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PREFACE

During the EWM meeting in Trieste 1997, it was decided that the 9th general

meeting of EWM should be held in Germany in 1999. Though there had been a

few EWM meetings on the national level in Germany, this was going to be the

first international EWM meeting in the country, reflecting the growing number

of women mathematicians interested in EWM activities.

The meeting was held under the auspices of the Deutsche Mathematiker-

Vereinigung (DMV), it was also financially supported by the Gesellschaft für

Angewandte Mathematik und Mechanik (GAMM), UNESCO, and the EU. All these

organizations shared our concern in making participation as widely available

as possible, in particular for mathematicians from countries where salaries, es-

pecially for women, are low, such as Eastern Europe. Their support is gratefully

acknowledged; it made a big difference to the success of the meeting.

Looking for a place to hold the meeting, the Conference Center at Loccum

was suggested, it is located about 50 km from Hannover in a remote setting

in the countryside. Both before and during the meeting the staff members at

Loccum were very helpful and cooperative. Also, the conference center itself

turned out to be a good choice as, besides its nice rooms and well-equipped

lecture halls, it had many different places to sit and talk, creating a warm

atmosphere and inviting informal discussions.

Information about the meeting was distributed via the usual channels of

communication of EWM, that is, the information was spread through the e-

mail network and in particular by the regional coordinators; announcements

were also published in the newsletters of some mathematical societies like

the DMV. As a main new medium the World Wide Web was used to provide

extensive and up-to-date information on many details of the programme and

practical matters such as information on the location and travel hints via a

special conference website. Also, after the meeting the website was kept open

with information on the conference.

In the preregistration time before the meeting a great number of people

expressed their interest in participating in the meeting. Mostly due to financial

problems and sometimes also due to visa problems, in the end many could

not attend the meeting; in particular, these problems prevented many women

mathematicians from Eastern European countries and from countries outside

Europe from taking part in the conference. Finally, the meeting was attended

by 50 participants from 13 European countries.

It is by now a tradition of EWM meetings to have a focus on three mathemat-

ical areas, at least one being of an interdisciplinary nature. The mathematical

sessions at Loccum were on Hilbert problems (organised by Ina Kersten), on
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Mathematical Modelling in theoretical physics, geophysics, and biology (organ-

ised by Tsou Sheung Tsun), and on Discrete Mathematics and its Applications

(organised by Christine Bessenrodt and Tsou Sheung Tsun). As at earlier meet-

ings, renowned women mathematicians had been invited beforehand to give

talks at the sessions, and these lectures were complemented by short talks

delivered by participants in Loccum.

A broad spectrum of research interests was covered by the participants.

This was demonstrated in a particularly impressive way by the poster session

(chaired by Polina Agranovich), which was an important part of the meeting.

Following the ideas laid out by Laura Fainsilber for the poster session at the

Trieste meeting in 1997, many participants presented very creative and original

posters which inspired lively and fruitful discussions (and sometimes hands-

on activities!).

Besides the mathematical sessions, thought-provoking talks were given at

the session on The Ideal University (organised by Irene Pieper-Seier and Chris-

tine Bessenrodt) which also included heated debates. Also, the EWM video

“Women and Mathematics across Cultures” was shown by Marjatta Näätänen,

illustrating statistics on the participation of women in mathematics in different

European countries and giving personal views across countries by four women

mathematicians. In planning future activities, we exchanged ideas about ways

of encouraging communication on all levels and about a questionnaire project.

Thinking back on the conference, there are a few things which make EWM

meetings different. Organizing an international EWM meeting seems a more

special enterprise than organizing other conferences. Seeing so many enthu-

siastic women mathematicians gathered in one place is an experience many

of us rarely have in the workplace; it is also very special to have mathemati-

cians from so many countries, age levels, and interests come together. It was

very rewarding to see the interactions between people with so many different

backgrounds during the week of the meeting. Altogether, the fine lectures and

posters and the lively discussions on many topics were part of the success

of the conference, and it is a pleasure to thank everyone for their contribu-

tion to it. In particular, I would like to thank the members of the organizing

committee, some of whom have already been mentioned above; especially, for

the “local” part of the organization, it was a cherished experience for me to

collaborate with Irene Pieper-Seier.

Christine Bessenrodt

The following women made up the organizing commitee of the 9th General

Meeting of EWM: Polina Agranovich (Ukraine), Christine Bessenrodt (Germany),

Ina Kersten (Germany), Olga Kounakovaskaya (Russia), Irene Pieper-Seier (Ger-

many), Ufuk Taneri (Turkey), and Tsou Sheung Tsu (UK).

These proceedings contain reports of the talks held at this meeting as well

as articles about other aspects of the meeting: A discussion on age-limits, the
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poster session, the e-mail list, the general assembly and its findings, and also

some reports on the life of the organization between meetings. The proceed-

ings are available in the electronic form at

http://www.math.helsinki.fi/EWM

or of Hindawi Publishing Corporation

http://books.hindawi.com/977594502X/.

We thank the London Mathematical Society and the Danish Mathematical

Society for financially supporting the printing of the proceedings. Also, we

wish to thank the organizers of the meeting and the people who contributed to

the proceedings, in particular Nadja Kutz who designed the cover. The design

is based on a poster of hers which won the third place in a competition held

by the European Mathematical Society. We must also mention Laura Fainsilber

and Cathy Hobbs who edited the proceedings of the 8th General Meeting of

EWM and who have been very helpful with many aspects of the completion of

these proceedings. Finally, Lisbeth Grubbe Nielsen who is a secretary at the

Department of Mathematical Sciences in Aalborg has been a great help and we

thank her for that and also the department for letting her take time to help us.

The editors, Rachel Camina and Lisbeth Fajstrup
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EWM and Discussion from the 9th
General Meeting



EUROPEAN WOMEN IN MATHEMATICS

EWM is an affiliation of women bound by a common interest in the position

of women in mathematics. Our purposes are as follows:

• Encourage women to take up and continue their studies in mathematics.

• Support women with or desiring careers in research in mathematics or

mathematics related fields.

• Provide a meeting place for these women.

• Foster international scientific communication among women and men in

the mathematical community.

• Cooperate with groups and organizations, in Europe and elsewhere, with

similar goals.

Our organization was conceived at the International Congress of Mathe-

maticians in Berkeley, August 1986, as a result of a panel discussion orga-

nized by the Association for Women in Mathematics, in which several Euro-

pean women mathematicians took part. There have since been nine European

meetings: In Paris (1986), in Copenhagen (1987), in Warwick (England) (1988),

in Lisbon (1990), in Marseilles (1991), in Warsaw (1993), in Madrid (1995), in

Trieste (1997), in Loccum, Germany (1999). The next meeting will be in Malta

(2001).

At the time of writing, there are participating members in the following coun-

tries: Austria, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France,

Germany, Greece, Italy, Latvia, Lithuania, Malta, the Netherlands, Norway,

Poland, Portugal, Romania, Russia, Spain, Sweden, Switzerland, Turkey,

Ukraine, and the United Kingdom; contacts in Albania, Brazil, Chile, Egypt,

India, Iran, Khirghistan, Nepal, Tunisia, Uzbekistan, and the West Bank. Activi-

ties and publicity within each country are organized by regional coordinators.

Each country or region is free to form its own regional or national organiza-

tion, taking whatever organizational or legal form is appropriate to the local

circumstances. Such an organization, Femmes et Mathematiques, already ex-

ists in France. Other members are encouraged to consider the possibility of

forming such local, regional or national groups themselves.

There is also an e-mail network and a web page:

http://www.math.helsinki.fi/EWM

where you will find this report as well as the proceedings of the previous gen-

eral meetings in Madrid in 95, and in Trieste in 97, the yearly Newsletters,

access to a bibliography on women mathematicians, and more. To subscribe

to the ewm-all e-mail network send the following command (typing your own
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personal names instead of firstname(s) and lastname): Join ewm-all firstname(s)

lastname as the only text in the body of a message addressed to:

mailbase@mailbase.ac.uk

You will then receive confirmation of your subscription.

For further information contact:

The secretary of EWM: Riitta Ulmanen

Department of Mathematics

P.O. Box 4 (Yliopistonkatu 5)

FIN-00014, University of Helsinki, Finland

E-mail: ewm@www.math.helsinki.fi

Tel 358 9 191 22853; Fax 358 9 191 23213

August, 2000



REPORT ON SOME ACTIVITIES OF EWM
BETWEEN GENERAL MEETINGS

IRENE SCIRIHA, convenor of EWM

University of Malta, Malta

isci1@um.edu.mt

Since the 9th general meeting of EWM there have been various EWM regional

meetings, some of which are listed below. These meetings have not only con-

centrated on the interesting ongoing mathematical research but also on the

presence (or lack) of women in the mathematical world.

• Helen Robinson and Cathy Hobbs organized a meeting at the International

Centre for Mathematical Sciences in Edinburgh, Scotland in September 1999.

Talks were given on medical statistics, explosions, LEGO blocks and graphs

among others. There was also an animated debate on the grades obtained by

women at Cambridge University.

• There was a joint meeting with Femmes et Mathematiques in June 1999.

• Irene Sciriha and Cathy Hobbs set up a stand and showed the EWM video at

the Brussels EU meeting Women and Science: Networking the Networks which

was held in July 1999. Various networks, AWISE (UK) in particular, showed

interest in collaborating with us.

• In February 2000, there was a work shop in Malta aimed to arouse aware-

ness of EWM. Mathematics students and lectures discussed new proofs and

posed new problems.

• In April 2000, Irene Sciriha participated in a much larger follow-up meeting

called Women and Science: Making Change Happen. A stand was set up to

highlight EWM activities. A powerpoint presentation on EWM activities was

made available and a leaflet on EWM’s interests was disseminated.

• In June 2000, there was a joint EWM-AWM session at the AMS Scandinavian

meeting in Odense, Denmark.



DISCUSSION OF THE EWM E-MAIL NETWORK

The following is a summary of the discussion of the EWM e-mail network.

The EWM e-mail network consists at the moment of three lists, namely ewm-all,

ewm-discuss, and ewm-uk, which is a national sublist for Great Britain.

Ewm-discuss. Is a list intended for discussing issues that are of

interest to the members of the network. It is a SUBLIST of ewm-all.

The naming may be misleading, but for technical reasons it has to

be called a sublist. It means that the members of the ewm-discuss

list form a SUBSET of the members of ewm-all, that is, everybody

who is on the ewm-discuss list also gets all e-mails sent to ewm-all.

Ewm-all. Is now essentially for information, for example, for job

offers conference announcements, short requests, etc. It should also

give regular updates on topics discussed on ewm-discuss. The idea

being that women can join and leave ewm-discuss as and when the

current discussion interests/does not interest them.

Archives of both lists are always available from the website at

http://www.mailbase.ac.uk

so it is easy to follow a discussion even if one has not received the messages.

A great majority of the women at the discussion agreed to keep the lists as

they currently are. This should not be viewed as a rigid law, but as a flexible

reaction to necessities. A discussion about a different structure of the ewm-

network could take place on ewm-discuss.

The disadvantages of having these two lists instead of just one are:

• It may sometimes be hard to decide whether something is information or

a topic for discussion.

• Ewm-discuss is a sublist that means that fewer (or as many) members of

the network are taking (at least passively) part in discussions.

• Under the assumption that there are subjects that people should feel

morally obliged to discuss, having two lists means that they can circumvent

this obligation.

It was agreed that people should be regularly informed of how to switch lists

in order to avoid people missing discussions they may wish to contribute.

The advantages of having these two lists are:

• The function of information list is preserved and reaches many without

overloading mailboxes.

• People may feel more encouraged to discuss on a list which is intended

for discussion, rather than on an all-list.
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• People have a choice whether they want to discuss an issue or not.

The number of people quitting the network during the Kosovo war dis-

cussion and their comments showed that there was a need for the option to

choose.

There was the suggestion to open up a newsgroup, that is, a list which can

be attended via a world wide web (www) browser. A newsgroup is even less

intrusive than a discussion list. However, the experience of people at the dis-

cussion with news groups seemed to be not so good. The main argument was

that there were too many comments sent to the newsgroup, since nearly ev-

erybody in the world could attend a discussion. Consequently people would

stop reading the lists after a while due to an information overload. One could

moderate this effect by restricting access via, for example, a password, but this

was considered too complicated. In addition, people in general tend to forget

to regularly check the newsgroup.

There was the question whether one should restrict access to the ewm-list

archives at mailbase (for details, see http://www.mailbase.ac.uk), where all e-

mails sent to the ewm-lists are being kept and which are accessible to every-

body via www. Most of the people at the discussion thought it better to keep

them open, as there may be other people who are interested in the discussion

and would like to browse the archives but who would not want to be on the e-

mail list. One could also think about opening up something like an ewm-private

list, which has a restricted archive access, which means that only members of

this list are allowed to read the archives. Some people at the discussion found

that a webpage with password access leaves a bad impression. In general, EWM

tries to be open and encourage as many people as possible to participate in

activities regardless of whether or not they are members. Restricting access

to some of the means of communication could blur that attitude. However, it

was agreed that the list of members of ewm-all shall be accessible only to list

members, which is the case by now.

Another issue raised at the discussion was the question of netiquette rules

(those rules are quoted later in this proceedings). There have been some inci-

dents where basic netiquette rules were very much on the edge of being bro-

ken. The question was whether one should moderate the list in order to avoid

such incidents. However, moderation would be very time consuming and it

was concluded that hopefully a regularly sent out reminder of Netiquette rules

would be sufficient for a decent use of the lists. In cases where Netiquette rules

are broken in a very severe way, one has to react anyway, since the ewm-lists

have to conform to the mailbase rules (see Mailbase Acceptable Use Policy at

http://www.mailbase.ac.uk/docs/aup.html). The woman in charge for our list

is Sarah Rees.

It was remarked that there was lately not much discussion on ewm-discuss.

One suggestion was to appoint someone, who—if there is silence on the net—

sends out an e-mail for initiating a discussion. It was asserted that a network is
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as good and effective as its members and that everybody should feel respon-

sible for contribute. This assertion should be part of the regularily sent out

Netiquette rules.

There seem to be a lot of EWM members not on the ewm-lists. It was said

that even some regional coordinators do not take part in the ewm electronic

network. Hence every member of the list should encourage others to join the

lists!

End of discussion.

Nadja Kutz



DISCUSSION ON AGE LIMITS

NADIA LARSEN

University of Copenhagen, Denmark

nadia@math.ku.dk

One evening during the EWM meeting in Loccum was dedicated to a dis-

cussion on age limits stipulated in many announcements for grants. The wish

to have such a discussion was prompted by a recent series of letters on the

ewm-net, which expressed concern at imposing age limits when grants are ad-

vertised. As women have often had gaps in their careers it is felt that these age

limits are particularly harmful to women.

Laura Tedeschini-Lalli, who moderated this discussion in Loccum, reminded

us of the first time the issue was taken up by the EWM. At the meeting in

Warwick in 1988, the topic of cultural differences came up during an informal

exchange of opinions, and from there the topic of mathematicians and age

followed. It seemed that the stereotypical image of a creative mathematician as

being young and male was common. Someone suggested that a study be made,

to collect examples of mathematicians who continued to do good research late

into life.

The aim of the discussion in Loccum was to try to clarify the impact on

women’s mathematical careers of the many age limits present in job adverts

and grant descriptions. One of the participants wondered whether these age

limits put an extra strain on women’s careers. It is well known that women are

generally the ones who take care of the children, and in some countries also of

the elderly in the family. As a result of these duties at home, women are more

likely to have a late start in their education as well as a slower career path.

The effect of imposing age limits might then simply be that women are cut off

from pursuing their careers.

During the discussion two concrete suggestions where made in order to

enlighten the question of how age limits affect women’s careers: First, all par-

ticipants in the discussion briefly presented themselves, explained why they

chose to do mathematics, and outlined the path of their careers; second, we

agreed that it would be useful to gather concrete data on a large number of

mathematicians, both female and male, in order to find out how their research

work and job situation were conditioned by age. Towards this last point we

drew up a questionnaire, included at the end of this report, which is intended

to be distributed. When presented to organizations that award grants, such
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as EU educational programmes, the output of the questionnaire will hopefully

illustrate the problems of age limits.

Several interesting aspects were revealed by the personal presentations.

True and deep interest in math was the main reason for ending up being a

mathematician, but the encouragement or lack of the same from the ambient

environment also proved crucial. Several of the participants in the discussion

told that they did not consider doing a Ph.D. in the first place, as they had

not believed they were good enough for doing research, but that such a move

was suggested to them. It turned out that having somebody in the family, typ-

ically the parents, doing math was an important support, and lessened doubt

of the sort “Am I good enough to do math?” On the other hand, some partici-

pants recalled that at different stages during their education they were warned

against doing mathematics, as being too hard. Explanations for why it is dif-

ficult to decide on doing math were presented, ideas included: Women worry

about succeeding in what they do, the social pressure could be important, if

things go wrong women tend to blame themselves. Attending a girls school

proved positive towards making the decision to do math, but it was not the

only motivation.

The career patterns of the participants covered a wide spectrum. The age

when the math education or research work started varied greatly. Some started

research work late in life, and discovered then that it was what they wanted

to do. Only a few had a more or less “uninterupted” math career, the majority

had experienced gaps, typically due to the family situation. Sometimes the

gaps were caused by painful events, and getting over them was not easy and

immediate. It was mentioned that if one was lucky to come back to math after

a temporary interruption, the desire to do research was certainly stronger. The

reason our discussion focused on career gaps was that any gap brings a delay,

and therefore one can get closer to not fulfilling the age limit requests.

The overall impression after the presentation was that math careers often

start later for women, that there is no standard career path for women mathe-

maticians, that confidence in doing research work increases in time, and that

a lot of good research is done later in life.

Questionnaire

(1) Are you male or female?

(2) How old are you?

(3) What is your nationality?

(4) What is your mother’s job?

What is your father’s job?

(5) How many children do you have?

(6) At what age did you complete your Ph.D.?

(7) How many countries have you studied/worked in?

(8) How many temporary mathematical jobs have you had?

(9) Do you have a permanent job?
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(10) How many years after your Ph.D. did you obtain your first permanent

job?

(11) At what age did you write the paper of which you are most proud?

(12) Have you had any gaps in your mathematical production?

If so, how long were these gaps?

In your opinion what were the reasons for these gaps?



DO MATHEMATICIANS’ CAREERS FOLLOW A COMMON
CAREER PATH?—ANALYSIS OF A QUESTIONNAIRE

RACHEL CAMINA and DAVID WRIGHT

University of Cambridge and Medicines Control Agency, UK

R.D.Camina@dpmms.cam.ac.uk and david.wright@mca.gov.uk

1. Introduction. Frequently when a mathematician reads a job advert or the

conditions for a grant she is confronted with an age-limit. Although these ad-

verts often include a statement along the lines of “Applicants over 40 may be

considered under very exceptional circumstances” (see advert for the Royal

Society’s University Research Fellowships), the implication is that any math-

ematician worthy of the given job/grant should have already proved them-

selves by the stated age. As this age is often reasonably young, 30 or 35,

say, it was felt by many members of EWM that such age-limits were restric-

tive and biased against mathematicians who, for one reason or another, had

decided to take a few years out from their mathematical careers or decided

to work part-time. It was also felt that the majority of such mathematicians

would be female and therefore that these age-limits were particularly harm-

ful to women. By the time of the 9th General Meeting of EWM a discussion

along these lines had been running for some time on ewm-discuss (the e-mail

list of EWM devoted to such debates). It was therefore decided that a further

discussion should be held on this topic at the General Meeting and that a ques-

tionnaire should be compiled to see whether these suspicions were based on

reality.

The discussion was interesting, lively and wide-ranging (see Nadia Larsen’s

article for a detailed report) and the questionnaire put together at the time

reflected the many topics covered during the discussion. However, when we

were faced with distributing the questionnaire and analysing the results, we

decided it would be preferable to reduce the scope of the questionnaire and

to focus on what we thought was a critical assumption lying behind the idea

of age-limits: That the career paths of mathematicians followed a common

path and therefore by comparing two mathematicians of, for example, age

30, you could confidently compare the future success of the two mathemati-

cians.
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How many times as a mathematician have you heard members of the general

public stating, as fact(!), that mathematicians burn-out young and that mathe-

maticians do their best work by the time they are 30? Although there are classic

cases where this is true, many participants in the discussion felt that this was

really a myth and a harmful myth at that; harmful to mathematicians of both

sexes, not just women mathematicians. This gave us additional motivation in

trying to find out how mathematicians’ careers really do evolve and whether

such general statements can be made.

The questionnaire that follows is an adaptation of the one drawn up at the

discussion and aims to tackle the particular issue of how mathematicians’ ca-

reers develop. We were interested in all mathematicians, not only female, and

we were not looking for particular problems faced by women mathematicians.

The questionnaire was distributed via ewm-all (the e-mail list of EWM) and

women were asked to pass the questionnaire on to male mathematicians of

similar standing within their departments. Copies were also distributed at the

British Mathematical Colloquium in Leeds, April 2000.

2. The questionnaire

(1) Are you female or male?

(2) How old are you?

(3) (a) How many years is it since you completed your Ph.D.?

(b) Where did you complete your Ph.D.?

(4) When did you publish your first mathematical paper?

(5) What is your current position? Is it temporary or permanent, part-time

or full-time?

(6) (a) How many children do you have? If none go to question 7.

(b) Did you take maternity/paternity leave for each child?

(c) If so, for how long?

(d) At what age did you have your first child?

(7) (a) Have you worked part-time?

(b) If so for how long?

(c) When was this?

(8) (a) At what age did you write the published (accepted) paper of which

you are most proud?

(b) To date, when has been your most productive mathematical period?

(c) Did the work on paper (a) occur during period (b)?

(9) (a) Have you had any gaps in your publishing mathematical career?

(b) If so, how long were these gaps and when were they?

(c) In your opinion, what were the reasons for these gaps?

(10) Comments.



DO MATHEMATICIANS’ CAREERS FOLLOW A COMMON CAREER PATH? 17

Remarks

(i) It was thought that the country where a mathematician completed their

Ph.D. would have a greater influence on their mathematical career than their

country of origin, hence question 3(b).

(ii) Although question 3(a) asked for number of years since completion of

Ph.D. this was then combined with question 2 to find the age at which the

respondent completed their Ph.D., thus question 3(a) was probably the wrong

question.

(iii) Although some respondents complained that question 8(a) was too dif-

ficult to answer we felt it was an important indicator as to when a mathemati-

cian’s career peaks.

3. Results

3.1. Gender and Ph.D. origin

Table 3.1. Country where respondent completed their Ph.D. (re-
sponse to questions 1 and 3(b)).

Country Female Male Total

Argentina 1 0 1

Australia 0 1 1

Austria 1 0 1

Beligium 1 0 1

Bulgaria 1 0 1

Czech Republic 1 0 1

Denmark 2 2 4

France 4 5 9

Germany 16 12 28

Italy 1 0 1

Netherlands 1 1 2

Russia 1 0 1

Sweden 1 0 1

Switzerland 3 0 3

UK 11 10 21

USA 2 1 3

Grand total 47 32 79
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3.2. Age

Table 3.2. Ages of respondents (response to question 2).

Age 27–29 30–39 40–49 50–59 60–69 70–71

Frequency 5 31 16 22 3 2

Mean age of respondents: 43 Female: 41 Male: 46

Median age of respondents: 41

Mean age when completed Ph.D.: 28 Female: 29 Male: 27

Mean age when published first paper: 28 Female: 28 Male: 27

Mean age when wrote best paper: 35 Female: 35 Male: 36

3.3. Children

Of the 52 respondents (29 female and 23 male) with children, 24 of the

women had taken maternity leave and 2 of the men had taken paternity leave.

Table 3.3. Number of children of respondents (response to question 6(a)).

No. of children Female Male Total

0 18 9 27

1 9 8 17

2 17 7 24

3 1 6 7

4 2 2 4

3.4. Jobs

Table 3.4. Type of jobs of respondents (response to questions 1 and 5).

Job type Female Male Total

Full-time and permanent 27 20 47

Full-time and temporary 10 6 16

Part-time and permanent 1 0 1

Part-time and temporary 3 1 4

Retired 1 2 3

Between jobs 1 0 1

Incomplete answer 4 3 7
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Table 3.5. Whether respondent had worked part-time (response to question 7(a)).

Worked part-time Female Male Total

Yes 21 5 26

No 26 27 53

3.5. Productive periods

Table 3.6. Whether respondent’s most productive mathematical pe-
riod coincided with the writing of the paper of which they are most
proud (response to question 8).

Coincided Female Male Total

Yes 35 15 50

No 10 11 21

No answer 2 6 8

3.6. Gaps in publishing career

42 respondents (27 female and 15 male) said they had gaps in their publish-

ing career.

Table 3.7. Frequency of reasons given by respondents for gaps in
their publishing career (response to question 9(c)).

Reason Female Male Total

Children/Family 16 5 21

Teaching 7 3 10

Administration/Managerial 4 5 9

New research area 5 2 7

Personal problems 4 3 7

Unfriendly environment 3 2 5

Disruptive moves 2 0 2

Writing books 0 2 2

No progress on difficult problem 0 2 2

4. Discussion. Over half of the respondents completed their Ph.D.’s in ei-

ther Germany or the UK. However since these two countries have very different

academic systems, a typical British student completing their Ph.D. several years

before the average German student (in our sample the median age for a British

student completing their Ph.D. is 25 in comparison with 28 for a German stu-

dent and 29 for the rest), the sample should not be biased too heavily by a

particular mathematical culture.
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In our sample the average age of a female respondent is 5 years younger

than that of the male respondent. To investigate whether this difference was

significant, a 2-sample t-test assuming unequal variances was performed which

did not quite reach a 5% significance level (p= 0.051). However, we claim from

personal experience (departments we have worked in, conferences attended,

etc.), that the average female mathematician is younger than the average male

mathematician, but it is not possible to check this assumption without collect-

ing large scale data. Whether the ages of our respondents accurately reflects

that of the mathematical population is unclear to us, but it seems likely that

our sample is on the young side.

Further to the calculation of the mean age of the respondent when they

wrote their best paper, we checked to see if this age was related to the age

of the respondent. This turned out to be the case. However, even after allow-

ing for the current age of the respondent the age when they wrote their best

paper was still very similar for men and women and still around 35. We can

maybe conclude that men and women’s mathematical careers peak at similar

times, and that this is relatively young, although maybe not as young as is gen-

erally believed. This is also supported by the response to question 8(c). Most

respondents said that their most productive period coincided with the writing

of their best paper and for those when this was not the case the two times

were generally pretty close together. This also implies that mathematicians’

best work is the culmination of an intense period of research as opposed to a

“flash in the dark”—maybe common knowledge to the mathematician, if not

to the general public.

That 16% of the male respondents had worked part-time in comparison to

45% of the women (a statistically significant difference, p = 0.004) confirmed

the idea that women tend to have a much more disrupted career path than

men. This was also supported by the fact that of the 29 women and 23 men

with children, 24 women took maternity leave in comparison with only 2 of

the men taking paternity leave.

Family and, in particular, the care of young children came up as the main

reason for gaps in respondents publishing careers. Perhaps not surprisingly,

this reason affected a higher proportion of female respondents than male (fe-

male: 16/47 and male: 5/32). That duties other than research, such as teaching

and managerial responsibilities, can often create gaps in people’s publishing

careers is also not surprising. In fact, whether research is our primary aim was

also questioned, one (male) respondent commented “there are more ways to

contribute to mathematics than writing lemmas.” Gaps can also be due to un-

happy circumstances. It appears that mathematicians need to be in a friendly

environment and have a happy personal life to succeed in research. But the

reasons for gaps are not all negative: People switch research areas, take time

out to write books and concentrate on difficult problems which do not always

lend themselves to solutions. So maybe gaps themselves should not always be
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viewed in a negative light and instead thought of as a necessary time-out in

people’s careers.

It is often claimed that, due to the additional pressures having children puts

on their careers, female academics have on average fewer children than their

male counterparts. In our sample the female respondents had a mean number

of children of 1.1 in comparison to 1.5 for that of the male respondents. How-

ever, this could be due to the fact that the majority of our female respondents

are not past child-bearing age and at an average age of 41 years are 5 years

younger than our average male respondent.

5. Conclusions. We should treat the conclusions we draw from this survey

with caution. First, we note that our sample size of only 79 is too small to draw

any strong conclusions. Second, we note that our distribution of the question-

naire is very likely to introduce a bias as we relied on people volunteering to

fill it in. We have no way of monitoring those who chose not to participate.

In fact, our sample is probably too female to be truly representative of the

mathematical population. However, we will make some additional comments.

Although it seems clear from our results that the career path of a female

mathematician is much more disrupted than that of her male colleague this

does not seem to have a significant impact on when she judges herself to have

peaked as a mathematician. However, it might help to explain why she has a

slightly higher tendency to have gaps in her career (27/47 women claimed to

have gaps in comparison with 15/32 men). Further, although we seem drawn to

conclude that there is a similarity in mathematicians’ career paths, we should

also note that our sample consists of mathematicians who have remained and

therefore succeeded in academia (although one respondent worked in indus-

try) and therefore conformed to our own stereotype of a successful mathe-

matician.

With regard to the issue of sample size we note that the questionnaire is

due to appear in the September 2000 issue of the Association for Women in

Mathematics (AWM) newsletter and a similar questionnaire has appeared in the

Notiziario of the Italian Mathematical Society. We look forward to analysing

this additional data which will enhance our sample size as well as providing

interesting comparisons. Thus, we hope in the future to be able to draw more

reliable conclusions about the career paths of mathematicians.



INTRODUCTION TO THE SESSION
ON THE IDEAL UNIVERSITY

There were two talks and a discussion devoted to the topic “The Ideal Univer-

sity.” Renate Tobies and Britta Schinzel gave talks about the history of women

in mathematics in Germany, the history of universities, the effect of globaliza-

tion on universities and on the situation of women, and minorities in universi-

ties. These talks gave facts, personal experiences, and personal opinions. The

talks raised many questions, which gave rise to a very lively debate on Saturday

afternoon.

In these proceedings, we have written contributions from both Renate Tobies

and Britta Schinzel, a report of the discussion and a comment from Tsou She-

ung Tsun, in particular pointing out where she disaggrees with Britta Schinzel.

All in all, this gives a good impression of the situation in Loccum: There are

very different opinions about these subjects.

Lisbeth Fajstrup
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I will present a survey of conditions for women in mathematical research at

German universities since the last third of the 19th century. Conditions which

need to be considered, are laws for women studies, circumstances at different

universities, the role of the parent’s home, the influence of the doctor father,

the importance of the chosen mathematical research field, as well as the image

of women mathematicians in public.

The title of my talk uses a quotation from Marie Vaerting (1880–1964), who,

in 1910, gained a doctorate in mathematics. It is taken from her autobiograph-

ical novel “Haßkampfs Anna” and the full quotation is: “We dedicate ourselves

to mathematics and natural sciences ‘in spite of male culture, female bodies and

ballet ’.” Marie Vaerting is not just any doctor of mathematics; she and her sis-

ters are representative of those women who just after the turn of the century

in Germany set out to conquer areas which are considered to be male domains

even today.

The proportion of female students of mathematics in Germany today is

around 33%, further mathematics is not one of the ten courses of the stud-

ies most frequently chosen by women. In the case of male students, however,

mathematics is currently in 8th place. These figures make it difficult to imag-

ine that mathematics could once have been one of the most popular courses

of studies for women. Yet this was the conclusion revealed by a project we

carried out in Kaiserslautern.

The mathematician Gerhard Kowalewski (1876–1950) wrote about his time

in Bonn in the first decade of this century as follows (see [7]).

“That was when the first female students started to show up in Bonn.

At other universities they were still being brusquely rejected by re-

spected professors. In Bonn there was a whole string of competent

women mathematicians, and many of them came to me to take their

state examinations . . . .”
Marie Vaerting, who later became a famous novelist and whose

first novel “Haßkampfs Anna” was penned during her time as a stu-

dent in Bonn, was also a student of mine, as was her sister Mathilde . . .,
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Marie Vaerting worked in Bonn under my supervision on a doctorate

on a quite difficult subject.

Marie Vaerting came from the Catholic region of Emsland and had seven sis-

ters and two brothers. At least four of the girls studied mathematics. The most

famous of them was Mathilde Vaerting (1884–1977), Marie’s younger sister by

four years, who, like Marie, studied mathematics, physics, and philosophy and

who in 1923 managed to become an ordinary professor (as one of only two

women in the whole of the 1920s). The professorship, at Jena University in

Thuringia, was not one of mathematics but of education. Here she did much

to promote the teaching of girls in mathematics and natural sciences [10]. The

Vaerting sisters were part of a whole group of women who broke into male

domains.

Where did the considerable affinity of women for mathematics at this time

come from? This affinity was not only the desire for improved general edu-

cation but above all arose from a new professional opportunity. Prussia had

passed a ministerial decree on 18th August 1908, which not only allowed the

enrollment of women at universities but at the same time introduced a new

order in state-run secondary schooling for girls. The new element was the fact

that for the first time in a German state the subjects of mathematics and nat-

ural sciences were to be taught at state-run girls’ schools. A result of the new

regulation was that more teachers were needed. This led to a new professional

opening for women, shown clearly by the numbers choosing mathematics as

the subject of their studies (ranked 3rd among the subjects chosen by women

and staying in that position from 1909 to 1919, by which time the schools were

overflowing with teachers). Although the decree stipulated that men should

make up at least a third of the teachers at these girls schools (of course there

was no such quota on female teachers in boys’ schools), it also presented an op-

portunity for women who were interested in mathematics and natural sciences.

It should be noted that at that time there were no fixed regulations on a course

of studies leading to a diploma in mathematics. These were only introduced in

1942, and professional openings in industry and commerce, insurance and sta-

tistics offices only developed gradually. The principal achievement of the new

statutory regulations, as far as women were concerned, was that they could

take up the profession of teacher of mathematics and natural sciences. At the

same time, however, the newly accessible course of studies for this profession

created a basis for women to find their way into research. This path to research

was governed by factors which are useful to know about even today.

Parents had to support their daughters’ inclinations and be able to afford

to finance their studies. The analysis of the lives of a group of women with

doctorates showed that most of the fathers were either teachers, medium-level

civil servants, tradesmen, or businessmen. Even if it had been made possible to

study up to doctorate level, excellent academic performance was not enough

to pursue a university career if financial backing was not guaranteed.
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Emmy Noether (1882–1935), who is probably still the most significant female

mathematician even today, led a meagre existence on an inheritance and a

teaching contract. Käte Hey (1904–1990), a student of Emil Artin’s (1898–1962)

in Hamburg, had to give up her academic leanings on financial grounds. Her

doctoral thesis on numerical theory won a competition in 1927, was graded

“excellent” and gained her a prize of 300 marks. In his report on her thesis

Artin wrote:

“Transferring the functional equation of the zeta function from ideal

classes in algebraic number fields to ideal classes in extremely com-

plex number systems is an important and difficult problem in the

arithmetic of these systems . . . .”
The results of Käte Hey’s doctoral thesis are quoted at length in Max Deur-

ing’s (1907–1884) book “Algebren” (1968) and have, therefore, been preserved

for posterity. As I found out only recently, Emmy Noether brought Hey’s re-

sults to the attention of her student Ernst Witt (1911–1991), who took them

up in his doctoral thesis (1933). Käte Hey, however, was unable to continue

with her research interests. Her father, a medium-level civil servant working

in customs, wanted to finance courses of studies for other children too and

called a halt. This is reflected in a poem in the family chronicle:

Ihre Leistungen sind beachtlich

und nach der Doktorprüfung fragt sich,

ob sie nun ganz in Forschung und Lehre

ihre Wissenschaft verehre.

Jetzt aber sagt der Vater: “Stop!

Es geht nicht nur nach deinem Kopp,

ich kann dich nicht ewig speisen und kleiden.

Sind auch die Ansprüche noch so bescheiden

so kostet dies doch alles Geld,

das mir nicht reichlich in den Schoß fällt.

Du mußt das Studium beenden

dich einem Brotberuf zuwenden,

damit du dich mit dem Verdienst

fürder selbst durchs Leben bringst.”

Käte Hey took and passed the state examinations in the subjects of pure and

applied mathematics and physics. She became a teacher, married, and in the

end was forced to give up her career. She had four children—two sons and two

daughters (see [8]).

Combining family and work is difficult for a woman with an academic career

even today—especially in Germany. Up until 1919, there were laws in Germany

which prohibited married women from working in civil service. They had to

choose between following a career or having a family. Even after 1919, new
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paragraphs were passed which permitted the dismissal of a woman working

in civil service if she married (the argument given being double income).

Up until recently, the conclusions on the role of the parents have been based

on comparisons within a relatively small group of subjects. In the course of the

investigations being carried out in the project “Women in Mathematics. Career

Development in Mathematics under a Gender-comparative Perspective,” sup-

ported by the German Volkswagen Foundation, we aim to consider a larger

number of graduates in mathematics in order to arrive at significant con-

clusions. The project is interdisciplinary, combining methods of investigation

used in historiography and social psychology. Personnel questionnaires of all

the teachers, male and female, who passed state examinations in Prussia with

mathematics as their major subject are being analysed so as to show the devel-

opment of professional careers in the period from the beginning of this century

to 1942. The different types of families the subjects came from is one of the fac-

tors which will be clarified. A project for a doctoral thesis in social psychology

is investigating corresponding data among subjects who graduated in mathe-

matics in 1998. Together we will examine which factors, constant or variable,

governed and still govern the careers of men and women in mathematics.

A look at the historical development reveals that Germany lagged behind

other countries, only allowing the enrollment of women at a later stage. It

should be noted, however, that the universities did make exceptions. The first

woman ever to gain a doctorate with a mathematical thesis, for example,

achieved this at a German university. I imagine you all know the example of the

Russian mathematician Sofja Kowalewskaja (1850–1891), who was awarded a

doctorate by the University of Göttingen in 1874 and finally, in 1884, a profes-

sorship in mathematics in Stockholm. There were other foreigners who paved

the way for women at German universities by being allowed to listen to lectures

and even undertake doctoral studies.

