3xﬁ.
Last we have the symbol A (which should be understood as a conjunction), we will also
authorize v (which represents a disjunction), — (negation), s (finite conjunction) and
W (finite disjunction) (one can think of the relation between A and M, or between v
and W, as similar to the relation between + and X, or between - and II).
Let us sum up this construction.
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DEFINITIONS (comments included!).
(1) A (first-order) formula in the ring language has the following form (up to logical
equivalence)

s v r
Q1x1Q2x2 -+ - QnXxn W [,N\lpij(xl,---,xn) =0A ,N\lRij(Xh---,xn) # 0] ,
i=1Li= i=
where Q1,Q>,...,Qy are existential or universal quantifiers and the P;;’s and the R;;’s

are polynomials with abstract integer coefficients.

The coefficients are abstract integers in the sense that, in a field of positive charac-
teristic, it may happen that n = 0 for a non zero integer n. “Up to logical equivalence”
means that we have made use of some logical properties in order to get this simple
form of formulas: distributivity of A on Vv in order to put first all disjunctions, then all
conjunctions, commutativity and associativity of A in order to regroup first all equa-
tions then all inequations, and some extra rules in order to put all quantifiers first.
We also made use of properties of + and - in rings. Indeed, the non quantified part
of the formula consists of polynomial equations because (first) equality is an allowed
symbol, (secondly) the ring language is {0,1,+,—, -}, and we know that addition and
multiplication, starting with variables or constants, with the usual rules of associa-
tivity, commutativity and distributivity, give rise to polynomials. Following commun
usage in maths, we study

 groups with the language {e,-,”'},

e Abelian groups, with the language {0, +, -1},

e ordered Abelian groups with the language {0, +, —, <}.

(2) A general language has the following form

¥ = {al,az,...,fl,fz,...,Rl,Rz,...}

where
e each a; is a symbol for a constant,
¢ each f; a symbol for a function, with a given number n; of variables,
e each R; a symbol for a relation, with a given number m; of variables.
A formula of £ has the following form!

1ATL2A2 "~ WUnAn ijs
Q1x1Q2x Qnxn W M Pij
i

where P;; = (possibly =) Q;; and each Q;; has one of the following forms (these are
examples!)

Xip = Xip

fi(xi, f2(ar,as),...,xn,) = xi, (here np =2 and n; = 3)

Ri(xi,Xi,,a1) (here my = 3)
Ro(fa(xiy,x1),a3) (here my =ny4 =2)

Lsee the exact definition in Appendix A.
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(Note the special status of the equality =, whose use is always allowed in formulas.)

So a general language consists of a certain number of symbols, for constants, func-
tions or relations. Choosing in which language to consider a structure is an important
operation, which determines what substructures or homomorphisms are. For exam-
ple, depending whether we consider R as a field, as an additive ordered group or as an
ordered set, the automorphisms are the identity, positive homotheties or increasing
bijections. Another example: In the ring language, a substructure is a subring, in the
field language, a subfield. For all this see [26].

Valued fields are usually studied in the language {0,1, +, —, -, A} where A is a unary
symbol of relation interpreted as A(x) iff v(x) > 0 (see Appendix B). In general the
valuation gives additional information over the field, but in the case of Q,, an inter-
esting fact occurs.

FACT. The structures of field and valued field of Q, are equivalent.

PROOF. If p # 2, then v(x) = 0 iff Ayl + px? = ¥y2. If p = 2, then v(x) = 0 iff
Jy1+px3 =y3. Indeed, if v(x) = 0 then 1+ px? =1 mod p, which is a square in Fp,
hence lifts to a square in Q, if p # 2.If v(x) < Othen v (1+px?) = v(px?) = 1+2v(x)
not even, and 1+ px? is definitely not a square. Same argument for p = 2. This shows
that a formula in the language of valued field can be translated in a formula only in
the language of ring. O

(3) A sentence or axiom (in a certain language) is a formula without free (i.e. non
quantified) variable.

(4) A property is axiomatizable (in a certain language) if it is equivalent to the satis-
faction of a family of axioms. To axiomatize a structure M is to find an axiom system
for M, i.e. some list of sentences

e which are true in M,

e which we are able to enumerate.

¢ Finally we want this system to be complete, which means that any other structure

satisfying it will satisfy exactly the same sentences as M does.

The delicate point is the second one: What does an infinite list mean? How can we
describe it, without using “ ... ”? If we are looking for an axiom system for M, why
not take the set of all true sentences of M? Precisely because this is a pile: it is not
an acceptable list for which we can explicitely write the n-th term. I am not going to
define a “right” list (this is the first task of the theory of recursivity, see for example
[27]) but will only give examples:

“Being a field” can be said with an axiom in the ring language (each usual rule defin-
ing a field is expressed by an axiom).

“Being a field of characteristic zero” is equivalent to the conjunction of the previous
axioms plus an axiom scheme, whose n-th term is n # 0, for each positive integer
n. You should be aware that the “n” in the sentence above contains hidden “ ...
n=1+---+1,n times. An exact definition must proceed inductively, defining the
(n +1)-th axiom from the n-th one.

(5) Two structures in the same language are elementarily equivalent if they satisfy
the same sentences. Notation: M = N.
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(6) If M is a structure, a € M and ¢ is a formula, the notation “M = ¢ (a)” means
that, in M, ¢ (a) holds.

THEOREM (Ax-Kochen-ErSov, [1, 2, 5]). (1) A valued field (K,v) is elementarily
equivalent to (Qp,vy) iff

e K has characteristic zero

e K/v=F,

e v is Henselian

e (VK,0,v(p),+,—,<)=(Z,0,1,+,—,<) .

We have previously seen how it is possible to express that the characteristic is zero
by means of infinitely many first-order sentences. The fact K/v =~ [F, is axiomatized
by the following axioms: v (p) > 0 and

Vx{v(x)=0= [v(x)>0vv(x—-1)>0Vv---vv(x—(p-1))>01]}

and Hensel’s Lemma by a scheme of axioms, one for each degree of the polynomial.
An equivalent formulation of the result is that the list above axiomatises Q.

(2) A valued field (K,v) with residual characteristic zevo is axiomatized by
o the axioms expressing Hensel's Lemma,

o the axioms satisfied by the residue field

o the axioms satisfied by the valuation group (as an ordered group).

Note that axioms over K/v or vK can easily be translated into axioms over (K,v).

2. An application: the asymptotic solution of Artin’s conjecture

DEFINITION. Letiand d be integers. A field K is called C;(d) if every homogeneous
polynomial of degree d in at least d? + 1 variables has a non trivial zero. A field K is
called C; if it is C;(d) for all integers d.

EXAMPLES.

(1) By definition Cy means algebraically closed.

(2) An orderable field cannot be C>(d) for any d: consider the form X? + X3 +- - - +

X§2+1'

(3) Every finite field is C; (see [33]).

(4) If K is C;, then K(X) and the formal power series field K((X)) are C;,1 (see [33]).

By (2) and (3), F, ((X)) is Co. Now F,((X)) and Q, are very similar: they are both
complete valued fields, valued in Z and with residue field F,. But the first one is of
characteristic p and the second one characteristic 0. Artin conjectured that Q, is C>
too. Ax and Kochen, using the theorem stated in the first section, gave an asymptotic
positive answer.

THEOREM. Let us fix d. Then all but finitely many Q,’s are C>(d).

The proof uses the important tool of ultraproducts (see [26]).

Let (M;);c; be a family of structures in a same language &, for examples all rings,
or all ordered groups, and U an ultrafilter over the index family I. We consider

e the Cartesian product P :=I1;c/M;
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e the equivalence relation on P
(xi) ~ (i) iff{ielx;i=yi}el.

The ultraproduct of the (M;)’s relative to U is defined to be the structure M of &£
e with underlying set M := P/ ~
o with functions of & defined as follows

Su((xi)ier) is the class of (fu, (xi));c; modulo U
¢ and relations
Ru((xi)ier) iff {ie;M; =R(x;)}€U.

We then have

L0S’s THEOREM. Let ¢ be a formula in ¥ and x € M, then
Med(x) iff {i;M; = ¢p(xi)} € U.

EXAMPLES OF ULTRAPRODUCTS. (1) Let U be a non trivial ultrafilter over I = P :=
{prime numbers}. Then the ultraproduct F of the [F,’s relative to U has characteristic
Zero.

PROOF. Let us fix an arbitrary q. The axiom g = 0 is satisfied only in Fg, i.e.
{peP;FpEq+0}=P\{q},
a set which belongs to U since this ultrafilter is non trivial. Hence F & g # 0 for each
prime g. O

(2) If U is the principal ultrafilter generated by iy, then the ultraproduct of the M;’s
relative to U is isomorphic to M;,.

PROOF OF THE THEOREM. Let us consider a non trivial ultrafilter U over the set
of prime numbers and the ultraproducts F, ((X))V and Q;f . They are both Henselian
valued fields, with value group ZU and residue field [Fg . The second one has charac-
teristic zero, as does the first one if U is non trivial. Therefore they are elementarily
equivalent for any such U, which implies that the property C, can be transfered from
Fp ((X))Y to Qf. We also know that

Qp E Ca(d) iff {p;Qp = Ca(d)} €U
Consequently
PQEC(d)}eU

for any non trivial U, which means that the complement of this subset in I is finite.
O
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Artin’s Conjecture turned out to be false when Terjanian (see Appendix C) and other
people proved: no Q, is C». This shows the interest of the asymptotic positive answer
by Ax and Kochen. Further their proof gives a precise and exact content to the in-
tuition Artin had: Certainly Q, and [F,((t)) are very similar, but they have different
characteristic; this problem disappears if we compare the classes of all Q,’s and all
F, ((£))’s, for all prime p’s.

3. Formulas with free variables or definable subsets of Q). Let us consider the
correspondence which, to a formula, associates the subset of points satisfying it, in
the same way as in geometry we associate to an equation the geometrical locus of
its solutions. Let us call such a subset “definable.” The set of all definable subsets is
clearly a Boolean algebra, since

¢ the intersection of two such subsets is defined by the conjunction of the formulas

defining each of them

¢ the union of subsets corresponds to the disjunction of formulas,

o the complementation to the negation.

Further, if we let dimensions vary,

o the class of all definable subsets is closed under projection, which corresponds

to existential quantification.

¢ It contains hyperplanes which are parallel to coordinate hyperplanes, defined by

formulas X; = a,

« and hyperplanes parallel to diagonal hyperplanes, defined by formulas X; = X;.

As we see on the example of the hyperplanes of equation X; = a, we allow parameters
from the structure.

The other definable subsets depend on the structure we are considering. For exam-
ple, the graph of any function of the language is definable, as is the set of elements
satisfying any relation of the language. We have to add some other subsets and then
close this family under Boolean combination and projection. Is there any possibilty of
describing this class in a simple way? Algebraically closed fields supply a nice example.

EXAMPLE. Let K be an algebraically closed field. Call a subset of some K™ Zariski
closed if it is the set of solution of some equational system, and constructible if it
is a Boolean combination of Zariski closed subsets. Now a theorem of Chevalley as-
serts that the projection of any constructible set is constructible. So definable and
constructible subsets are the same, and we do not need projection in order to gener-
ate the class of definable subsets: The model theoretical formulation of this is that
algebraically closed fields “eliminate quantifiers” in the language of rings.

In Q, we also have a very nice characterization of definable subsets.

THEOREM. In the valued field Q, the definable subsets are Boolean combinations
of Zariski closed subsets and subsets defined by formulas P, (f(x)), where n is an
integer, f a polynomial with integral coefficients and P,, is defined by the equivalence
Py(y) -3z z" =y.

In other words we are allowed to consider only existential quantification applied to
very simple formulas. But it is also to be noted that the language allowing quantifier
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elimination is now {0,1,+, —, -, (Pn)nen* }, which is infinite, while the ring language is
finite.

We are now going to give two very different applications of this result, one is a
local application used to solve a conjecture in number theory, the other one makes a
repetitive use of the result in order to develop a wide area of research.

3.1. The solution by Denef of a conjecture of Serre and Oesterlé. Let f(X1,...,X,)
€ Zy[Xy,...,Xm]. For each n € N, we define two natural integers

M, :=#{(a1,...,am) ez (p"-2,)"; f(ar,...,am) =0
as an element of Z,,/(p™ - Zr’)}

(M, is the number of approximations modulo p™ of zeros of f)

Nn:=#<{(a1,...,am) ez, f(ar,...,am) =0}/(p”-lp)m)

(N, is the number of (exact) zeros of f which are distinct modulo p"). As an example,
if f has a single variable, M,, and N,, are eventually constant, becoming both equal to
the number of zeros of f. We define the Poincaré power series

M(T) = ZneNMnTna
and

N(T) = Z,,enN, T".
THEOREM (Igusa, conjectured by Borewicz and Safarevic). .l is a rational function.
THEOREM (Denef, conjectured by Serre and Oesterlé). N is a rational function.

We sketch here Denef’s proof [4].

(1) Using some integral representation, N is a rational iff I(S) := [, |w|*|dx|ldw]|
is, where D = {(x,w) € Z}} XZp;3y € Z}} [ x =y modw A f(y) =0 ]}.

(2) By quantifier elimination, D can be rewritten as a Boolean combination of ex-
pressions of the type g(x) =0, or P,(h(x)), for n € N and polynomials g and
heZ,[Xy,....,.Xm]l.

(3) It remains then to prove the rationality of the integral above for these particular
domains, which means much further (but possible) work ... .

3.2. p-adic semi-algebraic geometry and spectrum. In the thirties Tarski proved
the decidability of R as a field. During the following two decades, the field of real
numbers was systematically studied by Abraham Robinson. He was able to abstract,
from this case, some general notions which are now fundamental in model theory. He
also got new insights on classical results on R such as the Artin-Lang theorem and
Hilbert’s 17th problem; these lead him to astonishing simplifications in the proofs, as
well as to qualitative improvements of the results themselves. He was the precursor of
a simultaneous, algebraic and model theoretic, treatment of real algebra and geometry,
which is one of the pillars of modern real semi-algebraic geometry (these historical
developments are described and analysed in [31]) Now, the analogy between R and
Q, was first noticed by Kochen: He gave it as a motivation for studying Hilbert’s 17th



70 FRANCOISE DELON

problem over Q. This analogy has been then systematically developped (see [7]).
In particular there is now a p-adic semi-algebraic geometry and almost all classical
real results (see [16]) find their analogue in this context. We quote below the most
important facts

order

p-adic valuation, i.e. satisfying v(p) =
1 (first positive element of valuation
group) and K/v = F,

formally real (:= orderable) field

formally p-adic (= which can be
equipped with a p-adic valuation) field

real closed field := real field without
non trivial real algebraic extension; K
real closed & [K%:K] = 2, where K¢ is
the algebraic closure of K < K =R

p-adically closed field := p-adic field
without non trivial algebraic p-adic ex-
tension; K p-adically closed < K car-
ries a Henselian p-adic valuation v sat-
isfyingvK=Z < K=Q,

Hilbert’s 17th problem: over R every
positive definite rational function is a
sum of squares of rational functions.

Description of rational function with
range in Z,, i.e. “integral definite,” by
means of “Kochen’s operator” y(t) =
3 (P —t+ 1)L (1P =t =1)71),
Define R := Z,[y(K[X])], for X =
(X1,...,Xm),and T:=1+p.R.

Then f € Q,(X) is integral definite iff
it belongs to the quotient ring T-'R.
([13] strengthened by [8])

Quantifier

Elimination

{0,1,+,—, -, <} (“Tarski-Seidenberg”)

{0,1,+,—, -, (Pn)nen*} wWhere P,(x) <
[y y™=x (6]

Reformulation

(in both cases, semi-algebraic = definable)

Any semi-algebraic subset of R™ is
a Boolean combination of sets of the
form {x; f(x) > 0} for f € R[X], where
X=0X1,....,.Xm).

Any semi-algebraic set is a Boolean
combination of sets of the form
{x;£(x) =0} or {x;Pn(f(x))}.

Let K be a real closed extension of R
and A < K™ definable with parameters
from K. Then AnR™ is semi-algebraic
in R.

The same with p-adically closed in-
stead of real closed and Q,, instead of
R ([19])
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Open Quantifier Elimination

Any open definable subset of R™ is of
the form N U {x; fi;j(x) > 0} (note that
the negation is no longer allowed as the
complement of an open set is in general
not open).

Any open definable subset of Q' is
of the form Nnu {x;Pnl,j (fij(x))} where
Pu(x) < [Pu(x) Ax # 01.(23])

[x|

Over Q, we have the norm | |, (see
Appendix B). But there is no equivalent
over p-adically closed field K such that
VK # Z. Further, even over Q,, | |, is
NOT a definable function.

The adequate reformulation is as follows:

For any definable closed subset F there
is a definable continuous fonction with
F as zero-set.

Same as on the left [15]

(Lojasiewicz inequality) A semi-alg.
closed, bounded set < R™, f,g: A - R
semi-alg., continuous Z(f) c Z(g) =
IN € N,c € R,|gIN < c-|f] over A (a
function is semi-algebraic :< its graph
is, and Z(f) := {x € R™; f(x) =0})

Same as on the left with Q, instead of
R [17]

semi-algebraic connected components
(a semi-algebraic set has finitely many
connected components, each of them
semi-algebraic)

NO EQUIVALENT (as far as I know ... )

Classical spectrum of a ring = Space of prime ideals

Real spectrum = Space {prime ideal +
an ordering over the fraction field of
the quotient ring }.

In particular, for a field, Real Spectrum
= Space of all orders

p-adic Spectrum = Space {prime ideal +
over the fraction field of the quotient
ring, an additional structure given by
some choice for the P,,’s }.

In particular, for a field K, p-adic Spec-
trum = Space of all embeddings in a p-
adically closed field [22]

If V is a real variety and

%(V) := {continuous definable real
functions on V}, then the classical spec-
trum of €¢(V) is homeomorphic to the
real spectrum of K[V]. [18]

Same as on the left with “p-adic” in-
stead of “real” [15]
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There are also for the p-adic case partial analogues to the “continuous solution to
Hilbert’s 17th problem” ([10, 11, 12, 9]). More generally, the references quoted above
provide a considerable amount of results.

4. Appendix A: Inductive definition of formulas.

e The set of terms of a language & is the smallest set containing the variables and
constants of &, and closed under functions from &.

e Atomic formulas have the following form

t1 =1t
R(tly---,tn)

for ti,...,t, terms and R a relation from .

e The set of formulas is the smallest set containing atomic formulas and closed

under Vv, A, — and quantification over some of the variables.

By applying this inductive process, we get formulas which do not have the nice form
given in the first section. In order to rewrite a formula, with first all quantifiers, then
all disjunctions and then all conjunctions, you need a notion of logical equivalence
between formulas, which is also inductively defined. This is then a theorem that any
formula has a “prenex disjunctive normal form,” i.e. is logically equivalent to a formula
of the form given in definition 1 of Section 1. See [27].

5. Appendix B: Valued Fields. For all this, see also the contribution of Capi Cor-
rales in this volume.

A valued field (K,v) is a field K equipped with a map v : K* — vK U {c0} where
vK is an ordered abelian group, written additively, and « an extra element satisfying
Vx € VK, x + o = 00+ 00 = o0 > x. Further v is required to satisfy

e V(x)=owiff x =0,

e V(x+y)=min{v(x),v(y)}, inequality known as “ultrametric inequality,”

e Vix-y)=v(x)+v(y).

The valuation group is vK.
The valuation ring is

Ay ={xeK;v(x) =0},
the valuation ideal
M, = {x eK;v(x) > 0}.
Ay is a local ring, with unique maximal ideal M,. The residue field is

K/v:=A,/M,.

Note that the characteristic of the residue field of a valued field of characteristic zero
is either zero (example: C((t)) with v the valuation relative to t) or any p (example:
Qp). The residual characteristic of a valued field of characteristic p is p.
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Another (equivalent) presentation is the following. We give ourselves in K a “big”
subring A, big in the sense that Vx € K, either x € A or x # 0 and x~! € A.

We can then define over K a valuation for which A is the valuation ring. Let us first
define

A*:={units of A} = {x € A;Ty € A,xy =1}

G := K*/A*all considered as multiplicative groups

for x,y € K*,in G we set X < ¥ iff x~'y € A. (This is clearly an order, which is total
by the condition on A.)
We now define v : K — GU {0} by setting

v(x)=x modG for x € K*
v(0) = oo,

In other words, in order to define a valuation over a field, it is enough to say when
the valuation of an element is positive.

In this context of general valuation, we have the same formal definition of Henselian
field. (K, v) is Henselian if it satisfies Hensel Lemma, that is: for any monic polynomial
f e A,[X],if f has a simple residual root & € K/v then « lifts up in K to a root of f.
(Which means:if forana € A,,v(f(a)) >0=v(f'(a)) thenthereisab € K satisfying
fh)=0and v(b—-a) > 0).

A valuation determines a distance with range in vK U {0}, we measure the distance
between two points x and y by v(x —y). Note that v(x — y) = « iff x = y, which
means that we should have to do something like a “negative exponentiation,” as we
do in p-adic numbers

vp (x)
[x|p = (—1> ’ .
p

But, as in general vK is arbitrary, we don’t have an exponential function and we work
with v, but we often have to reverse unequalities in our head. This metric space has
the following feature: any triangle is isoceles, the two equal side being the big ones
(indeed, it follows from the ultrametric unequality that, if v(x —y) and v (y —z) are
distinct, then v(x —z) = min{v(x —y),v(y —z)}). As a consequence, each point in
an open or closed ball {x;v(x—a) = or > p} is a center!

Since we have a distance, we have a topology, therefore the Implicit Function Theo-
rem makes sense. Now, Hensel Lemma is a strong form of Implicit Function Theorem
for polynomials.

6. Appendix C: The counter-example of Terjanian. We will construct in Q> a ho-
mogeneous form of degree 4, with 18 (> 4% = 16) variables and without non trivial
Zeroes.

(1) It is enough to construct over Z a homogeneous f of degree 4, with 9 variables
and such that

forallx €7, f(x)=0 mod4 = 2 divides Xx.
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Then h(x,y) := f(x)+4f () will be a solution.

PROOF. If h hasanon trivial zero over Q», it has one (ﬁ',E,) € 7, having at least one
coordinate of v,-valuation 0. Since Z, is the completion of Z for v,, thereis (a,b) € Z
arbitrarily close to (a@’,b ), i.e. for arbitrarily big N € N,

vy(@-a'),v2(b-D') >N,
hence, by Taylor’s formula,
vo(h(ap)-h(a.b))>N,
hence, as h(@,b') =0,
h(a,b)=0 mod16.
Now

h (E,E) =0 modl16= f(a)=0 mod4 = 2 |a by the hypothesis on f
= 16| f (@) as f is homogeneous of degree 4

=16 | 4f (E) >4 f(E) = 2| b, by the hypothesis on f,

which contradicts the choice of (@,b) having a coordinate of v,-valuation 0. O

(2) Let us define
NnX,Y,Z) = X>YZ+XY?Z+XYZ?+X?Y? + X°Z°+Y?Z° - X*-Y*- 7%,

It is easy to verify that, for x,y,z € 7,
o if 2 divides x,y,z then 16|n(x,y,z), and
o if 2 divides exactly two elements among Xx,Y,z, or one, or none of them, then
n(x,y,z) =3 mod4.
(3) Now let f := n(X,Y,Z) + n(U,V,W) + n(A,B,C). By exhausting all possible
residues modulo 4 we see that, for X,Y,Z,U,V,W,A,B,CeZ

the condition f(X,Y,Z,U,V,W,A,B,C) =0 mod4
>n(X,Y,Z),n(U,V,W),n(A,B,C) =0 mod4
(as 3+3+3, 3+3+0 and 3+0+0 are all #0 mod 4)
= 2 divides X,Y,Z,U,V,W,A,B,C (by the 2. above),

hence f has the property of 1. above, which finishes the proof.
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A crucial incentive for the development of p-adic techniques is provided by the so-
called Ilocal-global principle: in order to study the rational solutions of an arithmetical
problem—a global problem, thus in general difficult—, one might begin with a study
of the solutions in the various p-adic completions, including the real or the complex
ones, and then try to recover information on the initial problem from the data ob-
tained in studying the second problems. As Capi Corrales explained in her article,
this principle works well for instance for quadratic forms (Hasse-Minkowski theorem)
and in other situations (see [1]), but already fails for cubic forms. Nevertheless, it is
possible to adapt these ideas in some cases where the local-global principle strictly
does not apply and this paper will deal with some of these adaptations in the case of
cubic equations associated with elliptic curves. These curves have been studied since
the nineteenth century at least—and particular cases much before—, and they have
appeared on the front page of mathematical newspapers recently in connection with
the proof of Fermat’s last theorem, stating that for n > 2, a™ + b™ = ¢™ has no rational
solution with abc # 0. p-adic techniques play an important role in the actual proof
and the present article could also been considered as an elementary invitation to this
topic. I will first explain briefly the setting of elliptic curves, then show how various
p-adic approaches can be used to grasp the rational solutions, even if the local-global
principle does not apply directly any more. As is most usual in contemporary arith-
metics, the end of this article will mainly deal with conjectures, the partial proof of
one of them (the Shimura-Taniyama-Weil conjecture) being fundamental in the com-
pletion of the proof of Fermat’s theorem. Some excursions are proposed to related
topics or generalizations or complements: they can of course be left aside.

1. A pragmatic briefing on elliptic curves

1.1. Definition. In concrete terms, an elliptic curve E (defined over Q) is defined by
an equation in the projective plane (the numbering of the coefficients, although a bit
disconcerting at first sight, is traditional)

Y2Z+a XYZ+asYZ? = X3 +arX%Z +asXZ? +aegZ?,

where the a; are rational numbers (in fact, they can be chosen to be integers), such
that the curve E is smooth, that is: the tangent is well defined in every point. This
condition can be expressed by saying that a certain polynomial in the coefficients a;,
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the discriminant A, is not zero. For instance, if a1 = a» = a3 =0, A(a;) = —16(27a§ +
4a3), and the smoothness of the curve is connected to the fact that the third-degree
polynomial on the right side of the equation of the curve has no multiple root.

One can point out that there is a single point at infinity, that is for which Z = O,
and that it has rational coordinates. In what follows, I will often forget it and refer
to the curve by its affine equation y2 +a;xy +asy = x3 +ax? + asx + ag. In fact,
as soon as a plane smooth curve has a cubic equation and at least one point with
rational coordinates, a rational transformation of coordinates can be found such that
the equation is of the above type (the given point with rational coordinates is taken
as the point at infinity).

Here are a few classical examples of elliptic curves.

y2=x3-x A =25
Y24y =x3-x? A=11
Viry=x3-x A=37

Y2 =x(x—-a")(x+b") A = (abc)? /256

with v prime and a, b € Z such that there exists an integer ¢ with a” + b” = c".

This last example will be used in the proof of Fermat’s theorem. The equation, in-
deed, defines an elliptic curve as soon as it is smooth, and one can check easily that
this amounts to saying that abc # 0, in other words that there is a counterexample to
Fermat’s theorem.

The points with real coordinates of the third curve are drawn in Figure 1, as an
example. The points denoted by 1, 2, etc. have rational coordinates.

EXCURSION TO RATIONAL POINTS ON CURVES. One might wonder about the points
with rational coordinates on general curves defined over Q. We will follow the usual
terminolgy and call these points rational points. As suggested by David Hilbert and
Adolf Hurwitz in 1890, then again by Henri Poincaré in 1901, the problem can be
tackled through a classification of curves up to birational transformations, that is,
transformations defined, everywhere except maybe in a finite numbers of points, by
rational functions on the curve and such that the same is true of their inverse. (Up to
a finite number of points), these transformations evidently do not alter the rationality
properties of the points.

One can notice that the degree of a defining equation of the curve is not an invariant
for this kind of transformation: the curve y? = x3 for instance is birationally equiv-
alent to a line, through the transformation x = t2, y = t3 and its inverse t = y/x.
An important invariant is the genus—if you are used to dealing with algebraic com-
plex curves (otherwise called Riemann surfaces), the genus is for instance the number
of “holes.” The genus takes into account not only the degree, but also the singular
points of the curve. The genus of a smooth curve defined by an equation of degree
n is n(n—1)/2 and the genus decreases if there are singular points: for instance,
smooth cubic curves have genus 1, but the cubic curve just mentionned is of genus 0,
because of the cusp at the origin.
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FIGURE 1. Rational points on the curve y2+y = x3 — x. After R. Hartshorne,
Algebraic Geometry, Springer, 1977.

Curves of genus zero are birationally equivalent to the line or the conics; in particu-
lar, if they have any rational point, they have infinitely many of them. Curves of genus
one may have no rational points, as the Selmer cubic example given in Capi Corrales’
talk shows; if they have at least one rational point, they are elliptic curves: we will
discuss in detail their rational points a bit later. Curves of genus greater than one
have only a finite number of rational points: this very difficult result was conjectured
in the twenties by Louis Mordell and proved in 1982 by Gert Faltings.

We will need more arithmetical information on the elliptic curves before turning to
the p-adic aspects, but let me give already a glimpse into this direction, by letting
p-adics appear through their first-order approximation, so to speak, that is through
reductions modulo p.

1.2. Reduction modulo p. Let p be a prime number, or equivalently as seen in pre-
vious talks, let v be the associated discrete valuation. One can choose the equation
of the curve F in such a way that it is minimal with respect to v, that is such that the
coefficients a; are of positive valuation and that v(A) is minimal among the possi-
ble v (A). When the curve is defined over Q, one can in fact choose such a minimal
equation globally: with the same integers a;, the equation is minimal for every v (this
would not be true over a number field for instance).

One can then reduce the coefficients of the equation of E modulo p, which gives the
equation of a curve E on the finite field F,,. Three cases are possible:

o The reduced curve E on F, is smooth (this occurs when v (A) = 0). One says that

the curve has good reduction.

o The reduced curve E has a node (e.g., the equation reduces to y2 = x3 — x?2). One

says that there is semi-stable (bad) reduction.
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FIGURE 2. After J. Silverman, The Arithmetic of Elliptic curves, Springer, 1986.

o The reduced curve E has a cusp (e.g., the equation reduces to y2 = x3). One says

that the reduction is bad and unstable.

In the last two cases, v(A) > 0; one can distinguish between them by looking at the
valuation of a certain polynomial combination c4 of the coefficients a;.

This information is encapsulated in an integer, called the conductor N of the curve.
It is divisible only by the primes of bad reduction (in particular, it has the same prime
divisors as the disciriminant A). Moreover, the primes of semistable bad reduction
(resp. unstable bad reduction) appear in N with the power 1 (resp. strictly greater
than 1). For example, in the elliptic curves associated with Fermat’s theorem seen
above, the conductor is equal to [[,apc P-

1.3. The group law on an elliptic curve. The main feature concerning the points
of an elliptic curve is that they form an abelian group. The group law is constructed
in the following way: If two distinct points P and Q are given on the curve, the secant
through P and Q cuts again the curve in a third point R (well-defined, because the curve
is defined by a cubic equation). One defines the addition on the curve by the property
that P@ Q @R = O. One can check that it amounts to saying that the sum of P and Q is
the point P @ Q obtained as the third point of intersection of the secant going through
R and the point at infinity. If the two points P and Q are the same, the secant becomes
the tangent at the curve and the same construction applies, mutatis mutandis. The
group structure can be proved for instance on the cartesian coordinates, by computing
the equations of the tangents or of the secants. To fix the ideas, for instance, the double
of a point P = (x,y,1) on the curve y? = x3 +1 is given by

2(x,y,1) = (x,y,1) & (x,y,1)
_(x*-8x (3x%)[x*-8x +)(372 1
T \4x3+4 \ 2y J\4x3+4 2y )

The neutral element of the group is the point at infinity, we will note it from now
on Og. One can check on the figure above that the points 2, 3, etc. are obtained by
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iteration for this law from the point 1—in particular, for example, —3, 2 and 1 are on
a line.

The 2-torsion points (the points such that 2P = Og) are the points with “vertical”
tangents (that is tangents going through the point at infinity). There are four of them
(including Og) and they form a subgroup of the type Z/2Z xZ/2Z. The 3-torsion points
are the inflexion points, there are nine of them and they form a subgroup of the type
Z/3Z xZ/3Z. The same is true in general for the n-torsion points: they will play an
important role in the construction of representations associated to the elliptic curve,
as we will see later.

The rational points obviously form a subgroup, because all the constructions given
above preserve the rationality: for instance the secant through two rational points
has an equation with rational coefficients and the third point of intersection with the
elliptic curve is still rational. This group is called the Mordell-Weil group of the curve
E and its structure is described in the following crucial theorem.

THEOREM 1 (Mordell-Weil). The abelian group E(Q) of the rational points on an
elliptic curve E defined over Q is of finite type.

In other words, E(Q) ~ finite group XZ X - - - X Z. The number 7 of copies of Z, that
is the number of independant generators of infinite order, is called the rank of the
elliptic curve.

This theorem was proved by Mordell in 1922 and generalized, in André Weil’s 1928
thesis, to number fields and cases associated with curves of higher genus. As far as the
torsion part is concerned, only a finite number of possibilities may occur, as proved by
Barry Mazur in 1974: it can be a cyclic group Z/nZ, with1 <n <10 or n = 12 or it can
be a group of the type Z/2Z xXZ/2nZ with n = 1, 2, 3,4. For each possibility, one knows
families of examples. On the other hand, we still do not know how high the rank can
be or if there exists elliptic curves of arbitrarily high rank, and the determination of
actual generators of infinite order, even for not too big ranks, is far from being easy.

Let me give some examples

e The curve y? = x3 — x has rank 0 and its Mordell-Weil group has four elements,

all of order 2.

E(Q) = {(0,0),(%1,0),08} ~Z/2Z X Z/21Z.

e The curve y? = x3 —43x + 166 has also rank 0 and its Mordell-Weil group is cyclic
of order 7;

EQ) = {(3,%8),(-5,%16),(11,+32),0} = Z/7Z.

e The curve y? = x3 + 877x has been studied by Cassels and Bremmer. Its rank is
one and the Mordell-Weil group is

E(Q)=~ZxZ/2Z,

that is, every rational point P can be written either as mP, or as mPy @ (0,0),
where Py is a generator of the infinite cyclic part, for instance,

_ (375494528127162193105504069942092792346201 )
0~ 631598777687105425463220780697238044100 '~ "
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This example shows that the determination of the generators is not quite trivial!

e The curve y? = x3 —226x has rank 3.
EQ)=27%xZ/2Z,

where three independent generators of the infinite part are

Pl = (_ly 13)!
P, =(5121/4,1155/8);
P; = (-8,36).

e The curve y? = x3 + 16D, with D = —408368221541174183 (studied by J. Quer)
has rank 12.

2. A first use of the p-adics: the computation of the torsion. Mazur’s proof con-
cerning the torsion is quite difficult. But it is often possible to detect impossibilities
through a p-adic analysis, exactly as it is often possible to prove some impossibilities
for integral solutions of an equation by arguments modulo p, or more generally p-adic
ones. Thus, let us denote by p a prime number and let us suppose that the elliptic
curve E has good reduction modulo p. Let n be an nonzero integer, prime to p. The
fundamental result for our purpose is then

THEOREM 2. The group of p-adic points on E of n-torsion (denoted by E(Qp)[n])
can be injected into the group of ¥, -rational points of the reduced curve E modulo p.

What does this statement mean and why is it useful? The minimal equation of E
has integral coefficients, and one can look for solutions with values in Q,, or, to
say it briefly, for p-adic points on E. Through the same secant-tangent procedure
described earlier, these points form a group (which contains the Mordell-Weil group
of the rational points) and one can investigate its elements of n-torsion. On the other
hand, by reduction modulo p of the coefficients, one obtains as explained above a
smooth cubic curve E defined on F,—do not forget that one has assumed that E has
good reduction modulo p. It is then legitimate to consider its solutions in F,, which,
with the same procedure, form an abelian group. The theorem states than there is an
injection between these groups. The proof comes from the following exact sequence

0—E1(Qp) — E(Qp) — E(Fp) -0,

where the third arrow represents the reduction modulo p and E; (Q,) its kernel. The
key is that E;(Q,) has at most p-torsion; the n-torsion, for n prime to p, of the
second group injects then into the third. The necessary description of E;(Q,) and of
its torsion is by no means trivial, see for instance [20].

The theorem can be used to prove results on the p-adic, thus on the global torsion.
Here are two examples taken from [20].

EXAMPLE 1.

Vi+y=xd-x+1, A=-611=-13.47.
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It is easy to check that the reduced curve modulo 2 has no solution modulo 2—except
of course the solution at infinity: namely, the left hand side of the equation is always
equal to 0 modulo 2, and the right hand side always equal to 1. Thus, for every odd
n, E(Q,)[n] injects into E(F,) = 0z and the Mordell-Weil group of the curve E itself
has no odd torsion.

