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FOREWORD

These are the proceedings of the European Women in Mathematics workshop on Moduli
Spaces which was held at Oxford in July 1998.

The aim of this interdisciplinary workshop was to explain to nonspecialists different
uses of moduli spaces in various areas of mathematics and physics such as differential and
algebraic geometry, dynamical systems, Yang-Mills theory and conformal field theory,
and to facilitate the exchange of ideas between workers in these fields.

The workshop followed the very successful meeting on “Renormalisation in Mathem-
taics and Physics” organised jointly by femmes et mathématiques and European Women
in Mathematics in Paris in June 1996. It is hoped that these two meetings will be the
start of a biennial series of interdisciplinary workshops.

The workshop was a small scale two days meeting, organised around seven talks
giving different points of view on the concept and uses of moduli spaces. Special efforts
were made by the speakers to present their topics in a form accessible to nonspecialists.
The different perspectives presented contributed to the richness of the meeting which
was attended by about forty participants (including a good number of graduate students),
about half of whom were from continental Europe and half from British universities.

The organisers would like to express their sincere thanks to the London Mathemati-
cal Society, to Algebraic Geometry in Europe and to the Mathematical Institute, Oxford
University for their support. We would also like to thank the staff of the Mathemat-
ical Institute and the staff of Balliol College, where the participants stayed, for their
help, and to thank all the participants for making the meeting such an enjoyable and
lively one.

Frances Kirwan
Sylvie Paycha

Tsou Sheung Tsun
September 1999
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MODULI SPACES INALGEBRAIC GEOMETRY

FRANCES KIRWAN

The word “moduli” is due to Riemann [18] in 1857, who observed that an isomorphism
class of compact Riemann surfaces of genus g “hängt …von 3g−3 stetig veränderlichen
Grössen ab, welche die Moduln dieser Klasse genannt werden sollen”. For the next
century the concept of moduli as parameters in some sense measuring or describing the
variation of geometric objects was used in algebraic geometry, but it was not until the
1960s that Mumford [14] gave precise definitions of moduli spaces and methods for
constructing them. Since then there has been an enormous amount of work on and using
moduli spaces from very many different points of view.

The aim of this article is to describe some of the basic ideas in the theory of moduli
spaces in algebraic geometry, and thus to serve in part as an introduction to the other
articles in this proceeding.

1. Classification problems in algebraic geometry

Moduli spaces arise naturally in classification problems in algebraic geometry [14],
[15], [16], [19], [20], [23]. A typical such problem, for example the classification of
nonsingular complex projective curves up to isomorphism (or equivalently compact
Riemann surfaces up to biholomorphism), can be resolved into two basic steps.
Step 1 is to find as many discrete invariants as possible (in the case of nonsingular

complex projective curves the only discrete invariant is the genus).
Step 2 is to fix the values of all the discrete invariants and try to construct a “moduli

space”; that is, a complex manifold (or an algebraic variety) whose points correspond
in a natural way to the equivalence classes of the objects to be classified.

What is meant by “natural” here can be made precise given suitable notions of families
of objects parametrised by base spaces and of equivalence of families. A fine moduli
space is then a base space for a universal family of the objects to be classified (any
family is equivalent to the pullback of the universal family along a unique map into the
moduli space). If no universal family exists there may still be a coarse moduli space
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2 Moduli spaces in algebraic geometry

satisfying slightly weaker conditions, which are nonetheless strong enough to ensure
that if a moduli space exists it will be unique up to canonical isomorphism.

It is often the case that not even a coarse moduli space will exist. Typically, particularly
“bad” objects must be left out of the classification in order for a moduli space to exist.
For example, a coarse moduli space of nonsingular complex projective curves exists
(although to have a fine moduli space we must give the curves some extra structure, such
as a level structure), but if we want to include singular curves (often important so that we
can understand how nonsingular curves can degenerate to singular ones) we must leave
out the so-called “unstable curves” to get a moduli space. However all nonsingular curves
are stable, so the moduli space of stable curves of genus g is then a compactification of
the moduli space of nonsingular projective curves of genus g.

There are several different methods available for constructing moduli spaces, involv-
ing very different techniques. Among these are the following:

• orbit spaces for group actions (using geometric invariant theory [14] or more re-
cently ideas due to Kollar [8] and to Mori and Keel [6]; geometric theoretic quo-
tients can also often be described naturally as symplectic reductions, and it is in
this guise that many moduli spaces in physics appear [21]);

• period maps, Torelli theorems and variations of Hodge structures, initiated by
Griffiths et al [4] and described by Claire Voisin in [24];

• Teichmüller theory (for Riemann surfaces; see, e.g., [10] and also [17] by Mary
Rees).

As we shall see in Section 6, all three methods can be used for Riemann surfaces, to
give alternative descriptions of their moduli spaces.

Remark. Recall that a compact Riemann surface (i.e., a compact complex manifold of
complex dimension 1) can be thought of as a nonsingular complex projective curve,
in the sense that every compact Riemann surface can be embedded in some complex
projective space

Pn = Cn+1−{0}/(multiplication by nonzero complex scalars)

as the solution space of a set of homogeneous polynomial equations. Moreover, two
nonsingular complex projective curves are biholomorphic if and only if they are alge-
braically isomorphic. So there is a natural identification between the moduli space of
compact Riemann surfaces of genus g up to biholomorphism and the moduli space of
nonsingular complex projective curves up to isomorphism.

There are other situations where an “algebraic” moduli space can be naturally identi-
fied with the corresponding “complex analytic” moduli space, but this is not always the
case. For example, if we consider K3 surfaces (compact complex manifolds of complex
dimension 2 with first Betti number and first Chern class both zero), we find that the
moduli space of all K3 surfaces has complex dimension 20, whereas the moduli spaces
of algebraic K3 surfaces (which have one more discrete invariant, the degree, to be fixed)
are 19-dimensional.
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When n > 1 the question of classifying n-folds (i.e., compact complex manifolds—
or in the algebraic category nonsingular complex projective varieties—of dimension n)
becomes much harder than in the case n = 1 (which is the case of compact Riemann
surfaces or nonsingular complex projective curves). The problems include the following:

(i) we need to worry about algebraic moduli spaces versus nonalgebraic ones (cf.
K3 surfaces);

(ii) families of n-folds can be “blown up” along families of subvarieties to produce
even more complicated families.

Remark. Recall that we blow up a complex manifold X along a closed complex sub-
manifold Y by removing the submanifold Y fromX and glueing in the projective normal
bundle of Y in its place. We get a complex manifold X̃ with a holomorphic surjection
π : X̃→ X such that π is an isomorphism over X−Y and if y ∈ Y , then π−1(y) is
the complex projective space associated to the normal space TyX/TyY to Y in X at y.
If X = Cn+1 and Y = {0} and we identify Pn with the set of one-dimensional linear
subspaces of Cn+1, then

X̃ = {
(v,w) ∈ Cn+1×Pn : v ∈ w

}
with π(v,w)= v.

We have already seen that the first problem (i) does not arise when n = 1. The
second problem does not arise either when n = 1, because blowing up a 1-fold makes
no difference unless the 1-fold has singularities (in which case blowing up may help
to “resolve” the singularities; for example when we blow up the origin {0} in C2 then
the singular curve C in C2 defined by y2 = x3+x2 is transformed into a nonsingular
curve C̃ with the origin in C replaced by two points, corresponding to the two complex
“tangent directions” in C at 0).

Because of this second difficulty, the classification of n-folds when n > 1 requires a
preliminary step before there is any hope of carrying out the two steps described above.
Step 0 (the “minimal model programme” of Mori et al [12]): Instead of all the objects

to be classified, consider only specially “good” objects, such that every object is obtained
from one of these specially good objects by a sequence of blow-ups.

How to carry out Mori’s minimal model programme is well understood for algebraic
surfaces and 3-folds, but in higher dimensions is incomplete as yet [9].

We shall ignore both Step 0 and Step 1 from now on, and concentrate on Step 2, the
construction of moduli spaces.

2. The ingredients of a moduli problem

The formal ingredients of a moduli problem are:

(1) a set A of objects to be classified;
(2) an equivalence relation ∼ on A;
(3) the concept of a family of objects in A with base space S (or parametrised by S);

and sometimes
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(4) the concept of equivalence of families.

These ingredients must satisfy:

(i) a family parametrised by a single point {p} is just an object inA (and equivalence
of objects is equivalence of families over {p});

(ii) given a familyX parametrised by S and a map1 φ : S̃→ S, there is a family φ∗X
parametrised by S̃ (the “pullback ofX along φ”), with pullback being functorial
and preserving equivalence.

In particular, for any family X parametrised by S and any s ∈ S there is an object Xs
given by pulling back X along the inclusion of {s} in S. We think of Xs as the object in
the family X whose parameter is the point s in the base space S.

3. Examples of families and deformations

Example 1. A family of compact Riemann surfaces parametrised by a complex manifold
S is a surjective holomorphic map,

π : T −→ S,

from a complex manifold T of (complex) dimension dim(T ) = dim(S)+1 to S, such
that π is proper (i.e., the inverse image π−1(C) of any compact subset C of S under π
is compact) and has maximal rank (i.e., its derivative is everywhere surjective). Then
π−1(s) is a compact Riemann surface for each s ∈ S, and is the object in the family with
parameter s.

The family defined by π is an algebraic family if π is a morphism of nonsingular
projective varieties.

Example 2. A family of nonsingular complex projective varieties parametrised by a
nonsingular complex variety S is a proper surjective morphism,

π : T −→ S,

withT nonsingular andπ having maximal rank. We can also allowT andS to be singular,
but then we require an extra technical condition (that π must be flat with reduced fibres).

In this example equivalence of families π1 : T1 → S1 and π2 : T2 → S2 is given by
isomorphisms f : T1 → T2 and g : S1 → S2 such that g ◦π1 = π2 ◦f . Equivalence of
families in the first example is similar.

Definition. A deformation of a nonsingular projective variety or compact complex man-
ifoldM is a family π : T → S together with an isomorphism

π−1(s0)∼=M
for some s0 ∈ S (or it is the germ at s0 of such a π ).

1Here ‘map’ means ‘morphism’ in algebraic geometry, and ‘complex analytic map’ in complex
analytic geometry.
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Example 3. A family of holomorphic (or algebraic) vector bundles over a compact
Riemann surface (or nonsingular complex projective curve) � is a vector bundle over
�×S where S is the base space (see, e.g., [22]).

A deformation of a vector bundle E0 over � is a vector bundle E over a product
�×S together with an isomorphism

E|�×{s0} ∼= E0

for some s0 ∈ S (or the germ at s0 of such a family of vector bundles).

4. Fine and coarse moduli spaces

For definiteness, let us consider moduli problems in algebraic geometry rather than
complex analytic geometry until it is specified otherwise.

Definition. A fine moduli space for a given (algebraic) moduli problem is an algebraic
varietyM with a familyU parametrised byM having the following (universal) property:
• for every family X parametrised by a base space S, there exists a unique map

φ : S→M such that

X ∼ φ∗U.
Then, U is called a universal family for the given moduli problem.
Many moduli problems have no fine moduli space, but nonetheless there may be a

moduli space satisfying slightly weaker conditions, called a coarse moduli space. If a
fine moduli space does exist, it will automatically satisfy the conditions to be a coarse
moduli space. Both fine and coarse moduli spaces, when they exist, are unique up to
canonical isomorphism.

Definition. A coarse moduli space for a given moduli problem is an algebraic variety
M with a bijection

α : A/∼−→M

(where A is the set of objects to be classified up to the equivalence relation ∼) from the
set A/∼ of equivalence classes in A toM such that

(i) for every family X with base space S, the composition of the given bijection
α : A/∼→M with the function

νX : S −→ A/∼,
which sends s ∈ S to the equivalence class [Xs] of the objectXs with parameter
s in the family X, is a morphism;

(ii) when N is any other variety with β : A/∼→ N such that the composition
β ◦νX : S→N is a morphism for each family X parametrised by a base space
S, then

β ◦α−1 :M −→N

is a morphism.
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5. The jump phenomenon

For some moduli problems, a family X with base space S which is connected and of
dimension strictly greater than zero may exist such that for some s0 ∈ S we have

(i) Xs ∼Xt for all s, t ∈ S−{s0};
(ii) Xs �∼Xs0 for all s ∈ S−{s0}.

Then we cannot construct a moduli space including the equivalence class of the object
Xs0 . Typically, “unstable” objects must be left out because of this jump phenomenon
(e.g., when trying to construct moduli spaces of complex projective curves—including
singular curves—or moduli spaces of vector bundles).

6. Classical examples of moduli spaces

• The Jacobian J (�) of a compact Riemann surface � is a fine moduli space for
holomorphic line bundles (i.e., vector bundles of rank 1) of fixed degree over � up to
isomorphism. As a complex manifold

J (�)∼= Cg/Ł,

where g is the genus of � and Ł is a lattice of maximal rank in Cg (i.e., J (�) is a
complex torus). Since J (�) is also a complex projective variety, it is an abelian variety.

More precisely, J (�) is the quotient of the complex vector space H 0(�,K�) of
dimension g by the latticeH 1(�,Z)∼= Z2g . HereK� is the complex cotangent bundle of
� andH 0(�,K�) is the space of its holomorphic sections, i.e., the space of holomorphic
differentials on �. If we choose a basis ω1, . . . ,ωg of holomorphic differentials and a
standard basis γ1, . . . ,γ2g for H1(�,Z) such that

γi ·γi+g = 1=−γi+g ·γi
if 1 ≤ i ≤ g and all other intersection pairings γi ·γj are zero, then we can associate to
� the g×2g period matrix P(�) given by integrating the holomorphic differentials ωi
around the 1-cycles γj . The Jacobian J (�) can then be identified with the quotient of
Cg by the lattice spanned by the columns of this period matrix.

We can in fact always choose the basis ω1, . . . ,ωg of holomorphic differentials so
that the period matrix P(�) is of the form(

Ig Z
)
,

where Ig is the g×g identity matrix. This period matrix is called a normalised period
matrix. The Riemann bilinear relations tell us thatZ is symmetric and its imaginary part
is positive definite.
• The moduli space �g of all abelian varieties of dimension g was one of the first

moduli spaces to be constructed. We have

�g
∼=�g/Sp(2g;Z),

where �g is Siegel’s upper half space, which consists of the symmetric g×g complex
matrices with positive definite imaginary part.
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One way to construct and study the moduli space �g of compact Riemann surfaces
of genus g is via the Torelli map

τ :�g −→�g

given by

� �−→ J (�).

Torelli’s theorem tells us that τ is injective (cf. [4], [24]). Describing the image of �g

in �g is known as the Schottky problem.
• For the Teichmüller approach (cf. [17]) to �g we consider the space of all pairs

consisting of a compact Riemann surface of genus g and a basis γ1, . . . ,γ2g forH1(�,Z)

as above such that

γi ·γi+g = 1=−γi+g ·γi
if 1≤ i ≤ g and all other intersection pairings γi ·γj are zero. If g ≥ 2 this space (called
Teichmüller space) is naturally homeomorphic to an open ball in C3g−3 (by a theorem
of Bers). The mapping class group ,g (which consists of the diffeomorphisms of the
surface modulo isotopy) acts discretely on Teichmüller space, and the quotient can be
identified with the moduli space �g . This gives us a description of �g as a complex
analytic space, but not as an algebraic variety.
• To construct the moduli space �g as an algebraic variety using geometric invariant

theory, we use the fact that every compact Riemann surface of genus g can be embedded
canonically as a curve of degree 6(g−1) in a projective space of dimension 5g−6. The
use of the word “canonical” here is a pun; it refers both to the canonical line bundle
(although here “tri-canonical” would be more accurate) and to the fact that no choices
are involved, except that a choice of basis is needed to identify the projective space
with the standard one P5g−6. This enables us to identify �g with the quotient of an
algebraic variety by the group PGL(n+1;C). Here however we do not have a discrete
group action, and to construct the quotient we must use Mumford’s geometric invariant
theory (see Section 8), which was developed in the 1960s in order to provide algebraic
constructions of this moduli space and others.

For a very recent guide to many different aspects of the moduli spaces �g see [5].

7. Moduli spaces as orbit spaces

Example 4. As a simple example, let us consider the moduli space of hyperelliptic
curves of genus g. By a hyperelliptic curve of genus g we mean a nonsingular complex
projective curve C with a double cover f : C→ P1 branched over 2g+2 points in the
complex projective line P1.

Let S be the set of unordered sequences of 2g+2 distinct points in P1, which we can
identify with an open subset of the complex projective space P2g+2 by associating to
an unordered sequence a1, . . . ,a2g+2 of points in P1 the coefficients of the polynomial
whose roots are a1, . . . ,a2g+2. Then it is not hard to construct a family � of hyperelliptic
curves of genus g with base space S such that the curve parametrised by a1, . . . ,a2g+2



8 Moduli spaces in algebraic geometry

is a double cover of P1 branched over a1, . . . ,a2g+2. This family is not quite a universal
family, but it does have the following two properties.

(i) The hyperelliptic curves �s and �t parametrised by elements s and t of the base
space S are isomorphic if and only if s and t lie in the same orbit of the natural
action of G= SL(2;C) on S.

(ii) (Local universal property.) Any family of hyperelliptic curves of genus g is
locally equivalent to the pullback of � along a morphism to S.

These properties, (i) and (ii), imply that a (coarse) moduli spaceM exists if and only if
there is an orbit space for the action ofG on S [15]. Here as in [15] by an orbit space we
mean a G-invariant morphism φ : S→M such that every other G-invariant morphism
ψ : S→M factors uniquely through φ and φ−1(m) is a singleG-orbit for eachm ∈M .
(We can think of an orbit space as the set ofG-orbits endowed in a natural way with the
structure of an algebraic variety).

This sort of situation arises quite often in moduli problems, and the construction of a
moduli space is then reduced to the construction of an orbit space. Unfortunately such
orbit spaces do not in general exist. The main problem (which is closely related to the
jump phenomenon discussed above) is that there may be orbits contained in the closures
of other orbits, which means that the natural topology on the set of all orbits is not
Hausdorff, so this set cannot be endowed naturally with the structure of a variety. This
is the situation with which Mumford’s geometric invariant theory [14] attempts to deal
with, telling us how to throw out certain “unstable” orbits in order to be able to construct
an orbit space 2.

Example 5. LetG= SL(2;C) act on (P1)
4 via Möbius transformations on the Riemann

sphere

P1 = C∪{∞}.
Then {

(x1,x2,x3,x4) ∈ (P1)
4 : x1 = x2 = x3 = x4

}
is a single orbit which is contained in the closure of every other orbit. On the other hand,
the open subset {

(x1,x2,x3,x4) ∈ (P1)
4 : x1,x2,x3,x4 distinct

}
of (P1)

4 has an orbit space which can be identified with

P1−{0,1,∞}

via the cross ratio (cf. [17]).

2See also [6], [8] for more general constructions of orbit spaces which can be used for moduli
problems where geometric invariant theory seems not to be of use.
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8. Mumford’s geometric invariant theory

Let X be a complex projective variety (i.e., a subset of a complex projective space de-
fined by the vanishing of homogeneous polynomial equations), and let G be a complex
reductive group acting on X. To apply geometric invariant theory we require a lineari-
sation of the action; that is, an ample line bundle L on X and a lift of the action ofG to
L. We lose very little generality by assuming that, for some projective embedding

X ⊆ Pn,

the action of G on X extends to an action on Pn given by a representation

ρ :G−→ GL(n+1),

and taking for L the hyperplane line bundle on Pn. Algebraic geometry associates to
X ⊆ Pn its homogeneous coordinate ring

A(X)=
⊕
k≥0

H 0(X,L⊗k),
which is the quotient of the polynomial ring C[x0, . . . ,xn] in n+1 variables by the ideal
generated by the homogeneous polynomials vanishing on X. Since the action of G on
X is given by a representation ρ : G→ GL(n+1), we get an induced action of G on
C[x0, . . . ,xn] and on A(X), and we can therefore consider the subring A(X)G of A(X)
consisting of the elements of A(X) left invariant byG. This subring A(X)G is a graded
complex algebra, and becauseG is reductive it is finitely generated [14]. To any finitely
generated graded complex algebra we can associate a complex projective variety, and
so we can defineX//G to be the variety associated to the ring of invariants A(X)G. The
inclusion of A(X)G in A(X) defines a rational map φ from X to X//G, but because
there may be points of X ⊆ Pn where every G-invariant polynomial vanishes this map
will not in general be well defined everywhere on X (i.e., it will not be a morphism).

We define the setXss of semistable points inX to be the set of those x ∈X for which
there exists some f ∈ A(X)G not vanishing at x. Then the rational map φ restricts to a
surjective G-invariant morphism from the open subset Xss of X to the quotient variety
X//G. However φ : Xss → X//G is still not in general an orbit space: when x and y
are semistable points of X we have φ(x)= φ(y) if and only if the closures OG(x) and
OG(y) of the G-orbits of x and y meet in Xss . Topologically X//G is the quotient of
Xss by the equivalence relation for which x and y in Xss are equivalent if and only if
OG(x) and OG(y) meet in Xss .

We define a stable point of X to be a point x of Xss with a neighbourhood in Xss

such that everyG-orbit meeting this neighbourhood is closed in Xss , and is of maximal
dimension equal to the dimension of G. If U is any G-invariant open subset of the
set Xs of stable points of X, then φ(U) is an open subset of X//G and the restriction
φ|U : U → φ(U) of φ to U is an orbit space for the action of G on U in the sense
described above, so that it makes sense to write U/G for φ(U). In particular there is
an orbit space Xs/G for the action of G on Xs , and X//G can be thought of as a
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compactification of this orbit space.

Xs

��

⊆
open

Xss

��

⊆
open

X

Xs/G ⊆
open

Xss/∼ = X//G.

Example 6. Let us return to hyperelliptic curves of genus g. We have seen that the
construction of a moduli space reduces to the construction of an orbit space for the
action of G = SL(2;C) on an open subset S of P2g+2. If we identify P2g+2 with the
space of unordered sequences of 2g+2 points in P1, then S is the subset consisting of
unordered sequences of distinct points. When the action of G on P2g+2 is linearised in
the obvious way then an unordered sequence of 2g+2 points in P1 is semistable if and
only if at most g+1 of the points coincide anywhere on P1, and is stable if and only if at
most g of the points coincide anywhere on P1 (see, e.g., [7, Chapter 16]). Thus S is an
open subset of Ps2g+2, so an orbit space S/G exists with compactification the projective
variety P2g+2//G. This orbit space is then the moduli space of hyperelliptic curves of
genus g.

Other moduli spaces (such as moduli spaces of curves and of vector bundles; see,
e.g., [2], [3], [14], [13], [15]) can be constructed as orbit spaces via geometric invariant
theory in a similar way. For an example of one of many infinite dimensional versions,
see [1].

9. Symplectic reduction

Geometric invariant theoretic quotients are closely related to the process of reduction
in symplectic geometry, and thus many moduli spaces can be described as symplectic
reductions.

Suppose that a compact, connected Lie groupK with Lie algebra k acts smoothly on
a symplectic manifold X and preserves the symplectic form ω. Let us denote the vector
field on X defined by the infinitesimal action of a ∈ k by

x �−→ ax.

By a moment map for the action of K on X we mean a smooth map

µ :X −→ k∗

that satisfies

dµ(x)(ξ) ·a = ωx
(
ξ,ax

)
for all x ∈X, ξ ∈ TxX, and a ∈ k. In other words, ifµa :X→ R denotes the component
of µ along a ∈ k defined for all x ∈X by the pairing

µa(x)= µ(x) ·a
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between µ(x) ∈ k∗ and a ∈ k, then µa is a Hamiltonian function for the vector field
on X induced by a. We shall assume that all our moment maps are equivariant moment
maps; that is, µ : X→ k∗ is K-equivariant with respect to the given action of K on X
and the coadjoint action of K on k∗.

It follows directly from the definition of a moment map µ : X → k∗ that if the
stabiliser Kζ of any ζ ∈ k∗ acts freely on µ−1(ζ ), then µ−1(ζ ) is a submanifold of X
and the symplectic form ω induces a symplectic structure on the quotient µ−1(ζ )/Kζ .
With this symplectic structure the quotient µ−1(ζ )/Kζ is called the Marsden-Weinstein
reduction, or symplectic quotient, at ζ of the action of K on X. We can also consider
the quotient µ−1(ζ )/Kζ when the action of Kζ on µ−1(ζ ) is not free, but in this case it
is likely to have singularities.