Being allowed to enroll at a university and to take doctoral examinations did

not imply that a university career was guaranteed. In Germany there was and

still is the hurdle of the habilitation. In 1907 a law excluding women from habil-

itation was passed. A few years later Emmy Noether arrived on the scene with

an excellent academic record. The mathematicians at Göttingen encouraged

her to apply for a habilitation. This application, made in 1915, and another in

1917 failed because no exceptions to this law were permitted. It was only in

1919, after the collapse of the German empire, that Emmy Noether passed her

habilitation in mathematics, the first woman in Germany to do so. And it was

only after this exception that an official decree was provided which repealed

the law of 1907. On 21st February 1920, it was ruled that the sex of a person

was no longer a determining factor of whether they were allowed to take the

habilitation examination. Habilitation was the precondition for a professor-

ship at a German university. If we consider the time before 1945, then Emmy

Noether was the only woman to be awarded the title professor, although in fact
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it was only an extraordinary professorship without the status (and advantages)

of a civil servant, since this was the highest position a woman could be given

in Prussia at that time. By 1945, only six women had obtained a habilitation in

mathematics.

Year of habilitation Women mathematician University

1919 Emmy Noether (1882–1935) Göttingen

1927 Hilda Geiringer (1893–1973) Berlin

1936 Ruth Moufang (1905–1977) Frankfurt a.M.

1941 Helene Braun (1914–1986) Göttingen

1942 Maria-Pia Geppert (1907–1998) Gießen

1945 Erna Weber (1897–1988) Jena

Their careers were further hindered by political developments in the 1930s.

Emmy Noether and Hilda Geiringer emigrated to the USA because they were

Jews. Ruth Moufang was hindered purely because she was a woman, she had

successfully defended her habilitation thesis in 1936, but her appointment as

a university lecturer was refused. The Ministry informed her: “A lecturer in the

Third Reich is expected not only to pursue academic activities but also to per-

form duties which are mainly educational and require leadership qualities, and

as the body of students consists almost exclusively of men, any female pro-

fessor lacks the first essential for the profitable fulfilment of these functions.”

(See [5].) And so the application was rejected.

In the cases of Maria-Pia Geppert and Erna Weber, we must point out that

they conformed politically and became members of the Nazi party [9]. All four

of the women who had obtained a habilitation and who had stayed in Germany

received professorships after 1945. The few examples of women in mathemat-

ics being able to enter the higher echelons seem to support the general conclu-

sion that it was more likely to be possible in newly arising areas or scientific

border areas. Emmy Noether created a new field of mathematics with abstract

algebra. Hilda Geiringer was the first woman to obtain a lectureship (albeit

unpaid) in applied mathematics. Geppert and Weber were able to make use

of their interdisciplinary training and finally—after the World War II—received

professorships in the respective fields of mathematical statistics and biostatis-

tics, fields which were still little established and recognised.

Those female professors were exceptions, and the situation has changed

little to this day. Women in mathematics deviate from the usual image of a

woman. I would like to continue by illustrating how this image has developed,

as this is the only way to gain a proper understanding of many problems ex-

isting today.

To practise mathematics was considered unfeminine, contrary to the nature

of women. This idea has a long tradition going back to antique times—even

Aristoteles concluded that physiological differences led to differing character



30 RENATE TOBIES

traits (see [1]). There may have been changes in the traits attributed to the fe-

male sex in the course of history, and it has not been altogether denied that

women possess intelligence. But women have been attributed another type of

intelligence. In the 19th century discussions centred on the opposition of con-

crete, female, and abstract, male characteristics. Abstract mathematical and

scientific thinking was therefore completely contrary to the image of a nor-

mal woman. Wilhelm von Humboldt (1767–1835) considered women had “. . .
an admirable strength in that part of the investigation of truth which requires

lively, flexible sensitiveness and quick, effortless comprehension and associa-

tion, however a no less conspicuous weakness in and almost greater aversion

towards that part which is founded on autonomy and discriminatory powers

. . . .” (See [3].) And so it would be contrary to nature to train women for exact

sciences—a consideration which resulted in mathematics and natural sciences

not being taught at state-run girls’ schools in Germany. The widely held opin-

ion is expressed in the frequently quoted book “On aptitude for mathematics”

(1900) by the Leipzig neurologist Paul Moebius (1853–1907):

“It may therefore be said that a mathematical woman is contrary to

nature, a kind of hybrid. Scholarly and artistic women are the results

of degeneration. It is only through deviation from the species, through

pathological changes, that a woman can acquire talents other than

those qualifying her to be a sweetheart and mother.”

Although—on the basis of tests—male and female intelligence have been

declared equal, from a statistical point of view, by the American psychologist

Lewis Terman (1877–1956), there are still educated people who adhere unflag-

gingly to the old theories. I would like to quote some comments made recently

by a 46 year-old physics professor, a statement that is not an isolated example:

“Nature made women less capable mentally than men. A woman with a partic-

ular talent for natural sciences is obviously possible, but it is exceptional . . . . It
is a scientifically proven fact that men are better scientists. If women are to be

given positions then at most less important ones such as that of a laboratory

assistant . . . . A woman’s personality is bound to be changed considerably by

working in the sciences, since it is contrary to her nature. . . . a woman’s natural

destiny is to serve and be passive.”

I must vindicate the honour of mathematicians in comparison with physi-

cists by saying that they were quicker to support women. The great mathe-

matician Carl Friedrich Gauss (1777–1855) would very much have liked to see

an honorary diploma awarded to the French woman mathematician Sophie

Germain (1776–1831), with whom he maintained correspondence. The Berlin

mathematician Karl Weierstrass (1815–1897) led the first woman in mathe-

matics, the mentioned Sofja Kowalewskaja, to a doctorate. And in the 1890s

mathematicians in Göttingen advocated women’s being allowed to study even

before official enrollment had been regulated. There is a book with collected
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contemporary statements. Among others it features the physicist Max Planck

(1858–1947), quoting the “contrary to nature” argument and sending women

back to the kitchen.

The mathematicians’ statements, on the other hand, were, without excep-

tion, positive. The famous mathematician Felix Klein (1849–1925), who by

that time had already led two women to doctorates, emphasized the following

(see [7, page 135]).

“I am glad to answer the question, because the continuing opinion

in Germany that female mathematical studies should be practically

inaccessible is probably a major obstacle to all efforts aimed at de-

veloping higher female education. I am not referring to exceptional

cases, which as such do not prove much, but to our average experi-

ences here in Göttingen. Not wishing to go into great detail, I should

merely like to mention that in this semester, for example, no less than

six ladies have attended our higher mathematics lectures and tu-

torials and in the process have continuously proved themselves to

be equal to their male colleagues in every respect. The fact of the

matter at present is that these ladies are all from foreign countries:

Two Americans, one Briton, three Russians—but no one will seriously

want to claim that other nations could by nature have a specific

ability which we lack, in other words, that our German ladies could

not accomplish the same if they received the appropriate previous

training.”

The mathematicians’ efforts on behalf of women may not have been entirely

altruistic, however, since the number of students had fallen substantially at

the beginning of the 1890s and professors depended on greater numbers for

pecuniary reasons. But it must be said for the mathematicians that they still

continued to support women even after the curve had risen again.

When the mathematician David Hilbert (1862–1943) wanted to lead the first

woman, an American, to a doctorate in 1899, he prepared himself for the deci-

sive faculty meeting in writing. Ann Lucy Bosworth (born 1868), Hilbert’s first

female doctoral student, had started with Hilbert’s “Grundlagen der Geome-

trie” (Foundations of geometry) 1899, but she had chosen her field of research

independently, this was certainly exceptional. Hilbert wrote a detailed text with

the title “Über Frauenstudium” (On women’s studies), this handwritten paper

is kept in Hilbert’s “Nachlass” (left papers) in the Göttingen library. Here are

the notes he made on the subject of “Women’s studies.”

“. . . At the same time I was examining the dissertations of two men. I believe,

no examiner would find that these men’s papers were of a higher level. In one

point, the woman’s treatise is even a little better. It is a point, which everybody,

including me, usually considers to be a weakness of female candidates, namely,

in this case, she was more independent.”
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Hilbert already announced that his second female doctoral student, the Rus-

sian Ljubowa Sapolskaja (born 1871) would submit her thesis (Über die Theorie

der relativ-cubischen Abelschen Zahlkörper, 1900/1902.). He wrote about her

lecture in his seminar: “If you were present in our seminar yesterday, you would

have been surprised to see with what fervour and enthusiasm a woman could

speak about mathematics. It was a Russian, who lectured.”

In another document, Hilbert explained the level of difficulty of Sapolskaja’s

field of research: “The subject belongs to the field of pure number theory. I had

repeatedly offered this subject to other students; but they rejected it on the

grounds that it was too abstract. The problem required a special measure of

energy, diligence and time, and the intellectual ability not to give up, even when

one is forced to think in purely abstract terms. She had this ability in plenty.

Nothing was too abstract for her.”

Although the dissertations of these women were of a high level, it was not

very easy to convince the other members of the philosophical faculty to per-

mit these women to submit their theses. We should keep in mind that the

philosophical faculty at the Göttingen university consisted of professors of

philology, philosophy, and history as well as mathematicians and scientists.

Although some women had got their doctorates at the Göttingen university

in the 1890s, there were still some opponents around 1900, who were against

women’s studies. Hilbert put this opposition into words, when he wrote his

above-mentioned paper about women’s studies in 1899. While preparing for

the admission of his first female doctoral candidate, Hilbert wrote: “A num-

ber of you, gentlemen, are not well-disposed towards women’s studies. But,

I ask you for the sake of mathematics to refrain from the urge to do some-

thing averse.” Current investigations also show that the supervisor’s influence

is critical for the candidate’s future career. Up until 1933, fifty-seven mathe-

maticians, one of whom was female, supervised 98 doctoral theses (of which

9 had been written by foreign women), also the women taking doctorates in

mathematics came from 23 German universities. In the second decade of this

century there were 53 chairs in mathematics, to which six more were added

in 1919 (when the universities of Hamburg and Cologne were founded). The

most significant universities for doctoral students were Göttingen and Bonn.

The majority of foreign women took their doctorates in Göttingen, as this was

considered the international centre of mathematics. Bonn, on the other hand,

was favoured by German women, as described by Gerhard Kowalewski who I

quoted at the beginning of this talk. Up until 1933, fourteen women were con-

ferred doctorates in Bonn. A more recent bibliography documents the doctoral

theses in mathematics from 1961 to 1970. During this period, Bonn ranked

first among all the universities in the Federal Republic of Germany, with 92

doctoral theses, although only one of these was written by a woman.

If we look back to these earlier times, we see that only seldom did the su-

pervisors continue to support their female doctoral students in a scientific
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career after they had received their doctorates. Emmy Noether—the only fe-

male supervisor—inspired 14 doctoral theses, of which one was written by

a woman in Göttingen and another by a woman in the USA. Noether’s posi-

tion as an extraordinary professor without the status of a civil servant did

not allow her to take on assistants herself. Her scientifically talented student

Margarete Hermann (1901–1984) [2] ended up taking up a post as assistant

to Leonard Nelson (1882–1927), a philosopher at the Göttingen university.

Even when women did receive a post as scientific assistant to a professor

of mathematics—to Gerhard Kowalewski in Dresden, August Gutzmer (1860–

1924) in Halle, Lothar Heffter (1862–1962) in Freiburg, for example, they were

usually restricted to support work. They seldom managed to produce scientific

work in their own right once they had received their doctorates.

The analysis of the contents of the doctoral theses written by women before

1933 shows a dominance of geometrical work. Now we know this was also the

case with doctoral theses written by men in Germany. It is one of the aspects

we are currently analysing within the framework of our Volkswagen Founda-

tion project. It must be pointed out that a gender analysis has already been

produced in the USA. Judy Green and Jeanne LaDuke discovered that there,

too, the first doctoral theses were mainly in the field of geometry, regardless

of sex. But there was a change of direction at the beginning of the 1930s. Men

dedicated themselves more strongly to the field of analysis, whereas women

stuck to geometry as their primary field of research. Our investigation shows

no change in this respect, although we have yet to give detailed reasons for

this. Maybe we have to pay attention to the emigration of many famous math-

ematicians in the 1930s (see [6]).

Whether a person is capable of making scientific achievements in the field

of geometry probably has less to do with the frequently discussed problem of

spatial imagination. International tests prove over and again that women pro-

duce worse results. A test we carried out among first-year mathematics stu-

dents at the beginning of the winter semester 1998/99 brought us to the same

conclusion. The number of subjects was too small for significant conclusions

to be made, but a trend was confirmed. However, it is still completely unclear

theoretically whether this has any kind of relation to mathematical abilities.

I would like to close with some comments on support for women in Kaiser-

slautern.

The university was only founded in 1970 and is oriented towards mathemat-

ics and natural sciences. In the winter semester of 1997/98, there were 25.2%

women among the students. Various ideas were developed in order to increase

this proportion. One of them is the Ada Lovelace Programme, named after the

first female programmer, who had contacts with Charles Babbage. This pro-

gramme sends female students into schools as mentors, to arouse schoolgirls’

interest in studying these subjects and to include them in project work. Engi-

neering and technology days and mathematics days for local schoolgirls are
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held at the university regularly. The schoolgirls are introduced to scientific

and technical experiments, participate in mathematics competitions, can take

part in projects in various ways and generally gather information. In some de-

partments professors supervise special groups of female students. The field

of experimental physics has been quite successful. Seminars and lectures on

the analysis of gender research results for the teaching of mathematics and

for the field of architecture and urban and environmental planning were very

popular with the students but were not held regularly. This is mainly due to the

inadequate formulation of the examination regulations, which only make such

courses optional or, as an exception, include them in the Didactics of Mathe-

matics syllabus. At the entire university there are only two ordinary professors

who are women—in architecture and in biology. Besides this there is the Sofja

Kowalewskaja visiting professorship for women mathematicians, named after

the first woman to gain a doctorate in mathematics. This visiting professor-

ship is awarded to one woman per semester, the visitors come from various

countries. This professorship was set up in 1991, for the most part due to the

initiative of the mathematics professor Helmut Neunzert, who thus followed

in the footsteps of the mathematician Felix Klein with his aim of promoting

not only the applications of mathematics but also women in mathematics. The

Institute of Techno- and Economic Mathematics, set up by Neunzert in 1995

and run under Fraunhofer management, also promotes women scientists. I

would particularly like to emphasise that previous interdisciplinary training is

especially useful for projects to be worked on at the Institute. It was also Neun-

zert who initiated the Volkswagen Foundation project I am currently working

on, together with women social psychologists in Erlangen. The opening cer-

emony took place in July 1998, on the invitation was a picture of a woman

holding the Boltzmann equation in her hand. In 1991, Neunzert published

a popular science book in cooperation with Bernd Rosenberger, its title was

“Schlüssel zur Mathematik” or “The Key to Mathematics.” Among other things,

it says [4]:

“. . . people must be made much more aware of the fact that mathe-

matics is not an exclusively male discipline. In Germany, too, we can

only bring about a change if we change the dry, unworldly, unfem-

inine image of mathematics. It is worth emancipating oneself from

one’s own and from others’ prejudices about the relation of women

to mathematics.”

It is good when men stand up for women to be allowed to take a foothold

in areas which even today are still considered unfeminine by some professors.

Let us therefore end with the quotation from the title of my talk: We work in

mathematics “in spite of male culture” and in doing so try to make the squaring

of the circle, the impossible, as near possible as we can.
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1. Introduction. What do we need at universities both in the near future

and in the long run? The challenges of the near future might, for example,

be reacting to the new needs of the job market, to the financial situation of

universities, or to the new possibilities supplied by the new digital media. But

the university must also be prepared to confront the long-term future needs

of preserving our world, its nature and environment as well as mankind. The

cooperation of all disciplines is vital to carry out necessary change. Not only

scientific and technical cooperation but also the cooperation needed to pro-

vide the political, social, and cultural environment for change to take place. The

challenge is to set up new measures and principles and to develop theories,

strategies, knowledge, and aids for a new civilization capable of dealing with

all these problems. There have been considerable changes in all societies of

the world, in particular the effects of globalization, national governance loses

its power in favour of European or global regulations. As is well known, the

specialization and particularization of the sciences and even within the sci-

ences is such that understanding between the disciplines is hardly possible,

hence less scientific cooperation. Therefore, the challenges of a new univer-

sity should not only lie in the further development of sciences for their own

sake, but also aim to shift the objectives of sciences away from the partition

of life and towards a dedication to developments which lead to the reduction

of civilization costs. Undoubtedly, every civilization is bound to change, both

scientifically and technologically. But differently from before, the finiteness

of the world, the circulation of materials, pollution, ozone-holes, the global

effects of local actions come into our view. All efforts, both realised and po-

tential, are necessary to care for future social developments without damage

to the environment. Women and minorities should be integrated more than

before into the design of such changes in order to use all possible potential of

qualifications, ideas, and knowledge.

To meet all these challenges, one has to reflect on the role of the university:

• Is the integration of science and teaching still a suitable model?

• Should a university education also qualify people for the job market, or

only for the reproduction of science?
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• Should the university be open to other courses of education, such as adult

education or continuation of education?

• Is the Humboldt model of a genius scientist working in solitude and free-

dom on self-defined problems, gaining objective results, still a realistic one?

• What is “objective” science? Does it exist and can it exist, especially for

interdisciplinary research? And if not, by which epistemological claims can or

should it be replaced? For example, reproducibility of results, post-modern

coexistence of everything, discourse?

• Is it still adequate to leave sciences to their isolated developments, to

follow intrinsic self-defined goals and subjects, or should they be (or are they

already) open to influences of whatever type? For example, by interchange with

other sciences, by a kind of educational market, by political goals and there

again, by which influences, for example, by directing state money flows?

• Is the commercialization of education a necessary answer to the change

in social perception of intellectual activity into intellectual capital and hence

intellectual property?

• To what extent can technology help adaptation to the modern professional

needs, such as flexibility and orientation?

In the following, we will discuss some very different answers. These an-

swers will be concerned with science, educational and university structures,

technological means, and an experiment enabling the integration of women

and minorities.

2. Historical remarks. In Europe, science of the Middle Ages was above all

theology, with all other sciences contributing to it. Arts and crafts, on the other

hand, were the profane skills. Mathematics contributed to both science and

profane skills. Science was universalistic in the sense that all subjects could

be combined into a consistent architecture and all contradictions were ruled

out by theological governing and dogma. It was also universalistic in the other

sense that it was possible for skilled scientists to have an overview of the whole

structure of science. The monasteries held large libraries where the current sci-

entific knowledge was kept and, to some extent, was also distributed. Also, the

role of encyclopedias, such as the “speculum maius” by Vinzenz of Beauvais in

the 13th century, or the one by Diderot and d’Alembert established in the mid

18th century, for allowing universal access to knowledge and universalising

this knowledge cannot be underrated.

The term and the institution “university” was first created in Italy during the

11th century. The first university of the world was the university of Salerno

(1050) followed by a series of nearly 30 other universities throughout Italy:

Bologna (1119), Ferrara, Siena, and others. Teaching existed at Oxford in 1096

(there is no clear date of foundation of the university), Paris was founded in

1150, and later Prague in 1348. The first German-speaking universities were Vi-

enna (1365), Heidelberg (1386), and Cologne (1388). The (male) students were
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the creators of these democratic universities: They paid their teaching person-

nel for teaching them law, medicine, and so forth and could also dismiss them.

Further, the students could determine the subjects taught.

Renaissance brought a new definition of science: The rationalistic science,

which was coupled with technological usage from the beginning. The Royal

Society in London with Francis Bacon as an outstanding contributor and the

Académie Francaise in Paris with René Descartes on the French side imple-

mented this new science, now explicitly defined as “male” in opposition to a

new notion of “femaleness,” which was identified with nature, feelings and a

sexuality worth being feared. The consequences of this orientation have been

widely discussed in women’s and gender studies (cf. Fox Keller [6]). In Ger-

many, the foundings of the university of Halle (1694) and of Göttingen (1734)

first represented the inclusion of sciences and the new rationalistic methods.

The 19th century again introduced new cultures of science and humanities,

to be connoted with the foundations of the universities of Berlin, Breslau, and

Bonn and with the names of, for example, Virchow, Helmholtz, or Linné on the

science side, and in contrast on the side of the humanities with, for example,

Mommsen and Weber, showing a polarization between disciplinary orienta-

tion. This divergence is exemplary with the scientific directions of the brothers

Alexander and Wilhelm von Humboldt. Wilhelm established the leading ideals

for the culture of universities in Germany. The so-called “Humboldt Univer-

sität” still forms the current university: The duty to search for “the truth” for

both science and humanities, the union of research and teaching, the serving of

research for its own sake only, for nothing and nobody else, emancipated from

feudal rules: Research “in solitude and freedom.” Of course, life, body, and sub-

jectivity were eliminated when the scientist followed his objective epistemol-

ogy [3]. Alexander, on the other hand, favoured a scientific restoration for the

sake of a progressive civilization, and he was also successful, especially in an

economic respect. He wanted to implement the école polytechnique—founded

by Napoleon in Paris—in Germany. In the late 19th century, this project was

finally successful. The new foundations of technical universities were “culture-

less” and had to fight for their reputation for a long time. But the engineers

gained resources and also stood for the industrial civilization, not military

engineering. As for the Humboldt university, the engineering culture was sep-

arated from body and life, but it took a turn to reality with the orientation to

technical processes. Engineering, moreover, became a habitual model for male

identity.

Today, all these divisions seem to be no longer adequate, nor do solitude and

absolute freedom of research. Technical education is more and more integrated

with science and humanities and technical research has won the same valid-

ity as the one of the classical sciences. This integration is of urgent need, be-

cause social processes should no longer follow the rapid changes of technolog-

ical ones, but conversely. However, the problems to integrate communicative,
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social, and language qualifications into engineering education still show the

strong cultural characteristic features of technology.

3. Long-term challenges. The major challenge of society and therefore also

of sciences is to cope with the problems of the future: Ecology, migration,

globalization, balance between rich and poor, women and men, minorities and

majorities, etc. For these aims, all resources, powers, and technological pos-

sibilities have to be used, since the challenge is nothing less than building a

new civilization capable of accepting and solving these problems. Special em-

phasis lies on research to find reliable solutions in every respect. To cope with

the meshed economic, social, juridical, and cultural aspects of the problems,

any solution will not only include parts from natural science and technology,

but also all the other sciences. This requires all disciplines to cooperate on

scientific themes stemming from the demands of building such a new civiliza-

tion. Today, it is imperative that the different disciplines not only follow their

disciplinary goals and questions—this, of course, as well—but they also have

to pursue research themes with external goals, goals which subordinate dis-

ciplinary development under research questions contributing to solutions for

the urgent needs of the present society and ecology. Of course, this does not

mean that basic research within disciplines should be abandoned, nor does it

mean that a basic training in the different disciplines can be abandoned. On

the contrary, disciplinary training must be very good to be able to work in in-

terdisciplinary contexts. But it means that also the basic researchers should

cooperate with those working on problems of the future, in order to know what

the problems are and what those might be able to contribute. It also means

that with the new goals, Humboldt’s ideals of freedom and solitude must fall.

The freedom to choose one’s subject of interest should obey an ethical self-

restriction to the urgent goals mentioned above. That is, not everything that

can potentially be done, needs to be done, nor should it be. Intrinsic goals of

single sciences should be weighed against social and ecological goals. Problems

of this sort can only be solved with the efforts of all sciences.

With the current faculty structures of today’s university, such a coopera-

tion is hardly possible. The disciplinary ideals, goals, ethics, languages, and

cultures heavily withstand the necessary integrating features. But there is an

urgent need to lead the university away from the strong partition into subjects

and sub-subjects, where crossing the border is hardly possible, to a new uni-

versity, where an understanding and cooperation is possible, without leaving

one’s disciplinary grounds and competence. Universality today cannot consist

in integrating all scientific knowledge of the world in single minds, it can only

be brought into life by cooperation between researchers from different sub-

jects. This implies the willingness and the capability to follow common scien-

tific aims and efforts. This kind of new universality consists in the possibility

of gaining mental access to all scientific results of all subjects relevant to the
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problems chosen. Gaining mental access that is as far as necessary for defining

the interfaces and working together. Moreover, it requires to renounce quite a

lot of one’s own professional values, and also of hermetic scientific languages.

One is required to make oneself understood, to communicate and to cooperate

and to follow the common goals.

New competence to work in trans-, multi-, and inter-disciplinary ways on the

subjects mentioned must be developed. This requires one to be able to speak a

common language between scientists or at least to understand other scientific

languages and to moderate between them.

Note. The universal language of mathematics is not capable of serving for

this cooperation. Of course it is good for those parts which are able to be for-

malised and quantifiable, but this is the minor amount. For the whole range of

the meaning of life, the language of mathematics is not apt to serve for such

a cooperation. There are many reasons: The necessity of prior rational recon-

struction of reality, which would imply that all secrets of the world would have

been recognised before formalization; the integration of the different mathe-

matical models for single parts of reality is mostly impossible, etc. Gödel’s

results hint on such problems as well. With formalization, uniqueness and

stratifying concepts are introduced, meanings by definition, not open to inter-

pretation and discourse or moving targets.

More qualifications are required for this cooperation than before. The lonely

genius working alone is not the type required anymore, but people with wide

interests, competent in their science, being able to explain their own and their

own sciences’ contributions, capable of discourse, leaving pluralism alive, and

still finding ways to solutions.

4. Short-term challenges. There are a lot of necessities for change at uni-

versities in the near future. The majority of universities are confronted with

reduced resources, and the students are faced with new qualificational de-

mands, with lifelong learning, flexibility, and the adaptation to a global work

market. The role or the help of the new technologies in coping with the chal-

lenges mentioned is yet unclear. Is it necessary for every course of study to

have ubiquitous MBONE-access, to use authoring systems, to have network and

multimedia I/O, hardware and support for every student?

Globalization of work gives education and learning a new role. The most

important goals of education are no longer memorising subject contents, but

being capable of learning on demand, of finding information where it is avail-

able, and of remaining flexible. On the teaching side, it requires a shift from

support of the acquisition of knowledge to strategies for the acquisition of

knowledge. The fixed knowledge bases and curricula have to be made flexible.

The capability to acquire short-time external knowledge effectively becomes

more important than a huge amount of internalised (learnt) knowledge. The
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creation of a new knowledge is becoming a globally coordinated activity of

many people. Presentation and design becomes more important and even an

educational goal, both for teaching and research. The necessity to commu-

nicate and to cooperate raises the importance of social, language, and team

competence.

This gives universities a new role and forces them to find a new standpoint.

First of all, new forms of study have to be found which can cope with the ne-

cessities of a new working society. A fixed division between learning phase

and working phase does not exist anymore. A continuous phase of working in

a fixed career track will no longer be a general model. Lifelong learning also

requires new courses and forms of study from the universities. They have to

offer part-time, short-time, and remote courses. Moreover, they have to enable

movement between different kinds of educational institutions, between prac-

tice and research. Using webbed digital media can help to design the necessary

redefinition of universities.

By loosening and marginalizing the traditional models of courses of study,

room is opened for new constellations, such as overlapping and interdisci-

plinary courses, taking elements from different subjects and courses and com-

bining them unconventionally. Gender Studies can serve as models—even if it

is true that these prototypes arose from the lack of resources—or courses in

media theory. Other courses directly oriented towards certain professions are

possible models as well.

All methods and new technologies should be used to meet the needs of to-

morrow’s university, nothing should be excluded. Multimedia is setting the

pace for innovations in education, university and school. Virtual universities,

virtual courses of study, schools, self-organised learning, tele-learning, educa-

tion on demand, and the new knowledge society are the buzzwords of exposi-

tion. There is a wide range between euphoria and scepticism, and estimations

of costs, such as those of potential savings, differ very much. On one hand, the

technical possibilities are by far overestimated—they will solve all our prob-

lems of future education, on the other hand, their fundamental importance

is also mostly undervalued. A third position is that there is no way to avoid

the use of the new digital media for education, for good reasons of increasing

means and possibilities of learning, but to use them critically, that is, to select

and to integrate them into classical teaching. It should be noted that technol-

ogy only helps to solve technological problems, that didactic and pedagogical

questions have to be solved with didactic and pedagogical means. But by tech-

nological means, medial access is channelled and all thinking and learning

relies heavily on media.

Dennis Tsichritzis, the director of the German GMD and professor at the

university of Geneva writes in his article “Reengineering the University” [12]:

“Today’s university is at a turning point, and turn it must. The time has come

to recognise that education is a business and students are the customers.
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Pressure for such a change comes from the public, the media, and the po-

litical groups, which become aware of the new technological means and there-

fore demand new learning environments.” He claims a radical restructuring

of university and research, which abandons Humboldt’s ideals of a university

integrating research and education. He claims that the new teaching environ-

ments are virtual classrooms, with the possibility of visiting digital libraries.

Students have a wide selection from the world’s best offerings, they can spe-

cialise in arbitrary directions, because every existing course is also available to

them. Teaching personnel saves teaching time and wins it for research by using

authoring on the fly-technology, and institutions have a valuable instrument

of validation by just evaluating the market of course choices.

A similar vision is given by the “Expertenkreis Hochschulentwicklung durch

neue Medien” by Encarnacao et al. [2]. The scenario outlines a global market

of education, corporate universities, networks and international consortia, vir-

tual universities, educational brokers, etc., all mostly now centred in or around

firms. Only a very small classical university is left with the task of carrying out

fundamental research and educating its own personnel. According to the au-

thors, the very use of the new media creates transparency and, in consequence,

quality of education, and the evolution of education according to the needs of

the market, etc. Similar visions, if not developments, exist in most countries

of the world.

It is necessary to confront these visions with reality. David Noble from the

York University of Toronto summarizes experiences from the UCLA and from

the York University of Toronto on the automation of higher education [9].

The development of courseware had been put into commercial hands. A two

month strike of the students of York with slogans like “the classroom ver-

sus the boardroom” stopped the unlimited exploitation of online education

by private firms. Beneath the technological change and camouflaged by it, as

he realises, lies the commercialization of education. A change in social per-

ception has resulted in the systematic conversion of intellectual activity into

intellectual capital and hence intellectual property. After a phase of commer-

cialization of scientific and engineering knowledge via patents and exclusive

licenses, where industrialists invented ways to socialise the risks and the costs

of creating this knowledge while privatising their benefits, the change we are

now facing is the turn of the activity of instruction itself into commercially

viable proprietary products that can be owned and sold on the market: Copy-

righted videos, courseware, CD-ROMs and web sites. Experience there demon-

strates that computer-based teaching, with its unlimited demands upon in-

structor time and vastly expanded overhead requirements—equipment, up-

grades, maintenance, technical and administrative support staff—costs much

more than traditional education. The use of technology entails an inevitable

extension of working time by the university staff, to stay on top of the technol-

ogy, to respond, via chat rooms, virtual office and e-mail to both students and
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administrators to whom they have now become instantly and continuously

accessible. Once faculty and courses go online, administration gains much

greater direct control over faculty performance and course content. The tech-

nology allows for more careful administrative monitoring of faculty availabil-

ity, activities, and responsiveness. Once faculties put their course material on-

line, the knowledge and course design skill embodied in the material is taken

out of their possession. The administration is now in a position to hire less

skilled and cheaper and short-time workers to deliver the course material. It

also can peddle the course elsewhere without the original designers’ involve-

ment or even knowledge. The buyers of the packaged courses are able to out-

source the work of their own employees, etc. The students, if ever asked, have

rejected the initiatives, for example, at UCLA and York. They fear the costs and

plea for face-to-face education. But they also realise that the course material is

only thinly veiled trials for product and market development, that while they

are studying their courses, the courses are studying them. All online courses

are monitored, automatically locked and archived in the system for use by the

vendor. David Noble fears that higher quality education as a whole will be-

come the exclusive preserve of the privileged, thus swinging the democratic

achievements in equality of access to education to the other extreme.

I will not further refer to the economic aspects and assume that educa-

tion will not be privatised. Then the question arises: Which specific effects of

support can be obtained by interactive computer systems (including achieve-

ments such as thinking, learning, or processing of information)? The possi-

bilities of the new computer networks with multimedia often mentioned are

rationalization (by money-giving institutions such as the ministry of educa-

tion) and quality improvements, especially in the process of appropriation (by

the money-taking institutions, such as universities). The question cannot be

decided because the technology is not yet developed enough, reliable TA stud-

ies do not exist, and also because the technical potentials cannot be separated

from other factors, such as better didactical concepts or better preparation of

the teaching materials. Moreover, the implementation of the new technologies

is usually supported by additional resources from projects, which are finally

making comparisons impossible.

Reinhard Keil-Slavik [5] puts the questions into a more theoretical frame by

differentiating between primary, secondary, and tertiary functions of media.

The primary functions of media are to: Make phenomena realisable, arrange

artefacts so that they can simultaneously be observed and their content rela-

tions are mapped by the layout relations, and combine connected artefacts.

The potential of rationalization by multimedia, in his opinion, lies in the pos-

sibilities to process these primary functions. The new media enable a pictorial

turn, which reaches our mind more directly than the written and even the

spoken word. By this, the above functions gain even more relevance: Arrange-

ment, layout, and room visions. The secondary functions, such as selection of
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contents and instructional processes, can be processed by learning software.

The function of multimedia here is to improve the quality of learning materi-

als. This cannot be separated from competence in the subject’s contents and

from didactic competence. The tertiary media functions lie in the implementa-

tion of systems that learn, used in teaching, for example, for filtering or in the

form of know-bots for searching, selecting, combining, and processing knowl-

edge according to a person’s profile of interest. The higher the layer, the more

complex not only the media functions, but also the intertwining with other

competence and efforts.

A lot of questions and requirements are still left open with these scenarios.

(1) To begin with, the very use of global archives and global teaching offers

requires media competence in teaching and learning in all subjects. It also

requires the shift already mentioned from the acquisition of knowledge to

multimedia strategies for the acquisition of knowledge. Navigation, filtering,

and effective search within the huge amount of mostly nonvalidated knowledge

offered requires technological and strategic skill and ability to validate. That

is, competent use of the mediated knowledge requires new “meta”-skills and

-knowledge.

(2) It requires technical equipment, not only for scientists and teaching per-

sonnel, but also for every student—a very expensive task.

(3) Along with the decentralised furtherance, a future university ordering of

knowledge also requires a new ordering of the traditional centralised carriers of

technical media: The integration of library, computing centre and media centre

in a university support unity: “Digital media” centre. And, with the new insti-

tutions, also modified and new professions are required: Cybrarians who are

able to integrate the skills of librarians, information brokering, and technical

capabilities for running the computer centre and the multimedia equipment.

(4) It will require a lot of installation and running costs. For students, this

also means running telephone costs. The model of locally free telephone calls

would also help to get more people on the net in Germany.

(5) Also the readiness of students in self-engagement in using the digital

media has to be supported by removing hindrances, such as costs, access,

teaching media competence, and also by the quality of the offer.

(6) The preparation costs are extremely high. For example, the Freiburg high-

tech project “authoring on the fly” computes 100 to 500 hours of preparation

of one hour’s teaching unit on the computer. The preparation of synchronous

on-line teaching in several places using MBONE technology and shared white-

board has similar requirements.

(7) The teaching methods change radically by the use of digital aids for

virtualised teaching. A traditional lecture with chalk and blackboard may be

prepared in the evening before the lesson. A technically mediated demo, the

use of a software package for simulation or animation during the lecture must

be carefully prepared and well in advance.
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(8) One important aspect of technology for the usability and with it for the

rationalization of teaching and learning is that systems must be suitable for

everyday use. With the current state of the high-tech multimedia possibilities,

much more effort has to be put into making the offered learning units run,

rather than into the learning itself.

(9) Another important aspect is that isolated learning alone does not suffice.

Learning is also a social process, where it is necessary to discuss and compare

one’s performance with others.

(10) High-tech learning software has to be actualised, that is, it does not

suffice to build authoring on the fly-units once and for all, they have to be

supplied with possibilities for change, improvement, and addition.

(11) Usability and the possibility to combine different technical means is

important. Reusability and the availability of materials adapted to different

learning types and qualities, that is, everywhere (e.g., in the home as well as

in the class room) and anytime, are necessary prerequisites to make the mul-

timedial program work.

If the new technologies are used in a way that they contribute to all these

goals, and not with a technology centred habitat, but with a critical one which

only seeks to use it for efficiency to serve for more effective learning, this

will be helpful to serve the new requirements of the job market: Flexibility for

lifelong learning. The following list gives some claims or hints on using them

successfully.

(1) Digital media have to take second place: The use of digital media is an aid

to establish the new overlapping courses of study, but not a goal itself. Virtual

teaching and learning has to follow nontechnological needs, not conversely.

But it is helpful, both in the form of stand-alone remote universities, and as

one means to an end among others.

Still, also within classical courses of study, a heavier use of webbed digital

media is highly recommendable.

(2) Teaching is a decentralised task and should remain so in general. But it

can be extended by central provisions within the single courses of study.

Universities should support such activities by giving resources and taking

such efforts adequately into account. All subjects should be stimulated to par-

ticipate in this reform and to use the existing digital networks as the university

intranet.

(3) A side effect of such a networking will be the intended bridging within

the university, from strengthening of the cooperation between faculties, better

knowledge of one’s colleagues’ activities by consulting the WWW, and even

interdisciplinary work.

(4) Another side-effect might be the quality of the teaching offered: Multi-

media teaching is a lot of work, which usually also flows into the preparation

of the contents and didactics. The competition between different offers might

lead to better quality as well.
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(5) High-tech variants should be handled with care. Professional TV-shows

cannot become a model for university teaching. But low-tech use of the new

digital media, such as e-mail, newsgroups, mailing lists, web-archives, MUDs,

MOOs, and IRCs require considerably less time and effort and they can be

integrated into classical teaching much easier as well.

(6) The potential of communication possibilities by using the new digital

media has not yet been investigated thoroughly—but this must be done.

(7) Technical visions of teaching and learning have to be replaced by social

visions of teaching and learning. To learn how to learn will be the most impor-

tant challenge for our students, and with it to teach how to learn for ourselves.

The new order of knowledge. Another challenge comes from the glob-

alization of knowledge and globalization of the production of knowledge which

creates new knowledge orders (e.g., an internet governance of knowledge),

again implying the use of the new digital media. Open global computer net-

works, by allowing new forms of communication, information, saving, and

archiving, also heavily participate in building a new mediated order of knowl-

edge [10]. This, in the sense of Michel Foucault, that is, not only with episte-

mological goals, but also goals of ruling in technology and society. The new

instrumental media will be used to search, select, process information and to

mediate it to users in adequate form. Users, in turn, have to be involved with

the media to be in a position to reconstruct relevant knowledge for themselves.