EXAMPLE 2.
Y2 =x3+3, A=-3°2%

One checks here easily that the cardinality of E (Fs) is 6 and the cardinality of E (F;) is
13. As the n-torsion of the Mordell-Weil group for n # 5 or 7 should inject in both these
groups, it is trivial. On the other hand, the cardinality of the 5-torsion (respectively of
the 7-torsion) divides 25 (resp. 49) as mentionned earlier and explained below, thus
there is no non trivial torsion. Moreover, there is an evident rational solution (1,2) on
the curve. This point is thus of infinite order.

3. The [-adic representations associated with an elliptic curve. We will see now
how the infinite part of the Mordell-Weil group can also be studied more closely with
p-adic ideas. This includes the Selmer and Tate-Safarevic groups attached to an ellip-
tic curve on one hand, and, on the other, L-functions and representations. The first
topic will be briefly explained at the end of this paper. I will mainly explain here the
construction and use of representations associated to an elliptic curves. Each of them
is indexed by a prime number, traditionnaly denoted by [ and not by p (we will have
occasion to understand why). Thus let us fix such a prime [ greater than or equal to 3
and such that E has good reduction at I. We will need to study the points on E of ["-

torsion for various 7. The first results being valid for n—torsion points, for any integer
ntimes

——

n = 2, I will give them in this situation. Thus, let as always E[n]={P |P+---+P =0}
be the set of the n-torsion points of the curve E (including, of course, the “zero” ele-
ment, that is the point at infinity). These E[n] are obviously Z/nZ-modules. From the
expression of the coordinates of the sum of several points, it is not difficult to see
that the x-coordinates of the points in E[n] satisfy an equation of degree (n2—1)/2
with rational coefficients; the y-coordinates are then given by the equation for E (thus
there are in general two values of y for each x). Thus, as already mentionned earlier,
there are n? points in E[n] (including the point Og); E[n] is in fact a free Z/nZ-module
of rank 2. Moreover, the Galois group of Q acts on it. The following excursion is in-
tended to provide the necessary background and can be skipped by people already
familiar with Galois theory.

EXCURSION TO GALOIS GROUPS AND GALOIS REPRESENTATIONS. The Galois
group of a polynomial equation with rational coefficients is simply the group of
permutations of the roots of this equation which take into account all the rational
relations between these roots, that is the relations expressible by means of polyno-
mials with rational coefficients. In other words, if (some of) the roots xi,...,x, of an
equation satisfy Q (x;) = 0, with Q a polynomial with rational coefficients, the images
s(x;) for a permutation s belonging to the Galois group of the equation also satisfy
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Q(s(x;)) = 0. In particular, the Galois group fixes all the rational roots (if x; = a with
a rational, one also has s(x;) = a).

For example, let us consider the equation x* — x3 —2x2 +3x —1 = 0. It has four
roots, x1 =1, xo = -1, x3 = (=1++/5)/2, x4 = (-1 —+/5)/2. There are a priori 4! = 24
permutations between these four roots, but the only ones to be taken into account
should preserve for instance rational relations suchas x;—-1=0,x2+1 =0, x3+x4+
1 =0, x3x4—1 = 0. Thus they fix x; and x,, and either also fix the two other roots or
exchange them. The Galois group has two elements: the identity, and the permutation
which exchanges x3 and x4, corresponding to the transformation /5 — —+/5.

Consider now the equation x* +x3 + x2 + x + 1 = 0, whose roots are the four non-
trivial 5-th roots of unity. Each root is a power of one of them, for example of xi,
and this (rational) relation should be kept by the authorized permutations. Such a
permutation is thus determined as soon as one knows the image de x;: there are four
possibilities for it, x1, x2, X3, X4, and the Galois group has four elements, it is in fact
the cyclic group of order 4.

Consider finally the equation 3x* —6x2 +x —1 = 0, no polynomial relation exists be-
tween the roots, except of course the equation itself, the Galois group of the equation
is here the group S, of all the permutations between the four roots.

The absolute Galois group, Gq, gathers all these pieces of information for all the
polynomial equations with rational coefficients: an element of the absolute Galois
group determines on each equation a particular permutation of the roots (which of
course could be simply the identity). A good and simple introduction to these issues
is for instance [22]. This Galois group is very important for arithmeticians, because it
controls for instance how to go from the algebraic closure of Q —which contains the
roots of all the polynomial equations with rational coefficients and on which phenom-
ena are often simpler or at least can be dealt with through a lot of tools, for instance
algebraic geometry or complex analysis—to Q itself. The absolute Galois group is in-
finite. For recent work in order to understand better the structure and the properties
of the absolute Galois group, see [8].

The absolute Galois group fixes in particular the equation determining the x-
coordinates of the points in E[n] and the equations giving the y-coordinates of the
points with a given x-coordinate. Thus, it permutes the points of E[n] among them-
selves. If one fixes a basis (P;,P») of the Z/nZ-module E[n], for each element o of the
Galois group, o (P;) and o (P;) can be expressed in this basis, as a linear combination
with coefficients in Z/nZ: o (P;) = r;P; + s;P>. Thus one obtains a representation—it is
a continuous homomorphism between topological groups, but I won’t describe here
the relevant topologies

pn:Gq — GL2(Z/nZ),

where to each element o of Gq is associated the matrix (ﬁ 5 )

EXAMPLE. For the curve y? -y = x3 — x and n = 3, the equation giving the x-
coordinates of the points in E[3] is 3x% - 6x?+x —1 = 0 and the Galois group of the
equation is here the group S4. The action of the absolute Galois group is determined
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by this action on the x- and y-coordinates of the points. One could describe explicitely
the representation p3; above through the choice of a basis of E[3] on Z/3Z.

There exists a natural map from E[n] to E[m], as soon as m divides n (if P €
E[n], then (n/m)P € E[m]) and the associated representations are compatible. In
particular, it is possible to define a unique Galois representation gathering the Galois
representations associated to E[1], E[1?], E[13], etc. This representation is the l-adic
representation associated to E, denoted from now on by pj~,

pi=: Gq — GLz (Z)).

THEOREM 3. Each l-adic representation as above determines the curve E, up to
isogeny.

This means that if two curves have a common [-adic representation, each is the
quotient of the other by a finite group. In fact, the [-adic representation allows us to
recover a fundamental object associated with the elliptic curve, its L-function.

4. The L-function of an elliptic curve. These functions are analogous to the cele-
brated Riemann Zeta-function

¢o=3 =[] a-up)™.
n=1 p prime

They encapsulate the “modulo p” pieces of information for the curve. More precisely,
we have seen at the beginning that the reduction E of the elliptic curve modulo a prime
p can be still a smooth curve (if p does not divide the discriminant A or equivalently
the conductor N) or have one singularity, either a cusp or a node (if p is a divisor of N
or A). Let us define a, such that the number of points on the reduced curve F modulo
p is p+1—-a, (if, instead of E, one looks at the projective line, one would have p +1
points, thus the term a, is a kind of correcting term). It was proved by Helmut Hasse
that | a, [< 2./p. Now, let us define
1725)71

Ly(s)=(1-app~+p for p not dividing N

Ly(s) =1 if E has a cusp
Ly(s)=(1+p~*)~" if E has a node

(Iwon’t discuss here the determination of the sign in the last case) and, for Re(s) > 3/2,

L(E/Q,s) = [ [Ly(s).
P
The product defining the L-function does not converge in general, but one has the
following conjecture

CONJECTURE 1. The L-function has an analytic continuation to the whole complex
plane. Moreover, it satisfies a functional equation. Let

A(s) = N*/?2(2m)=T(s)L(E/Q,s),
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whereT (s) = [ ett*dt/t is the usual T-function, then one has
A(Ss) = =A(2-3).

The definition and the properties (conjectural or not) of the L-function of an elliptic
curve are coherent with those of the zeta-functions attached to curves or varieties
over a finite field on one hand and, on the other, with those of the L—functions as-
sociated with Galois representations (for a leisurely introduction to these topics, see
[6]). In particular,

-1
L(E/Q,s) = [det (1-p~pi= (Frob,) | V")
14

where, for I # p (thus the choice of the notation!), p;~ is the l-adic representation
defined earlier, V; is a Q;-vector space called the Tate space, constructed from the
points of 1, 12, etc. -torsion on the curve and on which the absolute Galois group acts
via the l-adic representation, I,, is a subgroup of the Galois group called the inertia
group at p and Frob, a specific (conjugacy class of) elements, the Frobenius at p, in
the Galois group. It has to be noticed that these last objects have nothing to do with
the elliptic curve, they are defined in the framework of algebraic number theory (see
for instance [21]) and they will be used exactly in the same way for another Galois
representation. The curve appears here only through the l-adic representation (and
the Tate space): remarkably enough, one [ (of good reduction) is sufficient to recover
most of the picture.

Unfortunately, the above conjecture is not known, except if some cases where an
extra structure is provided on the curve: in the complex multiplication case and the
modular case. In the first case, one can define on the curve not only the multiplication
of a point by a usual integer (through the group structure), but also the multiplica-
tion by integers in a quadratic field. The simplest example is the one of the curve
2 = x3 — x where one can define the multiplication by i = +/~1 (and then by ev-
ery integer in Q[i]), as i- (x,y) = (ix,—y). In the complex multiplication case, the
L-function of the curve is related to L-functions associated with characters of the
quadratic field, for which analytic continuation has been proved. The second case
corresponds to the possibility of parametrizing the points on the curve through the
so-called modular functions. We will devote the next section to this issue, in particular
because (conjecturally, as we will see), this case should be in fact general: every elliptic
curve defined over Q should admit such a parametrization. The partial proof of this
conjecture constitutes the main result of Wiles’s work of 1994-1995 and implies in
particular Fermat’s theorem.

Before turning to this topic, let me state another conjecture which shows how this
L-function, and thus the [-adic representation, give access to the infinite part of the
Mordell-Weil group. The starting point, due to Birch and Swinnerton-Dyer in the sixties,
was the following idea: if the curve has strictly positive rank, that is a rational point
which is not a torsion point, then this will always provide a non-trivial contribution
when one considers the reduction of the curve modulo a prime number. Thus the
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product of the (1+p —a,)/p will diverge and the L-function will have a zero at s = 1.
More precisely:

CONJECTURE 2 (Birch and Swinnerton-Dyer). The order of vanishing of the L-
function at s = 1 is exactly the rank v of the curve.

The conjecture also gives an expression for the leading coefficient, in terms of var-
ious objects associated to the elliptic curve. For the sake of space, I will omit this
part.

5. The Shimura-Taniyama-Weil conjecture. As explained above, this conjecture, if
proved, would allow us to know the analytic continuation and the functional equation
for the L-function of any elliptic curve defined over Q. It is also connected to the
recent proof of Fermat’s theorem. Although its expression is not p-adic per se, its
(partial) proof by Wiles relies heavily on p-adic and [-adic techniques. I won’t be able
here to give its due to the beautiful, but technical work involved and will only try to
convey an idea of the conjecture itself and at least of the range of methods used in
Wiles’ proof.

The Shimura-Taniyama-Weil conjecture (STW conjecture in what follows), in its crud-
est form, states that every elliptic curve defined over Q admits a parametrization by
modular functions, in some respects a result analogous to the parametrization of the
circle by circular functions. I will first define these functions, then give several, more
precise, forms of the conjecture, and finally give some hints about Wiles’ proof and
the link with Fermat’s theorem.

5.1. Modular functions and forms. The definition of the modular functions (and
forms) depends on two integers N (the level) and k (the weight; we will here mainly
refer to k = 0 or 2). The impression of carelessness which my notations might give,
where two quantities are denoted by N (the conductor of an elliptic curve and the
level of a modular function), will disappear as soon as the conjecture will be stated
properly.

DEFINITION. A modular function h of level N and of weight k is a meromorphic
function defined on the complex half-plane H = {z € C | Im(z) > 0}, such that

az+b
h(cz+d

) — (cz+d)*h(2),
for every matrix (‘j Z) belonging to the group

To(N) = {(? Z) € SL,(Z) with ¢ = OmodN}.

As usual, SL>(Z) is the group of matrices with integral coefficients and determi-
nant 1. The definition can be extended to transformations belonging to an arbitrary
congruence group I, that is a subgroup of finite index in SL,(Z) and containing the

group
a b a by (1 0
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The group IH(N) is only an important particular example of a congruence group and
we will speak only of this one here; Wiles uses several others in his work.

Let me remark that the matrix ((1) %) € Iv(N) and hence that h(z + 1) = h(z): the
property of the definition generalizes the notion of a period. Being periodical with
period 1, the modular functions have a Fourier development

h(z) = > cpexp(2minz),
and we also require that this development have at most finitely many nonzero coef-
ficients ¢, for n < 0. This condition is in fact a condition of meromorphy at infinity.
Other analogous conditions of regularity for other points depending on N are also
necessary, see [10] or [19].

EXAMPLE. The formal series obtained by developping the produit
ﬁ (1- ")2(1— 11n\2
q a a'm)”,
n=1

with g = exp(21iz), is a modular function of weight 2 and of level 11. All coefficients
for n <0 and n = 0 are zero.

5.2. A formulation of the STW conjecture. We can now give a first formulation of
the STW conjecture.

CONJECTURE 3. Let E be an elliptic curve defined over Q, with conductor N, there
exists a parametrization by modular functions h et g of weight 0 and of level N,

x=g(z), y=h(2),

for every point P = (x,7y) of E (up to a finite number).

REMARKS.

e As promised, the two N should coincide. The problems related to the conductor
(or to the level of the associated functions) are technically very delicate and a
great part of the work consists of dealing adequately with these levels.

e Every curve defined by a cubic equation, even with complex coefficients, admits
a parametrization by periodic functions, the Weierstrass functions; this is a clas-
sical result well-known since the nineteenth century. But that modular functions
for a congruence subgroup provide a parametrization is narrowly linked to the
fact that the coefficients of the cubic equation are rational: the STW conjecture
is an arithmetical conjecture, cf. [11].

EXAMPLE. A modular parametrization (by functions of weight 0 and of level N=37)
for the curve y? +7y = x3 — x is given by

x(z)=q %+2q ' +5+9q+18q°+29q° + - - -
Y(z)=q3+3q%+9q 1 +21+46q+92g*+- - -,

with g = exp(2miz). The detailed computations can be found in [12] or [26].
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FIGURE 3. Fundamental domain for modular functions of level 1

This relatively simple formulation is neither the only one, nor the most widely used.
The conjecture provides in fact a dictionary between “elliptic” objects (defined from
the curve E) and “modular” objects (defined from the congruence groups and the
modular functions). I will explain here some of these correspondances: that the STW
conjecture can be proved arbitrarily from each of them is not at all trivial and relies
on numerous previous works.

5.3. A geometrical interpretation. For a fixed integer N, the group I)(N) defines
a tiling of the upper half-plane: one can namely cut this plane in infinitely many do-
mains, which are deducible from each other by a homographic transformation, of the
type z — (az+b)/(cz+d), with (’j 3) € IH(N). Since a modular function of weight 0
is invariant by such a transformation, it is defined everywhere as soon as one knows it
on one of these domains. The boundaries of a domain (up to a finite number of point)
can also be glued together by identifying those which differ only by a transformation
of I (N). We draw underneath the case of N = 1. The transformation Sis z - —1/z,
the transformation T is the translation by 1. One has noted on each domain which
transformation would derive it from the domain 1.

With these identifications, one obtains a real surface (which can be compactified),
called Xo(N). This is a Riemann surface and the modular functions of weight 0 are
simply the functions on this surface. One can prove that the curve Xy(N) has an
equation defined on Q; X((37), for example, is, as a surface, a double tire, and as a
curve, given by the equation V2 = 37— U%—-9U* - 11U?, in the plane with coordinates
U and V.

The existence of a modular parametrization for an elliptic curve E defined on Q
is then equivalent to the existence of a non-constant, holomorphic mapping between
Riemann surfaces (or of a rational map between algebraic curves).

Xo(N) — E.
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5.4. Modular functions. An other important form of the conjecture is that it is
possible to associate to E a modular function f with weight 2 and level N with the
following properties:

(i) c1 =1, ¢y =0 for n < 0 (such a function is said to be a normalized parabolic
modular form).

(ii) For every prime [ not dividing N,

¢ =1+1-card (Emodl).

In other words, the I-th Fourier coefficient of the modular form is equal to the term
a; which appeared above in the definition of the L-function of the elliptic curve. The
formula (ii) is crucial and will reappear in what follows.

REMARKS. Modular forms of weight 2 give rise to differential forms on the surface
Xo(N); the one associated to E is the inverse image by the mapping Xy,(N) — E of
the differential form dx/(2y +a;) on E. The space of parabolic modular forms of
weight 2 and level N is a finite-dimensional vector space. Its dimension is 0 for N =
2,1 for N =11, 2 for N = 37, for example. More generally, as could be expected, this
dimension is the genus of Riemann surface X, (N).

The form f associated to E also satisfies other crucial properties: it is an eigen-
vector for the action of specific operators, and among them, of the so-called Hecke
operators, T,, (0 # n € N). Taking them into account is in fact necessary to make the
definitions and the proofs precise, see [10], but I won’t do it here. The coefficients ¢,
are the corresponding eigenvalues for each T,. Simple recurrence formulas allow us
to determine every c, as soon as the various c;, [ prime, are known.

EXAMPLE. We have already exhibited a parametrization for the curve y? —y =
x3 —x. One deduces from it a parabolic normalized modular form

__4x(z)
f(z)dz = 2y (2) 1"
with development

f(2)=q-2q*-3q*+2q*-2q° +64%+- - -,

where q = exp(21iz) as always. One can check property (i) on the first coefficients.
For example, the solutions modulo 3 of the equation of the curve are: (0,0), (0,1), (0,2),
1, 0), (1,1), (1, 2), that is 7 solutions with the one at infinity, thus one should have
c3 =3+1-7= -3 (it works!).

To a modular form f, parabolic with weight 2 and level N as above, one can associate
its Mellin tranform

J f(it)tsﬂ,
0 t
which is also equal to

(2m)~*T(s)L(f,s),
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with I'(s) = f0°° e ttSdt/t as earlier and L(f,s) = > cyn~. This series L converges for
Re(s) > 3/2 and admits an analytic continuation to the whole complex plane; moreover
it satisfies a functional equation relating its value at s to its value at 2 —s.

The STW conjecture also promised that this L-function coincides with the L-function
of the elliptic curve defined earlier.

REMARK. It seems that the mathematician Tajeki Taniyama was the first to suggest,
during a problem session at the end of a conference in Tokyo in 1955, a weak version of
STW: according to the english version (not published, but largely diffused), Taniyama
asked if it was possible to find an “automorphic form” (a priori something a bit more
general than modular functions) whose Mellin transform would give the L-function of
the elliptic curve. In a series of papers, Goro Shimura constructed in particular for each
modular form of weight 2 (of level N, parabolic, etc. as above) whose development in
Fourier series has rational coefficients, an associated elliptic curve—if the coefficients
belong to an extension of finite degree, one obtains varieties of higher dimension—and
showed that these curves were modular in the sense of the geometrical interpretation
given above. This work establishes half of the dictionary “elliptic” and “modular”
dictionary. André Weil showed that it is sufficient to prove that the L-function of the
curve (and a family of other analogous functions deduced from it) admits an analytic
continuation and satisfies a functional equation of the required form to obtain the
STW conjecture (see [24], tome 3, p. 165 for an exact statement). This statement has
much contributed to make the STW conjecture convincing, because one expected such
continuations and functional equations for all the L-functions associated to curves or
algebraic varieties.

The interesting feature of this dictionary is that the modular functions are more
concrete and accessible to computations than geometrical objects: for example, one
can find rather easily estimates on the c¢,, which enable us to prove the analytic con-
tinuation of the modular L-function. Also, because the dimension of the space of the
modular forms of weight 2 and of level N is finite, the STW conjecture provides di-
rectly the information that there are only finitely many elliptic curves with a given
conductor.

5.5. Galois representations. The last form of the conjecture I want to explain is
in fact the crucial one in Wiles’ proof: It is expressible in terms of Galois representa-
tions. I do not want to explain how to construct such representations associated to
modular forms, because it is quite technical (see [18] or [8]), but I will at least describe
a characteristic property. As one can guess, the coefficients ¢, play an important role
here. For every prime p, we mentionned earlier a particular (class of) element(s) of
the absolute Galois group, denoted by Frob,. To each modular form f as above, one
associates a representation

pi=: Gq — GL2 (Z)),
such that the trace of the matrix p;~ (Frob,) is exactly the coefficient ¢, (for p not

dividing IN). One could also define analogously the representations p;, p;2, p;3, etc., the
corresponding traces being respectively ¢, modulo!, ¢, modulo!?, ¢, modulo I3, etc.
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Another form of the STW conjecture is that the [-adic representation p;~ associated
to E is isomorphic to a representation arising from a modular form. This formulation
is in particular compatible with formula (ii) seen above. Let us remark that while a
single [ is sufficient, the entire p;~ should be modular, the modularity of one of the
representations p;, p;2, etc. would not be sufficient.

In what follows, I will denote by p; g, pi~E, etc., the representations constructed
from an elliptic curve, and py r, pi~,r, etc. those constructed from the coefficients of
a modular form of weight 2, parabolic, etc.

EXCURSION TO LANGLANDS PROGRAM. One can in fact associate an L-function to
every adequate Galois representation. The Langlands program predicts that these L-
functions coincide with the L-functions of automorphic forms (generalizing the mod-
ular forms).

EXCURSION TO THE NOTION OF GALOIS REPRESENTATION. There are two slightly
different vantage points on these representations. Either the emphasis is put on the
Galois group itself, the various target spaces are as many ways of obtaining pieces of
information about it; or the emphasis is put on the target spaces or modules, and the
representation can be thought of as a extra structure on them (“action of the Galois
group”). In this last perspective, which is ours here, the tendency is to get rid of the
notation

pLe: G — GL(E[L]) = GL2(Z/12),

to speak only of E[1] as Gq-module of rank 2 (meaning: E[l] with the extra structure
given by the representation p; of Gq). The difference is only a way of speaking, but
it has a pedagogical advantage (at least at the level of this article): more complicated
rings than Z/1Z or Z; appear in fact as ground rings for the Gqo-modules used by Wiles
and others, and I won’t have to make them precise.

It is time to close these preliminary remarks and to turn to proofs.

5.6. The link with Fermat’s theorem. Let me begin by a caution about the nota-
tions. There are a lot of primes entering these questions: the exponent in Fermat’s
equation, the index of the representations, the index of the Galois elements or the co-
efficients of the modular forms, etc. Generally,  have reserved » for Fermat’s equation,
[ for the representation and p elsewhere (different choices are made in the relevant
litterature). The problem is that in the proofs, some special identifications are made,
for instance, one will choose sometimes [ = . Some caution is useful to avoid misun-
derstanding what is going on.

The elliptic curves to be considered are the ones defined by an equation

y?=x(x-a")(x-b"),

where a, b, c are not all trivial and satisfy Fermat’s theorem a” + b" = ¢”, for a certain
prime ¥ > 2. These curves have been introduced and studied by Yves Hellegouarch
in the sixties, but came back into focus in the mid-eighties through a suggestion of
Gerhard Frey. The link with Fermat’s theorem was in the end proved by Ken Ribet.
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If these curves were modular, as promised by the STW conjecture, the representa-
tions p;r would all be modular in the sense above, in particular this would be true of
pr.r (v being the prime entering the equation of the elliptic curve). That is, for every
prime p not dividing N,

Tr pr g (Frob, ) = ¢, modulov,

where the ¢, are the Fourier coefficients of a modular form of level N. Ken Ribet has
shown that for this representation, it would be possible to decrease the level—a very
hard game consisting in eliminating one by one every odd factor in the conductor
of the curve, see [14] and [16, 15]. But there doesn’t exist any non trivial parabolic
modular form of weight 2 and of level 2, hence a contradiction. This proves that if an
Hellegouarch curve did exist (that is if Fermat’s theorem were false for an 7), it could
not be modular: the STW conjecture thus implies Fermat’s theorem.

The next step then is the proof of the STW conjecture, at least for Hellegouarch
curves. In fact, Andrew Wiles succeeded in proving it for all semi-stable elliptic curves.
Recall that this means that the curves never reduce to a curve with a cusp, or equiva-
lently, that no square divides their conductor. Here is a brief sketch of the main steps
of the proof.

5.7. A proof of the STW conjecture for semi-stable ellitpic curves. The first step
consists of proving that for many cases, p3 ¢ is modular, that is there exists a modular
form f of level N and of weight 2, > ¢, q", such that

Tr (pg_E(Frobp )) = ¢, modulo 3,

for all p not dividing 3N.

The existence of such a form comes from the fact that, when the Galois group of
the x-coordinate equation for E[3] is the whole group S; of permutations of the four
roots (as in the case of the curve y3 +y = x3 — x seen above), the representation
p3,e is a representation for which one can prove part of Langlands program (works
by Langlands and Tunnell, see [17]); results by Deligne and Serre allow us then to
produce the modular form f of weight 2. Notice that the Langlands program is known
in very few cases: the fact that one can choose [ = 3 (for which the equation for the
x-coordinates is only of degree 4) is crucial in order that the proof can begin.

We now have at our disposal two representations ps3~, one associated to E, one to
the form f obtained at the previous step (they only coincide a priori modulo 3). The
whole question is then: can we garantee that the one associated to E, which is modular
at the first order, so to speak, is modular as a whole?

In order to prove this point, Wiles uses a theory (deformation theory) which de-
scribes the possible liftings of representations modulo 3 into 3-adic representations
(or, in other words, of Z/3Z-Galois modules of rank 2 to Z3-Galois modules of rank 2).
One can think of it as a (very!) sophisticated version of Hensel’s lemma. This theory has
been elaborated during the last decade by Mazur, Hida, Tilouine, etc. Wiles constructed
a universal modular Galois representation, such that all the modular representations
lifting p3 ¢ can be naturally deduced from this one (or, equivalently, a Galois-module
T on an adequate ring, which is “modular-universal,” in the sense that all the Galois
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modules on Z3 associated with modular forms congruent to f modulo 3 are images
of T by adequate maps). He also constructed a geometric universal representation, U,
which plays the same role for the representations associated with curves. This very
vague presentation masks important work necessary in order to control precisely for
instance what happens for the divisors of 3N.

The last step consists of a comparison between T and U, which relies on an algebraic
examination of the structure of these objects. Here was the flaw of Wiles’ first proof,
which was soon corrected in colloboration with Richard Taylor (see[25] and [23]). One
can then conclude that p3~ ¢ also is modular.

If the representation ps g is not adequate to catch immediately a modular form at
the first step, Wiles uses the representation p3 p for another auxiliary curve E’ and
compares then ps g et ps g in order to conclude.

6. Selmer groups and related topics. I will conclude this very schematic introduc-
tion with some hints about another important tool, Selmer groups. They occur in fact
also in Wiles’ proof, but I will describe here only the simplest cases.

A convenient way to introduce them is to go back to the Mordell-Weil theorem. Recall
that it states that the group of rational points on the elliptic curve E is of finite type.
Let me give you an idea of a possible proof of this theorem.

One fixes an integer n > 2 (the original choice was n = 2, but it works just as well
for any number). Our aim is to express any rational point as a linear combination with
integral coefficients of finitely many of them. Thus, let us consider one P € E(Q). One
will write the group law as the usual addition on numbers and try to apply a kind of
Euclidean algorithm. More precisely, one can prove that it is possible to write

P=nP &P,

where P’ and P; belong to E(Q), P’ is smaller than P and P; belongs to a finite set of
remainders modulo n.

What do I mean by smaller? One can give a naive definition of the size of a rational
point: h(P) = 0 if P is the point at infinity, h(P) = log max{numerator of xp, denomi-
nator of xp}if P = (xp,yp,1). This idea can be refined in order to obtain a quadratic
function on points (the height) such that such that (as in the naive definition), given a
constant A, only finitely many points are of height less than A.

The proof then clearly proceeds to its completion

P=nP aP
=n’P ' enPoP

=n3P" on’PsenP, 0P,

where the height of the rational points P, P’, P", etc. decreases. Then, after a finite
number of steps, this height has become smaller than a constant, say A, fixed in ad-
vance, and one knows that there are a finite number of such small points. In particular,
the point P has been expressed as a combination of a finite set of rational points, the
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“small” points just defined and the P; (the remainders, so to speak, in the process of
this Euclidean division). And the Mordell-Weil theorem is proved.

The main issue is of course to prove that the Euclidean algorithm really applies, that
is that there is a finite set of remainders P;. In other words, one wants to describe the
group E(Q)/nE(Q) and to prove that it is finite. The key idea is to interpret it as a
subgroup of a cohomolgy group. One has the exact sequence

0-E(Q), —~EQ)—~E(Q) -0,

where the the third arrow is multiplication by n on the points of E with algebraic
coordinates. By standard procedures, one can deduce from it a cohomology sequence

0 E(Q), ~ E(Q) ~ E(Q) — H'(Ga,En) — H'(Ga, E(Q)) = - -+,
and from it the short exact sequence
0~ E(Q)/nE(Q) — H'(Ga,En) — H'(Ga,E(Q)), — 0.

These constructions are classical. The elements of the first cohomology groups H! are
crossed homomorphisms, that is homomorphisms which take into account the action
of the Galois group on the image; for instance, if the action of the Galois group on the
n-torsion points is trivial (we have seen examples for n = 2, where the four 2-torsion
points are rational, thus fixed by the Galois group), the group H' (Gq, Ey) is simply the
group of homomorphisms from the Galois group to the n-torsion points. This group
is still too big to be used adequately, but one can repeat the same constructions and
obtain analogous exact sequences, not only on Q, but also on every Q,. One obtains
then the cohomology groups H! (Gq,,En), which contain the global one H Y(Gq,En).
Now, it is possible to consider the kernel of the mapping

H'(Gq,En) — [ [H' (Ga,,En),
p

itis called the Selmer group of the elliptic curve E relative to the integer n and denoted
by S(E/Q,n). From the various sequences explained above, one deduces that

0—E(Q)/nE(Q) — S(E/Q,n).

Now, algebraic number theory can be used to prove that the Selmer group is finite:
the idea is that homomorphisms on the Galois group can be expressed in terms of
algebraic extensions and the fact that the Selmer group is the kernel of a kind of
“local-global” situation is expressed by strong local conditions on these extensions,
so strong that only finitely many of them can exist. This proves the finiteness of the
“remainder” group and concludes the proof of the Mordell-Weil theorem.

The Selmer group is in fact easy to compute, which makes us hope that it can be used
to provide an effective set of remainders. Unfortunately, the cokernel in the sequence

0— E(Q)/nE(Q) — S(E/Q,n)
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is not well-known. It is the set of n-torsion points of the so-called Tate-Safarevic group.
This group measures, so to speak, the defect in the local-global principle, but one does
not even know in general that it is finite. If it were the case, one would be able to obtain
an effective version of the Mordell-Weil theorem, which is still not achieved.

However, a lot of work has been done in this direction in the last two decades. The
Tate-Safarevic group enters also in the precise determination of the leading coefficient
of the L-function of the elliptic curve at s = 1, according to the Birch and Swinnerton-
Dyer conjecture described above. Compatible sequences of Selmer groups for n = p,
p?, etc. also give p-adic Selmer groups which can be related, at least conjecturally,
to p-adic L-functions. Selmer groups play a decisive role in the few proofs available
related to the Birch and Swinnerton-Dyer conjecture. More information on these issues
can be found for instance in [3].
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p-ADICS AND PRO-p GROUPS
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A pro-p group can be defined in two ways
(i) as a special type of topological group
(ii) via a constructive definition which strings together finite p-groups.

DEFINITION 1. A pro-p group is a compact Hausdorff topological group whose
open subgroups form a base for the neighbourhoods of the identity and in which
every open normal subgroup has index equal to some power of p.

DEFINITION 2. A pro-p group is an inverse limit of finite p-groups.
See [2] for details.

We can view the p-adic integers as a pro-p group via their construction as an inverse
limit of finite cyclic groups: Z, = lims.,Z/p"Z. The p-adic integers play a role in
the theory of pro-p groups, similar to that played by the cyclic groups in abstract
group theory—in fact the p-adic integers form a pro-cyclic group. Over the last decade
interest in pro-p groups has grown. Number theorists have shown a continued interest
in pro-p groups due to their natural appearance as Galois groups of infinite field
extensions. Group theorists have shown a growing awareness of their uses and there
now exist many results about abstract groups proved with the help of pro-p groups.
Thus pro-p groups have begun to generate interest in their own right. One of the
most interesting pro-p groups is the Nottingham group which may be described as the
group of normalised automorphisms of the ring F,, [[¢]], namely those automorphisms
acting trivially on tF,[[t]]/t°F,[[t]]. Using work of Witt dating from the 1930s [3, 4],
A. Weiss and C. Leedham-Green proved the following result about the Nottingham
group.

THEOREM 1 [1]. The Nottingham group contains every finite p -group as a subgroup.

After a careful analysis of Witt’s methods it became clear that these finite p-groups
could be linked together to prove the following surprising result.

THEOREM 2 [1]. The Nottingham group contains every finitely generated pro-p
group as a closed subgroup.
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Area of interest: Valuations and their applications.

The earliest recorded irreducibility criterion is the one proved by Schénemann in
1846.

Schénemann Criterion. Suppose that p is prime and that the polynomial F(x) €
Z[x] has the form F(x) = [ f(x)]°* + pM(x) where f(x) is irreducible modulo p, M (x)
is relatively prime to f(x) modulo p and the degree of M (x) is less than that of F(x).
Then F(x) is irreducible in Q[x].

The Eisenstein criterion is a special case of the above criterion with f(x) = x.

We have given an irreducibility criterion for polynomials with coefficients in a val-
ued field (K,v) where v is a valuation of any rank, which generalizes Schénemann
Criterion. In particular when v is a valuation of any rank of a field K with value group
G and

f)=x"+ax™ 1+ +an

is a polynomial over K, using prolongations of v to a simple transcendental extension
of K, it has been shown that if

(v(ap/i) = (v(am)/m) forl<i<m,

and there does not exist any integer » > 1 dividing m such that (v(a,)/7) is in G,
then f(x) is irreducible over K.
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We fix aring R and consider the question of classifiying all quadratic forms, or rather
all symmetric bilinear forms over R up to isometries.

In the classical case, where R is a field of characteristic different from 2, a form
is given by a diagonal matrix. For R = C, the forms are classified by their rank, for
R =R, by the rank and signature. for finite fields by the rank and determinant of the
corresponding matrix. For the p-adic fields Q,, we reduce modulo p and use Hensel’s
lemma to write every form as a direct sum q = qo L pq; where the determinants of g
and q; are units in Z,, and to classify forms by the rank and determinant of qo and ;.
For the field R = Q, the situation is much more complicated since there are infinitely
many square classes; the Hasse Minkowski theorem enables us to get information over
Q using local information over all the Q,: forms can be classified by rank, determinant,
and all the local Hasse-Witt invariants, at all primes.

In the integral case, R can be for instance the ring of integers of a number field. For
R =7 forms are not diagonalizable in general and the situation is very complicated.
We can get local information, since the classification over the local rings Z, is easy (it
looks like that over Q,), but the local-global principle does not hold.

I am interested in showing that for some rings, field isometries induce ring isome-
tries. For example if R = 7,[G] and K = Q,[G] are group rings for a finite group G,
and the canonical involution induced by g — g~!, we showed.

THEOREM 1 (see [1]). If G is of odd order or if its p-Sylow subgroup is normal and h
and h' are two hermitian forms over R that are K -isometric, then they are R-isometric.

This has applications to the study of G-isometries of G-equivariant quadratic forms

over rings of integers, and of self-dual normal integral bases.
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Some applications of algebraic and topological properties of the set of p-adic num-
bers in the theory of dynamical systems are presented. These applications concern
the chaotic behaviour of an Iterated Function System on its attractor and some topo-
logical properties of the open basin attractor of a dynamical system. We propose and
we construct effectively an invariant measure on an LF.S.

The general way to use some properties of p-adic numbers in the study of a discrete
dynamical system S is to observe a topological conjugation of S with another discrete
dynamical system S’ whose phase space is the set of p-adic integers.

In this case some properties of S’ are transferred to S.

p-adic integers

|

symbolic dynamics

|

dynamical systems

Contents of the poster:
Definitions and basic results;
Shadowing properties;
Stability;

Iterated function systems;
Measures on fractals.
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REPRESENTATIONS

A short course organized by MICHELE VERGNE

The subject of group representations arose from two sources: the theory of finite
group representations, intimately related to combinatorics, and the theory of infinite
dimensional representations of Lie groups in Hilbert spaces, arising in the context of
quantum mechanics. Nowadays, group representations are in connection with many
different branches of Mathematics.