Example 7. Consider the cotangent bundle T ∗Y of any n-dimensional manifold Y with
its canonical symplectic form ω which is given by the standard symplectic form

ω =
n∑
j=1

dpj ∧dqj (9.1)

with respect to any local coordinates (q1, . . . ,qn) on Y and the induced coordinates
(p1, . . . ,pn) on its cotangent spaces. If Y is the configuration space of a classical
mechanical system then T ∗Y is the phase space of the system and the coordinates
p = (p1, . . . ,pn) ∈ T ∗q Y are traditionally called the momenta of the system.

If Y is acted on by a Lie groupK , the induced action on T ∗Y preserves ω and there is
a moment map µ : T ∗Y → k∗ whose components µa along a ∈ k are given by pairing
the moment coordinates p with the vector fields onX induced by the infinitesimal action
of K; that is,

µa(p,q)= p ·aq
for all q ∈ Y and for all p ∈ TqY . When K = SO(3) acts by rotations on Y = R3 then
µ is the angular momentum, or moment of momentum, about the origin.

The connection with GIT arises as follows. LetX be a nonsingular complex projective
variety embedded in complex projective space Pn, and let G be a complex Lie group
acting onX via a complex linear representation ρ :G→ GL(n+1;C). A necessary and
sufficient condition for G to be reductive is that it is the complexification of a maximal
compact subgroup K (e.g., G= GL(m;C) is the complexification of the unitary group
U(m)). By an appropriate choice of coordinates on Pn we may assume that ρ maps K
into the unitary group U(n+1). Then the action of K preserves the Fubini-Study form
ω on Pn, which restricts to a symplectic form onX. There is a moment map µ :X→ k∗
defined (up to multiplication by a constant scalar factor depending on differences in
convention on the normalisation of the Fubini-Study form) by

µ(x) ·a = x̂
t
ρ∗(a)x̂

2πi||x̂||2 (9.2)
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for all a ∈ k, where x̂ ∈ Cn+1 − {0} is a representative vector for x ∈ Pn and the
representationρ :K→ U(n+1) inducesρ∗ : k→ u(n+1) and duallyρ∗ : u(n+1)∗ →
k∗.

In this situation we have two possible quotient constructions, giving us the GIT
quotient X//G, if we want to work in algebraic geometry and the symplectic reduction
µ−1(0)/K , if we want to work in symplectic geometry. In fact these give us the same
quotient space, at least up to homeomorphism (and diffeomorphism away from the
singularities). More precisely, any x ∈ X is semistable if and only if the closure of its
G-orbit meets µ−1(0), and the inclusion of µ−1(0) intoXss induces a homeomorphism

µ−1(0)/K→X//G.

There are other quotient constructions closely related to symplectic reduction and geo-
metric invariant theory, which are useful when working with Kähler or hyperkähler
manifolds.

10. Moduli spaces of vector bundles

In physics, moduli spaces are often described as symplectic reductions of infinite-
dimensional symplectic manifolds by infinite-dimensional groups (although the moduli
spaces themselves are usually finite-dimensional). One example is given by moduli
spaces of holomorphic vector bundles (cf. [11]), which can also be described using
Yang-Mills theory (cf. [21]).

The Yang-Mills equations arose in physics as generalisations of Maxwell’s equa-
tions. They have become important in differential and algebraic geometry. Yang-Mills
equations are formulated over arbitrary compact oriented Riemannian manifolds, and
in particular over compact Riemann surfaces and higher dimensional Kähler manifolds.
The fundamental theorem of Donaldson, Uhlenbeck and Yau—a holomorphic bundle
over a compact Kähler manifold admits an irreducible HermitianYang-Mills connection
if and only if it is stable—can be thought of as an infinite-dimensional illustration of the
link between symplectic reduction and geometric invariant theory.

LetM be a compact oriented Riemannian manifold and letE be a fixed complex vector
bundle overM with a Hermitian metric. Recall that a connectionA onE (or equivalently
on its frame bundle) can be defined by a covariant derivative dA ::pM(E)→:

p+1
M (E),

where :pM(E) denotes the space of C∞-sections of
∧p

T ∗M ⊗E (i.e., the space of
p-forms onM with values inE). This covariant derivative satisfies the extended Leibniz
rule

dA(α∧β)=
(
dAα

)∧β+(−1)pα∧dAβ
for α ∈ :pM(E), β ∈ :qM(E), and therefore is determined by its restriction dA :
:0
M(E) → :1

M(E). The Leibniz rule implies that the difference of two connections
is given by an E⊗E∗-valued 1-form onM , and hence that the space of all connections
on E is an infinite-dimensional affine space � based on the vector space :1

M(E⊗E∗).
Similarly, the space of all unitary connections on E (i.e., connections compatible with
the Hermitian metric on E) is an infinite-dimensional affine space based on the space of
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1-forms with values in the bundle gE of skew-adjoint endomorphisms of E. The Leib-
niz rule also implies that the composition dA ◦dA : :0

M(E)→ :2
M(E) commutes with

multiplication by smooth functions, and thus we have

dA ◦dA(s)= FAs
for allC∞ sections s ofE, where FA ∈:2

M(gE) is defined to be the curvature of the uni-
tary connection A. The Yang-Mills functional on the space � of all unitary connections
on E is defined as the L2-norm square of the curvature, given by the integral overM of
the product of the function ||FA||2 and the volume form onM defined by the Riemannian
metric and the orientation. The Yang-Mills equations are the Euler-Lagrange equations
for this functional, given by

dA ∗FA = 0,

(see [1, Proposition 4.6]) where dA has been extended in a natural way to:∗M(gE). The
gauge group 	, that is, the group of unitary automorphisms of E, acts by preserving the
Yang-Mills functional and the Yang-Mills equations.

If M is a complex manifold we can identify the space �(1,1) of unitary connections
on E with curvature of type (1,1) with the space of holomorphic structures on E, by
associating to a holomorphic structure 
 the unitary connection whose (0,1)-component
is given by the ∂̄-operator defined by 
. This space �(1,1) is an infinite-dimensional
complex subvariety of the infinite-dimensional complex affine space �, acted on by the
complexified gauge group 	c (the group of complex C∞ automorphisms ofE), and two
holomorphic structures are isomorphic if and only if they lie in the same 	c-orbit.

When (M,ω) is a compact Kähler manifold there is a 	-invariant Kähler form : on
� defined by

:(α,β)= 1

8π2

∫
M

tr(α∧β)∧ωn−1,

where n is the complex dimension of M . The Lie algebra of 	 is the space :0
M(gE) of

sections of gE , and there is a moment map µ : � → (:0
M(gE))

∗ for the action of 	 on
� given by the composition of

A �−→ 1

8π2FA∧ωn−1 ∈:2n
M (gE)

with integration over M . On �(1,1) the norm square of this moment map agrees up to
a constant factor with the Yang-Mills functional, which is minimised by the Hermitian
Yang-Mills connections.

As in the finite-dimensional situation, for a suitable definition of stability the moduli
space of stable holomorphic bundles of topological typeE overM (which plays the role
of the GIT quotient) can be identified with the moduli space of (irreducible) Hermitian
Yang-Mills connections on E (which plays the role of the symplectic reduction). This
was proved in general for vector bundles over compact Kähler manifolds Uhlenbeck
and Yau with a different proof for nonsingular complex projective varieties given by
Donaldson.
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Over a compact Riemann surface M the situation is relatively simple, as all connec-
tions on E have curvature of type (1,1) and so the infinite-dimensional complex affine
space � can be identified with the space � of holomorphic structures on E. A moment
map for the action of the gauge group on � is given by assigning to a connection A ∈�
its curvature FA ∈ :2

M(gE), and after a suitable central constant has been added the
Hermitian Yang-Mills connections are exactly the zeros of the moment map.

A holomorphic bundle 
 over a Riemann surface M is stable (resp., semistable) if
µ(�) < µ(
) (resp., µ(�)≤ µ(
)) for every proper subbundle � of 
, where

µ(�)= deg(�)/rank(�).

When the theory of stability of holomorphic vector bundles was first introduced,
Narasimhan and Seshadri proved that a holomorphic vector bundle over M is stable
if and only if it arises from an irreducible representation of a certain central extension
of the fundamental group π1(M). Atiyah and Bott [1] translated this in terms of connec-
tions to show that a holomorphic vector bundle overM is stable if and only if it admits a
unitary connection with constant central curvature. They deduced from this the existence
of a homeomorphism between the moduli space �(n,d) of stable bundles of rank n and
degree d overM and the moduli space of irreducible connections with constant central
curvature on a fixed C∞ bundle E of rank n and degree d overM .

11. The Kodaira-Spencer infinitesimal deformation map

If we are working in complex analytic geometry, rather than algebraic geometry, then
there are nice methods for studying deformations and thus the local structure of moduli
spaces.

Let π : X → S be a deformation of a compact complex manifold M = π−1(s0),
where s0 ∈ S. We can coverM (thought of as a subset of X) with open subsetsWi of X
such that there exist isomorphisms

hi :Wi −→ Ui×Vi,
where Vi = π(Wi) is open in S and Ui = M ∩Wi is open in M = π−1(s0) and the
projection of hi onto Vi is just π :Wi → Vi .

For each i �= j we then get a holomorphic vector field θij onUi∩Uj by differentiating
hi ◦h−1

j in the direction of any tangent vector v ∈ Ts0S. These holomorphic vector fields
define a 1-cocycle in the tangent sheafC ofM . This gives us the Kodaira-Spencer map

ρπ : Ts0S −→H 1(M,C).

Theorem (Kuranishi). IfM is a compact complex manifold, then it has a deformation
π :X→ S with π−1(s0)=M such that

(i) the Kodaira-Spencer map ρπ : Ts0S→H 1(M,C) is an isomorphism;
(ii) π has the local universal property for deformations (i.e., any deformation ofM

is locally the pullback of π along a map f into S);
(iii) if H 0(M,C)= 0, then the map f in (ii) is unique;
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(iv) if H 2(M,C)= 0, then S is nonsingular at s0 and so dimS = dimH 1(M,C).

This deformation π is called theKuranishi deformation ofM (its germ at s0 is unique
up to isomorphism), and S is called the Kuranishi space ofM .

Suppose there exists a fine moduli space of complex manifolds diffeomorphic to
M . Then the moduli space is locally isomorphic near [M] to the Kuranishi space near
s0. More often there is only a coarse moduli space, and the moduli space is locally
isomorphic near [M] to the quotient of the Kuranishi space by the action of the group
of automorphisms ofM . However this nice behaviour only happens if the dimension of
H 0(M,C) is locally constant; otherwise jumping phenomena tend to arise so that no
moduli space can exist.

Application

The dimension of the moduli space �g of curves of genus g can be calculated using
Kuranishi theory:

dim �g = 3g−3.

12. Conclusion

Even within algebraic geometry, moduli spaces appear in many varied and important
rôles. As the other articles in these proceedings indicate, they also appear in many other
areas of mathematics and also physics.
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HODGE THEORYAND DEFORMATIONS OF
COMPLEX STRUCTURES

CLAIRE VOISIN

1. Introduction

These notes are intended for a reader with a certain knowledge of algebraic geometry.
We have however provided each section with a few lines of introduction in order to give
an idea of the content for the other readers.

The purpose of these notes is to provide an introduction to the theory and applications of
the variations of Hodge structure (VHS), that is the way the Hodge decomposition on the
cohomology groups of a projective or Kähler variety varies with its complex structure.

Associating to a complex structure onX the Hodge decomposition on its cohomology
groups allows one to define the period map from the moduli space of X to a period
domain. The latter are to a certain extent well-understood, since they are homogeneous
spaces, so we can use the period map to prove local or global properties of the moduli
space of X. For example, we can prove by curvature computation the positivity of the
Hodge bundles: an essential point here is the transversality property that we will explain
in detail, which says essentially that the image of the period map is tangent to a certain
distribution defined on the period domain, and called the horizontal distribution. This
property is used in many ways, as we will show in these notes, but it is also responsible
for the fact that in general the period map cannot be surjective so that we cannot use
the period map to uniformize the moduli spaces, except in a few well-understood cases,
such as abelian varieties and K3 surfaces (or more generally hyperkähler varieties).

In any case, in order to use the period map for the study of the moduli space, an
essential problem to solve is the so-called Torelli problem, which asks whether the
period map is injective, that is whether the complex structure onX is determined by the
Hodge structures on its cohomology groups. Of course there are many counterexamples
to this general statement: for example, givenX, one may consider the family of varieties,
parametrized by X, consisting of the blow-ups of X at one of its points; these varieties
are not isomorphic in general, but they have isomorphic Hodge structures. However, we
shall focus on the positive results on this problem and we shall turn especially to the use of
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infinitesimal computations to attack it. The point is that, proving a Torelli theorem means
being able to determine a complex structure on X from the data of its periods, which
are a mixture of algebro-geometric data (the Hodge filtration) and of transcendental data
(the integral (co)homology). Now going to the corresponding infinitesimal objects, that
is differentiating the period map, we can forget about the transcendental part, and stay
inside algebraic geometry.

We shall first explain how to compute the differential of the period map, and we shall
give a few examples where the period map is known to be an immersion. In a more subtle
vein, we shall next explain an argument due to Donagi [4] which eventually allows us to
prove a generic Torelli theorem (i.e., to prove that a period map is of degree one on its
image) by purely algebro-geometric means: the point is that the differential of the period
map at a given point has itself a moduli point, i.e., an isomorphism equivalence class,
and if it is true that the map to which X associates the moduli point of the differential
of the period map at X is generically injective, the same is true of the period map itself.

We shall conclude these notes with a few applications of infinitesimal variations of
Hodge structures to the study of the Hodge theory and algebraic cycles of the general
fiber of a family. In fact, despite its transcendental character, Hodge theory is conjectured
to be related in a very precise way to the Chow groups of a variety. For example, it is
conjectured that if a variety has only trivial Hodge structures, that is, no odd dimensional
rational cohomology and only type (p,p) rational cohomology classes of degree 2p for
every p, then its rational Chow ring is isomorphic to its cohomology ring by the cycle
class map. In the other direction it is known that if the cycle class map is injective, the
Hodge structures are trivial, a statement first proved by Mumford [10] for surfaces and
generalized in [12], [13]. Here, to give an idea of how the variations of Hodge structure
can be useful, we shall describe the Abel-Jacobi map, and explain a few triviality [6]
or non-triviality [16] results for the Abel-Jacobi map of the general member of certain
families.

Finally, we shall sketch the argument of the most beautiful result in the theory of vari-
ations of Hodge structure, Nori’s theorem [11], of which the triviality result mentioned
above appears now as a corollary. Nori proves that the relative rational cohomology
groups Hk(X× T ,Z) vanish when k ≤ 2n and Z ⊂ X× T is any complete family
of sufficiently ample complete intersections in X of dimension n. This is to be put in
contrast with Lefschetz theorem, which would give this vanishing only for k ≤ n. The
main point here is to show that certain complexes built from the infinitesimal variation of
Hodge structure of the family Z→ T become exact for sufficiently ample Zt ’s. Finally,
a simple but important point in Nori’s result is the fact that the infinitesimal invariants
extracted from infinitesimal variations of Hodge structure are related to geometric object
such as Dolbeault cohomology classes on the total space of the universal family, via a
spectral sequence.

2. The period map and the Torelli problem

In this section, we define the Hodge filtration of a complex Kähler variety and the period
map. It associates to a complex structure on an underlying differentiable variety X the
corresponding Hodge filtration on the (fixed) cohomology groups of X. The Torelli
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problem addresses the question whether the period map is injective, that is, whether
the complex structure is determined up to isomorphism by the Hodge structure. There
are other related questions such as the infinitesimal Torelli problem which asks whether
the local period map is an immersion. To report on this last aspect, we first describe
the derivative of the period map, which involves the Kodaira-Spencer map, that is, the
classifying map for first-order deformations. We turn to Donagi’s approach to the generic
Torelli problem, which uses in certain cases the derivative of the period map to show
that the period map is generically one-to-one on its image.

2.1. Hodge structure. Let X be a projective complex variety or a Kähler compact
variety; the tangent space ofX at each point has a complex structure, which decomposes
the space An(X) of global complex C∞ differential forms on X as

An(X)=
⊕
p+q=n

Ap,q(X),

where Ap,q(X) is the space of differential forms everywhere of type (p,q), that is,
locally in the space generated by the dzi1 ∧ ·· · ∧ dzip ∧ dzj1 ∧ ·· · ∧ dzjq , where zk ,
k = 1, . . . ,dimX are holomorphic coordinates.

Now consider the cohomology groups

Hn(X,C)=Hn(X,Z)
⊗

C= {closed forms in An(X)}/dAn−1(X).

Hodge theory tells us that the decomposition of forms into types passes to the cohomol-
ogy, that is

Hn(X,C)=
⊕
p+q=n

Hp,q(X),

where Hp,q(X) is the set of classes representable by a closed form in Ap,q(X), and is
isomorphic to the Dolbeault cohomology groupHq(X,:

p
X). The decomposition above is

called the Hodge decomposition. One defines the Hodge filtration F •Hn(X) as follows:

FpHn(X)=
⊕
k≥p

Hk,n−k(X).

The Hodge structure onHn(X) is given by the position of the spacesHp,q with respect
to the integral lattice Hn(X,Z).

2.2. The period map. Suppose that π : � → B is a family of complex projective or
Kähler varieties deformingX, that is, � and B are smooth connected complex varieties,
π is a holomorphic proper submersion and X = π−1(0) for some point 0 ∈ B. We shall
denote by Xb the fiber π−1(b), for b ∈ B. If B is contractible, which is locally the case
and which we shall assume for the moment, there exists a diffeomorphism over B

� ∼=X0×B,
so that we have canonical isomorphisms

Hn
(
Xb,Z

)∼=Hn(�,Z)∼=Hn(X,Z).
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The period map associates to b ∈ B the Hodge filtration F •Hn(Xb) on the space
Hn(Xb,C) considered as a fixed space via the canonical isomorphism Hn(Xb,C) ∼=
Hn(X,C). So this is a map with value in the variety of flags of given ranks onHn(X,C).
As first discovered by Griffiths [7], [8] it has two essential properties:
• First, it is holomorphic, which means that if �n = Hn(X,C)⊗ 
B is the (triv-

ial) holomorphic vector bundle on B with fiber Hn(Xb,C) (more intrinsically �n =
Rnπ∗C⊗ 
B ), there are holomorphic subbundles Fp�n ⊂ �n such that Fp�n

b =
FpHn(Xb)⊂Hn(Xb,C).
• Second, it satisfies the transversality property: let ∇ : �n → �n ⊗:B be the

Gauss-Manin connection, which is simply the usual differentiation in the local natural
trivializations of �n used above over a contractible B. Then the transversality property
means

∇Fp�n ⊂ Fp−1�n
⊗

:B. (2.1)

In other words, under infinitesimal deformations of the complex structure, the Hodge
filtration is only shifted by 1.

2.3. Derivative of the periodmap. It is well known that ifW ⊂ V is a vector subspace
of a vector space, the tangent space to the Grassmannian at the point W is canonically
isomorphic to Hom(W,V/W). So the derivative of the map which to b ∈ B asso-
ciates the subspace FpHn(Xb) ⊂ Hn(Xb,C) ∼= Hn(X,C) has to be a map from TB,b
to Hom(FpHn(Xb),H

n(Xb,C)/F
pHn(Xb)). It is now an immediate consequence of

transversality that this map takes in fact its values in

Hom
(
Fp/Fp+1Hn(Xb),F

p−1/FpHn(Xb)
)

which is naturally contained in

Hom
(
FpHn(Xb),H

n(Xb,C)/F
pHn(Xb)

)
.

In fact, as one can show retracing through the identifications made, the map

TB,b→ Hom
(
Fp/Fp+1Hn(Xb),F

p−1/FpHn(Xb)
)

(2.2)

comes by dualisation and restriction at the point b from the map

∇ : Fp/Fp+1�n −→ Fp−1/Fp�n⊗:B, (2.3)

which fits in the following diagram:

∇ : Fp+1�n ��

��

Fp�n⊗:B

��
∇ : Fp�n ��

��

Fp−1�n⊗:B

��
∇ : Fp/Fp+1�n �� Fp−1/Fp�n⊗:B.
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Next note that we have the identifications

Fp/Fp+1Hn
(
Xb

)∼=Hq
(
:
p
Xb

)
, p+q = n.

The important result is the following Proposition.

Proposition 1. The map

TB,b −→ Hom
(
Hq

(
:
p
Xb

)
,Hq+1(:p−1

Xb

))
of (2.2) is the composition of the Kodaira-Spencer map

κ : TB,b −→H 1(TXb)
and of the map given by the cup-product in cohomology and the interior product

H 1(TXb)⊗
Hq

(
:
p
Xb

)−→Hq+1(:p−1
Xb

)
.

Here the Kodaira-Spencer map κ is the classifying map for the first-order deformation
of the complex structure ofXb parametrized by TB,b. Indeed, one can show thatH 1(TXb)

parametrizes exactly the isomorphism classes of first order deformations

Xb,ε −→Jε,

whereJε = SpecC[ε]/ε2 is the infinitesimal disk consisting of one point together with
one tangent vector.

Concretely, κ is induced by the long exact sequence of cohomology associated to the
short exact sequence of holomorphic bundles on Xb

0−→ TXb −→ T�|Xb −→ π∗TB |Xb −→ 0,

using the fact that H 0(π∗TB |Xb)= TB,b.
2.4. The Torelli problem. Usually, if B is not simply connected, there is a nontrivial
monodromy action

π1(B,0)−→ Aut
(
Hn(X,Z)

)
obtained as the local trivializations used above along paths. Because of this there is
no canonical identificationHn(Xb,Z)∼=Hn(X,Z). However we are always allowed to
choose one. Furthermore, one works usually with polarized variations of Hodge structure,
which means that there is an intersection form 〈 , 〉 on Hn(Xb,Z), which is locally
constant, that is, compatible with the local identifications Hn(Xb,Z)∼=Hn(Xb′,Z) for
any contractible open subset ofB containing b′ and b. This form has to be nondegenerate,
skew ifn is odd, symmetric ifn is even, and the Hodge filtration has to satisfy with respect
to 〈 , 〉:

FpHn
(
Xb

)⊥ = Fn−p+1Hn
(
Xb

)
. (2.4)
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There are in fact also sign conditions given by the Hodge index theorem which are
satisfied by the Hodge filtration but we shall not consider them.

A typical example of polarization is the one given by the intersection pairing, when
n= dimCX.

In any case, it follows from the existence of the locally constant intersection pairing
〈 , 〉 that the monodromy group will be contained in , = Aut(Hn(X,Z), 〈 , 〉) so that we
can choose near each b a locally constant isomorphism(

Hn(Xb,Z), 〈 , 〉
)∼= (

Hn(X,Z), 〈 , 〉)
well defined up to ,.

This allows us to define the period map � from the moduli space ofX, to �/,, where
� is the local period domain consisting of all filtrations F •Hn on Hn(X,C) of given
ranks, satisfying the condition:

Hn(X,C)= FpHn
⊕

Fn−p+1Hn,

where the bar is complex conjugation, and the polarization condition (2.4). The period
map � associates to b the Hodge filtration on Hn(Xb,C), that is, on Hn(X,C) via any
choice of an isomorphism(

Hn(Xb,Z), 〈 , 〉
)∼= (

Hn(X,Z), 〈 , 〉),
as above.

Here the moduli space of X parametrizes all possible Kähler complex structures on
X up to isomorphism and is built from a variety B parametrizing a family � → B as
above by identifying points with isomorphic fibers.

The Torelli problem asks for the injectivity of �. That is, we ask whether the ex-
istence of an isomorphism (Hn(Xb,Z), 〈 , 〉) ∼= (Hn(Xb′,Z), 〈 , 〉) inducing an isomor-
phism Hn(Xb,C)∼=Hn(Xb′,C) compatible with the Hodge filtrations implies that Xb
is isomorphic toXb′ . It is known to hold for curves, K3 surfaces, cubic threefolds, cubic
fourfolds.