If universities do not want to leave the evolving of a new knowledge order to

chance and other powers, they must participate in the structuring and design

process of the order of knowledge. If, according to Spinner, knowledge can be

structured according to zones of quality, shelter, and distribution, science also

has to take responsibility for them.

Michael Nentwich describes in his working paper “the future of science” [8]

not so much the future of science, but the actual use of digital media within the

scientific communities. The changes are manifested in new forms of publishing

and in the ways scientists work and communicate. Communication via e-mail,

but also online in video- and online-conferences, makes cooperation easier and

allows the scientists to gain knowledge of greater actuality. Texts are receiv-

ing a more dynamic component with publication they need not remain fixed.

The so-called open peer commentary, as well as the online-referencing, can

lead to ongoing modification of publications. The role of authorship is thereby

changed. Articles are becoming the products of groups of scientists with dif-

ferent roles in the production of texts. Rating of these articles can be done by

automatic follow up of reading.

Of course, the changes also depend on the scientific subject. In areas where

the acquisition of data is necessary, this can be done from remote places, ex-

change of data is eased, the access to large data bases gives new empirical qual-

ity to research. Also, extended research groups can be established working in
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virtual laboratories, so-called collaboratories. They cooperate and coproduce

in a modularised way, more independently of place. Of course, there remains

research which is bound to place, such as field research, interviewing, etc.

This kind of remote cooperation also has its deficits, well known as de-

contextualization of information, as the lacking of bodily information channels

such as mimics and gesture. On the other hand, the forms of discourse enabled

by electronic communication are capable of infinity [11]. And it also needs new

forms of written moderation, which do not yet exist. Generally, there is the

possibility to move from local and national discourses (which are more typical

for social sciences, arts, and humanities, less for science, mathematics, and

technology) to global communities and a democratization of science, a break-

up of hierarchies, and on the other hand, the well-known specialization and

particularization of knowledge and expertise.

5. The technical university of women in Europe—a necessary experiment.

There have been a lot of names to try to characterise new types of society:

Post-industrial society, services society, consumer’s society, communication

society, information society, knowledge society, risk society, virtual society.

The huge variety of classifications shows that old structures are dissolving,

but a (one) new formation has not arisen. Yet the visible changes indicate the

break-up into a new civilization. Following Janshen [3], a new civilization for

the new millennium cannot be defined, even less implemented from scratch. It

must and will use the structures defined within the last centuries. Therefore,

it also bears the burden of a male culture of progress: Engineers, enterprise

holders, and colonizers. James Watt’s steam engine marks the beginning of a

new epoch. The industrial use of fossil energies to run the machines led to the

development of big industries in steel, machine construction, electric indus-

try, mining, and chemical industry. Productivity rose and with it the production

and use of goods. Ships, railways, and telegraphic aids had the effect of shrink-

ing time and space for human activity. Rationalization, not only by machines,

but also by bureaucracy and the formalization of social processes, made hu-

man activity more effective, it also enabled the potential of power by science

and technology: Taylorism, Fordism, military weapons, and mass-destructive

technology, but also precipitated the decline of agriculture. Today, rationaliza-

tion is not only restricted to public and institutional sectors, but increasingly

also to the private one.

As is well known, technology also structured society in the times of the first

industrialization, the polarization between the possessors and the workers,

and also the emergence of the town (where men worked) as a place for public

action as opposed to the private home (where women worked) without possibil-

ities for empowerment. Education and professionalization are gaining impetus

compared with family and inherited position. The standard of public health is

rising as is women’s power. On the other hand, there is also an awareness of
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the threats of global damage. Such damage affects everyone, not just flora and

fauna, and thus, the responsibility for ecological balance, pollution of air, earth,

water, and nutrition cannot be attributed to single persons. It is imperative that

women also gain control over technological processes. The tendency for key

social qualifications only to be available from technical universities is still effec-

tive. And it relies on structures and norms stemming from military rationality

and order. Of course, it is speculation to claim that our civilization would have

very different characteristics with a more active participation of women. But

today, the breaking up of old structures and the yet open future is a challenge,

especially for women. New basic technologies are opening new tracks. A new

scientific practice should combine technical innovation with the social one.

Signs of a new civilization are visible with the changing of norms, institutions,

and jobs. With post-modern plurality, a greater tolerance towards all kinds of

social, cultural, and epistemic differences and values has arisen. The postmod-

ern discourse about construction of social attributes and values lets bindings

seem deconstructable, giving dimensions of new freedom. The fact that there

is a lot of openness for structures and values, calls for design, especially de-

signs by women. Universities can no longer be the shelter for socially isolated

individuals, they must be embedded into variable social processes. Intrinsic

motivation of subjects should move in favour of taking responsibility for sci-

entific actions, seen as part of a duty for building-up a new civilization and

taking responsibility for the natural environment, more or less constructed or

left to itself. Instrumental technology, constructed for different aims, is moving

in favour of integrated technologies, processing relations and communication,

but without explicit goals. The development and implementation of technolo-

gies for intrinsic reasons should be abandoned in favour of development for

sustainable and social goals. This requires the cooperation of all sciences.

I would like to present concepts for a type of university that meets both the

imaginations of a group of women and the claims for education and research

for the needs of “tomorrow.” Most of them have been discussed in the context

of the development of the “Technical University of Women in Europe” (TUFE)

led by Doris Janshen.

One starting point is the observation that the male power of definition in

the process of civilization rules out or marginalizes female participation in

this process, and this especially through the development of technology and

technological skills. It is therefore necessary for women to define their own

“university.” A second point considers the social and economic costs of today’s

richness through industrialization, which is based on scientific and technologi-

cal knowledge. The question arises of how future civilization can be developed,

also implying social and ecological responsibility, and how science and tech-

nology can integrate this in the very processes of teaching and research.

Feminist research is favouring specific epistemological interests. That is,

approaches which use the power of knowledge to support life, peace, and
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the development of civil cultures are favoured against such which are used

to gain power over nature, people, and nations, such as destructive and mil-

itary technology. Consequently, the focus lies on long-lasting concepts and

social and ecological aims instead of research which is readily usable for eco-

nomic and political aims. A further feminist desideratum is to reintegrate

epistemological questions and foundations into science in order to support

self-reflection into scientific discourses. Critical questioning of the sciences

about their aims and their knowledge produced is a necessary condition for re-

gaining an orientation of sciences towards social aims, away from Humboldt’s

ideals of objectivity, (absolute) freedom (of research aims) and solitude. More-

over, feminist scientists fight for a culture of communication and discourse.

They do not take the post-modern trend of “anything goes.” Instead of seek-

ing affirmation, more wisdom is won by working on differences and exploring

their reasons.

Feminist critique of science and technology is well known, it attacks the

“rational method” of recursive partition of problems into smaller parts up

to atomic level, solving the parts and composing them to a general solution.

Further, the objectivist distance and view of scientific work and many other

partitioning features, like the partition of science and life, of theory and prac-

tice, of subject and object, etc. A constructive turn is seldom performed and

it always bears the danger of essentialist positions. Here, they are avoided by

just listing aims and desires for change and by trying to set up conditions for

their fulfilment. One basic claim is to use the potential of women, and to use

it not only as isolated women in science, but to bring women together in a

technical university and to integrate different scientific views of women in one

place, where teaching and research, practice and science is performed.

As is already mentioned, there is an urgent need for interdisciplinary, multi-

disciplinary, and transdisciplinary work and research. For this, it is necessary

to dissolve the classical faculty structures for the sake of setting up new struc-

tures which help to investigate in cross-section problems both in teaching and

in research. To know the “real problems,” it is necessary to integrate science

and practice, that is, to also involve people from business and firms and from

different countries. Also, there should be a commitment to taking responsi-

bility for ecological problem areas and problems of the third world as well

as socially and economically usable research results. Women should have the

power of definition in this university, but also cooperative male teachers and

researchers may be integrated. This implies that possibilities to integrate work

and even career and family life must be guaranteed, also for single mothers.

Also the integration of students and practitioners in the research processes

has to be enabled, among other ways, by deconstruction of hierarchies, also be-

tween scientific cultures and disciplines. This also implies a social integration

for the well-being of students and teaching and research personnel. All this in-

volves experiments with new structures for science and teaching, focussing on
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the integration of women and the orientation towards problems of the present.

This has consequences, not only on scientific subjects and forms of study, but

also on the whole culture of science and its mediation. Room for a different

knowledge must be opened, for research that transgresses the borders of the

disciplines and which takes its motivation from social practice of today and

tomorrow. Of course, this also implies competence in, and development of,

basic research within disciplines.

The target groups of the Technical University of Europe are researchers,

graduating students, fellow students, professionals, the areas of working, the

whole society. Fellowships should enable women and men to study abroad, to

make possible further development for undergraduates, as for graduates with

continued education or postdoctoral studies. Also, employed people should be

able to study at the technical university of women, especially women after the

family phase should have the possibility of reintegrating into the job market

by receiving educational offers.

People of the new civilization not only have to be more flexible, they also

have to keep stability and strength within the flow of meanings, as well as to

preserve social competences. Barbara Mettler Meibom, founder of the institute

for communicational ecology, speaks of the necessity to develop a new ecol-

ogy of communication [7]. Only those who treat others and oneself plus the

new technologies ecologically with respect to communication will be capable

of communication. The TUFE therefore develops learning modules for “social

training in technology.” The goals of technological development by the TUFE

will not be innovation for the sake of being the first, but to find meaning-

ful applications for ecologically neutral or positive processes and to develop

technology for them afterwards. At the TUFE, innovative processes will be em-

bedded into networks of applications from the outset.

The TUFE wishes to develop courses of study integrating different disci-

plinary methods and areas of knowledge—oriented towards a specific field of

interest. It wishes to reflect the disciplinary language habits and to develop

a didactics of interdisciplinarity. For this disciplinary training, at least a two

years’ basic course is necessary, but on the main study level the different fields

of actual interest should drive the multidisciplinary contributions. (There al-

ready exist such courses of study, for example, gender studies, media studies,

etc.)

The forms of organization should be left open in a first phase, in order to

be able to probe new forms. But there should not exist a disciplinary order,

faculties will be bound together by areas of research and courses of study

rather than by disciplines. On the other hand, each discipline existing within a

faculty should be represented by two researchers at least. Studying is oriented

towards communication, discussion and projects, less to lectures. Research

careers should have longer-lasting perspectives than is the case within German

universities today.
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The hope is that the new qualifications will be exchanged throughout the

whole labour world and society via influences of the research pools, further

education, practice and industry, state and institutions. The effect could be to

build up concepts for a new civilization and to let them emerge into society.
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Britta Schinzel’s talk “Challenges facing an Ideal University” raises many in-

teresting and controversial points, as expected from the nature of such a topic.

While agreeing that many of her points are valid, I would like to register my

comments and disagreements here for the sake of balance, and as a record

for the discussion session afterwards. Also, this seems a good opportunity to

counter some of the very unfair things said by the general public (not by Britta

Schinzel) against scientists.

(1) To build an ideal university is a very difficult, and to my mind impossible

and superhuman, objective. In spite of globalization, we are still very different

depending on our civilizations and our geographical positions. What suits Ger-

many would in all probability not suit India, for instance, at the same epoch.

Also, to build it using modern technology (“MBONE” was cited more than once),

last-minute though it may be, is somewhat short-sighted, given the time scale

required to realize such a project.

(2) The need to reinvent a totally different type of university is based signif-

icantly on the “Humboldt model” being no longer “realistic.” The very phrase

“a genius scientist working in solitude and freedom on self-defined problems”

begs many questions. First of all, universities are not meant for “geniuses,”

scientist or not. Then, with very very few exceptions, scientists, genius or

not, have not been working “in solitude” for at least a century. A good ex-

ample is the human genome project published last week (June 2000). As to

“self-defined problems,” even Archimedes, genius though he was, worked out

his principle of flotation because a king mistrusted his goldsmith. So I think

the “Humboldt model” has never been realistic, but this does not prevent

actual existent universities from flourishing, nor significant science being

done.

(3) Schinzel asks: “What is “objective science”? Does it exist? . . . replaced by

reproducibility of results . . . .” All sciences are objective by definition and if

results are not reproducible, then they are not scientific results. These criteria

held at least since the end of the 19th century, if not since Descartes.

(4) Under “Long-term challenges,” Schinzel says “The freedom to choose

one’s subject of interest should obey an ethical self-restriction . . . to renounce

quite a lot of one’s own professional values.” Such and similar remarks suggest
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that in the modern world considerable external constraints should be imposed

on scientists doing research, including basic research, such as questions of rel-

evance as perceived by those funding the research. I would like to stress that

basic research is a creative activity, which those engaged in the arts subjects

seem not to recognize. Just as the nonpainting public do not restrict the painter

to, say, use certain colours only, nor does the nonmusician ask the composer

to think of the environment when composing, so those who do not do basic re-

search should not direct what a basic researcher does. In fact, basic researchers

very often cannot tell in advance what directions they are going, except in a

general way. There are innumerable historical examples where some very ab-

stract discoveries were put to very practical uses. One oft-quoted one is the

discovery of electricity. When asked by the Chancellor what use was electricity,

the scientist (was it Faraday?) said, “One day you will be able to tax it, sir.” How

true it is!

(5) A common language is urged among scientists, who should not use “her-

metic scientific language.” Mathematics is dismissed as being “not apt to serve

for such cooperation,” because of Gödel’s incompleteness theorem (which,

if I understand correctly, implies that no arithmetic system can be entirely

consistent, and this implies—but I may be very wrong—the same is true of

any sensible language system). If, on the other hand, “hermetic scientific lan-

guages” means something that can be understood only after some years of

study, then I do not think there is any shortcut. Science constitutes part of our

total knowledge accumulated over thousands of years and over the five conti-

nents. No nonnative English (or German) speaker, for instance, would demand

Shakespeare-(or Goethe-) on-tap! He or she knows that to appreciate either it

is imperative to learn English (or German) to considerable depth, and that re-

quires also years. Scientists are often blamed for using obscure language, but

nobody seems to abuse Shakespeare for the same!

(6) I agree heartily with Schinzel that education should not be privatized.

She quotes Tsichritzis’ version of “students . . . can specialize in arbitrary di-

rections,” and a scenario imagined by Encarnacao, Leidhold, and Reuter with

“global market of education, . . . educational brokers . . . centered round firms.”

I am glad that the students of UCLA and Toronto reject them! Somehow it is

implied that in the ideal university, students should be able to design their own

courses. I do not know how that can be achieved. Students come to the univer-

sity, or college, or whatever, to learn, and before they start learning how could

they know what exactly to learn? Just think how difficult and complicated it

is to design the undergraduate syllabus for any course and you will see my

point. Besides, which students would be far-sighted enough to realize that it

is not always the easiest courses that would get you the knowledge you want?

For example, a medical student must go through a lot of arduous training, in-

cluding memorizing many details of anatomy for instance, before she/he is

qualified to treat patients. Given the choice and no prior knowledge of what
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is necessary, would the medical student be able and willing to go through five

years of arduous study?

(7) Concerning a women’s university, it is stated that one of the more funda-

mental problem is that women feel secure together. Perhaps, but since we are

concerned with ideals, we should think of ways of changing social attitudes

which make women insecure, rather than trying to perpetuate such attitudes

by segregating women. Also, I think Marylis Delest made an important point,

namely that women’s universities would automatically have less able teachers,

whether we like it or not.

29 June 2000
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The talks of Renate Tobies and Britta Schinzel, which covered historical

facts, personal experiences and future aspects of ideal universities, provided

plenty of information and topics for a discussion. So, on Saturday afternoon

a lively debate took place. Various opinions, impressions, and experiences

were expressed, especially about the question as to whether or not univer-

sities solely for women are a good way to support women. In the following, we

sketch some of the main topics of the session in the hope of inspiring further

discussions.

Restrictions on basic research. The general feeling of the discussion

was that as a creative activity, basic research should not be limited by public

restrictions. Often it is not clear at the beginning of a project where the re-

search will lead, in particular whether abstract ideas can be put into practice.

Therefore, it is important to be in a position to be able to explore ideas based

on intuition and vague ideas.

Although there are at present no obvious restrictions on research, totally

independent research rarely takes place. Often the filling of positions, social

structures and—last but not least—industry funded scientific research restrict

the freedom for pure research.

But there are also some desirable restrictions. For example, every researcher

should reflect on her work by participating in discourse. After all, academics

are paid by the public sector and should not forget this.

The demand for a discourse between researchers and the public leads to a

further point of the discussion.

Discipline and interdisciplinary work. Interdisciplinary projects of-

ten offer the opportunity to connect research with applications. Such projects

require contacts between researchers from different disciplines and the readi-

ness to participate in discourse. However, one has to be competent in ones

discipline before working in an interdisciplinary team.

Experiences in Denmark and Germany show that project oriented teaching

also works well since students, responsible for their projects, are highly moti-

vated and enjoy working on a major task. Nevertheless, the given task has to be

carefully chosen to ensure a learning effect, neither too difficult nor too easy.
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Womens universities: Expectations and experiences. One of the

main discussion points was about womens universities, that is, universities

solely for women. Various impressions were expressed, among others, fears

regarding the quality of the academic staff at a womens university, would suc-

cesful academics opt for a position at a womens university? Also would women

learn to fight if studying in the protected world of female groups?

However, womens colleges in the USA show that their graduates are nor-

mally strong, self-confident and good at managing. The colleges have gained a

reputation comparable to the best coeducational colleges.

Single sex courses within coeducational establishments were also discussed.

Some participants of the discussion reported of contradictory experiences. For

example, a professor made a fool of himself when suggesting single sex groups

for the exercise classes; the following year women asked for female groups.

Grouping students proportionally fifty-fifty seems to work well, helping to es-

tablish a good atmosphere and enabling women to play an equal role in the

group.

New technologies for teaching. At many universities efforts are made

to use new technologies for teaching as well as for distance learning. Never-

theless, going multimedia is not as easy as sometimes supposed. Experiences

show that up to now, technology offered by computer science is not yet usable,

for example, the network is cut during lessons or the rates of transfer are too

low.

Technological evolution is certainly important. However, instead of being

indiscriminately innovative, it would be better to improve teaching within the

universities and reflect the use of technologies.

Suggestions to improve the atmosphere within a university. To

end the discussion, we focused on which aspects of a university made it a good

learning/research environment. For example, an important point for female

researchers seems to be a place in the department where people meet in an

informal way and where discussions can take place, a coffee room, for example.

To attract more female students different teaching systems are worth men-

tioning. For example, as opposed to the traditional exercise class where some-

one presents solutions at the blackboard, classes before the solutions are sub-

mitted where students can ask for help seem to be popular. Other ways of

support can consist of extra courses for female newcomers to a university,

offering lessons, exercises, and discussions where they can put any questions

to experienced students.

For women who want to work at a university after their Ph.D. having a long-

term perspective is extremely important. More permanent jobs at universities,

changing structures of employment as well as more financial support for fe-

male researchers could offer such a perspective.
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INTRODUCTION TO THE POSTER SESSION

The Poster Session played a central role in the 9th International Meeting of

EWM. Many participants arrived with carefully prepared visual explanations of

their work. In all, there were 29 posters covering a wide spectrum of Mathe-

matics, the width and depth of the interests of women-mathematicians was

apparent. The posters also illustrated the type of problems that are investi-

gated by the mathematical schools of different European countries. Due to the

success of the Poster Session it was decided that poster abstracts should be

published for inspection by the wider mathematical community.

Of course, the success of this Poster Session was built on the positive expe-

riences gained from the Poster Session of the 8th General Meeting. I anticipate

that the Poster Session will be an evermore interesting and informative feature

of subsequent meetings.

Finally, I would like to mention a particular poster which, as a collection of

puzzles, did not lend itself to an abstract. I quote from the poster of Dörfner,

Preissler, and Wich “A mathematician is a machine to turn tea into . . . or a short

course in the manufacturing of mathematical objects.” This poster was always

surrounded by participants—everybody wanted to play with the puzzles.

Good luck to everybody for the future

Polina Agranovich
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Integral representations of generalized Legendre functions

S. Ablayeva, Kazan State University, Russia, ablayev@ksu.ru

Joint work with L. Chibrikova

In our paper, we consider the equation

(1−z)2w′′ −2zw′ +
[
ν(ν+1)− μ2

2(1−z) −
λ2

2(1+z)

]
w = 0. (1)

This equation is known as a generalized associated Legendre differential equa-

tion.

We construct fundamental pair of solutions P(μ,λ)ν (z) andQ(μ,λ)
ν (z) of differ-

ential equation (1) for arbitrary ν,μ,λ using method of contour integrals with

Oiler kernel. Functions P(μ,λ)ν (z) and Q(μ,λ)
ν (z), when λ = ±μ, are represented

through associated Legendre functions of the first and the second kind.

Exceptional sets for entire functions

P. Agranovich, Institute of Low Temperature, Ukraine,

agranovich@ilt.kharkov.ua

Joint work with Vladimir Logvinenko

The Levin-Pflüger theory of completely regular growth (one-term asymptotic

representation) of entire functions is used intensively in different parts of

mathematics and physics. One of the extension of this theory is the consider-

ation of n-term asymptotics of entire functions.

In this work, the differences between the Levin-Pflüger theory of completely

regular growth and the case of n-term asymptotics are studied. The main of

these differences is the existence of points of elevation in the exceptional sets

for the n-term asymptotics.

Weierstrass functions in boundary-value problems for the analytic

functions

E. Aksenteva, Kazan State University, Russia, Evgenija.Aksenteva@ksu.ru

D. Hilbert in Goettingen was the first to give a solution of linear homo-

geneous Riemann problem Φ+(t) = G(t)Φ−(t) by using integral equations.
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F. D. Gakhov in Kazan gave a constructive solution of homogeneous and inho-

mogeneous Riemann boundary-value problems by using the integral of Cauchy

type.

The representatives of Gakhov scientific school, which the author of the

report belong to, work intensively in Kazan: Three Ph.D. dissertations have

recently been defended by I. A. Bikchantaev, F. N. Garifyanov, and Yu. V. Ob-

nosov.

In a review, the summaries of these dissertations as well as the authors so-

lutions of nonlinear boundary-value problem [Φ+(t)]α =G(t)[Φ−(t)]β, where

Weierstrass functions ζ(z), σ(z), ℘(z) are given. Then, the connection be-

tween mathematical schools of Goettingen and Berlin (Germany) and of Kazan

(Russia) is shown.

Chain geometries

Andrea Blunck, Technische Universität Wien, Austria,

blunck@geometrie.tuwien.ac.at

Let R be an associative algebra with 1 over a field K. The incidence structure

Σ(K,R) = (P(R),�(K,R)), whose point set P(R) is the projective line over R,

and whose chain set �(K,R) consists of the K-sublines of P(R), is called the

chain geometry over (K,R). It satisfies the axioms of an abstract chain space.

The real Möbius plane is the chain geometry Σ(R,C). It is the geometry of

points and plane sections of an ellipsoid in real projective 3-space. Analo-

gously, one can introduce the chain space Σ(�) on a quadric � in an arbitrary

projective space. Under certain conditions, Σ(�) can be embedded into a suit-

able chain geometry Σ(K,R).
The chain geometry Σ(K,R) over the K-algebra R =M(2×2,K) of 2×2 ma-

trices is isomorphic to the geometry (�,R) of all lines and all reguli in the

projective 3-space over K. A similar result holds in projective spaces of arbi-

trary, not necessarily finite, dimension. Then a regulus consists of subspaces

that possess an isomorphic complement, and R is the ring of linear endomor-

phisms of such a subspace.

A geometrical approach to the Emden-Fowler equation

Ljudmila Bordag, BTU Cottbus, Germany,

ljudmila@bordag.com

This paper is devoted to the investigation of Emden-Fowler equations of the

type

y ′′(x)+e(x)yp(x)= 0, x ∈R.

The motivation to study such equations systematically came from astro-,

atomic-physics, and Riemannian geometry. We study the properties of Emden-

Fowler equation, which are invariant under the general point transformations.
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The underlying geometrical theory of second order ordinary equations was

developed by E. Cartan. He introduced the concept of the space of normal

projective connection. The Emden-Fowler equation can then be considered as

the equation of the geodesics in such space. In case of Emden-Fowler equation

the corresponding space of normal projective connection can be immersed in

the flat projective space RP3. The description of related surfaces is given.

The local density-functional method as a tool of mathematical modeling

in solid states physics

Ljudmila Bordag, BTU Cottbus, Germany, ljudmila@bordag.com

We report in our work ab initio calculations of the electronic structure and

total energy of pure Mg with hcp structure as well as fcc structure for com-

parision. We have done these computations also for pure Al with fcc lattice

as well for typical alloys MgAl3 and MgAl6. We have varied the size of the

unit cell in each case to obtain the minimum of total energy in relation to the

lattice parameters a,c/a. To calculate the total energies we take an accurate

method using density functional theory within the LDA using the implemen-

tation of this method by Dr. M. Methfessel. The present calculations for Mg in

the hcp structure agree extremely well with the data obtained from the exper-

iments.

Conjugacy class sizes—some implications for finite groups

Rachel Camina, University of Cambridge, UK,

R.D.Camina@dpmms.cam.ac.uk

Let G be a finite group and x ∈ G. Then xG = {g−1xg : g ∈ G} defines the

conjugacy class of x in G. Note that |xG| = |G : CG(x)|, where CG(x)= {g ∈G :

g−1xg = x} is the centraliser of x in G. The conjugate type vector of G is the

r -tuple {n1,n2, . . . ,nr}, where n1 >n2 > ···>nr = 1 are all the numbers that

occur as sizes of conjugacy classes of G. This definition leads to the following

general question.

Question. Given the conjugate type vector of a finite group G, what can

you say about the structure of G?

For example, if {n1, . . . ,nr}×{m1, . . . ,ms} is defined to be {nimj | 1 ≤ i ≤
r , 1 ≤ j ≤ s}, then it can be proved that G is nilpotent if its conjugate type

vector is of the form

{p1,1}×···×{pr ,1},

where p1, . . . ,pr are distinct primes.

For a further discussion on this type of question (and references) see the

article of the same title in this proceedings.
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Some properties of singular invariant distributions

Amel Chaabouni, Ecole Polytechnique Fédérale de Lausanne, Switzerland,

Amel.Chaabouni@epfl.ch

Let P be the relative invariant of an irreducible regular prehomogeneous

space defined over R with V as real vector space of dimension n. Then P is

a real polynomial of degree d. Let V1, . . . ,V	 be the connected components of

V \P−1(0).

Problem. Find an explicit “topological” condition in order that the coeffi-

cients of the Laurent expansion at the negative poles of the distributions |P |s|Vi
be nonzero.

In the Bull. Sci. Math. (2) 1989, I expressed all the linear relations (there are

d	/2 of them) between the above-mentioned coefficients, which are invariant

distributions, using the matrices ∂αU(cj); here the cj are the roots of the b-

function of P , 0 ≤ α < d and U(s) is the analytic matrix which appears in the

Fourier transform of the vector-valued distribution (|P |s|Vi)1≤i≤	.
In 1999, D. Barlet gave a condition on Vi∩FR, where FR is the real Milnor

fiber of P , which is a solution in the case where P is a germ of an analytic

function at zero whose complexification has an isolated singularity at zero. P
is not necessarily a relative invariant. However, most relative invariants are not

in this case.

History of the travelling salesman problem

Helena Durnova, Masaryk University, Czech Republic,

durnova@math.muni.cz

Introduction. The travelling salesman problem is one of the discrete op-

timization problems. However, there is no polynomial algorithm for this prob-

lem. From the historical point of view, the development of the problem formu-

lations and solutions can be traced.

Mathematicians use basically two definitions of the problem: They are look-

ing for a path which passes through each node either exactly once, or at least

once. The solution of the former produces a Hamiltonian circuit, whereas the

one of the latter need not.

Origins. It is said that the travelling salesman problem was formulated

by Hassler Whitney in 1934. However, he himself denies this. In 1934, another

mathematician, Merrill Flood, was trying to find the cheapest route for a school

bus. His colleague Alan Tucker pointed out to him that this problem has some-

thing to do with Hamiltonian circuits.

After the Second World War, the problem became increasinlgy interesting.

The solutions were more and more formalised with the use of programming

languages.
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Heuristics. The published heuristics can be divided into three basic types:

tour-to-tour improvement, tour building, and subtour elimination. A short de-

scription of these methods can be found, for example, in [1]. The methods are

usually aimed at getting approximate results. What is then interesting from his-

torical point of view is the way mathematicians reflect on their and the others’

results; whereas in early 1960s it was usually referred to a specific computer

and the time as measured by stopwatch, at the end of 1960, first complexity

characteristics appear.

Instead of a conclusion, here is a question:

Is mathematics going to change its style from Theorem-Proof to the Algo-

rithm-Analysis method, or will there be “two kinds of mathematics”?

References

[1] M. Bellmore and G. L. Nemhauser, The traveling salesman problem: A survey, Op-
erations Res. 16 (1968), 538–558. MR 38#3027. Zbl 213.44604.

Quadratic and hermitian forms over rings

Laura Fainsilber, Chalmers and Göteborgs University, Sweden,

laura@math.chalmers.se

The upper third of the poster consists of pictures of various places I have

lived and worked in mathematics: Paris, Berkeley, Besançon, and Göteborg.

I am interested in quadratic and hermitian forms whose coefficients are

taken in rings such as the p-adic integers, the rational integers, matrix rings,

and group rings Z[G], Zp[G].
The study of quadratic and hermitian forms is related to number theory, via

the trace form, to algebraic geometry via the study of the variety of zeroes of

a form, to algebraic groups via the group of symmetries, to algebra when we

study for which rings R the family of all forms has certain properties.

An application to gas kinetics. In Discrete Velocity Models for the

Boltzmann equation, one tries to approximate the collision operator (a multiple

integral over Rn×sphere) using summations over points in a lattice. One needs

to know which lattice points lie exactly on the surface of spheres of given

radius, that is, which points with integer coordinates xi satisfy
∑
x2
i = n. In

high dimensions, it is easy to find enough points to get good approximations.

In dimension 2, many circles have no points, or very few, and it is difficult to

see whether the points are equidistributed.

Geometry and topology in concurrent computing

Lisbeth Fajstrup, Aalborg University, Denmark,

fajstrup@math.auc.dk

Coordination of concurrent processes is a central problem within distributed

computing. Modern multiprocessor systems are inherently asynchronous, so
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this is an important but difficult subject. It is not obvious how to model concur-

rent systems, and computer scientists do not agree on which model to choose.

In recent years, a variety of mathematical methods have been proposed to

model concurrency situations. Among those are techniques borrowed from al-

gebraic and geometric topology: Simplicial techniques have led to new theoret-

ical bounds for coordination problems [2]. Higher dimensional automata have

been modelled as cubical complexes with a partial order reflecting the time

flows, and their homotopy properties allow to reason about a systems global

behaviour. At the workshop Geometric and Topological Methods in Concur-

rency Theory,

http://www.math.auc.dk/raussen/admin/workshop/workshop.html

computer scientists and mathematicians discussed and presented various as-

pects of this new common ground between mathematics and computer sci-

ence. The poster presents some of the results of this workshop together with

earlier results in this area including the deadlock detection algorithm described

in [1].

References

[1] L. Fajstrup, E. Goubault, and M. Raußen, Detecting deadlocks in concurrent systems,
CONCUR’98: Concurrency theory (Nice), Lecture Notes in Comput. Sci., vol.
1466, Springer, Berlin, 1998, pp. 332–347. CMP 1 683 333.

[2] M. Herlihy and S. Rajsbaum, Algebraic topology and distributed computing—a
primer, Computer science today, Lecture Notes in Comput. Sci., vol. 1000,
Springer, Berlin, 1995, pp. 203–217. MR 97b:68059.

Local state space reduction of multiscale systems

Sybille Handrock-Meyer, Technical University of Chemnitz, Germany,

handrock@mathematik.tu-chemnitz.de

Joint work with Klaus Schneider

Modelling reaction kinetics in a homogeneous medium usually leads to non-

linear systems of ordinary differential equations the dimension of which can

be very large. A well-known approach to reduce the dimension of such systems

is the quasi-steady state assumption (QSSA): The derivative of fast variables

is assumed to be zero. This procedure requires some knowledge of the un-

derlying chemistry, moreover the corresponding differential system must be

explicitely given. We have described and justified a procedure for a local reduc-

tion of the dimension of state space which does not require chemical insight

as well as an explicit knowledge of the system in a singularly perturbed form.

The mathematical justification is based on the theory of invariant manifolds.

Numerical examples show that the method works well [1].
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Uniform asymptotics of oscillating integrals

C. A. Hobbs, Oxford Brookes University, UK, cahobbs@brookes.ac.uk

Joint work with N. P. Kirk, J. W. Bruce, and J. N. L. Connor

The uniform asymptotic evaluation of oscillating integrals has numerous

applications to short wavelength phenomena in chemistry, physics, and math-

ematics. In particular, it is important for the study of collisions of atoms,

molecules, and nuclear heavy ions.

The technique we have developed in order to uniformly evaluate certain

types of oscillating integrals to which the standard asymptotic techniques do

not apply is to employ suitable integral representations to convert the original

one-dimensional integrals into multidimensional ones. The phases of these in-

tegrals can then be analysed using Singularity Theory techniques (i.e., by com-

puting invariants such as corank and codimension), and then transformed into

their polynomial normal forms using diffeomorphic changes of coordinates.

We can use numerical techniques [1] to evaluate the integrals containing these

normal forms, and use these values to derive the uniform asymptotic expan-

sions of the original integrals.

Acknowledgment. This project was funded by the Engineering and Phys-

ical Sciences Research Council, UK.

References

[1] N. P. Kirk, J. N. L. Connor, and C. A. Hobbs, An Adaptive Contour Code for the Nu-
merical Evaluation of the Oscillatory Cuspoid Canonical Integrals and their
Derivatives, submitted to Comput. Phys. Comm., 1999.

Automaticity of solutions of Mahler equations

Wibke Jürgensen, University of Bremen, Germany,

wibke@math.uni-bremen.de

Automatic sequences are intermediate between periodic and random se-

quences. Considering sequences with values in a finite field Fpα , it was shown

in 1979 that the coefficients of a formal power series F ∈ Fpα[[X]] are p-

automatic if and only if F satisfies a Mahler equation
∑d
j=0Pj(X)F(Xp

j )=Q(X)
with polynomials Pj,Q∈ Fpα[X] (j = 0, . . . ,d).
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We give sufficient criteria for the automaticity of the coefficients of solutions

of the more general Mahler equations

d∑
j=0

Pj(X)F
(
Xm

j )=Q(X)
for arbitrary m ∈ N. In that case, the automaticity depends on the character-

istic of the finite field Fpα as well as on the order of the polynomial Q.

A characterization of orthogonal and symplectic groups

Bettina Kürner, Technical University Darmstadt, Germany,

kuerner@mathematik.tu-darmstadt.de

How can we characterize a subgroup of an orthogonal or symplectic group

as a subgroup of the general linear group GL(n,K) with certain properties? We

give an example for the orthogonal case in this summarization.

Definition 1. Let V be a K-vector-space of dimension n ∈ N over a com-

mutative field K. Let π ∈ GL(V). Then

F(π)= {v ∈ V | vπ = v} is the fixed space of π,

B(π)= {vπ−v| v ∈ V} the path of π,

π is simple :⇐⇒ dimB(π)= 1;

id �=π is an involution :⇐⇒π2 = id .

Let f : V ×V → K be a symmetric bilinearform, that is, f is linear in both

components and holds f(v,w) = f(w,v) for every v,w ∈ V . We define the

orthogonal group, respectively, f as

O(V,f ) := {
π ∈ GL(V) : f(vπ,wπ)= f(v,w)∀v,w ∈ V},

and denote v ⊥w if f(v,w)=0, v,w ∈ V , and V⊥ :={v ∈ V : v ⊥w ∀w ∈ V}.
Definition 2. Let σ ∈O(V,f ). We say, σ is a symmetry if and only if σ is

simple and holds B(σ) �⊆ V⊥.

Theorem 1 (Characterization theorem). Let K be a field with charK �= 2

and V be an n-dimensional K-vector-space. Further, let S be a set of simple

involutions in GL(V) and there are σ1, . . . ,σn ∈ S with
∑n
i=1B(σi) = V and⋂n

i=1F(σi)=
⋂
σ∈S F(σ) and G := 〈S〉. Then the following statements are equiv-

alent:

(1) G ≤O(V,f ) for a symmetric bilinearform f : V ×V → K. Especially S is a

set of symmetries.

(2) G holds the following properties:

(K1) τστ ∈ S for all τ,σ ∈ S.
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(K2) For τ,σ ∈ S and B(σ)= B(τ), we have τ = σ .

(K3) For each σ1,σ2,σ3 ∈ S, we have F(−σ1σ2σ3) �= {0}.
We refer to [2, 3] for the proof of this result and the symplectic case.
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Factorization dynamics and Coxeter Toda lattices

Nadja Kutz, TU Berlin, Germany,

nadja@math.tu-berlin.de

The posters present a joint work of Tim Hoffmann, Johannes Kellendonk,

Nicolai Reshetikhin and the author of the posters. Roughly speaking, the

posters explain how a certain matrix factorization can be used to construct

a discrete integrable dynamical system. This system can be regarded as a dis-

cretization of the well-known Toda flow. More precisely, it was shown that the

factorization relation on simple Lie groups with standard Poisson Lie structure

restricted to Coxeter symplectic leaves gives an integrable system.

Semigroup crossed products

Nadia S. Larsen, University of Copenhagen, Denmark,

nadia@math.ku.dk

Crossed products of C∗-algebras by groups of automorphisms have been

extensively studied over the past few decades and are now a well-established

area of operator algebras.

In recent years, there has been growing interest in a similar notion, involv-

ing semigroups of endomorphisms rather than automorphisms, as it turned

out that the resulting objects were very fit to model C∗-algebras generated

by families of isometries, the so-called Toeplitz algebras. Uniqueness results

were, for instance, immediate from characterisations of faithful representa-

tions of appropriate semigroup crossed products (Adji-Nilsen-Laca-Raburn,

Laca-Raeburn, Fowler-Raeburn). In a different direction, semigroup crossed

products and their techniques were employed in giving an alternate description

of the Bost-Connes Hecke C∗-algebra arising in number theory and generali-

sations hereon (Laca-Raeburn, Arledge-Laca-Raeburn, Laca).