Talks in this conference gave an idea of the interrelation of group representations
with various other mathematical topics. Quantum groups are related to the Yang-
Baxter equation by the R-matrix, as described by Welleda Baldoni-Silva in her talk
(reproduced only in brief form here). Infinite dimensional representations of real semi-
simple Lie groups are connected with symplectic geometry via the orbit method, as
shown in the talk of Pascale Harinck. Representations of graphs are related with alge-
bras of invariants and singularity theory as shown in the talk of Idun Reiten. Modular
representations of the symmetric group are related to combinatorics as shown in the
talk of Christine Bessenrodt.

We also learned from these talks that, if there are very beautiful results obtained,
many problems remain open, and many new theories emerge and need to be devel-
oped.

MICHELE VERGNE
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These notes are just a short summary of a lecture given at the ICTP in Trieste on
December 12, 1997, at the meeting of EWM, focussing only on some of the basic ideas
that are involved in the actual construction of a deformation.

A Hopf algebra A = A(u,n,A,¢€,S) (over a ring K with unit) is an algebra with multi-
plication u: A® A — A (and unit €), a coalgebra with comultiplication A: A — A® A
(and counit n) and an antipode map S : A — A. All the maps are assumed to be K-linear
and one imposes obvious compatibility conditions between the operations.

Suppose that G is a finite group, then C[G], the group algebra, is a cocommutative
Hopf algebra and F(G) = {f : G — C}, the function algebra, is a commutative Hopf
algebra, moreover F(G) =~ C[G]*.

We can easily generalize the previous examples by considering U(g), the universal
enveloping algebra of a Lie algebra g, and F(G) the ring of regular function of an
algebraic group G.

U(g) is a cocommutative Hopf algebra and F(G) is a commutative Hopf algebra.
Since we are dealing with infinite dimensional Hopf algebras we don’t have a duality
result like in the finite group case. To restore the duality we are led to the notion
of restricted dual. To illustrate the main ideas of the constructions, from now on,
we will restrict our attention to the group G = SL,(C) and to the corresponding Lie
algebra g = sl (C). We refer the reader to the references for the precise statements
concerning the results in a more general setting. We also refer to [1] for an extensive
list of references in the literature.

F(G) can be easily described as the ring of polynomials in a, b, ¢, d with complex
coefficients modulo the two sided ideal I generated by detT — 1. We think of a, b, c, d,
as functions of the matrix entries and we write T = (? 3).

F(G) is the restricted dual of U(g). The idea is indeed that F(G) is generated by the
matrix coefficients of the natural representation of G on C2? and U°(g) (the restricted
dual) by those of the corresponding Lie algebra representation.

The term quantum group is used in different contexts, but it certainly includes de-
formations of the classical objects associated to an algebraic group and introduced
in the previous examples. Starting from the notion of topological Hopf algebra one
arrives to the concept of deformation as follows: A topological Hopf algebra
Ap(Un,Nn,An,€n,Sy) is a deformation of the Hopf algebra A(u,n,A,€,S) if the fol-
lowing holds: A, ~ A[[h]] as K-module and uy, = u(modh), Ay, = A(mod h).
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In particular a quantum universal enveloping algebra, denoted by QUE, is a defor-
mation of U(g) and a quantum function algebra, denoted by QF, is a deformation of
F(G).

Because of cohomological obstructions it is not difficult to show by direct compu-
tations that a QUE is isomorphic to U(g)[[h]] as an algebra and a QF is isomorphic to
F(G)[[h]] as a coalgebra. Because of the above in the explicit construction of a QUE
or a QF for our examples we deform only one type of structure.

Let Uy, be a QUE for g = sI(2,C). One starts by observing that a QUE induces a Lie
bialgebra structure on g, defined by

modh,

wherea = x mod h and A(;lpp is the opposite comultiplication. Thus, in reverse, it can
be shown how to construct a QUE, Uj, by using the standard Lie bialgebra structure.
The constructive idea is that the Lie bialgebra structure on g gives informations on the
first degree order component of the coalgebra structure that has to be defined. Further,
the QUE so constructed is a quasi triangular Hopf algebra, and thus in particular
there exists an element Ry, € Uy, ® Uy, called universal R-matrix, satisfying the QYBE
(quantum Yang Baxter equation):

(Rn)12(Rn)13(Rn) 23 = (Rn)23(Rn)13 (Ru) 1o

The previous equation at the limit, that is mod h?, gives a solution * of the CYBE
(classical Yang Baxter equation), where » determines the Lie bialgebra structure that
we have deformed. Explicitely if we denote by H,X,Y the standard generator of g =
sl(2,C), then we arrive at the following.

DEFINITION-PROPOSITION. Let K = C[[h]] and let P = C{H, X,Y} be the free alge-
bra of noncommutative polynomials in three generators H,X,Y. We denote by I the
h-adic closure in P[[h]] of the two sided ideal generated by

e hH hH

—e~

(X, X1=2X, [HY]+2Y, [X,Y]-—5— 5~

Then Uy (sl; (C)) = P[[h]]/I is a QUE of U(sl,(C)), via the following structures maps

AnH)=H®1+10H, ApX)=Xo0e"™+10X, Ap(Y)=Yel+e gy,
en(X) =en(Y) =€ep(H) =0,
Sph(X)=-Xe ™ S (Y)=-eMMYy, = S,(H)=-H.

As we observed before, the QUE constructed has an extra structure that makes it
a quasitriangular Hopf algebra, thus in particular there exists a universal R-matrix
satisfying the QYBE.

Explicitely in our example we have

Ry =) Rn(h)ehelxngyn,

n=0
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where
q(l/Z)n(n+1) (1 _qZ)n

[n]q!

, g=e".

Rn(h) =

Let V = {vg,v1} be the two dimensional Uy (sl>(C)) module defined by X - vy = 0,
X-vi=vy,Y-vg=v,Y-v1=0,H-vyg=v9, H-v; = —v;. Let R be R;, composed
with the action on V® V. Then

1
-1/2

R=q

S o oN

0
a-q9

1

0

S O+ O
N O O O

with respect to the base {vo® vg,vo® V1,1 ® Vg, V1 ® V1} and

a0 0 0
i 00 1 0
R=P-R=a™1y | 4 41 o

00 0 g

with respect to the same base, (P is the permutation operator).
R is an intertwining operator from VoV — V®V and satysfies the QYBE

(R)lz(ﬁ)B(R)lZ = (R)zs(ﬁ)u(ﬁ)z&

The fact that R is an intertwining operator is the key point to describe a deformation
Fn(G) of F(G) and the above construction can be easily generalized to the setting of
a quasi triangular Hopf algebra. The construction of QF is done in two steps, one first
deforms F (M;) (M, is the algebra of 2 x 2 matrices) and then arrives to a deformation
of F(SI>(C)), by deforming the determinant condition. The first step can be done in
a completely general way, that is one can always construct an Hopf algebra (it is in
fact cobraided) starting from a matrix solution of the QYBE. This is the content of the
Faddaev-Reshetikin-Takhtajan construction.
More precisely

Fn(M2) = C{a,b,c,d}[[h]]/In,

where C{a,b,c,d} is the free algebra generated by the noncommutative polynomials
ina,b,c,d and I, is the closure in the h-adic topology of the two sided ideal generated
by

R(T®T)=(T®T)R,
i.e., Iy is the ideal generated by the relations
qab =ba, qac=ca, bc=cb, gqbd=db, qcd=dc, ad-da=(q—q ")bc.

F, (M) is a bialgebra via pointwise multiplication and
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b
AT)=ToT, €,(T)=1, 1:(? d).

It is easy to see that F(M;) can be described as F(M;) = C{a,b,c,d}/Iy, Iy the
ideal I, for h = 0), thus at least formally justifying the use of Ij, for the deformation.
In effect the relations described by the ideal are exactly the ones to be imposed on
matrix coefficients if we want F;, (G) to be the restricted dual of Uy, as in the classical
case; and these conditions are easily obtained by using the intertwining properties of
R.

Finally, Fj, (SIy) = F;,(M>)/Jn where Jj is the h-adic closure of the two sided ideal
generated by det, T — 1, where det, T := ad — q~'bc. With this definition of determi-
nant the structure maps pass to the quotient.

Define

Sh:Fn(SL) — Fy(Sly), Sp(T)=T7"1

then F;, (Sl,) is a QF for F(SI>»).

To conclude it would be interesting to show how the QYBE both in the constant
matrix form or with spectral parameters, comes out naturally from the study of inte-
grable lattices models.
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1. Introduction. An important problem in harmonic analysis on Lie groups or sym-
metric spaces is to describe the Plancherel formula. It is a generalization of the clas-
sical Plancherel theorem on R which says that the Fourier transform extends to an
isometry of L2(R) into L2(R). For f a function of class C® with compact support, we
define its Fourier transform f by f(x) = 1/(v21) [z f(»)ei*¥dy and we have the in-
version formula f(x) = 1/(~/21) [ e ™ f(v)dy. The functions x — x> are exactly
the irreducible unitary representations of R.

A beautiful method to obtain the Plancherel formula for groups is the orbit method
which consist of relating irreducible unitary representations of the group with orbits
of the coadjoint representation of the group. This method was first developped by
A.A. Kirillov for nilpotent Lie groups ([11]).

I want to explain this on the example SI(2,R).

2. Representations of SI(2,R)

2.1. Preliminaries on Lie groups. We say that a group G is a Lie group if it is an
analytic manifold such that the group operations are analytic. Let e be the identity
element of G. Let yg be the tangent space to G at e.

The group G acts on itself by inner automorphism @, (g) = xgx~!. The differential
Ad(x) of @y at e is called the adjoint action of G on yg.

The differential ad(X) of Ad at e is a map from yg to End(yg) called the adjoint
action of yg. We put ad(X) (Y) = [X, Y]. This bracket gives yg a Lie algebra structure,
which means that we have the two following properties:

(i) The bracket is antisymmetric: [X,Y] = —-[Y,X]

(i) The bracket satisfies the Jacobirelation: [X,[Y,Z]]1+[Y,[Z,X]]+[Z,[Y,X]]=0.

The group G acts on the dual yg* of yg by the coadjoint action given by (g-A)(X) =
A(Ad(gHX).

We define on yg the G-invariant bilinear form « by k(X,Y) = tr(ad(X)ad(Y)). It is
called the Killing form of yg. We say that G is semisimple if k is non degenerate.

EXAMPLE. The group SI(n,R) is a semisimple Lie group. We have k(X,Y) =
2ntr(XY). The adjoint action is given by Ad(g)X = gXg~! and the bracketis [X,Y]
XY-YX.

2.2. Generalities on representations. Let G be a Lie group.
A representation 1t of G in a Banach space V is a group homomorphism 1 from G
to End(V) such that the map (g,v) — m(g)v is continuous from G xV to V.
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We say that (71,V) is unitary if V is a Hilbert space and the operators 1T(g) are
unitary.

Two unitary representations (1r,V) and (1r’,V’) are called unitarily equivalent if
there exist an unitary operator L:V — V' such that, for all g € G, we have Lo1r(g) =
1T’ (g) o L. Such operators are called intertwining operators. We denote by L (V,V")
the set of intertwining operators between 1 and 1’.

We say that (11,V) is irreducible if V admits no non-trivial closed subspace, stable
by the action of all 1t(g).

LEMMA 1 (Schur’s Lemma). Let (11,V) be a unitary representation of G. Then (1t,V)
is irreducible if and only if L¢(V,V) = Cldy.

2.3. Finite representations of SI(2,R). Let G = SI(2,R) = {g € M(2,R);det(g) =1}
and yg = sl(2,R) = {X € M(2,R);tr(X) = 0}. A natural basis of yg is given by

1 0 0 1 0 0
(ol () AR V) R 1)
and we have [h,e] = 2¢; [h, f]1=-2f; [e,f]=h.
We begin with an example.
Fix a positive integer n. Let V,, be the complex vector space of homogeneous poly-

nomials of degree n in two variables z; and z,. We have dimV,, = n+1.
We consider the representation &, given by

@u(g)P (2) =P (91' (2))

PROPOSITION 2. The representation ®,, is irreducible. If (1t,V) is an irreducible rep-
resentation of G with dimV = n+1 then (1,V) is equivalent to ®,,.

PROPOSITION 3. (1) Every finite dimensional representation of SI(2,R) is a direct
sum of irreducible representations.
(2) Every finite dimensional unitary representation of SI(2,R) is trivial.

PROOF OF PROPOSITION 2. Let(7r,V) be an irreducible representation of G with
dimV = n+ 1. In such a case, we can define an irreducible representation dm of the
Lie algebra yg by dm(X) = %[TT(QXD tX)v] =0 where expX = > ,.0 ,% is the usual
exponential map. The map drr satisfies: dw([X,Y]) = dm(X)dm(Y) —dm(Y)dm(X).
Using the bracket relations on yg, we can prove that there exist a basis (vy,...,vy) of
V such that we have

drm(hvj=(n-2j)v; forallj
drm(e)vyg =0, dm(e)vj=jmn—-j+1)v;.; forj>0
A (f)ve,=0, dm(f)v;=vj. forj<n.

The representation ®,, is a realization of such a representation (7r,V). O
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2.4. Irreducible unitary representations of SI(2,R). We have three series of uni-
tary irreducible representations of SI(2,R).

THE DISCRETE SERIES. Consider the upper-half plane P* = {x +iy;x,y € R and

v > 0}.
Let n be a strictly positive integer and consider

H, = {holomorphic functions ¢ on P* such that I |12y ldxdy < oo}.
pt

It is a non empty Hilbert space.
For g = (%4) € G, we define (9, (g7 "))(2) = (cz+d)" "V ((az+b)/(cz+d)).
The map g — 9, (g) defines a unitary irreducible representation of G which is called
the holomorphic discrete series.
For n a negative integer, we consider the space

H, = {antiholomorphic functions ¢ on P* such that J | 1?2 yMlaxdy < oo}.
P+

It is a non empty Hilbert space.
For g = (%4) € G, we define (D,(g7)$)(2) = (cz+d)" """ ((az+b)/(cz+d)).
The map g — 9, (g) defines a unitary irreducible representation of G which is called
the antiholomorphic discrete series.

THE PRINCIPAL SERIES. Let H = L2(R) and let s be a real number. We define the
representation ¢ of G in L?(R) as follow: if g = <? Z), then

ax+b>
cx+d

<@;(g71)f> (x) :‘ cx+d |*1+i3f<

and

ax+b>

(@;(g‘l)f) (x) =sign(cx+d) | cx+d |_1+i5f(cx+d

For s # 0, the representations ?; and ?; are unitary and irreducible. The represen-
tation 7 is equivalent to %=,. We call it the principal series of G.

The representation ?; is irreducible but ?; is the sum of two irreducible unitary
representations %; and 9.

The representation % acts on the set

{holomorphic functions ¢ on P* s. t. sup | | ¢ [>dx < oo}
y>0JR

by (9§ (g Hp)(z) =(cz+d)'Pp((az+b)/(cz+d)) and the representation P, acts
on the set

{antiholomorphic functions ¢ on P* s. t. sup | | ¢ [?dx < 00}
y>0JR

by (D (g7 ) P)(2) = (cz+d) TP ((az+Db)/(cz+4d)).
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THE COMPLEMENTARY SERIES ¢%. We take 0 < u < 1 and we define the Hilbert
space

Hu:{f:[R—»(C;lf|2=kakmdxdy<w}.

[ x—y|1-u

The group G acts on H,, as follows: for g = (‘C‘ Z) € G, we have

ax+b>
cx+d/)’

€ g fo0 =lex+d | f

These representations are unitary and irreducible and the series 6* is called the com-
plementary series.

THEOREM 4. Each irreducible unitary representation of SI(2,R) is equivalent to one
of the following type:

(1) The trivial representation,

(2) 9y, for a non-zero integer n,

(3) @3 or @y,

(4) Pt for a non-zero real number s,

5) P,

(6) 6% for0<u < 1.

PROOF. The idea of the proof is the following: Fix (11, %) a unitary irreducible rep-
resentation of G. Let K = SO(2) = (f;’fnee gg;g) We consider the space X of vectors v
such that the space generated by the 7(k)v for k € K, is a finite dimensional vector
space. In this case, we can define a representation d of yg in #X by differentiation.

The study of this representation gives the theorem. O

3. Fourier transforms of coadjoint orbits

3.1. The coadjoint orbits of sI(2,R). Let G = SL(2,R) and let yg = sI(2,R) be the
Lie algebra of G. We have

X1 X2 + X3
=4X= iXi€RE.
o= (2 T ed]
We want to study the coadjoint orbits of G on yg*.
We identify yg and yg* via the G-invariant form (X,Y) — %tr(X Y).
The function detX = x3 — (x? + x3) is invariant by the action of G on yg, and so we
can describe the orbits of the coadjoint action as folllow:

(1) The orbit @% of an element f) = (_0A 3) with A = 0: When A > 0, we obtain the
upper sheet x3 > 0 of the two-sheeted hyperboloid

x3 - (xf +x§> =A% (A#0).
When A < 0, we obtain the lower sheet x3 < 0 of the two-sheeted hyperboloid

x§—<x5+x§) =A% (A=0).
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(2) The orbit 0¢ of an element g, = ((5) PS) with s # 0: It is the one-sheeted hyper-
boloid x5 — (x? +x35) = —s2 (s # 0).

(3) The point {0} and the two connected components of the light cone x§ - (xf +

x3) = 0 which correspond to the orbits of the elements ( ) and (

We say that an element f is regular if det(f) # 0 and nilpotent if det( f ) = 0. Let
Y dreg denote the set of regular element of yg.

Put yt = {f = ( ) 0 eR}and ya={f = ( );t € R}. These two algebras are
commutative and consist of semisimple elements. They are maximal for these two
properties. We call them Cartan subalgebras.

Every semisimple element of yg is G-conjugate to an element of yt or ya and we
have the following decomposition

YYreg = (UA€R7{0}©§> U (Us>0@f) .

3.2. The Liouville measure on an orbit. We fix a regular element f € yg.

We consider the orbit Q = G- f = G/G(f) where G(f) = {g € G;g- f = f} is the
stabilizer of f in G. The tangent space of Q is then isomorphic to the space yg/yg(f)
where yg(f) ={Xe€yg;f([X,Y])=0forallY € yg}.

On this space, we consider the form of given by o¢(X - f,Y - f) = f([X,Y]).Itis an
alternate non-degenerate closed 2-form on the tangent space of Q and so it gives Q
the structure of a symplectic manifold.

We define the Liouville measure g on Q by

_9r
Ba=5

With our choice of coordinate, for f = (g\ é) we have Bq = (dx1dx>) /(] x3|), and for
£=1(32%), wehave Bo = (dx2dx3) /(| x1 ).
We can choose canonically a G-invariant measure dg on G/G(f) such that, for all

function @ € %(yg) (which means that @ is of class C* with compact support) and
for all X € yg(f)reg, We have

_1 1/2J - X)dé
BQ((p) = 21T |det(adX)/yg/yg(f) ‘ G/G(f)(P(g X)dg

The map .U(g) defined by M (@) (X) = [det(adX) yg/y90 "2 [,600) P (g - X)dg on
Y Greg 1s called the orbital integral of @.

We put yb = yg(f). Let S(ybc) be the symmetric algebra of ybc. Each element
u € S(ybc) gives rise to a differential operator d(u) on yb. (For X € yg, we have
3X) - @(Y) = F@(Y +X)=0).

For ¢ € %(yg), the orbital integral . (g) satisfies the following properties: ([7, 8])

(1)For yb = ya or yt, there exists a compact set U in yb such that forall u € S(ybc),
the map 0 (u)M () is zero on (yb — U)reg,

(2) The map X — M (@) (X) extends to a C* function on ya,

(3) for all strictly positive integers n, we have

tim (2" (i) )+ im (4" (i) (o) =tim (L) (o) ().
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This relation is called the “jump relation.”

(@) 1im & (sign(0).(@)) (fo) = ~29(0).

This relation is called the limit formula of Harish-Chandra.

LetI(yg) the set of G-invariant function on y gr.g satisfying this three conditions. We
consider the topology defined by the seminorms pyp, v (F) = SUPx cUpeg [0(u)F(x)|,
where yb is a Cartan subalgebra of yg, U is a compact setin yb and u € S(ybc). This
gives I(yg) a structure of inductive limit of Frechet space.

THEOREM 5 [1]. The map M is surjective from %(yg) onto I(yg) and its transposed
map is a bijection between the dual I(yg)’ of I(yg) and the space of G-invariant dis-
tribution on yg.

3.3. The Fourier transforms of orbits. The first important result due to Harish-
Chandra is the following:

THEOREM 6 [7, 8]. The Liouville measure is tempered. (This means that there exist
v > 0 such that [o(1+ | E 1?) 7" dBa(E) < .)

So we can consider its Fourier transform, defined by Bg((p) = Ba(®) where @ €
%(yg) and @ is its usual Fourier transform on the vector space yg. We obtain a G-
invariant tempered distribution on yg.

Let S(ygc) be the symmetric algebra of ygc. We can see this algebra as the algebra
of polynomials functions on yg*. The algebra S(ygc)¢ of G-invariant polynomials on
yg* is isomorphic to the algebra of G-invariant differential operators with constant
coefficients on yg by the map X — 0(X) defined by o(X)@(Y) = % (@(X+tY))i=0- SO
for p € S(ygc)®, we have 3(p)Ba = p(if)Ba.

THEOREM 7 [9]. The distribution BQ is a locally integrable function on yg whose
restriction to the set of regular elements is analytic.

A general formula due to Rossman and results of Harish-Chandra enables us to
calculate the Fourier transform of orbits on ygreg ([14] and [9]). In our example, a
simple calculation gives the following result

R ~iAO
Bea ( ° 9) = & sign(A)

—6 0)~ 2i6
~ t O e*“’/\l .
Beg (0 —t) = Tory SN

and
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4. Representations and Fourier transforms of orbits. The orbit method consists
of relating the orbits of the coadjoint representation of G and the irreducible unitary
representations of G.

We now introduce the notion of character of a representation.

Let (17,V) be a finite dimensionnal representation of G. The character of 7t is the
map Xn(g) = Trmr(g) where Tr denote the trace.

If (1r,V) is an infinite dimensionnal reprsentation, we can define, for @ € %(G), the
operator 1t(@) by (@) = [; p(g)1(g)dg where dg is a Haar measure on G.

When (7,V) is irreducible and unitary and ¢ € %(G), we can define Tr7r(¢g) as
follows: Let (e;)ic; be an orthonormal basis of V. Then Tr(m(@)) = > ;e {1 (®)e;,e;i).
The map @ — Tr(mr(f)) defines a distribution on G which is invariant under inner
automorphisms.

The distribution Tr(mr(¢g)) is called the character of 7r. Such distributions were
studied by Harish-Chandra who obtained the following main results.

THEOREM 8 [9]. Let (11,%) be a unitary irreducible representation of G. Then there
exists a locally integrable function ©, on G such that for all p € %(G), we have

Tr(m(p)) = JG@)n(g)cp(g)dg-

Let Greg be the set of regular element of G (x € Greg means that its stabilizer inyg is a
Cartan subalgebra of yg). The restriction of O to Greg is analytic and determines ;.

We say that (11, %) is in the discrete series if its character is given by a square
integrable function.

Let
cos® sin@
TZSO(Z)Z{y9=<—sin9 cos@)'QER}

and

t
A= {sxt = (eg ee0f> ;teRand € = il}.

Each regular element of G is G-conjugate to a regular element in T or in A.

We will now give the character of the discrete and principal series in terms of Fourier
transforms of orbits. "

Let j(X) be the jacobian of the exponential map. We have j (6 f)t) " sinht/t and

1/2
j(f)e 8) =sin0/0. We obtain for X € ygreg and € = +1

Tr%,(cexpX) = e”"B@% (X)j(Xx)?
and

Trdd (eexpX) = Bop (X)j(X)'2,
Tro; (eexpX) = eBor (X)j(X)2,
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4.1. Inversion of orbital integrals and the Plancherel formula. For ¢ € %(G), we
can define the orbital integral JL(g) on Greg as follow

1/2
M x) = |det(1-Ad(x J xg 1) dg
((p)( ) ‘ ( ( ))/yg/yg(x)‘ G/G(X)(p(g g ) g

As on the Lie algebra, thus function satisfies jump relations on T and C® continuation
on A. We also have the limit formula of Harish-Chandra

ple) = —%(signw)/%(q?) (70))o-0-

For @ € %(G), we want to describe Jl(p) and @(e) in terms of the distributions
Tr(m(g)) for e G.On SI(2,R) only the discrete and the principal series contribute
to the Plancherel formula.

We introduce new functions. Let X € ygreg: For a non zero integer n, we set

R 0 n
Fo(sexpX) = €B¢.x (—n 0) | 2n |

and Fy = limy,_o= Fy.
For s € R and € = +1, we define

. 0
Fes(eexpX) = > Buy ((S) _S> |25].

Yeyg(X)expY=1
Weset Fis=—(Fis+F_ 1) and F_ s =Fy s—F_1.

THEOREM 9 (Inversion formula for orbital integrals). [2] Let I(G) = M(D(G)).

(1) the functions Fy, F; and F. s are in I(G) and they are eigenfunctions under the
action of left and right G-invariant differential operators on G,

(2) forall @ € B(G) and x € Greg, We have

2M(P) (X) = > Fu(x)TrBu (@) —i(TrBh (@) - TrBg (@)

nez;n+0

+% (Frs(xX)TrP (@) + F- s (x) TrP; (@)) ds
s>0

COROLLARY 10 (Plancherel formula). For all o € %(G), we have

2rpe)= > In|Trd.(p)+ %J stanh<%s) Tr?! (@)ds
s>0

nezZn+0
+1 SCOth(E)TF@;((}Q)dS.
2 s>0 2

This formula is obtained by several methods ([13] or [12]).

The first proof of the Plancherel formula for semisimple connected Lie groups was
given by Harish-Chandra ([10]). M. Duflo and M. Vergne later gave a new proof using
the orbits method [3].

A. Bouaziz proved, using the orbit method, the inversion formula for the orbital
integrals on connected semisimple Lie groups [2] and this method can be adapted to
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find a similar formula on symmetric spaces G¢/G, where G¢ is a complex semisimple
Lie groups and G areal form of G¢ ([4] and [5]). The Plancherel formula can be deduced
from the inversion of orbital integrals using the limit formula of Harish-Chandra.

An interesting open problem consists of studying how the orbit method can be
applied to prove the Plancherel formula on general symmetric spaces G/H where G is
a semisimple Lie group with an involution o and H is an open subgroup of the group
GY of the elements fixed by o.
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1. Introduction. Since early on in the representation theory of finite groups the
representations of the symmetric groups S, have played an important réle. The ir-
reducible complex characters of S, were classified by Frobenius 1900; already from
these very beginnings of the complex representation theory of the symmetric groups,
the connections with symmetric functions have been of particular importance (see
[21]). Since partitions of n label the irreducible representations in a natural way, there
has always been an intimate relation between algebraic and representation theoretic
properties and combinatorial questions. A recurring theme is the determination of
representation theoretical data by combinatorial algorithms on the partition labels.
Via partitions, there is also a link to number theory.

Of particular interest are the dimensions of the S, -representations, their branching
behaviour with respect to restriction to the subgroup S,-1, and the result of tensor-
ing with the sign representation. To all these questions there are well-known answers
available if the representations are defined over a field of characteristic 0; nice com-
binatorial descriptions are given via branching and conjugation of the partitions of
n labelling these representations. An important problem that is still open even for
representations at characteristic 0 is the computation of general tensor products.

It turned out that for p-modular representations (i.e. those defined over a field of
characteristic p) the problems mentioned above are much harder. The interest in such
questions has increased in recent years as there are strong connections between the
symmetric groups and their representations and related groups such as the alter-
nating groups or the covering groups of these groups, and also strong relations to
representations of the general linear groups and Hecke algebras and their quantum
analogues; all these topics are developing very fast (see [13, 22] and the literature cited
there). One particular reason for looking into the representation theory of the alter-
nating groups comes from a general strategy in the representation theory of general
finite groups: reduce a conjecture to the case of finite simple groups and then, using
the classification of finite simple groups, check it for all these groups. Of course, in
particular with this strategy in mind, one often starts developing or testing conjec-
tures for the infinite families of symmetric and alternating groups.

We will describe below some of the recent results on the restriction of irreducible
Sn-representations and the tensor product with the sign representation at characteris-
tic p. These results have been the basis for progress on the p-modular representations
of the alternating groups.
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2. Representations at characteristic 0. First we will introduce representations and
some of their basic properties.

Let G be a finite group, and let A be a commutative ring (with 1); in this article, the
ring A will usually be a field or A = Z. Then a (linear) representation of G on a finitely
generated free A-module V (of rank m) is a homomorphism

G — GL(V) resp. G — GL;, (A)

from G to the group of invertible transformations on V. Taking traces gives the asso-
ciated character xy : G — A. Note that xy (1) = m is the rank of V; also, xv is a class
function, i.e. constant on conjugacy classes of G. With respect to this G-action V is a
module for the group algebra AG, which is the algebra of formal sums > ;e ayg with
coefficients in A, central multiplication by scalars in A and componentwise addition
and multiplication induced from the multiplication in G (linearly extended). Thus the
terms AG-module and (A-)representation of G may be used interchangeably.

The AG-module V (resp. the corresponding representation) is irreducible if it con-
tains only the two (trivial) AG-submodules {0} and V; the corresponding character xv
is then also called irreducible.

Let us look at some examples for the group G = S,, and take A = Q. The two easiest
representations of S,, are the trivial representation

1:5,-Q*, o—1
and the sign representation
sgn:S, - Q*, o — sgno.

Like any one-dimensional representation, they are obviously irreducible and they co-
incide with the corresponding characters.

The natural representation of S, is given on an n-dimensional Q-vector space V
with basis {by,...,b,} by

o(bi) =bysi forallo eSSy, i=1,...,n.

For n > 2, this representation is not irreducible since V has the S,,-invariant subspaces

n n n
UZQ(ZbL), WZ{ZCibiEV|ZCi:0}.
i=1 i=1 i=1
In fact, the QS,-module V decomposes into a direct sum of these modules, i.e. V =
UeW (as QS,-modules). The module U is just the trivial representation again, so in

particular U is irreducible; in fact, also W is irreducible.
In explicit matrix terms, for n = 3 the natural representation is given by the following
matrices for generators of S3

(12) — , (123) ~

oS = O
S O =
= o O
oS = O
_= o O
S O =
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So the corresponding character xy has the values xv (1) = 3, xv((12)) = 1, xy((123)) =
0 (note that this gives the values on all conjugacy classes of S3). Changing the basis
to one adapted to the submodules U and W, i.e. taking as a new basis b = >; b;,
b5 = by — b3, b; = by — b3, we obtain the matrix representation

1 0 O 1 0 0
(12) -~ 10 0 1], (123) - |0 -1 -1
010 0 1 0

So all representation matrices have the same structure with diagonal block matrices
of size 1 X1 resp. 2 x 2 (indicated above in boldface). From the lower diagonal 2 x 2
block matrices we immediately obtain the character belonging to W as given by the
values xw (1) =2, xw((12)) =0, xw((123)) = —1.

In the example above, we have been in the situation of ordinary representation the-
ory, i.e. the ring A is a field K of characteristic 0, which is “sufficiently large” for G,
e.g. the field of complex numbers will always do (for G = S, the field of rationals
is already large enough). Some of the most important basic properties of ordinary
representations of G are the following (see [7, 9]):

BASIC FACTS IN ORDINARY REPRESENTATION THEORY.
(a) (Maschke) KG is semisimple, so any K-representation of G is completely re-
ducible, i.e. any KG-module V' can be written as

V=Vie---eVi

with irreducible KG-submodules V7,..., Vk.

(b) The K-representations of G are determined (up to isomorphism) by their char-
acters.

(c¢) The number of irreducible K-representations of G (up to isomorphism) equals
the number k(G) of conjugacy classes of G.

(d) Let Irr(G) denote the set of irreducible characters of G over K; then

IGl= > x(12

xelrrc)

By the properties above, the irreducible representations are the basic building blocks
for all representations, so the basic problem of ordinary representation theory is to
determine these resp. their characters.

In the example G = S3, K = Q considered above, we had already determined three
irreducible representations resp. characters, namely the trivial representation 1, the
sign representation and the 2-dimensional QS;,,-module W with its character xy. By
the general properties stated above, these are all the irreducible representations resp.
characters of Ss.

For the symmetric groups Sy, the classification of their irreducible characters has
been achieved early in the history of representation theory by Frobenius. Important at
all stages of the development of the representation theory of S, was to find the right
combinatorial notions. In the case of ordinary representation theory, the fundamental
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associated combinatorial objects are partitions (which naturally label the conjugacy
classes of S,!) and tableaux.

A partition A = (Aq,...,A;) of a natural number n is a weakly decreasing sequence
Ay = --- > A; > 0 of integers with 25:1 A; = n, for short we write: A - n. The integer
1 = 1(A) is the length of A, the numbers A; are the parts of A. We also write the partition
exponentially as A = (l?1 veeny Iy, L > -+ - > L, > 0. Counting the partitions of a fixed
number n gives the partition function

p(n) =[{AAFn}f

this has been studied in depth since Euler in combinatorics as well as in number theory
[1].

Not only are the conjugacy classes of S;, and their irreducible complex characters
equinumerous, but more importantly Frobenius obtained in 1900 the following result:

CLASSIFICATION OF THE COMPLEX IRREDUCIBLE S,,-CHARACTERS. Theirreducible
complex characters of S,, are naturally labelled by partitions of n.

Originally, the character values of the character labelled by A were determined via
the expansion of the Schur functions s, in terms of the power sum functions. This link
between the character theory of the symmetric groups and the theory of symmetric
functions has been of great importance to both areas (see [21]). Fortunately, there is an
easier way to compute the character values; we will describe the precise connection
between the partition label and the actual character values by a recursion formula
below. We denote the complex irreducible character labelled by the partition A by [A],
so Irr(Sy) = {[A] | A+ n}.

EXAMPLE. The characters of the trivial representation and the sign representation
of S, correspond to the partitions (n) and (1™), respectively, i.e. 1 = [n], sgn = [1™].
For n > 2, the character of the natural representation of S, is the sum [n]+[n—1,1].

In particular for the purpose of computing the character values, it has been ex-
tremely fruitful to represent a partition graphically as follows. For A = (Aq,...,A;) - n,
its Young diagram Y (A) has A; boxes in row i, for i = 1,...,n (see the example below
for an illustration of the notions defined here!). A particular réle, e.g. for induction
arguments, is played by the so-called hooks in A. The (i, j)-hook H; ;j in A consists of
the box at position (i, j) (using matrix notation) together with all boxes in Y (A) to the
right and below. The hooklength h; ; counts the number of boxes in H; j. An I-hook of
A is a hook of length [ in A. The leg length L(H; ;) is the number of boxes below the
(i,j)-box in Y (A). Corresponding to an (i, j)-hook H; j, A contains an (i, j)-rim hook
R; j, which connects the end box of the ith row with the end box of the jth column
along the rim of the diagram. Removal of H; ; from A then means the removal of R; ;
from A; the resulting partition is denoted A\ H; ;. We illustrate all these notions now
by an example.

EXAMPLE. For A = (42,2,1), its Young diagram Y (A) is shown to the left, then the
Young diagram with the (1,2)-hook H;, indicated; here, h;» = 5 and L(H;;) = 2.
Next, the corresponding rim hook R is indicated, and the removal process to obtain
A\Hip = (3,13).
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el L L 1]

While the computation of the character values via Schur functions is rather cum-
bersome, the following result provides an easy combinatorial recursion formula for
computing the character values (see [14, 25]):

MURNAGHAN-NAKAYAMA FORMULA. Let A - n, o4 € S, of cycle type x +n, e a
part of «, and let & —e denote the partition where the part e has been removed from
. Let 0y_e € Si_e be an element of cycle type ox—e. Then

Al = > (~D*™[A\H](0x-)-
He-hook in A
An important special case is the restriction to the subgroup S,_1; a 1-hook in A is
called a removable box in A.

BRANCHING THEOREM.

[Alls,, = > [A\A].

A removable box in A

EXAMPLE. For A = (42,2,1), the restriction of the corresponding character to Sy is
[4%,2,1]ls,, = [4,3,2,1]+[4%,1%] +[42,2].

For studying the representations themselves rather than only their characters we
have to introduce the notion of tableaux, which has seen many occurrences also in
other contexts.