The generic Torelli problem asks whether the period map is of degree 1 on its image.
We shall first of all turn to the infinitesimal Torelli problem, which asks whether the
local period map is an immersion. By the description of the derivative of the period map
given in Proposition 1, this will be the case if the map induced by the cup-product⊕

d�p,q :H 1(TX)−→⊕
Hom

(
Hq

(
:
p
X

)
,Hq+1(:p−1

X

))
is injective. This is known to be true for X a nonhyperelliptic curve, by Noether’s
theorem, and also for smooth hypersurfaces in projective space, by Carlson-Griffiths
description of their IVHS [1], with the exception of cubic surfaces. Finally it is also
true for any Calabi-Yau variety, that is a Kähler variety with trivial canonical bundle.
Indeed, let η be a nonzero generator of H 0(:nX) = H 0(KX) = C, n = dim X; then
η corresponds to a nowhere vanishing holomorphic n-form, hence induces by interior
product an isomorphism

TX ∼=:n−1
X ,
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which induces an isomorphism in cohomology

H 1(TX)∼=H 1(:n−1
X

)
.

Since this last map is obviously equal to d�n,0(η), it follows that d�n,0 is injective.
We shall conclude this section with Donagi’s approach [4] to the generic Torelli

problem for certain families. One starts with the observation that the image Im⊕d�p,q

of H 1(TX) in ⊕Hom(Hq(:
p
X),H

q+1(:
p−1
X )) has a moduli point in the quotient � of

the Grassmannian

Grass
(
N,

⊕
Hom

(
Hq

(
:
p
X

)
,Hq+1(:p−1

X

)))
under the groupLp,q Aut(Hq(:

p
X)), whereN = dimH 1(TX). Notice that this quotient

does not depend on the complex structure ofX, assumingH 1(TX) of constant dimension;
for clarity it would be better to replace here Hq(:

p
X) by abstract spaces V p,q . So we

have a natural map d� from the moduli space ofX to �, which toX associates the orbit
of Im⊕d�p,q(H 1(TX)) under the group Lp,q Aut(Hq(:

p
X)).

Now to prove the generic Torelli theorem for the family of deformations of X, we
have to show that if we have two open subsets U1 and U2 of the moduli space of X and
an isomorphism j : U1 ∼= U2 such that �◦ j = �, then U1 = U2 and j = id . But it is
immediate to conclude under these assumptions that we also have

d�◦j = d�.

The conclusion is that if the map d� is of degree 1 on its image, the same is true of �.
This reasoning has been applied successfully by Donagi [4] to get a generic Torelli

theorem for hypersurfaces of degree d in Pn, with a few series of exceptions, the most
significant series of exceptions being the cases where d divides n+1, which includes
the Calabi-Yau hypersurfaces (d = n+1). It has been also used by M. Green in [5] to
prove the generic Torelli theorem for the family of sufficiently ample hypersurfaces of
any given variety with very ample canonical bundle. Finally, I used it recently [14] to
prove the generic Torelli theorem for the quintic threefolds (essentially the first family
of exceptions to Donagi’s theorem).

Remark 1. The quintic threefold is the typical example of a Calabi-Yau threefold, and,
in relation to mirror symmetry [15], a Torelli theorem might be especially interesting
for these varieties. It is also interesting to note that for Calabi-Yau threefolds the orbit of
Im⊕d�p,q(H 1(TX)) under the groupLp,q Aut(Hq(:

p
X)) determines and is determined

by the so-calledYukawa coupling, which is a cubic form onH 1(TX). By mirror symmetry
this cubic form is conjectured to correspond to the quantum product of elements of
H 2(Y ), Y being the mirror variety.

3. Application of VHS to algebraic cycles and Nori’s theorem

In this section we give several applications of the variations of Hodge structures to
the study of algebraic cycles. We first explain the cycle class and the Deligne cycle
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class, defined on the codimension p cycles of a Kähler complex variety. Here the image
of the cycle class and the continuous part in the image of the Deligne cycle class are
conjecturally described by the Hodge conjecture. However the discrete part in the image
of the Deligne cycle class is quite mysterious. We give two results concerning it, at
least for the general member of certain families. We finally conclude these notes with
a sketch of Nori’s connectivity theorem. It shows that the usual Lefschetz theorems,
which concern the relative cohomology of a pair (X,Z), where Z is an ample complete
intersection in X, can be enormously improved if one works with a universal pair (X×
T ,ZT ), where T is a big enough parameter space for such complete intersections. Again
the machinery of infinitesimal variations of Hodge structures plays the major role.

3.1. Cycle class andAbel-Jacobi maps. IfZ ⊂X is a codimension p cycle, that is, an
integral combination of codimension p analytic (not necessarily smooth) subvarieties,
Z =∑

i niZi , we can define the class [Z] ∈H 2p(X,Z) of Z as

[Z] =
∑
i

ni[Zi],

where [Zi] is Poincaré dual of the fundamental homology class of Zi . In fact [Z] is
a Hodge class, that is, viewed as an element of H 2p(X,C), it lies in Hp,p(X). The
rational Hodge conjecture predicts that all classes in H 2p(X,Q)∩Hp,p(X) are classes
of codimension p cycles with rational coefficients.

There is also a more refined invariant attached to a codimension p cycle, which is
its Deligne cycle class. On cycles Z homologous to zero, i.e., such that [Z] = 0 ∈
H 2p(X,Z), the Deligne cycle class map is equal to the Abel-Jacobi map, with values
in the intermediate jacobian J 2p−1(X) defined by Griffiths [7], [8]. The intermediate
jacobian J 2p−1(X) is the complex torus defined as

J 2p−1(X)=H 2p−1(X,C)/
(
FpH 2p−1(X)⊕H 2p−1(X,Z)

)
.

Using Poincaré duality, it is also isomorphic to

Fn−p+1H 2n−2p+1(X)∗/H2n−2p+1(X,Z),

where n= dimX and the map H2n−2p+1(X,Z)→ Fn−p+1H 2n−2p+1(X)∗ is given by
integration of forms over homology classes. If Z is a codimension p cycle homologous
to zero, the imageM2p−1

X (Z) of Z by the Abel-Jacobi mapM2p−1
X is then constructed as

follows: sinceZ is homologous to zero, one can writeZ = ∂, for some real 2n−2p+1-
chain inX. Then using a little Hodge theory one can show that, although , is not closed,
the integration

∫
,

is well defined on Fn−p+1H 2n−2p+1(X), so that we have a well-
defined element

∫
,
∈ Fn−p+1H 2n−2p+1(X)∗. Finally, any other choice of , will be of

the form ,′ = ,+T , where T is a cycle, and it follows that∫
,′
−

∫
,

=
∫
T

∈H2n−2p+1(X,Z).

So M2p−1
X (Z)= ∫

,
modH2n−2p+1(X,Z) is a well-defined element of J 2p−1(X).
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Now a natural question is: what is the image ofM2p−1
X ? First of all, one can show that

the continuous part of this image is a complex subtorus of J 2p−1(X) which satisfies the
property that its tangent space is contained in

Hp−1,p(X)⊂H 2p−1(X,C)/FpH 2p−1(X)= T J 2p−1(X).

Conversely, the rational Hodge conjecture predicts that the continuous part in the image
is equal to the maximum subtorus of J 2p−1(X) satisfying this property.

Next, what about the discrete part? It is known to be a countable group, but it is not
known how to describe or characterize it in general. We shall now state two theorems
which show that in the presence of parameters one can answer this question at least for the
general complex structure: the first one is due to M. Green [6] and myself independently.

Theorem 1. Let X be a general hypersurface of degree at least 6 in P4; then the Abel-
Jacobi map M3

X is trivial modulo torsion.

Note that by Lefschetz theorem onlyM3
X can be nonzero for such variety. Also in any

degree, one can construct hypersurfaces in P4 for which the discrete part in the image
of M3

X is nontrivial (e.g., generic hypersurfaces containing two lines).
A similar result [6] holds in fact for higher dimensional hypersurfaces.
To give an idea of how the possibility of deforming X is used in the proof, let us

denote by U the parameter space for smooth hypersurfaces of degree d in P4. Over U
we have the family of intermediate jacobians, with fiber J 3(Xu) over u. This family has
a natural holomorphic structure, the sheaf of holomorphic sections being equal to

�3 =�3/
(
F 2�3⊕H 3

Z

)
.

Here, we use the notation of Section 2.2, andH 3
Z

is the local system with fiberH 3(Xu,Z).
Now suppose that over some generically finite cover V → U we have a holomorphic

family of one-cycles homologous to zero: v �→ Zv ⊂Xv . Then there is a corresponding
section νZ of the family of intermediate jacobians, given by

νZ(v)=M3
Xv

(
Zv

) ∈ J (
Xv

)
.

Griffiths [9] proves that νZ is holomorphic and that it satisfies a differential equation
analogous to the transversality condition (2.1).

Then the essential point in the proof of the theorem above is to note that for d ≥ 6
this differential equation is satisfied only by those sections of �3 which are locally
the projection of a flat (with respect to the Gauss-Manin connection) section of �3. A
monodromy argument then allows one to conclude that νZ is in fact a torsion section,
which finishes the proof.

The second one [16] is a generalization of a result first proved by Clemens [2] in
the case of the quintic threefold. It shows, in contrast to the previous theorem, that the
discrete part of the image of the Abel-Jacobi map M3

X may be very big even for the
general complex structure on X.
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Theorem 2 (Voisin). Let X be a nonrigid Calabi-Yau threefold. Then for a general
deformation Xt of X, the image of the Abel-Jacobi map of Xt is a countable subgroup
of J (Xt ) which, tensored with Q, is not a finite dimensional Q-vector space.

Here a Calabi-Yau threefold is a Kähler variety with trivial canonical bundle and h2,0

number equal to zero. These varieties are in particular algebraic, by Kodaira embedding
theorem. The nonrigidity condition means that one can deform the complex structure
on X.

Notice that there is no theoretical contradiction between Theorems 1 and 2. The point
is that the differential equation used in the proof of Theorem 1 is weak in the case of
Calabi-Yau threefolds, because then h3,0 = 1. (When h3,0 = 0 there is no differential
equation at all.)

The variations of Hodge structure are used in two ways in the proof of Theorem 2;
first of all we study the variation of Hodge structure of the family of sufficiently ample
hypersurfaces in X; this study allows us to show that there are at least countably many

smooth surfaces S
j
↪→X such that there is a nonzero integral class

λ ∈H 2(S,Z)0∩H 1,1(S),

where

H 2(S,Z)0 = Ker
(
j∗ :H 2(S,Z)−→H 4(X,Z)

)
.

By the Lefschetz theorem for (1,1) classes, that is the Hodge conjecture for degree 2
classes, such λ is then Poincaré dual to the homology class of some integral combination
Z of curves in S, and Z is homologous to zero in X, since λ ∈ Ker j∗. These one-cycles
homologous to zero are the ones used to show that the image of the Abel-Jacobi map is
nonfinitely generated, at least if the complex structure of X is general.

As for the nonfinite generation, the argument is quite technical, but again it uses
in an essential way the fact that the moduli space B of deformations of X is positive
dimensional: in fact, putting the construction above in family over B, we get countably
many families of one-cycles Zb ⊂ Xb, hence as in the proof of Theorem 1, countably
many associated sections νZ of the jacobian bundle

�3 =�3/
(
F 2�3⊕H 3

Z

)
on B. Now we can choose local liftings ν̃Z of the νZ’s to sections of the holomorphic
vector bundle �3/F 2�3 on B, and what we show in fact is:
The sections ν̃Z generate an infinite dimensional complex vector space of sections of

�3/F 2�3 on B.
This is easily seen to imply Theorem 2. (The fact that there is no continuous part in

the image of the Abel-Jacobi map of Xt for general t is quite standard.)

3.2. Nori’s theorem. Let X be a projective variety, and let L1, . . . ,Lr be holomorphic
line bundles on X which are very ample: this means that Li has enough global holo-
morphic sections to embed X in a projective space. Let Z ⊂X be the smooth complete
intersection of the hypersurfaces defined by σi ∈ H 0(Li), that is, these hypersurfaces
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intersect transversally along Z, so that in particular dimX = n+r , with n= dimZ. We
know by Lefschetz theorem that the restriction map

Hk(X,Z)−→Hk(Z,Z)

is an isomorphism for k < n and is injective for k = n, which is equivalent to the
following vanishing theorem for the relative cohomology groups:

Hk(X,Z,Z)= 0, for k ≤ n. (3.1)

Now let S = LiH 0(Li), which is a parameter space for the set of all such complete
intersections. For any morphism φ : T → S, one has the universal complete intersection
parametrized by T

ZT ⊂X×T
such that the fiber of ZT over t ∈ T is the intersection of the hypersurfaces defined by
σi ∈H 0(Li), where φ(t)= (σ1, . . . ,σr).

Now the vanishing of (3.1) easily implies that for any φ : T → S0, where S0 denotes
the open set of S consisting of r-tuples (σ1, . . . ,σr) such that the hypersurfaces defined
by σi intersect transversally, one has

Hk(X×T ,ZT ,Z)= 0, for k ≤ n. (3.2)

Indeed, this follows from the fact that the Leray spectral sequences for pr2 :X×T → T

and pr2 : ZT → T , which are known to degenerate at E2 by Deligne [3], will coincide
at E2 in degrees < n by (3.1). The argument works in fact as well for degree n.

Nori’s theorem [11] improves (3.2) as follows.

Theorem 3. If theLi’s are sufficiently ample, for any submersive morphism φ : T → S,
one has

Hk(X×T ,ZT ,Z,Q)= 0, for k ≤ 2n.

It is an interesting question to decide whether a topological proof of Nori’s theorem
can be given. As it stands, it is completely algebraic. Assuming φ takes value in S0,
the essential argument is as follows: we want to understand the cohomology groups
Hk(ZT ,C) for k ≤ 2n. They are computed by the (degenerating) Leray spectral sequence
for pr2 : ZT → T as ⊕p+q=kHq(Rppr2∗C). Now the local constant system H

p

C
:=

Rppr2∗C identifies with the space of ∇-flat sections of the Hodge bundle �p (notation
as in Section 2.2) hence, since ∇ is integrable, it admits a resolution by the de Rham
complex

0−→H
p

C
→�p ∇−→�p

⊗
:T −→�p

⊗
:2
T · · · .

So we have to compute the cohomology of the de Rham complex DR(�p),

0−→�p ∇−→�p
⊗

:T −→�p
⊗

:2
T · · ·



28 Hodge theory and deformations of complex structures

and this can be done by putting on it the Hodge filtration, which is well defined thanks
to the transversality property (2.1)

F lDR
(
�p

) : 0−→ F l�p ∇−→ F l−1�p
⊗

:T −→ F l−2�p
⊗

:2
T · · · .

Now the graded pieces of the de Rham complex for this filtration are the complexes that
we started to define in (2.3)

0−→�l,p−l ∇−→�l−1,p−l+1
⊗

:T
∇−→�l−2,p−l+2

⊗
:T · · · ,

where �l,p−l = F l�p/F l+1�p. The main technical point is then the fact that if the
Li’s are sufficiently ample, enough of the cohomology sheaves of these complexes are
governed by the cohomology ofX, to imply the desired isomorphismsHp(X×T ,C)∼=
Hp(ZT ,C),p < 2n.

The actual proof of Nori looks technically different, but the essential point lies here,
and its important meaning is the fact that infinitesimal invariants, lying in the cohomology
sheaves of the complexes (3.2) are related to Dolbeault cohomology classes of the total
family ZT by the spectral sequence associated to the filtration above on the complexes
DR(�p).
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MODULI SPACES OFVECTOR BUNDLES ON
ALGEBRAIC VARIETIES

ROSA M. MIRÓ-ROIG

These notes are intended to support our cross disciplinary discussion on moduli spaces.
In no case do I claim it is a survey on moduli spaces of vector bundles on algebraic
projective varieties. Many people have made important contributions without even being
mentioned here and I apologize to those whose work I may have failed to cite properly.

1. Introduction

Moduli spaces are one of the fundamental constructions of Algebraic Geometry and they
arise in connection with classification problems. Roughly speaking a moduli space for
a collection of objects A and an equivalence relation ∼ is a classification space, i.e., a
space (in some sense of the word) such that each point corresponds to one, and only
one, equivalence class of objects. Therefore, as a set, we define the moduli space as
equivalence classes of objects A/∼. In our setting the objects are algebraic objects, and
because of this we want an algebraic structure on our classification set. Finally, we want
our moduli space to be unique (up to isomorphism).

General facts on moduli spaces can be found, for instance, in [25], [26] or [27] (see
also [22]). In this paper, we shall restrict our attention to moduli spaces of stable vector
bundles on smooth, algebraic, projective varieties. We have attempted to give an informal
presentation of the main results, addressed to a general audience.

A moduli space of stable vector bundles on an algebraic, projective variety X is a
scheme whose points are in “natural bijection” to isomorphic classes of stable vector
bundles on X. The phrase “natural bijection” can be given a rigorous meaning in terms
of representable functors. Using Geometric Invariant Theory the moduli space can be
constructed as a certain Quot-scheme by a natural group action.

Once the existence of the moduli space is established, the question arises as what can
be said about its local and global structure. More precisely, what does the moduli space
look like, as an algebraic variety? Is it, for example, connected, irreducible, rational or
smooth? What does it look as a topological space? What is its geometry? Until now,
there is no general answer to these questions.

Copyright © 1998 Hindawi Publishing Corporation
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The goal of this paper is to review some of the known results which nicely reflect
the general philosophy that moduli spaces inherit a lot of properties of the underlying
variety; essentially when the underlying variety is a surface. In Section 2, we recall some
generalities on moduli spaces of vector bundles, all of which are well known to experts
on this field. Section 3 deals with vector bundles on algebraic surfaces. Quite a lot is
known in this case and we will review some of the main results. Section 4 is devoted to
moduli spaces of vector bundles on higher-dimensional varieties. Very few results are
known.As we shall stress, the situation drastically differs and results like the smoothness
and irreducibility of moduli spaces of stable vector bundles on algebraic surfaces turn out
to be untrue for moduli spaces of stable vector bundles on higher-dimensional algebraic
varieties. We could not resist discussing some details that perhaps only the experts will
care about, but hopefully will also introduce the nonexpert reader to a subtle subject. To
this end, we present new results on moduli spaces of stable vector bundles on rational
normal scrolls of arbitrary dimension (see [3]) with the hope of finding a clue which could
facilitate the study of moduli spaces of stable vector bundles on arbitrary n-dimensional
varieties.
Notation. Let (X,
X(1)) be a polarized irreducible smooth projective scheme over

an algebraically closed field k of characteristic zero. Recall that the Euler characteristic
of a locally free sheaf E is

χ(E) :=
∑
i

(−1)ihi(X,E),

where hi(X,E)= dimk H
i(X,E). The Hilbert polynomial PE(m) is given by

m−→ χ
(
E⊗
X(m)

)
/rk(E).

2. The moduli functor; fine and coarse moduli spaces

The first step in the classification of vector bundles is to determine which cohomology
classes on a projective variety can be realized as Chern classes of vector bundles. On
curves the answer is known. On surfaces the existence of vector bundles was settled by
Schwarzenberger; and it remains open on higher-dimensional varieties. The next step
aims at a deeper understanding of the set of all vector bundles with a fixed rank and
Chern classes. This naturally leads to the concept of moduli spaces which I shall shortly
recall.

Let (X,
X(1)) be a polarized projective scheme over an algebraically closed field k.
For a fixed polynomial P ∈Q[z], we consider the contravariant functor

�X(P )(−) : (Sch/k)−→ (Sets), S �−→�X(P )(S),

where �X(P )(S) = {S-flat families � → X×S of vector bundles on X all of whose
fibers have Hilbert polynomial P }/ ∼, with � ∼ �′ if and only if, � ∼= �′ ⊗p∗L for
some L ∈ Pic(S), p : S×X→ S being the natural projection. And if f : S′ → S is a
morphism in (Sch/k), let �X(P )(f )(−) be the map obtained by pulling back sheaves
via fX = f × idX:

�X(P )(f )(−) :�X(P )(S)−→�X(P )
(
S′

)
, [F ] −→ [

f ∗XF
]
.
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Definition 2.1. A fine moduli space of vector bundles on X with Hilbert polynomial
P ∈Q[z] is a schemeMX(P ) together with a family (Poincaré bundle) of vector bundles
� on MX(P )×X such that the contravariant functor �X(P )(−) is represented by
(MX(P ),�)

IfMX(P ) exists, it is unique up to isomorphism. Nevertheless, in general, the functor
�X(P )(−) is not representable. In fact, there are very few classification problems for
which a fine moduli space exists. To get, at least, a coarse moduli space (see, e.g., [27]
or [25] for a precise definition) we must somehow restrict the class of vector bundles
that we consider. What kind of vector bundles should we taken? In [17] and [18], M.
Maruyama found an answer to this question: stable vector bundles.

Definition 2.2. Let (X,
X(1)) be a polarized projective scheme of dimension d. For a
torsion-free sheaf F on X one sets

µH(F) := c1(F )H
d−1

rk(F )
, PF (m) := χ(F ⊗
X(mH))

rk(F )

with H = 
X(1). The sheaf F is µ-semistable (resp., semistable) with respect to the
polarization H if and only if

µH(E)≤ µH(F) (resp., PE(m)≤ PF (m) for m( 0)

for all nonzero subsheaves E ⊂ F with rk(E) < rk(F ); if strict inequality holds then
F is µ-stable (resp., stable) with respect to H = 
X(1).

One easily checks the implications

µ-stable⇒ stable⇒ semistable⇒ µ-semistable.

Remark 2.3. The definition of stability depends on the choice of the polarizationH . The
changes of the moduli space that occur when the polarizationH varies have been studied
by several people in greater detail often with respect to their relation to Gauge theory
and the computation of Donaldson polynomials (see, e.g., [7], [9], [30], and [29]).

Definition 2.4. Let (X,H = 
X(1)) be a polarized projective scheme over an alge-
braically closed field k. For a fixed polynomial P ∈Q[z], we consider the contravariant
subfunctor �s

X(H,P )(−) of the functor �X(P )(−):
�s
X(H,P )(−) : (Sch/k)−→ (Sets), S �−→�s

X(H,P )(S),

where �s
X(H,P )(S)= {S-flat families� →X×S of vector bundles on X all of whose

fibers are stable with respect to H and have Hilbert polynomial P }/ ∼, with � ∼ �′
if and only if � ∼= �′ ⊗p∗L for some L ∈ Pic(S), p : S×X → S being the natural
projection.

Theorem 2.5. The functor�s
X(H,P )(−) has a coarsemoduli schemeMs

X(H,P )which
is a separated scheme and locally of finite type over k. This means
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(1) There is a natural transformation

V :�s
X(H,P )(−)−→ Hom

(−,Ms
X(H,P )

)
,

which is bijective for any reduced point x0.
(2) For every scheme N and every natural transformation M : �s

X(H,P )(−) →
Hom(−,N) there is a unique morphism ϕ : Ms

X(H,P )→ N for which the following
diagram commutes.

�s
X(H,P )(−)

M ��������������
V �� Hom

(−,Ms
X(H,P )

)
ϕ∗���������������

Hom(−,N)

Proof. See [17, Theorem 5.6]. �

Remark 2.6. (1) If a coarse moduli space exists for a given classification problem, then
it is unique (up to isomorphism).

(2) A fine moduli space for a given classification problem is always a coarse moduli
space for this problem but, in general, not vice versa. In fact, there is no a priori reason
why the map

V(S) :�s
X(H,P )(S)−→ Hom

(
S,Ms

X(H,P )
)

should be bijective for varieties S other than {pt}.

We refer to [13, Section 4.5] for general facts on the infinitesimal structure of the
moduli spaceMs =Ms

X(H,P ). Let me just recall that if E is a stable vector bundle on
X with Hilbert polynomial P , represented by a point [E] ∈Ms , then the Zariski tangent
space of Ms at [E] is canonically given by T[E]Ms ∼= Ext1(E,E). If Ext2(E,E) = 0,
thenMs is smooth at [E]. In general, we have the following bounds:

dimk Ext1(E,E)≥ dim[E]Ms ≥ dimk Ext1(E,E)−dimk Ext2(E,E).

Remark 2.7. In spite of the great progress made during the last decades in the problem
of moduli spaces of stable vector bundles on smooth projective varieties (essentially in
the framework of the Geometric Invariant Theory by Mumford) many problems remain
open, and for varieties of arbitrary dimension, very little is known about their local and
global structure.