72 Organized by POLINA AGRANOVICH

Two simple questions have arisen in work on the Bost-Connes C∗-algebra

and Toeplitz algebras: Do semigroup crossed products behave well under ten-

sor products and short exact sequences? Here we give an affirmative answer

for a large class of semigroup crossed products.

On the construction of some Buchsbaum varieties

Emilia Mezzetti, Università di Trieste, Italy,

mezzette@univ.trieste.it

The set of the lines of a projective space Pn = P(V), denoted by G(1,n), is a

projective algebraic variety, called the Grassmannian. It is naturally embedded

in P(Λ2V). The hyperplane sections of the Grassmannian parametrize some

families of lines, called linear line complexes: They correspond bijectively to el-

ements in P(Λ2V)∗, or else to sections of the twisted cotangent bundle ΩPn(2)
(using the Euler exact sequence).

Hence, fixed an integer number m ≤
(
n+1

2

)
, giving a bundle map ϕ : �⊕mPn →

ΩPn(2) is the same as giving a linear system Λ of linear line complexes of

projective dimensionm−1. The degeneracy locus of the mapϕ is a projective

scheme X, which can be interpreted as the set of centres of the complexes of

Λ, where, by definition, a point P is a centre of a complex Γ if Γ contains all

lines through P .

In a joint paper with Dolores Bazan, we have studied such degeneracy loci,

determining in particular their degree, the locally free resolution of their ho-

mogeneous ideal, and proving that they are arithmetically Buchsbaum. In par-

ticular, if n = 5, for m = 2X is a triple of skew lines, for m = 3X is an elliptic

normal scroll surface. As an application of the general theory, we obtain an

explicit description of the Hilbert scheme of such elliptic scrolls in P5.

Solving evolution equations with approximate approximations

Jenny Niebsch, Weierstrass Institute for Applied Analysis

and Stochastics, Germany, niebsch@wias-berlin.de

The new method of approximate approximations was introduced by V.

Maz’ya. One represents a smooth function u by

�hu(x)= 1√
�
d

∑
m∈Zd

u(hm)η
(

x−hm√
�h

)
,

where the function η is continuous and fulfills a decay condition. The larger

class of such basis functions (compared with, e.g., splines) is payed with an

additional so-called saturation error in the approximation process. This error

can be controlled by � in such a way that it is smaller than, for example, the

machine precision, although it does not tend to zero for h tending to zero.

This makes the method useful for practical applications. One application is

the solution of nonlinear partial differential equations, for example, evolution
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equations like

ut−νuxx = ∂xf(x,t,u), x ∈R, t > 0,

u(x,0)=ϕ(x).

Algorithms for this equation based on approximate approximations were de-

veloped by Maz’ya and Karlin. We proved error estimates for these algorithms.

The error estimates are of the form∥∥u(·,nτ)−ū(·,nτ)∥∥L2(R) ≤
(
�
(
hN+τ)+saturation error

+‖ϕ−ϕ̄‖L2(R)
)
exp(Cnτ),

where ū(·,nτ) is the approximate solution at time nτ , ϕ̄ is the approximation

of the initial value and N is the approximation order of �h depending on the

choice of η. The method was also used to solve nonlinear nonlocal evolution

equations. Similar error estimates were derived.

A counterexample to the infinite-dimensional version of the matrix

Hunt-Muckenhoupt-Wheeden theorem: Operator BMO

and factorizations of H1(c1)

Sandra Pott, University of Edinburgh, Scotland,

sandra@maths.ed.ac.uk

Joint work with F. Nazarov, A. Gillespie, S. Treil, A. Volberg, and J. Wilson

The classical Hunt-Muckenhoupt-Wheeden theorem in its version for L2

states that the Hilbert transform H, which assigns to each L2 function on

the unit circle T its harmonic conjugate Hf = f̃ , extends to a bounded lin-

ear operator on the weighted L2 space L2
w(T) if and only if the weight function

w : T→R+ satisfies the Muckenhoupt A2 condition

sup
I⊂T interval

(
mIw

)(
mIw−1)<∞,

where mI denotes averaging over the interval I. In 1996, S. Treil and A. Vol-

berg proved a matrix version of this theorem: They showed that the Hilbert

transform is bounded on the space of vector-valued functions

L2
W
(
T,Cd

)= {
f : T �→ Cd :

∫
T

〈
W(t)f(t),f (t)

〉
dt <∞

}
for the matrix weight function W : T→ Mat(d×d)+ if and only if W satisfies

the so-called matrix Muckenhoupt A2 condition

sup
I⊂T interval

ρ
((
mIW

)(
mIW−1))<∞.

Here ρ denotes the spectral radius.
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We show that the infinite-dimensional version of this theorem is false. Our

main tool is an exponential-like connection between matrix Muckenhoupt A2

weights and matrix BMO, which allows us to reformulate the question of the

validity of an infinite-dimensional matrix Hunt-Muckenhoupt-Wheeden theo-

rem for a certain class of weights as the question of equality for two spaces

of operator-valued BMO functions. Using Sarason’s Factorization theorem, this

in turn can be reformulated as a factorization problem for H1(c1). From an

earlier result of F. Lust-Piquard, pointed out to us by G. Pisier, it follows that

this factorization of H1(c1) does not hold.

Willmore hypercyclides

Gabi Preissler, Technische Universität Dresden, Germany,

preissler@math.tu-dresden.de

The poster deals with Möbius invariant hypersurfaces in euclidean space En

which are both Willmore hypersurfaces and hypercyclides.

In the twenties, Blaschke characterized Willmore surfaces in E3, using their

central spheres. This result leads to the definition of Willmore hypersurfaces

for higher dimensions n≥ 3.

Willmore hypersurfaces are those hypersurfaces � where their central hy-

perspheres Z have a special second envelope �̂ (apart from �). More precisely,

if � is a Willmore hypersurface, each central hypersphere Z of � has to be a

central hypersphere for this second envelope �̂, too. A central hypersphere of

� is a hypersphere which touches � and has the same mean curvature as � in

its point of contact with �.

Hypercyclides are generalizations of the classical Dupin cyclides for n = 3,

and they were classified by Cecil in a Möbius invariant way in 1992. This clas-

sification shows that for a Möbius invariant view on hypercyclides it suffices

to consider hypertori of revolution Sk×Sn−k−1 with ratio a of the radii of the

spheres Sk and Sn−k−1 involved.

The poster results in some characterizations for Willmore hypercyclides,

especially the ratio a = a(n,k) > 1 is given where hypertori of revolution are

Willmore hypersurfaces. For n = 3, k = 1, we get Willmore tori with a = √2

which were already presented by Willmore in 1965.

Inversive planes with a 2-fold transitive automorphism group

Maren Riemewschneider, Technical University Darmstadt, Germany,

mr@mathematik.tu-darmstadt.de

An inversive (or Möbius) plane is a geometrical incidence structure � =
(	,
,∈), consisting a set of points 	 and a set of circles 
 satisfying the fol-

lowing axioms:

(i) For each three distinct points P, Q, R ∈	 there exists exactly one circle

k∈
 with P, Q, R ∈ k.
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(ii) Let P, Q∈	 and k∈
 with P ∈ k and Q �∈ k. Then there exists exactly

one l∈
 with P, Q∈ l and k∩l= {P}.
(iii) Each k∈
 is incident with at least one P ∈	, and there are four points

which are not concircular.

In particular, I am interested in inversive planes admitting a 2-fold transitive

group of automorphism. One way to obtain such planes is to mix up several

Miquelian planes in a suitable manner (for details, see [1, 2]). My main focus is

to study the automorphism group of such planes and the automorphisms of

order 2, to classify different isomorphism types and to find more examples.

References

[1] W. Benz, Vorlesungen uber Geometrie der Algebren, Die Grundlehren der mathe-
matischen Wissenschaften, vol. 197, Springer-Verlag, New York, 1973 (Ger-
man), Geometrien von Mobius, Laguerre-Lie, Minkowski in einheitlicher und
grundlagengeometrischer Behandlung. MR 50#5623. Zbl 258.50024.

[2] H. Mäurer, Einen Konstruktionsmethode für Möbiusebenen des Hering-Typs VII, 1.
[A construction method for Mobius planes of Hering type VII, 1], Geom. Ded-
icata 22 (1987), no. 2, 247–250 (German). MR 88e:51008.

Quasi-periodic Riemann’s boundary-value problem and its applications

Ilysia Salekhova, Kazan State University, Russia,

Ilysia.Salekhova@ksu.ru

Nowadays, one of the directions in development of the theory of boundary-

value problems is the research of problems in case the boundary conditions

are set on an infinite number of boundary lines, on an enumerable set of lines

in particular.

The solution of the modified Dirichlet problem, mixed problem for a plane,

for a half-plane, and basic problems of the theory of elasticity as well was

obtained. The research method of these problems is that by introducing auxil-

iary functions the solution of these problems is reduced to that of Riemann’s

boundary-value problem Φ+(t) = G(t)Φ−(t)+g(t) with a constant coefficient

G(t) and an arbitary free term g(t), that is, to a special case of the so-called

quasi-periodic problem of Riemann. The method offered for the solution of

these problems gave us an opportunity to achieve results in solving quasi-

periodic Riemann’s problem in general case, that is, in case of periodic coeffi-

cient G(t) and arbitary free term g(t).

Perturbation of solutions in the filtrational problems with free boundaries

O. Shirokova, Chebotarev Research Institute of Mathematics and Mechanics

of Kazan State University, Kazan State Pedagogical University, Russia,

Olga.Shirokova@ksu.ru

The inexactitude of initial information in the filtration problems leads to the

necessity in study of solution modification at initial data variation.
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In this paper, a parameter perturbation technique is used in order to receive

quantitative estimations of free boundary problem decision variations.

Reaction of filtration flows with free boundaries to the variation of the filtra-

tion resistance field is studied. The groundwater flows under steady-state and

transient conditions are examined. Boundary-value problems for head pertur-

bation are formulated.

The problem of finding permeability perturbations, causing the greatest vari-

ations of a flow rate and a filtration region at different additional constraints, is

put. Numerical solutions of these problems for model examples are obtained.

The results were obtained in cooperation with Professor A. V. Kosterin of

Kazan State University.

The stress-strain state of rocks and mass transfer in deep layers

M. Toropova, Chebotarev Research Institute of Mathematics and Mechanics,

Kazan State University, Russia, Marina.Toropova@ksu.ru

A new approach for calculating pressure fields, permeability, and well pro-

ductivity has been developed, taking into account the deformation of thin layer

and of adjacent rocks. It is assumed that the pressure distribution in a layer

is nonaxisymmetric, and that Young’s modulus varies according to layer coor-

dinates and time. This approach allows for the evaluation of well productivity

with regard to two-phase seepage flow.

The initial problem can be devided into internal and external ones. An ex-

ternal problem concerns the stress-strain state of adjacent elastic rocks. A

layer at a depth far exceeding its thickness is represented by an infinitely thin

cut of a uniform elastic half-space; the rheological condition is realised on its

boundaries.

The solution of the problem is obtained in integral form by using two-

dimentional Fourier transform. The layer deformations are described by an

integral operator of the liquid pressure field in a layer. Then the integral prob-

lem is reduced to the solution of a nonlinear two-dimentional partial parabolic

equation for pressure.

This method is illustrated by the problem of the nonconcentric well in a

circular layer.

The pressure in an unperturbed layer is assumed to be equal to zero. In

initial time on the well contour it changes with a jump while on the external

layer boundary it is equal to zero.

The problem is solved by the finite element method in combination with

the iteration method. The relationships between the rate of productivity of

extraction and injection wells under different layer pressure gradients are ob-

tained. The pressure and permeability distributions in the seepage area are

thus constructed.

The results were obtained in cooperation with Professor A. V. Kosterin and

Professor E. V. Skvortsov of Kazan State University.
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Stable planes

Anke Wich, Universität Stuttgart, Germany,

wich@mathematik.uni-stuttgart.de

Stable planes are locally compact topological planes with an open domain

of intersection of lines. Classical examples are the projective planes 	2F, as

well as the affine and hyperbolic planes, for alternative fields F∈ {R,C,H,O}.
A theorem by Löwen states that every stable plane has dimension 2, 4, 8, or

16. Every open subplane of a stable plane is a stable plane. Conversely, it is

often a crucial question whether or not a given stable plane can be embedded

as an open subplane in one of the classical planes.

The poster presents a series of 4-dimensional connected stable planes re-

cently investigated by Maier and explains why they cannot be embedded in

the projective plane 	2C. To that end, a translation mechanism, developed by

Stroppel, between sketched geometries and sketches, that is, between geomet-

rical and group theoretical methods, is introduced and profited from.

Cluster formation of spatial branching models

Anita Winter, Mathematisches Institut, Universität Erlangen-Nürnberg,

Germany, winter@mi.uni-erlangen.de

The poster presents a part of the author’s Ph.D. thesis.

We consider an interacting particle model, in which the particles living in

Zd underlie the following dynamics. The particles live an exponential time.

During their life time the migrate according to a random walk; while at the

end they either die or branch into two new particles situated at their parent

particle’s final site, each case with probability 1/2. Both mechanisms occur

independently for all particles, independently of each other and independently

of the initial configuration.

If we start our model with a finite number of particles, it is easy to see that

they all die out. For an infinite number of particles the question of the long

term behavior is a more interesting one. It differs sharply in low and high di-

mensions: If d≤ 2, one gets local extinction, while for d≥ 3, the particles tend

to a nontrivial equilibrium. It has been known for a while that local extinction

goes along with clumping around a “typical surviving particle.” This phenom-

enon is called clustering.

This poster is dedicated to the critical dimension, dc = 2. A detailed de-

scription of phenomena concerning clustering including the growth rate of

components with surviving particles, the age of the cluster in comparison to

the system’s age and its family structure is given. The concepts comprise nor-

malization by the hight of a surviving component, averaging over large blocks

of components and rescaling in space and time.



INTRODUCTION TO THE SESSION
ON MATHEMATICAL MODELLING

Following the now-established tradition, we had again an inter-disciplinary

session. This time it is on “mathematical modelling” and we have chosen three

main areas: theoretical physics (Cecilia Jarlskog), biology (Helen Byrne), and

visual numerical environment (Rosa Maria Spitaleri). In addition to these main

talks, we also had two spontaneously contributed short talks: Laura Tedes-

chini Lalli on mathematics and music, and Lisbeth Fajstrup on geometry in

computer science. All five speakers were able to convey to this general audi-

ence of mathematicians the excitement of their very different subjects, and to

show us how many rather familiar concepts in mathematics can be put to use

in so very different contexts.

I personally think that such an inter-disciplinary session is of tremendous

use, not only for communication among established workers, but especially for

the younger mathematicians. This same idea had been expanded and carried

out in the two EWM workshops on renormalization (Paris) and moduli spaces

(Oxford). One thing I have learnt since joining EWM is that women can coop-

erate well, and since there are still so few women mathematicians, promoting

inter-disciplinary environments makes good sense. I for one was very happy to

have learnt something about wound healing, about the numerical presentation

of visual objects, the working of the Javanese gamelan, and the question of the

dihomotopy of diloops when using my printer!

Cecilia Jarlskog’s talk, “Particle physicists’ beloved mathematics,” had very

pretty transparencies which were generally greatly appreciated. Unfortunately,

her heavy commitments, including chairing the Nobel Committee for Physics,

prevented her from writing up her very enjoyable talk. For the others, their

articles which follow speak eloquently of their subjects.

Tsou Sheung Tsun

Oxford



USING MATHEMATICS TO STUDY SOLID TUMOUR GROWTH

HELEN BYRNE

University of Nottingham, England

helen.byrne@nottingham.ac.uk

1. Introduction. Hardly a day goes without the appearance of a press re-

lease claiming that a new cure for cancer has been discovered. Such media of

interest is unsurprising given that cancer is now poised to overtake heart dis-

ease as the major cause of premature death in the Western World. Whilst many

of these deaths are indirectly the result of improvements in healthcare (as life

expectation rises the chances of succumbing to cancer increase), it is also true

that treatment for many forms of cancer are still alarmingly ineffective. In

the face of such news, biologists, clinicians, and pharmaceutical companies

are now investing considerable effort in trying to improve the prognosis of

patients diagnosed with cancer.

In order to develop effective treatments, it is important to identify the mecha-

nisms controlling cancer growth, how they interact, and how they can most eas-

ily be manipulated to eradicate (or manage) the disease. In order to gain such

insight, it is usually necessary to perform large numbers of time-consuming

and intricate experiments—but not always. Through the development and so-

lution of mathematical models that describe different aspects of solid tumour

growth, applied mathematics has the potential to prevent excessive experimen-

tation and also to provide biologists with complementary and valuable insight

into the mechanisms that may control the development of solid tumours.

Whilst the application of mathematics to problems in industry has been an

active area of research for many years, its application to medicine and biology

is still a relatively new development. For example, most of the models of solid

tumour growth were written in the last twenty years. In this paper, I review

some of the major developments in modelling of solid tumour growth that

have taken place over the past twenty years and indicate what I believe are

the main directions for future mathematical research in this field. By reading

the article I hope that you will, at least, learn some biology and, at best, be

stimulated to learn more about the ways in which mathematics can help in the

battle against cancer.

The outline of the remainder of the paper is as follows. Section 2 contains

a brief description of the key stages of cancer growth and introduces the bio-

logical terminology. Sections 3, 4, and 5 contain reviews of different, but inter-

related, models of avascular tumour growth. The paper concludes in Section 6
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AVASCULAR GROWTH

ANGIOGENESIS

VASCULAR GROWTH

Diffusion-limited growth

Relatively harmles

Blood supply acquired

Rapid growth and spread

Potentially fatal

Figure 2.1. A schematic diagram showing how the stages of solid
tumour growth are interrelated.

with a brief summary and a discussion of key directions for future mathemat-

ical research in solid tumour growth.

2. Background biology. Whilst the development of solid tumours is un-

doubtedly a complex process, involving many interacting mechanisms, it is

still possible to identify two distinct phases of growth: the relatively benign

phase of avascular growth which precedes the more aggressive, and potentially

life-threatening, phase of vascular growth (see Figure 2.1). The main difference

between these phases is that avascular tumours are devoid of blood vessels

whereas vascular tumours are not. In the absence of a blood supply, avascu-

lar tumours receive vital nutrients, such as oxygen and glucose, and eliminate

waste products via diffusive transport. Consequently, the size to which they

grow is limited. Once connected to the host’s blood supply, a vascular tumour

is able to grow rapidly due to the presence of an almost limitless supply of

vital nutrients. Such growth may impair the function of neighbouring organs.

Additionally, tumour fragments that enter the blood supply are transported to

other parts of the body where, if the environmental conditions are favourable,

they will establish secondary tumours or metastases that further weaken the

host. In order to make the transition from avascular to vascular growth the

tumour undergoes a process known as angiogenesis.
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N

Figure 2.2. This figure shows a human tumour spheroid grown in
vitro from a single breast cancer cell. It consists of a number of
layers of viable proliferating tumour cells and an inner, necrotic (N)
area where the low oxygen tension has caused substantial cell death.

In response to an externally-supplied nutrient, avascular tumours adopt a

well-defined, radially-symmetric spatial structure: An outer rim of nutrient-

rich, proliferating cells surrounds an intermediate hypoxic (i.e., low oxygen)

annulus containing nutrient-poor, nonproliferating cells and a central necrotic

core of nutrient-starved, dead cells (see Figure 2.2). In response to the stress

of low oxygen, the hypoxic cells secrete a range of chemicals (or angiogenic

factors) which diffuse out of the tumour and through the host tissue. When

they reach neighbouring blood vessels, they activate the endothelial cells that

line the blood vessels to proliferate and migrate preferentially towards the tu-

mour, eventually furnishing it with a circulating blood supply so that vascular

growth may commence [23].

Vascular tumours typically contain many cell types, including tumour cells,

macrophages, and endothelial cells, which are embedded in a tissue matrix,

whose composition and pattern of growth vary over time. For example, tu-

mour cells close to blood vessels proliferate rapidly in the presence of abun-

dant oxygen and nutrients. Where the demand for oxygen exceeds the delivery

rate transient areas of hypoxia form. Being formed so quickly, most tumour

blood vessels lack muscular tone and are prone to collapse when subjected to

small pressure increases associated with tumour cell proliferation. With ves-

sel collapse, the supply of oxygen and nutrients to a given region ceases and
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hypoxia occurs. As mentioned above, in response to hypoxia the tumours cells

try to stimulate a vascular response from the host through the production

of angiogenic factors. The resulting neovascularisation increases the local nu-

trient levels, enabling the tumour cells to recommence proliferation. In this

way, the tumour’s spatial structure changes dynamically, with periods of cell

proliferation alternating with hypoxia in different parts of the tumour.

From the above description, it is clear that therapies which prevent or re-

strict the growth of blood vessels to solid tumours would be highly desirable.

Whilst several anti-angiogenic factors have now been identified (e.g., angio-

statin and endostatin), the results remain inconclusive. This is largely due to

practical and ethical difficulties associated with organising clinical trials (e.g.,

it is almost impossible to get a large enough sample of patients with exactly the

same type of tumour). Thus the conventional therapy for cancer patients re-

mains a combination of surgery, radio- and chemo-therapy, the particular com-

bination depending on the type of tumour being treated. However, by working

in collaboration with clinicians and experimental biologists and developing

realistic mathematical models of solid tumour growth, it may eventually be

possible to optimise treatment for each individual.

3. Radially-symmetric avascular tumour growth. During the 1970s, ex-

perimentalists interested in tumour biology were focussing on the effect that

changes in the concentration of externally-supplied nutrients such as oxygen

and glucose had on the growth of avascular tumours [13, 31, 32]. They mea-

sured the radii of the approximately radially-symmetric tumours over time,

sometimes supplementing their results with oxygen concentration profiles

within the tumour and measurements of the necrotic and hypoxic radii. Pre-

sented with such data, it is not surprising that the key variables in mathemat-

ical models from that time were assumed to be the outer tumour radius R(t)
of the radially-symmetric tumour, the nutrient concentration c(r ,t) within the

tumour volume and the radius of the interface between the proliferating and

hypoxic regions RH(t) and the interface between the hypoxic and necrotic re-

gions RN(t).

3.1. The mathematical model. When written in dimensionless form and in

spherical polar coordinates, a typical model in which the width of the hypoxic

region is neglected (i.e., RH(t)= RN(t)), has the following form:

∂c
∂t
∼ 0︸ ︷︷ ︸

quasi-steady
approximation

= D
r 2

∂
∂r

(
r 2 ∂c
∂r

)
︸ ︷︷ ︸
nutrient diffusion

− ΓH(r −RN)︸ ︷︷ ︸
rate of nutrient
consumption

, (3.1)

1
3
d
dt
(R3)= R2dR

dt︸ ︷︷ ︸
rate of change

of tumour volume

=
∫ R

0
S(c)H(r −RN)r 2dr︸ ︷︷ ︸

net rate of cell proliferation

−
∫ R

0
N(c)H(RN−r)r 2dr︸ ︷︷ ︸

rate of necrotic cell death

(3.2)
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subject to the following boundary and initial conditions:

∂c
∂r

= 0 on r = 0, (3.3)

c = c∞ on r = R(t), (3.4)

c,
∂c
∂r

continuous across r = RN(t), (3.5)

c(RN(t),t)= cN, (3.6)

R(t = 0)= R0. (3.7)

In (3.1), we have adopted the usual approximation ∂c/∂t = 0 which arises be-

cause a typical nutrient diffusion timescale is much shorter than the timescale

of interest, the tumour doubling timescale [1, 16]. Since the necrotic core con-

tains only dead cells, it is assumed that there is no nutrient consumption there.

Denoting the Heaviside step-function by H(·) (H(x) = 1 if x > 0, H(x) = 0 if

x ≤ 0), we note that the term ΓH(r −RN) assumes that nutrient consumption

by proliferating cells occurs at a constant rate Γ .
In (3.2), S(c) and N(c) denote cell proliferation and cell loss due to necro-

sis, respectively. Cell proliferation is assumed to be localised in the annulus

RN < r < R and represents the balance between mitosis (cell proliferation) and

apoptosis (programmed or natural cell death). Necrotic cell loss is localised to

nutrient-starved regions where c < cN. As simple examples, we fix

S(c)= s(c− c̃) and N(c)= 3sλ. (3.8)

In (3.8), s and c̃ are positive constants and we interpret sc as the cell prolifer-

ation rate and sc̃ as the apoptotic rate. Additionally, 3sλ denotes the assumed

constant rate of cell death within the necrotic core.

Substituting with S(c) and N(c) from (3.8), equation (3.2) becomes

R2dR
dt

= s
∫ R

0
(c− c̃)r 2dr −sλR3

N. (3.9)

Equations (3.3)–(3.7) close the model equations (3.1) and (3.9). Equation (3.3)

is a symmetry condition, (3.4) fixes the nutrient concentration on the tumour

boundary at the constant value c∞, equation (3.5) ensures continuity of c and

∂c/∂r across r = RN, (3.6) defines RN implicitly, and (3.8) defines the initial

tumour radius.

3.2. Model simplifications. Due to the simple expressions used above to

describe the cell proliferation rate and other kinetic terms, it is possible to

write down explicit expressions for c, R, and RN. For example, setting D = 1

in equation (3.1), when the tumour comprises proliferating cells only (RN = 0),

we have

c(r ,t)= c∞− Γ
6

(
R2−r 2), dR

dt
= sR

3

(
c∞− c̃− ΓR

2

15

)
. (3.10)
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Similarly, when the tumour comprises necrotic and proliferating cells (RN > 0),

we have

c(r ,t)=
⎧⎪⎨⎪⎩
cN for r ∈ (

0,RN(t)
)
,

c∞− Γ
6

(
R2−r 2

)+ ΓR3
N

3

(
1
r
− 1
R

)
for r ∈ (

RN(t),R(t)
)
,

where RN(t) is defined in terms of R(t) via the following algebraic expression:

c∞−cN = Γ
6

(
R2−R2

N

)− ΓR2
N

3R
(R−RN), (3.11)

and the evolution of the outer tumour boundary is now specified in terms of

R(t) and RN(t):

3R2

s
dR
dt

=
(
c∞−c̃− ΓR

2

6
− ΓR

3
N

3R

)(
R3−R3

N

)+ Γ
10

(
R5−R5

N

)+ ΓR3
N

2

(
R2−R2

N

)−NR3
N.

(3.12)

3.3. Model analysis. In real applications, the experimentally-determined

functional forms used to describe the cell proliferation and death rates are

more complicated than those used above. In such cases the model will not, in

general, admit analytical solutions and one must resort to numerical methods.

Whilst numerical solutions are of value, they often obscure the way in which

different mechanisms interact. Insight into the behaviour of the system can

be gained by studying special cases for which the model equations simplify.

In this section, we illustrate how simple analytical techniques can be used to

achieve this goal by studying three cases of physical interest:

(1) when the tumour is very small (0= RN <R� 1),

(2) directly after the onset of necrosis (0<RN � R ∼O(1)),
(3) when the width of the proliferating rim is small (0<R−RN � 1).

Small tumour analysis. When RN = 0, equation (3.10) describes the tu-

mour’s growth rate and when 0<R� 1, it reduces to give

dR
dt

= sR
3

(
c∞− c̃

)+O(R3). (3.13)

Equation (3.13) shows how, when the tumour is small, its growth rate depends

upon the balance between the rate of cell loss due to apoptosis and the rate

of cell proliferation, the latter effect being controlled by the external nutrient

concentration. In particular, if c̃ > c∞ the tumour shrinks and we say that the

tumour-free solution (R = 0) is stable. Conversely, if c̃ < c∞ the trivial solution

is unstable and growth is predicted.

Onset of necrosis. In order to characterise the tumour’s growth after

the onset of necrosis we introduce the small parameter 0 < ε� 1 and seek

solutions to equations (3.11) and (3.12) of the form

R ∼ R0+εR1+ε2R2 and RN ∼ εRN1. (3.14)
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Substituting with (3.14) in (3.11) and equating to zero terms of O(εn) yields

the following expressions:

R2
0 =

6(c∞−cN)
Γ

, R1 = 0, R2 = 3R2
N1

2R0
,

in which R2
0 is the tumour radius at the onset of necrosis. These results show

that when the necrotic core is small, variations in R(t) are much smaller than

variations in RN(t) (O(ε2) versus O(ε)). Substituting for R2 and RN in (3.12)

yields a differential equation for R2 which is singular in the limit as ε→ 0. To

regularise this equation, we introduce the short timescale τ = t/ε2 and obtain

dR2

dτ
= sR0

15

(
3c∞−5c̃+2cN

)≡Λ.
This expression shows how, at the onset of necrosis, the tumour’s growth rate

depends upon the balance between cell proliferation, cell loss due to apoptosis

and the nutrient concentration at which necrosis is initiated, but not on the

rate of necrotic cell death λ. We conclude that when the necrotic core is small

the tumour’s growth rate is, to O(ε2), independent of the rate of necrotic cell

death and that persistence of the necrotic core will occur if Λ> 0.

Thin proliferating rim. Here we introduce 0< δ� 1 and assume that

RN = R
(
1−δ ¯RN1

)+O(δ2).
Substituting for RN in (3.11) yields the following expression for the width of

the proliferating rim R−RN ∼ δR ¯RN1:

c∞−cN = Γ
2

(
δR ¯RN1

)2 = Γ
2
(R−RN)2.

Using this result we deduce that a necessary condition for obtaining a tumour

configuration with a thin proliferating rim is that c∞ = cN+O(δ2), that is, the

externally-supplied nutrient concentration must be very close in value to the

nutrient concentration at which necrosis is initiated.

4. Asymmetric tumour growth and invasion. Improvements in medical

imaging techniques, such as medical resonance imaging, have enabled clini-

cians to obtain high-quality pictures of tumours growing in vivo. These images

indicate that, unlike avascular tumours grown in vitro, vascular tumours fre-

quently possess irregular (fractal) boundaries [20]. Such information is now

being used by clinicians to classify solid tumours, with irregular boundaries

being characteristic of invasive and aggresive tumours. Given that avascular

tumours are usually radially-symmetric, a natural question concerns the man-

ner in which the symmetry of the tumours is broken and the fractal structures

develop. Following [6, 16], in this section we show how the models presented

in Section 3 can be extended to allow asymmetric growth.
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New aspects of the model presented in this section are variables that de-

scribe cell velocity and pressure within the tumour and the inclusion of sur-

face tension effects. These changes are motivated as follows. If the tumour is

assumed incompressible, cell proliferation and death generate pressure differ-

entials within the tumour which, in turn, cause cell motion, with cells moving

from regions of high cell proliferation to regions of cell death. If we view the

restraining force that maintains the tumour’s compactness as a surface ten-

sion that acts on the tumour boundary, then the rate of growth of the tumour

depends on the balance between the expansive force caused by the net cell pro-

liferation rate within the tumour and the restraining force caused by surface

tension.

4.1. The model. The mathematical model that we study is presented below

in dimensionless form (for details, see [6, 16]). For simplicity, we assume that

the tumour contains only live cells and, hence, that there is no necrotic core.

The key variables are the nutrient concentration c, the tumour cell velocity

v, the pressure p and the position of the tumour boundary r = R, and their

evolution is governed by the following system of partial differential equations:

0=∇2c−Γ , (4.1)

v =−μ∇p, (4.2)

∇·v =−μ∇2p = s(c− c̃), (4.3)

n· dr
dt

= v ·n=−μ∇p ·n on r =R. (4.4)

Equation (4.1) generalises equation (3.1) for the case RN = 0. In (4.2), we treat

the tumour’s internal microstructure as a porous medium, and use Darcy’s law

to relate the velocity of the cells moving through the tumour to the internal

pressure, the constant of proportionality μ denoting the motility of the tumour

cells. Equation (4.3) expresses mass conservation within the tumour, when it

is modelled as an incompressible fluid. For simplicity, we use the same pro-

liferation rate S(c) as adopted in Section 3 (see equation (3.8)). Also, since we

can use Darcy’s law (v =−μ∇p) to determine v from p, henceforth no explicit

mention of v will be made. Finally, equation (4.4) defines the motion of points

on the tumour boundary, where r = R. In (4.4), n denotes the unit outward

normal vector.

The following boundary and initial conditions close equations (4.1)–(4.4):

∂c
∂r

= 0= ∂p
∂r

at r = 0, (4.5)

c = c∞, p = 2γκ on r =R, (4.6)

r =R prescribed at t = 0. (4.7)

Equations (4.5) ensure that c and p are bounded at r = 0, whereas (4.6) fixes

their values on the tumour boundary. The second term of equations (4.6)
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equates the pressure on the tumour boundary to the surface tension force γκ
there. In (4.6), κ is the mean curvature and γ is a constant of proportionality.

Equation (4.7) defines the initial size of the tumour.

4.2. Link with previous models. Under radial symmetry r = R(t) denotes

the tumour boundary and equations (4.3) and (4.4) become

− μ
r 2

∂
∂r

(
r 2 ∂p
∂r

)
= s(c− c̃), (4.8)

dR
dt

=−μ ∂p
∂r

∣∣∣∣
r=R

. (4.9)

Integrating (4.8) once with respect to r and imposing (4.5) yields the following

result:

−μ ∂p
∂r

= 1
r 2

∫ r
0
s(c− c̃)r 2dr.

Evaluating this expression at r = R and substituting in (4.9) then supplies

R2dR
dt

=
∫ R

0
s(c− c̃)r 2dr.

This is identical to equation (3.2) of Section 3 for the case RN = 0, and gen-

eralises naturally to the case RN > 0. This result shows that our new model

reduces to that of Section 3 under radial symmetry.

4.3. Linear stability analysis. Under radial symmetry, equations (4.1) and

(4.3) admit solutions of the form

c = c∞− Γ
6

(
R2−r 2), (4.10)

p = γ
R
− sΓ

120μ
(
R2−r 2)2. (4.11)

With ∂/∂t = 0 in (4.4) it is possible to derive the following expression for the

(nontrivial) steady-state tumour radius R:

ΓR2

15
= c∞− c̃. (4.12)

As expected, this result can also be obtained by setting d/dt = 0 in equation

(3.10).

It is straightforward to show that the nontrivial steady solution identified

in (4.12) is stable with respect to time-dependent perturbations whereas the

trivial solution is unstable. Hence, when investigating how symmetry-breaking

perturbations affect the tumour’s structure, we restrict attention to the non-

trivial solution. We determine its response to asymmetric perturbations by

introducing the small parameter 0< ε� 1 and seeking solutions to (4.1)–(4.7)

of the form

cε ∼ c(r)+εc1(r ,θ,φ,t),

pε ∼ p(r)+εp1(r ,θ,φ,t),

Rε ∼ R+εR1(θ,φ,t),
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the time-independent O(1)-solutions (c,p,R) automatically satisfying equa-

tions (4.1)–(4.7) at leading order. Continuing to O(ε), we obtain equations gov-

erning the evolution of (c1,p1,R1):

∇2c1 = 0= μ∇2p1+sc1, (4.13)

∂R1

∂t
=−μ

(
∂p1

∂r
+R1

d2p
dr 2

)
r=R

, (4.14)

with

∂c1

∂r
= 0= ∂p1

∂r
at r = 0, (4.15)

c1(R,θ,φ,t)=−R1
dc
dr

∣∣∣∣
r=R

, (4.16)

p1(R,θ,φ,t)=− γ
R2
(2R1+�(R1))

∣∣∣∣
r=R

−R1
dp
dr

∣∣∣∣
r=R

, (4.17)

R1(θ,φ,0)= R∗1 (θ,φ), prescribed. (4.18)

In (4.17), �(·) denotes the angular component of the Laplacian operator

∇2f = 1
r 2

∂
∂r

(
r 2 ∂f
∂r

)
+ �(f )

r 2
, �(f )= 1

sinθ
∂
∂θ

(
sinθ

∂f
∂θ

)
+ 1

sin2θ
∂2f
∂φ2

.

To determine the O(ε) contributions to the normal derivative of the pressure

and the curvature on the tumour boundary, we have used results presented in

the appendices of [8]. Following [6] we seek separable solutions to (4.13)–(4.18)

of the form

c1 =
∑
χlm(t)r lYlm(θ,φ),

p1 =
∑{

πlm(t)− sχlmr 2

2μ(2l+3)

}
r lYlm(θ,φ),

(4.19)

R1 =
∑
ρlm(t)Ylm(θ,φ), (4.20)

where the spherical harmonics Ylm satisfy �(Ylm) = −l(l+ 1)Ylm so that ∇2

(r lYlm)=0. Expressions relating the coefficientsχlm andπlm toρlm are obtained

by imposing (4.16) and (4.17) and exploiting the orthogonality of the spherical

harmonics:

χlmRl =− ΓR
3
ρlm, πlmRl = γρlm

R2
(l−1)(l+2)+ sχlmRl+2

2μ(2l+3)
. (4.21)

Substituting with (4.21) in (4.14), we deduce that

1
sρlm

dρlm

dt
= (l−1)

(
2sΓR2

15(2l+3)
− γμ
R3
l(l+2)

)
. (4.22)

From (4.22), we note that all modes evolve independently: There is no coupling

between the modes. Also, the system is insensitive to perturbations involving
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Figure 4.1. A schematic diagram of a transcritical bifurcation,
showing how the stability of the solutions varies with the bifurcation
parameter a: Stable solutions (solid line); unstable solutions (dashed

line).

the first spherical harmonics. This is natural since modes having l = 1 corre-

spond to a translation of the coordinate axes. It is also clear that the evolution

of the modes is independent of m.