For a partition A - n, a A-tableau t is a filling of the boxes of the Young diagram
Y (A) with the numbers 1,...,n. A A-tableau is standard if its entries increase along
rows to the right and down the columns. It describes an inductive construction of A,
starting from the empty partition and adding the box with entry i at step i, where at
each intermediate step we have the Young diagram of a partition. Phrased differently,
a standard tableau corresponds to a path in the Young graph which is the infinite
graph having all partitions as its vertices, and where two vertices are joined if the
corresponding partitions A - n and u — n + 1 differ only by adjoining a box to A to
obtain p.

EXAMPLE. Here are two (42,2, 1)-tableaux of which only the second is standard

10 2 5 8 1 2 4 7
3 1 9 6 3 6 10 11
7 11 59

4 8

As we have noticed before, the character value at 1 is the dimension of the corre-
sponding representation. There are several ways of computing this dimension for an
ordinary irreducible representation of S,, [14]:
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DIMENSION FORMULAE. Let A 1 be a partition. Then

(@ [AI(1) =

n!
1 hooklengths in a (Hook formula)

(b) [AT(1) = f2:=|{t | t standard A-tableau}|.

Note that the equality

n!

fr= .
[T hooklengths in A

is a purely combinatorial statement; for a nice “probabilistic” proof of this due to
Greene, Nijenhuis and Wilf see [25].

From the basic facts in ordinary representation theory we also deduce the following
combinatorial identity

n= > (fY)°

AFn

A “bijective proof” of this assertion (mapping permutations in S,, to pairs of standard
tableaux of the same shape) is given by the Robinson-Schensted-Knuth algorithm (see
[25]) which has many generalizations and variations.

Knowing the irreducible characters does not imply that one can easily write down the
matrix representations to which they correspond; for S,, such explicit matrix repre-
sentations have been given by Young; in fact, he constructed the so-called seminormal,
orthogonal and natural representations (see [14, 15, 25]). An explicit (but complicated)
combinatorial description of the modules is given via the so-called Specht modules S*,
which are defined over Z with the help of tableaux, and which are irreducible over C.
They are important also in the next section, when we discuss representations at pos-
itive characteristic.

An important problem for representations of finite groups is the computation of
tensor products. Given two AG-modules V and W, their tensor product V®, W is
again an AG-module, with the group G acting diagonally. The matrices of the matrix
representation corresponding to the tensor product are then the Kronecker products
of the matrix representations corresponding to V and W. In general, it is very hard to
compute such tensor products and only little information is known. For A = K a field
of characteristic 0, it suffices to compute the character of the tensor product of two
representations, which is just the pointwise product xy - xw of the two corresponding
characters, sometimes also called Kronecker product.

So in the case of S,,, given two irreducible characters [A] and [u], one would like to
know the coefficients dy , € Ny in the expansion

[Al-[ul= 2. dX,[v].

veEn

For the trivial character [n] we have, of course, just

[A]-[n] =[A].
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Let us now consider the easiest non-trivial case: tensor products with the sign repre-
sentation. Here we have for an arbitrary A - n

[A]-sgn=[A]-[1"] = [A"],

where the conjugate partition A’ is obtained from A by reflecting its Young diagram
in the main diagonal.

EXAMPLE. For A = (42,2,1), the conjugate partition is A’ = (4, 3,22).

The computation of general Kronecker products for S, is one of the big open prob-
lems in the ordinary representation theory of the symmetric groups! There are many
partial results, e.g. products for special partitions or information on particular con-
stituents, but no satisfying combinatorial algorithm is known. Only recently, the
slightly vague phrase “In general, Kronecker products are reducible.” has been made
precise

THEOREM 1 [2]. Let A and p be partitions of n. Then the Kronecker product of the
corresponding irreducible characters is homogeneous, i.e.

[A]-[u] =clV]

for some partition v of n and some c € N, if and only if one of the partitions A, u is (n)
or (1™) (and in this case the multiplicity c is 1).

So such Kronecker products are irreducible only in the two easy cases discussed
above! In the case of the alternating groups, whose representation theory is closely
related with the symmetric groups, this is no longer true: here there are tensor prod-
ucts of representations of dimension > 1 which are irreducible. The corresponding
situations are classified; for this, Kronecker products of characters of S, are studied
which have very few different constituents [2].

3. Representations at characteristic p. We now turn to p-modular representation
theory, i.e. to the situation where A = F is a field of characteristic p > 0, p dividing
the group order |G|, and F is again chosen to be “sufficiently large” for the group G
(for G = S, the prime field F = Z,, is already large enough). If p is a prime not dividing
the group order, the representation theory is similar to the one at characteristic 0. In
many respects, p-modular representation theory is more complicated than ordinary
representation theory (see below). One reason for studying modular representations
is similar as in number theory: guided by a local-global principle one studies repre-
sentation theory at different primes p to understand the global situation of integral
representations, e.g. in the case of G = S, representations over the ring Z of integers.

Let F and G be as above; here are some of the

BASIC FACTS IN p-MODULAR REPRESENTATION THEORY.

(a) (Maschke) The group algebra FG is not semisimple.

(b) The composition factors of an F-representation of G are determined by its
Brauer character (which is a p-analogue of the “ordinary” character, but not
just the trace of the F-matrices).
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(c) The number £(G) of irreducible F-representations of G (up to isomorphism)
equals the number of p-regular conjugacy classes of G (which are the ones
containing only elements of order not divisible by p).

Again, the main task is to determine all the irreducible FG-representations since
they are the main building blocks of all FG-representations; because the irreducible
representations may be “glued” together in different ways as composition factors our
knowledge of all FG-representations is not as complete as in the case of ordinary
representation theory.

EXAMPLE. The 2-dimensional representation W of S3 discussed before is even a
representation over Z. Let us look at the corresponding matrices with respect to the

basis {wi,w»} (say)
0 1 -1 -1
(12) — (1 0), (123) ~ ( 1 o )

and reduce the entries modulo p to obtain the representation W = F ®; W in a charac-
teristic p dividing the group order. For p = 2, it is easily checked that W is irreducible
as a Z»S3-module. For p = 3, the sum w; + w» of the two basis vectors w; and w»
is fixed, so W is reducible. But W has no other proper submodule, so it does not
decompose into a direct sum of submodules; note also that at characteristic 3 also
the natural module V does not decompose into the direct sum of U and W, since
in this case U = F(3;b;) c W = {3,¢ib; | 3;ci = 0}. Modules with this property
are called indecomposable. Unfortunately, for most finite groups G there are infinitely
many indecomposable FG-modules and their classification is a so-called wild problem.
Coming back to our module W, its matrix representation over Z3 with respect to the

basis w; +w»,w> is
1 1 1 -1
(12) ~ (0 _1>, (123) ~ (0 . )

From the diagonal 1 x 1-blocks (marked in boldface) one immediately reads off the
composition factors of the Z3S3-module W: it has the trivial representation as a sub-
module (see above!) and the sign representation as a quotient module.

In the previous section, we have mentioned the Specht modules S* which are defined
over Z and give the irreducible complex S, -representations. Via reduction modulo p,
the p-modular irreducible S,-representations can also be obtained from the Specht
modules. By the above, we know that the number £(S,,) of such representations equals
the number of p-regular conjugacy classes of S, so

L(Sp) =1{A=(A1,...,A)) =n|ptA; foralli}l.

By an old result of Glaisher, the set of partitions on the right hand side is equinumer-
ous with the set of p-regular partitions of n, which are those partitions where no part
is repeated p (or more) times. The p-analogue of our previous classification theorem
is the following:
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CLASSIFICATION OF THE p-MODULAR IRREDUCIBLE S,,-REPRESENTATIONS. For a
p-regular partition A of n, the Specht module S} = F ®7 S* has a unique irreducible
quotient module, denoted by D?. The modules D, where A runs through the p-regular
partitions of n, form a complete system of representatives for the (isomorphism
classes of) irreducible FS,,-modules.

Unfortunately, this description of the p-modular irreducible representations is not
very explicit, and our knowledge is far from being as detailed as at characteristic 0.

EXAMPLE. Take again n = 3 and p = 3. We have only two 3-regular conjugacy
classes, with representatives (1) and (12), so we only have two 3-modular irreducible
representations. Since the partition (12) is not a 3-regular partition, it does not appear
as a label of a 3-modular representation. The partition (n) labels the trivial represen-
tation at any characteristic. But the sign representation has different partition labels
depending on the characteristic; observe that at characteristic 2 the sign representa-
tion equals the trivial representation! Our Z3S3-module W is the Specht module S1),
and we have seen before that over Z3, W has the sign representation as a quotient.
Hence we have at characteristic 3: sgn = D1,

In recent years, important progress on modular S,-representations has been
achieved in particular with Kleshchev’s Branching theorems. For his modular branch-
ing results, Kleshchev has introduced the important new combinatorial concepts of
good and normal boxes of a partition. The properties “good” and “normal” (or more
precisely: p-good and p-normal) single out special removable boxes of a partition with
respect to the prime p. These properties are purely combinatorial; for the somewhat
involved definition see [17] or [5]. Corresponding to the Young graph mentioned in the
preceding section, the p-good Young graph has all p-regular partitions as its vertices,
and two vertices A - n and u - n+1 are joined by an edge if they differ only by adding
a box to A to obtain u such that the box is p-good in u. As noted by Lascoux, Leclerc
and Thibon, the p-good Young graph coincides with the crystal graph occurring in
the work of physicists on quantum affine algebras (see [20] and the references quoted
there). We collect some of Kleshchev’s results in the following theorem.

p-MODULAR BRANCHING THEOREM [17]. LetA be a p-regular partition of n,n € N,
n > 2. Then the following holds:
@)

soc (DAlsn,l) =~ P DM,
A good

where soc M denotes the socle of the module M, i.e. its largest completely reducible
submodule.
(i) D s, 1s completely reducible if and only if all normal boxes in A are good.

Moreover, Kleshchev [19] also showed that only normal removable boxes A of A give
rise to composition factors corresponding to partitions of the form A\ A, and he pro-
vided an explicit combinatorial description for the multiplicity of such composition
factors DA\A in DA, .
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As a consequence, the results by Kleshchev provide lower bounds for the dimen-
sion of the p-modular irreducible representations: the dimension of the representa-
tion D? is at least the number of p-good standard tableaux of A, which are those
tableaux corresponding to the adjoining of only good boxes at each step. The addi-
tional information on the multiplicities mentioned above improves this bound further.
Unfortunately, an exact dimension formula comparable to the ones for ordinary repre-
sentations is still not in sight; this is a central open question on irreducible p-modular
Sy-representations.

From the description of the restriction of irreducible complex characters we immedi-
ately deduce that an ordinary irreducible S;,-representation restricts to an irreducible
Sn—1-representation if and only if the Young diagram of its partition label has rectan-
gular shape, since only in this case the partition has only one removable box. From
Kleshchev’s Branching theorem, we can deduce the corresponding answer in the mod-
ular case: the restriction D*|s, , is irreducible if and only if A has exactly one normal
node (which is then the only good node in A). These partitions are called JS-partitions,
since Jantzen and Seitz had conjectured the criterion for such irreducible restrictions
in [16]. In fact, they described these partitions via a condition on their parts: a p-
regular partition A = (I',...,1;"*) is a JS-partition if and only if

li-liggn+ai+aix1=0 modp forl<i<t.

So the p-analogues of rectangles are quite complicated! The JS-partitions have re-
cently also appeared in different contexts, e.g. they play a special role in the study of
certain exactly solvable models in statistical mechanics called the RSOS-models (for:
restricted-solid-on-solid) [10], as well as in work on restrictions of representations
from GL(n) to GL(n—1) [6].

In the previous section, we have discussed tensor products of complex irreducible
Sy-representations; while there was no good answer for general such tensor products,
at least tensoring with the sign representation was easy. at characteristic p, even
computing the tensor product with the sign representation was a hard problem. In
1979, Mullineux [23] defined a rather complicated p-analogue of conjugation for p-
regular partitions and conjectured that this gave the combinatorial answer to the
question on the tensor product with the sign representation for p-modular irreducible
Sp-representations; so for a p-regular partition A the Mullineux map describes the p-
regular partition AM defined by

D @sgn = D\,

The branching results have been applied successfully for the affirmative solution of
the long-standing Mullineux Conjecture. Kleshchev had reduced this conjecture to a
purely combinatorial conjecture which was subsequently proved by him and Ford in a
long paper; a short proof of this combinatorial conjecture providing further insights
was given in [5].

The Mullineux map has motivated the definition of residue symbols, which may be
viewed as a p-analogue of the well-known Frobenius symbols for partitions. As a first
application of the residue symbols it was shown that these behave well with respect to
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p-branching and p-conjugation (i.e. the Mullineux map) simultaneously; they served
as the main tool in the short proof of the combinatorial conjecture mentioned above.
The residue symbols have also been applied in the investigation of the JS-partitions;
in particular, their p-cores (which are special p-regular partitions associated to parti-
tions) have been determined, and it turned out that these are partitions of rectangular
shape [4].

The better understanding of the Mullineux map, in particular via residue symbols,
has opened up the road to studying the modular irreducible representations of the
alternating groups A, and their branching behaviour [3].
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FINITE DIMENSIONAL ALGEBRAS AND SINGULARITY THEORY
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The purpose of this lecture is to give some impression of the type of work which
has been done in the area of algebra called representation theory of finite dimen-
sional algebras. Since around 1970 there have been various interesting developments,
including establishing connections with other parts of algebra. We will not attempt to
give a general survey, but instead concentrate on one particular topic, where there are
connections with commutative ring theory/singularity theory. We just give the min-
imal background necessary, and rather than giving formal definitions, we illustrate
concepts through examples. We give no specific references for the developments we
discuss, but list relevant references, together with a guide to the literature, at the end.

1. Background. Let k be an algebraically closed field. A finite quiverT is a finite set
of vertices and a finite set of arrows between vertices. For example,

¢ — >0 — >

((Te T

oy <—
are quivers.
Associated with a quiver I' and the field k is the path algebra kI': WhenT is the quiver

« B
o] — > o) 5 3

then kI' has as k-basis the paths of T, that is eq,ep,e3, &, 8, Bx, where the e; are the
trivial paths corresponding to the vertices. As for multiplication, the product of two
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paths is given by composition when possible, and is defined to be 0 otherwise. When
I' has no oriented cycles, the path algebra kT is finite dimensional over k. Up to Morita
equivalence (that is, equivalence of module categories) every finite dimensional k-
algebra is isomorphic to a factor algebra kI'/I, where T is a finite quiver and I is an
ideal in kT

We give some examples of finite dimensional k-algebras appearing in other forms.
One class of examples is provided by group algebras over k, where G is a finite group
G. If k has characteristic two and G has two elements, we have kG = kI'/{x?), where

I' is the quiver
. Q o

and («?) is the ideal in kI' generated by «. If G is the Klein 4-group, we have kG =~
kT /{(x?, B2, Bx—B), where T is the quiver

o
“\ Q .
k00
Other examples are provided by various matrix algebras, like (ﬁ ﬁ 2) Actually this
algebra is isomorphic to the path algebra of the quiver

¢ — =0 ———> o

Appropriate factors of commutative rings, for example k[X,Y]/(X,Y)?, give other
examples of finite dimensional k-algebras.

The representation theory of a finite dimensional k-algebra A deals with the study of
mod A, the finitely generated (left) A-modules. One problem has been to decide when
A is of finite representation type, that is, has only a finite number of indecomposable
modules up to isomorphism. Recall that a module M is indecomposable if M = N& L
(direct sum) implies N = 0 or L = 0. Another problem is to describe all indecomposable
modules over an algebra of finite representation type, and for other classes of algebras.
Various techniques have been developed to deal with these and other questions. We
illustrate with the following examples. If A = (’,ﬁ 2) there are three indecomposable

modules: (ﬁ) , (2) , (,’j) /(2) . When A = kG where G is a finite group whose order is
divisible by the characteristic of k, then kG is of finite representation type if and only
if the p-Sylow subgroups of G are cyclic.

2. Preprojective algebras. Let I be a finite connected quiver with no oriented cy-
cles, so that the path algebra kT is finite dimensional over k. We associate with I’ a new
quiver T, where for each arrow « in T we add an arrow «* in the opposite direction.
For example if T is the quiver

thenT is
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Let I be the ideal of kI generated by o* &, xex* +B* B, BB* (one element corresponding
to each vertex). The factor algebra kI'/{o* &, xex* +B* B, BB*) = II(I') is the preprojec-
tive algebra of T'. (The principle is the same for any I'; one just has to be careful about
whether the coefficients of the paths are +1 or —1.)

There is a class of indecomposable kI'-modules called preprojective modules, which
up to isomorphism are all indecomposable modules exactly when kI is of finite rep-
resentation type. We mention that the indecomposable summands of kI' are always
preprojective. Also we have kI' C II(T'), and actually as a kI'-module II(I') is the direct
sum of the indecomposable preprojective kI'-modules.

The preprojective algebras which are finite dimensional are of special interest. But
some of the others lead to connections with commutative ring theory/singularity the-
ory. In particular we are interested in those which are noetherian. The following is
therefore of interest, for a finite connected quiver I'.

e kI is finite dimensional < The underlying graph |T'| is Dynkin (A, D, Es,E7,Eg)

e kI' is noetherian < The underlying graph |I'| is extended Dynkin (and not finite

dimensional) (A, Dy, Es, E7,Eg)

Recall that the extended Dynkin diagrams are
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and we obtain the Dynkin diagrams by dropping the encircled vertices and the corre-
sponding edges.

3. Invariant rings. Assume that the characteristic of k is zero, and let G be a finite
subgroup of SL(2,k). Then G acts naturally on the power series ring S = k[[X,Y]].
For example if G = ( (’(1) ff) ), the generator g = (’(1) ff) sends X to —X and Y to —Y.
Hence X?2,Y?,XY are left fixed under the action of G, and the invariant ring R = S¢,
which consists of the elements of S which are left fixed under the action of G, turns
out to be k[[X?,Y2,XY]].

Let Ref R denote the finitely generated R-modules which are reflexive, that is, if
M* = Homg (M,R), the natural map M — M** is an isomorphism. For example R is a
reflexive R-module. Then one can investigate questions of finite representation type
with respect to this class of modules. For some classes of commutative rings, includ-
ing the invariant rings R = S¢, there are similar methods as for finite dimensional
algebras to deal with such questions. In this language the above rings are all of finite
representation type.

An important ring closely related with R = S¢ is the skew group ring SG. The ele-
ments, and the addition, are as for the ordinary group ring. For the multiplication we
have (sg)(s'g’) =sg(s’)gg’ for s,s’ in S and g,g’ in G. Then we have the following.

e Ref SG is equivalent to RefR, and the indecomposable reflexive SG-modules are

exactly the indecomposable summands of SG.

Let M be the direct sum of one copy of each indecomposable R-module in RefR,
and consider X = Endg (M)°P. Then X and SG are known to be Morita equivalent. In
particular RefX and Ref SG are equivalent categories.

4. Associating quivers/graphs with invariant rings. Let as in section three G C
SL(2,k) and R = k[[X,Y]]¢. Then we have associated quivers or graphs from the
following three different points of view.

(i) Modules: Define a quiver where the vertices correspond to the nonisomorphic
indecomposable modules in Ref R. The arrows correspond to the existence of a certain
type of maps, called irreducible maps.If G = (’(1) ff) ), and hence R = k[[X?,Y?,XY]],
there are two indecomposable modules in RefR: R and R(X,Y). There are two “basic
maps” from R to R(X,Y), given by sending 1 to X or 1 to Y. From R(X,Y) to R we
get two “basic maps” by multiplication with X or with Y. The associated quiver, called
Auslander-Reiten quiver or AR-quiver, will be

>
-

Re ____ sR(X,Y).

~—

Whereas this quiver is more complicated for the other invariant rings, it is a general
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feature that the arrows occur in pairs

—_—
. .

-

(ii) Group representations: The inclusion G C SL(2,k) determines a two-dimensional
kG-module V in a natural way. Let V; = k,...,V, be the simple kG-modules (that is,
the irreducible representations of G over k). We define a quiver where the vertices
correspond to the V;. For each V; consider V ®, V;, which is a kG-module. Write V ®j
Vi= 69}1: leYj . Then there are 7; arrows from V; to V;. This quiver is called the McKay
quiver. If G = (g) where g = (’}) fl’), we have two irreducible representations: k and
k_, where g acts trivially on k and g-a = —a for a in k. Then V = k_ e k_, and
Verk=k_aok_,Veork_=keak. Hence we get the McKay quiver

—
—A

ke oK
~—
~—

(iii) Geometry: Letk = C. G acts on C2, where C denotes the complex numbers, so we
have a quotient C?/G. This surface, which is a hypersurface, has a singular point at the
origin. This singularity can be “resolved.” In the resolution there is a finite number
of curves above the singular point, some of which intersect. This gives rise to the
resolution graph, where the vertices correspond to the curves, and there is an edge
between two vertices exactly when the corresponding curves intersect. For example

the intersection pattern

gives rise to the graph

When replacing
. . by .

B S —

it turns out that the graphs occuring in (i) and (ii) are the extended Dynkin diagrams,
and the same ones in the two cases. Also all extended Dynkin diagrams occur. If
the vertex corresponding to R in case (i) and to k in case (ii) is dropped, we get the
corresponding Dynkin diagram, which is the same as the diagram occurring in (iii).

Historically things were discovered in the opposite order. For (ii), it was first the
question of an observation by McKay that there was the nice relationship with (iii).
Then (i) and (ii) were proved to give the same quivers by Auslander. Now each state-
ment can be proved directly, and the connections led to new relationships.

5. Connections. Note that it follows from the above discussion that the AR-quiver
associated with R = k[[X,Y]]¢ is the quiver for the preprojective algebra of an ex-
tended Dynkin quiver. In view of our previous comments on equivalences of cate-
gories of reflexive modules, it is easy to see that same quiver is also the AR-quiver
of the skew group ring k[[X,Y]]G and of Endg (M)°P = 3. And actually, if ¥ denotes
the radical of = and grS = /v +7/r? + - - - the associated graded ring, we have the
following:
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e II(TI') =~ gr> (Note that grk[[X,Y]]G = k[ X,Y]G). = can be constructed from grX
via completion, so we can formulate the connection as follows:
. H/(I"\) ~ 3 (Here " denotes completion with respect to the graded radical of I1(I')).
6. How to use the connections. Consider the preprojective algebras which are fac-
tor algebras of the path algebras of the quivers

and
1]
L] T.l [ ]
oR
over k.

The first one has associated diagram

which is Dynkin, and is hence a finite dimensional algebra. The second one has asso-
ciated diagram

which is extended Dynkin, and hence corresponds to some R = k[[X,Y]]¢. If we drop
the vertex of R from the second quiver, we obtain the first quiver. Dropping this
vertex has a nice module theoretic interpretation. Let M be a direct sum of one copy
of each indecomposable reflexive R-module, let Endg (M) denote the endomorphism
ring of M, and Endg (M) the factor ring modulo the ideal P(M,M) consisting of the
R-homomorphisms f: M — M which factor through some finite direct sum of copies
of R. Then we have the following, where I is a quiver, for example
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with underlying graph

o Endg(M)° ~TI(T).
(The same holds for the other Dynkin/extended Dynkin diagrams).

In addition to this connection being interesting in itself, an important point is that we
can use information on modules over R to study II(I')-modules. For example we have
a functor Q}: RefR — Ref R called the syzygy functor, and it is known that Q3 = QtQk
is isomorphic to the identity functor. Here Ref R denotes the category whose objects
are those of RefR and where the morphism groups are the ordinary groups of R-
homomorphisms, modulo the maps which factor through a finite direct sum of copies
of R. This can be used to prove that Qg(r) is isomorphic to the identity. This fact
can again be used as a basis for further information on the module theory for the
preprojective algebra IT(T').

In recent years deformation theory and Hochschild cohomology have been investi-
gated for preprojective algebras.

7. Guide to the literature. For the material in section 1, as well as for a more general
introduction to the representation theory of finite dimensional algebras, we refer to
the book [5]. Preprojective algebras are investigated in for example [11, 16, 8, 6, 4, 7,
17]. For material related to sections 3 and 4 we refer to [9, 12, 1, 2, 3, 18]. For section 5
we refer to [15] and for section 6 to [4, 10]. Also the articles [13] and [14] deal with
material related to the topic of this lecture.
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SYMMETRIES

An interdisciplinary workshop organized by
INA KERSTEN AND SYLVIE PAYCHA

As the previous interdisciplinary session that took place in the Madrid E.W.M. meet-
ing, this session on Symmetries was organized in a different way from the two other
mathematical sessions of this meeting. Only two of the talks had been planned in
advance,

¢ Symmetries of the Painlevé equations and connection with projective differential

geometry by Ljudmila Bordag

e Symmetry and symmetry breaking in particle physics by Sheung Tsun Tsou.

The other talks (in chronological order)

e Symmetric attractors and symmetric fractals by Emilia Petrisor

e On infinitesimal symmetries of the self dual Yang-Mills equations by Tatiana

Ivanova

e Some properties of Hamiltonian symmetries by Inna Yemelyanova

¢ g-dimensional formulas for the cyclic polyene Hubbard model by Ufuk Taneri

o Hamiltonians and Fock spaces associated to root systems by Valentina Golubeva
were arranged during the meeting and prepared together with all the speakers of the
session. It was an exciting experience for the participants of the session to work out
together the details of the talk one of us was about to give. We think they would
agree to say we all learned a lot from this confrontation to other topics related to
symmetry and other mathematical approaches to this concept. The spirit of the inter-
disciplinary session being that of bringing together spontaneous contributions and
thus giving participants the opportunity to report on their work in a written form, the
contributions to this session have not been refereed. Their contents are therefore left
to the entire responsibility of the authors.

The concept of symmetry has been running through mathematics and physics more
or less since these were born; the singular form symmetry is reductive as can been
seen from the variety of titles, each of them giving a different way of approaching
this concept, so that its plural form symmetries seems indeed more appropriate for
this session. Symmetries arise here as a tool to solve equations (Painlevé equations),
as properties of some dynamical systems (Hamiltonian symmetries, symmetric attrac-
tors). They can be local or non-local (as in Yang-Mills theory), they can be conserved or
instead break (symmetry breaking in particle physics), they can be related to symme-
tries in the underlying algebraic structures (Fock spaces associated to root systems).
This is only a small insight into the richness of the concept of symmetry and we hope
the reader will get some of the pleasure we experienced listening to these lively talks.

INA KERSTEN and SYLVIE PAYCHA
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SYMMETRIES OF THE PAINLEVE EQUATIONS
AND THE CONNECTION WITH PROJECTIVE
DIFFERENTIAL GEOMETRY
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ABSTRACT. The well known six Painlevé equations are characterized by unmovable critical
points and they are useful for the investigation of the integrability of nonlinear partial
differential equations.

As anew approach we investigate a series of invariants under general point transforma-
tions for the Painlevé equations. The general theory of invariants for equations of the type
' = f(x,v,y") under transformations x = ¢(u,v), v = ¢ (u,v) had been developed in
the works of R. Liouville, S. Lie and A. Tresse. Later, E. Cartan introduced the idea of pro-
jective connections and showed that the vanishing of invariants implies some geometric
properties.

Applying these ideas we show that the geometrical images of the Painlevé equations
have a very special structure and can be embedded as some set of surfaces in RP3. We
expect that this allows the derivation of new tests of the integrability of nonlinear partial
differential equations as well as of nonlinear dynamical systems.

1. Introduction. In the middle of the 19th century one of the most important prob-
lems in analysis was the investigation and classification of ordinary differential equa-
tions. The methods of investigation were suggested by L. Fuchs and H. Poincaré and
an essential part of them was the analysis of the singularities of the general solution.
In the case of linear equations we can predict all singularities of the general solution
by studying the coefficients of the equation. A quite different situation occurs if we
are concerned with nonlinear differential equations. Neither we can describe the po-
sition of the singularities of the solutions nor the kind of the singularities from the
coefficients of the equation because they may (and in fact they do so in many cases)
depend on the initial data.

In order to make any progress it was necessary to restrict the investigation to such
equations for which the singularities of their general solution depend only on the
coefficients of the equation as it was in the linear case. Let us give some definitions in
order to distinguish the classes of equations and the singularities of their solutions.

DEFINITION. Points where the solutions have singularities are called movable (resp.
unmovable) if their position depends (resp. does not depend) on the initial values of
the solution.

DEFINITION. The differential equation
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ay dly )

dx’ dxn =0 (1)

Q (x,y,

defined in a domain G is called algebraic, if Q = Q(x,y0,Y1,...,Vn) is a polynomial
in y; (i = 0,1,...,n) with coefficients which are meromorphic functions of x. The
differential equation (1) is called rational if it is algebraic and of degree one with
respect to . The differential equation (1) is called linear if it is algebraic and if it is
linear in y;, (i =0,1,...,n).

EXAMPLES
(1) The equation

ky' y*¥1=1, keN
is a nonlinear rational equation of the first order. The general solution is
yx)=(x-ot% cecC

and it has an algebraic branch point for x = c. The position of this singular point
depends on the integration constant c. Therefore it is a movable singularity.
(2) The equation

y// + (y/)z _ 0
is a rational equation of the second order. Its general solution is
y(x) =log(x—c1)+c2, c1,c2€C

and has a logarithmic branch point at c;. The position of this singular point
depends on the initial data, i.e. we have a movable singular point.
(3) The equation

rr ’ 2y
vy +(y )2<, —1) =0
y
is a rational equation of the second order with the general solution

ci,cr € C.

y(x)=crexp (_(x—licz))'

This solution has an essential singular point at x = ¢y, i.e. the equation has a
movable singular point too.

DEFINITION. A point x € C is called a critical point if the general solution of a
differential equation is not unique in any of its neighbourhoods.

A critical point may be isolated or not. For instance, it can be a branch (or ramifica-
tion) point or belong to a line of branch points. Now we can reformulate our problem
as follows:

Describe all possible nonlinear differential equations without movable critical points.

Despite of the restriction we have made the above problem remains very complicated
and up to now it is not completely solved.
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In order to simplify it further restrictions are introduced. We can consider for ex-
ample only first order differential equations. The general solution of a first order dif-
ferential equation can have as critical points only branch points. The general solution
may have also other singularities, poles or essential singularities, but singularities of
such type can not destruct the uniqueness of the solution and in the case of a first
order equation all essential singularities are fixed (unmovable). Now we can classify
all nonlinear differential equations of the first order without movable critical points.
In this context classification means the possibility to describe all possible classes of
equivalence under a given group of transformations of the variables x and . L. Fuchs,
H. Poincaré, and later P. Painlevé looked for equivalence classes under the following
groups of transformations

x(x)y +B(x)

2
yx)y+8(x)’ ()

X=@kx), =
where «, 8,y,0, @ are holomorphic functions. The problem of the classification of all
algebraic ordinary differential equations of the first order was solved by L. Fuchs and
H. Poincaré and the solution is very elegant.

THEOREM 1 (Classification). Each algebraic ordinary differential equation of the
first order without movable critical points is equivalent to one of the following two
equations:

(1) The equation for the Weierstrass g-function

dy\? :
(%) =4y’ - g2y -9g3, 92,93 €C. 3)

(2) The Riccati equation

dy _ 2
dx =a(x)y“ +b(x)y+c(x), 4)

where a,b,c are holomorphic functions.

Nearly all known special functions are defined by nonlinear differential equations of
the first order without movable critical points. Well known examples are the functions
called after Bessel, Hankel, Weber, Legendre, Struve and so on. It is well known that
all these functions have many applications in mathematical physics which shows that
the solutions of the equations with unmovable critical points proved to be very useful
transcendental functions. This was the reason for the enthusiasm for the classification
of the next, more complicated, class of equations—the equations of the second order.
However E. Picard noticed that for such equations the essential singularities in general
can be movable and concluded that such a classification never can be done. In fact,
many attempts to solve this problem were unsuccessful. Later, P. Painlevé restricted
the problem further and proposed to consider only rational differential equations of
the type

dzy

Ax? =R(x,5,¥")
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with fixed critical points. After a huge amount of calculations P. Painlevé found 50
(fifty) equations [34]. In fact he found 50 equivalence classes under the group of trans-
formations (2). After that he investigated these equations and found that most of them
can be solved explicitly or can be reduced to linear equations. But there still remained
3 equations that turned out to describe new transcendental functions. Painlevé’s cal-
culations were improved by his student B. O. Gambier [17] who added another 3 equa-
tions to this list. So there are 6 equations, called now Painlevé equations PI,...,PVI for
which general solutions are principally new transcendental functions

vy =6y%+x, (5)
y' =2y +xy+a, (6)
P s A el 3.0
R A 5 2 2_ B
% _2y+ > +4xy +2(x (x)y+y, (8)
oo (11 2 Yy (y-1)? B, yy oy(y+1)
y _(2y+y—l)y pra (txy+y)+ o +7y—1 , 9)
,,—1 l_}_i_’_# ,2_ l_’_i_’_# ’
Y T3 vy y-1 y-x Y x x-1 y-x Y
yo-Dy-x)( ,x x-1 <1_ )x(x—l)
+—x2(x—1)2 x 2 +y7(y_1)2 > -x2) (10)

All of this equations have poles only as movable singularities, the critical points and
essential singularities are fixed. The equations PI, PII, PIV have essential singularities
in the point oo, the equations PIII and PV have critical points (0, ) and the last PVI
equation has three critical points (0,1, ).

P. Painlevé believed that these equations can not have solutions in terms of known
special functions. However it turned out that he was not right. Much later in [7] and
subsequently in [2] there were found and classified rational and algebraic solutions of
these equations for special choices of the parameters as well as further special solu-
tions. For example, for particular values of the parameters PII possess Airy functions
as special solutions, PIII Bessel functions, PIV Hermite-Weber functions, PV confluent
hypergeometric functions and PVI hypergeometric functions. An exceptional case is
the first equation PI (5) for which every solution is a new transcendental function.

In honour of the investigations of P. Painlevé an ordinary differential equations is
today called to have the Painlevé property if it does not have movable critical points.

All attempts to generalize Painlevé’s results despite of considerable efforts did not
have success. In this connection we shall mention the results about the equations of
the third order obtained by J. Chazy [13, 14], R. Garnier [22]. These investigations
which use classical methods have been continued and summarized by F. J. Bureau [8].

Thus the problem was considered as too difficult and forgotten for a long time.

New life came into this problem from the development of the inverse scattering
method. The method allowed to discover many nonlinear integrable partial differential
equations with remarkable properties. In some sense these equations can be viewed as



the first step from linearity to nonlinearity and they have many applications in mod-
ern physics, biology and other areas. These equations possess large classes of explicit
solutions with truly nonlinear properties and are usually called soliton equations be-
cause of one of the classes of their solutions is characterized by its the particle-like
properties. A essential feature of the soliton equations is that the proper scaling so-
lutions (or similarity solutions) are described by some ordinary differential equation

SYMMETRIES OF THE PAINLEVE EQUATIONS

with fixed critical points, i.e. with the Painlevé property.

EXAMPLES

1)

)

(3)

)

The Korteweg-deVries (KdV) equation

Ut +OUUx + Uxxx =0,

where the subscript denotes the corresponding derivatives, has scaling solutions
that are described by the first PI (5) or the second PII (6) Painlevé equations. For

example, after the substitution

u(x,t) = wiz) z=—
SN ETI ZE R CTSNE
we get
w"” —6w?w' —(zw)' =0,
or

w' =2wl+zw +«.
The nonlinear Schrédinger equation (NLS)
U = Uxy £2|UPU

leads to the second PII (6) and fourth PIV (8) Painlevé equations.
The Boussinesq equation

Uit = Uxx + (MZ)XX T Uxxxx-
If we make the substitution
ulx,t)=wx-ct) =w(z)

we get the equation

(1-c®)w” +%(w2)” + %w”" =0,

which after integration leads to one of the equations

w” +2wl+a=0, w' +2wl+z=0,

that it leads to PI (5). It can be shown that other substitutions lead to PII (6) and

PIV (8).
The Sine-Gordon equation
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Uyt = SinU
after the substitution
u(x,t) = f(z), z=xt, —w(z)=exp(if)
leads to
ww'  wi-w

+71
V4 V4

ww// _ (w/)Z_

that is to the equation PIV.

From the above examples we see that the Painlevé equations can arise from inte-
grable partial differential equations after dimensional reduction, that is the Painlevé
equations arise taking the scaling symmetries into account.

We are going to look for symmetries for the Painlevé equations themselves. In or-
der to do this, it would be useful to say some words about the notion of symmetry
which is very broad and used in quite different meanings. For example, in physics
we call a physical system symmetric if its observable quantities are the same seen
from different observers which are connected by transformations of the space-time.
In mathematics we investigate the invariance properties of a object under a given
group of transformations and we say that the object have given symmetry if it is
invariant under the action of this group of transformations.