See [27], [25] or [26] for the definition of categorical quotient of a variety by the
action of a group and its connection with moduli problems.

3. Moduli spaces of vector bundles on algebraic surfaces

Throughout this section X will be a smooth, irreducible, algebraic surface over the
complex field and we will denote by MX,H (r;L,n) (resp., MX,H (r;L,n)) the moduli
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space of rank r , vector bundles (resp., torsion free sheaves) E on X, µ-stable (resp.,
semistable) with respect to a polarizationH with det(E)= L ∈ Pic(X) and c2(E)= n ∈
Z. Moduli spaces for stable vector bundles on smooth algebraic surfaces were constructed
in the 1970’s and quite a lot is known about them. In the 1980’s, Donaldson proved
that the moduli space MX,H (2;0,n) is generically smooth of the expected dimension
providedn is large enough (see [5]).As a consequence, he obtained some spectacular new
results on the classification ofC∞ four-manifolds. Since then, many authors have studied
the structure of the moduli space MX,H (r;L,n) from the point of view of algebraic
geometry, of topology and of differential geometry; giving very pleasant connections
between these areas.

Many interesting results have been proved, and before reminding you of some of
them, let me just give one example to show how the geometry of the surface is reflected
in the geometry of the moduli space.

Example 3.1 (Mukai: [23] and [24]). Let X be a K3 surface. Then, the moduli space
MX,H (r;L,n) is a smooth, quasi-projective variety of dimension 2rn+ (1− r)L2 −
2(r2 − 1) with a symplectic structure. In addition, if MX,H (r;L,n) is 2-dimensional
and compact, then it is isomorphic to a K3 surface isogenous to X.

A more precise example could be the following one.

Example 3.2. Let X ⊂ P3 be a general quartic hypersurface. X is a K3 surface and its
Picard group is generated by the restriction, 
X(1), of the tautological line bundle on P3

to X. We have an isomorphism

ρ :X ∼=MX,
X(1)
(
2;
X(−1),3

)
which on closed points y ∈ X is defined by ρ(y) := Fy , Fy being the kernel of the
epimorphism H 0(X,�y(1))⊗
X→ �y(1).

From now on, we will assume that the discriminant

J(r;L,n) := 2rn−(r−1)L2 ( 0.

The moduli space is empty if J(r;L,n) < 0, by Bogomolov’s inequality and, on the
other hand, it is nonempty ifJ(r;L,n)( 0. (See, e.g., [18] and [10].) For small values
of the discriminant J(r;L,n) the moduli spaceMX,H (r;L,n) of vector bundles on an
algebraic surface X can look rather wild; there are many examples of moduli spaces
which are not of the expected dimension, and which are not irreducible nor reduced
(see, e.g., [10], [28] or [20]). This changes when the discriminant increases and we have
the following result which is one of the most important results in the theory of vector
bundles on an algebraic surface X.

Theorem 3.3. LetH be an ample divisor onX. IfJ(r;L,n)( 0, then the moduli space
MX,H (r;L,n) is a normal, generically smooth, irreducible, quasi-projective variety of
dimension 2rn−(r−1)L2−(r2−1)χ(
X).
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Proof. Generic smoothness was first proved by Donaldson in [5] for rank 2 vector
bundles with trivial determinant, and by Zuo in [31] for general determinants.Asymptotic
irreducibility was proved for the rank 2 case by Gieseker and Li in [11], and for arbitrary
ranks by Gieseker and Li in [12] and by O’Grady in [28]. Finally, asymptotic normality
was proved by Li in [14]. �

Another remark should be made. As we pointed out in Remark 2.3 the definition of
stability depends on the choice of the polarization and the following natural question
arises: let H and H ′ be two different polarizations, what is the difference between the
moduli spacesMX,H (r;L,n) andMX,H ′(r;L,n)? It turns out that the ample cone ofX
has a chamber structure such thatMX,H (r;L,n) only depends on the chamber ofH and,
in general, MX,H (r;L,n) changes when H crosses a wall between two chambers (see,
e.g., [7], [9], [30] and [29]). However, we have (see [13, Theorem 4.C.7]) the following
theorem.

Theorem 3.4. LetH andH ′ be ample divisors onX. IfJ(r;L,n)( 0, then the moduli
spacesMX,H (r;L,n) andMX,H ′(r;L,n) are birational.

The last result implies that for many purposes we can fix the polarizationH ; and this is
what we do for studying the birational geometry of the moduli spacesMX,H (r;L,n). For
example, we can reduce the study of the rationality of the moduli space MX,H (r;L,n)
for any ample divisor H to the study of the rationality of MX,H (r;L,n) for a suitable
ample divisor H .

In the last part of this section we turn our attention to the study of the rationality
of the moduli space MX,H (r;L,n) and the computation of the Kodaira dimension of
MX,H (r;L,n). For X = P2, Maruyama (resp., Ellingsrud and Stromme) proved that if
c2

1−4c2 �≡ 0(mod 8), then the moduli spaceMP2,

P2 (1)(2;c1,c2) of rank 2, 
P2(1)-stable

vector bundles on P2 with Chern classes c1 and c2 is rational (see [19] and [8]). Later
on, Maeda proved that the rationality of MP2,


P2 (1)(2;c1,c2) holds for all (c1,c2) ∈ Z2

provided MP2,

P2 (1)(2;c1,c2) is nonempty [15]. In particular, MP2,


P2 (1)(2;c1,c2) has

Kodaira dimension−∞. For some ruled surfacesX, Qin also showed thatMX,H (r;L,n)
has Kodaira dimension−∞. As for K3 surfacesX, a consequence of Mukai’s work [23]
shows that MX,H (r;L,n) has Kodaira dimension zero. More recently, Li has proved
that if X is a minimal surface of general type with reduced canonical divisor, then
MX,H (r;L,n) is of general type (see [14]).All these indicate that the Kodaira dimension
of MX,H (r;L,n) is closely related to the Kodaira dimension of X and moduli spaces
associated to rational surfaces should be rational. In fact, we have the following result.

Theorem 3.5. Let X be a smooth rational surface, L ∈ Pic(X) and n ∈ Z. Assume that
J(2;L,n)( 0. Then, there exists an ample divisor H on X such that the moduli space
MX,H (2;L,n) is rational.

Proof. This was proved in [4, Theorem A] . �
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Unless for the discussion of the Kodaira dimension and of the rationality, all stated
results hold for arbitrary surfaces and we have not considered the branch of beautiful
results that works for special surfaces like K3 surfaces, elliptic surfaces or ruled sur-
faces. Many interesting results are also missing; for instance, Picard group of moduli
spaces, Fourier-Mukai transformations, symplectic structures, Gauge theoretical aspects
of moduli spaces, and so forth.

4. Moduli spaces of vector bundles on high-dimensional varieties

Let X be a smooth, projective, n-dimensional variety over the complex field and let
MX,L(r;c1, . . . ,cmin{r,n}) denote the moduli space of rank r , vector bundles E onX, µ-
stable with respect to a polarizationLwith fixed Chern classes ci(E)= ci ∈H 2i (X,Z).

A major result, in the theory of vector bundles on an algebraic surface S, is the proof
that the moduli space of rank r , with stable (with respect to a polarization L) vector
bundles on S for fixed c1 and fixed polarizationL, is irreducible and smooth for large c2.
The result is not true for higher-dimensional varieties and it is rather common to have
the existence of moduli spaces of stable vector bundles on X which are not irreducible
nor smooth. Indeed, in [6] (resp., [1]), Ein (resp., Ancona and Ottaviani) proved that the
minimal number of irreducible components of the moduli space of rank 2 (resp., rank
3) stable vector bundles on P3 (resp., P5) with fixed c1 and c2 going to infinity grows to
∞. Inspired by Ein’s result we have proved the following theorem.

Theorem 4.1. Let X be a smooth projective 3-fold, c1,H ∈ Pic(X) with H ample and
d ∈ Z. Assume that there exist integers a �= 0 and b such that ac1 ≡ bH . LetMX,H (c1,d)

be the moduli space of rank 2, µ-stable vector bundles (with respect toH ) E onX, with
det(E)= c1 and c2(E)H = d and letm(d) be the number of irreducible components of
MX,H (c1,d). Then lim infd→∞m(d)=+∞.

Proof. See [2, Theorem 0.1] . �

See [21] for examples of singular moduli spaces of vector bundles on P2n+1 with
c2 ( 0.

Nevertheless, we will see that for a (d+ 1)-dimensional, rational, normal scroll X
and for suitable choice of ci ∈H 2i (X,Z), i = 1,2, and a fixedL= L(c1,c2) the moduli
spaceMX,L(2;c1,c2) is a smooth, irreducible, rational, projective variety. To prove this,
we need to fix some more notation.

Take 
 :=⊕d
i=0 
P1(ai) with 0= a0 ≤ a1 ≤ ·· · ≤ ad and ad > 0. Let

X := P(
)= Proj
(
Sym(
)

) π−→ P1

be the projectived vector bundle and let 
P(
)(1) be the tautological line bundle. 
P(
)(1)
defines a birational map

X := P(
)
f−→ PN,
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where N = d+∑d
i=0 ai . The image of f is a variety of dimension d+1 and minimal

degree called rational normal scroll. By abuse of language, we also call X rational
normal scroll.

LetH be the class in Pic(X) associated to the tautological line bundle 
P(
)(1) onX
and let F be the fiber of π . We have

Pic(X)∼= Z2 ∼= 〈H,F 〉 with Hd+1 =
d∑
i=0

ai; HdF = 1; F 2 = 0.

Let E be a rank 2 vector bundle on a (d+1)-dimensional rational normal scroll X.
SinceH 2(X,Z) is generated by the classesH and F , andH 4(X,Z) is generated by the
classesHF andH 2; the Chern classes ci(E) ∈H 2i (X,Z), i = 1,2 ofE may be written
as c1(E) = aH +bF and c2(E) = xH 2+yHF with a,b,x,y ∈ Z. Moreover, since a
rank 2 vector bundle E on X is µ-stable with respect to a polarization L if and only if
E⊗
X(D) is µ-stable with respect to L for any divisor D ∈ Pic(X), we may assume,
without loss of generality, that c1(E) is one of the following: 0, H , F or H +F .

From now on, X will be a (d+1)-dimensional, rational, normal scroll. We compute
the dimension and prove the irreducibility, smoothness and rationality of the moduli
spacesML(2;c1,c2) of rank 2 vector bundles E onX with certain Chern classes c1 and
c2; and µ-stable with respect to a polarization L closely related to c2. We want to stress
that the polarization L that we choose strongly depends on c2, our results turn out to be
untrue if we fix c1, L and c2L

d−1 goes to infinity. Indeed, for d = 2 and fixed L, the
minimal number of irreducible components of the moduli spaceML(2;c1,c2) of rank 2,
µ-stable vector bundles with respect to L with fixed c1 and c2L going to infinity grows
to infinity (it follows from Theorem 4.1).

Our approach will be to write µ-stable with respect to L, rank 2 vector bundles E
on X, as an extension of two line bundles. A well-known result for vector bundles on
curves is that any vector bundle of rank r ≥ 2 can be written as an extension of lower
rank vector bundles. For higher-dimensional varieties we may not be able to get such a
nice result. (For instance, it is not true for vector bundles on X = Pn.) However, it turns
to be true for certain µ-stable with respect to L, rank 2 vector bundles E on rational
normal scrolls.

Theorem 4.2. LetX be a (d+1)-dimensional, rational, normal scroll and c2 an integer
such that c2 > (H

d+1+ d+ 2)/2. We fix the ample divisor L = dH + bF on X with
b = 2c2−Hd+1−(1−ε) and ε = 0,1. ThenML(2;H +εF,(c2+ε)HF) is a smooth,
irreducible, rational, projective variety of dimension 2(d+ 1)c2−Hd+1+ ε(d+ 1)−
(d+2).

Sketch of the Proof. We divide the proof into several steps.
Step 1: We prove that any vector bundle E ∈ML(2;H +εF,(c2+ε)HF) sits in an

exact sequence of the following type:

0−→ 
X
(
H −c2F

)−→ E −→ 
X
(
(c2+ε)F

)−→ 0.
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The key point for proving the first step is the fact that for any rank 2 vector bundle
E ∈ML(2;H +εF,(c2+ε)HF), E(−H +c2F) has a section whose scheme of zeros
has codimension greater than or equal to 2 (see [3, Proposition 2.8]).
Step 2: For any vector bundle E ∈ ML(2;H + εF,(c2 + ε)HF), we compute the

Zariski tangent space ofML(2;H +εF,(c2+ε)HF) at [E] and we get

dimT[E]ML

(
2;H +εF,(c2+ε)HF

)= 2(d+1)c2−Hd+1+ε(d+1)−(d+2).

Step 3: We prove that

ML

(
2;H +εF,(c2+ε)HF

)∼= P
(
Ext1

(

X((c2+ε)F ),
X(H −c2F)

))
.

It follows from the last step that the moduli space ML(2;H + εF,(c2 + ε)HF) is
a smooth, irreducible, rational, projective variety of dimension 2(d + 1)c2 −Hd+1 +
ε(d+1)−(d+2). This completes the proof. �

Analogously we prove the following theorem.

Theorem 4.3. LetX be a (d+1)-dimensional, rational, normal scroll and c2 an integer
such that c2 > H

d+1+ d+ 1. We fix the ample divisor L = dH + bF on X with b =
c2−Hd+1−(1−ε)and ε = 0,1. ThenML(2;εF,(2c2+ε)HF) is a smooth, irreducible,
rational, projective variety of dimension 2(εd+1)c2−Hd+1+2(ε−1)−ε(d+2)Hd+1.

Theorems 4.2 and 4.3 reflect nicely the general philosophy that, at least for suitable
choice of the Chern classes and the polarization, the geometry of the underlying variety
and of the moduli spaces are intimately related. We hope that phenomena of this sort
will be true for other high-dimensional varieties.
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SOME USES OF MODULI SPACES IN
PARTICLEAND FIELD THEORY

TSOU SHEUNG TSUN

In this talk I shall try to give an elementary introduction to certain areas of mathematical
physics where the idea of moduli space is used to help solve problems or to further our
understanding. In the wide area of gauge theory, I shall mention instantons, monopoles
and duality. Then, under the general heading of string theory, I shall indicate briefly the
use of moduli space in conformal field theory andM-theory.

1. Introduction

Physicists seldom define their terms. So although I know roughly what a moduli space
is, and the sort of thing one does with it in physics, I was not really very sure of what
exactly it is. So I asked Frances (Kirwan), just as the porters at Balliol College (where
participants were lodged) did when they also wanted to know what a moduli space was.
I have always taken it to be some sort of useful parameter space, convenient in the sense
that mathematicians have already worked out all its properties (at least in the classical
cases). But Frances told me something much more significant—she describes it as a
parameter space in the nicest possible way.

So in the next 55 minutes or so, I shall try to give you a rough picture of how physicists
have made use of this nice concept of a parameter space. We should note, however, that it
is far from a one-way traffic. Much of the tremendous progress in 4-manifold theory, and
a large part of it is done here, came about by studying certain moduli spaces occurring
in mathematical physics.

A few notes of warning, however, are in place. For a hard-nosed or pragmatic physicist,
(A) spacetime X has 4 dimensions, 3 space and 1 time, with an indefinite metric. By an
indefinite metric I mean that the quadratic form giving the metric is not positive definite,
so that two distinct points in spacetime can be null-separated. In fact, distances along
light-paths are always zero. For him (or her) also (B) spacetime is by and large like R4,
that is, (i) flat, (ii) looking more or less the same in all directions, (iii) real, and (iv) more
or less infinite in all its four directions and hence noncompact.

Copyright © 1998 Hindawi Publishing Corporation
Moduli Spaces in Mathematics and Physics (1998) 43–56
http://books.hindawi.com/9775945011/
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On the other hand, algebraic geometry is more about Riemannian manifolds and the
best results are almost always obtained for the compact case. In order to make contact,
the concept of spacetime has to be modified in several significant ways.

(1) One considers definite metrics, a process known as euclideanization. Then many
nice things happen. In particular, the wave operator

�= ∂2

∂t2
− ∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2

which is hyperbolic, becomes the 4-dimensional Laplacian

∇2 = ∂2

∂t2
+ ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

which is elliptic, and for elliptic operators there are all sorts of good results like the
index theorems. Euclideanization is done in the following: self-dual Yang-Mills theory,
instantons, monopoles, Seiberg-Witten theory, strings,….

(2) Alternatively, one complexifies spacetime, and then the question of definite or
indefinite metric disappears. In this case, one can use powerful complex manifold tech-
niques including twistor theory. This is also where supersymmetry comes in mathemat-
ically. Moreover, by a change of point of view (see later), Riemann surfaces also play
an important role. Complexification is done in superstrings, supersymmetricYang-Mills
theory,M-theory,….

(3) One also changes the topology of spacetime by compactifying some or all of its
directions. In some cases, this is only a mild change, amounting to imposing certain decay
properties at infinity (see later). In other cases, this gives rise to important symmetries
of the theory. Compactification is done in instantons, superstrings,M-theory,….

(4) One either changes the number of spacetime dimensions or re-interprets some of
them as other degrees of freedom. This dimensional change is done in strings, super-
strings, monopoles,M-theory,….

At first sight, these modifications look drastic. The hope is that they somehow reflect
important properties of the real physical world, and that the nice results we have do
not disappear once we know how to undo the modifications. Surprisingly, the (largely
unknown) mathematics underlying real 4-dimensional spacetime looks at present quite
intractable!

2. Yang-Mills theory (Gauge theory)

Unlike most of the other theories I shall mention, Yang-Mills theory is an experimen-
tally ‘proven’ theory. In fact, it is generally believed, even by hard-nosed or pragmatic
physicists, thatYang-Mills theory is the basis of all of particle physics. From the physics
point of view, Yang-Mills theory is the correct framework to encode the invariance of
particle theory under the action of a symmetry group—the gauge group G—at each
spacetime point. For example, let ψ(x) be the wave-function of a quantum particle.
Then the physical system is invariant under the action of the group

ψ(x) �−→X(x)ψ(x), X(x) ∈G.
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X

P F G

π

Figure 1. Sketch of a principal bundle

This invariance is known as gauge invariance. Now the groups that are most relevant to
particle physics are U(1), SU(2), SU(3). However, we shall come across other groups
as well. But for simplicity, we shall take G= SU(2), unless otherwise stated.

There is an additional ingredient in many favoured gauge theories, namely supersym-
metry. This is a symmetry relating two kinds of particles: bosons (e.g., a photon) with
integral spin and fermions (e.g., an electron) with half-integral spin. Spin is a kind of
internal angular momentum which is inherently quantum mechanical. Since bosons and
fermions, in general, behave quite differently (e.g., they obey different statistics), this
symmetry is not observed in nature. However, one can imagine this symmetry holding
for example at ultra-high energies. What makes this symmetry theoretically interest-
ing is that many theories simplify and often become complex analytic with this extra
symmetry, making much of the underlying mathematics accessible. Also the complex
analyticity links such theories with most studies of moduli spaces.

Mathematically, Yang-Mills theory can be modelled (in the simplest case) by a prin-
cipal bundleP (see Figure 1) together with a connection on it. I remind you that, roughly
speaking, a principal bundle is a manifold P with a projection π onto a base space X,
and a right action by the structure groupG. In general, the base space can be any smooth
manifold, but here we consider only the case of spacetime X. Above each point x ∈X,
the inverse image (called the fibre) π−1(x) is homeomorphic to G. The total space P
is locally a product, in the sense that X is covered by open sets Uα and π−1(Uα) is
homeomorphic to Uα ×G. A connection A is a 1-form on P with values in the Lie
algebra g ofG, satisfying certain conditions and giving a prescription for differentiating
vectors and tensors on X. It combines with the usual exterior derivative d to give the
covariant exterior derivative dA:

dA = d+A
in such a way as to preserve gauge invariance.
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Next, we need the curvature 2-form:

FA = dA+AA
(
Fµν = ∂νAµ−∂µAν+ ig[Aµ,Aν]

)
.

The second formula (in brackets) is the same as the first one, but written in local coor-
dinates, or ‘with indices’, where µ= 0,1,2,3.

Since dimX = 4 (for the moment, anyway), we have the Hodge star operator which
takes 2-forms to 2-forms:

∗: :2 −→:2

FA �−→ ∗FA.

In local coordinates, this can be written as

∗Fµν =−1

2
εµνρσF

ρσ ,

where εµνρσ is a completely skew symbol defined by ε0123 = 1. Notice that

(∗)2 =+1 in euclidean metric,

(∗)2 =−1 in Minkowskian metric.

Yang-Mills theory is given by the Yang-Mills action or functional

S(A)= 1

8π2

∫
X

tr
(
F ∗AFA

)= 1

8π2

∥∥FA∥∥2
.

The curvature satisfies:

dAFA = 0 (Bianchi identity),

dA
∗FA = 0 (Yang-Mills equation).

These are the classical equations for Yang-Mills theory. Notice that the first one is an
identity from differential geometry, and the second one comes from the first variation of
the action.

The space of connections � is an affine space, but we are really interested in connec-
tions modulo gauge equivalence. Two connectionsA,A′ are gauge equivalent if they are
“gauge transforms” of each other:

A′ =X−1AX+X−1dX.

In other words, X(x) ∈ G, X is a fibre-preserving automorphism of P invariant under
the action of G. We shall use the symbol 	 for the group of gauge transformations X.

So we come to our first, most basic, moduli space

�̄ =�/	.

It is in general infinite-dimensional with complicated topology.
We shall be interested in various subspaces or refinements of �̄.
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One theoretical use of �̄ itself is in (the euclidean formulation of ) quantum field
theory, where with the Feynman path integral approach, one has to consider the integral
of the exponential of the Yang-Mills action over �̄:∫

�̄
e−S(A).

But this integral is very difficult to define in general!
The moduli space �̄ has a singular set which represents the reducible connections,

which are connections with holonomy group H ⊂ G such that the centralizer of H
properly contains the centre of G. We say then that the connection reduces to H . The
complement � of this singular set is dense in �̄, and represents the irreducible con-
nections. For G = SU(2), near an irreducible connection �̄ is smooth, but reducible
connections lead to cone-like singularities in �̄.

2.1. Instantons. Recall thatG= SU(2). BundlesP overX are classified by the second
Chern class of the associated rank 2 vector bundleE (cf. Rosa-Maria Miró-Roig’s talk):

k = c2(E)[X] = 1

8π2

∫
X

trF 2
A ∈ Z.

We say that a connection A is self-dual (or anti-self-dual) if its curvature FA satisfies

FA = ∗FA
(
resp., FA =−∗FA

)
.

Then given any connection A, we can decompose the corresponding curvature FA into
its self-dual and anti-self-dual parts:

FA = F+A +F−A .
In the context of Yang-Mills theory a self-dual connection is called an instanton1:

FA = ∗FA⇔ F−A = 0.

In this case,

Bianchi identity∼=Yang-Mills equation.

In other words, a self-dual connection is automatically a classical solution.
Now we have

S(A)= 1

8π2

∫
X

∣∣F+A ∣∣2+ ∣∣F−A ∣∣2
,

k = 1

8π2

∫
X

∣∣F+A ∣∣2− ∣∣F−A ∣∣2
.

Hence one has immediately

S(A)≥ k,
1It is a matter of convention whether one so defines a self-dual or anti-self-dual connection.
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Figure 2. Sketch of a kink connecting two different states.

and

S(A)= k⇔ F−A = 0.

So a self-dual connection gives an absolute minimum for the action. The integer k is
known as the instanton number.
Warning: Nontrivial self-dual connections exist only when X is either euclidean or

complex.
The mathematical magic of instantons is that instead of solving the second order

Yang-Mills equations we have only the first-order self-duality equation to deal with.
These connections can actually be constructed using euclidean twistor methods without
explicitly solving any equations (cf. Tatiana Ivanova’s talk).
Physically, the presence of instanton contribution in the path integral allows tun-

nelling between different vacua (i.e., lowest energy states) of the relevant Yang-Mills
theory (namely, quantum chromodynamics for strong interactions or QCD). This role
of the instantons can be compared to lower-dimensional objects such as “solitons” or
topological defects called “kinks” which connect up two different states at infinity (see
Figure 2). The two phenomena are quite similar, since “tunnelling” means a quantum
particle can penetrate a potential barrier which a classical particle cannot go through, thus
connecting two classically separate states. The effect of instantons is “nonperturbative”
in the sense that such an effect cannot be obtained as a term in a power series expansion
of g the coupling constant (which is measure of the “strength” of the interaction under
consideration, and which appears for example in the nonlinear term of the curvature form
Fµν). This is a direct manifestation of the fact that instantons are topological in nature
and cannot be obtained by any “local” considerations such as power series expansions.