4.4. Model extensions. A weakness of the linear stability analysis presented

above is its inability to distinguish between the growth rates of the (2l+1)
different spherical harmonics Ylm(θ,φ) associated with a particular value of

l from a given family. In addition, the analysis fails to show how different

modes interact. Recently, Byrne [4] has used weakly nonlinear analysis to re-

solve these problems in a neighbourhood of the bifurcation point at which the

radially symmetric solution loses stability to spherical harmonics of order two

(Y2m(θ,φ)). It emerges that the system dynamics in a neighbourhood of this

bifurcation point are governed by a transcritical bifurcation with D3 symme-

try [14]. Specifically, using a to denote the bifurcation parameter, the system

dynamics can be written in the following form:

dz
dt

= az− z̄2 (z ∈ C), (4.23)

where z is related to the amplitudes of the spherical harmonics Y2m(θ,φ).
Now, this codimension zero bifurcation is its own universal unfolding and

the pattern represented by its fixed points is shown in Figure 4.1. Interpreting

these results, we deduce that in a neighbourhood of the bifurcation point none

of the branches of asymmetric solutions are stable. Further, the identification

of any asymmetric branches that are stable would necessitate the construction

of numerical solutions of the original, fully-nonlinear problem.
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Work in progress [8] involves extending the model of solid tumour growth

originally developed by Greenspan [16] to include a quadratic overcrowding

term in the tumour cell proliferation rate:

S(c) �→ s(c− c̃−ξc2).
We believe that, by using weakly nonlinear techniques, it should be possible

to show that the presence of this new term results in an unfolding of the

transcritical bifurcation of the form

dz
dt

= az− z̄2+b|z|2z, (4.24)

where the parameter b = b(ξ) vanishes when the overcrowding term is ne-

glected (ξ = 0). Analysis of (4.24) leads naturally to the identification of condi-

tions under which a branch of (locally) stable asymmetric solutions may exist.

To illustrate this point and for comparison with Figure 4.1, in Figure 4.2, we

sketch (4.24) when b > 0.

A key modelling assumption of the model of tumour growth discussed in

this section was that Darcy’s law provides a reasonable description of cell mo-

tion within a tumour. Recent work by Landman and Please [21] shows how

Darcy’s law, which is more commonly associated with flow through porous

media, emerges naturally as a description of tumour cell migration.

Finally, there are many other ways in which our model of asymmetric tu-

mour growth could be extended. For example, there are typically many differ-

ent growth factors present within the tumour, (e.g., both oxygen and glucose

are freely-diffusible nutrients that are important for sustaining viable tumour

cells). In addition the tumour may contain other growth factors which are in-

ternal to cell and hence transported with them rather than diffusing freely.

For example, cyclin is an intracellular chemical which must be present in suf-

ficiently high levels in order for cell proliferation to occur [24].

5. Multiple cell populations. In the early to mid-eighties, Dorie et al. [9, 10]

considered whether parameters relevant to tumour growth kinetics could be

estimated by tracking the movement of labelled cells within a growing spher-

oid. In their experiments, inert polystyrene microspheres and radioactively

labelled tumour cells were allowed to adhere to the outer surface of multicell

spheroids. Changes in the distributions of the labelled particles within the tu-

mour were studied and typical results are presented in [33, Figure 1]. These

results show that the labelled microspheres migrate towards the centre of the

tumour in a wavelike manner, with no microspheres discernible at the tumour

boundary after 4 days. When the tumour cells are labelled instead, once again

wavelike invasion is observed during the initial stages of migration. However,

unlike the microspheres, by day 4 the labelled cells appear to be fairly evenly

distributed throughout the tumour volume.
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Figure 4.2. A schematic diagram of an unfolded transcritical bifur-
cation, showing how the stability of the solutions varies with the
bifurcation parameter a for a fixed value of b ≠ 0. Stable solutions
on the nontrivial branch correspond to assymetric tumour configu-
rations which are stable with respect to small time-dependent per-
turbations: Stable solutions (solid line); unstable solutions (dashed
line).

A key feature of the experiments of Dorie et al., from a modelling viewpoint,

is the presence of two distinct cell populations within the tumour, unlabelled

and labelled tumour cells. In order to describe Dorie’s experiments, we now

show how the model presented in Section 4 can be extended to encompass

the growth of tumours containing multiple cell types (for further details, see

[33, 34]).

5.1. The model. The model that we study is presented below in dimension-

less form (for details, see [33, 34]). The key physical variables are the densities

of the unlabelled and labelled cells, which are denoted by n and m, respec-

tively, the cell velocity v, the nutrient concentration c and the tumour bound-

ary r =R. For simplicity, we assume that the tumour consists of proliferation

cells only and, hence, that there is no necrosis. Equations governing the evo-

lution of n,m,v,c, and R can be written as follows:

∂n
∂t
+∇·(vn)︸ ︷︷ ︸

convective
transport

= μn∇2n︸ ︷︷ ︸
random
motion

+ s(c− c̃)n︸ ︷︷ ︸
net proliferation

rate

, (5.1)

∂m
∂t

+∇·(vm)= μm∇2m+[s(c− c̃)m]+, (5.2)

∇·v = (μm−μn)∇2m+s(c− c̃)(1−m)+[s(c− c̃)m]+, (5.3)

0=∇2c−Γn−[Γm]+, (5.4)

n· dR
dt

= n·v on r =R. (5.5)
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In equations (5.1) and (5.2) μn and μm are the random motility coefficients for

the two cell types. Equation (5.3) is obtained by adding (5.1) and (5.2) under

the assumption that there are no voids and hence that n+m= constant (≡ 1,

by suitable rescaling) throughout the tumour volume. Equations (5.4) and (5.5)

for c and R are analogues of equations (4.1) and (4.4).

In their experiments, Dorie et al. used two types of labelled cells: Inert mi-

crospheres and tumour cells. The functional forms for the rates at which the

labelled cells proliferate and consume nutrient will depend crucially on which

label is being used. We assume that tumour cells proliferate and consume

nutrient in the same way as unlabelled tumour cells and that, being inert, la-

belled microspheres neither consume nutrient nor proliferate. We distinguish

between these cases by defining

[f (x)]+ =
⎧⎨⎩f(x) tumour cells labelled,

0 microspheres labelled.

We remark that, due to the no voids assumption, one of the dependent vari-

ables (either n orm) can be eliminated from our model. In the present context

where we are focussing on the migration of labelled cells, it is appropriate to

eliminate n= 1−m. We postpone a discussion of the boundary and initial con-

ditions that are needed to close our model until it has been further simplified

(see below).

Model simplification. Before continuing, we reformulate our model un-

der the additional assumption of one-dimensional cartesian geometry, with x
denoting distance from the tumour centre. It is also convenient to reorder the

governing equations. In this way, we obtain the following simplified model:

0= ∂2c
∂x2

−Γ(1−m)−[Γm]+, (5.6)

∂v
∂x

= (
μm−μn

)∂2m
∂x2

+s(c− c̃)(1−m)+[s(c− c̃)m]+, (5.7)

dR
dt

= v(R,t), (5.8)

∂m
∂t

+v ∂m
∂x

= [
μm−

(
μm−μn

)
m
]∂2m
∂x2

+(1−m)[s(c− c̃)m]+−s(c− c̃)m(1−m).
(5.9)

Equations (5.6)–(5.9) are closed by imposing the following boundary and initial

conditions:

c = c∞ at x = R(t), (5.10)

∂c
∂x

= 0 at x = 0, (5.11)

v = 0 at x = 0, (5.12)
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μm
∂m
∂x

−vm= 0 at x = 0,R(t), (5.13)

m(x,0)=min(x) and R(0)= R0 prescribed. (5.14)

In equation (5.10), c∞ is the external nutrient concentration, and so we assume

that the nutrient concentration is continuous acrossx = R(t). Equations (5.11),

(5.12), and the first equation of (5.13) reflect the assumed symmetry of the

tumour about x = 0. The second equation of (5.13) states that the flux of

labelled cells across the outer tumour boundary is zero. Equations (5.14) define

the initial distribution of labelled cells within the tumour and also its initial

radius.

5.2. Link with previous models. If we assume that the tumour comprises a

single cell type, and hence thatm= 0 without loss of generality, then equation

(5.9) is trivially satisfied and equations (5.6)–(5.8) reduce to the one-dimensional

cartesian analogue of equations (4.1)–(4.4). This shows how the models of Sec-

tions 4 and 5 are related: The model of Section 4 corresponds to the special

case of our current model for which only one cell type is present.

More generally, we remark that, in contrast to the analysis of Section 4, here

we focus on one-dimensional tumour growth. Consequently, the velocity v
possesses only one nonzero component and the no voids assumption (n+m=
1), together with equations (5.2)–(5.5), is sufficient to determine its evolution. In

order to consider more complex (asymmetric) growth patterns, we would need

to include additional, constitutive equations (such as Darcy’s law) to determine

the other nonzero components of the cell velocity.

5.3. Numerical results. Figures 5.1, 5.2, and 5.3 show how the nutrient con-

centration, cell velocity, and labelled cell density evolve when inert polystyrene

microspheres are labelled. From Figures 5.1 and 5.2, we note that c(x,t) and

v(x,t) rapidly attain steady-state profiles, with the nutrient concentration in-

creasing monotonically with x and the velocity field having an internal min-

imum near x = 0.6R(t). We note also that v(x,t) ≤ 0 and, hence, that con-

vective transport drives cells towards x = 0. Figure 5.3 shows how the micro-

spheres are internalised within the tumour. After spreading out (t = 1), they

are transported, in a wavelike manner, towards the centre of the tumour (t = 2)

where they eventually aggregate (t = 3,4,5).

We remark that the numerical results presented in Figures 5.1–5.3 show

how the dependent variables c,v , and m vary over time and the scaled dis-

tance 0 ≤ ρ = x/R(t) ≤ 1. Replotting these solutions in terms of 0 ≤ x ≤ R(t)
does not alter the qualitative form of the solutions: It simply alters the width of

the region containing the microspheres. Further, the tumour radius R rapidly

attains a time-independent equilibrium value (results not shown). For all sub-

sequent times the spatial transformation is the same. For these reasons, the

numerical results were presented in terms of the scaled variables.
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Figure 5.1. Numerical results describing the internalisation of la-
belled polystyrene microspheres within a growing tumour. Evolution
of nutrient concentration at times t = 0,1,2,3,4,5 (in dimension-
less units) after internalisation. Parameter values: s = 10, c∞ = 1.0,
d= 6.0, cnec = 0.1, Γ = 0.5, μn = 0.01, μm = 0.008, R(0)= 1.4.

Figure 5.4 shows how labelled tumour cells migrate within the tumour. The

evolution of c and v are omitted since they are similar to the profiles depicted

in Figures 5.1 and 5.2. Comparing Figures 5.3 and 5.4, we note that initially

(0 < t < 2) the speed of migration of the invading cells is the same for the

microspheres and tumour cells. However, once they have penetrated to the

centre of the tumour, the labelled tumour cells redistribute themselves evenly

throughout the tumour.

5.4. Analytical results. Here we focus on the initial wavelike migration of

the labelled cells and their limiting, or long-time, behaviour. Guided by the

above numerical results, and in order to simplify the analysis, we assume

that c, v , and R have evolved to steady-state profiles. To render the analysis



USING MATHEMATICS TO STUDY SOLID TUMOUR GROWTH 97
v 

(x
,0

)

v 
(x

,1
)

v 
(x

,2
)

v 
(x

,3
)

v 
(x

,4
)

v 
(x

,5
)

1

0.5

0

0.5_
0 0.2 0.4 0.6 0.8 1

0.5

0

0.5

1

1.5 

_

_
0 0.2 0.4 0.6 0.8 1

0.5

0

0.5

1

1.5 

_

_
0 0.2 0.4 0.6 0.8 1

0.5

0

0.5

1

1.5 

_

_
0 0.2 0.4 0.6 0.8 1

0.5

0

0.5

1

1.5 

_

_
0 0.2 0.4 0.6 0.8 1

0.5

0

0.5

1

1.5 

_

_
0 0.2 0.4 0.6 0.8 1

Scaled distance, x/R(t) Scaled distance, x/R(t)

Scaled distance, x/R(t)Scaled distance, x/R(t)

Scaled distance, x/R(t) Scaled distance, x/R(t)

Figure 5.2. Numerical results describing the internalisation of la-
belled polystyrene microspheres within a growing tumour. Evolu-
tion of cell velocity at times t = 0,1,2,3,4,5 (in dimensionless units)
after internalisation. Parameter values: s = 10, c∞ = 1.0, d = 6.0,
cnec = 0.1, Γ = 0.5, μn = 0.01, μm = 0.008, R(0)= 1.4.

tractable, we focus on a special case for which the number of labelled par-

ticles is small and may be characterised by the small parameter 0 < ε � 1.

Specifically, we seek solutions to equations (5.6)–(5.14) of the form

c = c0(x)+O(ε), v = v0(x)+O(ε),
R = R0+O(ε), m= εm0(x,t)+O

(
ε2). (5.15)

By equating to zero coefficients of O(1) in equations (5.6)–(5.8) equations for

c0,v0, and R0 are obtained. Since m ∼O(ε), these equations are independent

of m0 and, hence, their form is be unaffected by the labelling system being

employed. The simplicity of the kinetic terms means that equations (5.6) and

(5.7) are integrable at leading order and that c0 and v0 are defined in terms of
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Figure 5.3. Numerical results describing the internalisation of la-
belled polystyrene microspheres within a growing tumour. Evolution
of labelled microspheres at times t = 0,1,2,3,4,5 (in dimension-
less units) after internalisation. Parameter values: s = 10, c∞ = 1.0,
d= 6.0, cnec = 0.1, Γ = 0.5, μn = 0.01, μm = 0.008, R(0)= 1.4.

R0 as follows:

c0(x)= c∞− Γ
2

(
R2

0−x2), v0(x)= sx
(
c∞− c̃− Γ

2

(
R2

0−
x2

3

))
. (5.16)

Using (5.8), with dR0/dt = 0, we deduce that

0= R0

(
c∞− c̃− ΓR

2
0

3

)
, (5.17)

and hence that for a nontrivial solution

R0 =
√

3
Γ
(
c∞− c̃

)
.
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Figure 5.4. Numerical results describing the internalisation of la-
belled tumour cells within a growing tumour. The evolution of the
nutrient concentration, the cell velocity, and the tumour radius (not
shown) are qualitatively similar to those presented in Figure 2.2.
The labelled tumour cells gradually distribute themselves uniformly
throughout the tomour volume. Parameter values: s = 10, c∞ = 1.0,
d= 6.0, cnec = 0.1, Γ = 0.5, μn = 0.01, μm = 0.008, R(0)= 1.4.

Comparing the above expression for R0 with equations (3.10) and (4.12) shows

clearly the effect that posing our tumour growth in different geometries has

on the steady-state radius.

With R0 determined by (5.17), the expression for v0 can be rewritten as

v0(x)=−sΓx
6

(
R2

0−x2).
Using this result, it is possible to show that v0(x) has a minimum turning

point at x = R0/
√

3 ∼ 0.58R0. This is in good agreement with the numerical

results presented in Figure 5.2.

Equation (5.9) is trivially satisfied at O(1) when m= εm0(x), and therefore

we must equate to zero coefficients of O(ε) to determine m0(x). In this way,
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we find that
∂m0

∂t
+v0

∂m0

∂x
= μm ∂

2m0

∂x2
+F(c0,m0

)
, (5.18)

where

F
(
c0,m0

)=
⎧⎪⎨⎪⎩−s

(
sc0− c̃

)
m0 = dv0

dx
m0 labelled microspheres,

0 labelled tumour cells.
(5.19)

Wavelike migration. Both microspheres and tumour cells are much

larger than nutrient molecules and, hence, their random motility coefficients

will be much smaller than that of the nutrient so that in (5.18), 0 < μm � 1.

When considering the initial, wavelike internalisation of the labelled particles

we exploit this fact by neglecting random motion in equation (5.18). Then, to

leading order, their initial migration can be described approximately by the

following nonlinear wave equation:

∂m0

∂t
+v0

∂m0

∂x
= F(c0,m0

)
. (5.20)

From (5.20), it is clear that the propagation of the labelled cells is driven by the

velocity field. This, in turn, is created by differential cell proliferation and death

rates. Now, for the asymptotic limit under consideration, v0 is independent of

the choice of cell labelling. Hence we deduce that the speed of migration of

the labelled cells is also independent of whether microspheres or tumour cells

are used. This prediction is in good agreement with the numerical results (see

Figures 5.3 and 5.4). Given that (5.20) is independent of both μm and μn, the

random motility coefficients for the labelled and unlabelled cells, respectively,

we deduce that the initial migration of the labelled cells will be unaffected

by the size of the labelled particles. This is consistent with the experimental

results of Dorie et al. [9, 10].

It is possible to construct explicit solutions to equation (5.20) using the

method of characteristics [33, 35]. When the microspheres are labelled, equa-

tion (5.20) admits the following solution:

m0(x,t)=min

(
x√
Q

)
exp

{
− sΓR

2
0t

3

}
Q−3/2, (5.21)

where

Q(x,t)=
(

1− x
2

R2
0

)
exp

{
− sΓR

2
0t

3

}
+ x

2

R2
0

.

By contrast, when the tumour cells are labelled

m0(x,t)=min

(
x√
Q

)
. (5.22)

In Figure 5.5, we sketch these approximate solutions. From Figure 5.5(a),

we observe how the pulse of labelled cells decreases in width as it travels
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towards the centre of the tumour. In order to preserve the total number of

labelled cells the height of the pulse increases. Eventually, the height of this

peak becomes so large that our asymptotic expansion ceases to be valid. Given

that the initial data has compact support (m0(x,0) > 0∀x ∈ (xL,xT )), an al-

ternative way to see this is by following the characteristics through the end-

points of the domain of compact support. It is possible to show that xL(t),
xT (t)∼O(exp{−sΓR2

0t/6}) as t→∞, that is, the width of the domain of com-

pact support shrinks exponentially [33]. At the same time the height of the

peak must increase in order to preserve the total number of microspheres

within the tumour: m0 ∼O(exp{−sΓR2
0t/6}). Eventually, the spatial gradients

become so large that our approximate solution breaks down and second order

effects, such as random motility, can no longer be neglected.

Figure 5.5(b) depicts the corresponding situation when the tumour cells are

labelled. As in Figure 5.5(a), the width of the pulse of labelled cells decreases as

it migrates towards the centre of the tumour. However, since the total number

of cells is no longer preserved, our approximation predicts that the total num-

ber of cells actually falls. As in Figure 5.5(a), the approximation breaks down

when the width of the peak becomes so small that terms involving second

spatial derivatives, such as random motility, can no longer be neglected.

Limiting distributions of labelled cells. From the numerical simu-

lations of Section 3 (see Figures 5.3 and 5.4), it is clear that for both labelling

systems the particles eventually adopt a well-defined structure. In this sec-

tion, we focus on the behaviour of equation (5.18) in the limit as t → ∞. As

our analysis will show, retention of the random motility term is important in

this asymptotic limit. In order to investigate the long-time behaviour of the

labelled particles, we now consider equation (5.18), with ∂/∂t = 0,

0= μmd
2m0

dx2
−v0

dm0

dx
+F. (5.23)

When the labelled cells are inert microspheres equation (5.23) can be rewrit-

ten

0= d
dx

(
μm

dm0

dx
−v0m0

)
.

Integrating with respect to x and imposing (5.13) yields

dm0

dx
= v0m0

μm
=− sΓx

6μm

(
R2

0−x2)m0. (5.24)

Since, for physically realistic solutions, m0 ≥ 0 we deduce that at equilibrium

m0(x) is monotonically decreasing with x. Integrating again with respect to x
yields

m0(x)=M∗ exp
{
− sΓ

24μm
x2(2R2

0−x2)}, (5.25)
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Figure 5.5. Sketches depicting solutions of approximate equations
that describe initial migration of labelled particles within the tu-
mour. (a) When microspheres are labelled, the pulse of labelled cells
decreases in width and increases in height as it migrates towards
the centre of the tumour. (b) When the tumour cells are labelled,
the pulse decreases in width whilst remaining of constant height
as it migrates towards the centre of the tumour. Parameter values:
s = 10.0, c∞ = 1.0, c̃ = 6.0, cnec = 0.1, and Γ = 0.5.
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where the constant M∗ is chosen so that the total number of labelled cells

within the tumour remains fixed, that is,

ε
∫ 1

0
m0(x)dx =

∫ 1

0
m(x,0)dx =

∫ 1

0
min(x)dx.

From (5.25), we deduce that at equilibrium the microspheres are concen-

trated at the centre of the tumour (x = 0). This agrees with the experimental

results of Dorie et al. [9, 10] and the numerical results presented above (see

Figures 5.3 and 5.4). In addition, we note that as μm → 0 this equilibrium pro-

file becomes steeper and more localised, approximating a delta-function in the

limit as μm → 0. We remark further that if random motion is neglected (μm = 0),

then our model does not admit a classical steady solution. As discussed above,

in this case the cells accumulate at the origin in a region (or boundary layer)

whose width decreases exponentially with time. Eventually, m0(0, t)∼O(ε−1)
and the asymptotic expansion breaks down. In practice, and on the basis of

the experimental results of Dorie et al., it seems reasonable to assume that

the cells undergo a minimal amount of random motion, and that this physical

effect regularises any sharp increases in ∂m0/∂x within such a boundary layer.

In (5.25), the multicell spheroid’s growth parameters are combined in a sin-

gle parameter grouping, sΓ/μm. Consequently, fitting (5.15) to the experimen-

tally observed limiting distribution of labelled microspheres will yield an es-

timate of sΓ/μm. Now, the numerical simulations and the analytical solutions

presented above indicate that the average migration speed of the microspheres

during the early stages of the experiment yield estimates of the parameter

grouping sΓ which is independent of μm. Combining these two results should

enable us to derive estimates of sΓ and μm.

When the tumour cells are labelled, equation (5.23) can be written as

0= μmd
2m0

dx2
−v0

dm0

dx
�⇒ dm0

dx
= C∗ exp

{
−
∫ x
v0(x̄)dx̄

}
,

where the constant of integration C∗ is determined by imposing (5.12). This

yields

C∗ = 0 �⇒m0 = constant.

Hence we deduce that at equilibrium the labelled tumour cells are uniformly

distributed throughout the tumour volume. This agrees with the experimental

results of Dorie et al. [9, 10] and the numerical simulations of Section 3 (see

Figures 5.4). Given that the limiting distribution of the labelled tumour cells is

spatially uniform it yields no additional information about the growth kinetics

of the underlying multicell spheroid. This contrasts with the situation when

the microspheres are labelled.

5.5. Model extensions. There are many ways in which the mathematical

model presented above could be extended. For example, by reinterpreting the
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definitions of the labelled and unlabelled cells, it should be possible to ap-

ply the model to avascular tumours that comprise multiple cell populations.

The different subpopulations may distinguish cells that possess normal and

mutant copies of a particular gene, such as the tumour suppressor gene p53

[15, 29] which normally plays a key role in regulating apoptosis. Cells with ab-

normalities in p53 are believed to widespread in cancer, occurring in almost

50% of tumours.

Other extensions which would bring the model more in line with the experi-

ments of Dorie et al. include the following: Reformulating the model to describe

the growth of a three-dimensional, radially-symmetric multicell spheroid; con-

sidering more developed tumour structures, involving necrotic and hypoxic

regions; studying how the internalisation patterns are affected when the unla-

belled cells are irradiated or pretreated with a drug. It would also be interesting

to see how our model predictions are affected by incorporating effects to de-

scribe heterotypic interactions between the different types of cells. This could

be accomplished by following the approach of [21, 28] and allowing the various

cell populations to move with different velocities.

6. Discussion. In this paper, I have discussed three different, but interre-

lated, mathematical models of avascular tumour growth. By focussing on the

increasing complexity of these models, I have tried to show how the field has

developed over the past twenty years, in response to new biological results and

deficiencies in existing models. I have also indicated several ways in which the

models could be further adapted or extended to describe other, related situa-

tions.

Referring to the biological background presented in Section 2, it is clear

that the processes of angiogenesis and vascular tumour growth have a more

detrimental effect on patient well-being than avascular tumour growth. And

yet, the models that I have presented have focussed entirely on avascular tu-

mours. This restriction may be justified on a “learn to walk before you can

run” principle, that is, until the mechanisms underpinning avascular tumour

growth are elucidated, it will be difficult to develop realistic models of angio-

genesis or vascular tumour growth. Whilst the development of vascular tumour

growth models remains an open problem, good progress is now being made

with modelling angiogenesis [2].

The original models of angiogenesis (for details, see [5, 25] and references

therein) were formulated as systems of partial differential equations and were

successful in reproducing many of its characteristic features, for example, ac-

celeration of the endothelial cells that constitute blood vessels from the par-

ent vessel towards the tumour accompanied by an increase in the density of

capillary tips [12, 23]. However, the models were unable to resolve the de-

tailed structure of the developing vasculature, a shortcoming that has been ad-

dressed in [2]. Anderson and Chaplain use a discretised version of the original
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system of partial differential equations to generate an equivalent cellular au-

tomata model in which the motion of individual endothelial cells can be mon-

itored. Their numerical simulations show excellent qualitative agreement with

experimental results.

The introduction of probabilistic effects into Chaplain and Anderson’s mod-

els of angiogenesis [2] and other models of tumour invasion [3, 11] raise an

important question regarding solid tumour growth: should we be developing

deterministic or stochastic models? This is just one of a number of issues that

remain to be resolved.

Other aspects of solid tumour growth that I have not been able to discuss

here include invasion and cancer therapy. Whilst there are a few models de-

scribing invasion of solid tumour cells [3, 27, 30], the literature is replete with

compartmental models (i.e., systems of coupled ordinary differential equa-

tions) that describe a tumour’s response to chemotherapy (for details, see [22]

and references therein). These have been successfully fitted to experimental

and patient data in order to estimate kinetic parameters such as drug delivery

rates. A weakness of such models is their failure to accurately account for the

spatio-temporal heterogeneity that characterises vascular tumours. In order to

predict the efficacy of gene-based therapies that are currently being developed,

it is important to have realistic models of vascular tumours. For example, clini-

cians are currently trying to exploit the propensity for macrophages to migrate

specifically to the notoriously drug-resistant hypoxic regions within solid tu-

mours: They aim to genetically engineer macrophages that are activated under

hypoxia to release anti-angiogenic and cytotoxic chemicals.

In conclusion, I believe that mathematical modelling will play an increasingly

important role in helping biomedical researchers to gain useful insight into dif-

ferent aspects of solid tumour growth. At the same time, by studying such bio-

logical systems it should be possible to generate new models that either extend

existing theories or are of independent mathematical interest. Whilst I remain

sceptical about newspaper headlines proclaiming the discovery of the cure for

cancer, I am optimistic that in the near future clinicians will have the necessary

knowledge to develop effective treatments for individual cancer patients.

References

[1] J. A. Adam, A mathematical model of tumour growth. II Effects of geometry and
spatial uniformity on stability, Math. Biosci. 86 (1987), 183–211.

[2] A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical
models of tumour-induced angiogenesis, Bull. Math. Biol. 60 (1998), no. 5,
857–899. Zbl 923.92011.

[3] A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele, and A. M.
Thompson, Mathematical modelling of tumour invasion and metastasis, J.
Theor. Med. 2 (2000), no. 2, 129–154. Zbl 991.44626.

[4] H. M. Byrne, A weakly nonlinear analysis of a model of avascular solid tumour
growth, J. Math. Biol. 39 (1999), no. 1, 59–89. Zbl 990.53117.



106 HELEN BYRNE

[5] H. M. Byrne and M. A. J. Chaplain, Mathematical models for tumour angiogenesis:
numerical simulations and nonlinear wave solutions, Bull. Math. Biol. 57
(1995), no. 3, 461–486. Zbl 812.92011.

[6] , Modelling the role of cell-cell adhesion in the growth and develop-
ment of carcinomas, Math. Comput. Modelling 24 (1996), no. 12, 1–17.
Zbl 883.92014.

[7] , Necrosis and apoptosis: Distinct cell loss mechanisms in a mathematical
model of avascular tumour growth, J. Theor. Med. 1 (1998), no. 3, 223–235.
Zbl 917.92013.

[8] H. M. Byrne and P. C. Matthews, Asymmetric growth of avascular solid tumours:
exploiting symmetries, in preparation.

[9] M. J. Dorie, R. F. Kallman, and M. A. Coyne, Effect of Cytochalasin B Nocodazole
on migration and internalisation of cells and microspheres in tumour cells,
Exp. Cell Res. 166 (1986), 370–378.

[10] M. J. Dorie, R. F. Kallman, D. F. Rapacchietta, D. Van Antwerp, and Y. R. Huang, Mi-
gration and internalisation of cells and polystyrene microspheres in tumour
cell spheroids, Exp. Cell Res. 141 (1982), 201–209.

[11] W. Duchting and T. Vogelsaenger, Modelling and simulation of growing spheroids,
Recent Results in Cancer Research 95 (1984), 168–179.

[12] J. Folkman, Tumour angiogenesis, Adv. Cancer Res. 19 (1974), 331–358.
[13] J. Folkman and M. Hochberg, Self-regulation of growth in three dimensions, J. Exp.

Med. 138 (1973), 745–753.
[14] M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifur-

cation Theory. Volume II, Applied Mathematical Sciences, vol. 69, Springer-
Verlag, New York, 1988. MR 89m:58038. Zbl 691.58003.

[15] T. G. Graeber, C. Osmanianm, T. Jacks, D. E. Housman, C. J. Koch, S. W. Lowe, and
A. J. Giaccia, Hypoxia-mediated selection of cells with diminished apoptotic
potential in solid tumours, Nature 379 (1996), 88–91.

[16] H. P. Greenspan, Models for the growth of a solid tumor by diffusion, Studies appl.
Math. 51 (1972), 317–340. Zbl 257.92001.

[17] G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder, and R. K. Jain, Solid stress
inhibits the growth of multicellular tumour spheroids, Nat. Biotechnol. 15
(1997), 778–783.

[18] J. F. R. Kerr, Shrinkage necrosis; a distinct mode of cellular death, J. Pathol. 105
(1971), 13–20.

[19] J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: a basic biological phe-
nomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer 26
(1972), 239–257.

[20] G. Landini and J. W. Rippin, How important is tumour shape?, J. Pathol. 179 (1996),
210–217.

[21] K. A. Landman and C. P. Please, Tumour dynamics and necrosis: surface tension
and stability, submitted to IMA J. Math. Appl. Med. Biol., 1999.

[22] S. Michelson and J. T. Leithm, Host response in tumour growth and progression,
Invasion Metastasis 16 (1997), 235–246.

[23] V. R. Muthukkaruppan, L. Kubai, and R. Auerbach, Tumour-induced neovascular-
isation in the mouse eye, J.N.C.I. 59 (1982), 699–705.

[24] R. Norel and Z. Agur, A model for the adjustment of the mitotic clock by cyclin
and MPF levels, Science 251 (1991), 1076–1078.

[25] M. E. Orme and M. A. J. Chaplain, Two-dimensional models of tumour angiogenesis
and anti-angiogenesis strategies, IMA J. Math. Appl. Med. Biol. 14 (1997),
189–205.



USING MATHEMATICS TO STUDY SOLID TUMOUR GROWTH 107

[26] J. C. Panetta and J. Adam, A mathematical model of cycle-specific chemotherapy,
Math. Comput. Modelling 22 (1995), no. 2, 67–82. Zbl 829.92011.

[27] A. J. Perumpanai, J. Sherratt, J. Norbury, and H. M. Byrne, A two parameter family
of travelling waves with a singular barrier arising from the modelling of
extracellular matrix mediated cellular invasion, Physica D 126 (1999), no. 3-
4, 145–159. Zbl 991.02251.

[28] C. P. Please, G. Pettet, and D. L. S. McElwain, A new approach to modelling the
formation of necrotic regions in tumours, Appl. Math. Lett. 11 (1998), no. 3,
89–94. Zbl 937.92018.

[29] J. A. Royds, S. K. Dower, E. E. Qwarnstrom, and C. E. Lewis, Responses of tumour
cells to hypoxia: role of p53 and NFkB, J. Clin. Pathol.: Mol. Pathol. 51 (1998),
55–61.

[30] J. A. Sherratt and M. A. Nowak, Oncogenes, antioncogenes and the immune-
response to cancer—a mathematical model, Proc. Roy. Soc. Ser. B 248
(1992), 261–271.

[31] R. M. Sutherland, Cell and environment interactions in tumor microregions: the
multicell spheroid model, Science 240 (1988), 177–184.

[32] R. M. Sutherland and R. E. Durand, Growth and cellular characteristics of multicell
spheroids, Recent Results in Cancer Research 95 (1984), 24–49.

[33] K. E. Thompson and H. M. Byrne, Modelling the internalisation of labelled cells in
tumour spheroids, Bull. Math. Biol. 61 (1999), 601–623.

[34] J. P. Ward and J. R. King, Mathematical modelling of avascular tumour growth,
IMA J. Math. Appl. Med. Biol. 14 (1997), 39–69.

[35] W. E. Williams, Partial Differential Equations, Oxford University Press, New York,
1980, Oxford Applied Mathematics and Computing Science Series. The
Clarendon Press. MR 83e:35002. Zbl 451.35001.



DIFFERENTIAL MODELLING
IN VISUAL NUMERICAL ENVIRONMENT

ROSA MARIA SPITALERI

Istituto per le Applicazioni del Calcolo-CNR, Italy

spitaleri@iac.rm.cnr.it

Differential modelling is a widely used technique to understand physical

phenomena, which has been getting a more and more powerful tool for han-

dling complex application problems in several scientific fields.

And more and more often numerical methods are integrated in both special

or general purpose tools equipped with interaction facilities and with advanced

visualization techniques to evaluate huge quantity of numerical results. In this

paper, we present basic numerical and visual components of the numerical

visual environment we are developing to handle scientifically meaningful ap-

plications. In particular, we describe the multigrid finite difference approach,

the multigrid methods and algorithms. These have been defined and exper-

imented for the numerical solution of differential systems arising in image

segmentation and grid generation which are fundamental steps of the com-

putational field simulations. Visual tools are introduced and a few numerical

results described and illustrated by figures.

1. Introduction. Numerical modelling of a physical phenomenon requires

an effective design of the overall computational process, the definition of ac-

curate and robust algorithms, an active control over the different computing

steps and a fast investigation of computed intermediate and final results. Dif-

ferential modelling is more and more often a tool to understand complexities

of phenomena by saving human effort and/or money, since either it can work

without concretely reproducing phenomena, their environment and character-

istics in expensive physical models, or, when real models are inevitable, it can

drive their design and experimental investigation in order to save resources.

In order to manage the growing complexity of application problems the sci-

entists want to face, differential modelling is getting itself very complex and

has to integrate a large set of methodologies. Numerical and visual algorithms

are more and more often combined to improve the whole computational pro-

cess.

Indeed, both continuous and discrete differential systems have been de-

fined and combined to numerically model a large series of high-interesting

problems by experts coming from industrial environment or human-health or
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other fields. Experts in scientific computing work in interdisciplinary projects

to numerically compute solutions of PDEs in the more effective way.

As an instance of the developed numerical methods and algorithms, we il-

lustrate the approach which couples classical finite difference approximation

with multigrid computation. This is a complex but promising numerical ap-

proach to obtain effective algorithms. This computing method is based on the

use of a hierarchy of grids to improve the capability of relaxation algorithms to

smooth error components. We have been achieving interesting results in multi-

grid finite difference approximation of PDEs. We have defined and evaluated

multigrid algorithms for the solution of systems arising in grid generation,

fluid dynamics, and image segmentation problems. First we have obtained ef-

fective onegrid algorithms, then we coupled them with multigrid computation

for numerical advances [8, 11, 13].

A visual computational environment integrates numerical and visual func-

tions so that visual information can provide precious data to start, drive, eval-

uate application processes, and achieve important results.

Images can act as starting point to obtain data for differential modelling,

as in hemodynamics, for instance, where angiograms are processed to recon-

struct vessel geometries to model blood flows. On the other hand, synthetic

images of computed data are a powerful tool for evaluating results and in case

suggest how to modify the computational components of the process. Visual

checks in appropriate computing points allow, for instance, [2, 7, 8]:

• fast evaluation over computing substeps during execution to be carried,

• value modification of numerical and visual parameters to be driven,

• understanding of huge quantities of final computed results to be accel-

erated,

• computed results to be compared with real images or other already ac-

quired information,

• acquired knowledge on the studied phenomenon to be immediately and

clearly transferred and judged by the experienced scientific communi-

ties.

The design of a modern visual numerical environment requires the definition

and evolution of a collection of algorithms and software modules with large

applicability and high integrability.

In the following, we illustrate the multigrid finite difference approach and

the most recent developments in image processing and grid generation. We

introduce visual tools, with specific and advanced tasks, which can be eas-

ily combined with numerical methods depending on the application for the

realization of a simulation environment agile and efficient. We show also an

instance of the large series of available numerical results [2, 7, 10].

2. Multigrid computation. LetΩ be a given domain andδΩ its boundary. We

write the equations to be solved along with the associated boundary conditions
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in the form

Lw = F in Ω, Λw = Φ on δΩ, (2.1)

where L is a nonlinear finite difference operator,

F is the right-hand side of the system,

Λ the operator defining the boundary conditions for each given problem,

Φ the assigned boundary values.

By defining finite difference approximation methods, we obtain the associ-

ated discrete problem

Lhwh = Fh on Gh, Λhwh = Φh on Γh, (2.2)

where Gh is a fixed grid covering Ω, with appropriate meshsize h, and Γh is

the set of boundary points of Gh. In order to obtain accelerated solutions and

convergence histories, we define the multigrid computation by adding an ap-

propriate number of coarser grids to the computational grid with the chosen

fineness h.

Set h= hM and assume the sequence of grids G0,G1, . . . ,GM , with decreasing

meshsize: h0,h1, . . . ,hM : h0 > h1 > ··· > hM . Rewrite the problem (2.2), the

discrete equation system along with the associated boundary conditions, in

the form

LMwM = FM on GM, ΛMwM = ΦM on ΓM. (2.3)

For each grid level l, l= 0,1, . . . ,M−1, the general form of the correction equa-

tion of the FAS algorithm and the related boundary conditions is [1, 3, 4]:

Llwl = F̃ l on Gl, Λlwl = Φ̃l on Γ l, (2.4)

where

F̃ l = Ll(Ill+1w
l+1
a

)+Ill+1

(
F̃ l+1−Ll+1wl+1

a
)
,

Φ̃l =Λl(Ill+1w
l+1
a

)+Ill+1

(
Φ̃l+1−Λl+1wl+1

a
)
,

(2.5)

with wl+1
a the current approximation on the finer grid, Ill+1 the fine-to-coarse

transfer operator (restriction) and Γ l the set of boundary points of Gl. In the

fine-grid correction step the current approximation is updated by the expres-

sion (
wl+1
a

)
new =

(
wl+1
a

)
old+Il+1

l
(
wl
a−Ill+1w

l+1
a

)
, (2.6)

where wl
a is the current approximation on the level l and Il+1

l is the coarse-to-

fine transfer operator (prolongation).