Now we must specify what kind of symmetries we will investigate in connection
with differential equations. Usually we look for some types of transformations that
map solutions of the given equation into other solutions of the same equation (pos-
sibly with different parameters). There are different types of symmetries of differen-
tial equations, for example, master symmetries, isomonodromic symmetries, nonlocal
symmetries etc., but their investigation is out of scope of this talk. We shall concen-
trate now on the Painlevé equations. They possess a rich family of symmetries. Some
of them are well known, other are not. We intend to present some new results and for
this we must explain the notations in more detail.

How can we use symmetries to solve differential equations? It turns out that we
must look for invariant values of given equation. Let us define what this means. We
call a function T, a semi invariant of weight n for the equation (1) if after some group
transformation we have

Tn = ATy,

where A is the Jacobian of the transformation. We call the invariant T for n = 0 an
absolute invariant. It is evident that a vanishing semi invariant is an absolute invariant.

The expression for a semi invariant T, is constructed out of the coefficients of the
equation and their derivatives. Differential invariants are not the only possible ones.
There also may exist integral invariants for a given equation. Once a semi invariant is
found it can be used as a new variable and this change may result in a simpler form
of the equation written in terms of the new variables.

The theory of Lie point symmetries of partial and ordinary differential equations
is a well investigated topic and most of the steps involved are algorithmic but un-
fortunately many important equations do not possess any Lie point symmetries. It
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can be shown that Painlevé equations do not allow nontrivial Lie point symmetries.
On the other hand we have seen that the Painlevé equations have a lot of remarkable
properties. Therefore we must look for some more general symmetry structures. So
we consider the general smooth point transformations

X=@kx,y), r=yx,y).

We do not restrict ourself here to the case when they form a finite Lie group. For
example, we can consider a transformation

X=x+1, y=y+x.

as it has the above form.

The set of all such transformations is called the set of smooth local diffeomorphisms
of R? and is denoted by (diff)*. The general point transformations forms a pseudo
group. The investigation of invariance properties with respect to the pseudo group
(diff)* is incomparably more difficult than in the case of a Lie point symmetry. The
reason for this is the fact that the elements of a pseudo group are not parametrised
and there is no corresponding finite dimensional algebra of operators.

What kind of results can we expect from such investigations? In the case of Lie point
symmetries we had the possibility to choose convenient variables using the differential
invariants and simplify the equations. It turns out that in the case of pseudo groups
there is a similar procedure. We look for invariants under the pseudo group and try
to simplify the differential equation or to solve it. However, on this way there are
some difficulties. First of all, the theory of differential invariants is more or less well
developed only for ordinary differential equations of the first and second order, but
not for arbitrary differential equation. Let us describe the history of this theory and
introduce some new notations.

Let us consider the case of explicit differential equations of the second order

Y =d(x,y,y) (11)

and look for differential expressions which are invariant under the pseudo group of
point transformations

X=pkx,y), Y=ykxy). (12)
It is evident that the simplest second order differential equation has the form
y" =0.
After a general transformation (12) this equation takes the form
-3 - -

d2% av\- ... (d d
e d%) +3a2(%.5) (d?"cl ax
Now, if we apply another point transformation of the kind (12) to the equation (13),
we can easily see that its form will not change. This observation can be reformulated
in the following way. The expression

=ai(x,7) 2+3a3(5c,5/) +as(x,y).  (13)
( ) (a)

o4d

ay/4 =0
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is the first (and simplest) differential invariant of ordinary differential equations of
the second order. It means that the equations of the type (13) belong to the first and
simplest class of ordinary differential equations of the second order. The next, more
complicated class of equations has the form

(") =Ps(y';x,¥),

where Ps5 is some polynomial of fifth order in the variable y’.

The six Painlevé equations belong to the simplest type (13). Now we have to consider
the differential invariants for this type of equations, i.e. we have to construct some
differential expressions out of the coefficients a,,...,a4 that are invariant under the
pseudo group (diff)*.

The first investigation of invariants of the equation (13) was done by R. Liouville [27].
He found some series of absolute and semi invariants and discovered a procedure to
construct other invariants of higher weights if the initial semi invariant for this series
does not vanish. A major role in his investigation are playing two quantities Lq,L>.
These quantities are also very important in our work. Let us introduce

Y, = 2(a3 —aras) +asx — asy, (14)
H(z)z =2(a§—ala3)+a1x—6l2yy (15)
Y, =119, = aras —aias +dsy — asy, (16)

where by the subscripts x,y we denote the corresponding partial derivatives. Then
L,,L; are defined by

oY, oro,

Ll = — a:)]}l +T;—a2H?l—a4ng+2a3H?z, (17)
ort9, o119

Lr=— a; + a;Z — a1, — a3ld, +2a,11Y,. (18)

In the case when both L; and L, are equal to zero, the equation (13) is equivalent to
' =0[27]. The value vs, the most important semi invariant discovered by R. Liouville,
is

V5 = Lo (L]sz —L2L1x) + 1 (LzL]y —L]Lzy) —a]L? + 3&2[,%[,2 — 3(13L1L% +6l4L§. (19)
If we have
vs =0 (20)

then vs is an absolute invariant. It cannot be used for the construction of any other
invariants of higher weights because it is equal to zero. R. Liouville discovered another
initial semi invariant of weight 1 for the equations for which (20) holds, it is

1 ,
wi =15 [-L3(0,L, —119, Lo) — Ry (L3), —L3R1x + LiRy (a3l —asla) |, (1)
1

where

Rl = LILZX _LZle + asz — 2(13L1L2 + 6141,%
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and L, # 0. For the case L, # 0 we have a similar formula. The first non vanishing
semi invariant in case w;, = 0 found by R. Liouville has the weight 2 and is expressed
as follows
. 3R1 8L2 aLl
Ip=—7—"+—————.
Ly ox 0y
It can be used for the construction of the last series of invariants investigated by R.
Liouville.

R. Liouville had some problems with the equations for which invariants vs, wy, i
vanish. He stated that all such equations are equivalent to y"" = 0 under the general
point transformation (12). This incorrectness was remarked later by P. Painlevé and
was a subject of some controversial discussion between P. Painlevé [33] and R. Liouville
[26]. P. Painlevé had heavy doubts about the method of R. Liouville and as a result this
voluminous and up to few pages correct work was neither cited nor used (to our
knowledge).

A further consideration of the same problem from the point of view of groups of
infinitesimal transformations was introduced by S. Lie [24, 25] and completed by his
student A. Tresse. In his first work [39] A. Tresse looked for complete series of invari-
ants for the equations of type (13). Later he investigated the most general second order
differential equation (11) with arbitrary smooth function ®(x,y,y’) in [40]. A. Tresse
got an award for this work because he found the complete set of invariants for the
equation (11) under general point transformations (12). The work of A. Tresse was al-
most forgotten perhaps due to his inconvenient notations and we unsuccessfully tried
to find an application of his work. Note that the results of A. Tresse are inapplicable
to the case vs = w; = 0.

At the beginning of our century, G. Thomsen [38] found the series of invariants for
the equation (13) under the point transformation (12) using methods of differential ge-
ometry. His invariants were quite the same as were found by R. Liouville. He excluded
the case vs = wy = 0 from the consideration too.

Let us compute the invariants vs, w; and i, for the six Painlevé equations. For all
equations we get vs = 0 and w; = 0. Therefore the Painlevé equations must be a quite
narrow subclass of the equations obeying (13). There must exist some transformation
of the variables x and y after which the equation takes the form

y'=fxy). (23)

In fact, we found this transformation in paper [6] and are in a position that we can
rewrite all Painlevé equations in the form (23).

(22)

THEOREM 2. The PI-PVI equations can be reduced to the canonical form (23).

The first two equations, PI and PII already have this form. PIII equation takes the
canonical form

Y = xe* Y + BeX Y + yer XY 4§t XY, (24)

PIV equation is now

B
2y3’

rr

Yy =954 2xy3 (X2 —x)y +

2 (25)
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PV equation takes the form

1+e” 1-e”

_ o) _
ey *48 ys + (€7 me g (0 —e). 2

v =40e”
Finally the PVI equation takes the canonical form [5]

2

4282 = B’ (v 11/2,x/2) + y + gl + 59, (27)
Here o' (v | 1/2,ix/2) is the derivative of the Weierstrass g-function with the peri-
ods 1 and ix;p7, 95, p5 are its shifts on the half-periods 1/2, ix/2 and (1 +ix)/2
correspondingly. This completes the list.

This new form of the Painlevé equations is not only easy to recognize, but also very
convenient for many investigations. This result yields an easy way to prove whether an
equation belongs to the same equivalence class under (diff)* or not. One has simply
to check whether the invariants vs and w; for this equation vanish or not. After that
we are concerned only with equations of the form (23).

Using the new form of the Painlevé equations we can better understand another
type of symmetries—the symmetries resulting in the transformation of parameters.
The first Painlevé equations don’t have any parameter, but the other equations have
up to four parameters. Now let us look for all possible transformations, point transfor-
mations, Lie-Backlund transformations, canonical transformations and so on, which
transform a given solution with a prescribed set of parameters into some other solu-
tion of the same equation with possibly another set of parameters. The classification
of such transformations for the PIII and PV equations as well as the classification for
those sets of parameters for which these equations possess rational and algebraic
solutions was done in [7]. Later K. Okamoto in [31] used the canonical and isomon-
odromic transformations together with the Hamiltonian structure of the Painlevé
equations to describe the parameter symmetries of the Painlevé equations.

For some Painlevé equations such symmetries are quite evident. For example, we
can see that a solution of the equation PII with some parameter « can be transformed
by a point transformation into another solution with the parameter —« or by a canon-
ical transformation into a solution with the parameter 1 — «. The most complicated
from the point of view of the parameter transformations is the sixth equation, PVI. Its
investigation requires some unusual methods [31]. If we take now the sixth Painlevé
equation in the new form, we can reproduce the result quite elementary. Let us for-
mulate and prove the following theorem.

THEOREM 3. The group of parameter transformations of the equation PVI is isomor-
phic to $4.

PrROOF. Consider a two dimensional lattice A with primitive periods Wy,W>, € C,
such that 3W,/W; > 0. We get 3 new lattices A1, A2, A3 if we shift our lattice by half
periods Wy /2,W>/2,(W,+W>)/2. The right hand side of the sixth Painlevé equation
is the sum of four g’-functions multiplied each with the corresponding parameter.
Each of the g’-functions has a double pole respectively at the points {0, W;/2,W,/2,
(W1 +W>)/2} with coefficients «,8,y,d. This means that we have some composition
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of 4 lattices with vertices marked by the parameters «, ,y,5. Now we prove that for
an arbitrary permutation s € S* of the parameters «,f,y, we get a solution of the
equation PVI. In fact, the g’-function is double periodic and, consequently, we can
start with an arbitrary weighted vertex. On the other hand we can introduce some
new primitive periods

(W1, W,) = (W1, Wo) A, AeSL(2,C)

due to the modular transformation A. We take into account the homogenity of o’ (y |
W1, Ws(x)) with respect to the transformation of the variable x which is induced
by A. The function g’ is invariant under such modular transformation A. So we can
reproduce all permutations s € §* using these two properties. O

2. The equivalence classes generated by the Painlevé equations. In this section
we consider the cases where some different Painlevé equations can be transformed to
one another by some general point transformation.

The canonical form (23) is very special. The only point transformations preserving it
are linear in y. As a result, the equivalence problem for the equations in the canonical
form become trivial.

Let us denote by {Pj(«x,B,y,6)} the set of equations equivalent to the j-th Painlevé
equation with parameters «, 8,y, 9.

Consider the sets

{P1},
{PII} = | J{PI(0)},

{PII} = |J {PHI(x,B,y,0)},
o,B,y,0

{PIV} = [ J{PIV(&,B)},

o, B

{PVi= J {PV(x,B,y,8)},
o,B,y,0

{PVI} = |J {PVI(x,B,y,8)}.
«,B,y,0

From the canonical forms of the Painlevé equations the following theorems result

THEOREM 4.
{Pj}n{Pkt =¢, k<j, k,je {LILILIV,V,VI},
except for the case k =111, j =V

{PII} N {PV} = | J {PII(-y,y,-5,8)} = | {PV(0,0,y,5)},
Y,0 y,6

{pui(-y,y,—6,6)} = {PV(0,0,4y,86)}.
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Inside of the classes corresponding to each of the six Painlevé equations it is possible
to give much more detailed description. For example for PII the following relations
hold.

THEOREM 5. For the second Painlevé equation (PII)

{PII()} N {PI(&)} = p, if &> # &2,
{PII(x)} = {PII(—0c0)}.

3. The geometry of the Painlevé equations. The adequate geometrical theory of
the equations (13) was created by E. Cartan [11, 12]. He introduced the concept of
the space of the projective connection (SPC). The equation (13) can be considered as
the equation on the geodesics in this space. E. Cartan found some special classes
of SPC so called spaces of the normal projective connection (SNPC) that are in one-
to-one correspondence with the equivalence classes of (13) under the general point
transformations (12).

We can imagine SNPC as follows. As a base we take a two-dimensional manifold ¥
and in every point X € ¥ attach a typical fiber RP?, i.e. we consider a product bundle
with the structure group PGL(2,R): % x RP? -2~ %. In every fiber RP? we fix a frame
P(X) = (Py,P1,P>)T(X). We take a point P = ZP(X) with coordinates Z. We move along
an infinitesimal path from the point X to the point X', for X, X’ € ¥; then the image
of the point P will have the coordinates Z(I — w) in the frame P(X’), where w is the
matrix of 1-forms.

The normal projective connection corresponding to (13) can be assigned by the
following matrix of 1-forms w

wy =0, w} =dx, w?=dy,
w? =11} dx + 113, dy, w1 = —azdx —azdy, w? = agdx +azdy, (28)
w} =13 dx +113,d, wj = —axdx —a,dy, w5 = —w}

where I19,,119,,119,,119, are defined by (14-16).

E. Cartan [12] and S. S. Chern [16] proved that each n-dimensional SNPC X" can be
immersed into the projective space RPN. S. S. Chern [16] found that N = n(n+1)/2+
[n/2],i.e.for n = 2 we have N = 4. If the invariant vs = 0 then it is possible to immerse
%2 into RP? and the image of ¥? is a developable surface. For instance, the surface
corresponding to the equation "’ = 0 is the projective plane (see E. Cartan [12] and
V. Prokofjev [37]). In all other cases the immersion is possible into RP* only.

Let us now look for an image of SNPC for the Painlevé equations. For all of these equa-
tions we have vs = 0, w; = 0, i.e. we can describe the same normal projective connec-
tion if we take a set of surfaces in RP3. In RP3 we fix a frame P(X) = (P, P1,P>,P3,)T(X)
and choose different points P;(X) as follows. Let the point Py(X) lie on an arbitrary
cone with a quadric directrix and with fixed vertex P, (X) = const, let P; (X) lie on a
tangent plane to this cone at the point Py(X). We fix one of the rulings % on this cone
and take into account a plane through the ruling % and the point Py (X). On this plane
we take an arbitrary point P3(X)(P3(X) # Py(X),P>(X), P3(X) & %). If we now move
along a curve y = y(x,C) (corresponding to w), then the point Py (X) for fixed x will
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move along a ruling of the cone and at the same time the point P3(X) will describe
a flat curve, touching the cone at the point P, (X). For every fixed x we have its own
flat curve, all of the curves are forming the surface ?3 € RP3. Such a surface is a geo-
metrical characteristic of the equation (23). In case of the PI equation the flat curve is
an ellipse (or another cone section) and the surface %3 looks like an bowed together
croissant. For the PII equation it is the flat cubic curve and so on. The much more
complicated case is the PVI equation. The flat curve in this case looks like a deformed
spring.

E. Cartan defined and investigated the holonomy group of SNPC corresponding to
(13). He proved that there is only one special case when the holonomy group is non-
trivial. It has a fixed point on RP? and it can be shown that in this case the equation
is equivalent to y"" = f(x,y) for some f(x,y). In other cases the holonomy group
is either the projective group PGL(2,R) or it is trivial (for equations equivalent to
" =0). We reduced all Painlevé equations to the form (23) and proved that they have
a nontrivial holonomy group. Therefore we found new symmetry properties of the
Painlevé equations.
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ABSTRACT. Symmetry, in particular gauge symmetry, is a fundamental principle in theo-
retical physics. It is intimately connected to the geometry of fibre bundles. A refinement
to the gauge principle, known as “spontaneous symmetry breaking,” leads to one of the
most successful theories in modern particle physics. In this short talk, I shall try to give a
taste of this beautiful and exciting concept.

1. Introduction. The concept of symmetry is one of the very few on which mathe-
maticians and physicists agree, namely that

SYMMETRY = GROUPS.

Hence we shall use these terms interchangeably.

In particle physics, there are two main uses of groups:

(1) as transformation groups under which a theory is invariant;

(2) as group representations for classifying the many particles we see.

In a sense, the first is all important, just like the main characters of a play. The
second is more like the supporting cast, without which the theory, although it can
stand on its own, is much less interesting and also much less realistic.

The next question is: which groups does one use or need? Generally speaking, finite-
dimensional compact semi-simple Lie groups. In this talk, in order to simplify the
presentation but without losing the essentials, I shall consider almost exclusively only
the following: for abelian groups U(1), and for nonabelian groups the unitary groups
U(N) and SU(N). At the end I shall mention an example where a discrete group figures.

2. The particles: a lightning view. Particles used to be called elementary particles,
which made good sense when we knew only the electron, the proton and the neu-
tron, and they were adequate for forming all the elements in the Periodic Table. Then
Einstein proved the existence of the photon as a particle. Also Dirac postulated the
existence of anti-particles, which was well borne out by later experiments. ... All in
all, there are now more than 150 of them listed, and the number keeps on increasing!
It would be highly unsatisfactory if we had to put them all in one or more represen-
tations or ‘multiplets’ without a good theoretical guidance.

Fortunately, we do now have a theoretical basis, the gauge principle, which we shall
study in the next section. In the light of the gauge principle, particles can be classified
under three headings:
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« Vector bosons: y (the photon), W*,W~, Z0,

e Leptons: e, v,; U, vy; T, V. (In words, the electron, the electron neutrino, etc.)

e Quarks: these are not observable themselves, but they form most of the other par-
ticles by combining two or three together. Each quark q is in the 3-dimensional or fun-
damental representation, and directly observable particles occur in the 1-dimensional
or singlet representation as follows

q9q9:3®3®3=1&---
qG:3®3=1a---.

Note that only singlets can be observed as free particles, as will be explained later.

3. The gauge principle. We said at the beginning that the invariance of a theory
under certain group transformations is the most important aspect of symmetry. Let
us study it now in greater detail.

Recall classical electromagnetism. The skew rank 2 field tensor F, (4,v =0,1,2,3)
has as its components the electric E and magnetic B fields

0 Ey E, E3
-E; 0 -Bs B
—-E, B3 0 -B;
-E3 -B, B 0

Fyy =

These are directly measurable quantities and hence do not transform under any sym-
metries. However, one can and does introduce a vector potential A, related to F,
by

Fuv = 0vAu —0,4Ay,
so that there is a freedom in changing A, without affecting F,
Ay = Ap+iedyA,

where A(x) is a scalar field, and e is a ‘coupling’ constant representing the strength of
interaction. In classical theory, there is no need to consider the potential A,. However,
in quantum theory, it was demonstrated that F,, is not enough to describe the physics
and one needs A. This is the famous Bohm-Aharonov experiment.

The ‘gauge freedom’ in A, is in fact linked to the arbitrary phase of the electron
wave function

W — ey,
Hence the relevant group for the symmetry of electromagnetism is
G=U(1).
In 1954, Yang and Mills extended this gauge principle to a nonabelian group G
Ay~ SAS™ - Ei (0,8)S71,

W~ Sy,
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Physics Mathematics

Special Relativity Flat Space-time

General Relativity Riemannian Geometry

Quantum Mechanics Hilbert Space

Electromagnetism and Fibre Bundles
Yang-Mills Gauge Theory

TABLE 1. Mathematics and physical theories.

where S € G.
This is the famous Yang-Mills theory. In the last 20 years or so, it has been generally
accepted that Yang-Mills theory is the basis of all of particle physics

YANG-MILLS THEORY = BASIS OF ALL PARTICLE PHYSICS.

A refinement of gauge symmetry is called symmetry breaking, where the whole the-
ory (including equations of motion) is invariant under a group G but a particular so-
lution (or ‘vacuum’) is invariant only under a subgroup H C G. This will be important
for later applications.

4. The geometry of gauge theory. Although it was not realized at the time, gauge
theory is intimately linked with geometry. In fact it is as geometric a theory as Ein-
stein’s general relativity. Table 1, borrowed from a paper by Yang, underlines this
fact.

Recall the definition of a principal fibre bundle, as illustrated in the accompanying
sketch (Figure 1).

FIGURE 1. Sketch of a principal bundle.

Thus a principal fibre bundle consists of a manifold P (total space), a manifold X
(base space or spacetime), a projection 1 and a group G (structure or gauge group).
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Above any point x € X the inverse image 1w~ (x) C P is called the typical fibre F, and
is homeomorphic to G. Above an open set Uy of X, the inverse image m~1(Uy) C P is
homeomorphic to the product Uy X F

bu: Uy XF - 111 (Uy).

Thus in a sense, the manifold P is a ‘twisted’ product of G and X, the twisting being
done by the action of the group

bax: F-1Hx), ¥~ daulx,y),
with
¢E,1x¢:x,x: F-F

giving the relevant action of the group G.

A trivial bundle is then just the product X x G. The most well-known example of a
nontrivial bundle is the Mobius band, where twisting is done by the 2-element group
Z,. An example which is useful in physics is the magnetic monopole, which can be
represented topologically by S3, which in turn is a nontrivial S! bundle over S? (the
Hopf bundle, of Chern class 1, for the experts). Here spacetime is thought of as 52 x
R?, where the second factor is just a vector space with no topology, and can thus
be ignored for the present purpose. Ordinary electromagnetism without magnetic
monopoles is given topologically by the trivial bundle bundle R* x S!. In both cases,
the typical fibre is the circle S', which is homeomorphic to the group U(1).

To proceed further we need to introduce a connection on the principal bundle P. This
is a 1-form A on P with values in the Lie algebra g of G, satisfying certain properties
and giving a prescription for differentiating vectors and tensors. Locally it combines
with the usual partial derivative to give the covariant derivative

D, =0,—1iglAy, -]

In differential geometry and in gauge theory one has to replace the partial derivative
by the covariant derivative so as to preserve the invariance or symmetry of the system.
From the connection one can define the curvature

Fuy = 0vA, —04A, +ig[Au, Av].

One recognizes immediately that these are respectively the gauge potential and the
gauge field introduced in the last section, where the extra commutators (in the Lie
algebra) take into account that now the group is in general nonabelian.

With this language, the mechanism of symmetry breaking can be stated as the case
when the twisting of the bundle are by elements of a subgroup H of G (and when the
connection 1-form takes values in the corresponding Lie subalgebra, one says then that
the bundle with connection is reducible to the subgroup H). An important example
is the 't Hooft-Polyakov magnetic monopole, which is a nontrivial U (1) reduction of
a trivial SU(2) bundle, given by the exact sequence (for those who are fond of such
things)

- = (SU2)) - m(SU(2)/U1)) — m((U1)) = m(SU2)) — - - -.
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| FORCE | GROUP | GAUGE BOSONS | MATTER |
Strong SU(3) [Gluons] [Quarks]
(QCD)
Electroweak U(2) y,W*, 270 Leptons
(Weinberg-Salam) [Higgs]

TABLE 2. Forces and Fields in the Standard Model.
The first and last terms being zero, one gets the isomorphism

m(SU(2)/U1)) = m (U(1)).

5. Briefest summary of the Standard Model. Following the gauge principle, we can
now try to fit the three types of particles of Section 2 into a more systematic pattern,
the better to exhibit their symmetry properties.

The vector bosons, also known as gauge bosons, are the potential A, (x) when con-
sidered as fields. Note that in the language of quantum field theory, the concept of
“particles” and “fields” are interchangeable: particles interact by influencing the space-
time in their neighbourhood and thus giving rise to fields, that is, functions of space-
time with a definite tensor property (whether scalar, vector, rank 2 skew tensor, etc.).
According to the interaction, we have a specific symmetry or gauge group. The other
two types of particles are usually thought of as “matter fields” belonging to represen-
tations of the corresponding groups.

We now recognize that, other than gravitation, there are two fundamental forces
of Nature: the strong and the electroweak. The electroweak theory is an example of
a gauge theory with symmetry breaking. The idea, called the Weinberg-Salam model,
is that at high energies when the Universe was much younger the symmetry was not
broken, but as the Universe cooled down the U (2) gauge group broke down to the U (1)
subgroup which is the electromagnetism of today. The rest of the U(2) interaction
manifests itself in the present-day weak interaction, of which radioactivity is the most
commonly known aspect. The breaking also leaves some remnant fields called the
Higgs fields which are yet to be discovered.

As mentioned already, each quark is in a 3-dimensional representation of SU(3).
Hence a quark has in fact three states, fancifully called colour. This “colour” is not
directly observable, as only states in the singlet representation can exist free. We say
that the SU(3) symmetry is exact and confined.

Table 2 summarizes these ingredients of the so-called Standard Model of particle
physics. The particles in square brackets are not (or have not been) directly observed,
but they are part of the theory.

The standard model can in fact be schematically represented as

(QCD + Weinberg-Salam) x 3

the gauge group being SU(3) x SU(2) x U(1)/Zs. Most physicists neglect the six-fold
identification, but it is important for identifying the correct particle representations.

The multiplication by 3 above is necessary to model another aspect of the particle
spectrum known as generations. Take the charged leptons as an example. There are
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QUARKS LEPTONS

u Ve
URr dR ( ) eRr
<d>L ¢/

0, | (), -
L T L

TABLE 3. Generations of Quarks and Leptons

3 of them: the electron e, the muon p and the tauon 7. Except for their very different
masses, they behave in extremely similar fashion. The same pattern is repeated for
their neutral ‘partners’ the neutrinos v., vy, v:. The quarks also come in three gener-
ations: the ‘up’ and ‘down’ as the lightest generation, the ‘charm’ and ‘strange’ as the
next in mass, and the ‘top’ and ‘bottom’ as the heaviest. Table 3 arranges the 3 gen-
erations as 3 rows. The subscripts L and R refer to the left-handed and right-handed
field components, a refinement we shall not have time to go into.

The role of the Higgs fields in the standard model is crucial. They break the U(2)
symmetry, give masses to the gauge bosons W, Z and also give masses to the quarks
and charged leptons. Without them, all particles would be massless. Notice that the
neutrinos are supposed to be massless, although some recent experiments in particle
physics and astrophysics indicate that they may have extremely small masses.

Even with this briefest of summaries of the Standard Model we can already see how
symmetry plays a crucial organizing role in our understanding of particle physics.
And in this gauge symmetry is of prime importance.

6. Electric-magnetic duality: example of a discrete symmetry. It is well-known
that electromagnetism has a discrete Z, symmetry, that is, the equations are invariant
under the change from ‘electric’ to ‘magnetic’ and vice versa. Let us look at this in a
little more detail.

As described in Section 3, we can start with the potential A, and define the field
tensor Fy, by

Fuy = 0yA, —0,A,.
Further introduce the Hodge star operator, which in this case goes from 2-forms to

2-forms

1
*FHV = _EGNVPO'FPO--
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This operation interchanges electric fields and magnetic fields. We then have the iden-
tity

Ou*FHY =0,

which always holds for F,, defined as above in terms of an A,. On the other hand, by
Gauss’ theorem, this ‘divergen-free’ condition is equivalent to the absence of magnetic
monopoles, because *F,, gives the magnetic flux out of such an object if present. This
very significant link between a geometric statement and a physical statement can be
schematically represented as

A, exists Foagre Ou*F* =0 Caugs no magnetic monopolesj .

—_— ~
geometry physics

In the language of differential forms, the geometric statement is no other than

locally
F exact = F closed.

Now in the absence of electric charges (remember: only the main characters and no
supporting cast!), we have

0uF* =0,

just as for the case of magnetic monopoles above, only this time we have FFV instead
of *F*V. So we have the ‘dual’ of the scheme above

~ i Poincaré Gauss .
Ay exists <= 0,F"Y =0 < no electric charges.
N — )
geometry physics

We see that the electric-magnetic discrete symmetry indeed holds.

It can further be shown that electromagnetism is dual symmetric in the above sense
even in the presence of charges.

What is even more interesting—and this is what I am currently working on—is that
Yang-Mills theory (or nonabelian gauge theory) is also dual symmetric, but the proof is
not all that straightforward. One has to use techniques involving infinite-dimensional
loop variables and the dual transform is no longer just the Hodge star but a loop space
generalization of it. What is interesting, and intriguing, is that this discrete symmetry
is clearly linked to the continuous gauge symmetry. One consequence is that the gauge
symmetry is now doubled

GXG,

where as groups the two factors are identical, only the physical aspects they refer to
are not identical but dual to each other. Now 't Hooft proved a theorem which can be
stated as follows: the G symmetry is exact and confined if and only if the G symmetry
is broken and massive. Compare this to the actual symmetries of the Standard Model

SU(3) exact and confined
U(2) broken and massive
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Applying 't Hooft’s theorem to these symmetries lead to very interesting consequences
which I do not have time to talk about.

7. Conclusions. Let me summarize the salient points about symmetry in particle

physics that I have mentioned:

(1) Symmetry is all important in physics. For lack of time (and expertise) I have
omitted to treat many symmetries, such as Lorentz symmetry, diffeomorphism
symmetry, supersymmetry, ... .

(2) There are two main uses of groups:

(a) in the gauge principle as invariance, and
(b) for particle classification using representations.

(3) The Standard Model is a triumph of the gauge principle.

(4) Electric-magnetic duality (a discrete Z, symmetry), when generalized to Yang-
Mills theory, leads to very interesting results.

If, however, you wish to take away with you just one point, then I recommend

SYMMETRY = GROUPS.

ACKNOWLEDGEMENTS. I thank Bodil Branner and Sylvie Paycha for inviting me to
this meeting, and the British Branch of EWM for a travel grant.

There are many excellent textbooks and semi-popular books on modern particle
physics which emphasize its symmetry properties. There are also excellent articles in
Scientific American which are most suitable to give a taste of the beauty of the subject.
Below is a random selection of such, the first being a more general appreciation of
symmetry in physics by the originator of Yang-Mills theory: [1, 2, 3, 4, 5, 6]

For the reader who might want to know more about the last part of this lecture,
here are a few of my recent articles (the last with an amusing application from the
Serret-Frenet formulae for space curves): [7, 8, 9, 10]
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1. Introduction. A continuous time dynamical system is a pair (M,®;), where M
is a smooth manifold as the state space, and ®; is the flow of a complete C"-vector
field F (» > 1) defined on M, as the evolution law. ®;x( represents the position at
the moment t during the evolution of the state xo. We refer here to the case M = R".
The orbits or trajectories in the system are the solutions of the system of differential
equations

x =F(x). (1)

A discrete dynamical system is defined by a pair (R", f), where f : R" — R" is a con-
tinuous map, a homeomorphism or a diffeomorphism. f defines the law of evolution.
The orbit of a state xo € R™ is O(xg) = {f™(x0) | m € N} if f is only continuous and
O(xg) = {f™(x0) | m € Z} if f is a homeomorphism or a diffeomorphism. Hence the
evolution of a state x( is not watched continuously in time, but at regular intervals of
time.

The concept of symmetry in a dynamical system is well known in physics. For the
system of differential equations (1) symmetries are transformations T of the state
space that leave the equations of motion invariant, i.e. along with x(t), Tx(t) is also
a solution of the system. This happens iff FoT = ToF.

It is straightforward to show that if T is a symmetry of the dynamical system (1)
and T is invertible, then T~! is also a symmetry. So the symmetries of a dynamical
system form a group, called group of symmetries.

Analogously, a transformation T of the state space of a discrete dynamical system
is a symmetry if To f = f o T. The study of symmetric discrete systems on R" was
motivated by symmetric patterns observed in experimental fluid dynamics [3].

When a system is symmetric, i.e. it has a nontrivial group of symmetries, one expects
that the system has symmetric orbits, symmetric fixed points and periodic orbits, sym-
metric attractors or repellers. Also, symmetric steady states can generate symmetric
patterns in the state space of the system.

Recent results in dynamical systems theory [3, 5] have shown the coexistence of
chaos and symmetry. This coexistence seems to be a paradox because symmetry rep-
resents order and regularity, while chaos-disorder and impredictability. Next we show
that this coexistence is possible and not contradictory.

2. Symmetric attractors in equivariant discrete dynamical systems. In order to
understand the structure of symmetric attractors we fix the context in which they are
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generated and studied.

Consider the simplest case of discrete dynamical systems, namely the systems of
the form (R", f), where f is a continuous map. Let I be a subgroup of the orthogonal
group O (n), acting linearly on R", i.e. there is a continuous mapping (the action)

[xR" — R"
(y,x) — yx

such that the following conditions are satisfied
(i) For each y €T the mapping p, : R"™ — R" defined by p, (x) = yx is linear;
(i) y1(y2x) = (Y1¥2)x Vy1,y2 €T and x € R"™.

DEFINITION. The system (R", f) is [-symmetric or I-equivariant if
flyx)=yf(x) VyeT, VxeR".

Some elements that characterize the dynamics of a discrete system (R", f) are: fixed
points (f(xg) = xg), g-periodic points (f4(xq) = x9,q > 1), w-limit set of an orbit:
w(x) = {y € R" | 3k; — o such that f*i(y) — x}, attractors.

There exist many definitions of an attractor in the literature concerning dynamical
systems. Golubitsky and coworkers [7, 1] consider a fairly general one.

DEFINITION. Let (R™, f) be a dynamical system with f continuous. An f-invariant
set A is called a stable set if for any open neighbourhood U of A there is a smaller
open neighbourhood V of A such that f*(V) cU Vn €N.

DEFINITION. An attractor of the dynamical system (R", f) is a stable w-limit set
(or in other words an attractor is a Lyapunov stable w-limit set).

All above mentioned elements (in fact subsets in the state space) that characterize
the dynamics of a system (R", f) are f-invariant subsets. For an f-invariant subset A
of the state space of a I'-equivariant system it is important to know the “amount” of
symmetry exhibited by A. This “amount” is measured by the symmetry group:

Sr={yellyA=AL

Most results on attractors in I'-symmetric dynamical systems are known in the case
of planar systems (R?, f), with T a it finite group ([3, 1, 7, 2]). The only finite groups
acting linearly on R? are the cyclic group Z,, of order m, and the dihedral group D,, of
order 2m. We identify Z,,, with the group of linear transformations generated by the
planar rotation of angle 27t /m. The dihedral group D,, is generated by Z,,, togheter
with an element of order two that does not commute with Z,,. So we identify D,,
with the group of linear transformations generated by planar rotation Rys;» and an
involution I, I oI = id.

In other words we have defined here a representation of the group I (I = Z,,,,Dy,)
on R?,i.e.amap p:T — O(2,R), p(y) = py € 0(2,R).

In order to analyse the behaviour of planar Z,, or D,,-symmetric systems we will
work in complex coordinates. Hence consider dynamical systems of the form (C, f),
where f is a polynomial function, f:C — C.
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The general form of a Dy,-symmetric polynomial function is [3]
f(2) = p(2Z,Re(z™)z +q(2Z,Re(z™)) 2",

where p and g are real-valued polynomial functions uniquely determined by f.
For computer simulations of the dynamics of such systems one has used the trun-
cation

f(z2) = (A+azz+BRe(z™)z+yz™ !, A, x, B,y €R.

A polynomial mapping g with Z,,-symmetry is obtained adding the term iwz

g(2) = (A+iw+azz+PRe(z™))z+yz™ .

These symmetric dynamical systems have symmetric attractors. So it is natural to
address the following questions:
(1) Can every subgroup > C Dy, (or Z,,) be the symmetry group of an attractor of a
planar D,, (or Z,,)-equivariant map?
(2) In a family f of planar D,,-equivariant maps how do symmetry subgroups of
attractors A, change as the parameter A increases?
The first question is one concerning the admissibility of a subgroup 3. C D,,, as sym-
metry group of attractors for a polynomial dynamical system (R?, f). (Recall that the
subgroups of D,, are Dy and Zy, k > 1, and k divides m).

DEFINITION. A subgroup X C D,, is admissible if there is a continuous D,,-
equivariant map f : R2 — R? having an attractor A with symmetry group 3, = 3.

The answer to the first question is negative in the case of D,,,. There are restrictions
on the symmetry groups as follows [7, 1]:

If f is a planar D,,-equivariant map then are admissible the following groups: 1,D;,
Dy, Zi,k > 1, k divides m, and D, when m is even. The subgroups Dg,2 < k < m (k
divides m) are inadmissible.