Since in euclidean space the Yang-Mills equations are elliptic, and concentrating on
irreducible connections gets rid of zero eigenvalues, one can use the index theorem to
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count the “formal dimension” of instanton moduli space. Typically the smooth part of
the moduli space will have this formal dimension as its actual dimension. For example,

X = S4, dimC

(
�I,k

)= 8k−3.

Uhlenbeck has given a unique compactification of �I , the union for all k. For more
details about instanton moduli spaces, I again refer you to Tatiana Ivanova’s talk.

2.2. Monopoles. Recall G = SU(2). Consider a Yang-Mills theory with a scalar field
(called Higgs field) φ, together with a potential term V (φ) which is added to the Yang-
Mills action. Suppose further that

V (φ0)= minimum for |φ0| �= 0,

and that V (φ) is invariant under a subgroup U(1)⊂ SU(2). Then for those connections
of P which are reducible to this U(1) subgroup, we can for certain purposes concentrate
on this “residual gauge symmetry” and have a U(1) gauge theory. If we interpret this
U(1) as Maxwell’s theory of electromagnetism, then a nontrivial reduction of P can be
regarded as a magnetic monopole. The magnetic charge k is given by the first Chern
class of the reduced bundle. In fact we have the following exact sequence which gives
us an isomorphism:

π2
(

SU(2)
)

�� π2
(

SU(2)/U(1)
) ∼ �� π1

(
U(1)

)
�� π1

(
SU(2)

)

0 0

Unlike the original magnetic monopole considered by Dirac, these ’t Hooft-Polyakov
monopoles have finite energy and are the soliton solutions of the field equations corre-
sponding to the action:

S(A,φ)= S(A)+‖Dφ‖2+λ(1−|φ|2)2
,

where the last term is the usual form of the potential V (φ). From this we get the Yang-
Mills-Higgs equations (YMH):

DAF = 0,

DA
∗F =−[

φ,DAφ
]
,

DA
∗DAφ = 2λφ

(|φ|2−1
)
.

Now we specialise to a certain limit, the Prasad-Somerfield limit: V (φ) = 0, but
|φ| → 1 at infinity. Then the Yang-Mills-Higgs system becomes:

DAF = 0,

DA
∗F =−[

φ,DAφ
]
,

DA
∗DAφ = 0.
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Consider next a Yang-Mills theory in euclidean R4, invariant under x4-translations.
Then we can write

A= A1 dx1+A2 dx2+A3 dx3+φdx4,

where A1,A2,A3,φ are Lie algebra-valued functions on R3. The action can be written
as

S(A)= ∥∥FA∥∥2 = ‖F‖2+‖Dφ‖2,

where now F is the curvature of the connections in three dimensions:

A′ = A1 dx1+A2 dx2+A3 dx3,

andD is the corresponding 3-dimensional covariant derivative. In this way, we can make
the following identification since the actions for the two theories are identical:

YMH on R3 ∼= dimensionally reduced YM on R4.

In this case,

FA = ∗FA⇒ first 2 YMH.

Hence a solution to the Bogomolny equation

F = ∗DAφ

gives a solution of YMH. These are known as “static monopoles”.
The moduli spaces �k corresponding to a given charge k are well studied, at least for

k = 1,2. The translation group R3 acts freely on �k , so does an overall phase factor S1.
Dividing these out we get the reduced monopole moduli spaces �0

k, dimC = 4k− 4.
Taking the k-fold covers, one obtains:

�̃k
∼= R3×S1×�̃0

k .

The special case of k = 2 has been studied by Atiyah and Hitchin as an entirely novel
way of obtaining the scattering properties of two monopoles, using a metric on �0

2 they
discovered, and assuming (with Manton) that geodesic motion on it describes adiabatic
motion of the two monopoles. This is the most direct use that I know of moduli space
for deriving something akin to dynamics!

2.3. Topological field theory. I wish just to mention a class of quantum field theories
called topological quantum field theories (TQFT), where the observables (correlation
functions) depend only on the global features of the space on which these theories are
defined, and are independent of the metric (which, however, may appear in the classical
theory). Atiyah gave an axiomatic approach to these, but there are so many local experts
here that I do not feel justified in expanding on that!

Instead, I shall just indicate the role of moduli space in Witten’s approach. Starting
with a moduli space � one can get fields, equations and symmetries of the theory. Witten
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postulates the existence of certain operators 
i corresponding to cohomology classes ηi
of � such that

〈
1 · · ·
n〉 =
∫

�
η1 · · ·ηn,

where 〈· · · 〉 denotes the correlation function of the operators. Hence he obtains these
correlation functions as intersection numbers of �, using Donaldson theory. So in a
sense the TQFT is entirely defined by �.

The observables called correlation functions can best be understood in the case of,
for example, a 2-point function in statistical mechanics. This is the probability, given
particle 1, of finding particle 2 at another fixed location.

To go into any further details about TQFT would require more detailed knowledge
both of quantum field theory and supersymmetry. These would lead us unfortunately too
far from the context of this workshop.

2.4. Seiberg-Witten theory. Recall that a spin structure on X is a lift of the structure
group of the tangent bundle of X from SO(4) to its double cover Spin(4) ∼= SU(2)×
SU(2). Because of this isomorphism, one can represent a spin structure more concretely
as a pair of complex 2-plane bundles S+,S− → X, each with structure group SU(2).
A slightly more general concept is a spinc structure over X, which is given by a pair of
vector bundlesW+,W− over X with an isomorphism for the second exterior powers

X2W+ =X2W− = L, say,

such that one has locally

W± = S1⊗L1/2,

where L1/2 is a local square root of L : L1/2⊗L1/2 = L.
Given a spinc manifoldX, the Seiberg-Witten equations (SW) are written for a system

consisting of (1) a unitary connection A on L = X2W±, and (2) ψ a section of W+.
Then these equations are:

DAψ = 0,

F+A =−τ(ψ,ψ),

where τ is a sesquilinear map τ : W+×W+ →X+⊗C.
The Seiberg-Witten equations (SW) can be obtained from varying the following

functional:

E(A,ψ)=
∫
X

∣∣DAψ∣∣2+ ∣∣F+A +τ(ψ,ψ)∣∣2+ R
2

8
+2π2c1(L)

2,

where R is the scalar curvature of X and c1(L) is the first Chern class of L. Notice that
the last two terms depend only onX and L, so that solutions of SW are absolute minima
of E on the given bundle L.

The relevant moduli space here is the space � of all irreducible solution pairs (A,ψ),
modulo gauge transformations. The Seiberg-Witten invariants are then homology classes
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of �, independent of the metric on X. These invariants prove very useful in 4-manifold
theory. In particular, Seiberg and Witten give a “physicist’s proof” that the instanton
invariants of certain 4-manifolds (namely with b+ > 1, where b+ is the dimension of
the space of self-dual harmonic forms) can be expressed in terms of the Seiberg-Witten
invariants.

From the quantum field theory point of view, the importance of Seiberg-Witten theory
lies in the concept of duality. In a modified version of Yang-Mills theory, called N = 2
supersymmetric Yang-Mills theory, the quantum field theory is described by a scale
parameter t and a complex parameter u (here supersymmetry is essential). In the limit
t →∞, the theory is described by an analytic function τ of u. If b+(X) > 1, then τ
is modular (in the classical sense) with respect to the action of SL(2,Z). This means,
in particular, that a theory with parameter u is related to a theory with parameter u−1

in a definite and known way. The transformation u �→ u−1 corresponds to changing
the coupling constant to its inverse. Hence for the magnetic monopoles of the theory
this represents a duality transformation: from electric with coupling e to magnetic with
coupling ẽ and vice versa, since Dirac’s quantization condition states that eẽ = 1 in
suitable units. By relating a “strongly coupled” theory to a “weakly coupled” theory, one
can hope to obtain results on the former by performing perturbative calculations (which
are meaningless when coupling is strong) in the latter. By inspecting their moduli spaces
one is often able to identify pairs of dually related theories.

3. String and related theories

I shall be extremely brief about these theories. The reason is, apart from my own obvious
ignorance, that they are considerably more complicated than gauge theories and require
much more knowledge not only of quantum physics but also of algebraic geometry than
can reasonably be dealt with in this workshop. My aim here is just to give a taste of
some immensely active areas of research in mathematical physics in recent years where
moduli spaces play an important role.

The gist of string theory is that the fundamental objects under study are not point-like
particles as in gauge field theories but 1-dimensional extended strings. These strings
are really the microscopic quantum analogues of violin strings: they move in space and
they also vibrate. The equation of motion of a free string can be obtained from an action
which is similar to that for a massless free particle. In the latter case we have

S0 =
∫
dτηµν

dxµ

dτ

dxν

dτ

which is just the length of the “worldline” in spacetime X traced out by the particle as
it travels through space. Here ηµν is the metric on X and xµ are the coordinates of the
particle. For the string the free action is the area of the “worldsheet” (with coordinates
σ,τ ) traced out by the 1-dimensional string in spacetime X:

S1 =
∫
dσ dτηαβηµν∂αx

µ∂βx
ν,
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Particle interaction String interaction

Figure 3. Schematic representation of particle and string interactions.

� X
f

Figure 4. Embedding worldsheet into spacetime.

where the indices α,β = 0,1 refer to the worldsheet. Varying S1 with respect to x gives
simply the 2-dimensional wave equation:(

∂2

∂τ 2 −
∂2

∂σ 2

)
xµ = 0.

We see that, in this context, spacetime coordinates can be regarded as fields on the
2-dimensional surface which is the worldsheet.

Interaction between strings are given by the joining and splitting of strings so that
the resultant worldsheet can be visualized, on euclideanization, as a Riemann surface
� with a given genus (see Figure 3). For example, a hole in � can be obtained by one
closed string splitting into two and then joining together again. In fact, a useful way of
looking at string theory is to think of it as being given by an embedding f of a Riemann
surface � into spacetime X (Figure 4).

3.1. Conformal field theory. We have written the action S1 for a free string in terms of
a particular parametrization of �, but obviously the physics ought to be invariant under
reparametrizations. The group of reparametrizations on � is the infinite-dimensional
conformal group, and that is the symmetry group of string theory.
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1

τ

Figure 5. A 2-torus represented on the complex plane.

On the other hand, on a given Riemann surface �, one can consider certain field
theories which have this invariance. These are called conformal field theories (CFT)
and play important roles in statistical mechanics and critical phenomena (e.g., phase
change), when the theories become independent of the length scale (so that quantities
are defined only up to conformal transformations).

The concept of moduli plays an important role in CFT. In fact, the original idea of
modulus is defined for Riemann surfaces (see talk by Frances Kirwan). So a torus T 2

has one modulus τ (see Figure 5). The conformal structure of T 2 is invariant under the
action of the modular group SL(2,Z) on τ .

CFT are often studied for their own sake, but as far as string theories are concerned
their use lies in the fact that they are the terms in a first-quantized, perturbative formu-
lation of string theory. Schematically, one can think of string theory as the “sum over
g” of CFT on Riemann surfaces of genus g. Unfortunately, this “summation” has never
yet been given a precise meaning. What provides some hope that the problem may be
tractable is the fact that the infinite-dimensional integral

∫
e−S1(x) occurring in the path

integral formalism can be reduced to one on the moduli space of the Riemann surface,
which is finite-dimensional.

3.2. Various string theories. Up to now I have been carefully vague about the nature of
spacetime X in string theory. It turns out that to get a consistent, first-quantized theory,
one needs X to have twenty-six dimensions! If we modify the theory by adding super-
symmetry to produce a superstring theory, then dimX = 10. However, this potentially
disastrous requirement has been turned to good use to produce interesting theories in
four dimensions, as we now briefly sketch.

We shall concentrate on the supersymmetric version as being the more favoured by
string theorists, in that we now assume dimX = 10. Imagine that one can compactify
six of these ten dimensions so that

X ∼=K×R4

withK a compact 6-dimensional space, and moreover that the size ofK is small. Since
the length is an inverse measure of energy, this means that to observers of low-energy
(such as us) spacetime will just look 4-dimensional and the other six dimensions are
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curled up so tight we cannot see them. The often-quoted example is that a water pipe
looks like a thin line from a distance.

Not only that, the symmetries of X can be factored into that of R4 (the usual ones)
and that of K . The latter can then be interpreted as the internal symmetries of Yang-
Mills theory. In fact, the choice of K is dictated by which gauge symmetry one wants.

There are in all five string theories.A string can be open (homeomorphic to an interval)
or closed (homeomorphic to a circle). An open string theory is called Type I. For closed
strings, depending in the boundary conditions one imposes, one has Type IIA or Type
IIB. If one combines both the usual and the supersymmetric versions one obtains the
heterotic string, with gauge group (after suitable compactification) either E8 ×E8 or
SO(32). The E8×E8 heterotic string is particularly favoured as being able to include
various Yang-Mills theories which are important in particle physics.

3.3. M-Theory. One can generalize the 1-dimensional strings to higher-dimensional
objects called “membranes”; similarly superstrings to “supermembranes”. The study of
these last objects have become particularly fashionable, especially after the introduction
of something calledM-theory.

Now supersymmetry can also be made into a local gauge theory which is then called
supergravity. It was shown some time ago that in supergravity, dimX ≤ 11, so 11-
dimensional supergravity was studied as being in some sense a unique theory.
M-theory is perceived as an 11-dimensional supergravity theory, where the 11-

dimensional manifold X can be variously compactified to give different superstring
theories. Moreover, solitonic solutions are found which are supermembranes. By exam-
ining the moduli of these solutions one can connect pairs of underlying string theories.
For example, reminiscent of the Seiberg-Witten duality and using the modular transfor-
mations on the modulus τ of the torus (in one of the compactifications of X), one can
connect the two different versions of the heterotic string. In fact, by using both com-
pactification and duality one finds thatM-theory can give rise to all the five superstring
theories mentioned above. So in some sense, all the five theories are equivalent and one
can imagine that they are just different perturbative expansions of the same underlying
M-theory.

Most recently, Maldecena suggested that M-theory on compactification on a partic-
ular 5-dimensional manifold (called anti-de Sitter space), including all its gravitational
interactions, may be described by a (nongravitational) Yang-Mills theory on the bound-
ary ofX which happens to be 4-dimensional Minkowski space (i.e., flat spacetime). This
opens up some new vistas in the field.

Although progress is made in an almost day-to-day basis, we are still waiting for a
fuller description, perhaps even a definition, of M-theory. Meanwhile, it has generated
a lot of interest and especially intense study into the various moduli spaces that occur.

4. Conclusion

I have endeavoured to describe a few physical theories in which moduli space plays
an important role. However, I must say that the success in the reverse direction is more
spectacular—usingYang-Mills moduli spaces (in different specializations) to understand
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4-manifolds, following Donaldson, Kronheimer and many others.At the beginning I have
explained why the success in physics is more restricted. Nevertheless, there are many
high points:

(1) Self-dual Yang-Mills� instantons� vacuum structure of QCD.
(2) Monopole moduli spaces � identification of pairs of dual theories in Seiberg-

Witten scheme� hope for possibility of practical computations in quantum field theory.
(3) Classification of conformal field theories� application of theoretical statistical

mechanics.
(4) Identifying moduli spaces to connect up the different string theories� leading to

a unification in eleven dimensions?
But for lack of time and expertise, I have omitted many other areas of mathematical

physics being actively pursued at present in which moduli spaces play significant roles.
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ON THE USE OF PARAMETERAND MODULI
SPACES IN CURVE COUNTING

RAGNI PIENE

In order to solve problems in enumerative algebraic geometry, one works with vari-
ous kinds of parameter or moduli spaces: Chow varieties, Hilbert schemes, Kontsevich
spaces. In this note we give examples of such spaces. In particular we consider the case
where the objects to be parametrized are algebraic curves lying on a given variety. The
classical problem of enumerating curves of a given type and satisfying certain given
conditions has recently received new attention in connection with string theories in the-
oretical physics. This interest has led to much new work—on the one hand, within the
framework of more traditional algebraic geometry, on the other hand, with rather sur-
prising results, using new methods and ideas, such as the theory of quantum cohomology
and generating functions.

1. Introduction

Enumerative geometry has a long history. Apollonius of Perga (262–200 B.C.) consid-
ered and solved problems like the following: construct all circles tangent to three given
circles in the plane. The enumerative part of this problem is to determine the number of
solutions: there is one such circle containing (or circumscribing) the three circles, three
containing precisely two, three containing only one, and one containing none, hence the
answer is eight.

Similar questions can be asked for arbitrary conics (curves of degree 2) in the complex
projective plane P2 := P2

C
—e.g., how many conics are tangent to five given conics. A

conic in P2 is given by the six coefficients of its defining equation (up to multiplication
by a nonzero scalar), hence the parameter space of conics can be identified with P5. The
points corresponding to degenerate conics (pairs of lines) form a hypersurface in P5, and
the points corresponding to “double” lines form a 2-dimensional subvariety V in this
hypersurface. For a given conic, the points corresponding to conics tangent to that conic,
form a hypersurface of degree 6. Hence one might be led to think (as Jakob Steiner did in
1848), that there are 65 = 7776 conics tangent to five given conics—in other words, that

Copyright © 1998 Hindawi Publishing Corporation
Moduli Spaces in Mathematics and Physics (1998) 57–66
http://books.hindawi.com/9775945011/
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the points corresponding to these conics are the points of intersection of five hypersur-
faces, each of degree 6. This argument is wrong, however, because the parameter space
is not “complete” with respect to the given problem in the following sense: any such
“tangency condition” hypersurface contains the subvarietyV of double lines, hence their
intersection is never finite. The correct solution to the problem is 3264, as was found by de
Jonquières (1859) and Chasles (1864). Essentially, what Chasles did, was to replace the
parameter space P5 with a spaceB, whose points correspond to pairs consisting of a conic
and its dual conic, and all limits of such pairs. The spaceB is the blow-up of P5 along V ,
and on B the intersection of the “tangency conditions” is finite. (See [11] for the history
and the details.) More generally, one can ask to determine the characteristic numbers
Na,b of a given family of plane curves; here Na,b is, by definition, the number of curves
passing through a given points and tangent to b given lines, where a+b is equal to the di-
mension of the family. Classically, this problem was solved—by Schubert and Zeuthen—
for curves of degree at most 4, and these numbers have been verified by modern, rigorous
methods.

To solve problems like the ones above, for example, to count curves lying on a given
variety and satisfying certain conditions, a natural procedure is to represent the curves
as points in some space, and then to represent the conditions as cycles on this parameter
space. If the intersection theory of the parameter space is known, then the solution to
a given enumerative problem can be obtained as the intersection number of the cycles
corresponding to the given conditions (at least up to multiplicities of the solutions)—
provided the cycles intersect properly.

A particular problem of this kind, which goes back to Severi and Zariski, is the
following: given an r-dimensional family of curves on a surface, determine the number
of curves in that family having r nodes (a node is an ordinary double point, that is, a
singular point formed by two branches of the curve meeting transversally). The family
can, for example, be a subsystem of a complete linear system, given by imposing the
curves to pass through a certain number of points on the surface. There has been a lot of
work on this problem in the last few years—here are just a very few sample references:
[22], [3], [8], [2], [23], [6], [12], [21], [1].

The more nodes (or other singularities) a curve has, the smaller geometric genus it
has. Therefore, one can also consider enumerative problems where instead of fixing
the number (and type) of singularities, one fixes the geometric genus of the curves.
For example, if one considers rational curves (i.e., curves of geometric genus zero)
in the projective plane, then such an irreducible nodal curve of degree d must have
(d−1)(d−2)/2 nodes. The question of enumerating rational curves is the one that first
came up in the context of string theory in theoretical physics, and it is also one that has
been central to many problems in algebraic and symplectic geometry.

In Section 2, we give a very brief presentation of three parameter spaces: theChow va-
riety, theHilbert scheme, and the Kontsevich moduli space of stable maps. We elaborate
a little on the last, which is the newest of the three, and we also define Gromov-Witten
invariants in certain cases. Section 3 gives a simple example of a situation where the
three above spaces lead to different compactifications of the same space, namely that of
twisted cubic curves. In Section 4, we give a short introduction to quantum cohomol-
ogy and show how the associativity of the quantum product can be used to deduce a
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recursive formula for the number of rational plane curves of given degree d , passing
through 3d−1 general points.

This note is only meant as a tiny introduction to what has recently become a very
lively area of research. No proofs are given, and not all statements are completely true
the way they are written. I refer to the papers in the bibliography for precise statements
and proofs, more material, and further references. In particular, parts of Sections 2 and
4 draw heavily on [5] and [10].
Notation. I use standard notation from algebraic geometry (as in [7]). Note that

a complex, projective, nonsingular variety can be considered as a complex analytic
manifold, and more generally, a projective scheme can be considered as a complex
analytic space (see [7, p. 438]). A curve (resp. a surface) is a variety of (complex)
dimension 1 (resp. 2).

2. Parameter and moduli spaces

Let X ⊂ Pn be a complex, projective, nonsingular variety. There are at least three ap-
proaches to representing the set of curves C ⊂X:

(1) Chow variety: its points correspond to 1-dimensional cycles on X.
(2) Hilbert scheme: its points correspond to 1-dimensional subschemes of X.
(3) Kontsevich space: its points correspond to stable maps from a curve to X.
The first approach is the oldest; it goes back to Cayley, but was developed by Chow

(see [14, p. 40]). The idea is to parametrize effective 1-dimensional cycles C =∑
niCi

(the Ci are reduced and irreducible curves and ni ≥ 0) on X by associating to each
suchC a hypersurfaceM(C) in Pn∗×Pn∗ (where Pn∗ is the dual projective space whose
points are hyperplanes in Pn): intuitively,M(C) is the set of pairs of hyperplanes (H,H ′)
such that C∩H ∩H ′ �= ∅. For each C, the coefficients of M(C) determine a point in an
appropriate projective space, and the union of these points, as C varies, is Chow1(X).
In order to get something of reasonable size, we restrict the set of curves we consider
by fixing the degree, say d, of the cycle. The corresponding parameter space is denoted
Chow1,d (X).

The second approach is due to Grothendieck. It gives a projective scheme, Hilb(X),
which parametrizes all closed subschemes of a given projective varietyX. The advantage
with this approach is that there exists a universal flat family of subschemes having the
Hilbert scheme as a base. In fact, to give a morphism from a scheme T to the Hilbert
scheme, is equivalent to giving a flat family of schemes over T , where each fiber is a
subscheme of X. Since the Hilbert polynomial is constant in a flat family, the Hilbert
scheme splits into (not necessarily irreducible) components HilbP(t)(X) according to
the Hilbert polynomial P(t). For a projective curve, the Hilbert polynomial is of the
form P(t)= dt+1−ga , where d is the degree and ga the arithmetic genus of the curve.

The last approach is relatively new and is part of the “revolution” in enumerative
geometry due to the appearance of the physicists on the scene. The Kontsevich moduli
space of pointed morphisms can be defined as follows (see [15], [5]). Fix an element β ∈
A1X :=H2(X;Z) and consider the set of isomorphism classes of pointed morphisms:

Mg,n(X,β)=
{(
µ : C −→X;p1, . . . ,pn

) | µ∗([C])= β}
/�,



60 On the use of parameter and moduli spaces in curve counting

where C is an irreducible smooth curve of genus g, the pi’s are distinct points on C, and(
µ : C −→X;p1, . . . ,pn

)
�

(
µ′ : C′ −→X;p′1, . . . ,p′n

)
if there exists an isomorphism ν : C → C′ with µ′ ◦ ν = µ and ν(pi) = p′i , for
i = 1, . . . ,n. By adding the so-called stable pointed morphisms from not necessarily
irreducible curves, one obtains a compactification Mg,n(X,β) of this space, which is
a coarse moduli space (see [9] and [18]). In particular, if X is a point (so that β = 0),
then Mg,n({point},0) = Mg,n is the usual Deligne-Mumford moduli space of stable,
n-pointed curves of genus g.