3. Variational image segmentation. The definition and evaluation of nu-

merical methods for image segmentation deal with the development of a vi-

sual numerical environment for advanced applications. We present the devel-

oped multigrid finite difference approximation method for the solution of Eu-

ler equations arising in variational image segmentation.
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Image processing is a central technology for a wide range of applications

and it requires effective computational techniques. Recently, processing ap-

proaches leading to variational methods and related partial differential equa-

tions have had a new development. We followed the Mumford and Shah’s vari-

ational approach which is a well-based theory and motivates computational

advances. We present the multigrid finite difference method which can solve

the Euler equations associated to the sequence of functionals Γ -convergent to

the functional of Mumford and Shah [5, 13, 14].

3.1. Euler equations. Let Ω be a bounded open set and f the image inten-

sity with discontinuities, for instance, contours of objects or shadows. The

variational approach of Mumford and Shah looks for a piecewise smooth ap-

proximation u of the function f , by minimization of an appropriate functional

[5]. For the numerical solution of this problem, we assume the Euler equations

associated to the kth functional �k(u,z) of the sequence Γ -convergent to the

functional of Mumford and Shah, in the following form [5, 13, 14]:

z2Δu+ ∂
(
z2
)

∂x
∂u
∂x

+ ∂
(
z2
)

∂y
∂u
∂y

= 1
λ
(u−f), (3.1)

Δz+ k
2

4
(1−z)− kλ

α
z|∇u|2 = 0, (3.2)

where the function z is close to zero inside a tubular neighbourhood of the dis-

continuity set and to 1 outside. We assume the finite difference approximation

of the equations (3.1) and (3.2) by central differencing in the form(
1
λ
+ 4
h2
z2
)
u− 4

h2
z2ũ− 1

2h2
z
(
z̄x ūx+ z̄y ūy

)= 1
λ
f , (3.3)

z
(
kλ

4αh2

(
ū2
x+ū2

y
)+ 4

h2
+ k

2

4

)
− 4
h2
z̃− k

2

4
= 0, (3.4)

where, for w = (u,z),

w̃(x,y)= 1
4

(
w(x+h,y)+w(x−h,y)+w(x,y+h)+w(x,y−h)),

w̄x(x,y)=w(x+h,y)−w(x−h,y),
w̄y(x,y)=w(x,y+h)−w(x,y−h).

We have defined and experimented finite difference onegrid and multigrid al-

gorithms to process synthetic images and these algorithms can provide satis-

factory solutions and show interesting convergence capabilities [13, 14].

3.2. Multigrid image segmentation. LetGhk be the grid covering the domain

Ω, where h is the meshsize in both directions x and y , k the index appearing

in the sequence of functionals �k(u,z) and in the associated equations (3.1),

(3.2), and Γhk the set of the boundary points of Ghk . We write the discrete image
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segmentation problem related to the system (3.3) and (3.4) in the compact form

Lhkwk = Fhk on Ghk , Λhkwk = Φhk on Γhk , (3.5)

where Lhk is the finite difference operator associated with the system of equa-

tions (3.3) and (3.4),

Fhk is the right-hand side in the system,

Λhk the operator defining the boundary conditions for each given problem,

Φhk the assigned boundary values.

Let Ω be the square domain [0,1]× [0,1]. Let w0
k be a given initial approx-

imation of the solution wk of the problem (3.5) on the grid Ghk . In order to

compute the required approximate solution w∗
k , we have defined onegrid al-

gorithms which apply νk sweeps of a relaxation algorithm [13]:

w∗
k =�νk

(
w0
k ;Lhk ,F

h
k ,Λ

h
k ,Φ

h
k
)
, (3.6)

where � is a relaxation procedure appropriate for nonlinear problems.

The goodness of the solution of the discrete image segmentation problem

depends on the specific relationship between the meshsize h and the sequence

index k in this problem. Since we are mainly interested in a good approxi-

mation of z in the tubular neighbourhood of the image contours, where z
varies from zero to 1 (see [13, 14]), the meshsize h should allow an appropri-

ate number of grid points to lie in this neighbourhood. We have assumed and

used the parameter p = hk to control the approximation of the rapid variation

of z.

We have defined a multigrid algorithm by adding to the chosen computa-

tional grid Ghk an appropriate number of coarser grids. By setting h = hM
we assume the sequence of grids G0,G1, . . . ,GM , with decreasing meshsize:

h0,h1, . . . ,hM such that h0 >h1 > ···>hM . By fixing and neglecting to write k
the discrete problem (3.3) and (3.4) becomes of the form

LMwM = FM on GM, ΛMwM = ΦM on ΓM,

where ΓM is the set of boundary points of GM . For each grid level l, l= 0,1, . . . ,
M−1 we can write the correction equation of the FAS algorithm and the related

boundary conditions just in the same form (2.4) along with (2.5):

Llwl = F̃ l on Gl, Λlwl = Φ̃l on Γ l,

where

F̃ l = Ll(Ill+1w
l+1
a

)+Ill+1

(
F̃ l+1−Ll+1wl+1

a
)
,

Φ̃l =Λl(Ill+1w
l+1
a

)+Ill+1

(
Φ̃l+1−Λl+1wl+1

a
)
.

In the fine-grid correction step the current approximation is updated by the

expression (2.6).
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4. Numerical grid generation. Numerical grid generation is the crucial

point of differential modelling. In order to achieve accurate and efficient simu-

lations of a physical phenomenon in a complex domain, the scientist needs an

appropriate discrete model of the domain, or in other words he has to appro-

priately place a discrete set of points (observers) in the domain to investigate

the phenomenon in the best way. This task is often too time consuming and

ineffective. A scientific community expert in grid generation has been and is

working to improve this computational phase [6, 16, 17].

4.1. Elliptic grid generation equations. We have first developed multigrid

algorithms for the solution of PDEs arising in numerical grid generation. We

have been defining multigrid algorithms and evaluating their performance for

effective handling of domain discretization problems by elliptic grid genera-

tion [16, 17]. In dealing with the general system

Δξi = Pi
(
ξm,

∂ξm

∂xj
,xk

)
, i=m= k= j = 1,2,3 in Ω,

where the Laplacians of the curvilinear coordinates is assumed to be equal

to appropriate functions of the curvilinear coordinates, their first derivatives

and the cartesian coordinates, in a given physical domain Ω, we define the

following two-dimensional continuous problem:

Δξ = P(ξ,η), Δη=Q(ξ,η) in Ω,

ξ = f(x,y), η= g(x,y) on ∂Ω,
(4.1)

where ∂Ω is the boundary of Ω, and we assume that

P(ξ,η)=−
n∑
i=1

ai sign
(
ξ−ξi

)
exp

(−ci|ξ−ξi|)
−

m∑
j=1

bj sign
(
ξ−ξj

)
exp

(
−dj

√(
ξ−ξj

)2+(η−ηj)2
)
,

and an analogous control function Q(ξ,η). By interchanging the independent

and the dependent variables, we obtain the transformed system in the trans-

formed computational domain Ω∗,

αxξξ−2βxξη+γxηη+J2(Pxξ+Qxη)= 0, (4.2)

αyξξ−2βyξη+γyηη+J2(Pyξ+Qyη)= 0, (4.3)

where

α= x2
η+y2

η, β= xξxη+yξyη, γ = x2
ξ+y2

ξ , J = xξyη−xηyξ.

We assume analogous Poisson’s equations for the curvilinear coordinates ξ,

η, and ζ of the three-dimensional computational space and the transformed
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system of the form

a11rξξ+a22rηη+a33rζζ+2
(
a12rξη+a13rξζ+a23rηζ+J2(Prξ+Qrη+Rrζ))=0,

(4.4)

where aij =
∑3
k=1Ak,iAk,j , Ak,l, k = l = 1,2,3 are the cofactors and J is the

determinant of the matrix E = (rξrηrζ), r = (x,y,z).
Moreover,

P(ξ,η,ζ)

=−
m∑
j=1

bξj sign
(
ξ−ξj

)
exp

(
−dξj

(
cξj

(
ξ−ξj

)2
)
+cηj

(
η−ηj

)2+cζj
(
ζ−ζj

)2
)1/2

and the functions Q(ξ,η,ζ) and R(ξ,η,ζ) have an analogous form with the

coordinates η and ζ substituted in the function sign and the coefficients not

necessary the same.

The transformed problem is completely defined by assuming appropriately

transformed boundary conditions on ∂Ω∗, the boundary of the transformed

computational domain Ω∗ either in two- or three-dimensional spaces.

The control function P(ξ,η) allows ξi-lines, i=1, . . . ,n and (ξj,ηj)-points,

j = 1, . . . ,m to be activated as attraction sources with the following specific

controls:

• the amplitude aξi controls the attraction of ξ-lines towards the ξi-lines,

• the amplitude bξj controls the attraction of ξ-lines towards the grid

point (ξj,ηj),
• the decay factor cξi controls the extension of the ξi-line attraction,

• the decay factor dξj controls the extension of the (ξj,ηj)-point attrac-

tion,

• the function sign allows attraction to be exercised on both sides of each

source.

4.2. Multigrid grid generation. Assume a sequence of grids G0,G1, . . . ,GM ,

with decreasing meshsize: h0,h1, . . . ,hM such that h0 > h1 > ··· > hM , all ap-

proximating the current block B∗, along with its boundary Γ∗. Write the gener-

ating two- or three-dimensional quasi-linear systems (4.2), (4.3), or (4.4), along

with the associated boundary conditions in the form

LX = 0 in B∗, ΛX = Φ on Γ∗,

where X = (x,y) or X = r = (x,y,z), respectively. By standard central differ-

encing we obtain the associated discrete problem

LMXM = 0 on GM, ΛMXM = ΦM on ΓM,

where ΓM is the set of boundary points of GM . The general form of the correc-

tion equation of the FAS algorithm and the related boundary conditions are
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[7, 8, 11]:

LlXl = Fl on Gl, ΛlXl = Φ̃l on Γ l,

where

Fl = Ll(Ill+1X
l+1
a

)+Ill+1

(
Fl+1−Ll+1Xl+1

a
)
,

Φ̃l =Λl(Ikl+1X
l+1
a

)+Ill+1

(
Φ̃l+1−Λl+1Xl+1

a
)
,

Xl+1
a the current approximationon on the finer grid, Ill+1 the fine-to-coarse

transfer operator (restriction), and Γ l the set of boundary points of Gl. In the

fine-grid correction step the current approximation is updated by the expres-

sion (
Xl+1
a

)
new =

(
Xl+1
a

)
old+Il+1

l
(
Xla−Ill+1X

l+1
a

)
, (4.5)

where Xla is the current approximation on the level l and Il+1
l is the coarse-to-

fine transfer operator (prolongation).

4.3. Multiblock and full-FAS algorithms. Multiblock generation results to

be computationally more complex since information has to be provided block-

by-block. We have to specify parameter vectors to store block connections, face

ordering and orientation and other characteristics of the current decomposi-

tion of the domain, and the initial distributions of boundary grid points and

an appropriate starting grid to carry out any iterative numerical generation

algorithm.

Moreover, initial grid point distribution has to be provided on artificial

boundaries, which do not have any physical boundary conditions.

We use interpolation between points on two boundaries, that is, grid lines

joining points on two fixed boundaries through a number of blocks. We call

fixed boundaries or free boundaries those physical boundaries used or not

in this interpolation procedure, respectively. Therefore we differentiate three

types of boundaries:

(a) fixed physical boundary,

(b) free physical boundary,

(c) artificial boundary.

In order to save the characteristics of the overall grid, we have overlapped two

grid surfaces between any two adjacent blocks [15].

Full approximation storage (FAS) form and full multigrid computation have

been added to enrich computational capabilities and improve algorithm per-

formances [9].

The computational components for the multiblock and full-FAS multigrid

elliptic grid generation in the two-dimensional form are as follows.

Grid generation methods

• Multiblock grid generation:
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(1) subdivision of the physical domain Ω into an appropriate number

of pieces, with appropriate connections, by defining artificial bound-

aries in Ω,

(2) mapping of the physical domainΩ on the transformed domain which

is an appropriate assembly of N ≥ 1 computational blocks B∗l , Ω∗ =⋃
l B∗l , l= 1,2, . . . ,N ,

(3) definition of criteria of solution acceptance,

(4) elliptic grid generation,

(a) definition of the Poisson system (1) on the current block Bl,
(b) activation of sources of attraction by defining the control func-

tions in (1),

(c) solving the transformed system (2) in the rectangle B∗l ,

(i) application of a nonlinear multigrid solution algorithm, full

approximation storage (FAS) algorithm,

(ii) application of nonlinear relaxation algorithms with appro-

priate orderings: Lexicographical, red-black, four-colors,

zebra-line,

(iii) definition of criteria for anisotropy control,

(iv) choice of a multigrid cycle (V or W),

(d) updating of values on artificial boundaries of the next neighbour-

ing block,

(5) iteration over all the blocks to achieve the desired solution according

to the connection conditions.

• Full multigrid algorithms

(1) restriction of the transformed system (2) on the coarsest grid G0,

(2) solution or relaxation of the restricted problem L0X0 = F0 andΛ0X0 =
Φ0,

(3) interpolation of the coarser approximation to the finer grid,

(4) execution of a multigrid cycle (V or W) at the reached finer level,

(5) execution of the point 3 and 4 for all the finer grids, included GM .

5. Visual tools. We are designing a visual numerical environment by the

definition, development and evolution of a collection of methods and the re-

lated software modules with high integrability for differential modelling. In

order to develop visual and numerical modules, with specific and advanced

tasks, which can be easily combined depending on the application, we have

carried out (a) the development of numerical methods, (b) the development

of visualization techniques, (c) the design of human-computer interaction for

computational processes, (d) the realization of interactive graphics systems,

and (e) analysis of possible extensions to a multimodal approach [2, 7, 10].

The realization of a visual grid generation environment including variational

image segmentation and numerical grid generation seems to be especially ap-

propriate to carry out differential modelling. In practice regarding numerical
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and visual methods, we recall that the following main tools, for black-and-white

2D image segmentation and 2D and 3D grid generation, are available:

• Solima the modular code for onegrid variational image segmentation,

• Mulima the modular code for multigrid variational image segmentation,

• Mulblock the modular code which stores and save domain decomposi-

tions,

• Mulgri the modular code for the generation of boundary-fitted grids (BFGs)

coupling elliptic generation with multigrid computation,

• FullMulgri the modular code coupling elliptic generation with full multi-

grid computation,

• Ipargen the modular code for isoparametric generation,

• Visima the module which allows visualization of input or computed im-

ages,

• Visgen the modular software to visualize generation results, which con-

sists of the modules:

– visgri the module which allows visualization of structured grids,

– vissou the module which provides visualization of attraction sources

by color (attractive ξ-lines, η-lines and points),

• Vishis the module which visualizes convergence histories, specialized for

a given image or grid generation problem,

• GENSY the interactive graphic system for grid generation.

The vishis module allows to visualize convergence histories and immediately

evaluate algorithmic performance. For instance, multigrid acceleration can be

visually evaluated, that is, appropriate control over multigrid components and

parameters by visualization of the error behaviour and decay can be easily

exerted. Integrated in GENSY 1.1 it becomes very useful since the user can

visualize residuals or errors during computation and change parameter values

or the numerical strategy. It means computational steering [7].

The system GENSY. The interactive numerical and visual system GENSY

consists of software modules which have been integrated to generate, visual-

ize, and evaluate two- and three-dimensional grids [10, 12]. Both the expert

and novice users can interactively apply the numerical methods and easily as-

sign and update method parameters. They can also easily require visualization

techniques, to exert both visual control over numerical computation and com-

puted grids, and therefore modify and optimize the generation process on the

base of the obtained visual information.

The design of an integrated system requires the definition of the basic nu-

merical and visual objects of the system and the identification of the system

functions for the management of such objects. We have equipped the numeri-

cal methods also with (i) the development of a visual language by definition of

special elements for human-computer interaction, for instance, menus, icons,

or other tools, (ii) the design of easy-to-use and user-friendly graphical user

interfaces (GUI), mixed type.
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In order to improve the elliptic grid generation, four icons have been de-

signed to drive multigrid computation and control line-spacing of curvilinear

coordinate systems [10]. From the practical point of view, the user should know

just few things to use the system GENSY, since almost all the functions are au-

tomatically carried out or interactively chosen. The graphical windows, one of

which is fixed on the screen and the others flexible in number and location for

user needs, are reserved to visualization. User interactions designed for the

system deal with the following two types of interactive control of the user:

Control over numerics: The user can control the numerical computation by

visual information (display of block configuration, convergence histories, . . .);
control over method performance and method parameters can eventually re-

quire to update parameter values or abort execution at different points of the

generating process, which can be either starting or running or over;

Control over graphics: The user can choose when and how display results

provided by the numerical.

6. Numerical results. We have defined, implemented, and experimented

multigrid algorithms having care of specific computational difficulties arising

in each application field. We have investigated problems dealing, for instance,

with anisotropy in grid generation or due to the presence and nature of the

control function z in image segmentation. Large series of results are available

for both grid generation and variational image segmentation and, on the light

of the whole numerical experimentation, we might observe that algorithms can

provide satisfactory solutions and show accelerated convergence.

We have applied the multigrid algorithm with appropriate numbers ν1 and

ν2 of pre- and post-smoothing sweeps

w̃l+1 =�ν1
(
wl+1

old ;Ll+1, F̃ l+1,Λl+1, Φ̃l+1),
wl+1

new =�ν2
(
ŵl+1;Ll+1, F̃ l+1,Λl+1, Φ̃l+1

)
,

where wl+1
old and wl+1

new are the approximations on the level l+ 1 before and

after each multigrid subcycle. This widely used procedure leads to obtain a

better initial guess w̃l+1 and improve the approximation ŵl+1 = (wl+1
a )new or

ŵl+1 = (Xl+1
a )new given by (2.6) or (4.5), respectively. We have assumed the

Gauss-Seidel relaxation (GSr) which is known as a capable smoother of the

error components, very effective to design multigrid algorithms. As successive

displacement algorithm, GSr depends on the ordering of the system unknowns

[3]. Basic ordering is the rotated lexicographical ordering where a grid point

(x1,y1) precedes (x2,y2)� x1 < x2 or (x1 = x2,y1 < y2). Moreover, a large

series of results on how ordering affects multigrid grid generation algorithms

has been achieved.

Just to give an idea of the kind of results which are available for interested

readers, we show results of image segmentation application. We have applied
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Figure 6.1. Amphora functions: Given image intensity f (left) and
computed solution u∗k (right).

the multigrid algorithms to the segmentation of synthetic images with piece-

wise constant or varying brightness. We have solved segmentation problems

related to (1) squares and circles in Ω, and (2) an amphora, all centered in

Ω. We have generated images with different intensity values inside and out-

side geometric figures and we have experimented distinct resolutions, 64×64,

128×128, and 256×256, obtaining satisfactory results in all less or more com-

plicated tests. Among images with varying intensity, we have segmented the

100×100 image of an amphora shown in Figure 6.1 (left). We can say that satis-

factory solutions and convergence histories have been obtained. The grey value

functions are normalized such that f(x,y)∈ [0,1]. Figure 6.1 (left) shows the

100×100 (101×101 grid points) input image of the amphora, and on the right

a computed solution u∗k .

We have assumed as initial guess the approximation w0
k = (u0

k,z
0
k), with

u0
k equal to the input image f and z0

k equal to 1 everywhere. Regarding con-

vergence, we have compared convergence curves of method executions which

represent values of each component of (log(resu), log(resz)) depending on the

iteration number iter. As shown in Figure 6.2, the values of iter appear on the

horizontal axis and the logarithmic values of the L2 norm of each component

of the residual rhk = Fhk −Lhkwh
k , rhk = (rhuk ,rhzk), on the vertical axis. Figure 6.2

illustrates convergence histories depending on grid number and pre- and post-

smoothing parameters and shows the accelerated performance of the twogrid

with respect to the onegrid algorithm.

7. Conclusion. We have presented an approach to the differential modelling

in visual numerical environment. We have introduced basic methodologies and

their numerical and visual components. We have illustrated in particular nu-

merical and visual methods, along with the related software tools, available for
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1-grid
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2-grid V (2,1) 
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iter

1-grid
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2-grid V (1,1)  
2-grid V (2,1)

(b)

Figure 6.2. Convergence histories for computed z∗k : Square (a) and
Amphora (b).

solving variational segmentation and grid generation problems. On the light of

the experimental results, we observe that both numerical algorithms and visual

techniques can provide satisfactory solutions, show accelerated convergence

capabilities, and allow user driven solution processes. Specific computational

difficulties of the application problems, due to the nature and characteristics
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of each specific phenomenon under study, can be appropriately handled by

appropriate finite difference operator, the multigrid computation and visual

investigation of results by effective human-computer interactions. Future ex-

tension and innovation of the presented visual computational environment

can be promising for further improvements.
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1. Introduction: From “sound” to “music” … mathematically? Mathemati-

cal modelling in music could broadly be framed in two realms, one dealing with

the physics, and one dealing with the abstract, or symbolic, level of “music”:

• mathematics and sound, dealing with the mathematical physics neces-

sary or suitable to model the source of the sound;

• mathematics and composition, when an “alphabet” is agreed upon or

taken as given, and the compositional rules are then studied, as a formal

grammar or probabilistic process, or with combinatorial approaches.

The first approach is the one most found in textbooks, papers, and meetings.

However, for example, at the meeting organized by Femmes et Mathematiques

in Bordeaux, December 1998, the second approach was clearly stated and dis-

cussed with the appropriate mathematical tools.

The separation between the two realms is of course just for the sake of study,

for the choice of the mathematical tools, and can be seen as the difference in

time scale; the first approach looks at events in a smaller time scale than the

second. On the other hand, the possible link between the two realms, and thus

between the different time scales, poses the problem of the relation of the

alphabet with the sound emitted by the source. Does an alphabet follow in

some necessary or at least preferable way from a source?

Is there a finite repertoire of sounds that can be associated to one instrument

rather than to another, owing to its physical characteristics? This is, in general,

too abstract and too wide a question. But it is less vague than it seems at first

sight. The entire theory of (our, western) music, rests on the hidden assumption

that there is an alphabet, and that it consists of pitches, which are related to

frequencies of vibration.

The existence of the alphabet itself rests on the possibility of discretizing

frequencies in a natural way, and we call this discretization “musical scale.”

Still, we would like to do something to bridge the two approaches in mathe-

matics, much as musicians do in music. There are phenomena of auditive orga-

nization in time that are retained as musical by some, and nonmusical (ritual,

functional, . . .) by others; and there are even cultures in which there does not

exist an activity denoted by a word corresponding to our “music.” It is clear
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today that as soon as we use words such as “musical sounds,” we are making

a culturally determined choice, especially if “musical sounds” are understood

as opposed to other sounds, similarly perceivable, and carrying meaning, but

considered “nonmusical.” There are as many “musics” as there are cultures.

A mathematical model puts under mathematical processing a few quantita-

tive characteristics of a phenomenon, to discover links which were previously

ignored or not clear. The model consists of the individuations of some quan-

titative variables, and in the choice of the equations that bind them together,

trusting, this way, to describe in mathematical terms an aspect of the phenom-

enon. It is obviously a good rule to remember that possible conclusions and

implications, following such a formal treatment of the chosen variables, only

regard the aspects subjected to the formal treatment, and that any other links,

associations, or conclusions have to be discussed appropriately, checking to

see that the mathematical model itself does not carry the implications as hy-

pothesis. On the other hand, it is not always clear or simple to discuss which

hypotheses are necessary and which can be seen with a more relative stance.

Also, sometimes an existing model inspires another one, in a less linearly de-

ductive fashion, in fact in a way that one should reconstruct with historical

tools, and questions, we do not address this issue here. We would like to un-

derstand how mathematics has been used to reinforce cultural choices in fields

removed from mathematics, and not subjected to it, such as the ones in music;

how we got to the point of often defining as “musical,” in common sense and

in treatises of acoustics, only those sounds that satisfy very stringent period-

icity conditions. We think that one of the problems has been the mathematical

model, implicitly chosen, which favors the description of simple periods. Un-

veiling the model is a condition for the possibility to change it, and to choose

from more of them. To this end, we propose a toy-model, for a mental ex-

periment. We have “invented” a theoretical musical instrument (completely

mathematical), that would not respect the conditions typically assumed in the

classic (mathematical) descriptive models. Imagine then a people that played

such instruments, century after century; the question now becomes which of

the objective characteristics of the sound of the instruments would become

structurally important; in what sense the continual use of certain instruments

promotes (certainly does not dictate) one or another coherent and possible

musical system, by way of transmission by the human ear.

2. Organization of the paper. In this paper, we discuss a simple model; we

study the linear part of an operator of vibration. We will first look at the classi-

cal model of the “vibrating string.” We discuss some of its characteristics that

have been used to describe other vibrating bodies, and others that are specific

and peculiar to the string. We then discuss two elements of the model, its one-

dimensionality and its elasticity, to see how they each affect the spectrum. We

put forward two more models, changing the vibrating string in either direction.
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This work is purely theoretical. We then use this toy-model to speculate how

the repetition of these vibrations over the centuries would favor extraction

of time features; which ones, that is, would get retained and recognized. In

particular, we look at how the physical principle of resonance would be more

relative, as an organizer of repetition and expectation. In the entire work, we

took the classical stance of looking at the vibrating instrument, and do not

discuss the other poles of this activity, as the transducer or the complicated

transforms that describe perception. Afterwards, we inquired whether there is

an actual people who had been educated, by ear, to a music based on rigid more

than on elastic instruments? Yes, there exists the entire “Gong-chime musical

culture” of South-East Asia, which has fascinated western composers for over

a century with its complexity and the quality of its sound. At the end of the

paper, we report on the first results of fieldwork done with the gongsmiths

that forge bronze instruments in Bali, confirming results we had obtained the-

oretically, and that seem to have eluded description in literature about musical

instruments, so far. Moreover, the mathematical treatment of semirigid vibra-

tions is in itself interesting, and one very soon finds open problems, as the

dimensionality and the contours of the vibrating body change.

3. Change “music,” change mathematical model

Definition 3.1. We will call “music,” strictly for the ends of this paper,

a collective meditation on Sound, codified in the activity of composition of

sounds in time.

All mathematical treatment of sound starts from a mathematical model.

The mathematical model on which the classical treatments are based, is the

“vibrating string,” that is the differential equation

∂2u
∂t2

= c2 · ∂
2u
∂x2

,

where x is the position on the string, t is time, and the function for which we

want to solve the equation is the displacement u(t,x), describing the vibra-

tion of the string; c is a constant of the problem. This equation can also be

derived as the limit of a difference equation describing a chain of harmonic

oscillators, that is, a chain of mathematical “springs.” Thinking of it this way,

it is clear that when we think of a body vibrating as a mathematical vibrat-

ing string, and therefore when choosing this one equation, we think that the

force linking to nearby elements is elastic, mathematically speaking, that is, of

the type “spring,” or “harmonic oscillator.” In this case we say that the body

resists tension, and we call it an “elastic body.” Moreover, when x ∈ �, this

equation is one-dimensional in space. The equation of the vibrating string, be-

sides being at the basis of the classical mathematical treatment of sound, has

been a mathematical model of great impact, underlying many theories, some of

which have no musical applications. For a review in this regard, see Odifreddi
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[7]. In this paper, Odifreddi (a mathematician) follows the paths that the vi-

brating string has allowed or inspired, emphasizing that the existence of this

model influenced western musical practice (via the theorists), and still today

influences the development of recent physical theories. How, that is, around

this model, more complex models are organized, also for phenomena very re-

moved from it, physically and conceptually. Notice also that the seminal work

of Marc Kac “Can you hear the shape of a drum?” uses the verb “hearing” in

the mathematical sense of “How are the spectra different, if the operator is the

Laplacian?” that is, the wave equation associated with a given surface. So, even

in this mathematical sense, which has nothing to do with music, “to hear” is

used to imply that the vibrations are elastic.

From sound to music. “Archetypal instruments,” their spectrum. To the

end of vibrations, air-columns behave as vibrating strings. We could therefore

think of strings and air columns as “archetypal instruments” of our music, that

is, of our musical culture. This is more or less accurate in Europe, and finds

ample systematic treatment in eighteenth and nineteenth century orchestras,

in written art-music. To change music, starting from this model, we can go in

two directions: Let x ∈�2, that is, think of the instrument as two-dimensional

(it would then be an “elastic membrane”), or make the hypothesis that the

vibrating body is not completely elastic, and offers resistance to folding and

torsion, in this case it is called a “semirigid” body. Let us think what “music”

could be inferred or deduced, that is, we look for an entire consistent system of

slightly different vibrating bodies with these conditions. Helmholtz’s concept

is that the human ear behaves as a spectrum analyser, that is, that it is capable

of detecting as different two sounds depending on how they can be approxi-

mated by superimposing simple vibrations, such as the sinusoidal ones. This

hypothesis is based on the principle of resonance. While we do not know of

experiments which have seriously tested this hypothesis, we make it explicit

and keep it as a starting point for methodological reasons; the game here is

to introduce few, but qualitatively important, changes to the basic model so

as to proceed to systematically discuss their possible consequences, and the

impact of the modelling assumptions on the results found.

Linear one-dimensional elastic music. The first characterization of

the solutions of the vibrating string is their harmonic spectrum, they can be

well approximated by superimposing simple vibrations (sinusoids) whose fre-

quencies are in integer ratio. Physically, a harmonic spectrum allows measure-

ments by resonance, because the frequencies are separated by a fixed distance,

and its integer multiples. A people that would listen for centuries to mathe-

matical strings and air columns, would therefore develop a subtle sensitivity

to harmonic spectra, and to frequencies in rational ratio, developing the ability

to align such frequencies by ear, and name “similar” two sounds when many of

their components resonate. When two frequencies are close to each other, but
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not identical, their superimposition gives rise to the phenomenon of “beats”;

our people of listeners and players of strings and air columns, would therefore

develop a social adversion to beats, as a signal of possible evaluation errors

in nearby frequencies, as possible errors in the individuation, understanding,

and reproduction of the basic alphabet. Written art-music of our own tradition

is labelled “learned,” in that it is the one whose description has been most

systematic and rationalized; this music is based in large part on strings and

air columns, which have also been extensively described mathematically. The

two descriptions could have well influenced each other. The nice speculation-

story just narrated, is reasonable, but has been narrated after it has already

happened; nearby sounds in a spectral sense are labelled “consonant” in our

culture, and beats are regarded as unpleasant noise. The story, as I narrated

it, has something positive in suggesting that the censorship against beats is a

cultural phenomenon (regarding objective features of the signal), rather than a

physiological-aesthetical one. Let us see what would happen with musics based

on other “instruments.”

An elastic two-dimensional music. Some assumptions of symmetry in

the vibrating body allow for clearer, or easier, structure of the solutions and

of their spectrum. So, let us first assume that the vibrating body is square, and

suppose that the force restoring equilibrium is still elastic. The differential

equation is the same, but the variable varies in the two-dimensional square,

x ∈ [0,1]× [0,1], and the spectrum of its vibrations is given by two series

of harmonic overtones and their combinations. A people educated on square

instruments would first select as understandable and easily reproducible the

first frequencies of the series:

fn,m =
√
n2+m2, n,m= 0,1,2, . . . ,

for example, f0,1 = 1,f1,0 = 1,f1,1 =
√

2, . . . .

Caution. A “square” music would select as recognizable by ear, and repro-

ducible on instruments, an irrational frequency ratio, such as
√

2; such ratios

have been carefully avoided in western musical practice of the last few cen-

turies, precisely as difficult to intonate with the voice, and therefore unstable:

It was mainly used in sequence or together with other ratios. Trace of this

sanction is in the name diabolus in musica.

This trend of thought has already been considered by composers who, with

the aid of computers, assign a spectrum and consider the ratios it prescribes.

A warning, consequences can be drawn not only on the musical intervals, that

is, the ratios between frequencies, but also on the principle of resonance as a

main basis for musicality of a sound, and of a system of sounds. In particular,

if we accept that irrational frequency ratios be a basis of a music unfolded

by repetition and variation, at the same time we are drastically reducing the
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sanction against beats, that become a necessary, recognizable and controllable

feature.

4. A semirigid, one-dimensional “musical instrument”

The equation. If we have reason to think that the vibrating body be semi-

rigid, the force pulling to equilibrium is not of elastic type; its vibrations sat-

isfy a fourth-order differential equation and we look for solutions of the type

u(x,t)= h(x)g(t),
∂4u
∂x4

+μ2 · ∂
2u
∂t2

= 0

here, again x ∈ �, that is, the spatial variable is one-dimensional, and the

equation linking the variables, the mathematical model, goes under the name

of “bar.”

First consequence. There are no waves that travel with constant veloc-

ity and unmodified shape. A people educated with such instruments would

develop a subtle discerning of spatial relations, even before the subtle dis-

cerning of ratios of frequencies. Also, this could well be one of the reasons

numerical spectra of these instruments are difficult to perform and evaluate,

because they necessarily involve an averaging. In fact, the analysis and numer-

ical simulation of “bells” is a well-known hard problem.

Second novelty. There are many possibilities of “boundary conditions.”

For the vibrating string, the boundary conditions (i.e., conditions for h(x) and

its derivatives at edges or other particular points along the longitude of the

vibrating body) are that the edges be fixed throughout the motion. In the math-

ematical bar one usually assumes a fixed boundary, that is, one thinks of a bar

with a clamped border. When, as is reasonable, one considers a bar resting at

some of its points on a support, or else suspended when the edges are free to

vibrate, then the boundary conditions are different. If this bar is resting on two

of its points, its vibrations meet obstacles in the “resting point.” From a mod-

elling point of view, this can be described in several ways, depending on how

we think the deformation in its vicinity behaves. That is, we can give several

“boundary conditions” for the differential equation of the bar, and all of them

could be reasonably labelled “resting point.” To fix ideas, we fix the origin of

coordinates in the centre of the bar, and denote

l half-length of the bar (x = l and x =−l coordinates of its edges),

a coordinate of the suspension point,

h(x) deplacement from equilibrium (at a given time).

We propose the following three different conditions as possible modellistic

definitions of “suspension point”:

(1) h(a) = h(−a) = 0 and h′′(l) = h′′(−l) = 0 (fixed point of suspension,

edges free to rotate);
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(2) h′(a) = h′(−a) = 0 and h′′′(l) = h′′′(−l) = 0 (humps in the points of

suspension, cutting force nil at the edges);

(3) h′(a) = h′(−a) = 0 and h′′(l) = h′′(−l) = 0 (humps in the points of

suspension, edges free to rotate).

Looking for particular solutions of the differential equation, of the type

u(x,t) = h(x)g(t), the partial differential equation written above splits into

two ordinary differential equations, becoming:

g′′(t)+μ2kg(t)= 0, h(iv)(x)−kh(x)= 0,

the first one with initial condition in time, and the second with boundary condi-

tions to be chosen among the three just proposed, and k constant. We want to

define as “musical instrument” a system of several bars, with different lengths,

but all sharing the same structure of vibration, at least within the solutions con-

sidered. A system of bars having the same “sound color,” reinforcing the musi-

cal culture of our imaginary people, repeating the same time-relations of sound

at small time scale. We wonder, then, how difficult it would be to compute a

point of suspension for the whole system of bars, that would guarantee their

same vibration structure, regardless of their length. In mathematical terms,

we are probing the dependence of the spectrum of the differential operator on

the boundary conditions, and on the length of the bar.

Conditions of musicality, conditions of consistency. Towards the

end of this study we have stated, as a condition of musicality, some consis-

tency of the spectrum from one bar to another, when the length changes; this

would ensure the possibility to build (theoretically) an instrument made of sev-

eral “keys,” all characterized by the same sound color, at least as regards the

part due to the operator we are studying, excluding phenomena of nonlinear-

ity and damping. This is an important exclusion, not just from a mathematical

stand point, but because the entire perception of sound color is actually deeply

linked with these strong temporal features. The research and measurements

of Fletcher are today in this direction. We privilege the information coming

to the ear from the spectrum of the differential operator, for methodological

reasons; the theoretical instrument has to be compared with the model of a

vibrating string, which we are reevaluating, and which is studied under analo-

gous conditions. We will shortly wonder whether instruments actually existing

in the world, are built this way. We should therefore make the hypothesis that

the spectrum be repeated from key to key of the instrument, and that the peo-

ple of players and listeners would therefore learn to draw out of their context

some of its features, to repeat them in other temporal contexts; that is, this

people would learn to “abstract” them. For the vibrating string, the spectrum

does not change with the length of the string. For the first instrument, made of

elastic membranes with fixed edges, this consistency condition becomes that

the ratio between the lengths of the sides of the rectangle be preserved. The



132 LAURA TEDESCHINI LALLI

length of these sides determines the double series of overtones in the spec-

trum, and if their ratio is preserved, the entire spectrum rescales perfectly

starting from other fundamentals, much as in the vibrating string. Possible

irrational ratios would then be exactly retained. For the bar, if we consider it

crucial that a musical instrument have a harmonic spectrum, among the rare

conditions guaranteeing it is l= a, that is, those in which the point of suspen-

sion coincides with the edges. (We remark that treatises of musical acoustics

often assume this to be true for the glockenspiel, small tuned metallophones.

However, in an actual metallophone the bars are neither clamped nor resting

at their edges.) Let us continue with this game, and impose the consistency of

the spectrum from bar to bar, accepting nonharmonic spectra, if they come.

The condition we find, for the bar to vibrate with a spectrum determined by

the point of suspension, independently of its length, is that the ratio between

length of the bar and point of suspension be preserved:

l= ba, with b constant on all keys.

In this case, the spectrum would not necessarily scale perfectly from one bar

to the other, which would imply more complicated rules of abstraction by

the ear than what we are used to. But the structure of the frequencies would

be determined by the ratio a/l. This is the point we have reached with our

theoretical study. We recall that in our simplified model we are assuming x ∈
�. The two-dimensional semirigid problem presents substantial mathematical

difficulties, even assuming a clasped edge.