But if f is a planar Z,,-equivariant map, then all subgroups Zy, where k divides m,
are admissible.

It was shown that group elements which act as reflections play a crucial role in
determining admissibility.

In the case when f is a homeomorphism there are greater restrictions on admissi-
bility [6].

The change of the symmetry group X, of an attractor A, of a planar D,,-equivariant
map f as A varies, observed in computer simulations [3] and proved in theoretical ap-
proaches is a symmetry-increasing bifurcation. Namely f) has a symmetry-increasing
bifurcation at A = Ay if:

e 3y =2Xfor A <Ag;

e Sy=XforA>Ap;and = C X',

In order to explain (at least heuristically) this type of bifurcation we give some prop-
erties of attractors in I'-equivariant maps.
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If Ais an attractor of f: R™ — R™, i.e. there is an x € R" such that A = w(x) and A is
stable, then for every p €T, p(A) is also an attractor for f because of the equivariance
of f. p(A) is called a conjugate attractor.

The basic result explaining the symmetry-increasing bifurcation is:

PROPOSITION 1. Let f : R™ — R™ be a continuous mapping commuting with the
linear transformation p of R™. If A is an attractor of f and

Anp(A) + D
then p(A) = A.

PROOF. In order to show the equality p(A) = A we have to prove the inclusions
p(A) C A, p(A) D A. We show only the first one, the second being proved using similar
arguments.

Since A is a stable set, for every open neighbourhood U of A there is an open neigh-
bourhood V of A such that f*(V) c U for all k € N. Moreover by equivariance property
of f, p(A) is also an attractor for f, i.e. there exists an x € R" such that p(A) = w(x).
Take y € Anp(A). Then y € V. V being an open set, there is a j € N such that f/(x)
is close to y. Hence f7(x) € V. Therefore p(A) = w(x) = w(f7(x)) c U. It is well
known that an w-limit set is a closed subset in the space of the states of the system.
So p(A) is also closed, and as a result p(A) C A. O

Now we are able to explain the scenario of symmetry-increasing bifurcation. As the
parameter A increases the conjugate attractors Ax, p(Aa), p € I'\ 2,, collide and merge
at Ag into a single attractor with symmetry group 2 including the group generated by
>\ and p.

In fig. 1 and 2 is shown the symmetry increasing bifurcation in a D3-equivariant
family corresponding to parameters ¢ = —1,8 = 0.1,y = —0.8. fig. 1 represents for
A = 1.5 three conjugated attractors having D; symmetry. As A increases the three
attractors collide and give rise to a single attractor having D3-symmetry. In fig. 2, the
attractor coresponds to A = 1.55.

Numerical simulations and theoretical approach of the dynamics of planar D,,-
equivariant maps lead to the conclusion of coexistence of chaos and symmetry. Here
we call the system (R™, f) chaotic if it exhibits some kind of sensitive dependence on
initial conditions, i.e. in every neighbourhood of any state x, there exists a state y
whose orbit diverges in time from that of xj.

The attractors of I'-symmetric discrete dynamical systems seem to be chaotic ape-
riodic attractors.

Indeed if an orbit (not an w-limit set) of such a system had a symmetry group X, then
that orbit would be periodic, because the symmetric property of the orbit means that
there exists an m € N* and y € X such that f™(x) = yx. Then by the equivariance
property we have that f¥"(x) = y*x,Vk € N*. Since the symmetry group is finite
there is a ko such that y*o = id, and so x is a periodic point of period kon.

Moreover a D,,-symmetric attractor of a D,,-equivariant planar mapping, m > 2, ex-
hibits certain kind of sensitive dependence on initial conditions [7]. Therefore
dynamics on an attractor having full symmetry is chaotic. The symmetry imposes
an order in chaos (see figs. 3 and4).
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FIGURE 1. Conjugate attractors of a D3-symmetric map.

FIGURE 2. D3-symmetric attractor generated by collision of conjugated attractors.

FIGURE 3. Zj;-symmetric fractal.
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FIGURE 4. Zg-symmetric fractal defined by an IFS satisfying open set condition.

3. Symmetric fractals. The above results on chaotic symmetric attractors sug-
gested the idea of generating I'-symmetric fractal sets in R%, where T is the dihedral
group D,, or the cyclic group Z,, [8].

Given an affine contraction C : R? — R? and a finite group I acting linearly in R?
(' =Dy, or Z,), I = {y1,¥2,...,¥n} consider the IFS (Iterated Function System) {C; =
yjoC}j_1, . n le. afinite family of affine contractions.

Associate to this family a mapping ¢ defined on the class % (R?) of nonempty com-
pact subsets in R? endowed with Hausdorff metric p [4].

€(K) = UY,C;(K), )

@ is a contraction on the complete metric space (¥(R?),p) and its fixed point F is
I'-invariant.

Indeed, F = u}":lij(F), and yF = u’J\-’:lyij(F) = UN,yiC(F) = F, where y; = yy;
(when j runs over {1,2,...,N}, i also runs over the same set).

Question: Every pair (I', C) defines a fractal set F, i.e. F has Hausdorff dimension [4]
less than two? The answer is given by:

PROPOSITION 2. The fixed point set F associated to the pair (I,C) is a fractal set if
the order of the group T, denoted |T|, satisfies: |T'| < oqlo(gl, where x; > o, are the
singular values of the linear part T of the affine contraction C = T + a.

Moreover, the Hausdorff dimension of the set F, dimy (F), also depends on the order
of the group I' and singular values «, c:
(1) If IT'| < ;" then

In|T|

-1
In o,

< dimyg(F) < min (2, lnll"ll)
Inog

and if |T| < ;' then dimy (F) < 1.
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() If ;! < T < a7l x; !, then

-1
1n|1:|1 < dimy (F) < 1n(\lr|o<ic1x2 )_
n«

In o, 5

An IFS (Cj)j-o,1,..~ 1s said to satisfy the open set condition if there is a bounded
open set G C R? such that (G) = U'_,C;(G) C G, with this union disjoint.

If an IFS (C;) satisfies the open set condition then the components of the associated
invariant set F, that is the subsets F; = C;(F) CF, j =1,2,...,N, are disjoint subsets.

If a T-invariant subset F associatted to the IFS defined by a pair (T',C) has disjoint
components, then it may be defined as the repeller of a piecewise affine I'-invariant
dynamical system (R?, f), that is any point near the fractal set F evolves away from
F under the action of f.

As a conclusion, dynamics of D,,,—or Z,,—equivariant planar maps, as the simplest
symmetric discrete systems, shows on the one hand the existence of an order in chaos,
and on the other hand provides an explanation for patterned turbulence in hydrody-
namics [3].

Symmetric fractals in turn appear to have a structural order more subtle than tra-
ditional symmetric patterns because of their geometry.
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1. Introduction. Yang-Mills theory is a non-Abelian generalization of the Maxwell
theory of electromagnetism. The electromagnetic interactions are described by the
gauge fields of the Abelian group U(1). In the pioneer paper of Yang and Mills [26]
it was suggested to consider gauge fields of a non-Abelian group G. Now it is well-
known that in particle physics the strong, weak and electromagnetic interactions are
described by gauge fields of the group SU(3) x SU(2) x U(1)/Zg. So, the Yang-Mills
theory forms a basis of the Standard Model describing these interactions and accu-
mulating our modern knowledge in particle physics. The dynamics of the non-Abelian
gauge fields is described by the Yang-Mills (YM) equations, and the study of the space
of solutions to the YM equations is of particular interest. Later, in 1975, the equations
giving a very important subclass of solutions to the YM equations were introduced [3].
These equations were called the self-dual Yang-Mills (SDYM) equations; their solutions
provide absolute minima for the Yang-Mills functional in Euclidean 4-space.

The correct mathematical language to deal with various aspects of the classical
gauge field theories is the language of fibre bundles. By the 1950’s the theory of
fibre bundles, based on ideas of Cartan and Weyl who introduced connections and
curvature in the early part of this century, was a well-established part of differential
geometry (see, e.g., [15]). In the 1970’s this area of mathematics has again received
close attention by both mathematicians and physicists in the form of the Yang-Mills
theory (see [17, 9, 25] and references therein). In a geometric language, the gauge
potentials A, are components of the connection 1-form in a principal fibre bundle,
the gauge fields F,, are components of the curvature 2-form, etc. There exists a large
literature on the geometric meaning of the SDYM equations (see, e.g., [1, 17, 25, 18]).

Our aim is to investigate infinitesimal symmetries of the SDYM equations. Under a
symmetry we understand a transformation which maps solutions of the SDYM equa-
tions into solutions of these equations. In other words, symmetry transformations pre-
serve the solution space. It is known that all local symmetries of the SDYM equations,
which are also called manifest symmetries, are given by gauge transformations and
conformal transformations. Since 1979, in a number of papers [22], it was shown that
the SDYM equations have nonlocal, so-called ‘hidden’ symmetries which are related
to global gauge transformations. More general gauge-type symmetries were described
in [23, 8, 14]. In [21], an affine extension of conformal symmetries was introduced.
The twistor interpretation of this algebra was discussed in [14]. But the problem of
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describing all possible (local and nonlocal) symmetries is not yet solved.

The paper is organized as follows: in Sections 2 and 3 we recall the main definitions;
in Section 4 we describe the Penrose-Ward twistor correspondence [24, 2, 19], which
helps us to reduce the problem of investigating nonlocal symmetries of the SDYM
equations to the problem of describing local symmetries of holomorphic bundles over
a twistor space; and, finally, in Sections 5 and 6 we give the cohomological description
of the above-mentioned symmetries.

2. Definitions and notation

2.1. Principal fibre bundle. We assume that the notion of an n-dimensional differ-
entiable manifold is known [15]. Briefly, it is a topological space M with an open cover
{Uqx},x € I, and local coordinates x4 : Uy — R™ such that M =Uy¢; Uy, and transition
functions xy o xgl are smooth.

Let P be a manifold and G a Lie group. A differentiable principal fibre bundle over M
with the structure group G consists of a manifold P and an action of G on P satisfying
the following conditions:

(i) G acts freely on P on the right: (p,a) — pa and pa = p < a = e, where (p,a) €
PXG,pacP,ac G and e is the identity in G;
(ii) M is a quotient space of P by an equivalence relation (p ~ pa) induced by G:
M = P/G, and the canonical projection 1t : P — M is differentiable;
(iii) P is locally trivial, that is, every point x € M has a neighbourhood U such that
-1(U) is isomorphic with U x G.
A principal fibre bundle, or G-bundle over M, is denoted by P(M,G). P is called the
bundle space, M is the base space, G the structure group and 1t the projection. For
each x € M, 71 (x) is a closed submanifold of P, called the fibre over x. Every fibre
is diffeomorphic to G.

2.2. Associated fibre bundle. Let N be a manifold on which G acts on the left:
(a,&) — a&, (a,§) € GXN, aE € N. On P x N we define the action of a € G by
(p,&) — (pa,a'&). This action defines an equivalence relation between points of
PXxN: (p,&) ~ (pa,a '¥). Let us introduce a projection 1g: ¢ (equivalence class
of (p,&))= 1(p). By definition a fibre bundle associated to P with fibre N is a space
E(M,G,N,P) =P xs N = (P xN)/G with the projection 1z : E — M and the following
differentiable structure:

(i) for any open U C M, 1tz (U) is an open submanifold of E,

(ii) for each x € M, there exists an open neighbourhood U of x, x € U Cc M, such

that 1z L(U) ~ UxN (alocal triviality property).

2.3. Pull-back bundle. Let ¢ : K — M be a smooth map, and let 7t : P — M be a
principal G-bundle. The pull-back bundle @*P — K is the principal G-bundle over K
defined by

PP 2 > p

| .

K——M
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where @ is a natural map @*P — P which covers @: ¢ (k,a) = (p(k),a) for k € K,
aeGand @(pa)=p(p)a.

2.4. Sections of a fibre bundle and sheaf of sections. A local section over U of the
principal G-bundle P over M isamap oy : U — P such thatm(oy(x)) =x,Vx € U C M.
A global section of the principal fibre bundle P(M, G) is a map o from the base space
M to the bundle space P, satisfying (o (x)) = x, Vx € M. A local section over U of
the associated fibre bundle E(M,G,N,P) is amap sy : U — E such that g (sy (x)) = x,
Vx € U C M, and a global section is a map s : M — E such that 7tz o s is the identity
map of the base space M.

Consider a vector bundle E(M,G,V,P) with a vector space V as a typical fibre. Let
sy and s;; be any sections over U Cc M of the bundle E. These sections are called
equivalent at the point x € U, if there exists an open neighbourhood W c U of the
point x such that sy |w = s{;|w. The equivalence class of such sections is called a germ
s, of sections at the point x. Let us denote by ¥, a set of germs at the point x of all
sections of the vector bundle E(M, G,V,P). Then, the topological space

S=uU Py

xXeM

with the canonical projection ¥ 5 (x,sy) — x € M is called a sheaf of germs of sections
of the vector bundle E.

2.5. Transition matrices. The local triviality of P(M,G) (see Section 2.1(iii)) means
that there exists a diffeomorphism  : T~ 1(U) — U X G,U c M such that y(p) =
(rt(p),p(p)), where ¢ is a map of w1 (U) into G satisfying ¢(pa) = p(p)a, Vp €
w1 (U) and a € G.

Let {Uy},x € I, be an open cover of M. For any given point x € M, there always
exists Uy such that x € Uy. Choose a point p in w71 (x) and define

ox(x) = posl(p), 1)

where ¢y : T H(Uy) — G, and ¢4 (p) € G is inverse to P (p) € G: Pu(p)Ppyl(p) =e.
Recall that for any point p’ € w~1(x) 3a € G such that p’ = pa. Then, using the
property of ¢pu: pa(pa) = pu(p)a, we have

P o) =pdstp),

i.e. o4(x) is independent of the choice of the point p in the fibre =1 (x). Moreover,
T(0x(x)) =x and Y (ox(x)) = (x,e), where e is the identity in G.
Suppose x € Uy N Ug. Then

0p(x) = pd'(p) = 0u(X)balp) s’ (p).

Since the action of G on P is free (pa = p & a = e), and since o, and o depend only
on x, we can define

Jap(x) = ba(p) by (p). (2)
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The maps fuap : UxNUpg — G are called transition matrices. For any x € Ux N Ug N Uy,
the cocycle condition

ftxﬁ(x)fﬂy(x)fya(x):e (3)

takes place. The transition matrices (2) are differentiable as G-valued functions of x.

In the pull-back bundle transition matrices are defined as maps @* fug: =1 (Us) N
@ 1(Ug) — G. Let V be a vector space on which G acts via a representation p. Then
p(fxp) are transition matrices in the associated vector bundle E(M,G,V,P).

2.6. Trivial principal fibre bundle. A principal fibre bundle P (M, G) is trivial if,
using the group action, we can construct another set of local sections and transi-
tion matrices such that all transition matrices fxg are equal to the identity (fup(x) =
e;0,B€l,Vx € M). Then, P ~ M X G, and it admits a global section.

2.7. Gauge transformation. A gauge transformation on P is a bundle automor-

phism f : P — P satisfying the following conditions
(i) for Vp € P, 3 g(p) € G such that f(p) =pg(p),

(i) g(pa)=atgp)a, VpeP, VacG.
It is easy to see that f(pa) = f(p)a. A set of such automorphisms of P is a group
6 which can be given the structure of a smooth infinite-dimensional Lie group. This
group is called the group of gauge transformations. Note that 6 is the set of sections
of the associated bundle of groups P xaqg G. A Lie algebra g of the Lie group 6 is the
space of sections of the associated vector bundle P xaqg %9, where % is a Lie algebra
for the structure group G.

2.8. The connection form. If v € ¢, then v defines a fundamental vector field T (v)
on P as follows

(TWIF) () = 5 f (Pexp(tv)) o,

where f : P — R is a function on P, exp : 9 — G is the exponential map. Note that
T, = 0, hence J, = J(v), is a vertical vector. It is a vector tangent to the fibre
through p, at p.

Let us consider a tangent space T, for the manifold P at the point p € P. It can be
split in the following way

T, =V, @ H,,

where V), is the subspace of vectors tangent to the fibre at p, H, is the supplementary
linear subspace in T, to V.
A connection A in P is a choice of H, satisfying
(@) Hpa = (Ra)*Hps
(ii) H, depends differentiably on p,
where (R,)« is a linear map H, — Hpq, induced by the right action of G on P. Hp, is
called the horizontal subspace at p and has the same dimension as M. V,, is called the
vertical subspace.
The connection A in P can be realized as a connection 1-form such that for VX
T, (P), A(X) coincides with the vertical component for X. X is horizontal & A(X) = 0.
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Let us define a local connection 1-form on Uy C M as Ay = 0X A, where 0 : Uy — P
is a local section of P. If xy = {xﬁx) },u=1,...,n, are local coordinates in Uy, then Ay
can be written as

An = ZAﬁ“) (xo)dxly, (4a)
H

where the components AL”‘) (x«) are functions of x4 € Uy with values in 4.

On Uy N Ug we have the compatibility condition

AB Zfo?E}Ao(fO(B"_fo:é dfpr, (4b)

where fu3: UxNUp — G are transition matrices, and 4 is the exterior derivative on M.

By the help of gauge transformations we can construct another set of local sections
04 :Ux — P, related to (1) by

Ox(xa) = Ox(Xx)gu(Xa), (5)

where x, € Uy C M, gu(xy) € 6 is a section over Uy of the bundle P XaqG G. Then, the
gauge transformations of the local connection form are the following

Ay =95 Acdua+ 95t dgus (6)

where g« (x«) is understood as a G-valued function of x.

2.9. Covariant derivative. Given a connection A in P and local coordinates {xé’u)}
on an open set Uy C M, we can construct a lift D of the vector field 3\ = 0/0x(y)
on Uy to T 1(Uy). Suppose oy is a section over Uy, then

Aa(@) = A(owidf) = A0 = AT (),

where J (A

) denotes the fundamental vector field associated to AL”‘). Therefore,
A(ows 0@ - T (A0)) =0,
and 040, — T (A) is the horizontal vector field such that

Ty (ama;;*) —JO‘(A,(,"‘))) =0\,

Since 1171 (Uy) = Uy X G, we can identify 9y with 04 0y" .
Thus, the covariant derivative

D =2 -7 (A7) @

is the horizontal lift of 65,“) at the point oy (xy).
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2.10. The curvature form. Let us consider the bundle P xaqc %, associated to P,
with the typical fibre %, on which G acts by the automorphisms Ad, : v — a~'va, v €
%4,a € G. We can associate with any connection A on P a 2-form on M with values in
the set of sections of P Xaqg%.

It can be shown that the action of the covariant derivative (7) on fields in the adjoint
representation of G coincides with the action of the operator D\ = 3\ + [AY, - 1.
Let us calculate the commutator

F}(ﬁ) = [Dl(fx)’DS}(x)] - a;(la)AS/u) _a\(}a)Al(la) + [Al(ltx)’Aila)]_ (8)

Note that Ff,‘é) depends on x4 € Uy C M and takes values in the Lie algebra ¢ of the
structure group G.
Let us define a set of 4-valued 2-forms Fy

1
Fo= 5 > Fi dx{o ndx(y. (9a)
ny

On Uy N Ug we have

Fg = fo Fofop (9b)

where fyp are the transition matrices of the bundle P, and, therefore, Fyx can be un-
derstood as a section over Uy of the bundle P Xaqc%.

Recall that any point p € =1 (Uy) verifies p = 04 (11 (p)) P« (p) (see (1)). We can use
¢« to construct F in w1 (Uy)

F= Add)&l (TT*Fy),

which is called the curvature 2-form in the bundle space.
One can directly check that

DF =0, (10a)

where D is the covariant differential. In components D = Zfo")dxf’m on Uy, and we
u

have

() () _
D F,5) =0. (10b)

The identities (10) are called the Bianchi identities.

3. Yang-Mills model in R*

3.1. The Yang-Mills action. Let us consider a principal fibre bundle P = P(R%,G)
over the Euclidean space R* with structure group G. Since our base space is R* with
coordinates {x"}, u,v,... =1,...,4, the bundle P is a trivial principal fibre bundle:
P = R* x G. Then components A, (x) of the connection 1-form A in the bundle P are
defined globally on R* (x € R*), and components

Fuv(x) = [Dy,Dy] = 04Ay —0v A, +[Ay, Av] (11)
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of the curvature 2-form F in P will not have an additional index « (cf. (8)). Fields A, (x)
and F,, (x) are defined on R* and take values in the Lie algebra 4.

The Yang-Mills model in R* with the structure group G is the model with the follow-
ing action

S[A] = Jtr(Fqu“V)d4x. (12)
R4

Here and in what follows summation over repeated indices is understood.
The Lagrangian L[ A] = tr(F,, F*) is invariant under the gauge transformations

Ay—~ A, =g"Aug+9 o9, (13)

where g(x) € 6 can be understood as a G-valued function of x € R%.

3.2. The self-dual Yang-Mills equations. From (12) one can easily derive the equa-
tions of motion for the YM model. They are called the Yang-Mills equations and have
the following form

DyFyy =0. (14)

In R* we have the completely antisymmetric tensor Euvae such that £1234 = 1. Then
the Bianchi identities (10b) can be written as

Dy(&uvaoFpo) = 0.

The self-dual Yang-Mills equations have the form

1
Fyy = ifuv?]l(er(r- (15)

We see that if F,, satisfies equations (15), the Bianchi identities ensure that the YM
equations (14) are satisfied.

3.3. Manifest symmetries of the SDYM equations. As mentioned in Section 1, all
local (manifest) symmetries of the SDYM equations are given by gauge transformations
(13) and conformal transformations of R*. Let us write them down in the infinitesimal
form: Ay — A; = Ay +8A,+---.

The action of the algebra g of gauge transformations on A, is given by

S9Ay=0,9+[A,, 9], (16)

where 3(x) € g,x € R*.

It is well-known that for n > 2 the group of conformal transformations of R™ is
locally isomorphic to the group SO(n +1,1) [12]. Infinitesimal transformations of A,
under the action of the group of conformal transformations of R*, locally isomorphic
to SO(5,1), have the form

SvAy =V, A +A,0,VY, (17)
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where a vector field V = VV0, is any generator
Xa = 6ahnzvxuaw Ya = 6abflﬁvxuav;

1
P, =0y, Ky, = Exgxgau —XxuB,

B = Xx40q, a,b,...=1,2,3,

of the 15-parameter conformal group. Here {X,;} and {Y,} generate two commuting
SO(3) subgroups in SO(4), P, are the translation generators, K, are the generators of
special conformal transformations and B is the dilatation generator; ngy = {ep.,u=
b,v =c; 6§,v =4; —0%,u =4} and 7}, = {&j.,u =b,v =c; -0f,v =4; 6,u =4} are
the 't Hooft tensors satisfying

Efuv?ﬁ,(r”ga— = nﬁv!
Efuv%oﬁgg— = _ﬁgw
i.e. ng, are the self-dual tensors and 7, are the anti-self-dual tensors.

4. The Penrose-Ward correspondence. Our aim is to describe an infinite-
dimensional algebra of all infinitesimal symmetries of the SDYM equations. It can
be done with the help of the Penrose-Ward correspondence which we shall briefly
discuss.

4.1. Complex structure on R*. A complex structure on R* is a tensor J)/ such that
J)JS = —87. The most general constant complex structure J = (J}) on R* has the
form

J“J/ =Stlﬁ’a10'60—v) (18)

where real numbers s, parametrize a two-sphere §2, s;s, = 1, i are the anti-self-dual
"tHooft tensors. By using J, one can introduce (0, 1) vector fields Vi, V5 (JyVH# = —iV")
in the following way

Vi=0y-A0,, V3=0:+Ad,, (19)

where vy = x1 +ixp, z = X3 —1X4, ¥ = X1 —iX2, Z = X3+ 1X4 are complex coordinates
on R* =~ C?, and A = (s; +is2)/(1 +s3) is a local complex coordinate on S2 ~ CP!L.

4.2. Twistor space for R, Let C, ;== {A € CP':|A| <1+ «}, where0 < x<1lisa
positive real number, C_ := {A € CP! : |A| = 1 — «} (including A = «). Then C, and
C_ form a two-set open cover of the Riemann sphere CP! with the intersection Cy =
CinC_={A: 1-x <Al £1+«a}. The vector field 05 := 9/05 is antiholomorphic (0,1)
vector field with respect to the standard complex structure s =i dA® 9y —i dA®d 5 on
CP! (A, A are complex coordinates on CP1).

Twistor space % of R* is the bundle 11 : % — R* of complex structures on R* associ-
ated with the principal SO(4)-bundle of orthogonal frames of R* [1]. It means that the
fibre t71 (x) of ¥ — R* over a point x € R* coincides with the space CP! of complex
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structures on R* defined in Section 4.1. The space ¥ is the trivial bundle over R* with
fibre CP!, hence % = R* x CP! is a manifold which can be covered by two coordinate
patches¥ =U, uU_

U,:={xeR*AecC,}, U_:={xeR*AeC.} (20a)
with the intersection
Ui=U,NnU_={xeRAeCyx=C.NC_}. (20b)

Let us denote the cover (20) by l.

The twistor space % is a complex manifold with complex structure ¢ = (J,¢) on %.
Vector fields Vi, V; from (19) and V3 = 05 are the vector fields on & of type (0,1) with
respect to the complex structure ¢.

4.3. Complex vector bundle F over the twistor space. Let us consider a trivial
principal fibre bundle P = P(R*,SU(n)) over R* with the structure group SU (n). Then,
A, and F, take values in the Lie algebra su(n).

Let E = P Xgym) C" be a complex vector bundle associated to P. Sections of this
bundle are C"-valued vector-functions depending on x € R*. By using the projection
T : % — R*, we can pull back the bundle E with the connection D = D,dx* to the
bundle E := w*E over ¥ = R* x CP!

m*E ——E

L,

¥ —— R

The trivial smooth complex vector bundle E over the twistor space % can be con-
sidered as a bundle associated to the principal fibre bundle P = P(%, SL(n,C)), i.e.,
E = P X1 (n,c) C*. By definition of the pull back, the pulled back connection D := 1t*D
in E will be flat along the fibres CP}. of the bundle % — R*, and, therefore, the compo-
nents of A := 17*A along the vector fields 9, d; in CP} can be set equal to zero. Then
we have D = D +dAd, + dAds.

4.4. Linear system for the SDYM equations and holomorphic bundles. Let 15210‘”
(a = 1,2,3) be components of D along the (0,1) vector fields V; on %. A section &
of the bundle E is called a local holomorphic section if it is a local solution of the
equations D;O'DE = 0 or, in local coordinates on %,

(Dy —AD;)E(x,A,A) =0, (21a)
(D5 +ADy)E(x,A,A) =0, (21b)
9;&(x,A,A) = 0. (22)

The equations D;O‘DE = 0 on sections £ of the complex vector bundle £ define a
holomorphic structure in E. Accordingly, the bundle E is said to be holomorphic if
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equations (21), (22) are compatible, i.e., the (0,2) components of the curvature of the
bundle F are equal to zero.

The solution of equation (22) is £(x,A). Equations (21) on &(x,A) are called the
linear system for the SDYM equations [4, 24]. It is easy to see that the compatibility
conditions of the linear system (21) coincide with the SDYM equations written in the
complex coordinates v,z, ¥,z on R* ~ C2.

Equations (21) have local solutions .. (x,A) over U. C#,and &, =&_onU =U,.NU_
(for definitions of U., U see (20)). We can always represent .. in the form &. = @, x,
where . are matrices of fundamental solutions of (21) defining a trivialization of E
over U., and x. € C" are Cech fibre coordinates satisfying Vzx. = 0 and x_ = Fx,
on U = U, nU_ C %. The matrix & = ¢ -l is the transition matrix in the bundle
E, i.e., holomorphic SL(n,C)-valued function on U with non-vanishing determinant
satisfying the conditions on transition matrices [13].

4.5. Ward’s theorem. So, starting from the complex vector bundle E over R* with
the self-dual connection D, we can construct the holomorphic vector bundle E over %
with transition matrix % = ¢ -1y, defined on U C %.

Conversely, if we are given the holomorphic vector bundle £ = P (%, SL(n,C)) x SL(N,C)
C" associated to the principal fibre bundle P over %, which is holomorphically trivial
on each fibre CP}: F lcpr= CPL x C™ (Ward’s twistor construction [24]), then on CP}
the transition matrix % can be factorized in the form (Birkhoff’s theorem)

F =@, )P (x,A), (23)

where . (x,A) are SL(n,C)-valued functions holomorphic in A*! on C..
From the holomorphicity of & on U (V;&F = 0) it follows that (Vay,)p;! =
(Vaw_)w~! and, therefore,

(Oyws =20 )Wy = (Oyw-—Adp- ) @'

24
= (Ay(x) —AAL (%)), (242)

(04 + A0y ) Wit = (B:@- + A3y ) Y! (24b)
= —(Az(x)+2A, (x)),
and the potentials {A,} defined by (24) satisfy the SDYM equations and do not change
after transformations: . — @.h., where h. are regular holomorphic matrix-valued
functions on U.. This means that the bundles with transition matrices h='%h. and
% are holomorphically equivalent.
We summarize the facts about the Penrose-Ward correspondence in the theorem
[2, 1]

THEOREM. There is a one-to-one correspondence between gauge equivalence classes
of solutions to the SDYM equations in the Euclidean 4-space and equivalence classes of
holomorphic vector bundles E over the twistor space %, that are holomorphically trivial
over each real projective line CPL in %.
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5. Infinitesimal gauge-type symmetries

5.1. The algebras C°(U,%) and C'(U,%). We consider the principal fibre bun-
dle P = P(%,SL(N,C)) over the twistor space % and the associated bundle AdP =
P Xadsrn,c)sl(n,C) with the adjoint action of the group SL(n,C) on the algebra sl(n, C):
E—~Ad,; & = g€g~', g € SL(n,C), € € sl(n,C). Let ¥ be a sheaf of germs of holomor-
phic sections of the bundle Ad P (see Section 2.4), (U, %) be a set of all sections of
the sheaf % over an open set U C %.

A collection {@.,@_} of sections of # over the open sets U, and U- from (20a) is
called a 0-cochain over %, subordinate to the cover 2l = {U,,U_}. Thus, a 0-cochain is
an element of the space

CO, %) :=T(U,,%) oI (U_,%).
The space of 1-cochains with values in 7€
C'(U, %) :=T(U,%)

is a set of sections @ of the sheaf % over U = U, n U_. Notice that C°(U,%) and
CH(U,%) are Lie algebras of holomorphic maps: U. — sl(n,C) and U — sl(n,C) re-
spectively with pointwise commutator.

5.2. Action of C! (U, %) on transition matrices. The standard action of the algebra
CY(U,%) on the space of holomorphic transition matrices %

0F=@Q_-F-FQ.

gives us holomorphically equivalent bundles. Hence, these transformations are trivial.
But we shall consider the action of the algebra C'(U,%) on &

6q,9'*=(p()\)9?—@qﬁ(—%), 25)

where @ € C1QUL,%), @ = (A) = (¥ —AZ,z+ AP, A), P(-1/A) = p(y + 2/A,z —
/A, —1/A), and 1 denotes Hermitian conjugation.

Transformations (25) preserve the holomorphicity of % and preserve the hermiticity
of the bundle E; they are local infinitesimal transformations of the transition matrix.

5.3. Infinitesimal gauge-type transformations of self-dual connections. Let us in-
troduce the sl(n,C)-valued function ¢ on U

1
Pi=y (bpF)pi' =y @AY +y @t (7) Wil

which is holomorphic in A € Cy and can be expanded in Laurent series

p= > A¢ulx)=¢_—.,

Nn=—o0
© -1

Pri=Po(x) = D Abu(x),  Poi=Po(x)+ > A"Pn(x),

n=1 N=—o

Bo(x) = po(x) = Po(x).
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The splitting ¢ = ¢p_ — ¢, is a solution of the infinitesimal variant of the Riemann-
Hilbert problem, and functions ¢. € sl(n,C) are holomorphic in A € C.. It follows
from (24) that Dfio’l)cb = 0, therefore,

(D3 —AD.)p, = (D3 —AD,) -, (26a)
(D; +ADy), = (D:+ADy) b (26b)

The action of the algebra C! (U, %) on SL(n,C)-valued functions . and on gauge
potentials {A,} is given by formulae

5¢)(IJ+ =-diyy, 5(;0‘//— =-¢_y-_, (27)
0pAy —AbpA; =Dy, —AD,p, =Dsp_—AD.p_, (28a)
SpA:+A6pAy =D;p, +ADy . =Dsp_ +AD, . (28b)

It follows from (28) that

daA
OpAy = fj; | DTTIAE (D:p+ +ADy ),

dA
6(pAz = _§ 1 2_’_”2\2 (Dy¢+ )\Dz¢+);

(29)

dA
5¢7A5' = ﬁl 27TiA (Dy(I)Jr )\Dz¢+),

dA
Sphz = § Som (D +AD, ),

where S! = {A € CP!:|A| = 1}. Thus, we have described the action of C! (2, %) on the
space of solutions of SDYM equations.

EXAMPLE 1. For @ = 0 we have ¢ = 0. Choose ¢, = ¢p_ = $(x), x € R4, then
formulae (29) give us manifest gauge symmetries (16).

EXAMPLE 2. If we choose @ = @(A) (i.e. 0, (x,A) = 0), then obtain the action of
the algebra su(n) ® C[A,A1] on the space of solutions of SDYM equations [22].

6. Infinitesimal diffeomorphism-type symmetries

6.1. The algebra C°(,¥). Letus consider a complexified tangent bundle T (%) =
T10 (%) @ T (%) of the twistor space % and the sheaf ¥ of germs of holomorphic
sections of the bundle T™9 (%). The set of all sections of the sheaf ¥ over an open
set U € ¥ is denoted by I'(U,V"). If we take sections of V" over each of the open sets U,
and U- from the cover 2, then the resulting collection of holomorphic vector fields
is called a 0-cochain over %, subordinate to the cover 2. Thus, a O-cochain {n.,n_} is
an element of the space

COU, ) :=T(U,, V) eT(U_,¥).
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The space of 1-cochains is defined as follows: C* (U, V") :=T(U,¥), where U = U, NU_.
Thus, elements of C! (U, are holomorphic vector fields n,_ defined on U.

6.2. Action of C°(,%) on transition matrices. The vector space C°(2,¥) can be
described as the Lie algebra of holomorphic vector fields with pointwise commutator,
defined on U, and U-. For any n = {n.,n-} € C°QU,%¥) we define two actions of
Co(U,¥) on the transition matrix ¥

6, F = n=(F), (30)

+

n

i.e. as a derivative of % along the vector fields n. € COQ,¥).
One can also consider a combination of these actions

_ s— +
5nF = 5, F 6, F.

It is easy to see that the algebra C°(,%’) acts on the algebra C! (U, %) by derivations,
and we can consider a semidirect sum C°(,%") + C1 (2, %) of these algebras.

6.3. Action of C°(U,%") on self-dual connections. Let us introduce the sl(n,C)-
valued functions 6* on U
0= :=w_(5;F)yp:',

which are holomorphic in A € Cy

00

0= = 5 A"0E(x) = 0% — 0%,

Nn=—00
where
0% := 05 (x)— > A"0; (x),
n=1
. -1
0 :=05(x)+ > A"0:(x),

N=—o0

03 (x) - 05 (x) = 05 (x).

Thus, the functions 0% (x,A) € sl(n,C) are holomorphic in A*! € C. c CP'.
For 0% and 07 we have

(Dj;—ADZ)Qf = (DJ’/—ADZ)GE, (313)
(D;+AD,)0; = (D;+AD,,) 0. (31b)

The action of C°(U,%’) on matrix-valued functions y. € SL(n,C) and on gauge poten-
tials {A,} is given by formulae

Sqwei=-0%y.,  Syy_i=-0%y., (32)

§iAy —AS:A,:=Dy0% —AD,0; = Dy0* —AD, 6", (33a)
S Az +A8; Ay = D;0% +AD,0; = D;0* +AD, 0" (33b)
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It follows from 33 that

+ dA + +

+ dA + +
O0pAz = —§ (D307 —AD;07),

iA2
20
6pAy = £1 m(Dygf —AD;0%),
. dA . .
65142 = fgl H(DZQI +ADy9;),

where S' = {A e CP':|A| =1}.

EXAMPLE 3. Let us consider the holomorphic vector fields n = A™"N, n=0,+1,+
2,..., where N are vector fields on % realizing the action of so(5,1) on %, which pre-
serves the holomorphicity of the bundle E — %. Such lift N — N of vector fields from
R* to % was described in [16]. As it has been shown in [14], symmetries (34) for
n=A"N, n=0,+1,+2,... with n = 0 are in one-to-one correspondence with the
symmetries from [21].