In what follows, we shall only consider the case where g = 0 (so that C = P1) and
X is convex (e.g., X is a projective space, a Grassmannian, a flag variety, . . .). Then one
can show thatM0,n(X,β) is a normal projective variety of dimension

dimX+
∫
β

c1
(
TX

)+n−3,

where c1(TX) denotes the first Chern class of the tangent bundle of X, and
∫
β
α is the

degree of the zero cycle α∩β. SetM =M0,n(X,β), and let

ρi :M −→X

denote the ith evaluation map, given by

ρi
(
µ : C −→X;p1, . . . ,pn

)= µ(
pi

)
.

If γ1, . . . ,γn ∈ A∗X := H ∗(X;Z) are cohomology classes, we define Gromov–Witten
invariants as follows:

Iβ
(
γ1, . . . ,γn

)= ∫
M

ρ∗1γ1∪·· ·∪ρ∗nγn.

Assume each γi is effective, that is, γi is equal to the class [,i] of some subvariety ,i
of X. Assume moreover that

∑
i codim,i = dimM . If the ,i are in “general position”,

the Gromov-Witten invariants have enumerative significance:

Iβ
(
γ1, . . . ,γn

)= degρ−1
1

(
,1

)∩·· ·∩ρ−1
n

(
,n

)
is the number of pointed maps (µ : C → X;p1, . . . ,pn) such that µ∗([C]) = β and
µ(pi) ∈ ,i . This is the same as the number of rational curves in X of class β and
meeting all the subvarieties ,i .

Example. LetX = P2 and β = d [line]. We shall writeM0,n(P
2,d) instead ofM0,n(P

2,

d [line]). This space has dimension 2+3d+n−2 = 3d−1+n, since
∫
β
c1(TX)= 3d .

Consider the case n= 3d−1. Take points x1, . . . ,x3d−1 ∈X in general position, and set
,i = {xi}. Then ∑

i

codim,i = 2(3d−1)= dimM0,n
(
P2,d

)
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holds, and

Iβ
([,1], . . . , [,3d−1]

)=Nd
is the number of rational plane curves of degree d passing through the 3d − 1 points
x1, . . . ,x3d−1.

There exist linear relations between the boundary components of the compactification
M0,n(P

2,d) of M0,n(P
2,d), and these can be used to find a recursive formula for the

numbers Nd in terms of Ndi with di < d (see [5, 0.6]). In Section 4, we shall indicate
how this formula also can be derived from quantum cohomology.

Consider the case of plane conics, that is, take d = 2. In this case, both Chow1,2(P
2)

and Hilb2t+1(P2) are equal to the space P5 of plane conics. Hence, as we have seen,
neither is good for enumerative problems involving tangency conditions. Classically,
one considered the variety B of complete conics: B ⊂ P5 × P5∗ is the set of pairs
of a conic and its dual conic (the conic in the dual projective plane whose points are
the tangent lines of the original conic) and limits of such pairs; one shows that B is
equal to the blow-up of P5 in the locus V corresponding to double lines. The lim-
its of a pair consisting of a conic and its dual conic can be identified with the fol-
lowing three types of configurations: a pair of lines (the limit of the dual conic in
this case is the “double line” consisting of all lines through the point of intersection
of the line pair), a line with two marked points (the limit of the dual is the union
of the sets of lines through each of these points), and a line with one marked point
(the dual is the set of lines through the point, considered as a “double line” in the
dual plane).

The space M0,0(P
2,2) is the set of isomorphism classes of maps µ : P1 → P2 such

that the image cycle µ∗(P1) has degree 2. The class of a map µ which is one-to-one
is determined by its image, µ(P1), which is a nonsingular conic. A map which is two-
to-one is a degree 2 map from P1 to some line in P2. Its isomorphism class is deter-
mined by that line together with two distinct points on it (the two branch points of
the map). The maps corresponding to points on the boundary of the compactification
M0,0(P

2,2) are maps from the union of two P1’s intersecting in a point; if the map
is an immersion, its isomorphism class is determined by its image, the union of two
lines—otherwise, it maps the two P1’s onto the same line, and its class is determined by
that line together with the point which is the image of the intersection point of the two
P1’s. Hence we can indeed identify M0,0(P

2,2) with the space B of complete conics
(see [5, 0.4]).

The example above is typical for hypersurfaces, in the sense that the (relevant com-
ponents of the) Chow variety and Hilbert scheme are equal for hypersurfaces, e.g., for
curves on surfaces. We shall see in the next section that this does not hold when we
consider curves on higher dimensional varieties.

3. Twisted cubic curves

A twisted cubic is a nonsingular, rational curve of degree 3 in P3. The set � of twisted
cubics has a natural structure as a homogeneous space of dimension 12: since any twisted
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cubic is projectively equivalent to the image of the Veronese embedding P1 → P3, given
by sending a point with homogeneous coordinates (s, t) to the point (s3, s2t, st2, t3),
we get � = SL(4;C)/SL(2;C). Consider the following three compactifications of the
variety �.

(1) A twisted cubic is a 1-cycle of degree 3 in P3, so � ⊂ Chow1,3(P
3). Let � denote

the irreducible component containing �.
(2) A twisted cubic is a curve of degree 3 and arithmetic genus zero in P3, hence

� ⊂ Hilb3t+1(P3). Let � denote the irreducible component containing �.
(3) A twisted cubic is the image of a map P1 → P3, hence � ⊂M0,0(P

3,3). Let �
denote the irreducible component of the Kontsevich space containing �.

These three spaces, �, �, and �, are birationally equivalent, but they are not equal. We
have a mapφ :� → �, which “forgets” the scheme structure except for the multiplicities
of the components—e.g., any scheme structure of multiplicity 3 on a line L in P3 maps
to the same point 3L ∈ �. Similarly, there is a map ψ : � → �, but no obvious maps
between � and �.

As an example, consider the point 2L+L′ ∈ C, whereL,L′ are lines in P3 intersecting
in a point. Points in φ−1(2L+L′) correspond to double structures of genus −1 on the
line L, and one can show that there is a 2-dimensional family of such structures. Points
in ψ−1(2L+L′) correspond to stable maps from a union of P1’s onto L∪L′, of degree
2 on L and 1 on L′, and where some P1’s may map to points. The set of isomorphism
classes of such maps also contains a 2-dimensional set, but there seems to be no natural
relation between the fibres φ−1(2L+L′) and ψ−1(2L+L′) (cf. [17]).

There are also other natural compactifications of �. The ideal of a twisted cubic in the
homogeneous coordinate ring is generated by three quadrics, and one can show that �
has a “minimal” compactification � equal to the moduli space of nets (i.e., 2-dimensional
linear systems) of quadrics. In fact, one can show that � is the blow up of � along the
boundary �−�; points in the boundary correspond to degenerate nets, i.e., nets with a
plane as fixed component (see [4]).

For enumerative problems, one is led to consider a space of “complete” twisted cubics,
similarly to the case of plane curves, by taking triples consisting of the curve, its tangent
developable surface, and its strict dual curve, and limits of such triples. Depending on
whether one takes these limits in the Hilbert schemes or in the Chow varieties, one gets
different spaces, and they also differ from the ones considered above (see [19] and [20]).

4. Quantum cohomology and rational curves

The quantum cohomology ring of a projective variety can be thought of as a deformation
of the ordinary cohomology ring, where the deformation parameters—or “quantum
variables”—are “dual” to a basis of the cohomology groups (viewed as a complex vector
space.) To get a ring structure, one deforms the ordinary cup product to get a “quantum
product.” The structure of this ring has quite surprising implications in enumerative
geometry. In particular we shall see how the recursive formula for the number Nd can
be deduced from the associativity of the quantum product.

Let T0, . . . ,Tm be a basis for A∗X such that T0 = 1, T1, . . . ,Tp is a basis for A1X,
and Tp+1, . . . ,Tm is a basis for the sum of the other cohomology groups. Consider the
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“universal element”

γ =
m∑
i=0

yiTi,

where the coefficients yi are the “quantum variables”. The main idea from physics is to
form a generating function (or “potential” or “free energy” function) for the Gromov-
Witten invariants as follows:

M
(
y0, . . . ,ym

)= ∑
n0+···+nm≥3

∑
β∈A1X

Iβ
(
T
n0

0 , . . . ,T nmm
)yn0

0

n0! · · ·
y
nm
m

nm! .

One can show that for each β there are only finitely many nonzero Gromov-Witten
invariants, hence M(y0, . . . ,ym) ∈Q[[y0, . . . ,ym]] is a power series ring.

The part of M corresponding to β = 0 (corresponding to maps P1 → X with image
a point) is the “classical” part—the rest is the “quantum” part:

M=Mcl+,.
Define numbers gij by

gij =
∫
X

Ti ∪Tj
and let (gij ) denote the inverse matrix (gij )−1. Then we define the quantum product:

Ti ∗Tj =
∑
k,l

Mijkg
klTl,

whereMijk = δ3M/δyiδyj δyk . By extending this product Q[[y0, . . . ,ym]]-linearly to the
Q[[y0, . . . ,ym]]-moduleA∗X⊗Q[[y0, . . . ,ym]]we obtain a Q[[y0, . . . ,ym]]-algebra that
we denote by QA∗X—this is our “quantum cohomology” ring. Obviously, the above
product is commutative, and one sees easily that T0 is a unit. On the contrary, it takes a
lot more effort to prove that the product is associative! In view of the consequences of
associativity, this is not so surprising (see [5], [10]).
The caseX = P2. In this case, p = 1 andm= 2: T0 = [X], T1 = [line], T2 = [point],

and β = dT1, for d ∈ Z. We have (gij )= 1 if i+j = 2 and gij = 0 otherwise, so that

gij =
0 0 1

0 1 0
1 0 0

= (
gij

)
.

Hence we get

Ti ∗Tj =Mij0T2+Mij1T1+Mij2T0.

The classical part of M becomes

Mcl =
∑

n0+n1+n2=3

(∫
P2
T
n0
0 ∪T n1

1 ∪T n2
2

)
y
n0
0

n0! ·
y
n1
1

n1! ·
y
n2
2

n2! =
1

2
y0y

2
1 +

1

2
y2

0y2.



64 On the use of parameter and moduli spaces in curve counting

Hence (
Mcl

)
ijk
= 1

if (i,j,k) is (a permutation of) (0,1,1) or (0,0,2), and zero otherwise.
From the definition of the Gromov-Witten invariants it follows that the quantum part

, does not contain the variable y0. In fact, we get

,
(
y0,y1,y2

)= ∑
n1+n2≥3

∑
d>0

IdT1

(
T
n1

1 ,T
n2

2

)yn1
1

n1! ·
y
n2
2

n2!

=
∑
n1

∑
d>0

(∫
dT1

T1

)n1
IdT1

(
T 3d−1

2

)yn1
1

n1! ·
y3d−1

2

(3d−1)!

=
∑
d>0

Nde
dy1 · y3d−1

2

(3d−1)! ,

where (
∫
dT1
T1)

n1 = dn1 ,
∑
n1
dn1 y

n1
1
n1! = edy1 , and Nd := IdT1(T

3d−1
2 ) is, as observed

earlier, the number of rational plane curves of degree d passing through 3d−1 general
points.

We now deduce a recursive relation for the numbersNd . Since the quantum part , of
M does not contain the variable y0, we haveMij0 = (Mcl)ij0. We can therefore compute

T1 ∗T1 = T2+,111T1+,112T0,

T1 ∗T2 = ,121T1+,122T0,

T2 ∗T2 = ,221T1+,222T0.

Hence we get(
T1 ∗T1

)∗T2 =
(
,221T1+,222T0

)+,111
(
,121T1+,122T0

)+,112T2,

T1 ∗
(
T1 ∗T2

)= ,121
(
T2+,111T1+,112T0

)+,122T1.

The associativity of the product now gives the following differential equation for the
function ,:

,222 = ,2
112−,111,122.

We now plug in the power series expression for the function, in this differential equation
and solve for Nd :

Nd =
∑

d1+d2=d
Nd1Nd2

[
d2

1d
2
2

(
3d−4

3d1−2

)
−d3

1d2

(
3d−4

3d1−1

)]
.
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The initial condition is N1 = 1—there is exactly one line through two given points in
the plane—and so one can compute all Ni recursively—here are the first 8:

N1 = 1,

N2 = 1,

N3 = 12,

N4 = 620,

N5 = 87304,

N6 = 26312976,

N7 = 14616808192,

N8 = 13525751027392.
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TEICHMÜLLER DISTANCE, MODULI SPACES OF
SURFACES, AND COMPLEX DYNAMICAL SYSTEMS

MARY REES

1. Introduction

This paper arises, strange as it may seem, out of a project in complex dynamics. Complex
dynamics is the study of the dynamics of rational maps of the Riemann sphere: that is,
given a rational map f of Ĉ, one studies the behaviour of the sequence {f n(z)} for
varying z. (Alternatively, people study the dynamics of entire or meromorphic functions
of the complex plane.) As one varies a rational map through some natural parameter
space—such as the space of all maps of some fixed degree d > 1—dynamical behaviour
varies widely—even wildly. An important aspect of study in complex dynamics is to
understand variation of dynamics within parameter spaces. I shall attempt to give some
indication of how this led me to develop a calculus of Teichmüller distance, in the hope
of striking one or two chords. Two types of moduli spaces (at least) are involved here: the
parameter spaces of rational maps (the original objects of study); the classical moduli
space arising as the quotient of Teichmüller space by the mapping class group also
plays a rôle. Teichmüller distance arises naturally in the classical problem of isotopy
classification of surfaces homeomorphisms, as will be described later. The way in which
Teichmüller distance arises in complex dynamics is related to this.

1.1. Periodic points. In any area of dynamics, periodic points are important, and this
is especially true in complex dynamics. A point z is periodic under a map f , of period n,
if f n(z) = z, and n is the least integer greater than zero for which this is true. Periodic
points come in various types. A periodic point z of period n is attractive if the derivative
(f n)′(z) is less than 1 in modulus. Here, I am restricting to holomorphic maps. This
definition is independent of choice of local coordinates, and of the point in the forward
orbit of z, that is, for a periodic point z, z is attractive if and only if f (z) is. Attractive
periodic points influence the behaviour of nearby points: for any point w sufficiently
near an attractive periodic point z, the sequence f m(w) converges to the periodic orbit
of z. Further, attractive periodic points influence the behaviour of nearby maps: if z
is attractive periodic under f , then for g near f , g has an attractive periodic point

Copyright © 1998 Hindawi Publishing Corporation
Moduli Spaces in Mathematics and Physics (1998) 67–77
http://books.hindawi.com/9775945011/
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near z. This is a simple consequence of the Implicit Function Theorem, and, although
elementary, is an important tool in dynamics in general.

1.2. Hyperbolic maps. It can happen, for a rational map f , that for almost all pointsw
(in a topological or measure-theoretic sense) the sequence f m(w) converges to one of
finitely many attractive periodic orbits. This happens, for example, if such convergence
holds for all critical points w. A point w is critical for a (holomorphic) map f if
f ′(w)= 0. This definition is independent of the choice of local coordinates. Since there
are only finitely many critical points (in fact, at most 2d−2 for a rational map of degree
d), it is possible—at least in theory, and often in practice too—to check whether their
orbits converge to attractive periodic orbits. If this does happen for all critical points of
a map f , then f is hyperbolic. This is a very important concept in dynamical systems.
The formal definition of hyperbolic is somewhat different from the above in general,
but the general consequences are much the same. For hyperbolic maps, dynamics can
be analysed: as stated above, for a hyperbolic rational map, a generic orbit converges
to an attractive periodic orbit. This is considered rather dull behaviour, and the set of
points with orbits not converging to some attractive periodic orbit is called the Julia set.
Dynamics on this set can be analysed thoroughly, using standard techniques available
in dynamical systems.

1.3. Hyperbolicity and stability. In summary, there are two (dynamical) kinds of ra-
tional maps: hyperbolic and nonhyperbolic. The hyperbolic maps can be analysed. They
are J -stable—stable is generally a good word in mathematics, but apparently with many
different meanings. In dynamics, a map f is stable if all g near f are conjugate to f ,
that is, of the form φ◦f ◦φ−1 for some homeomorphism φ. For rational maps, J -stable
means that such a conjugacy holds in a neighbourhood of the Julia set. Thus, each hy-
perbolic map is in an open connected set of maps which are all hyperbolic and have the
same dynamics, at least on their Julia sets (and with very minor variations elsewhere). It
is conjectured that hyperbolic maps are generic—open and dense—in natural parameter
spaces of rational maps, for example the space of all maps of some fixed degree d > 1.
It is known that stable maps are dense [7]. So the conjecture is that all stable maps
are hyperbolic: a result which is true in some other categories of dynamical systems.
(However, in other categories, stable systems are not usually dense.) In contrast to some
other situations in mathematics, there are infinitely many hyperbolic (and hence stable)
components in any reasonable parameter space of rational maps, so even if the conjec-
ture holds and hyperbolic maps are dense, the variation of dynamcis in the parameter
space will necessarily be complicated.

1.4. Versions of homotopy equivalence for maps. A rational map is obviously hyper-
bolic if every critical pointw is periodic, because thenw is attractive with (f n)′(w)= 0
(by the chain rule). Many hyperbolic components will contain such a map, which is called
critically finite. The total dynamics of such a map is determined by its critical orbits, or,
more precisely, by the appropriate type of homotopy class of the map with respect to
these orbits. This type of homotopy equivalence for critically finite branched coverings
is known as Thurston equivalence. If f is a branched covering, then the postcritical set
P(f ) is the set {f n(c) : n > 0, c critical}. Then critically finite branched coverings f0
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and f1 areThurston equivalent if there is a homotopy ft through critically finite branched
coverings from f0 to f1 such that P(ft ) varies isotopically. Thus Thurston equivalence
is stronger than homotopy equivalence and can be regarded as the appropriate analogue
of isotopy for homeomorphisms: we recall that two homeomorphisms are isotopic if
they are homotopic through homeomorphisms.

1.5. The importance of homotopy-type information. Another common theme in dy-
namics is that isotopy, or sometimes even homotopy, determines a map up to some kind
of semiconjugacy, for certain homotopy (or isotopy) classes. There are many results
of this type. For example [5], any continuous map f of a torus (of any dimension)
which is homotopic to a hyperbolic toral automorphism g is semiconjugate to g, that is,
there is a continuous map ϕ such that ϕ ◦f = g ◦ϕ. There is a result of this type [6]
for other surface homeomophisms (with a somewhat weaker semiconjugacy statement),
and another such result for critically finite branched coverings (see [8, 4.1]). This is one
rough reason for dynamicists to be interested in the problems of: classification of surface
homeomorphisms up to isotopy; classification of critically finite branched coverings up
to Thurston equivalence; and so on.

1.6. Classical problems. The problem of isotopy classification of surface homeomor-
phisms has been well worked over during the past seventy years or so. There have been
varying approaches to the problem by (among others) Nielsen, Thurston [4], and (fol-
lowing Thurston to some extent) Bers [1]. It is Bers’approach that I shall be highlighting
shortly. First, I want to try and indicate certain aspects of all the proofs which seem to
give important clues as to how investigations into dynamical structure should develop.
All proofs point towards a “best map”, or at least, a small class of best maps, within an
isotopy, or Thurston equivalence, class. These best maps have strong geometric structure
and strong dynamical properties. For example, the best map in a Thurston equivalence
class is often a rational map, usually unique up to Möbius conjugacy. The family of best
maps in an isotopy class of surface homemorphism is, for some choices of isotopy class
(the pseudo-Anosov classes), a family of maps each of which preserves two transverse
measured foliations (with singularities) on the surface, expanding leaves of one foliation
and contracting leaves of the other. The other important point about these proofs is that
they turn out to give information about the topology of the isotopy class of homeomor-
phisms (or Thurston equivalence class of critically finite branched coverings) itself. Let
us consider the case of isotopy classes of surface homeomorphisms for the moment. Any
isotopy class itself (at least for a surface of negative Euler characteristic) is easily seen to
be contractible. However, the proof of isotopy classification gives, further, the topology
of the connected components of the space of pairs (f,S), where S is homeomorphic to
a fixed compact surface S0 and f is a homeomorphism of S. A component of this space
corresponding to a pseudo-Anosov isotopy class is homotopy equivalent to the circle.
Now let us consider critically finite branched coverings. Thurston [10], [2] showed that
certain Thurston equivalence classes of critically finite branched coverings (satisfying
a certain condition concerning sets of disjoint simple closed loops) contained a unique
rational map up to Möbius conjugation. The proof, almost incidentally, also showed
that such Thurston equivalence classes (after quotienting by Möbius conjugation) were
contractible—in this case, a nontrivial fact.
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1.7. Generalizing the classical problems. I shall shortly come to some concrete def-
initions, statements, and even proofs. However, the point of the work I shall attempt to
describe is not to reprove the results stated above but to carry out other investigations
which were suggested by the above. We have seen that the dynamics of a rational map
is heavily influenced by what happens to the critical orbits—and, in fact, critically finite
maps are relatively easy to analyse. It is therefore natural to consider slices in parameters
space in which various critical points are constrained to have finite forward orbits. Such
slices will intersect many hyperbolic components, for example, and will contain many
critically finite maps. By constraining all but one of the critical points, one obtains slices
of complex dimension 1, which are good for initial consideration. Such spaces of ratio-
nal maps are natural subspaces of spaces of branched coverings with specific dynamics
on certain finite sets, which include some critical points. These can be regarded as “one
dimension up” from, for example, the isotopy class of a surface homeomorphism, or
of a homeomorphism of (Ĉ,A), where A ⊂ Ĉ is a finite set. I have tried to show the
evidence that investigation of dynamical structure should go hand-in-hand with a study
with the space of maps itself. It seems likely that the structure of a moduli space of-
ten reflects structure of the objects in the moduli space in some way. Also, (perhaps
less clear in the above) although one might want to study a relatively small parameter
space, in order to study it comprehensively, it might be necessary to consider a some-
what larger space. This is because of the fact that dynamical structure is often implied
by very simple homotopy-type information. It is also because information about vary-
ing dynamics within a parameter space is inextricably linked to information about the
structure—especially topological and geometric structure—of the parameters space it-
self, including the topological structure of inclusions into certain much larger spaces (but
which are nevertheless quite simply defined), topologically. The larger spaces can also
be regarded as moduli spaces, although not in the strict mathematical sense described in
Frances Kirwan’s talk (of this meeting), because they are not in general algebraic vari-
eties. I am afraid it is not possible to justify this completely here. However, there might
possibly be an analogy with other situations in mathematics—in particular, involving
moduli spaces—such as blow-ups of singularities. Some of the enlargement (but not all)
of rational map parameter spaces mentioned above is indeed connected with singularities
in these spaces.

2. Calculus

2.1. The programme from now on. For the rest of this article, I shall restrict to devel-
oping some calculus of Teichmüller distance, and applying it to an adaptation of Bers’
proof of isotopy classification of surface homeomorphisms. It is not possible to give
much detail—for further detail (see [9, Chapters 8–16]). I think this calculus is of inter-
est in its own right. As we shall see, I have developed it only in a restricted case—for
marked spheres rather than even general finite type surfaces. I do believe that it can
be developed for general finite type surfaces though, a belief that was strengthened by
some discussion at the EWM meeting, and subsequently with a colleague. The calcu-
lus is not that easy to use—nor formidably difficult. It is certainly totally unnecessary
to burden Bers’ elegant proof with it. However, the isotopy classification is useful as
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an illustration, and the calculus seems to be essential to the problem for which it was
developed.

This specific problem (for which the calculus was developed) is part of the general
project of understanding variation of dynamics in parameter spaces of rational maps.
The specific problem would take a very long time to state, but is, in fact, quite closely
related to the problem of isotopy classification of surface homeomorphisms. For further
details, see [9].

2.2. Teichmüller space. Let S0 be a compact surface (of two real dimensions) and
Y0 ⊂ S0 finite. Then homeomorphisms ϕ0, ϕ1 : (S0,Y0)→ (S,Y ) are isotopic if there is
a continuous family ϕt of homeomorphisms for t ∈ [0,1].

Now let S be a Riemann surface (or a 2-dimensional hyperbolic manifold). Then
φ : (S0,Y0)→ (S,Y ) and ϕ′ : (S0,Y0)→ (S′,Y ′) are equivalent (as elements of Te-
ichmüller space) if there is a biholomorphic map (or hyperbolic isometry) τ : (S,Y )→
(S′,Y ′) such that ϕ′ and τ ◦ϕ are isotopic. If [ϕ] denotes the equivalence class of ϕ, then
the Teichmüller space of (S0,Y0), which we denote by �(S0,Y0), is{[φ] : ϕ : (S0,Y0)→ (S,Y ) an orientation-preserving homeomorphism

}
.