5. Fieldwork research: The Gong-chimes musical culture of Southeast Asia,

the artisan gongsmiths. On first measurement of the vibraphones in our sym-

phonic orchestras, it does not appear that the proportionality conditions are

respected, neither as rectangles, nor as longitudinal bars. Is this because the

model is irrelevant, because the spectrum cannot be discerned by the human

ear? Well, it is natural to ask whether there exists a people musically educated

by instruments that are not based, as ours, mostly on vibrating strings and air

columns, or their perturbations. Is there a music stemming from instruments

in which the element of rigidity is predominant, and that have been played for

centuries? Ethnomusicologists speak about a “musical culture of gongs and

chimes,” referring to Southeast Asia. Travellers report in their diaries of the

“tingling music” as part of the landscape. Images of metal instruments and

their players are carved in the sculptures of the Borobodur (Java, end of the

VIII century), and in the temples of Angkor (Cambodia, XII century). The game-

lan orchestras of Java and Bali, for example, consist of tens of metallophones,

both rectangular and circular (i.e., chimes and gongs), of various widths. We

know that Debussy, fascinated, spent days studying the music and the instru-

ments of the Javanese gamelan playing at the International Exposition of Paris
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in 1889. The description of musical scales in Java and Bali is a deep prob-

lem, as yet not completely understood by ethnomusicologists, giving raise to

difficult studies of its objectively measurable features. Music in this region is

transmitted and learned aurally, by the ear, and it holds a very sophisticated

tradition. The used interval patterns vary from village to village and from en-

semble to ensemble, but within some limits. Even the intervals of fifth and

octave are under discussion. We first went to measure the instruments in the

STSI, the Academy for Performing Arts in Denpasar (Bali), and realized, to our

surprise, that all the proportions were accurately respected. We then went to

the gongsmiths who specialized in forging musical instruments in Bali, and

documented the fieldwork in a video. Gamelan orchestras and ensembles are

forged one at a time, the entire workshop works on the ensemble until all the

instruments are finished. We observed, in particular, how the rectangular keys

of the many genders were processed. Each bronze key has two holes, and two

leather cords string the keys together through the holes, to form a gender’s

hanging keyboard. From the moment these points of suspension are measured

and the holes are drilled in the workshop, the bars are then held by two fin-

gers, holding the hole just drilled, and from then on, everything is checked by

ear. The hole is therefore confirmed as crucial to the assessment of quality of

sound. The entire process is then checked by ear by all the workers, as well

as by a master gongsmith coordinating the workshop. This master gongsmith

is also the one who accurately measures the point in which the hole is to be

drilled. The three gongsmith workshops we visited, drilled in three different

ways, at three different moments of the forging procedure and with three dif-

ferent techniques for measuring. However, in all cases the point of suspension

was accurately calibrated at 1/4 of the total length. According to our numer-

ical simulations, a ratio of 1 : 4 (in our choice of coordinates, l = 2a), besides

being easy to calculate in construction, would guarantee a nonharmonic spec-

trum. So, what about the beats? If the spectrum is nonharmonic, and if this

is essential to the subtle discerning by ear, then we said beats should be a

characteristic feature, not avoided, controlled instead. In Bali instruments go

in pairs: they are forged (bar by bar) in pairs, tuned (bar by bar) in pairs, and

played (in ensembles) always in pairs. Each pair of instruments consists of

one tuned slightly lower and one tuned slightly higher. The two instruments,

played together, form beats that are carefully sought and controlled by a mas-

ter tuner, who establishes their velocity. This velocity of the beats is carefully

sought by lowering or sharpening the tuning of the bars by means of filing.

The same master then finishes the entire tuning of the orchestra, checking the

whole halo of beats obtained by several instruments playing at the same time;

this operation is called the “coming together.” Orchestras are thus character-

ized by a sparkling halo of vibrato in beats, whose subtle control gives life to

the sound. This halo of beats, so essential to Balinese music, is called ombah.

With no ombah, or with an untuned ombah, a gamelan simply is not ready to
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be played, yet. Western listeners trying unconsciously to ignore this halo while

listening to gamelan music, due to cultural conditioning of their ears, simply

get frustrated, as if going to the Vatican and trying to ignore the marble and the

gold. They are cancelling out of their aural experience exactly the time features

that could guide them to the larger time scale, as if blinded by so much light. In

the workshop on Sound organized by the Scuola Interculturale di Musica della

Fondazione Cini, held in Venice in January 1997, one of the pioneering and

leading experts of gamelan music, Mantle Hood referred to this as “they are

wearing sunglasses over their ears.” So, the question remains open as to what

extent, and with which tools, the act of human listening and its deep cultural

conditioning can be treated objectively.
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1. Introduction. This is a short introduction to a geometric model for con-

current computing. Except for Proposition 3.1, there is nothing new here.

It is probably well known to most mathematicians, that graph theory is used

in computer science to describe for instance the different options for a process

(see Figure 1.1). It can enter a loop and stay there for a number of rounds, it

can skip the loop, there may be a choice between different branches in the

graph, etc. This is a nice model, and it works well when one process is living

in a world of its own, meaning that it will not share information or interact in

other ways with other processes.

When there is more than one process, and these interact, it is not quite clear,

which model to use. Some problems, that one has to face are:

(1) Not all processes can be allowed access to a shared resource at the same

time:

• If two people, T1 and T2, are allowed to access a bank account at the

same time, and they both want to check if there is any money, then

withdraw it and update the status of the account, there is clearly a

problem (for the bank at least) if T1 checks the status, T2 checks the

status, then T1 withdraws all the money she saw and so does T2, before

T1 updates.

• If a printer server has access to three printers, only three processes

can print at a time.

(2) The execution of two (or more) concurrent processes may have different

results depending on which process gets the shared resource first, for example,

who gets the money from the bank account.

Figure 1.1. One process with a loop and a branching.
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PA
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PA PB VAVB

Figure 2.1. Example 2.1.

One way of getting around these problems is of course to run the processes

in serial, that is, one after the other. But this is really not an option, it slows

down the system considerably. So one has to find a balance: Running as much

in parallel as possible without getting into the problems mentioned above. (Or

at least keeping track of where they may occur.)

2. Geometric models. A graph is of course a geometric model, but there is

much more geometry in the model we are studying.

Example 2.1. Suppose two processes, T1 and T2, both want access to two

shared resources, A and B. Suppose, moreover, that each resource will only

allow the access of one process at a time. Then Dijkstra [1] suggested the

following model: When T1 accesses A, it puts a lock on it, and when it finishes

it releases that lock. Locking is named PA and releasing is VA (from Dutch:

Potlock and Vrei). The system

T1 = PA ·PB ·VB ·VA, T2 = PB ·PA ·VA ·VB,

has a geometric presentation or model as shown in Figure 2.1. All points are

states of the system. The black area represents the forbidden region, that is,

the states which are not allowed because both processes have access to A or B.

An execution of the system is then a path from the lower left corner, the initial

state, (0,0), to the upper right corner, the final state, (4,4). The path should

be increasing in both coordinates, since time cannot run backwards. The grey

area is the unsafe region, namely the states from which no increasing path can

reach the final state. The maximal unsafe point (1,1) is called a deadlock.

In Example 2.1, both processes are deterministic, that is, we always know

what they want to do next, but in general, they may have loops or branchings, as

in Figure 1.1, and this gives a more complicated geometry, for example, loops

in more than one process give rise to tori. To get the right notion of execution

paths—what the direction should be, when two paths are equivalent, that is,

give the same outcome of the computation, a new kind of topology emerges.
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Definition 2.2. Let X be a topological space.

(1) A collection 
(X) of pairs (U,≤U) with partially ordered open subsets U
covering X is a local partial order on X if it satisfies the following: For every

x ∈ X, there is a nonempty partially ordered open neighbourhood W(x) ⊂ X
such that the restrictions of ≤U to W(x) coincide for all U ∈
(X), that is, for

all U ∈
(X) and for all y,z ∈W(x)∩U ,

y ≤U z⇐⇒y ≤W z.
(2) Two local partial orders 
(X) and �(X) on X are equivalent if their union


(X)∪�(X) is a local partial order.

(3) A topological space X together with an equivalence class of local partial

orders is called a locally partially ordered space. If there is a covering 
 in the

equivalence class such that all (U,≤U) ∈ 
 are PO-spaces (the relation ≤U is

closed), then X is a local PO-space.

Remark 2.3. Two local partial orders 
(X) and �(X) are equivalent if and

only if for every x ∈ X there is a nonempty open neighbourhood W(x) ⊂ X
such that the restrictions of ≤U and ≤V toW(x) coincide for all U ∈
(X) and

V ∈�(X). We say that ≤X is well defined on W(x).

We will assume that X is a local PO-space in the following; even if some

statements make sense for the more general locally partially ordered spaces.

We need local partial orders to deal with loops.

Example 2.4. The circle S1 = {eiθ ∈ C} has a local partial order: The open

subsets U1 = {eiθ ∈ S1 | π/4 < θ < 7π/4} and U2 = {eiθ ∈ S1 | 5π/4 < θ <
11π/4} are (partially) ordered by the order on the θ’s. Notice that the relation

on S1 generated by these local partial orders by taking the transitive closure

is x ≤y for any pair x, y . Hence we do not take the transitive closure!

Definition 2.5. Let (X,
) and (Y ,�) be local PO-spaces. A continuous

map f :X → Y is called a dimap (directed map) if for all x ∈X there is a subset

V(f(x)) ⊂ Y on which ≤Y is well defined and a subset U(x) ⊂ f−1(V(f(x)))
on which ≤X is well defined and such that for all y,z ∈ U(x) : y ≤X z ⇒
f(y) ≤Y f (z) A dipath in X is a dimap f : I → X from the unit interval I ∈ R
with the natural (global) order ≤.

Definition 2.6. For X a local PO-space, and x ∈X, we define

(1) The future ↑ x = {y ∈X | there is a dipath from x to y}.
(2) The past ↓ x = {y ∈X | there is a dipath from y to x}.

Definition 2.7. Let X be a local PO-space. Let � ⊆ X. Then x ∈ X is a

deadlock with respect to � if ↑ x = {x} and x ∉ �. If �∩ ↑ x = ∅, then x is

unsafe with respect to � and � is unreachable from x.

The model for a concurrent system is then a certain local PO-space X. There

is an initial and a final point, and an execution is a dipath in X from the initial
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point to the final point. To be more specific, X is constructed as a product

of graphs as the one in Figure 1.1, from which one then removes a region

corresponding to the forbidden region. This is a special case of what Pratt [6]

calls an HDA, a Higher Dimensional Automaton.

3. Dihomotopy. A priori, there are uncountably many dipaths in Figure 2.1,

and we want to distinguish only those for which the corresponding executions

may give different results. This equivalence is dihomotopy, that is, deforma-

tions of dipaths. In the following, X is a local PO-space.

Definition 3.1. Let x0 and x1 ∈ X. The set of dipaths from x0 to x1 is

denoted �P1(X,x0,x1).

Definition 3.2. Let I denote the unit-interval. Let α1 : I →X and α2 : I →X
be paths in X from x0 to x1.

(1) A continuous map H : I× I → X is called a dihomotopy between α1 and

α2 if every partial map Hs(t) =H(t,s) : I → X,t ∈ I, is a dipath from x0 to x1

and if H(t,0)=α1(t) and H(t,1)=α2(t). We write: α1
→∼α2.

(2) The set of dihomotopy classes of dipaths in X from x0 to x1 is denoted

�π1(X,x0,x1).

Remark 3.3. The local partial order need not be preserved with respect to

the variables s. Dihomotopy is an equivalence relation.

So is this really different from the usual homotopy theory? Yes, it is:

(1) In ordinary homotopy, we study loops, and this would then correspond

to elements of �π1(X,x0,x0), called diloops. IfX has a global partial order, there

are no diloops.

(2) We can concatenate two dipaths, if one begins where the other ends, and

this gives a map �π1(X,x0,x1)× �π1(X,x1,x2) → �π1(X,x0,x2), but there is in

general no inverse to an equivalence class of dipaths. Hence there is no group

structure on the equivalence classes of dipaths from a given initial point to a

given final point.

(3) Dihomotopy counts more than the number of “holes,” as one can see in

Figure 3.1.

(4) Two dipaths may be homotopic in the usual sense, but not dihomotopic

[4].

Diloops are much more rigid than loops in ordinary homotopy.

Proposition 3.1. A diloop γ ∈ �P1(X,p,p) is dihomotopic to the constant

dimap p if and only if γ is constant.

Proof. Let γ : I → X be a diloop in a local PO-space X. Suppose that H :

I×I →X is a contraction of γ, that is, H(t,0)= γ(t) and H(t,1)= p. Suppose,

moreover, without loss of generality, that γs(t)=H(s,t) is nontrivial for s < 1.

Let U ⊂X be an open neighborhood of p and suppose U is a partially ordered
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Initial point Initial point

Final point Final point

Figure 3.1. Two holes in R2. The first has four dihomotopy classes
of dipaths. The second has three dihomotopy classes of dipaths.

space. Then H−1(U) is open in I× I and contains I×1. By compactness of I,
there is an ε such that for 1−ε < s ≤ 1 any dipath γs(t)=H(t,s) is in U .

Since U is partially ordered, there is transitivity: γs(t1) ≤ γs(1) = γs(0) ≤
γs(t2) for all t1, t2 ∈ I and hence, since γs(t) is nontrivial, there are t1, t2 ∈ I
such that γs(t1) ≠ γs(t2) but γs(t1) ≤ γs(t2) and γs(t2) ≠ γs(t1). This is a

contradiction.

4. Results. We used the geometric model to construct an algorithm which

detects deadlocks and unsafe regions in PV models, without loops, where the

geometric model is the n-cube In in Rn with some n-rectangles removed [3].

There is a way of translating a system with loops to several systems without

loops (by taking “diconnected coverings” in the proper sense) [2], so we can

now handle systems with loops too.

In [5], Gunawardena used homotopy theory to prove that for PV systems

without loops, if all processes lock all objects before they start releasing any

(i.e., there is a sequence of PAi and then a sequence of VAj ), then any dipath in

the corresponding subset of In is dihomotopic to a dipath along the edges of

In, that is, any execution is equivalent to a serial execution. This is called safety

in database theory and was already known, but the proof was very tedious. We

gave a more general statement in this direction in [4].

We are working on classifying dipaths up to dihomotopy, and for two pro-

cesses without loops, this is in [7]. There are different candidates for higher

dimensional dihomotopy invariants, and there is in general much work to do

in both the computer science direction and the mathematics direction.
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INTRODUCTION TO THE SESSION
ON DISCRETE MATHEMATICS

The session illustrated the wide spectrum of areas covered by Discrete Math-

ematics and the many applications of discrete methods; in particular, the in-

vited talks showed how different areas are interrelated by the use of these

methods.

The talk by Maylis Delest, Combinatorics, information visualisation and alge-

braic languages gave a vivid view of the application of combinatorial methods

to information visualization, thus connecting combinatorics and computer sci-

ence.

Combinatorial notions in topology came into play in Ulrike Tillmann’s talk

on Combinatorics of the surface category and TQFTs, where the combinatorics

underlying the surface category was analyzed.

Andrea Blunck’s talk on Finite circle planes belonged to the area of Finite Ge-

ometry; she considered finite circle planes as combinatorial structures, leading

in particular to enumeration problems.

Typical discrete structures studied in algebra are finite groups; in her talk,

Conjugacy class sizes—some implications for finite groups, Rachel Camina re-

ported on the study of finite groups satisfying certain arithmetical conditions

on the conjugacy class sizes.

Christine Bessenrodt
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1. Introduction. Let Ω be a class of combinatorial objects. We suppose that

they are enumerated by the integer an according to the value n of some pa-

rameter p. Let f(t) = ∑
n=0antn be the corresponding generating function.

One of the main problems addressed by combinatorics is finding f(t) and its

properties knowing a recurrence on an or even a sequence of the first val-

ues a0,a1,a2, . . . . Many books are devoted to this field [24, 32]. With computer

algebra systems, new techniques have been set up for getting results [1, 2].

Internet network users may ask online information on a sequence of values

[27]. This last service is an encyclopedia of integer sequences but also it gives

useful references to objects that are counted by sequences. Enumerative com-

binatorics is focussed on getting more inside the formula using bijection with

object classes. We give an old trite example due to Euler in order to enlighten

what we call getting inside formula. Let sn be defined by

sn =
n∑
i=0

(2i+1).

Of course, we have sn = (n+1)2. This result can be obtained by algebra but

also explained by a geometrical construction. For each i, the value (2i+1) is

represented by a hook of (2i+1) cells in the plane N×N. Then, the sn value is

constructed by putting the hooks upon each other. See Figure 1.1.

In this paper, we focus on methods intensively studied by the Combinatorics

Bordeaux School and some of their applications. After some definitions and

notations, we describe in Section 3 the DSV methodology and in Section 4 two

extensions that are object grammars and Q-grammars. At the end, we show

applications of these techniques to information visualization.

2. Definitions and notations. This section summarizes briefly the notions

needed for understanding this paper. A more complete background can be

acquired from [3, 4, 23]. Let X be a nonempty set called alphabet. The ele-

ments of X are called letters. A word is a finite sequence of letters from X.

The empty word is usually denoted by ε. Let u and v be two words on X,
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Figure 1.1. Euler proof for n= 6, sn = 49.

u = u1 ···up and v = v1 ···vq. We define the concatenation of two words to

be uv =u1 ···upv1 ···vq. We denote by X∗ the free monoid generated by X,

that is, the set of all words on X endowed with the operation of concatenation.

The number of occurrences of the letter x in the word u is denoted by |u|x .

The number of letters of a word w is called length of w and is denoted by

|w|. A language is a subset of X∗. To every language �, one can associate a

noncommutative formal power series

L=
∑
w∈�

w,

that is, an element of the algebra Z〈〈X〉〉 of noncommutative formal power

series with variables in X and coefficients in Z.

Definition 2.1. An algebraic grammar is a 4-tupleG = 〈N,X,P,s〉 such that

N and X are two disjoint alphabets called, respectively, the nonterminal and

the terminal alphabet, s is an element of N called axiom, and P is a set of pairs

(α,β) with α∈N and β∈ (N∪X)∗ called production rules and is denoted by

α→ β.

Let α be in N and u in (N∪X)∗, u=u1αu2. A derivation in G is a rewriting

of u as v = u1βu2 with α→ β. This is denoted by u→ v . We say that a word

w is deriving from a nonterminal symbol α in G if there exists a sequence of

derivations which rewrites α as w. This will be denoted by α ∗
��������������������������������������������→w . The set

L(G) of words generated by s is called the algebraic language generated by G.

In general, there may exist several grammars for a given algebraic language.

Example 2.2. The main example in combinatorics is the Dyck language, not

because of its complexity, but because of the frequency with which it occurs in
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Binary tree Dyck path Skew polyomino

Figure 2.1. Combinatorial objects encoded by the word xxyxyyxy.

different settings. It encodes numerous and diverse structures such as trees,

paths, polyominoes. See Figure 2.1. Its words are generated by the grammar

G1 given by

N = {D}, X = {x,y}, s =D,
and the production rules

D �→ xDyD, D �→ ε.

This example gives rise to unambiguous algebraic grammars, that is, alge-

braic grammars in which every word is obtained only once from the axiom

using the production rules in a left-right derivation that is deriving first the

leftmost terminal. In such cases, the formal power series associated to the lan-

guage verifies equations which follow directly from the production rules. In

our example,

D = xDyD+ε.
In the following, all the grammars are considered to be unambigous.

3. DSV methodology. This methodology stems from an idea of M. P.

Schützenberger from 1959 [25, 26]. This method is now known as the DSV-

methodology, following M. P. Schützenberger’s wish expressed to Viennot [30].

Let X be an alphabet, X = {x1, . . . ,xk}. The commutative image of a series

produces, from a noncommutative formal power series, a commutative one,

called an enumerative series of the language �. This is defined by

χ0(�)=
∑

i1,i2,...,ik∈Nk
ni1,i2,...,ikx

i1
1 x

i2
2 ···xikk

such that ni1,i2,...,ik is the number of words w in � such that |w|xj = ij for

each j in [1···k]. In this way, we obtain an application from the Boolean

semi-ring B〈〈X〉〉 to the semi-ring N〈〈X〉〉 of commutative formal power series

with variables in X. We will often denote by L the series χ0(�). The application

χ0 is not a morphism but the following theorem holds.
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Theorem 3.1. The image of an algebraic language under χ0 is an algebraic

series which is one of the components of the solution of the system of equations

obtained via χ0 from an unambiguous grammar of the language.

Example 3.2. The computation on the Dyck language classically leads to

the equation:

D(x,y)= xyD(x,y)+1.

An elementary computation shows that

D(x,y)= 1−√1−4xy
2x2

,

from which we deduce easily that the number of Dyck words of length 2n is

the Catalan number

Cn = 1
n+1

(
2n
n

)
.

Numerous results, in several areas, were obtained by this method: Polyominos

[10, 12] tRNA structures [28]. Some overviews can be found in [7, 31].

Remark 3.3. Some algebraic languages cannot be associated to unambigu-

ous grammars. Flajolet [16] has shown that their generating series are related

to transcendental series.

So, the first step in the Schützenberger methodology, namely the encod-

ing, requires particular insight: One must find a bijection between the objects

and an algebraic language. We remark that, frequently, the language which is

obtained in the bijection process turns out to be closely related to the Dyck

language. We will see in Section 4 an explanation of this fact. Thus, in the fol-

lowing, we describe bijections linked directly to Dyck words. Let us consider

the set B of binary trees. If b is in B, then it admits the following recursive

description: Either b = (root(b),L(b),R(b)) where root(b) is an internal node

called root and L(b) (R(b), respectively) is the left (right, respectively) tree, or

b is a single point called leaf. To encode a tree by a Dyck word, traverse the

tree in left first depth-first order (or prefix order, that is, visiting first the root,

then the left subtree, then the right subtree). During the traversal, write x at

each internal node and y at each leaf, except the last one. This is the classical

bijection between binary trees and Dyck words [29]. One deduces the following

well-known result.

Theorem 3.4. The number of binary trees having n+1 leaves is the Catalan

number Cn.

We now consider the set of paths in N×N which are sequences of points

(s0,s1, . . . ,sn). The pairs (si,si+1) are called elementary steps. They are North-

East (South-East, respectively) if si = (k,k′) and si+1 = (k+1,k′ +1) (respec-

tively, si+1 = (k+ 1,k′ − 1)). The height of the step si is k′. These paths are
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a= (4,5,3,3)

b = (3,3,1)

Figure 3.1. Euler proof for n= 6, sn = 49.

clearly in bijective correspondence with Dyck words: Simply follow the path

from s0 to sn, encoding each NE step by x, and each SE step by y . The word

obtained in this manner is a Dyck word if and only if s0 = (0,0) and sn =
(�n/2�,0). The corresponding path is frequently referred to a Dyck path. An-

other subject where the Schützenberger methodology gives good results is that

of polyomino enumeration. For surveys, we refer the interested reader to [7,

18, 31]. A polyomino can be described as a finite connected union of cells (unit

squares) in the plane N×N, without cut points. A column (row, respectively) of

a polyomino is the intersection of the polyomino with an infinite vertical (hori-

zontal, respectively) strip of cells. A polyomino is column-convex (row-convex,

respectively) if every column (row, respectively) is connected. A skew poly-

omino is both row- and column-convex and for each one of its columns there is

• no column on its right with a cell lower than its lowest cell,

• no column on its left with a cell higher than its highest cell.

An analysis of these constraints leads to an alternate definition of a skew

polyomino, as a pair of integer sequences (a1, . . . ,an) and (b1, . . . ,bn−1), where

ai is the number of cells belonging to the ith column and bi+1 is the number

of adjacent cells from columns i and i+1. In Figure 3.1, is displayed a skew

polyomino and the two sequences a and b. These two sequences can be viewed

as the heights of the peaks (step North-East followed by a step South-East) and

the heights of the troughs (step South-East followed by a step North-East) in a

Dyck path. So encoding a skew polyomino by a Dyck word is straightforward

and it is easy to deduce the next result.

Theorem 3.5. The number of skew polyominos whose perimeter equals 2n+
2 is the Catalan number Cn.

This result was already known a long time ago. The bijection from the

Schützenberger methodology merely explains combinatorially the link between
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Perimeter 16

Area 9

Partition 4 + 3 + 1 + 1

Figure 4.1. A Ferrer diagram.

polyominos and Catalan numbers. The first new result [12], in enumerative

combinatorics obtained by this methodology, pertains to convex polyominos.

Theorem 3.6. The number p2n of convex polyominos having a perimeter

2n+8 is

p2n = (2n+11)4n−4(2n+1)
(

2n
n

)
.

This result was first proved with bijection with languages constructed from

Dyck one and heavy computations. A totally bijective proof was given by

Mireille Bousquet-Mélou [5].

4. Extension of DSV-methodology

4.1. Q-grammars. The study of compilers in computer science shows that

the semantic attribute method described by Irons [20, 21] and then by Knuth

[22] allows the translation of words from an algebraic language. Most of the

resulting translations, however, are not algebraic languages. In the context

of enumerative combinatorics, the same set of objects may lead to an alge-

braic generating function if counted according to a certain parameter, and

to a nonalgebraic one if counted according to another. For example, the gen-

erating function for Ferrers diagrams (that is representation of partition of

an integer, see Figure 4.1) is algebraic according to the perimeter of the dia-

gram

f(x)= x2

1−2x
and not algebraic according to the number of cells

f(q)=
∞∏
i=1

1
1−qi .

The interest presented by the attribute method lies in the fact that transla-

tion is defined locally, on each production rule of the grammar. Formally, in

the combinatorics background, we have the
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Definition 4.1. Let G = (X,N,P,S) be a grammar. For each U ∈ N , an

attribute family defined on G is given by a finite set TU of attributes.

• Each attribute τ ∈ TU has a domain Dτ ; the cartesian product
∏
τ∈TU Dτ

is denoted by �U ;

• for each attribute τ ∈ TU and for each derivation in P of U , R : U →
w0U1 ···Ukwk, a computation rule is defined fτ,R , that is a function from

�U1×···×�Uk into Dτ .

(G,(TU)U∈N) is called an attribute grammar.

For each word w ∈ L(G), and each attribute τ , the function describes the

recursive computation of τ(w).
It can be shown (see [9]) that if the attribute system is well defined (in a sense

that we will not explain here), then a system of q-equations can be obtained di-

rectly from the q-grammarattribute grammar. Adding attributes to a grammar

introduces nonalgebraic substitutions in the commutative equations. Here, we

just give a trite example.

Example 4.2. The language coding Ferrers diagrams is the language en-

coding their profile by means of words of the form w = aub written on the

alphabet {a,b}. A grammar for this language is

G = 〈{S,L},{a,b},{S �→ aLb,L �→ aL,L �→ bL,L �→ ε},S〉.
The attribute grammar (G,τ) defined below computes the number of cells

based on this encoding:

S �→ aLb, τ(S)= q|τ(L)|a+|τ(L)|b+1abτ(L),

L �→ aL, τ(L)= q|τ(L)|baτ(L),
L �→ bL, τ(L)= bτ(L),
L �→ ε, τ(L)= 1.

It is easy to show that the system of q-equations is

S(a,b;q)= qaL(aq,bq;q)b,

L(a,b;q)= aL(a,bq;q)+bL(a,b;q)+1,

from which one can deduce the well-known generating function

s(a,b;q)=
∞∑
n=0

anqn+1(
1−qb)(1−q2b

)···(1−qn+1b
) .

Systems of q-equations can be obtained by this method, but solving them re-

mains challenging even in cases when they give very nice results (see [11]). We

must point out a general solution for q-equation given by M. Bousquet-Mélou

in [6].
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= + + +

Figure 4.2. An object grammar for skew polyominoes.

4.2. Object grammars. Another extension of the DSV-methodology is ob-

ject grammars, due to Dutour and Fédou [15]. They describe a Schützenberger

method without word that is based only on the unambigous recursive decom-

position of the combinatorial objects. Other methods have a similar approach

see [17]. We give a definition, then we describe some applications. Let � a set

of combinatorial objects.

Definition 4.3. Let {Ei}i=1,k and E be subsets of �. An object operation is

an application from E1×E2×···×Ek in E.

Definition 4.4. An object grammar is a 4-tuple G = 〈�,�,P ,∫ 〉 such that

• � is a set of subsets of �,

• � is a finite set of terminal objects in �,

• P is a set of object operations defined on k-tuples of � with value in �,

• ∫
is in � and is called axiom.

Clearly if � is an alphabet and � = �∗, then an algebraic language can be

defined by an object grammar. As for algebraic language, one can define the

derivation of an object from
∫

in the object grammar G.

Example 4.5. We come back to skew polyominoes. Let � be the set of poly-

ominoes, and let � be the set of skew polyominoes. We define

• �= {�},
• �= {�}, that is, the polyomino with only one cell,

• ∫ =�.

Let O1 and O2 be skew polyominoes, then the objects operations are the fol-

lowing:

• φ1 consists of adding to O1 a column with one cell on its left in order to

get a new skew polyomino,

• φ2 consists of adding one cell to each column of O1,

• φ3 consists of gluing two polyominoesO1 andO2 by the rightmost upper

cell of O1 and the leftmost downer cell of O2.

Clearly, we have the recursive equation

�=�+φ1(�)+φ2(�)+φ3
(
φ2(�),�

)
that is pictured in Figure 4.2.
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Figure 4.3. A view of the Latour software.

In enumerative combinatorics, Catalan numbers and Dyck words are in-

volved in a lot of constructions. One central result in objects grammars en-

lightens this fact.

Let G = 〈�,�,P ,∫ 〉 be an object grammar such that � = �. Dutour and Fé-

dou associate a characteristic polynomial g(x) to G. We define it for a one-

dimensional system. It is obtained by substituting in the right part of the rule

associated to � each occurence of � by x and each terminal object by 1, for-

getting the object operations.

Example 4.6. From the previous equation, we get g(x)= 1+2x+x2.

Using the notion of substitution and constructing the solution, Dutour and

Fédou proved the following theorem.

Theorem 4.7. Two one-dimensional grammars of degree almost two are

isomorphic by the substitution process.

As a consequence, for a large class of combinatorial objects, bijections can be

constructed from the Dyck language. Nice examples are given in [15]. Of course,

the notion of a polynomial can be extended to a system having higher degree

than one. Moreover, they give an efficient tool for the random generation of

objects. The Maple package is available at

http://dept-info.labri.u-bordeaux.fr/˜dutour/QALGO

5. Application to information visualization. In this section, we describe

the software Latour [19] developped by CWI and LaBRI. This software deals

with tree visualization. The problem of displaying and interacting with large

set of information can be abstracted to the same problem for graphs. Latour

is devoted to the special case of tree. A lot of software try to have a very good

drawing of the structure, [13]. The scale of information visualization raises

up structures having frequently several thousands of nodes. Insteed of trying
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1 1

2 1

1

2 2

2 11

3

Figure 5.1. Strahler number computation for binary trees.

to solve the complete problem, the Latour’s approach is to use enumerative

combinatorics in order to construct tools for exploring or folding parts of the

structure.

In Figure 4.3, a tree is shown with Latour menus. The main goal in Latour

is to construct measures on the tree that help the user in watching infor-

mation. Here, we want to enlighten only two measures: Guiding the user in

a zoom function and folding automatically subtrees that are too big or too

small.

5.1. Strahler numbers as a user guide. Strahler numbers are very classical

numbers in lots of fields as biology, computer science [31]. They were defined

by the geographers Norton and Strahler in order to give a mathematical def-

inition for fluvial bassin. The definition for Strahler numbers on binary trees

can be done as follow.

Definition 5.1. Let b = (root(b),L(b),R(b)) be a binary tree. To each node

v ∈ b, the Strahler number S(v) of v is

• if v is a leaf then S(v)= 1,

• if S(root(L(b)))= S(root(R(b))) then S(v)= S(root(L(b)))+1,

• else S(v)=max(S(root(L(b))),S(root(R(b)))).
The Strahler number of the tree is S(root(b)).

An example is displayed on Figure 5.1. Many extensions of Strahler numbers

can be set for plane trees. One of them, due to Fédou, is meaningful according

to the computer science definition that is the minimum number of registers for

computing an arithmetical expression [8]. In this case, the Strahler numbers

are rather given by an algorithm than by a formula. Roughly, the value of the
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v

2 3 2 4 1 2 2 2

[4,3,2,2,2,2,2,1] S(v)= 8

Figure 5.2. Strahler number computation for plane trees.

(a) Simple view.

(b) Simple zoom view.

Figure 5.3. Views from latour.

leaves are 1. Suppose that a vertex v of the tree has sons v1,v2, . . . ,vk then

rank the vii=1···k in decreasing order, it gives a list of values u(i)i=1···k. Then
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(a) Strahler view.

(b) Strahler zoom.

Figure 5.4. Views from latour.

do

s:=u(1);

free:=u(1)-1;

for i from 2 to k do

if free<u(i) then s:=s+1

else free:=free-1

fi

od;

Then the variable s contains the value of S(v) (see Figure 5.2).



COMBINATORICS, INFORMATION VIZUALISATION, . . . 155

(a) Tree before folding.

(b) Tree after folding confidence level 5%.

Figure 5.5. Latour: a fold.

A part of the mathematical study of this parameter on trees, coloring edges

according to this parameter in a tree visualization software guide the user dur-

ing a zoom. It shows him which relative importance has the zoom window in

the whole tree. We have experimented this technic in several fields (data struc-

tures for compilers, file hierarchical systems, . . .). In Figure 5.3 (respectively,

Figure 5.4), we give two views of the same tree with zoom without (respectively,

with) Strahler measure.

5.2. Folding trees using leaves numbers. The number of leaves of a plane

tree is a very classical parameter. We have the well-known result.

Theorem 5.2. The number of tree B having n nodes and k leaves is

Cn,k = 1
n−1

(
n−1

k

)(
n−1

k−1

)
.
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Let fn be the random variable number of leaves in a tree having n nodes.

Then, as soon as n is greater than 10, fn as a normal distribution with mean

n/2 and standard deviation
√
(n/8). This approximation can be deduced based

on a much more general (and highly nontrivial) theorem described in a paper

of M. Dmrota [14].

In Latour, we use this distribution for folding automatically subtrees that

are “unusually” large or small with respect to the number of leaves. We must

point out, that, at this stage, we do not take into account the number of leaves

of the full tree. This can change drastically the probability law. In the future,

the fold tool will offer to the user to take into account the number of leaves in

the general tree and also two others features:

• the maximum degree of the nodes,

• the maximal length of paths such that each node has only one son.

Anyway, users agree on this tool. In Figure 5.5, we show the folding effect. The

Latour software is available at http://www.cwi.nl/InfoVisu.
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The (1+1)-dimensional cobordism category of closed 1-dimensional man-

ifolds and oriented surfaces is a most basic mathematical structure. It has

played a fundamental role in string theory and conformal field theory. We

give a brief account of its structure and indicate what structure it gives vector

spaces and other algebraic objects on which it (or an embellished version of it)

acts. We explain how such functors lead to invariants of 2- and 3-dimensional

manifolds and give an application to topological conformal field theory.

1. (1+1)-dimensional TQFTs. Let � be the category of closed 1-dimensional

manifolds up to diffeomorphisms and oriented cobordisms up to diffeomor-

phisms. The objects of � are thus in one-to-one correspondence with the natu-

ral numbers,n∈N representingn copies of the unit circle, and the morphisms

are oriented surfaces F : n →m with boundary ∂F = n m which may have

any number of components c(F) with sum of their genera g(F). Denote by

D : 1 �→ 0, the disk;

P : 2 �→ 1, the pair of pants surface;

C : 1 �→ 1, the cylinder: The identity morphism;

T : 1 �→ 1, the torus with two boundary components.

Composition in � is given by gluing along common boundary components.

There is also a monoidal functor �×�→� given by disjoint union. An impor-

tant observation is that this monoidal product is symmetric.

Let �b be the subcategory in which no component of F is a cobordism to the

empty manifold zero (thus D is not in �b), and let �1 be the subcategory with

the single object 1 and all cobordisms connected (neither D nor P are in �1).

Note �1 is isomorphic to the category with one object and morphism set the

natural numbers representing the genus of the surface.

Definition 1.1. A (1+ 1)-dimensional topological quantum field theory

(TQFT) is a nontrivial monoidal functor � from � to the category of vector

spaces with monoidal structure given by tensor product.
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43 4 3

Figure 1.1. Composition in �.

The following theorem is folklore and can be proved as an exercise. The

converse holds as well (cf. [1]).

Theorem 1.2. �(1) is a finite-dimensional commutative Frobenius algebra:

The product is given by �(P) and the trace by �(D).

A Frobenius algebra is an algebra with trace such that the composite of

product and trace is a non-degenerate inner product.

Note that � determines a topological invariant of closed surfaces: As �

is monoidal �(0) = C and hence the linear function associated to a closed

surface is an element of C, our invariant. It is well known that the universal

topological invariant of a closed surface is its Euler characteristic χ. Define a

functor Φ from � to the category with one object and morphisms the integers

by assigning to a cobordism F :n→m the number

Φ(F) := 1
2

(
m−n−χ(F))= g(F)+m−c(F).

This functor detects most of the combinatorics of �: When F is in �b, Φ(F)≥
0, and the restriction of Φ to �b is left adjoint to the inclusion functor �1 →�b.

Φ factors through the localization �[�−1] of � in which all morphisms are for-

mally inverted. It induces an isomorphism of endomorphism sets �[�−1](n,n)
! Z for each n≥ 0. See [8] for details and applications.

Remark 1.3. Similarly one can define TQFTs in higher dimensions leading to

invariants of higher dimensional manifolds. Particularly interesting examples

are found in dimensions 2+1 and 3+1 (see [2, 7] for surveys of the motivating

examples).

2. (1+1)-dimensional 2-TQFTs. We embellish � by considering also mor-

phisms of cobordisms. The result is a 2-category which we denote by �. Given

a cobordism F , its set of automorphisms in � is defined to be the mapping



COMBINATORICS OF THE SURFACE CATEGORY AND TQFTS 161
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τ

Figure 2.1. Generators in Γ(C) and Γ(P).

class group

Γ(F)=π0Diff+(F,∂F),

the components of the group of orientation preserving diffeomorphisms of F
that leave the boundary pointwise fixed. For example, Γ(C) is Z and Γ(P) is the

pure ribbon braid group on two strands, Z3; these two groups are generated by

diffeomorphisms that result when twisting one of the boundary components

by a full turn. We denote the element corresponding to the twist around the

target circle of P by τ . The composition and the symmetric monoidal structures

of � can be extended to � in an obvious way.