7. Conclusion. To sum up, using the one-to-one correspondence between the
classes of holomorphically equivalent transition matrices % and the gauge equivalent
classes of self-dual connections, to any infinitesimal transformations (25) and (30) of
transition matrices we have associated the infinitesimal transformations (29) and (34)
of solutions {A,} of the SDYM equations. There are no other infinitesimal automor-
phisms of the bundle E over % besides those generated by the algebras C°(u,%") and
C'(U,%). Thus, an infinite-dimensional algebra of all infinitesimal transformations of
solutions of the SDYM equations has the form C%(,%) + C! (U, %).
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SOME PROPERTIES OF HAMILTONIAN SYMMETRIES
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yemel@nnucnit.unn.ac.ru

Hamiltonian systems with a finite number of degrees of freedom are under consid-
eration. Different conditions of symmetry are compared. The role of Emmy Noether’s
results for analytical mechanics is discussed.

A term “group analysis of differential equations” was introduced by the Russian
academician Lev Ovsiannikov [17] for continuous Lie symmetry analysis of differential
equations. The main ideas and the first fundamental results in the sphere were devel-
oped and detailed by the outstanding Norwegian mathematician Sophus Lie [12, 13].
A new approach to the search for analytical solutions of both ordinary and partial
differential equations was proposed. Local continuous symmetry transformations of
differential equations became the basis for the analysis.

Linear algebra of symmetry vector fields corresponds to nonlinear differential equa-
tions in the general case or to a system of differential equations. It gives us a chance
for investigating a sufficiently simple object to come to a conclusion on the more com-
plicated one. Algebra of vector fields is accessible to detailed analysis with modern
algebraic means.

Some changes of variables naturally spring up under group analysis of differential
equations. It gives the most adequate way to use symmetry properties for simplifica-
tion of the original problem.

Russia can be proud of the Syberian scientific school of group analysis and its ap-
plications with Lev Ovsiannikov at the head. The school gave a new vital power to
the classical results of Sophus Lie. Mathematical physics was found to be a fruitful
topic for Lie theory applications. Many considerable broadenings of the theory in hy-
drodynamics, nonlinear elasticity and plasticity theory, nonlinear acoustics, magnetic
hydrodynamics, nonlinear field theory and in some problems of chemistry, biology
and economics were obtained.

On the threshold of the XXI-th century group analysis of differential equations be-
came a fully formed and actively developing scientific method. There is a close contact
among the scientists of the world community in group analysis now. Lev Ovsiannikov’s
talented successor Nail Ibragimov became one of the most prominent specialists in the
sphere [1, 7, 2, 8]. N. Ibragimov became the editor-in-chief of the international journal
“Lie groups and their applications.” He regularly organizes international conferences
on group analysis of differential equations. Essentially new results were obtained by
Peter Olver [16] who is a successor of the famous mathematician George Birkhoff. Pe-
ter Olver was the first to apply Lie theory in hydromechanics. Moreover P. Olver did a
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lot in popularizing and developing group analysis culture. Lie-Ovsyannikov theory in
quantum field theory was applied by Dmitry Shirkov [4]. A wide bibliography on the
group analysis of differential equations can be found in [1, 7, 2].

As arule the traditional university course on “Differential equations” is a set of em-
pirical regulations for solution finding. The following sacramental phrase is used: “We
shall find the solution in this way ... ” When a student asks: “Why shall we find it this
way?” a typical answer is: “It is the only way needed. It’s impossible to find the solution
in another way. You must trust mathematical experience.” Group analysis answers the
questions: “What is the method of solution finding? What changes of variables should
be done? What is the order of changing? How can some trivial solutions be used for
the family of nontrivial solutions or even for common solution finding? Is this equa-
tion integrable or not at all?” It is surprising that at the very end of the XX-th century
most universities, at least in Russia, have the syllabus of the “Differential equations”
course that was established in the middle of the last century!

Let us start with a brief presentation of the main group analysis of differential equa-
tions ideas.

Transformation

a =f(aa), qeR", acA” (1)

(n-variable space dimension, r-arithmetical space of parameters dimension) is called
an r-parametric local Lie group, iff the following three axioms are satisfied:

1. CLOSURE AXIOM. Two sequential transformations (1) q' = f(gq,a) and q" =
f(q',b) are equivalent to transformation (1) q"" = f(q,c), (a,b,c € A"). The law of
parameters transformation ¢ = @ (a,b) does not contain q.

2. IDENTITY AXIOM. There is a set of parameters a, that transforms a space of the
variables g in itself: g = f(q,a°), a® € A".

3. INVERSION AXIOM. There is a set of parameters a~!, that transforms a point q’
to the initial point g: g = f(q@’,a 1), a !l € A".

A tangent vector field of transformation (1) concept plays the most significant part
in the Lie theory. The Taylor series in the nearest neighborhood of the identity trans-
formation is the following

a =q+&@e+o(e). (2)

€ = a—a’—a small parameter increment. Without any restriction a’ = 0, € = a can be
chosen. Taylor series (2) is completely defined by its two first terms. They characterize
infinitely small (infinitesimal) transformation that corresponds to (1). A function

of

&(q) = Pa la=0 (3)

is called infinitesimal or vector field of transformation (1).
A derivation operator corresponding to vector field (3)

X=§(q>%=§(q)aq, 4)

is the first order linear operator.
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The main properties of operator X (4) are defined by the following Lie theorems.

THEOREM 1. Function f(q,a) satisfying axioms 1-3, is a solution of Cauchy problem

df _
da =~
Equations (5) are called Lie equations. Theorem 1 is formulated for the simplest case
of one-parametric transformation (1). As a rule it’s enough for applications.
There is a useful binary operation for operators (4). It is called commutator

&)  f@a0) =aq. (5)

[Xi, Xj] = XiXj - X;X;.

THEOREM 2. The commutator for the two operators X; and X; is a linear combina-
tion of operators X

(X0, Xj]=cliXe, (i,,k=1,2,...,7).

where c{‘j is the structural constants tensor. It is not a function of parameters or vari-
ables.

Thus nonlinear object-r-parametric transformation (1) has a linear correspondence.
That is a linear algebra formed by operators X1, X»,...,X;.

THEOREM 3. Structural constants c{‘j satisfy the following conditions

k _ k.
Cij = ~Cjis

cfjc{,’(‘ + c,ﬂic{? + c}kc{{‘ =0.

A concept of invariance plays a central role in the Lie theory. According to the defini-
tion function F (q) is an invariant of Lie transformation (1), iff F(q') = F(q) is satisfied.
The condition is equivalent to X(F) = 0.

Differential equations in the Lie theory are considered as algebraic ones in the func-
tional space of independent and differential variables as well as of all the derivatives
that are included in the equation. The “continuation of transformation (1)” technique
for the derivatives is introduced.

The rule of the first derivation of an operator

X =¢&(t,q)0,+n(t,q)0;,

(t-independent variable, g — n-dimensional vector of differential variables) is the fol-
lowing

X' =X+ (5-1d)0; = X +T(t,a,d)

(dg/dt = E). Symmetry condition for an ordinary differential equation of the first
order (ODE-1) F(t,q,q) = 0 is the following

X'F|p=o = 0.
The second prolongation of X is

X2 = X"+ (C-nd)o;=X"+0(t,q,4,d)



196 INNA S. YEMELYANOVA

and a condition of symmetry for ODE-2 F(t,q,q,q) =0 is
X?Flp=0 =0.
For ODE-n we have
X"F|po =0.

Group analysis of differential equations offers some prescriptions of symmetry uti-
lization for reducing an order of ODE. Sophus Lie proved that ODE-n is fully integrable
if it assumes solvable n-parametric Lie symmetry algebra L,,. L,, is a solvable algebra
iff its derivative algebra of a certain order reduces to null [17, 18]. Cartan introduces
the following condition of solvability

=ct cmc?

m,P Ll
1ijpckl'

Cil CimCrp

The same scheme can be used for finding symmetry vector fields of partial differ-
ential equations.

EXAMPLE 1. [8, p. 185], [23, p. 63]. One-dimensional heat conductivity equation
Ut = Uxx (6)

admits Lie symmetries with operators

X1 =04;
Xy = 0x;
X3 = u0y;

Xy = 2t6t +x8x;
X5 = 2t0x — XUOy;
Xg =420, + 4tx0x — (X% +2t)Udy,.

Integration of Lie equations (5) for operator Xg

dat’ 72

— 4t'°:
da E
dx’

— Il 7
1a 4t x'; (7)
du’ _ /2 4 7
da - (x""+2tHu’,

with initial conditions: a =0, t' = t; x’ = x; u’ = u, leads to

t'=t/(1—-4at);
x" =x/(1-4at);

u' = u/(1—4at)exp (axz/(4at - 1)).

A trivial solution of the heat conductivity equation u = ¢ = const is transformed to
the fundamental solution of the equation (the Green function of the Cauchy problem)
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when applying the transformation with Xg

7 o ox —ax?
T A +4at) 2P\ 11 2ar

if a point to = —1/4a, xo = 0 is chosen as an initial one.
Under the fixed normalization ¢ = /a/1 we have

_ 1 exp( —x?2 )
(4t (t—ty))"* 4(t—to) )’

This example demonstrates that traditional analysis of a differential equation can
be successfully replaced by its group analysis.
Canonical equations

a=Hp, p=-Hg (8)
admit dynamical symmetry (DS), if the following condition is satisfied:
[X,T]=-T("r 9)
(Hy, = 0H/0p, H; = 0H/0q, summation symbol i = 1,n is omitted).
[X,T]=XT-TX
is a commutator of a symmetry vector field
X =Q0;+Pd,+To (10)
and of a Hamiltonian stream
I'=H,0,—Hy0p + 0. (11)

All 2n + 1 components of vector field (10) Q,P,T are supposed to be functions of
extended phase space g, p,t.

EXAMPLE 2. For H = gp(1-24/q/p) the equations (8)

a=a(1-\aip), p=p(3Jaip-1).

admit DS (9) with operator (10)

—0g+— a +a)expt.
217( a 14

An integral of conservation I = 1/ (\/@ )expt with the help of the found symmetry
can be constructed.

As a rule partial cases of DS are formulated in Lagrange form [20, 19, 26].

Cartan symmetry (CS) condition is
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where &y is the Lie derivative of Cartan differential 1-form
®:quq—(qu—L) dat (13)

and @ is a gauge function. The Lie derivative of 1-form (13) with respect to a vector
field

X=Q0;+P03,+T0; (14)
is given by
Fx0=d(X]0)+X]|d0,

where Q,P, T in (14) are supposed to be functions of q,q,t; | denotes the contrac-
tion of vectors and forms. Contrary to (10) P’s in (14) are contravariant vector field
components.
When (12) is true, Euler-Lagrange equations
d

SiLa—La=0 (15)

admit the Noether law of conservation [5, 9, 14, 20, 19, 26]
I=(X,0)-@ (16)

(the brackets mean natural pairing function). It means that the function I in (16) is
conserved along the classical trajectories of (14),i.e.T'(I) = 0, where Lagrangian stream
has the form

['=q0o,+A0;+0; 17)

instead of (11); A in (17) satisfies the Euler-Lagrange equations (15). It is supposed
that the Lagrangian L(q,q,t) is regular.
Lie symmetry (LS) is the same as DS (9), but with

X=Q(a,)9,+(Q-Tq)0,+T(q,t)0;.

18
X9 =Qo,+To, (18)

is a point symmetry vector field and X (18) is its first prolongation.

Noether symmetry (NS) is the same as CS (12) but with (18) and with a gauge function
@ =@(q,t).

The question is what the operation of “prolongation” means in Hamiltonian terms?
It is proved in [26] that it can be constructed in the following way. Let the Cartan
symmetry condition (12) be expressed in Hamiltonian form

where X is (10) and ©(H) is the Cartan form

O(H)=pdq—Hdt. (20)
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Then the law of conservation (16) can be presented as
I=Qp-TH-@ (21)
with P in (10) having the following form
P=-Q.P+T,H+@,. (22)
When (12) has a simple form
¥x0(H) =0 (23)
without a gauge function @, then (22) becomes
P=-Qup+T1,;H. (24)

The above-mentioned condition may be considered as an operation of “prolongation”
as in Lagrangian case (18) takes place. In particular for the case of NS the expression
(24) becomes simpler

P=-Q4(q,t)p+T,(q,t)H.

EXAMPLE 3. Itis easy to check (23) in Example 2 and find that it is not fulfilled. The
supposition that @ (q,p,t) # 0 does not save the situation. Really the gauge function
@(q,p,t) ought to satisfy the following conditions

Qq=P+Qup-T4H; ®p=Qpp-T,H. (25)

The conditions (25) are found with the help of (21), (22). Some simple calculations
show that in Example 3 conditions (25) come into conflict. As gauge function @ (q, p,t)
does not exist for the considered symmetry vector field so it is true that DS and CS
are not the same for Hamiltonian systems.

Hamiltonian symmetry (HS). According to the definition a Hamiltonian system pos-
sesses HS, if there is a vector field (10) for which the condition

XH(q,p,t) =0 (26)

takes place.

EXAMPLE 4. Dynamics of a rigid body with fixed point problem has the partial case
of Goryachev-Chaplygin [21, 26]. By Hamiltonian description in Euler coordinates the
function H is [26]

1 . .
H=> (pé + (4 +ctg29) pé,) —sin@sing
(60, @ are the Euler angles; pg, po are the coincident general impulses).
The well known law of conservation

I=py (pé +ctg29p(2p) +(poCoSQ — pectgdsing) cos O
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forms a lot of HS’s with

X = F((paeyp(pype)(lpaq _Iqap).

Under the condition F = 1 the symmetries with X are both HS and DS. Is it correct for
all cases?

Hamiltonian symmetry that permits to build a law of conservation I(q, p,t) = const
of canonical equations (8) is not a dynamical symmetry in general case (argument see
[27]).

EXAMPLE 5. Let’s return to Example 4. If F = 1/py is chosen, it is easy to find that
the HS is not DS.

EXAMPLE 6. We return once more to Example 2. Is DS in the example the same as
HS? By calculating XH we find

The symmetry is not a Hamiltonian one. Our conclusion is that DS (9) and CS (12) are
not the same for Hamiltonian systems.

Our next conclusion is that DS (9) and HS (26) are not the same. There are Hamil-
tonian symmetries that are not dynamical ones and vice versa. If DS is not found for
a Hamiltonian system we have another opportunity to construct some laws of conser-
vation by using Hamiltonian symmetries.

A well-known Emmy Noether theorem that was formulated and proved by her in
1918 [14] established a connection between symmetries and laws of conservation. In
the general case this connection is not easy to realize. For example DS symmetry (9)
(or in a partial case LS) vector field (10) needs to be straightened for applying. It is not
a simple procedure at all. A system of partial differential equations appears

XI =0; X =1. (27)

The system (27) has n— 1 solutions for invariants I and one solution for I;. The last
function belongs to an invariant family. If we could change the initial variables so that
functions I and I; take the position of some new variables then the symmetry vector
field X would be straightened along the new variable I;. In any case we need to solve
the system (27) for simplifying the initial problem.

The Emmy Noether result gives us a surprising opportunity to build laws of con-
servation constructively without such difficulties. It shows the procedure for finding
the law (16) without a necessity to solve a system of partial differential equations like
(27). That is why Emmy Noether’s result is so popular in applications. It should be
noted that the Emmy Noether result applying to analytical mechanics with finite free-
dom degrees had a long and twisted history. The point is that Emmy Noether herself
proved the very general theorem for not only the Cartan form (20) but for a functional

Alu(x)) = JL(X,"/L(X),MJ(X)) d’x.
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x = (x1,x2,...,x™) are independent variables; u(x) = u',u?,...,uN are functions with
domain of definition D ¢ R"™; u ; = ou/ 0x/ are their partial derivatives; L is a function
(Lagrange function).

The Euler-Lagrange equations

d (dL/ou) jdx’ —dL/du’ =0
admit laws of conservation
Sl + (r]“—uﬁ-gi) <3L/6u3) dx' A+ AdxI A+ -dx™ =1 = const
for infinitesimal symmetry with the operators
X = E'x(x)0/0x7 + ni (x,u)9/0u’,

(k =1,...,R; R-dimension of linear Lie symmetry algebra) with A(u(x)) as an invariant.

The partial case N = 1 was not selected by Emmy Noether explicitly and the assim-
ilation of E. Noether’s result to analytical mechanics of finite freedom degrees has
more then a half a century of history. There is a detailed review of the history in our
monograph [26] with the bibliography containing 182 titles. It should be remarked
that even now “Cartan symmetry” (12) as a rule is considered to be a generalization
of the so called “Noether symmetry.” The latter is regarded as a partial case of NS
without the gauge function @ and without the infinitesimal T (see for example [3, 10])

£x0(L) =de(q,t); X =Q(q)0 (28)

with the law of conservation
I=Q4q)pi, i=1,...,n.

In reality Emmy Noether’s result overlaps both CS and NS and all their partial cases
including (28). The overwhelming number of “generalizations” of the Noether theorem
is only partial cases of above mentioned genuine Emmy Noether theorem (see, for
example, [6, 11, 15, 22, 24, 25, 28]).
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ABSTRACT. Through rather tedious algebraic manipulations involving ratios of polynomi-
als with fractional powers the generating polynomials result from g-dimensional formulas.

U(n) | O(m,m) | Cy branching rules are given to account firstly for the Quasi-Spin
invariance (U(n) | O(m,m)) and then the Spatial Symmetry invariance (O (m,m) | Cy, )
due to Cy. The resulting expressions may be efficiently handled using the symbolic com-
putation language MAPLE and the dimensional information for an arbitrary spin, isospin
and quasimomentum obtained.

1. Introduction. Itis well known today that characteristics of symmetry groups are
extensively exploited in quantum mechanics. When deriving or calculating the char-
acters of symmetric group irreducible representations (Sy irreps) one often relies on
suitable generating polynomials; for example, the Frobenius Theorem of the symmet-
ric group representation theory [7] yields directly all the simple characters of the irrep
of Sy as the coefficients of the Schur polynomial. As Cayley’s Theorem states, any fi-
nite group G of order N is isomorphic to a suitable subgroup of the symmetric or
permutation group Sy. Furthermore, there is a close relationship between the repre-
sentation theory of Sy and the representation theory of compact Lie groups. Also the
unitary groups U (n) play the same role for the compact Lie groups as do permutation
groups for finite groups. This interrelationship is reflected in various group theoret-
ical approaches to the N-electron correlation problem employing n-orbital models,
where the close relationship

Sn 7U(ﬂ)
SUR2) =—=U(2)

among the respective theories is well known [22, 19, 7]. We are interested in the solu-
tion of the Schrodinger Equation

HY =EY,

where H is the spin-independent Hamiltonian, ¥ is the wave function and the hamil-
tonian operator acting on the wave function gives the same wave function multiplied
by the energy eigenvalue E. (see e.g. [14, 11, 17, 18, 20]). ¥ is expressed as a linear
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combination of configuration state functions (CSFs)
Y= ZCi([li.
i

The total number of yj, Kk say, is given by Weyl’s Dimension formula [14, 12, 13, 8,
11, 17, 9] and can be a huge number leading to a Hamiltonian matrix of size k X k.
(e.g., calculations of the order of 10% x 109 have been performed). As a special case of
character theory, one often requires only the characters of the identity providing the
appropriate dimensions. For example, Weyl’s Dimension Formula

Dy(@b.c) = b+1 <n+1> <n+1)

n+l a c

gives the number of spin adapted configurations s, characterized by the total spin
quantum number S, for the n-orbital model of an N-electron system which is described
by a spin-independent Hamiltonian H. Here a, b, c, also called Paldus labels, label the
two column U (n) irrep(24,1?7,0¢) with a = (1/2)N — S, the number of doubly occupied
orbitals, b = 2S, the number of singly occupied orbitals, c = n— (a+b) and () =
n!/(n—m)!m!, the number of unoccupied orbitals, is the usual binomial coefficient.
Alternatively, the dimension can be computed from the Young diagram YD, (or Weyl
Tableau WT) using the “n-graph” and the “hook-graph.” Considering a matrix form, the
YD /WT is represented by a rows of double boxes followed by b rows of single boxes
in the first column. Then, the n-graph is constructed by placing integers n along the
diagonal of the WT and then placing integers which increase (decrease) in unit steps
to the right (left) of the diagonal. For the hook-graph, on the other hand, each box of
the WT is assigned a “hook” that consists of the box itself together with the box to its
right and all boxes in the same column below it. The “hook length” is then defined as
the number of boxes making such a hook and the boxes of the WT are labeled by the
hook lengths. One then has the dimension given by

product of integers on n-graph
product of integers on hook graph’

dimWT =

For the U(4)irrep (2!,12,0') withn=4=n,a =1, b = 2, then

btz -2 (3) (3

dimWT =

An equivalent form of this and related dimension formulas may often be derived using
simple combinatorial means, independently of group theory [15]. Even then it is of-
ten useful to employ the technique of generating polynomials. The direct exploitation
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of generating polynomials may prove rather demanding; however, in view of recent
developments in symbolic computation, it is of interest to explore the possibilities
offered by these powerful tools in handling directly the generating polynomials and
extracting the desired information. Here, we shall employ MAPLE [1] to extract the
dimensional information from recently obtained generating polynomials [2] for the
number of symmetry adapted configurations of the Hubbard cyclic polyene model
with conserved spin, quasispin, and quasi-momentum. These generating polynomials
are obtained with the help of the U(n)-q-dimension formula [25] that originates from
the theory of quantum groups. Before we give the formulation in the next section, let
us begin our discussion by providing some motivation for the introduction of Uni-
tary Groups into quantum chemistry with a simple discussion of the CI-Configuration
Interaction matrix element problem. The y; can be chosen in a variety of ways; how-
ever, in general they are chosen to be antisymmetric and to be eigenfunctions of §2
and S;. Denoting y; by |K), |L) in Dirac notation, the central practical problem is the
evaluation of (K|H |L), [11, 17, 18],

(KIH|L) Z(zlhlj A{.<L+ > [ij I kU] BE,
1Jkl

where (ilh|j),[ij | kl] are the usual one- and two-electron repulsion integrals in
charge cloud notation; the AEL,BU % are numerical “vector coupling” coefficients that
depend on the nature of |K),|L). In second quantization formalism, these coupling
coefficients emerge as matrix elements of creation and annihilation operators X;
and X;,. The operator X; creates an electron in orthonormal spin-orbital |io’) where
lioc) = |i)|o), and o = « or B. Similarly, the operator X;, destroys an electron in
orthonormal spin-orbital |io ). In quantum chemistry problems in which the number
of particles is conserved, the creation and annihilation operators will always occur in

pairs. Then, for the spin independent Hamiltonian, we obtain
L)

1
L> + S i1kl <
2
ijkl
Since the creation and annihilation operators always occur in pairs, we define a “gen-
erator”

(K|HIL) = Z<l|h|1><1<\zx Xio

ZX XkyleXJU

i +
E'9 =X/ Xy,
and because of the summations over spin o
— + .
- ZXiO'XJ(T'
g

The vector coupling coefficients now take the form

L),

BXE, = (K|EiEF -

ARE= (K (E;i

fL).
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Furthermore, the BXL, can be written as

1) - S {(x]

where the summation over M must include the complete range of the E ; Thus (K| E; |L)
is all that is required for CI matrix element evaluation [11]. To summarize, the utility
of the Unitary Groups stems from the remarkable result that the Hamiltonian becomes
expressible as a linear and bilinear form in the generators of U(n)

ijk

(K|EEF -

M) (| EF|L)} -8 (k] Ei L),

1o, : ;
H= 3 (ilh|j)Ej+5 > [ij | k] (ELEF-08E}),
ij ijkl

and the computation of Aff, BKE ki becomes an exercise in the theory of Unitary Groups.

The E}, Ek 1 satisfy a commutation relation
|ELEF| = ELEF — EFEY = 54 E} - 81,

and form the Lie Algebra of U (n). The {|K)} must also carry a representation and thus
the generators {(K| E} |L)} will also satisfy the above commutation relation. Hamilton-
ian matrix is Hermitian; i.e. totally symmetric about the diagonal and thus it suffices
to calculate upper/or lower diagonal elements only along with the diagonals [11]. The
basic theory of symmetric and linear (or unitary) groups is perhaps best documented
in the classic books by Weyl [22], Robinson [19], or Hammermesh [7] and the reader
is referred to those texts for details.

2. g-dimensional formulas for the cyclic polyene hubbard model. The Hubbard
Hamiltonian [6, 23, 24, 16, 3, 4, 5] for the cyclic chain with n equidistant and equivalent
sites, satisfying the Born-von-Karman cyclic boundary conditions, is as

n 1 1 n
=U z (nm - E) (1’11"_1 — 5) — Z <E1+1 +El+1>
i=1 i=1

where U is the one-center on-site Coulomb integral; associated with the i-th site spin
orbital with azimuthal spin o, o = £1, the n;, are the corresponding spin orbital
occupation number operator

Nio = Xl‘th—Xi,O';
and we have employed the U(n) generators. The total electron number operator is

N =

M=

ni, MN;=mn;1+MNi-1;
1

-
Il

and the spin-independent Hubbard Hamiltonian, entirely in terms of U (1)-generators,
is thus

HY =

(E) = 3 (B +E) + 2u (Bn-2n).

1 i=1

N\»—A
M=

i
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We can thus restrict ourselves to a fixed irrep of U(n). To reflect the cyclic boundary
conditions all the indices are taken modulo n, n+1 = 1(mod n). H¥ commutes with
the SU(2) operators

1
S:= *(61,1 —€—1,—1),

2
Sy =€1,1,
S_=e€_1,,

§% = [Sz(Sz + 1)] + [(S,) (S+)]
with the SU(2) generators
n
€oy = ZX;oXi.y, (o,y=%1)-
i=1
The electron number operator N represents the first order invariant of both U(n) and

U(2),

N = Eii = Z €o,0-
1

i o==*1

~.
Il

HY with its apparent SU(2) invariance also possesses a quasi-spin SU(2) invariance;
the quasi-spin operator Q is defined with its components

1/~
QZ=§<N_n)!

Q+ = z(_l)ixz_l l‘+’1s

i-1
_nt
Q- =al.
We are considering lattices with even number of sites; defining
n=2m,

the pseudo-orthogonal group O (m,m) is introduced so as to account for this quasi-
spin invariance; the infinitesimal generators are

oy = (~1)'Ej= (~17E] = —a,
satisfying the commutation relations
[O(ij, o] = JjkXil + GilKjk — Gik Xjl — G jl Kik,
with the orthogonal group metric
gij = (1)1
and the Hermiticity condition is
of = (=DM = (1) g

With the O (m,m) as well, at most two column irreps occur [6]; designating the O (m,
m) irreps with {(ag, bo,co),ao + bg + co = m, the dimension of the O (m,m)irrep is
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given by

DY, (ao,bo,co) =

(bo+1)(n—2ap—bo+1) (n+2 n+2
n+1)(n+2) ap ap+by+1)"

With the above background, considering firstly the U(n) | O (m,m) branching rules,
the U(n)irrep(24,1?,0¢), also denoted as I'(a,b,c), decomposes as

anc

I(a,b,c,) = P I°(ao,bo,co),

ap=0
with

bo:b/\(n—Zao—b),

XAy =min{x,y},

and I'°(ag, bg,co) is the O (m,m)irrep with the highest weight (lexicographic label-
ing). All the states in U (n) irrepT'(a, b, c) have the azimuthal quasi-spin quantum num-
ber

1
Q;= E(N_n)y
N=2a+b,

and the O (m,m)irrepI’®(ay, by, co) is characterized by the quasi-spin

(n-"b) -ao.

N =

Q= % In-N|+cra—-ap=
The allowed values of quasi-spin are thus
1 1

E In-N|<Q=< g(n—b)

Secondly we consider the O(m,m) | C, branching rules, so as to account for the
spatial symmetry invariance characterized by the cyclic group C,. C,irreps are la-
beled by the quasi-momentum quantum number k. The g-character formalism [25]
provides the generating polynomials [21] yielding the desired dimensional informa-
tion or multiplicities of the states characterized by quantum numbers {N, S,Q,k} and
n. To summarize, with a, b,c the U(n)irrepI'(a,b,c), with

ap = %|1’l—N|+C/\a—Q,
bo=bA[n-2(cra)-b],

co =m—(ao+bo),

the O (m,m)irrep I'?(ao, bo,co), and with the quasi-momentum k,0 < k < n, the rele-
vant Cyirrep are defined. The generating polynomial F(4 p,,c,) (@) [21] is given by

F(l/loybo,co) (Q) = qu(q) [a01 bO],
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with
1
p= §(n+ N - (m+1)(a-ao),

and the O(m,m) g-dimension

Dg[ao,bo]=[b0+1] [n+2}[ n+2 }

[n+1] | ao ao+bo+1

o [n+2-ao][n+1—ao—bol—q ™ ao+bo+11[ao]
[n+2]2 ’

where

(1/2)yv _ (=1/2)v

[vl=q q

designates the polynomials in q and the binomial coefficients are defined in analogy
to their standard meaning by

[v]_[v]! O<w=<v

The generating polynomial, once obtained, is transformed to the standard form

n-1

F(ao,bo,{:o)(q) = Z m](z(a'()abO)qks
k=1

by reducing its exponent modulo n. The coefficients mg(ao,bo) are the desired di-
mensions or C,-multiplicities.

3. MAPLE implementation of the g-dimensional formalism. Considering the sim-
plest cyclic polyene with non-degenerate ground state, the 1r-electron model of ben-
zene, will summarize the algebra involved in the construction of generating polyno-
mials [23, 24, 16], yielding the desired C,-multiplicities. For this model, n = 6 = N,
m = 3, all states have azimuthal quasi-spin Q. = 0, and the possible spin quantum
numbers are S = 0,1, 2, and 3. Consequently, the U(n)irreps involved are

(3,0,3)
(2,2,2)
(1,4,1)
(0,6,0)

(a,b,c) =

Considering the first two cases that correspond to the most important cases, (with
an indication of the quasi-spin character of the O (m,m)irrep), i.e. firstly the singlet
configurations,
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3
I(3,0,3) = € 1§ (a0, bo,co)

ap=0
=1§(0,0,3) P19 (1,0,2) Pr{(2,0,1) PIY(3,0,0),
and then the triplet configurations,

2
I(2,2,2) = @ 1§ (ao,bo,co)

a0:0

=19(0,2,1) P17 (1,2,0) P1Y(2,0,1).
The generating polynomial for, e.g. , FIO(Z,O, 1) is then

Feon(a) =a'"DgI2,0],

where
0 _[11)8(|8 [6](5]-q*[3][2]
Pal2 0= 7 [2] M BE
_ [71061([61[5]1—q~*[31[2])
[3][2]%[1] '
With the decomposition
[r]=[2p+1]
— qr/Z _qfr/Z

:[1](qp+qp_1+'"+q+1+q_l+"'+q_p),
with p =1,2,3, and

<q2+1+q‘2) (q2+q+1+q‘1+q‘2) = (q +1+q‘1) (q3+q+1+q‘1+q‘3),

DJ[2,0] = (q3+q2+q+1+q*1+q*2+q’3) (q2+l+q’2)
x<q3+q+1+q’1+q’3—q’4).
Finally, with mod 6
DJ[2,0] = 16+12q+164q°+12q° +16q* +124°,
gives the C,-multiplicities
m2(2,0) ={16,12,16,12,16,12} for k=0,1,...,5, in order.

It is observed that the D,; symmetry of the model as well as the particle-hole
symmetry for the half-filled shell case are reflected in the results and mg(ao,bo) =
mY_, (ao,bo). We can now talk about the exploitation of MAPLE for the computations;
the bottleneck of the calculation is the factorization of the O (m,m)-q-dimension
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followed by the expansion and normalization of the resulting generating polyno-
mial. Denoting the O (m, m)-q-dimension by Dq, p by ghat, the generating polynomial
Fag,po,co) by Dq 3, the required code section is as follows:

Dqg2:
Dqg3:
Dqg4:

~

factor(Dq);
q~ ghat*Dq2;
expand (Dg3) ;

reducer:= proc(t,x,mm) local d;
d:=degree(t,x);
subs(x~ d=x" (d mod mm),t);
end;

res:=map(reducer,Dq4,q,n) ;
resfct:=sort(res);
Fqlic,jcl :=resfct;

~

clearly, following the factorization, the resulting generating polynomial Dq3 is ex-
panded and reduced to the standard form with the help of a procedure called “re-
ducer.” Except for this procedure, all the other operations (factor, expand, map and
sort) are standard functions in MAPLE. The computed C,-multiplicities for all the sin-
glet and triplet states of the cyclic polyene with 6 sites are summarized below: letting
quasi-momentum k label vertices of the benzene molecule

5/0\1
L
N

we have
(a) for the singlets:

k (ao,bo) — (3,00 (2,00 (1,0) ((0,0)

I 0 - 0 1 2 3

0 16 16 4 0

1,5 8 12 3 0

2,4 14 16 4 0

3 10 12 2 1
z -

—_

dimTI'(ag,bo) 70 84 20 - > =175 =dimI(a,b,c)
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(b) for the triplets:

k  (ao,bo) — (2,00 (1,2) (0,2)

I Q — 0 1 2

0 12 16 2

1,5 16 14 3

2,4 12 16 2

3 16 14 3
Z -

84 90 15 — > = dim(a,b,c) =189

The timing data of some quasi-spin MAPLE implementations ( in seconds and on
four processor Silicon Graphics, Challenge L) are listed below so as to give some idea
of the computing time; factorization scheme-timing data are distinguished by giving
them in parentheses

n=N - 4 6 10 14 18 22

2.55 5.32 12.08 28.26 51.53 110.62

Singlet+Triplet ) 953 540)  (7.55)  (20.62)  (40.15)  (93.65)

4. Discussion. Symbolic manipulation language MAPLE proves an efficient han-
dling of rather complex algebraic expressions. This result is an implication of the
usefulness of any such languages. Although the computational time increases appre-
ciably with the increasing polyenic size, a good deal of useful information can be
extracted by directly exploiting various generating functions. Symbolic computation
can also be exploited in other group theoretical problems of quantum chemical calcu-
lations; the relationship with Gaussian Polynomial based combinatorial approaches is
addressed in Taneri and Paldus’s paper [21].
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AND CORRESPONDING FOCK SPACES
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Viniti, Moscow, Russian Federation
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The object of this paper is to construct the principal operators for the Calogero-
Sutherland type models associated to arbitrary root system and to use them to gen-
erate the analogues of the quantum mechanical Fock spaces and the Heisenberg-Weyl
algebras. First, a short review of the classical theory of the Calogero-Sutherland mod-
els corresponding to the root system A,,,B,,C, is given (for detailed exposition see
S. Kakei [1, 2]). Then using some constructions from Lie algebra theory we give a
generalization of these models to the case of arbitrary root systems. We construct
the generalizations of the momentum, Laplace and Dunkl operators, and establish
the commutation relations between these operators. Further, generalizations of Fock
spaces and Heisenberg-Weyl algebras will be given. In conclusion a conjecture concern-
ing isomorphisms of these algebras and spaces for Calogero and Sutherland models
will be given.

Let us consider two one-dimensional quantum integrable models:

(a) The Calogero rational model of a harmonic oscillator on the line with Hamiltonian

71 & i 2 B(B_l) .
HC - 21; (asz +xj) +J§< (Xjka)Z,

(b) The Sutherland trigonometric model of a harmonic oscillator on the circle (0; are
angles of particles on the circle)

w021 w?B(B-1)
HS__ZﬁJrE,Z:: sin[w(6;-0;)/2]"

Integrability of these models signifies that there exists a family of commuting dif-
ferential operators (so called conserved quantities in physics) which the Hamiltonian
belong to. Let

xj=e%, j=1,...,n.

be the change of variables in Hs. Then we have

2X Xk

Hs = -

(x;0,)° -B(B-1) >

1 j<k (x5 —x«)

M=

1
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Let sij, 1 <i < j < mn, be the elements of the symmetric group S,. The action of the
operator s;; on the function f(xi,...,x5) is given by permutation of the variables x;
and x;.

Denote by V; an operator of the form

0 Sik—1
vj= B % N
k+#j
It is called the Dunkl operator of rational type.

Let us define the algebra Us (so called Heisenberg-Weyl algebra) generated by el-
ements V;,xj,5;j, i,j = 1,...,n. These elements satisfy the following commutation
relations:

(1) [Vi,Vj] = 0, i,j = 1,2,...,1’1,

(2) 5V =Visij,

(3) sijVik = Visij, k #1,],

@) [Vi,x;j]=064(1+BXksisik) — (1= 6ij) Bsij.

The Us-module generated by the vacuum vector vy=1 is called the Fock space and will
be denoted by Fs. The operator V; annihilates vy and the s;; conserve it.