Roughly speaking, �(S0,Y0) is the space of framed geometric structures homeomorphic
to (S0,Y0).

2.3. Example. Let S0 = Ĉ. Then �(S0,Y0) is a point if #(Y0) ≤ 3, because given any
two sets of three points in Ĉ, there is a Möbius transformation taking the first set to the
second. If #(Y0) = n ≥ 3, then applying a Möbius transformation, we can assume that
0, 1,∞∈ Y0. Then, for any [ϕ] ∈ �(S0,Y0), we can choose ϕ in its equivalence class to
fix 0, 1, ∞, and we do this from now on. From now on, we write

Y0 = {0,1,∞}∪{yi : 1≤ i ≤ n−3}.
Then the map

[φ] �−→ (
φ(yi)

) ∈ Cn−3

is a local homeomorphism, and gives �(S0,Y0) the structure of a complex manifold.
In fact, it can be shown that �(S0,Y0) is homeomorphic to R2n−6. If #(Y0) = 4, then
�(S0,Y0) is biholomorphic to the unit disc.

2.4. The mapping class group. Teichmüller space was used by Thurston (and Bers)
to analyse isotopy classes of homeomorphisms ψ : (S0,Y0)→ (S0,Y0). The mapping
class groupM(S0,Y0) is the group of orientation-preserving homeomorphisms modulo
isotopy. The mapping class group acts on �(S0,Y0) on the right by

[ϕ] · [ψ] = [ϕ ◦ψ].
The quotient of Teichmüller space by the mapping class group is often called themoduli
space of the surface.
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2.5. Teichmüller distance. Let χ : U → C be a local diffeomorphism, where U ⊂ C
is open. Then one can define the (pointwise) distortion K(χ)(z) at a point z ∈ U by

K(χ)(z)=
√
|λ1|
|λ2| ,

where λ1 ≥ λ2 > 0 are the eigenvalues of DχtzDχz, where Dχz denotes the derivative
of χ at z (considered as a 2×2 matrix). Note thatK(χ)(z)= 1 if χ is holomorphic near
z. We can define K(χ)(z) similarly for z ∈ S1 if χ : S1 → S2 is a local diffeomorphism
and S1, S2 are any Riemann surfaces: the definition is independent of the choice of local
coordinates. Then we can define

‖χ‖qc = ‖K(χ)‖∞,
where ‖·‖∞ denotes the L∞ norm. This norm is finite if χ is quasi-conformal, which is
true, for example, if χ is a C1 diffeomorphism between compact spaces. It is also finite
more generally: since we are taking the L∞ norm, ‖χ‖qc might be finite even if χ is
nondifferentiable on a set of zero measure.

The Teichmüller distance

d� : �×� → (0,∞)
is defined by

d�

([ϕ1], [ϕ2]
)= 1

2
inf

{
log‖χ‖qc : [χ ◦ϕ1] = [ϕ2]

}
.

The Teichmüller distance coincides with half the Poincaré distance if � = �(Ĉ,Y0) and
#(Y0)= 4, so that �(Ĉ,Y0) is the unit disc. The Teichmüller distance is a genuine metric:
if χ is biholomorphic, then log‖χ‖qc = 0 for all z. Moreover, the action of M(S0,Y0)

on �(S0,Y0) preserves Teichmüller distance, that is,

d�

([ϕ1] · [ψ], [ϕ2] · [ψ]
)= d�

([ϕ1], [ϕ2]
)

for all [ϕ1], [ϕ2] ∈ �(S0,Y0) and for all [ψ] ∈ M(S0,Y0). This ensures that the Te-
ichmüller distance metric descends to a metric on moduli space. The infimum in the
definition of d� is attained for a unique χ . This χ is defined by the following properties.
Except at finitely many points on ϕ1(S0) and ϕ2(S0), there are local coordinates x+ iy
on ϕ1(S0) and ϕ2(S0) with respect to which χ has the formula

χ(x+ iy)= λx+ i 1

λ
y

for some λ≥ 1. We then have

logλ= 1

2
log‖χ‖qc = d�

([ϕ1], [ϕ2]
)
.

Moreover, the local coordinates (with singularities) are given by quadratic differentials
on ϕ1(S0), ϕ2(S0). A quadratic differential on (ϕj (S0),ϕj (Y0)) has the following prop-
erty with respect to (any system of nonsingular) charts (U,ξU ), (V ,ξV ) on ϕj (S0), that
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is, withU ,V ⊂ ϕj (S0). Suppose thatU∩V �=∅ and that the quadratic differential is given
in ξU (U), ξV (V ) by qU(z)dz2, qV (z)dz2. Then qU , qV are meromorphic with at worst
simple poles, with these occurring only (at most) at points of ξU ◦ϕj (Y0), ξV ◦ϕj (Y0),
and on ξU (U ∩V ) we have

qU(z)=
((
ξV ◦ξ−1

U

)′
(z)

)2 ·qV ◦ξV ◦ξ−1
U (z).

The singular local coordinates with respect to which χ has its special form are then
given on U by

(x+ iy)(ξ−1
U (z)

)= ∫ z

z0

√
qU(ζ )dζ.

Up to addition of a constant and plus or minus sign, these local coordinates are indepen-
dent of choice of chart U : the way the quadratic differential transforms under change of
chart, and the change of variable formula for integrals, ensure that.

Now let S0 = Ĉ= ϕj (S0) and consider the chart C. Then a quadratic differential on
(Ĉ,ϕ(Y0)) is given in this chart by q(z)dz2, where q is a rational function with at worst
simple poles, occurring at most at points of ϕ(Y0), and with at least three more poles
than zeros. This last condition assumes that ∞ is a point of ϕ(Y0): otherwise we need
at least four more poles than zeros. It arises from considering the local coordinate 1/z
at ∞: we need q(1/z)z−4 to have at most a simple pole at zero.

2.6. Bers’ approach to isotopy classification of surface homeomorphisms. Let an
isotopy class [ϕ] inM(S0,Y0) be given. Then consider the map

F : �(S0,Y0)−→ R+

given by

F
([ϕ])= d�

([ϕ] · [ψ], [ϕ]).
Consider where the infimum of this function is attained. There are three possibilities,
corresponding to three different types of isotopy classes.

(1) The minimum value “zero” is attained at a point in �. In that case, it is attained at
a unique point in � at a point [ϕ], and ϕ ◦ψ ◦ϕ−1 is isotopic to a biholomorphism (or
hyperbolic isometry) of (ϕ(S0),ϕ(Y0)), which is necessarily of finite order.

(2) The infimum is “zero”, but this is not attained at any point of �. This is the
reducible case. In this case, it is possible to show that the infimum is only attained by
going to infinity in � in specific directions. We omit the details.

(3) The infimum is strictly positive, and is attained uniquely on a curve of one real
dimension in � which is invariant under the action of [ψ]: it has to be, since right action
by [ψ] preserves Teichmüller distance. This curve is known as a geodesic (and distance
between any two points on the geodesic is indeed attained uniquely along paths in the
geodesic). Such a minimizing geodesic is uniquely determined by any fixed point [ϕ] on
it, and a unique quadratic differential (up to multiplication by a nonzero real number) for
(ϕ(S0),ϕ(Y0)). If we take the singular local coordinates x+ iy on ϕ(S0) given by this
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quadratic differential, then all other points on the geodesic are [χλ ◦ϕ] (λ > 0), where,
if S′λ = χλ ◦ϕ(S0), then χλ : S′0 = ϕ(S0)→ S′λ is given in singular local coordinates by

χλ(x+ iy)= λx+ i y
λ
.

This is known as the pseudo-Anosov case. If [ϕ] is a point on the geodesic, then so is
[ϕ◦ψ], and it is apparent from the characterization above of points on the geodesic that
ϕ ◦ψ ◦ ϕ−1 has very special properties. In fact, the singular local coordinates x+ iy
give the two transverse measured foliations (with singularities) mentioned earlier in
this article. Leaves of these foliations are given locally by the curves y = constant and
x = constant.

Bers [1] was able to do his analysis of the function F without any reference to its
derivative, which means without any reference to the derivative of d�. (Note that, with
respect to the natural local coordinates on �(Ĉ,Y0) that we described earlier, the right
action of [ψ] is given by the identity map.) However, at the same time that Bers was
carrying out his analysis, Earle [3] was developing a formula for the derivative of d�.
I shall not give the precise formula. It is not difficult, but involves the introduction of
Beltrami differentials associated to elements of Teichmüller space. Anyway, the nub of
the formula is that the derivative of d�([ϕ1], [ϕ2]) at ([ϕ1], [ϕ2])with [ϕ1]�=[ϕ2] is given
by the pair of quadratic differentials at (ϕ1(S0),ϕ1(Y0)), (ϕ2(S0),ϕ2(Y0)) used to define
the map χ with [χ ◦ϕ1] = [ϕ2]which minimises distortion. I shall give a formula below
in the special case of �(Ĉ,Y0). Of course, when one is thinking of infima of functions—
which often turn out to be minima—then one thinks of the second derivative. If F is
twice differentiable at any minimum value, the first derivative must be zero at such a
point, and the second derivative must be positive at such a point. This is indeed the case,
at least in the cases for which I have been able to compute second derivative of distance
so far, that is, for marked spheres.

2.7. The derivative formula for �(Ĉ,Y0). This particularly simple formula (which is
a special case of Earle’s) is possible because of the simple local coordinates on �(Ĉ,Y0).
Let #(Y0) = n, n ≥ 3. Let [ϕ], [ϕ′] ∈ �(Ĉ,Y0), so that ϕ, ϕ′ are orientation-preserving
homeomorphisms of Ĉ, and assume, without loss of generality, that they fix 0, 1, ∞.
Then if h = (hi) ∈ Cn−3 is small enough given [ϕ], the element [ϕ]+h of �(Ĉ,Y0) is
well-defined by taking this to be the isotopy class of the homeomorphism near ϕ which
fixes 0, 1, ∞ and sends yi to ϕ(yi)+hi . Let q(z)dz2 and −p(z)dz2 be the quadratic
differentials at [ϕ], [ϕ′] for d�([ϕ], [ϕ′]). Thus, p(z)dz2 is the stretch of q(z)dz2, that
is, with respect to the local coordinates given by q(z)dz2, p(z)dz2, the homeomorphism
minimizing distortion is in the form

x+ iy �−→ x+ i y
λ
,

where logλ= d�([ϕ], [ϕ′]). We recall from the definition of quadratic differentials that
q and p have at most simple poles. Then the formula for the first derivative in this special
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case (see [9, Chapter 8]) is given by

d�

([ϕ]+h, [ϕ′]+h′)
= d�

([ϕ], [ϕ′])+2π
n−3∑
i=1

Re
(

Res
(
q,ϕ(yi)

)
hi−Res

(
p,ϕ′(yi)h′i

))+o(h)+o(h′).
2.8. Quadratic differentials and hyperelliptic curves. We continue with the conven-
tions on Y0, ϕ established above. We recall that if q(z)dz2 is a quadratic differential at
(Ĉ,ϕ(Y0)), then q is a rational function with at most n simple poles, at most occurring
at the points ϕ(Y0), and at most 3 less zeros than poles, up to multiplicity. We suppose
for the moment that all zeros are simple, that all points of ϕ(yi) are simple poles of q,
and that q has exactly three more poles than zeros. (This is essentially the definition of
∞ being a simple pole of q.) We consider the Riemann surface

Sq =
{
(z,w) ∈ C2 : q(z)= w2}̄.

Here, we use }̄ to denote the following possibly nonstandard closure: without closure, the
set described above is biholomorphically a compact surface minus finitely many points,
corresponding to taking z or w =∞. We define the closure to be the union with these
finitely many points, thus giving a compact Riemann surface Sq , such that π : Sq → Ĉ
given by π(z,w) = z is a branched double cover, branched over the zeros and poles
of q—including ∞. Thus, Sq is a compact surface of genus n−3 which I shall call a
hyperelliptic curve. (This is the standard definition, modulo possible quibbles about the
closure operation.)

Then wdz = π∗(√q(z)dz) is a holomorphic 1-form on Sq . Some checking in local
coordinates near points where w = 0 or ∞, or where z = ∞, is necessary to confirm
this, but it is so. The standard theory tells us that the holomorphic 1-forms on Sq form a
vector space of complex dimension n−3. The general formula for a holomorphic 1-form
on Sq is

r(z)wdz= π∗(r(z)√q(z)dz),
where r is a rational function whose denominator is the numerator of q and the numerator
is a polynomial of degree less than or equal to n−3. The real and imaginary parts of
holomorphic 1-forms are harmonic 1-forms. The real and imaginary parts of a complex
valued form given locally by (a + ib)(dx + i dy) (where a and b are functions) are
a dx−bdy and bdy+a dx. A harmonic 1-form is closed—i.e., ∂a/∂y = ∂b/∂x—and
the harmonic condition is ∂a/∂x+ ∂b/∂y = 0. Let ω be a holomorphic or harmonic
1-form on Sq , and γ a loop on Sq . Then ∫

γ

ω

depends only on the homology class of γ . Thus each holomorphic 1-form defines an
element of H 1(Sq,C) and each harmonic 1-form defines an element of H 1(Sq,R). In
fact, the space of harmonic 1-forms is isomorphic to H 1(Sq,R).
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2.9. Connection with the second derivative of Teichmüller distance. In this section,
I shall indicate very briefly how to use harmonic 1-forms on Sq , Sp to obtain the second
derivative of the Teichmüller distance function. See [9] for further details, and also on
the function F . (For reasons of space, I shall not attempt to indicate, here, the precise
form of D2d�, nor why certain terms in this are positive, nor why D2F is positive.)

We recall that if logλ = d�([ϕ], [ϕ′]), then λ is the distortion of the best map χ :
(Ĉ,ϕ(Y0))→ (Ĉ,ϕ′(Y0))with [χ ◦ϕ] = [ϕ′]. The key point is thatλ can be characterised
in terms of a linear map between H 1(Sq,R) and H 1(Sp,R), as follows. Note that the
map χ : Ĉ→ Ĉ lifts to a map χ̃ : Sq → Sp. Then χ̃ induces a map from H1(Sq,Z)
to H1(Sp,Z). Then the following holds, where we identify complex numbers with 2-
dimensional real column vectors, so that left multiplication by real 2×2 matrices makes
sense. For all γ ∈H1(Sq,Z),(

λ 0
0 λ−1

)∫
γ

π∗q
(√
q(z)dz

)= ∫
χ̃(γ )

π∗p
(√
p(z)dz

)
.

That is, in terms of H 1(Sq,R), H 1(Sp,R),(
λ 0
0 λ−1

)
π∗q

(√
q(z)dz

)= χ̃∗π∗p(√p(z))dz. (2.1)

Now suppose that [ϕ] and [ϕ′] are changed to [ϕ]+h and [ϕ′]+h′, respectively, and
we want to find the perturbations q1 and p1 which satisfy the equation corresponding to
(2.1). Write

ϕ
(
yi

)= bi, and ai = Res
(
q,bi

)
.

Then q1 has possible poles at 0, 1, ∞ and bi+hi , 1≤ i ≤ n−3, where the residues are
ki , 1≤ i ≤ n−3. Then

q(z)=
n−3∑
i=1

bj (bj −1)aj
z(z−1)(z−bj ) .

Then expanding,
√
q1 this gives

√
q1(z)dz=

√
q(z)dz+ 1

2

n−3∑
j=1

bj (bj −1)kj
z(z−1)(z−bj )√q dz

+
n−3∑
j=1

bj (bj −1)ajhj
z(z−1)(z−bj )2√q(z)dz+o(h)+o(k).

Then we note that

π∗q
(

bj (bj −1)

z(z−1)z−bj√q(z)dz
)

(2.2)

form a basis of holomorphic 1-forms on H 1(Sq,C). The real and imaginary parts then
form a basis of harmonic 1-forms in H 1(Sq,R). Meanwhile, the

π∗q
(

bj (bj −1)aj
z(z−1)(z−bj )2√q(z)dz

)
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are meromorphic 1-forms of the first kind, that is, the residues at singularities are zero.
Thus these forms, also, define elements of H 1(Sq,C). In fact, each of these 1-forms
has exactly one singularity, which is a double pole. It is possible to write these forms in
terms of the basis of harmonic 1-forms given by (2.2). The coefficient matrix is a sum of
products of matrices of improper intergrals and inverses of such. This looks like a very
classical calculation, apart from the nonstandard form of hyperelliptic curve (i.e., using
q rather than a polynomial). Nevertheless, details can be found in [9, Chapters 10–11].

In exactly the same way, an expresson can be found for the perturbationπ∗p(
√
p1(z)dz)

of π∗p(
√
p(z)dz). Then the perturbation of the equation (2.1) can be written down to first

order, and the vectors k and k′, and the perturbation of the distance, can be computed to
first order in terms of h and h′. This, then, gives the formula for the second derivative
of Teichmüller distance, at least generically. The formula extends continuously at other
points. For further details see [9, Chapters 10–13].

The formula for the second derivative of d� then gives a formula for the second
derivative of the function F of Section 2.6. It is possible to show that, as expected,
D2F is positive, although not, in general, positive definite. The whole procedure can be
regarded as an exercise in Morse theory, that is, using level and critical sets of a function
to analyze the topology of a space.
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MODULI SPACE OF SELF-DUAL GAUGE FIELDS,
HOLOMORPHIC BUNDLES, AND
COHOMOLOGY SETS

TATIANA IVANOVA

We discuss the twistor correspondence between complex vector bundles over a self-dual
4-dimensional manifold and holomorphic bundles over its twistor space and describe the
moduli space of self-dualYang-Mills fields in terms of Čech and Dolbeault cohomology
sets. The cohomological description provides the geometric interpretation of symmetries
of the self-dual Yang-Mills equations.

1. Introduction

The purpose of this paper is to describe the moduli space of self-dual Yang-Mills fields
and a symmetry algebra acting on the solution space of the self-dual Yang-Mills equa-
tions. The description of the moduli space of self-dual Yang-Mills fields is based on the
twistor construction [13], [16], [1].

Let us briefly outline the differential-geometric background. We take M to be an
oriented Riemannian 4-manifold,G a semisimple Lie group, P(M,G) a principal fibre
bundle overM with the structure groupG,A a connection 1-form on P , FA its curvature
2-form and D a covariant differential on P . A connection 1-form A on P is called self-
dual if its curvature FA is self-dual, that is,

∗FA = FA, (1.1)

where ∗ is the Hodge star operator acting on 2-forms onM . We call equations (1.1) the
self-dual Yang-Mills (SDYM) equations. By virtue of the Bianchi identity DFA = 0,
solutions of the SDYM equations automatically satisfy the Yang-Mills equations

D
(∗FA)= 0. (1.2)

Notice that solutions to equations (1.2) are of considerable physical importance (see
the talk in this volume by Tsou S.T.). Physicists use Yang-Mills theory (by which we
mean any non-Abelian gauge theory) to describe the strong and electroweak interactions
(see, e.g., [3]). They call the connection 1-form A the gauge potential and the curvature

Copyright © 1998 Hindawi Publishing Corporation
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2-form FA the gauge orYang-Mills field. The SDYM equations (1.1) describe a subclass
of solutions to theYang-Mills equations (1.2). A choice of different boundary conditions
for self-dual gauge fields gives such important solutions of the Yang-Mills equations as
instantons, monopoles and vortices.

It is well known that the SDYM equations are manifestly invariant under the gauge
transformations of the gauge potential A and gauge field FA and under the rescaling
of a metric g on M : g �→ eϕg (Weyl transformation), where ϕ is an arbitrary smooth
function onM . The gauge transformations have the form (cf. talk by Tsou S.T.)

A �−→ Ag = g−1Ag+g−1dg, (1.3a)

FA �−→ F
g
A = g−1FAg, (1.3b)

where g is a global section of the associated bundle of groups IntP = P ×GG (G acts
on itself by internal automorphisms: h1 �→ h−1

2 h1h2, h1,h2 ∈ G), that is, g ∈ ,(M,
IntP). We denote the infinite-dimensional Lie group ,(M, IntP) by GM and call it the
gauge group.

We denote by �M the space of smooth global solutions to (1.1). The moduli space �
of self-dual gauge fields is the space of gauge nonequivalent self-dual gauge potentials
onM ,

� :=�M/GM. (1.4)

Let U ⊂M be such an open ball that the bundle P is trivializable over U . We consider
smooth self-dual connection 1-forms A on U , that is, local solutions of the SDYM
equations. Denote by �U the space of all smooth solutions to (1.1) on U and by �U the
moduli space of smooth self-dual gauge potentials A on U ,

�U :=�U/GU , (1.5)

where GU := ,(U, IntP)= C∞(U,G) is an infinite-dimensional group of local gauge
transformations.

The use of the moduli spaces (1.4) and (1.5) in physics is discussed in the talk by Tsou.
An important example of their use in mathematics is given by Donaldson’s discovery
of exotic smooth structures on 4-manifolds, which is based on topological properties of
the moduli space of self-dual gauge fields over the manifolds in question [4], [5].

The paper is organized as follows: in Section 2 we recall the twistor description of
self-dual manifolds and self-dual gauge fields, in Section 3 we discuss the cohomological
description of the moduli space of self-dual gauge fields mainly following [15], and in
Section 4 we describe the infinitesimal symmetries of the SDYM equations from the
cohomological point of view (see also [7], [8]).

2. An important tool: Twistors

Twistors were introduced by Penrose in order to translate the massless free-field equa-
tions in space-time into holomorphic structures on a related complex manifold known
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as a twistor space. The twistor theory is based on an integro-geometric transformation
which transforms complex-analytic data on the twistor space to solutions of massless
field equations. Suggested originally for the description of linear conformally invariant
equations, the twistor method has proved very fruitful for solving nonlinear equations
of general relativity and Yang-Mills theories. Namely, the Penrose nonlinear graviton
construction [13] gives the general local solution of the self-dual conformal gravity
equations, and the Ward twistor interpretation of self-dual gauge fields [16] gives the
general local solution of the SDYM equations on self-dual 4-manifoldsM .

2.1. Twistor spaces. For each oriented Riemannian 4-manifold M one can introduce
the manifold

� := P (
M,SO(4)

)
/U(2)1 P (

M,SO(4)
)×SO(4) S

2,

where P(M,SO(4)) is the principal SO(4)-bundle of oriented orthogonal frames onM .
So, the space � is a bundle associated to P(M,SO(4)) with typical fibre CP 1 1 S2 and
canonical projection π : �→M . The manifold � is called the twistor space ofM .

A Riemannian metric g is self-dual if the anti-self dual part of the Weyl tensor vanishes
[13], [1], [17]. ManifoldsM with self-dual metrics are called self-dual. In [13], [1] it was
shown that the twistor space � for such M is a complex 3-manifold. In what follows,
we shall consider a self-dual manifoldM and the twistor space � ofM .

The Levi-Civita connection onM generates the splitting of the tangent bundle T (�)
into a direct sum

T (�)= V ⊕H (2.1)

of the vertical V = Kerπ∗ and horizontal H distributions. The complexified tangent
bundle of � can be split into a direct sum

T C(�)= V C⊕HC = T 1,0⊕T 0,1 (2.2)

of subbundles of type (1,0) and (0,1). Analogously, one can split the complexified cotan-
gent bundle of � into a direct sum of subbundles T1,0 and T0,1. Using the standard
complex structure on S2 1 CP 1 ↪→ �, one obtains

T C(�)= (
V 1,0⊕H 1,0)⊕(

V 0,1⊕H 0,1). (2.3)

The distribution V 0,1 is integrable.
Denote by {Va}, {V̄a}, {θa} and {θ̄ a} (a = 1,2,3) local frames for the bundles T 1,0,

T 0,1, T1,0 and T0,1, respectively. Because of (2.3), each of the local frames is spanned
by horizontal (when a = 1,2) and vertical (when a = 3) parts. The derivative operator
d on � splits as follows:

d = ∂+ ∂̄, ∂2 = ∂̄2 = 0, ∂∂̄+ ∂̄∂ = 0, (2.4)

where locally ∂ = θaVa , ∂̄ = θ̄ aV̄a .
We consider a sufficiently small open ball U ⊂M such that � |U is a direct product

� ≡ � |U1 U×S2 as a smooth real 6-manifold. The space � ⊂ � is called the twistor
space of U . This space is covered by two coordinate patches �1 and �2,

�1 := U×:1, �2 := U×:2,
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where :1 = {λ ∈ C : |λ| < ∞}, :2 = {ζ ∈ C : |ζ | < ∞} form the covering : =
{:1,:2} of the complex projective line CP 1 and λ = ζ−1 on :1 ∩:2. On �1 and
�2 we have the local coordinates {xµ,λ, λ̄} and {xµ,ζ, ζ̄ }, respectively. We denote by
U = {�1,�2} the two-set open covering of � = �1∪�2 and by �12 the intersection
�1∩�2 = U×(:1∩:2).