We also introduce the operators V-,V+

V; = % (—Vj +Xj> y
V; = % (VA,' +X‘j) .

Define the algebra U generated by the elements V—,V* and s;; (the so-called
Heisenberg-Weyl algebra). They satisfy the following commutation relations

(1) [V, Vi]l=0,e==,1,j=1,...,n,

(2) Sl‘jV§ = V§Sij; Sij- Vi = Vi *Sij, €= +1,

() [V§,x1= 5185;(1+BXkgjsix) — (1=6i)Bsisl,

) [V{,Vi1=1[Vix;l.
We denote by Fc¢ the Uc-module (Calogero module) generated by the vacuum vector
Vo = eiZ?XJZ'/Z.

Define a homomorphism p : Us — ¢ by the following rules

(i) =i )=V plsy)=su.

p is an isomomorphism. The isomorphism p : s — %¢ can be defined similarly. The
set of commuting operators for Calogero model is generated by the set of coefficients
of powers of variables u* in the polynomial

Aw)=> (u+ﬁj),

J

where

I’Alj = V+V_+stik.
k<j
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1. Laplacians and other operators associated to the root system. Now we extend
the theory described above to the case of arbitrary root system. For this purpose we
define some set of operators, called generalized operators of coordinates, momenta
and Laplacians.

Let V be a finite-dimensional vector space, R a root system in V (see App. 1), and W
its Weyl group.

Let us define the map

given by the formulas
x=(x1,...,xn) ~ U= (Ua,Ug,...), Uxg=F(t,x),....
Define the action of the Weyl group W(R) in CN by the rule
WUy =Uya, XER,weW(R).
Define the action of W(R) on the space of complex-valued functions on CV
Yfu) = fwu) = f(Uwa), ®ER.
For an operator of generalized coordinates

Ly(w) = > F(y,B)u«

&ER
we have
wLy(u) = Lwy(u)-
Indeed,
wLy(u) = Z F(Yaa)uwlx
XER
= > Flyw'&)ux
o’ €R
= > F(wy, & )ug = Luy(u).
o’ €R

We now introduce the Laplacians and define some maps for the rational, trigono-
metric and elliptic cases.

Denote 04 = 0/0u«. Consider the differential operator of the first order (momentum
operator)

Dy = > F(y,«)0«.
xER

Using the Lemma of App. 1 and commutativity of 0, and dg for the differential operator
of second order

Ar= > F(x,B)oads,

o,BER
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we obtain
Ay = > D2
YER

This operator is naturally called the Laplacian for the rational case.
Similarly for the trigonometric case we have the momentum operator

Dy =3 F(y, o) uada

x€EeR

and for the differential operator of the second order 32 we obtain

By = F(ouB)(uadn) (updp) = > D2.

o,BER y€ER

This operator is naturally called the Laplacian for the trigonometric case.
For the elliptic case we have the momentum operator

5}’ = Z F(y,B)uuu—aaa:

XER
and the Laplacian
~ =2
Az= > F(c,B) (oti-oado) (upu_pdg) = > Dy .
o,BER YER

The following assertion is an easy consequence of the W (R)-invariancy of F(«, )
and the equation

W o0y = OwyoW.

PROPOSITION 1. The families of operators d,,D, and Dy are equivariant with re-
spect to the action of the Weyl group W (R), that is

WOy = OwyW,
wDy =Dyyw,

wD, = Dy,w,
and the operators A, and A, are invariant with respect to W (R)

wWolA; =A1o0w,

’LUOAZ :Azow.

PROOF. The proof of the first group of equations follows easily from the fact that
F(x,B) is W(R)-invariant. It is sufficient to do the proof of the second group of equa-
tions for the generators sy, @ € R of W(R). Indeed, if sqy = 6, then 546 = y (since
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s2 = 1), and we have sy 00, = s © Sq-

wolAy=wo » F(«,B)0xdp

o,BER
= > F(o,B)wo0d40p
o,BER
= Z F(“yﬁ)awaowoaﬂ
o,BER
= > F(o,B)dwaodwpow
o,BER
=< > F(tx',ﬁ’)aaraﬁr)ow
' BER
=Ajow. O

Let h : M — N be the map of smooth manifolds and f) and Fy the spaces of functions
on M and N respectively. Let further D be some differential operator on Fy.

DEFINITION. The differential operator on Fy;, that makes the following diagram

h*
FM < FN

h*Dl lD
n*

FM<;FN

commutative is called the inverse image h*D of the differential operator D.
Define the following maps from V = V® C to CV

U:v-0CV, x~U(x)={ux(x)=F(xx),x€R},
E:V -V, x — E(x) = {ug(x) =expF(c,x),x €R}.

PROPOSITION 2. The Laplace operator A =31, Biz onV is the inverse image of the
operators Ay and A, by the maps U and E respectively.

PROOF. We have

3 f(UG) = S a2

«€R axi

= Z F(ot,ei)0uf,

€R

2f(U(x)) = (Zthe a(xf)

XER

= S Flove) S F(Brer)dndsf

€ER BER

> F(o,e)F(B,ei)dundpf(U(x)),

o,BER
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N

FU0) = S S Floued) F(Bue)auds f(UX)

o,BeERi=1
> F(o,B)3a0pf (U(x))
o,BER

= AL f(U(x)).

0

M=

-
Il
—_

Similarly the equation A = E*A, can be proved.
Note: use the equations

0Ux(x) OdexpF(a,x)
axi B axi
(ot,eq) expF(x, x)

( i)utx(x)- O

F(o,e
F(x,e

2. Universal Dunkl operators and Hamiltonians

THE BETHE-DUNKL VARIETIES. Let & — ky, @ € R, be the W(R)-invariant function
on R and let A, and By, y € R, be the operators of the form

F(y,o)ky Ug+U_g
A, = — S, B, = F(y, &)k ——Sq.
Y Z U — U o S« y a§+ (¥, 00 o(uo(_uio(sa

These operators generate equivariant families of operators, that is for A, we have
WoAy=Ayyow.
Indeed,

F(y,x)k
wAy:u}o Z wsa
xer, Hoa~U-«

_y (F(y,a)ko( SwO()w

Upa —U-wa

XER+
Fly,w o ky-14
_ z ( (y (X)wlnxSu,)w
o' eRs Uy —U-
F , o ko
z((wy‘x)aso(,>w
& R Uy —U-
=Ayyw.

The case of By is considered similarly.
Introduce the “universal” Dunkl operators

for y € R. Each of the families of introduced operators is equivariant.
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PROPOSITION 3. The following commutation relations hold

_ (F(y,tx)F(é,B)—F(y,B)F(é,tX))}
[VY’V(S] we%(R){a,ﬁze:RJr lekB (ua_ufo() (uﬁ—ufﬁ) he
SaSg=w

[Vy,Vs]= > { > kakg(F(y,c)F(8,B)—F(y,B)F(5,x))

weW(R) L «,BER
SaSg=w

UatU-q UptU-p w
Ux—U-x UB—U-B
[Dy,Ls] =F(y,0),
F(y,0)F(6,00kalo(U)Sa
F(x,x) (utx_u—cx)

[v}/lL5] :_F(Y16)_2 Z

XER
[LyVy,LsV5] =—K(y,8)(LyVs—LsVy)

F(y,)F(5,x)L2 (1) s«
42 F2 (0,00 (U —U )

’

(F,0V5-F(8,00,),

XER+

where

F(y,x)F(6,00)kaLa(U)Sq
Flo, o) (Ua—U—a)

K(y,8) =F(y,5)+2 >
xeR+
In the equations above the terms related to w € W(R) that cannot be represented
in the form of a product s.sg are assumed to be equal to zero. A proof of the first
commutative relation is given in App.2. The other relations are proved similarly.
We now give some definitions.

DEFINITION. Let y,0 € R and «,f8 € R, are such that s4sg = w € W. Then for all
w € W we can define algebraic varieties by the equations

5 kakﬁ{F(y,a)F(é,B)—F(%B)F(é,w}ZO}_

(uu - u—a) (uﬁ - u—B)

Mp(R) = {(ua ecV|

o,BER
«+p

SaSp=w

This variety will be called the Dunkl variety for Calogero model.
Proposition 3 for the operator V gives the following

PROPOSITION 4. On the Dunkl variety we have
[Vy, Vs]=0.
We now introduce the "universal" Hamiltonians of Calogero-Sutherland type

F(ot, ) (ko — 2k S

He=-A1+ Z

2 ’
XER, (ua —u—a)
2
Hy= -2+ S F((x,0()41/L0(u_0‘(k0(2 kasa),
XER, (ua *u—a)

HF=He+Q(u).
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It is easy to verify that these Hamiltonians are W-invariant, i.e
wHc =Hcw, wHE=H!w YweW(R).

PROPOSITION 5. The following equations hold

SVt 3 4 S kb,

YER weW(R) L aBeRs (o —tU-a) (Up—u-g
SaSﬁ
+ Ug+u_
> Vy=-Hs— > { )y kakgF (o, B) - Yot Moo 26 B}w
YEeR weW(R) \x,BeRr: a" U« Ug—UL
«#B
So(Sl}:w
- Z k?xF(O(lO()!
XER 4
L
> VYV;=H2{ S Fyy)+2 3 K “(”)S“}
YER y€ER XER+ U«

The proof of the first of these equations is given in App. 3. The others equations are
proved similarly.

We now give two definitions.

DEFINITION. The algebraic subvariety in C'*! with equations

= Ug—U-q) (Ug—U-p)
«#B
SaSg=w

is called the Bethe variety for the Calogero model.
We have the following Theorem.

THEOREM 6. On the Bethe variety we have
2
- > V2.

YER

DEFINITION. The intersection of the Dunkl variety and the Bethe variety will be
called the Bethe-Dunkl variety.

THEOREM 7. On the Bethe-Dunkl variety the set of algebraically independent inte-
grals of Calogero problem is given by the formulas

= > V& k=23,....
YER

Evidently, we have
He =1p.

3. Weyl-Heisenberg algebras and Fock spaces. The Weyl-Heisenberg algebras for
the Sutherland and Calogero models respectively are
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Ag =C[Vy,uy,sy], Yy €R,
Ac = (C[V;,V;,Sy],

where

Vi=Vy+Lyu),

V; = V}/ _Ly(u)-

Define now the Fock spaces for both models:
Fs is Ag-module genegated by the vacuum vector vy = e~ QW/2;

Fc is the Ac-module generated by a vector vy = 1.
We have the following assertion.

ASSERTION: The Hamiltonian H¢ and the integrals I belong to Ac.
Analogous assertion for Ag can be stated. Define the homomorphisms

pa:As — Ac,
pr:Fs — Fc.

We can state the following conjecture.
CONJECTURE 1. The homomorphism p is an isomorphism.

The analogous statement was announced for the classical root systems A,B,C,D in
short publications of S. Kakei [1, 2].

4. Appendix 1: Definition of a root system

CANONICAL BILINEAR FORM. Let V be a finite-dimensional vector space, R is a
finite subset generating V. For any o € R, « # 0, there exists at most one reflection s
of V such that s(x) = —« and s(R) = R. Let G be the group of automorphisms that
leaves R stable. Since R generates V, G is isomorphic to a subgroup of the symmetric
group of R. Let 5,5’ be two reflections. Then we have t = ss’ € G and s(x) = —«.

DEFINITION. The subset R of V is a root system if

(1) R is finite, 0 is not in R and R generates V;

(2) Y € R there exists an element ¥ € V* such that (x,«") = 2 and s4,«v leaves
R invariant, i.e.

Saov (X) =x+ ({,x) =2) (x, ") &x  (Sgav = —¥).

NOTE. sy v is a reflection iff (x, ") = 2.
Introducing the notation Sy« = Sx We can write

se(x)=x—{a",x), Vx€eV.

The elements of R are called the roots.

The automorphisms of V leaving R stable are automorphisms of R. They form a
group A(R). The subgroup of A(R) generated by the s,’s is called the Weyl group of
R and is denoted by W (R) or simply W.
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Let V = C"(R"). Let R be a reduced and irreducible root system in a n-dimensional
real vector space V. Let R, be the set of positive roots, Ry = {x1,...,0,} the set of
simple roots, Ry C R;, W(R) the Weyl group of R generated by reflections. For a given
root system the unique non-degenerated positive symmetric bilinear form Fg (x,y) on
V invariant under W (R) can be constructed. This form satisfies the following condition

Fr(x,¥) = > Fr(x,00Fp(x,y).

XER

From now on we will denote by the same characters V,F,sy € W(R) the complexifica-
tions V ® C, and the natural extensions of F, sy to V& C.

Let ey,...,ey, be an orthonormal basis in V with respect to F. Any vector x € V can
be represented in the following form

n
x =Y F(x,e;)e;.
i=1
Then, by the bilinearity of F, we have
n
F(x,y) = > F(x,ei)F(e;,y).
i=1

Let |R| = N be the number of roots in the a root system R, CN the complex space
associated to R. Let {uq,« € R} be coordinates in CV ordered by some order chosen
on R. For example, « > B if «— B € P* where P* is the positive part of the root lattice.
Define on CN the quadratic form

Qu)= > F(e,Blusug

o«,BER

and its polar symmetric bilinear form

Qu,v) = > F(&B)Ualp.

o,BER
The following lemma holds.

LEMMA 8. LetL,(u) =2 yer F(y,B)us. Then we have

Q) =Y (Ly(w)*,

YER

Q(u,v) = > Ly(uLy(v).

YER
COROLLARY 9. The restriction of Q to RN ¢ CN is a non-negative form.

The proof is immediate.
5. Appendix 2: Proof of the first equation of Proposition 3. We have

[Vy,V5] = [—Dy+Ay,—D5+A5]
= [Dy,Ds] - ([Dy,As] —[Ds,Ay]) +[Ay, As].
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Evidently, the first bracket is equal to zero because the operators Ds and D, are the
sums of commuting differential operators d, and hence commute also. Further, we
have

[Dy,A(s] = Dy 0As—As oDy

— Dy (As)+ Z kaF (5, 00) sy

Dyyy —AsDy,
cr, (Ua—u—o) Y

Using the equation

. Sy,
SaY =Y ZF((X,(X)
we obtain
_ kD(F((S!(X)SO(> B koF (y, @)F (6, x) _
Dy, 45] = Dy (45) +a§+ ( a—U_q Dy 2a§+ F((x,(x)(ufx—ufa)D’x AsDy

F(y,)F(6,x)kaDy
=D, (As) +AsD, -2
Y Y a§+ F(ot, 00 (o —U_o)

kaF (y, ) F(6,X) S F(y,x)F(6,0) koD«
22, 22, Flot, ) (U —u-q)

—AsD,

2
XER4 (ulX—u o<) X€ERy

It is easy to see that this expression is symmetrical with respect to y and §. For this
reason, the commutator [Ds, A, ] is equal to the same expressiom and we obtain that

[Vy,V5] = [AysA(S]-

The computation of the last commutator gives
D kakgF(y,x)F(6,B)
«,BeR+ (Ua—U_q) (usa/; - u,saﬁ)
Let B = ex(5g)saB = £5«B, B’ € R.. We obtain further
s kokg F(y,)F(sad,B)
ok, (o= Uoo) (Usep = Uosop
_y kakeFlsar HFG,00
wper, Ma—u-o) (up —u_pg
oy oy kaks (F(y,00F(5,8) ~F(y,B)F(3,0)

weEW (R) ,BeR+ (Ua—u-o) (up—u-p)
So(SB:w

[A),As5] = SaSp-

[Ay,A(;] = )So(Sg

)SaSt;'

The first equation is proved.

6. Appendix 3:Proof of Proposition 5. We prove the first equation. Indeed, we have

2 V5= 3 (=Dy+ay)’

YER YER

= > (Dy? = (DyoAy +AyDy) +A)?)
YER

= 2. D= > (DyoAy+AyDy)+ 3 Aj.
YER YER YER
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Earlier it was shown that Ay = 3, cx D§. Furter we compute >, cg Dy o Ay. We have

k«F(y,®)saDs,
ZDy°Ay=Z ZDY(Ay)+Z D(u _ua =
YER YER xeR4 yER & -

_ 2kaF(y,)F(y, o) s« koS
== > P e

z F(y, o) Ds,y

2
yYER X€R (Ua—U-g) XERy yeR

__ Z 2F(0(10()k(x50(+ Z kaSoaDsya

2
XER (ua*u—(x) X€ERy Ua~ U«

_ Z 2F((x,0()kasa_ z kaSaD«

> .
XeR4 (ua*u—tx) X€ERy Ua—U-«

Further

S ap, -y Y Ekday

YER YER xXER Ug—U-«

Z ﬂ Z F(o,y)Dy

xeRy Yo~ U« yeR

KaSx
Uy —U_y
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The proof of the first assertion of Proposition 5 is finished.
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DECISIONS TAKEN DURING THE GENERAL ASSEMBLY

Following the statutes of EWM a general assembly was held during this meeting.
The decisions taken are valid until the next general assembly which should take place
during the next general meeting of EWM in Hannover in 1999.

Time: December 14, 1997, 14.15-18.10 o’clock.
Place: ICTP Trieste.
Present: 45 members and 4 non-members from more than five countries.

1. Opening of the General Assembly. Bodil Branner from Denmark and Ragni
Piene from Norway wished everyone present welcome to the general assembly. The
general assembly was announced in the EWM Newsletter in February 1997 and in
separate announcements of the Trieste meeting. Thus the requirements for the an-
nouncement of the general assembly were met and the meeting was valid.

Bodil Branner and Ragni Piene were chosen to chair the assembly. They presented
an agenda which was approved as the working procedure of the meeting.

2. Appoint two people to take the minutes, two people to check the minutes and
two people to count the votes. Karin Baur from Switzerland and Ufuk Taneri from
Turkey/North Cyprus were appointed to take minutes together with Riitta Ulmanen,
Finland. Sylvie Paycha, France, and Marie Demlova, Czech Republic, were appointed
to check the minutes and count votes.

3. Approving of new members. The general assembly approved to membership
of EWM those who had sent their application forms to a regional coordinator since
the previous general assembly held in Madrid in 1995. Those who had given their
application forms during the meeting in Trieste were also approved. Fees for these
newly joined were waived for 1997.

4. Approving of the minutes of the previous general assembly. Minutes of the
general assembly held in Madrid 1995 were published in the Proceedings of the meet-
ing. The minutes were also distributed the present general assembly. The minutes
were approved.

5. Electing two auditors and a deputy. The previous auditors, Seija Kamari and
Kirsi Peltonen from Finland were elected as auditors for 1998-99. No deputy was
elected.

6. Confirming the financial statement and discharging those responsible of li-
abilities. Marjatta Ndatanen from Finland explained briefly the financial situation
of EWM: she presented the accounts. The accounts were confirmed by the general
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assembly. Those responsible of liabilities were discharged.

7. Deciding fees. It was decided to keep the fees as they were: 1 ECU (low), 20 ECU
(standard), and 50 ECU (high).

The question of how to collect the fees and how to send it to EWM was raised. Riitta
Ulmanen explained that every regional coordinator collects the fees whichever way
is most convenient for her. She may open an account for that purpose if necessary.
After making deductions necessary for local use she then sends the rest to the EWM
account in Finland either in her own currency or in Finnish currency, if the amount
is reasonable. It was also suggested that coordinators could bring the fees they have
collected to the general assembly and give them to the EWM secretary there. These
procedures were approved.

8. Electing Standing Committee and convenor and deputy convenor for 1998-
99. According to the statutes the Standing Committee consists of 8-12 members.
The term of a member is four years. Half of the terms will expire at the general as-
sembly meeting and half will continue. In the by-laws it is defined that the standing
committee will propose names for the new standing committee. Any woman either
at the general meeting or otherwise involved in EWM can also make propositions.
Standing committee proposed candidates presented in Appendix 3.

As old members the following were elected

e Polyna Agranovich, Ukraine.

e Capi Corrales Rodriganez, Spain.

e Marie Demlova, Czech Republic.

¢ Laura Fainsilber, France/Sweden.

e Emilia Mezzetti, Italy.

¢ Ragni Piene, Norway.

[Note: Capi Corrales Rodriganez subsequently resigned from her position on the Stand-
ing Committee.]

As new members:

e Christine Bessenrodt, Germany.

e Catherine Hobbs, UK.

¢ Irene Sciriha, Malta.

¢ Betiil Tanbay, Turkey.

e Tsou Sheung Tsun, UK.

¢ Inna Yemelyanova, Russian Federation.

Laura Fainsilber was elected as convenor and Irene Sciriha and Inna Yemelyanova
as deputy convenors.

9. Electing international coordinators. The following persons were elected as in-
ternational coordinators

e East: Marie Demlova, Czech Republic and Tatiana Vasilieva, Russian Federation.

¢ Central/North: Marja Kankaanrinta, Finland.

e West: Capi Corrales Rodriganez, Spain.

[Note: Capi Corrales Rodriganez subsequently resigned from her position as
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International Co-ordinator (West) and has been replaced by Rosa Maria Miro-Roig,
Spain.]

10. Confirming regional coordinators. Regional coordinators were confirmed (see
page 235). Sweden will choose a coordinator later.

It was also decided to have contact persons in non-European countries which have
shown interest in EWM. The standing committee should contact all the regions.

11. Choosing a time and place for the next meeting and electing the organizing
committee. It was preliminary decided in Madrid that the next meeting should take
place in Germany. Christine Bessenrodt had made preparations for the next meeting.

It was decided to have the next meeting of EWM in September 1999 in Germany,
near Hanover. Exact dates were not set yet.

The possibility of Russia organizing the meeting in 2001 was discussed. Inna Yemel-
yanova said that the Russians would be proud to organize the meeting in 2001.

After discussion following persons were elected to the organizing committee for
1999:

e Christine Bessenrodt, Germany.

e Polyna Agranovich, Ukraine.

¢ Irene Pieper-Seier, Germany.

¢ Ina Kersten, Germany.

¢ Olga Kounakovskaia, Russian Federation.

e Tsou Sheung Tsun, UK.

The organizing committee can complete itself when necessary with the consent of
the standing committee.

12. Setting commissions for specific issues. It was decided on the following:

o Link with Association for Women in Mathematics (AWM): Christine Bessenrodt.

e Link with European Mathematical Society (EMS): Bodil Branner.

o Editing the EWM Newsletter: Eva Bergqvist, Sweden, Nadia Larsen, Denmark, Nina
Rudalv, Sweden, and Ufuk Taneri, Turkey.

¢ Bulletin news: International coordinators.

e Web page: Olga Caprotti, Italy, and Hilda Irene van der Veen, Netherlands.

¢ E-mail EWM network: Sarah Rees, UK.

13. Publication of the proceedings of the present meeting. Catherine Hobbs and
Laura Fainsilber had volunteered to do the proceedings.

Catherine Hobbs and Laura Fainsilber had studied different possibilities to publish
the proceedings. Several options were presented. E.g. the proceedings might be pub-
lished as a hard copy only, as a hard copy and a CD-ROM disk—and be put on the Web
pages. The publisher could be some outside publisher or EWM could be the publisher.

All the possibilities were carefully considered. The decision of whom to use was left
to Catherine Hobbs and Laura Fainsilber to make.

Also the contents of the proceedings was discussed. This subject raised a vivid
discussion and several suggestions were made. As alternatives the following were
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presented: talks only, talks and posters, posters only.

The conclusion was that the proceedings should consist of talks and of some posters
which relate to the talks presented at the meeting. The editors would select the posters
they saw fit and ask for permission to print them.

14. The question of funding. This subject was postponed to be held discussed in
the evening.

15. The life of EWM in between general meetings. There was a vivid discussion
on this subject. No general opinion was reached. The question, who can use the name
of EWM and on which occasions can it be used, was raised. It was decided that the
name of EWM can be used on occasions that are not directly linked to EWM, only with
the consent of the standing committee.

16. The ICM ’98 and EMS 2000 activities. The general assembly decided to have
around table in ICM 98 meeting. The subject should be close to women in science in
countries undergoing political changes.

The subject of the round table discussion to be held in EMS 2000 meeting should
change from “Women and mathematics” which has been the topic twice now. “How are
research institutes of mathematics organized in different countries” was proposed as
a possible topic.

The question of interdisciplinary meetings: Call of proposals of on subjects of inter-
disciplinary meetings was given. Proposals should be given to the standing committee
by July 1998.

17. Open discussion on any other subject. Open discussion was postponed.

18. Closing the General Assembly. Bodil Branner and Ragni Piene declared the
general assembly closed for this part.



EUROPEAN WOMEN IN MATHEMATICS: STATUTES

Name and Location

ARTICLE 1.

1.

2.

European Women in Mathematics, informally EWM, is an association established
in accordance with the laws of Finland.
Its seat is in Helsinki, Finland.

Purpose and Nature of Activities

ARTICLE 2.

1.

The purposes of EWM are:

- To encourage women to take up and continue their studies in mathematics
and to promote mathematics among women.

- To support women with or desiring careers in research in mathematics or
mathematics related fields.

- To provide a meeting place for these women.

- To foster international scientific communications among women within and
across fields in mathematics.

- To promote equal opportunity and equal treatment of women and men in the
mathematical community.

- To cooperate with groups and organizations with similar goals.

2. To achieve its aims EWM may organize meetings, conferences, courses and sem-
inars, arrange negotiations, disseminate a newsletter and other material related
to its aims, operate as a publisher, prepare proposals and motions, make state-
ments, award grants and prizes, and represent its membership.

3. The organization may, according to the situation, act directly, co-operate with
individuals or bodies having similar aims, and set up subordinate bodies for
special tasks.

4. The organization is non-profit making.

Membership
ARTICLE 3.

1. A member of the organization may be any woman, who supports the purposes
of the organization.

2. The number of non-Finnish members may exceed one third of the total.

3. Members are approved and dismissed by the general assembly.

4. Members pay membership dues as determined by the general assembly.

5. A member can be removed for non payment of fees for more than two years.

6. Members may terminate their membership by giving a written notice to the

convenor or to a member of the standing committee or by announcing the
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termination at the meeting of the general assembly to be recorded in the min-
utes.

7. The organization can have honorary members. An honorary member has the
right to vote and does not pay registration or membership fees.

8. The organization can have either women or men as well as organizations as
supporting members.

9. Supporting members pay dues and receive relevant information. They do not
have the right to vote.

Organs

ARTICLE 4.
1. The organ of the organization with decision making power is the general assem-
bly.
2. The standing committee is the main executive organ.
3. Other executive organs are the international and regional coordinators.

Decision Making

ARTICLE 5.
e Decisions are made by simple majority vote of the general assembly unless the
statutes require a qualified majority. The requirement of qualified majority is at
least 3/4 of the votes cast.

The General Meeting

ARTICLE 6.

¢ The main tool for implementing the organization’s statutory goals is the general
meeting.

o EWM will aim to have a general meeting in Europe at least once every two years.
The aim is to arrange these meetings in years to alternate with the European and
International mathematical congresses, and in addition to have some activity at
European congresses and International congresses.

The General Assembly

ARTICLE 7.

e The general assembly is held every second year during the general meeting. It
is the responsibility of the standing committee to announce the general meet-
ing. The announcement is done with the assistance of the coordinators at least
six months in advance in a letter sent to each member or by e-mail or by an
announcement in an appropriate newsletter.

e The General Assembly
1. elects the standing committee, the convenor from the members of the stand-

ing committee, and deputies. The convenor may be non-Finnish
2. elects a team of at least three international coordinators
3. confirms the choice of regional coordinators
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. elects two auditors and a deputy

. approves new members and elects honorary members

decides on removal of members by qualified majority

decides on registration and annual dues

. accepts the minutes of the previous general assembly

. receives the auditors’ reports

10. confirms the financial statements and discharges those concerned from lia-
bility

11. chooses the time and place for the next general meeting from possibilities
proposed as specified by the by-laws, and a local person who will choose a
group to be responsible for the practical and financial arrangements

12. sets up commissions for specific issues

13. decides on changes of the statutes by qualified majority

14. decides on by-laws, the changing of which requires a qualified majority

© © N O Uk

The Extraordinary General Assembly

ARTICLE 8.
¢ An extraordinary general assembly can be called by giving six weeks notice by e-
mail or in writing to all members. The reason for such a meeting must be clearly
specified in writing.

The Standing Committee

ARTICLE 9.

1. The standing committee consists of 8-12 members and their deputies. The term
of office of committee members will be four years. Half of the terms will expire
at the general assembly meeting and half will continue. The first terms to expire
will be drawn by lots. The members of the standing committee must be members
of the organization.

2. The standing committee will be called together by the convenor when necessery
or when a member of the committee so requests.

3. The standing committee will assist in organizing the forthcoming general meet-
ing as specified by the by-laws.

4. The standing committee proposes the budget to the general assembly, receives
the accounts to be presented to the general assembly and approves donations
from outside organizations.

5. The standing committee shall appoint and dismiss the staff, define their duties
and confirm their renumeration.

Coordinators

ARTICLE 10.
e The coordinators are chosen as specified in Article 7 and the by-laws. The job
of a coordinator is to gather and pass on information.
1. The team of international coordinators will also assist the standing commit-
tee in taking care of other business such as links with other organizations,
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other types of meetings, emergency situations, etc.

2. As far as possible, there should be at least one regional coordinator in each
country or region of Europe and also in non-European countries in which
there is sufficient interest in EWM.

Signing for the Organization

ARTICLE 11.
e The organization may be signed for either by the convenor together with another
member of the standing committee or by any two members of the standing
committee.

Finances

ARTICLE 12.

1. EWM may receive gifts, grants, bequests and legacies. The association may raise
funds for purposes connected to its aims by selling mathematical or similar
material and it can own property and shares.

2. The general assembly appoints for each fiscal year two auditors and one deputy
who are not members of the standing committee. These auditors may at all times
require that the books and all relevant documents be presented to them, and
they may examine the cash and financial situation.

The fiscal year shall be one calendar year.

The accounts shall be submitted to the auditors by the end of March.

The auditors’ report shall be submitted to the standing committee by the end
of April.

Amendments

ARTICLE 13.

1. Amendment of the statutes or dissolving or merging the organization shall be
mentioned in a notice to all members of the organization before the meeting of
the general assembly.

2. Amendment of the statutes must be endorsed by a qualified majority of the
general assembly; dissolving or merging the organization must be endorsed by
a qualified majority of the meeting of the general assembly or an extraordinary
general assembly.

Dissolving of the Organization

ARTICLE 14.
¢ In the event of the organization being dissolved or abolished, any assets remain-
ing after discharge of all debts shall be transferred to a legal body having aims
similar to those of the organization.

By-Laws

ARTICLE 15.
e These statutes are followed by a collection of by-laws approved by the general
assembly.
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By-Laws
1. Membership.
¢ An individual may become a member by contacting a coordinator or a member

of the standing committee. The membership will be temporary until it becomes
confirmed by the following general assembly. No election of members shall be
effective until the relevant fees have been paid. Either the general assembly or
the standing committee may waive fees in particular cases. Other than for non-
payment of fees, a member can only be removed on the basis of written reasons,
and after she has had the opportunity to let her case be heard, by a qualified
vote of the general assembly.

Members may terminate their membership by giving a written or e-mailed
notice to a regional or international coordinator, or to a member of the standing
committee.

Newly elected members should be informed and receive the relevant docu-
ments.

All matters of doubt or difficulty relating to membership shall be decided by
the standing committee subject to confirmation by the general assembly.

2. The General Assembly.
¢ A meeting of the general assembly must be held during each general meeting of
EWM. The general assembly is open to members and guests.

Decisions are made if possible by consensus. If no members present object,
routine decisions may be made by simple majority vote. However, 10% of mem-
bers present may ask that a particular decision only be made subject to a qual-
ified majority.

In this case discussion continues until a decision can be reached by qualified
majority.

The requirement of qualified majority is at least 3/4 of the votes cast, also
it is necessary that the the following requirements are met: at least 20 persons
from at least 5 countries represented in the organization.

The opinion of the membership may be solicited by a mail vote at any time.

Unless otherwise specified by the general assembly, decisions on matters
other than changes of the statutes or by-laws or those specified by Article 7
are delegated by the general assembly to the standing committee.

3. Standing Committee
Selection of the Standing Committee
¢ The standing committee will propose names for the new standing committee.

Any woman either at the general meeting or otherwise involved in EWM can also
propose members. The standing committee will arrange the proposed names
as for fields in mathematics and geographic location in order to get a broad
representation across subjects and countries. The written list of suggestions
should be available before the general assembly. The final choice will be made
by the general assembly, if necessary by vote.

The Standing Committee Includes:

(a) A woman responsible for the forthcoming general meeting
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(b) Someone who was centrally involved in the last general meeting.

(c) The convenor and one or two deputy convenors (these may well be women
(a) or (b)).

(d) If possible, a person at another institution in the country where the meet-
ing is to be held.

The Main Responsibilities of the Standing Committee Are:

1. To be responsible for advising and assisting with the forthcoming general
meeting. To draw up a detailed programme for that meeting, to try to raise
funding for that meeting, and especially to think about organizational
matters and prepare issues for discussion.

2. To announce the general meeting with the assistance of the team of coor-
dinators. The general meeting is announced as early and widely as possible
(in particular in EMS and AWM newsletters).

3. To draw up the agenda for the meeting of the general assembly and if
possible to announce major issues to be considered in advance. To ensure
that a report of the general meeting is prepared.

4. To take care of other issues which may arise between general meetings.

. To ensure there is always a functioning team of international coordinators.
. To consider the possibility of other types of meetings, and to delegate
responsibilities appropriately.

7. To take care of any emergency situation which may arise.

8. Toreceive the financial report, and to propose the budget. The report and
budget should be publicized in a EWM report or newsletter.

9. To select the treasurer.

10. To confirm the choice of treasurers for regional or national groups.
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4. The Convenors.
e The job of the convenor and her deputies is to ensure that appropriate actions
are taken at appropriate time, thus activating the standing committee as neces-
sary.

5. Committees.
¢ Committees for specific purposes, for example finances or local organization,
may be set up as and when necessary, either by the general assembly or by the
standing committee.

6. Deputies.
¢ In so far as possible all people with responsible jobs should have deputies. In
particular, there must be a deputy convenor for the standing committee.

7. The Coordinators.
e The job of a coordinator is to gather and pass on information among EWM mem-
bers and to answer enquiries, send information to interested people etc..
- There will always be at least three international coordinators, from at least
two countries, elected by the general assembly, by simple majority vote.
- As far as possible there should be at least one and preferably two regional
coordinators in each country or region in Europe and also in non-European
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countries in which there is sufficient interest in EWM. There will also be co-
ordinators for links with organizations with related purposes, for example
AWM and EMS. As far as possible, coordinators should change every two to
four years.
¢ International Coordinators.
- The job of the international coordinator is to:

- Maintain an up-to-date list of regional coordinators.

- Seek out replacements for regional coordinators as necessary, making sure
if possible that all regional coordinator are active.

- Seek out people who might act as regional coordinators in countries or re-
gions which are not yet represented.

- Supply the list of regional coordinators to the standing committee as re-
quested and also to EMS.

- Send out mailings to the regional coordinators for distribution in their region
as requested by the standing committee or when otherwise appropriate.

- Liaise with the standing committee, especially about publicity for the forth-
coming general meeting.

- Answer general enquiries or pass them on to the appropriate regional coor-
dinator or member of the standing committee.

- Keep copies of important correspondence such as past applications for
money to the EEC.

- Take care of other business such as links with other organizations, other
types of meetings, emergency situations, etc.

e Regional Coordinators
- Selection of regional coordinators.

- EWM members in a region should agree among themselves the best method
of choice suited to their region. In case of serious disagreement, the matter
should be referred to the standing committee and the international coordi-
nators and if necessary put to a vote in the general assembly.

- The choice of all regional coordinators should be confirmed by the general
assembly.

e Duties of the Regional Coordinators.
- The job of a regional coordinator is to:

- maintain some form of address list of people interested in, and members of,
EWM

- arrange for collection of membership dues

- mail out information as requested by the international coordinators, and
other information as appropriate

- advertise EWM meetings in the newsletter of her region or country’s mathe-
matical society and elsewhere in her area as appropriate

- act as a liason for anyone wanting to contact women mathematicians or to
get information about women mathematicians in her country or region

- give her name to national, regional and local mathematical societies as a per-
son to contact in matters relating to women mathematicians in that country
or region
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- if possible, either collect or arrange to get collected information about num-
bers of women mathematicians in her country, and about factors relating to
their status, programmes to assist them, etc.

8. The Extraordinary General Assembly.
¢ A request for such a meeting must be endorsed either by at least five members
of among the standing committee and the international coordinators, or by at
least 25 EWM members. The reason for such a meeting must be clearly specified
in writing. The meeting must be held at an easily accessible place in Europe. The
responsibility for organizing such a meeting is that of the persons calling for
the extraordinary assembly.