Recall that for any self-dual manifold its twistor space is a complex manifold. So, on
�1,�2 ⊂ � one can introduce holomorphic coordinates {za1}, {za2}, a = 1,2,3. On the
intersection �12 = �1∩�2 these coordinates are related by a holomorphic transition
function f12 : za1 = f a12(z

b
2). For local frames {V̄ (1)a } and {V̄ (2)a } of the bundle T 0,1 over

�1 and �2 one has V̄ (1)a zb1 = 0 on �1 and V̄ (2)a zb2 = 0 on �2. Notice that as local frames
of T 0,1 over �1, �2 one can take the antiholomorphic vector fields {∂/∂z̄a1} on �1 and
{∂/∂z̄a2} on �2.

2.2. Twistor correspondence. LetM be a self-dual 4-manifold with the twistor space
�. There is a bijective correspondence [16], [2], [1] between complex vector bundles
E→M on M with self-dual connections and holomorphic vector bundles Ẽ→ � on
� which are trivial on fibres CP 1 of the bundle π : �→M (see also [14], [18], [9] and
references therein).

We briefly describe the twistor correspondence for the case of a vector bundle 
 over
an open set U ⊂ M with a self-dual connection 1-form A. Such a bundle (
,A) can
be lifted to a bundle (π∗
,π∗A) over the twistor space � of U . By definition of the
pullback, the pulled back connection 1-form π∗A on π∗
 is flat along the fibres CP 1

of the bundle π : � → U . Therefore, the components of the connection 1-form π∗A
on the bundle 
̃0 := π∗
 along the distribution V can be set equal to zero. Moreover,
the bundle 
̃0 is a trivial complex vector bundle 
̃0 = �×Cn with the transition matrix
�0

12 = 1 on �1∩�2. As it was demonstrated in [16], [2], [1], the SDYM equations (1.1)
on a connection 1-formA on 
 is the condition for the connection 1-form π∗A to define
a holomorphic structure on the bundle 
̃0. Namely, the 1-form π∗A can be split into a
direct sum of (1,0)- and (0,1)-parts, and the operator ∂̄ can be lifted from � to 
̃0,

∂̄B̄ = ∂̄+ B̄, (2.5)

where B̄ is the (0,1)-part of π∗A satisfying the equations

∂̄2
B̄
≡ ∂̄B̄+ B̄∧ B̄ = 0. (2.6)

In the local frame {θ̄ a}, a = 1,2,3, we have B̄ = B̄aθ̄a and B̄3 = 0. We denote the cor-
respondence described above by (
,A)∼ (
̃0, B̄). From (2.6) it follows that the trivial
holomorphic vector bundle 
̃0 with the flat (0,1)-connection B̄ is diffeomorphic to a
holomorphic vector bundle 
̃ with a holomorphic transition matrix �12, that is, (
̃0, B̄)∼
(
̃,�12). Therefore, there exist smoothG-valued functionsψ1 on �1 andψ2 on �2 such
that B̄(1)a = −(V̄ (1)a ψ1)ψ

−1
1 , B̄(2)a = −(V̄ (2)a ψ2)ψ

−1
2 and �12 = ψ−1

1 �0
12ψ2 = ψ−1

1 ψ2,
where �0

12 = 1 is the transition matrix in the bundle 
̃0. Since B̄ is zero along the dis-

tribution V 0,1, we have V̄ (1)3 ψ1 = 0 on �1 and V̄ (2)3 ψ2 = 0 on �2, which means that 
̃

is holomorphically trivial after the restriction to any projective line CP 1
x ↪→ �, x ∈ U .
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To sum up, we have a one-to-one correspondence between the complex vector bundle

 over U ⊂ M with a self-dual connection 1-form A and the trivial complex vector
bundle 
̃0 over � with the flat (0,1)-connection B̄ on 
̃0 having zero component along
the distribution V 0,1. In its turn, there is a diffeomorphism between the bundle (
̃0, B̄)

and the holomorphic vector bundle 
̃ over � that is trivializable as a smooth bundle over
� and is holomorphically trivializable after restricting to CP 1

x ↪→ �, x ∈ U . Thus we
have the following equivalence of data:

(
,A)∼ (

̃0, B̄

)∼ (

̃,�12

)
,

which is called the twistor correspondence between the bundles (
,A), (
̃0, B̄) and
(
̃,�12).

3. Čech and Dolbeault descriptions of holomorphic bundles

In the Čech approach holomorphic bundles are described by holomorphic transition
matrices, and in the Dolbeault approach they are described by flat (0,1)-connections. In
this section, we recall definitions of cohomology sets of manifolds with values in sheaves
of groups and reformulate the equivalence of the Čech and Dolbeault descriptions of
holomorphic bundles in cohomology terms. Funally, using the twistor correspondence,
we obtain two cohomological descriptions of the moduli space �U of self-dual gauge
fields.

3.1. Sheaves and cohomology sets. We recall some definitions [6], [10], [11], [12].
We consider a complex manifold X, smooth maps from X into a non-Abelian group G
and a sheaf S of such G-valued functions. Let U = {�α},α ∈ I , be an open covering
of the manifold X. A q-cochain of the covering U with values in S is a collection
ψ = {ψα0···αq } of sections of the sheaf S over nonempty intersections �α0∩·· ·∩�αq . A
set of q-cochains is denoted byCq(U,S); it is a group under the pointwise multiplication.

Subsets of cocycles Zq(U,S)⊂ Cq(U,S) for q = 0,1 are defined as follows:

Z0(U,S) := {
ψ ∈ C0(U,S) : ψαψ−1

β = 1 on �α∩�β �=∅
}
, (3.1a)

Z1(U,S) := {
ψ ∈ C1(U,S) : ψβα = ψ−1

αβ on �α∩�β �=∅;
ψαβψβγψγα = 1 on �α∩�β ∩�γ �=∅

}
. (3.1b)

It follows from (3.1a) that Z0(U,S) coincides with the group H 0(X,S) := S(X) ≡
,(X,S) of global sections of the sheaf S. The setZ1(U,S) is not in general a subgroup
of the group C1(U,S).

Cocycles f̂ ,f ∈ Z1(U,S) are called equivalent f̂ ∼ f if f̂αβ = ψαfαβψ−1
β for some

ψ ∈ C0(U,S), α,β ∈ I . The cocycle f equivalent to f̂ = 1 is called trivial and for such
cocycles f = {fαβ} we have fαβ = ψ−1

α ψβ . A set of equivalence classes of 1-cocycles
is called the 1-cohomology set and is denoted byH 1(U,S). After taking the direct limit
of the sets H 1(U,S) over successive refinements of the covering U of X, one obtains
the Čech 1-cohomology set H 1(X,S) of X with coefficients in S. In the case when Uα
are Stein manifolds, H 1(U,S)=H 1(X,S).
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We shall also consider a sheaf Ṡ of smooth functions on X with values in an abelian
group. Then the subgroups of cocycles Zq(U,Ṡ) ⊂ Cq(U,Ṡ) for q = 0,1 are defined
as follows:

Z0(U,Ṡ) := {
θ ∈ C0(U,Ṡ) : θα−θβ = 0 on �α∩�β �=∅

}
, (3.2a)

Z1(U,Ṡ) := {
θ ∈ C1(U,Ṡ) : θαβ+θβα = 0 on �α∩�β �=∅;

θαβ+θβγ +θγα = 0 on �α∩�β ∩�γ �=∅
}
, (3.2b)

that is, everywhere in the definitions, the multiplication is replaced by addition.Trivial co-
cycles (coboundaries) are given by the formula θαβ = θα−θβ , where {θαβ} ∈ Z1(U,Ṡ),
{θα} ∈ C0(U,Ṡ). Quotient spaces (cocycles/coboundaries) are the cohomology spaces
Hi(U,Ṡ), i = 1,2, . . ..

Now we consider the twistor space � and the two-set open covering U= {�1,�2} of
�. Then the space of cocycles Z1(U,S) with coefficients in a sheaf S of non-Abelian
groups over � is a special case of formula (3.1b),

Z1(U,S) := {
f ∈ C1(U,S) : f21 = f−1

12 on �1∩�2
}
. (3.3)

Any cocycle f = {f12,f21} ∈ Z1(U,S) defines a unique complex vector bundle 
̃ over
� = �1 ∪�2 by glueing the direct products �1 ×Cn and �2 ×Cn with the help of
G-valued transition matrix f12 on �12. Equivalent cocycles define isomorphic complex
vector bundles over � and smooth complex vector bundles are parametrized by the set
H 1(�,S).

We introduce the sheaf � of all holomorphic sections of the trivial bundle �×G,
where G is a Lie group. Then holomorphic vector bundles over � are parametrized by
the set H 1(�,�).

3.2. Exact sequences of sheaves and cohomology sets. We consider the sheaf S of
smooth sections of the bundle �×G and the subsheaf � ⊂S of such smooth sections
that are annihilated by the distribution V 0,1 on �, that is, locally V̄3ψ = 0 on � ⊂ �.
So we have � ⊂ � ⊂S and there is the canonical embedding i :� → �.

We also consider the sheaf �0,1 of such smooth (0,1)-forms B̄ on � with values in
the Lie algebra 	 of G that have zero components along the distribution V 0,1. Define a
map δ̄0 : � →�0,1 given for any open set �⊂ � by the formula

δ̄0ψ =−(
∂̄ψ

)
ψ−1, (3.4)

where ψ ∈ �(�), δ̄0ψ ∈ �0,1(�), d = ∂+ ∂̄ . One can also consider the sheaf B0,2 of
smooth 	-valued (0,2)-forms on � and introduce an operator δ̄1 :�0,1 →B0,2 defined
for any open set �⊂ � by the formula

δ̄1B̄ = ∂̄B̄+ B̄∧ B̄, (3.5)

where B̄ ∈�0,1(�), δ̄1B̄ ∈B0,2(�).
Denote by � the subsheaf in �0,1 of such B̄ that ∂̄B̄+B̄∧B̄ = 0, that is, �= Ker δ̄1.

The sheaf � acts on the sheaf � by means of the adjoint representation:

B̄ �−→AdψB̄ = ψ−1B̄ψ+ψ−1∂̄ψ.
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It can be checked that the sequence of sheaves

1−→�
i−→ �

δ̄0−→�
δ̄1−→ 0 (3.6)

is exact that is, � 1 �/�. The exact sequence of sheaves induces the following exact
sequence of cohomology sets [10], [11], [12], [15]:

e −→H 0(�,�)
i∗−→H 0(�,�)

δ̄0∗−→H 0(�,�)
δ̄1∗−→H 1(�,�)

f−→H 1(�,�), (3.7)

where e is a marked element of these sets and f is an embedding induced by the map i.
The sets H 0(�,�), H 0(�,�) and H 0(�,�) are the spaces of global sections of

the sheaves �,� and �. The set H 1(�,�) is the moduli space of holomorphic vector
bundles over �, and the set H 1(�,�) is the moduli space of smooth complex vector
bundles over � that are holomorphic on any projective line CP 1

x ↪→ �, x ∈ U .

3.3. Cohomological description of the moduli space �U . By definition the moduli
space �U of local solutions to the SDYM equations is the space of gauge nonequivalent
self-dual connections A on U (see equation (1.5)). The space H 0(�,�) is the space
of smooth 	-valued global (0,1)-forms B̄ on � satisfying equation (2.6) and having
zero component along the distribution V 0,1. By virtue of the twistor correspondence
(
,A) ∼ (
̃0, B̄), the space H 0(�,�) coincides with the space �U of local solutions
to the SDYM equations, H 0(�,�) 1 �U . The group H 0(�,�) is isomorphic to the
group GU of local gauge transformations, becauseG-valued smooth functionsψ defined
globally on � = U ×CP 1 and holomorphic on CP 1 do not depend on local complex
coordinates of CP 1, that is, ψ ≡ g(x) ∈GU , x ∈ U . Therefore we have the bijection

�U 1H 0(�,�)/H 0(�,�), (3.8)

that follows from the definition (1.5) of the moduli space �U and the twistor corre-
spondence briefly described in Section 2.2. The description of �U in terms of 	-valued
(0,1)-forms B̄ on � is called the Dolbeault description of �U .

Now we consider the set Ker f = f−1(e), e ∈ H 1(�,�). It consists of such ele-
ments from H 1(�,�) that are mapped into the class e ∈ H 1(�,�) of smoothly trivial
complex vector bundles over � that are holomorphically trivial on any projective line
CP 1

x ↪→ �,x ∈ U . Therefore, the set Ker f is the moduli space of holomorphic vector
bundles 
̃ that are diffeomorphic to the bundle 
̃0 from the class e ∈H 1(�,�). For any
representative � = {�12,�

−1
12 } ∈ Z1(U,�) ⊂ Z1(U,�) of the set Ker f one can find a

decomposition

�12 = ψ−1
1 (x,λ)ψ2

(
x,λ−1), (3.9)

whereψ1,ψ2 are smoothG-valued functions on �1,�2 that are holomorphic on CP 1
x ↪→

�,x ∈ U . Note that ψ = {ψ1,ψ2} ∈ C0(U,�).
It follows from the exact sequence (3.7) that

Ker f1H 0(�,�)/H 0(�,�). (3.10)
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Therefore we have the bijection

�U 1 Ker f, (3.11)

and the description of �U in terms of transition matrices � ∈ Ker f is called the Čech
description of the moduli space �U .

Let us collect the bijections (3.8), (3.10), and (3.11) in the following table:

Dolbeault description moduli space of Čech description
s-d gauge fields

H
0,1
∂̄
B̂

(�)⊃H 0(�,�)/H 0(�,�) 1 �U 1 Ker f⊂H 1(�,�),

where H 0,1
∂̄
B̂

(�) is a Dolbeault 1-cohomology set defined as a set of orbits of the group

H 0(�,S) in the setH 0(�,B) and B is the sheaf of 	-valued (0,1)-forms B̂ on � such
that ∂̄2

B̂
= 0.

4. Infinitesimal symmetries of the SDYM equations

We can now use the results of the previous sections to study symmetries of the SDYM
equations. Cohomological description of the moduli space of self-dual gauge fields sim-
plifies the problem of finding symmetries of the SDYM equations and clarifies the geo-
metric meaning of these symmetries. Namely, in the Čech approach, to solutions of the
SDYM equations there correspond holomorphic G-valued functions �12 (1-cocycles)
on the overlap �12 of the open sets �1, �2 covering the twistor space �. Therefore any
holomorphic perturbation of �12 determines a tangent vector on the solution space of the
SDYM equations. In Section 4.2 we define these infinitesimal holomorphic transforma-
tions of �12 by multiplying �12 on holomorphic 	-valued matrices θ12, θ21 defined on
�12. Then, using a solution of the infinitesimal variant of the Riemann-Hilbert problem
from Section 4.3, we proceed in Section 4.4 to the Dolbeault description and define a
transformation of the flat (0,1)-connection B̄. Finally, we introduce the algebraC1(U,�̇)
of 1-cochains of � with values in the sheaf �̇ of 	-valued holomorphic functions on �
and, using the Penrose-Ward correspondence, we describe in Section 4.5 the action of
the algebra C1(U,�̇) on self-dual gauge potentials.

4.1. Action of the group C1(U,�) on the space Z1(U,�). The group C1(U,�) and
the space Z1(U,�) have been described in Section 3.1. Let us define the action ρ of
C1(U,�) on Z1(U,�) by the formula

(ρhf )12 = h12f12h
−1
21 , (4.1)

where h = {h12,h21} ∈ C1(U,�) , f = {f12,f
−1
12 } ∈ Z1(U,�). It is clear that for an

arbitrary cocycle f = {f12,f21} ∈ Z1(U,�), one can always find a cochain {h12,h21} ∈
C1(U,�) such that f12 = h12h

−1
21 , f21 = h21h

−1
12 , that is, the group C1(U,�) acts

transitively on Z1(U,�). The stability subgroup of the trivial cocycle f 0 = 1 is

C3(U,�)=
{{h12,h21} ∈ C1(U,�) : h12 = h21

}
.
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Therefore, Z1(U,�) is a homogeneous space,

Z1(U,�)= C1(U,�)/C3(U,�).

4.2. Action of the algebra C1(U,�̇) on the space Z1(U,�). Denote by �̇ the sheaf
of holomorphic sections of the trivial bundle �×	, where 	 is the Lie algebra of a
Lie group G. Denote by �̇ the sheaf of smooth partially holomorphic sections of the
bundle �×	, that is, such smooth maps φ : �→ 	 that ∂λ̄φ = 0 in the local coordinates
{xµ,λ, λ̄} on �.

We consider the infinitesimal form of the action (4.1). Substituting h12 = exp(θ12)1
1+θ12, h21 = exp(θ21)1 1+θ21, we have

δθ�12 = θ12�12−�12θ21, (4.2)

where θ = {θ12,θ21} ∈ C1(U,�̇), � = {�12,�
−1
12 } ∈ Z1(U,�). Here and in what follows

as � = {�12,�
−1
12 } we take representatives of the space Ker f (see Section 3.3), that is,

such cocycles �12 that admits the decomposition (3.9).

4.3. The map φ : C1(U,�̇)→ C0(U, �̇). Now we construct the following 	-valued
function:

M12(θ)= ψ1
(
δθ�12

)
ψ−1

2 , (4.3)

where {ψ1,ψ2} ∈ C0(U,�) and �12 = ψ−1
1 ψ2. Then one can check that

M21 =−M12

and M12 is a smooth 	-valued function on �12 such that ∂λ̄M12 = 0 in the local coordi-
nates {xµ,λ, λ̄} on �12. Therefore, M= {M12,M21} ∈ Z1(U, �̇).

It can be shown thatH 1(�, �̇)= 0, since �̇ is the sheaf of smooth 	-valued functions
on � that are holomorphic on CP 1 ↪→ �. Therefore, each 1-cocycle with values in �̇ is
a 1-coboundary, and we have

M12(θ)= φ1(θ)−φ2(θ), (4.4)

where φ(θ)= {φ1(θ),φ2(θ)} ∈ C0(U, �̇).
Notice that the splitting (4.4) defined for any θ ∈ C1(U,�̇) is not unique. Namely, as

a 0-cochain from C0(U, �̇) instead of φ(θ) one can also take

φ̃(θ)= {
φ1(θ)+ϕ1,φ2(θ)+ϕ2

}
,

where ϕ1 = ϕ2 on �12, that is, ϕ = {ϕ1,ϕ2} ∈ H 0(�, �̇). Fix ϕ ∈ H 0(�, �̇) for each
θ ∈ C1(U,�̇), then the splitting (4.4) defines a subspace φ(C1(U,�̇)) in C0(U, �̇). It
can be checked that

φ
([
θ, θ̃

])= [
φ(θ),φ

(
θ̃
)]= {[

φ1(θ),φ1
(
θ̃
)]
,
[
φ2(θ),φ2

(
θ̃
)]} ∈ C0(U, �̇)

for any θ, θ̃ ∈ C1(U,�̇). Therefore, the map φ : C1(U,�̇)→ C0(U, �̇) is a homomor-
phism.
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4.4. Action of the algebra C1(U,�̇) on the space H 0(�,�). Using the action (4.2)
and the homomorphism φ, we obtain an action

δθψ1 =−φ1(θ)ψ1, δθψ2 =−φ2(θ)ψ2, (4.5)

of the algebra C1(U,�̇) on a 0-cochain {ψ1,ψ2} ∈ C0(U,�) such that �12 = ψ−1
1 ψ2.

By definition, for B̄ = {B̄(1), B̄(2)} ∈H 0(�,�) we have

B̄(1) =−(∂̄ψ1)ψ
−1
1 on �1,

B̄(2) =−(∂̄ψ2)ψ
−1
2 on �2,

B̄(1) = B̄(2) on �12 =�1∩�2.

(4.6)

Therefore, the action of C1(U,�̇) on H 0(�,�) has the form

δθ B̄
(1) = ∂̄φ1(θ)+

[
B̄(1),φ1(θ)

]
, (4.7a)

δθ B̄
(2) = ∂̄φ2(θ)+

[
B̄(2),φ2(θ)

]
. (4.7b)

The transformations (4.7) look like infinitesimal gauge transformations

δϕB̄ = ∂̄ϕ+
[
B̄,ϕ

]
, (4.8)

where ϕ is an element of the Lie algebraH 0(�, �̇)1 gU of the gauge groupH 0(�,�)1
GU . But for φ(θ)= {φ1(θ),φ2(θ)} ∈ C0(U, �̇) we have φ1(θ) �= φ2(θ) on �12, and the
transformations (4.7) differ from (4.8).

4.5. Action of the algebra C1(U,�̇) on the space �U . Recall that we consider a self-
dual 4-manifoldM , the twistor space � of which is a complex 3-manifold, and the SDYM
equations (1.1) onM . To describe infinitesimal symmetries of the SDYM equations, we
take an open ballU ⊂M and the twistor space � ofU that is covered by two coordinate
patches �1 and �2 (see Section 2.2).

The twistor correspondence gives us the following relation between a self-dual con-
nectionA= Aµdxµ on the complex vector bundle 
 overU and a flat (0,1)-connection
B̄ = {B̄(1),B(2)} on the bundle 
̃0 = π∗
:

B̄
(1)
1 = Aȳ−λAz, B̄

(1)
2 = Az̄+λAy, B̄

(1)
3 = 0 on �1, (4.9a)

B̄
(2)
1 = ζAȳ−Az, B̄

(2)
2 = ζAz̄+Ay, B̄

(2)
3 = 0 on �2, (4.9b)

where y = x1+ ix2, z= x3− ix4, ȳ = x1− ix2, z̄= x3+ ix4 are complex coordinates
on U .

One can always choose such local frames {V̄ (1)a }, {V̄ (2)a } of the bundle T 0,1 over �1,
�2, respectively, that [V̄ (1)a , V̄

(1)
b ] = 0, [V̄ (2)a , V̄

(2)
b ] = 0, V̄ (1)3 = ∂λ̄, V̄ (2)3 = ∂ζ̄ and on

the intersection �12 = �1 ∩�2 the local frames are connected by the formulae [13],
[1], [17]

V̄
(1)
1 = λV̄ (2)1 , V̄

(1)
2 = λV̄ (2)2 , V̄

(1)
3 =−λ̄2V̄

(2)
3 .
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From (4.5), (4.7) we obtain the following action of the algebraC1(U,�̇) on the space
�U of solutions to the SDYM equations on U :

δθAy =
∮
S1

dλ

2πiλ

(
V̄
(2)
2 + B̄(2)2

)
φ2(θ), δθAz =−

∮
S1

dλ

2πiλ

(
V̄
(2)
1 + B̄(2)1

)
φ2(θ),

δθAȳ =
∮
S1

dλ

2πiλ

(
V̄
(1)
1 + B̄(1)1

)
φ1(θ), δθAz̄ =

∮
S1

dλ

2πiλ

(
V̄
(1)
2 + B̄(1)2

)
φ1(θ),

(4.10)
where S1 = {λ ∈ CP 1 : |λ| = 1}.

5. Conclusion

The space of local solutions to the SDYM equations on a self-dual 4-manifoldM has been
considered. Choosing the concrete self-dual 4-manifold (e.g., S4, T 4,…) or imposing
some boundary conditions on gauge fields, one can obtain instantons, monopoles or other
special solutions of the SDYM equations, the moduli spaces of which are discussed in
the talk by Tsou. Our purpose was to describe the moduli space and symmetries of local
solutions to the SDYM equations. The use of twistor correspondence and cohomologies
reveals the geometric meaning of symmetries of the SDYM equations, which may help
in quantizing the SDYM model.
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