The target of a functor from � is naturally another 2-category. We are also

now interested in finding invariants of closed three manifolds. Thus vector

spaces need to occur in the categorical hierachy not as objects but as mor-

phisms. This motivates the following definitions.

A C-category is a category in which the morphisms sets are C-vector spaces

and composition is bilinear; for example, the category of finite dimensional C-

vector spaces VectC, and the category of finitely generated projective modules

Mod(A) over a C-algebra A. The tensor product of two C-categories is formed

by taking the Cartesian product of the objects and the usual tensor product

of the morphism spaces. The unit element for this tensor product is thus the

category with one object and morphism set C.

We need to impose two technical conditions on the C-categories: (1) that co-

products exist, and (2) that the kernel of idempotents exist. Such categories are

called complete. Every C-category has a unique completion; for example, the

completion of the unit element is just VectC. Let C-CAT denote the 2-category

with complete C-categories as objects, linear functors as morphisms, and nat-

ural transformations as morphisms between morphisms.

Definition 2.1. A (1+ 1)-dimensional 2-TQFT is a (nontrivial) monoidal

functor � of 2-categories from � to C-CAT.

Theorem 2.2 (see [9]). �(1) is a Frobenius category. Furthermore, �(1) is

equivalent to Mod(A) of a semi-simple algebra A, where A is the endomorphism

set of a particular element in �(1).



162 ULRIKE TILLMANN

A Frobenius category is the categorical version of a Frobenius algebra. In

particular, �(1) is braided monoidal (the product given by �(P), the braiding

by the natural tranformation �(τ)), and balanced (the generator of Γ(C) = Z
induces a natural transformation of the identity functor).

It can be deduced that � determines a modular functor in the sense of [6].

Hence, it determines a topological invariant of closed 3-mainfolds by unpub-

lished work of Kontsevich and Walker which shows that every modular functor

determines a TQFT in dimension 2+1.

3. CFTs and TCFTs. Replace � now by the category � in which the surface

F is replaced by the moduli space of complex surfaces �(F) of topological

type F . Thus a morphism from n tom is now a Riemann surface. Composition

and symmetric monoidal structure are defined just as in �.

The morphism sets of � have a natural topology. One way to study � alge-

braically is via the 2-category � of the previous section. Note that

�(F)! BΓ(F)

whenever F is a connected surface with at least one boundary component;

here BG = K(G,1) denotes the classifying space of the discrete group G. An-

other way to study � algebraically is to replace the spaces �(F) by their chain

complexes C∗�(F). We will denote the resulting category by C∗�.

Definition 3.1. (1) A conformal field theory (CFT) is a (nontrivial) monoidal

functor � from � to the category of Hilbert spaces.

(2) A topological conformal field theory (TCFT) is a (nontrivial) monoidal

functor � from C∗� to the category of C-chain complexes.

CFTs are very hard to study (see [5]). We restrict ourselves to TCFTs. The

chain complex V := �(1) is known as the BRST-complex and its homology

H∗V is the space of physical states. Note that each element in H∗�(F) for

F :n→m defines an operation H∗V⊗n→H∗V⊗m.

Theorem 3.2 (see [3]). H∗V is a Batalin-Vilkovisky algebra.

Batalin-Vilkovisky algebras are graded Poisson algebras with a differential.

The product (of degree 0) on H∗V is given by the image of the unit in Z =
H0�(P); the Lie bracket [ , ] (of degree 1) is the image of τ in Γ(P) = Z3 =
H1�(P); the differential # (of degree 1) is the image of the unit in Γ(C)= Z=
H1�(C).

Getzler’s theorem above takes only the operations coming from genus zero

surfaces into account. The following theorem, however, says that these are not

indicative for the structure of H∗V .

Theorem 3.3 (see [10]). Let t be image under � of the unit in Z=H0�(T).
Then in the localization H∗V[t−1], the differential # and the Lie bracket [ , ]
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are trivial. More precisely, in H∗V

t3#= 0, t3[ , ]= 0.

The essential ingredient of the proof is Harer’s stability theorem [4]. It says

that the homology of the moduli spaces is independent of the genus and the

number of boundary components in dimensions less than half the genus. Thus

twisting a boundary component of a surface with sufficiently high genus has

the same effect on homology as when that boundary component is closed by

gluing in a disk. The twist, however, becomes homotopic to the identity in the

resulting surface. As# is of degree 1, genus 3 is sufficient and hence t3#= 0.

Similarly, τ vanishes in homology when the surface has at least genus 3, and

hence t3[ , ]= 0.

Acknowledgement. I would like to thank S. T. Tsou for comments on an

earlier version of this paper.

References

[1] L. Abrams, Two-dimensional topological quantum field theories and Frobe-
nius algebras, J. Knot Theory Ramifications 5 (1996), no. 5, 569–587.
MR 97j:81292. Zbl 897.57015.

[2] M. Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math.
(1988), no. 68, 175–186 (1989). MR 90e:57059. Zbl 692.53053.

[3] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field the-
ories, Comm. Math. Phys. 159 (1994), no. 2, 265–285. MR 95h:81099.
Zbl 807.17026.

[4] J. L. Harer, Stability of the homology of the mapping class groups of orientable
surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215–249. MR 87f:57009.

[5] G. Segal, The Definition of Conformal Field Theory, unpublished but widely cir-
culated manuscript.

[6] , Two-dimensional conformal field theories and modular functors, IXth
International Congress on Mathematical Physics (Swansea, 1988), Hilger,
Bristol, 1989, pp. 22–37. MR 92b:81192.

[7] , Geometric aspects of quantum field theory, Proceedings of the Interna-
tional Congress of Mathematicians, Vol. I, II (Kyoto, Japan, 1990) (Tokyo),
Math. Soc. Japan, 1991, pp. 1387–1396. MR 93f:81002. Zbl 757.53048.

[8] U. Tillmann, The classifying space of the (1+1)-dimensional cobordism category,
J. Reine Angew. Math. 479 (1996), 67–75. MR 97i:55035. Zbl 856.18010.

[9] , S-structures for k-linear categories and the definition of a modular func-
tor, J. London Math. Soc. (2) 58 (1998), no. 1, 208–228. MR 2000f:57034.
Zbl 922.57012.

[10] , Vanishing of the Batalin-Vilkovisky algebra structure for TCFTs, Comm.
Math. Phys. 205 (1999), no. 2, 283–286. MR 2000k:57032. Zbl 939.58011.



CONJUGACY CLASS SIZES—SOME IMPLICATIONS
FOR FINITE GROUPS

RACHEL CAMINA

University of Cambridge, UK
r.d.camina@dpmms.cam.ac.uk

1. Introduction. Let G be a finite group and x be an element of G. The

conjugacy class of x in G is defined to be

xG = {
g−1xg : g ∈G}.

Using the orbit-stabiliser theorem, it is easy to see that the size of the con-

jugacy class |xG| is equal to |G : CG(x)| where CG(x) = {g ∈ G : g−1xg = x}
is the centraliser of x in G, and thus |xG| is sometimes called the index of x
in G. A common theme in group theory has been to deduce structural results

about G given arithmetical conditions on the indices of the elements of G. One

of the earliest and most important results is the following.

Lemma 1.1 (Burnside’s pα lemma [2]). Let G be a finite group and suppose

there exists x ∈G with |xG| = pα for some prime p and some α∈N. Then G is

not simple.

In 1953 Baer characterised all finite groups G in which every element of

prime power order has prime power index.

Theorem 1.2 (see [1]). Every element of prime power order in the finite group

G has prime power index in G, if and only if, G is the direct product of groups

G1, . . . ,Gn with the following properties:

(a) The orders of Gi and Gj are relatively prime for i≠ j.
(b) If Gi is not of prime power order, then the order of Gi is divisible by exactly

two different primes and its Sylow subgroups are abelian.

He went on to say: “The question may be raised as to the characterization of

those groups whose p-elements, for just one prime p, have prime power index.

The present discussion does not seem to throw much light on this question.”

An answer to this question is given in the next section.

In the final section the question of whether a group can be recognised as

being nilpotent, given the sizes of its conjugacy classes, is considered.

Additional motivation for studying the effect of conjugacy class sizes on the

structure of a group is given by the fact that the number of conjugacy classes of

G is equal to the number of irreducible characters of G over C. Denote this set
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of irreducible characters by Irr(G). Many results have been proved concerning

the influence of the arithmetical structure of the set of character degrees of G
on the structure of G. It is natural to ask about possible analogous results with

conjugacy class sizes replacing character degrees. This is the approach taken

by Chillag and Herzog [5]. For example, Willems has proved the following (see

[10]).

Character version. If χ(1) is not divisible by 4 for all χ ∈ Irr(G), then

either G is soluble or it has a normal soluble subgroup with factor group A7.

Chillag and Herzog proved the following analogous result.

Conjugacy class version. If |xG| is not divisible by 4 for all x ∈G, then

G is soluble.

The original proof of this result uses the classification of finite simple groups.

For a classification-free proof see [4].

Notation. Let p be a prime. A p-element is an element of order pn for

some n∈N. Similarly, a p-subgroup is a subgroup of order pn for some n∈N.

A p′-subgroup is a subgroup of order coprime to p.

2. q-Baer groups. The following definition is inspired by Baer’s question.

Definition 2.1. Let G be a finite group and q a prime dividing |G|. G is

called a q-Baer group if all q-elements of G are of prime power index.

Note that direct q′-factors of G tend to be ignored as they have no effect on

this property.

Example 2.2. (a) Let G be nilpotent and suppose q divides |G|, then G is

a q-Baer group. This follows from the fact that G is a product of its Sylow

subgroups. In particular each q-element is of q-power index.

(b) LetV be a 2-dimensional vector space over the finite field F3 of 3 elements.

Then V is additively isomorphic to F9 the finite field of 9 elements. The nonzero

elements of F9, denoted by F∗9 , form a multiplicative group of order 8 and

multiplication by an element of F∗9 defines an isomorphism of V . Thus, in

particular, if you take the element of order 2 in F∗9 you have defined an action

of C2 the cyclic group of order 2, on V and you can construct the semi-direct

product VC2, this is a 2-Baer and a 3-Baer group.

More generally, let p and q be distinct primes. Let V be a vector space over

the finite field Fq and let P be a p-group with an irreducible representation

over V . Then the extension VP is a q-Baer group (note P need not be abelian).

(c) Similar to (b), let V be a 3-dimensional vector space over F2, so V is

additively isomorphic to F8. Then, multipication by an element of F∗8 yields an

action of C7 on V and we have constructed a semi-direct product VC7 which

is both a 2-Baer and a 7-Baer group. However, if we now extend VC7 by the
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field automorphism of F8 given by x � x2 which has order 3 (and is also

an automorphism of multiplicative F∗8 ), then we have a group of order 8.7.3.

Moreover, although this extension is still a 2-Baer group, each 2-element has

index 7, it is no longer a 7-Baer group, each 7-element has index 24 and it is

not a 3-Baer group, each 3-element has index 28.

Before stating the theorem that characterises q-Baer groups, we introduce

some standard definitions.

Definition 2.3. Let q be a prime. Then Oq(G) denotes the largest normal

q-subgroup of G and Oq′(G) the largest normal q′-subgroup.

Definition 2.4. A finite group G is q-soluble if every composition factor

of G whose order is divisible by q is abelian.

If G is q-soluble it has a normal series

1<H1 <H2 < ···<Hn =G
such that the factors alternate between being q′-groups and q-groups. The

minimum number of q-factors in such a normal series is the q-length of the

group. Thus if G is q-soluble of q-length 1, it has a normal series of the form

1≤Oq′(G)≤K ≤G,
where K/Oq′(G) is a q-group and G/K is a q′-group.

We are now ready to state the theorem.

Theorem 2.5 (see [4]). Let G be a q-Baer group for some prime q. Then

(a) G is q-soluble with q-length 1, and

(b) there is a unique prime p such that each q-element has p-power index.

Further, let Q be a Sylow q-subgroup of G.

(c) If p = q then Q is a direct factor of G.

(d) If p ≠ q thenQ is abelian, Op(G)Q is normal inG andG/Oq′(G) is soluble.

Using the following lemma, which is readily proved, we can see how Baer’s

result follows from the above theorem. SupposeG is both a q-Baer and a p-Baer

group for primes p ≠ q and that all q-elements have p-power index. Then, by

the theorem and lemma, PQ is a direct factor of G where P is an abelian Sylow

p-subgroup and Q is an abelian Sylow q-subgroup. Baer’s theorem follows.

Lemma 2.6 (see [4]). Let G be a q-Baer group and a p-Baer group for primes

p ≠ q. Suppose that all q-elements have p-power index. Then all p-elements

have q-power index.

The first step in the proof of the theorem is to generalise the following result

of Wielandt [1].

Lemma 2.7 (Wielandt’s lemma). Let G be a finite group and x ∈G. Suppose x
is ap-element and |xG| = pn for some primep and somen∈N, thenx ∈Op(G).
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Lemma 2.8 (Generalisation of Wielandt’s lemma). Let G be a finite group and

x ∈ G. Suppose |xG| = pn for some prime p and some n ∈ N, then [xG,xG] ⊆
Op(G).

That Wielandt’s result follows from the above can be seen as follows. Sup-

pose Wielandt’s hypotheses hold, by the generalisation [xG,xG]⊆Op(G). This

implies that Op(G)〈x〉 is a subnormal p-subgroup of G and hence is in Op(G),
giving Wielandt’s result.

To prove the generalisation the following result of Kazarin is used. Its proof

uses the theory of modular characters and is independent of the classification

of finite simple groups, and thus so is the proof of the characterisation of

q-Baer groups.

Theorem 2.9 (see [9]). Let x ∈G, where G is a group of finite order. Suppose

|xG| = pn for some prime p and some n∈N. Then 〈xG〉 is a soluble subgroup

of G.

3. Nilpotent groups. First, we introduce some notation. In 1953, Itô [8] de-

fined the conjugate type vector of a finite group G to be the r -tuple {n1,n2,
. . . ,nr} where n1 >n2 > ···>nr = 1 are the numbers that occur as conjugacy

class sizes of G. We define the product of two conjugate type vectors as

{
n1,n2, . . . ,nr

}×{m1,m2, . . . ,ms
}= {

nimj | 1≤ i≤ r , 1≤ j ≤ s
}
.

Note that if G and H are finite groups with conjugate type vectors n̄= {n1,n2,
. . . ,nr} and m̄= {m1,m2, . . . ,ms}, respectively, then G×H has conjugate type

vector n̄×m̄.

A nilpotent group G is a product of its Sylow subgroups, so its conjugate

type vector is of the form{
pa1,1

1 , . . . ,p
a1,r1
1

}
×···×

{
pan,1n , . . . ,pan,rnn

}
,

where the pi are distinct primes and ai,j ∈N. The question is, whether a group

with such a conjugate type vector is nilpotent. So far two results in this direc-

tion have been proved.

Theorem 3.1 (see [3]). Let p and q be distinct primes and a,b ∈N. A group

with conjugate type vector {
pa,1

}×{qb,1}
is nilpotent.

Theorem 3.2 (see [4]). Let p1, . . . ,pr be distinct primes. A group with conju-

gate type vector {
p1,1

}×···×{pr ,1}
is nilpotent.
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To answer this question in full it is useful to know which conjugate type

vectors it is possible for a p-group to have. This question has been answered

by Cossey and Hawkes.

Theorem 3.3 (see [6]). Let p be a prime and S a finite set of p-powers con-

taining 1. Then there exists a p-group of nilpotency class 2 for which S (ordered

appropriately) is its conjugate type vector.

It is worth noting that Isaacs has proved an analogous result for character

degrees [7]. However, the question, whether you can recognise a group as being

nilpotent from its conjugate type vector, is still open.
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1. Definition and examples. Circle planes are generalizations of the clas-

sical real Möbius plane, that is, the geometry of points and circles on the 2-

sphere. Some of the essential incidence properties of this geometry appear

as axioms of an abstract circle plane. Note that there are different axiomatic

approaches, for example, the concepts of Möbius plane and of Benz plane (see

below). Our definition of circle planes follows A. Herzer, which means that they

are exactly the 2-dimensional chain spaces (see [4]).

Definition 1.1. A circle plane is an incidence structure Σ = (P,�), where

P �= ∅ is the set of points of Σ and � is a set of certain subsets of P called

circles, such that the following axioms are satisfied:

CP1: If p,q,r ∈ P are pairwise distant, then there is a unique C ∈ � with

p,q,r ∈ C .

Here two points are called distant, if they are different and joined by at least

one circle.

CP2: For each p ∈ P the residue Σp := (Pp,�p), with Pp := {q ∈ P | q distant

to p}, �p := {C \{p} | p ∈ C ∈ �}, is a partial affine plane, that is, an affine

plane with some parallel classes of lines being removed.

We start with some small examples.

Example 1.2. Let Σ= (P,�) be the incidence structure with 9 points and 6

circles given in Figure 1.1, where the lines of the figure are the “circles” of Σ.

Three points of Σ are pairwise distant, exactly if they constitute one of the 6

circles, so CP1 holds. The residue Σp at some point p ∈ P looks as in Figure 1.1.

�

�

�

�

�

p

�

�

�

�

Σ

� �

�

�

Σp

� �

�

�

�
��

�
��

�
��

�
��

affine plane

Figure 1.1.
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Figure 1.2.

So this residue is the affine plane of order 2, where two parallel classes of

lines are missing. The same is true for every other point of Σ, and axiom CP2

is satisfied as well. Altogether, Σ is a circle plane.

In addition, Σ fulfils the following condition: The relation “not distant” is the

union of two equivalence relations. Both equivalence relations have 3 equiva-

lence classes of 3 elements each, which are exactly the 6 lines that are missing

in the first figure in order to make Σ the affine plane of order 3.

A circle planeΣ= (P,�), where in each residueΣp exactly two parallel classes

of lines are missing, and where “not distant” is the union of two equivalence

relations, is called a Minkowski plane. So the circle plane of Example 1.2 is a

Minkowski plane. Compare [7] for another, but equivalent, definition.

Example 1.3. Consider the incidence structure Σ = (P,�), whose points

are the 6 vertices and whose circles are the 8 faces of an octahedron (see

Figure 1.2).

One can easily verify that this is also a circle plane. Here each residue is the

affine plane of order 2 with one parallel class of lines missing. Moreover, the

relation “not distant” is an equivalence relation.

A circle plane Σ= (P,�) as in Example 1.3, where in each residue Σp exactly

one parallel class of lines is missing, and where “not distant” is an equiva-

lence relation, is called a Laguerre plane. Compare again [7] for a different, but

equivalent, approach.

From the two circle planes of the examples above, one can construct infin-

itely many new—but not very interesting—circle planes by using the following

obvious fact.

Remark 1.4. Let Σ1 = (P1,�1) and Σ2 = (P2,�2) be two circle planes with

disjoint point sets. Then also the union Σ1∪Σ2 := (P1∪P2,�1∪�2) is a circle

plane.

We are going to restrict ourselves to connected circle planes, where any two

points p,q belong to a finite sequence p = p0,p1, . . . ,pn = q of points with pi−1

distant to pi (i = 1, . . . ,n). Note that this is no substantial restriction because

each circle plane is the union of its connected components, which in turn are

circle planes.
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The circle planes of the examples above are obviously connected. One can

show that in fact every Minkowski plane and every Laguerre plane is connected.

2. Combinatorics of finite circle planes. A circle plane Σ = (P,�) is called

finite, if P is a finite set. Then obviously also the circle set � is finite. Finite

circle planes can be considered as combinatorial structures.

Let C,D ∈ � be two circles of a finite circle plane Σ = (P,�) that meet in a

point p ∈ P. Then C \ {p} and D \ {p} are lines of the residue Σp and hence

lines of a finite affine plane. In particular, both C and D have n+ 1 points,

where n≥ 2 is the order of this affine plane.

Now assume that Σ is connected. Then any two circles belong to a finite se-

quence of circles that meet, and hence have the same number of points, sayn+
1. As a consequence, each residue Σp is obtained from an affine plane of order

n. Note that not all n∈N are admissible orders of finite affine planes (see [3]).

In a similar way, one can show that in a connected finite circle plane Σ the

number m ≥ 1 of circles joining two distant points p,q is independent of the

choice of p and q. Since m is the number of lines through q in the residue

Σp , we obtain that in Σp there are m parallel classes of lines of the underlying

affine plane left, or, in other words, n+1−m parallel classes are missing. In

particular, we have m≤n+1.

We summarize our observations as follows.

Proposition 2.1. Let Σ= (P,�) be a connected finite circle plane. Then there

are n,m∈N with m≤n+1, such that

• each circle contains exactly n+1 points,

• each pair of distant points is joined by exactly m circles.

The pair (n,m) is called the order of Σ.

If Σ is of order (n,m), then for each p ∈ P the residue Σp contains n2 points

and m parallel classes that consist of n lines each. So in Σ there are exactly n2

points distant to p and mn circles through p. Moreover, if Σ has v points, then

the number of circles of Σ equals vmn/(n+1).

The statement on the number of circles is obtained by counting the incident

point-circle pairs in Σ.

The circle planes of Examples 1.2 and 1.3 have orders (2,1) and (2,2), re-

spectively. More generally, a finite Minkowski plane always has order (n,n−1),
and a finite Laguerre plane has order (n,n).

3. Finite Möbius planes. Apart from Laguerre and Minkowski planes, there

is a third type of circle plane that has been treated in detail in the litera-

ture, namely, Möbius planes (compare, e.g., [3], where they are called inversive

planes).

Let Σ= (P,�) be a connected circle plane. Then Σ is called a Möbius plane, if

each residue Σp is an affine plane (i.e., no parallel classes of lines are missing).
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Most authors only consider Möbius, Laguerre, and Minkowski planes (see

[7]). They are subsumed under the name of Benz planes, because it was W. Benz

who first studied them in a uniform way (see [1]). Pictures of small Benz planes

can be found in [6].

Now let Σ be a Möbius plane. Any two different points of some residue Σp
are distant, because their joining line in the affine plane Σp extends to a circle.

The condition that Σ is connected yields that any two different points of Σ are

distant. Hence in Möbius planes the relations “distant” and “different” coincide.

In particular, the point set of a Möbius plane is the point set of an affine plane

plus one extra point.

The order of a finite Möbius plane Σ always has the form (n,n+1). One says

for short that Σ has order n. If Σ is of order n, then it is a 3-design with param-

eters (n2+1,n+1,1), meaning that Σ has n2+1 points, each block (i.e., each

circle) contains n+1 points, and any 3 points lie together in exactly one block.

In [5, Theorem 4.9], it is shown that also the converse holds.

Theorem 3.1. The finite Möbius planes are exactly the 3-designs with pa-

rameters (n2+1,n+1,1), where n≥ 2.

The finite Laguerre and Minkowski planes do not admit such a nice combi-

natorial characterization, since the relation “distant” is more involved in these

cases.

Using Theorem 3.1, one can easily check the following. Compare [3] or [4]

for an analogue that also holds in the infinite case.

Theorem 3.2. Let PG(3,n) be the 3-dimensional projective space of order

n (over the finite field with n elements). A set � of n2+1 points of PG(3,n) is

called an ovoid, if each line of PG(3,n) meets � in either 0, 1, or 2 points.

For an ovoid � in PG(3,n), consider the set �(�) := {� ∩ � | � plane in

PG(3,n),|�∩�| ≥ 3} of plane sections of �. Then the incidence structure

Σ(�) := (
�,�(�)

)
is a Möbius plane, called ovoidal Möbius plane.

The classical example of an ovoid is an elliptic quadric. The circles of the

associated Möbius plane are the regular conics on the quadric. A class of non-

classical ovoids are the so-called Suzuki-Tits ovoids (described, e.g., in [3, pages

52, 53 ]), which exist only if n= 22k−1.

4. Chain geometries. There is also an analytical approach to circle planes.

The chain geometries Σ(K,R) over associative algebras with 1 are chain spaces

(compare [4]). If the K-algebra R is 2-dimensional over the field K, then Σ(K,R)
is a circle plane.

Definition 4.1. Let R be an associative algebra with 1 over the field K, such

that 1K = 1R . Let GL2(R) be the group of invertible 2×2 matrices over R. The
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projective line over the ring R is the set

P(R) :=
{
R(a,b) | a,b ∈ R,∃ c,d∈ R :

(
a b
c d

)
∈ GL2(R)

}
.

We embed P(K) in P(R) via K(k,l)� R(k,l). The group GL2(R) acts on P(R)
from the right in a natural way. A subset P(K)γ , γ ∈ GL2(R), of P(R) is called a

chain. Let �(K,R) be the set of all chains in P(R). Then the incidence structure

Σ(K,R) := (
P(R),�(K,R)

)
is called the chain geometry over (K,R).

There are exactly three types of 2-dimensional algebras (K,R). These give

rise to Möbius, Laguerre, and Minkowski planes, respectively (see [1]).

Theorem 4.2. Let R be a 2-dimensional algebra with 1 over the field K, and

let Σ = Σ(K,R) be the chain geometry over (K,R). Then one of the following

cases occurs:

(1) The ring R is a field (a quadratic extension of K). Then Σ is a Möbius plane.

(2) The ring R is isomorphic to the ring K(ε) := K+Kε, with ε2 = 0, of dual

numbers over K. Then Σ is a Laguerre plane.

(3) The ring R is isomorphic to the direct product K×K (with componentwise

addition and multiplication). Then Σ is a Minkowski plane.

The Benz planes Σ(K,R) are called miquelian, because they can be charac-

terized by Miquel’s configuration theorem (cf. [4]).

If the field K is finite, then the associated Benz planes are finite as well.

The three types of 2-dimensionalK-algebras can be distinguished as follows.

If R is a field, then R has no maximal ideals �= {0}. The ring R =K(ε) has exactly

one maximal ideal, namely Kε; hence K(ε) is a local ring. The ring K×K has

exactly the two maximal ideals K×{0} and {0}×K. Note that the number of

nontrivial maximal ideals of R coincides with the number of parallel classes of

lines missing in the residues Σp of Σ= Σ(K,R).
We conclude with an example of a connected finite circle plane which is not

a Benz plane.

Example 4.3 (see [2]). LetK = GF(4) be the field with 4 elements, considered

as a subring of the ringR =M(2×2,F) of 2×2 matrices over the field F = GF(2).
Although R is not a K-algebra, one can define Σ= Σ(K,R) as above.

Then Σ is a connected circle plane of order (4,2), with 35 points and thus

with 35·2·4/(4+1)= 56 circles. In particular, Σ is not a Benz plane.

A similar construction works for arbitrary quadratic field extensions. How-

ever, apart from Example 4.3 one does not obtain circle planes: In all other

cases three pairwise distant points are joined by more than one circle (com-

pare [2]).
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INTRODUCTION TO THE SESSION ON HILBERT PROBLEMS

In 1900, when he was 38 years old, David Hilbert presented 23 mathematical

problems to the International Congress of Mathematicians in Paris. These prob-

lems still today challenge mathematicians all over the world. Most of the prob-

lems are partially solved, some are answered in the negative, and some have

been restated or generalized; new interpretations have been solved. Hilbert’s

problems have generated (and still generate) much new mathematical research,

see, for example, Mathematical developments arising from Hilbert problems, in

Proceedings of Symposia in Pure Mathematics, vol. 28, edited by F. E. Brow-

der, Amer. Math. Soc. Providence, Rhode Island 1976. There is also a collection

on Hilbert’s Problems, edited by P. S. Alexandrov, 1969, in Russian, which has

been translated into German. A new book on the Hilbert problems will appear

in 2000: We must know, we shall know; a History of the Hilbert Problems by

Jeremy J. Gray, Oxford Univ. Press, 2000 (to appear).

List of the Hilbert problems. (1) Cantor’s problem of the cardinal number

of the continuum (the continuum hypothesis).

(2) The compatibility of the arithmetical axioms.

(3) The equality of the volumes of two tetrahedra of equal bases and equal

altitudes (see Ruth Kellerhals’ lecture).

(4) Problem of the straight line as the shortest distance between two points.

(5) Lie’s concept of continuous group transformations without the assump-

tion of the differentiability of the functions defining the group.

(6) Mathematical treatment of the axioms of physics.

(7) Irrationality and transcendence of certain numbers.

(8) Problems of prime numbers (the distribution of primes and the Riemann

hypothesis).

(9) Proof of the most general law of reciprocity in an arbitrary number field

(see class field theory developed by Hilbert, Takagi, Artin, and others; norm

rest symbols computed by Shafarevich in 1950, and further developments as

in algebraic K-theory).

(10) Determination of the solvability of a Diophantine equation (see Marie-

Francoise Roy’s lecture).

(11) Generalization of the theory of quadratic forms over the rational num-

bers to an arbitrary number field (the Hasse principle 1923/24, arithmetic and

algebraic theory of quadratic forms).

(12) Extension of Kroneker’s theorem on abelian fields to any realm of ra-

tionality (see Norbert Schappacher, On the history of Hilbert’s twelfth problem:
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A comedy of errors, Matériaux pour l’histoire des mathématiques au XXe siè-

cle (Nice, 1996), 243–273, Sémin. Congr., vol. 3, Soc. Math. France, Paris, 1998.

MR 99e:11002).

(13) Impossibility of the solution of the general equation of 7th degree by

means of functions of only two arguments.

(14) Proof of the finiteness of certain complete systems of functions (proved

by Emmy Noether in 1926 for invariants of finite groups; disproved, in general,

by M. Nagata in 1958).

(15) Rigorous foundation of Schubert’s enumerative calculus.

(16) Problem of the topology of algebraic curves and surfaces (see Marie-

Francoise Roy’s lecture).

(17) Expression of definite forms by squares (see Marie-Francoise Roy’s lec-

ture).

(18) Building up of space from congruent polyhedra (n-dimensional crystal-

lography groups, fundamental domains, sphere packing problem).

(19) Are the solutions of regular problems in the calculus of variations al-

ways necessarily analytic?

(20) The general problem of boundary values.

(21) Proof of the existence of linear differential equations having a pre-

scribed monodromic group.

(22) Uniformization of analytic relations by means of automorphic func-

tions.

(23) Further development of the methods of the calculus of variations.

References and links related to the Hilbert problems can be found at the

URL:

http://www.mathematik.uni-bielefeld.de/˜kersten/hilbert/problems.html

Ina Kersten
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RUTH KELLERHALS

Université Bordeaux I, France
ruth@math.u-bordeaux.fr

This is a summary of a survey talk about Hilbert’s third problem on scissors

congruence and analogous questions in hyperbolic geometry. The interested

reader finds some selected publications for further information in the bibliog-

raphy.

1. Introduction and some history. In the list of 23 problems proposed by

David Hilbert during the Second International Congress of Mathematicians

held in Paris in 1900, the third problem plays a special role, and does so in

several respects.

In contrast to the other problems, the third one deals with elementary ge-

ometrical questions about the foundations of geometry. Actually, in 1899,

Hilbert had just finished writing the book Grundlagen der Geometrie and was

interested in how to teach geometry. In this context, Hilbert mentioned that—

contrary to the planar case—volume computations in three-dimensional Eu-

clidean geometry are always based on some limiting process and on methods

of exhaustion. He asked for a rigorous proof that one cannot construct a theory

of polyhedral volume without the continuity axiom. His precise formulation

goes as follows.

The equality of the volumes of two tetrahedra of equal bases and equal

altitudes. In two letters to Gerling, Gauss expresses his regret that certain theo-

rems of solid geometry depend upon the method of exhaustion, that is, in modern

phraseology, upon the axiom of continuity (or upon the axioms of Archimedes).

Gauss mentions in particular the theorem of Euclid, that triangular pyramids

of equal altitudes are to each other as their bases. Now, the analogous problem

in the plane has been solved. Gerling also succeeded in proving the equality of

volume of symmetrical polyhedra by dividing them into congruent parts. Never-

theless, it seems to me probable that a general proof of this kind for the theorem

of Euclid just mentioned is impossible, and it should be our task to give a rigor-

ous proof of its impossibility. This would be obtained, as soon as we succeeded

in “specifying two tetrahedra of equal bases and equal altitudes which can in no

way be split up into congruent tetrahedra, and which cannot be combined with

congruent tetrahedra to form two polyhedra which themselves could be split up

into congruent tetrahedra.”
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In the very same year, Max Dehn confirmed Hilbert’s conjecture by con-

structing two polyhedra of equal volume which are not equidecomposable. I

will come back to Dehn’s solution below.

For a long while, the problem was forgotten until some Swiss mathemati-

cians started to work on related questions. Among those were

– Jean-Pierre Sydler, a student of Heinz Hopf at the ETH Zürich, who ex-

tended the work of Dehn in a completely satisfactory way. For this, he obtained

the Gold Medal of the Danish Academy of Sciences in 1966;

– Hugo Hadwiger and his group at the University of Bern who contributed

by extending Hilbert’s problem to Euclidean spaces of arbitrary dimensions.

In 1974, during the conference on mathematical developments arising from

Hilbert problems at DeKalb, there was a talk held about the third problem.

Unfortunately, the speaker did not submit his manuscript for publication in

the proceedings (see [12]).

In recent years, the mathematicians B. Jessen, A. Thorup, J. Dupont of the

Danish school, C.-H. Sah, P. Cartier, J. Milnor, J.-L. Cathelineau, A. Goncharov,

and others showed active interest in this circle of questions.

2. Reformulation and results. Although Hilbert’s third problem deals with

solid geometry and polyhedral volume, it is basically an algebraic problem.

Let Xn = Sn, En or Hn be the standard space of constant curvature 1, 0, or −1.

The scissors congruence or polytope group 	(Xn) of Xn is the abelian group

generated by the symbols [P] for each polytope P ⊂Xn subject to the relations

[P Q]= [P]+[Q], where P Q is the disjoint union of P,Q;

[g(P)]= [P], ∀g ∈ Iso
(
Xn

)
.

The problem can now be stated as follows: Find a complete system of invariants

for the scissors congruence or groups. There is the following criterion.

Proposition 2.1 (Zylev). [P] = [Q] � P ∼ Q equidecomposable, that is,

∃P = P1 ··· Pn,Q=Q1 ··· Qn such thatgk(Pk)=Qk for someg1, . . . ,gn ∈
Iso(Xn).

For n = 2 and in all geometries, a classical result due to Farkas Bolyai and

P. Gerwien says that polygonal area separates points in 	(X2).

Lemma 2.2. Let P , Q ⊂ X2 be two polygons. Then, [P] = [Q] if and only if

vol2(P)= vol2(Q).

3. Dehn’s solution for E3 and the theorem of Dehn-Sydler. We now present

a short outline of Dehn’s proof and note that he profited from a hint of Bricard.

Dehn discovered—beside polyhedral volume—another scissors congruence in-

variant, the so-called Dehn invariant.
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Let P ⊂ E3 be a Euclidean polyhedron with edges e1, . . . ,er of lengths l1, . . . , lr
and dihedral angles α1, . . . ,αr attached at e1, . . . ,er . The Dehn invariant is then

defined by

D(P)=
r∑
i=1

li⊗Zαi ∈R⊗ZR/πZ.

It is obvious that D(prism)= 0. Now, a necessary condition for two polyhedra

P,Q⊂ E3 to be equidecomposable is that

vol3(P)= vol3(Q), D(P)=D(Q). (∗)

Dehn’s solution consists of the construction of the following counter-example.

Let P := Sreg(2α) be a regular tetrahedron of edge length 1, that is, cos(2α)=
1/3 and α is irrational. On the other hand, choose a regular cube Q with

vol3(Q)= vol3(P). Then, P andQ cannot be scissors congruent sinceD(Q)= 0

while D(P)= 6⊗2α �= 0 (see (∗)).

In 1965, after 20 years of hard work, Sydler proved that the conditions (∗)

are also sufficient.

Theorem 3.1 (Dehn-Sydler). Let P ,Q⊂ E3 be two polyhedra. Then, [P]= [Q]
if and only if vol3(P)= vol3(Q) and D(P)=D(Q).

In 1968, Jessen [9] found a much simpler proof of Sydler’s result. Moreover,

only a few years later, he discovered that the analogous problem for E4 can be

reduced to the case of E3 as follows.

Let P ⊂ E4 be a Euclidean polytope with polygonal faces p1, . . . ,pr of areas

f1, . . . ,fr and with dihedral angles α1, . . . ,αr attached at p1, . . . ,pr . Consider

the Dehn invariant defined, similarly as above, by

D(P)=
r∑
i=1

fi⊗Zαi ∈R⊗ZR/πZ.

Theorem 3.2 (Jessen). Let P , Q ⊂ E4 be two polytopes. Then, [P] = [Q] if

and only if vol4(P)= vol4(Q) and D(P)=D(Q).
The proof is based essentially on the reducibility to the 3-dimensional result

by using the properties that

(a) in E4: P ∼ [0,1]×Q for some polyhedron Q⊂ E3;

(b) D(P)=D(I×Q)=D(Q).
However, for arbitrary spaces Xn = Sn, En orHn, n≥ 3, and Xn �= E3, E4, the

generalized third problem of Hilbert asking for a complete system of invariants

for 	(Xn) is unresolved.

4. Some developments concerning 	(Hn). In the last few years, Hilbert’s

third problem experienced some revival. This is mainly due to the interplay

with the cohomology of Lie groups made discrete, number theory and polylog-

arithms, algebraic K—theory and Borel groups, and the motivic interpretation
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of the non-Euclidean Dehn complex. For example, it was shown that the theo-

rem of Dehn-Sydler is equivalent to the fact that

H2
(
SO(3),R3)= 0.

In this article, it is impossible to discuss these relations (see [3, 7]). However,

in the following, I would like to indicate how some geometrical ideas of Sydler

and Jessen can be adapted to describe 	(H3).
Consider hyperbolic space Hn with boundary ∂Hn of points at infinity. For

this space, there are different polytope groups. While 	(Hn) denotes the usual

polytope group, 	(Hn) is built upon polytopes with vertices possibly at infin-

ity, and 	(Hn)∞ is generated by hyperbolic simplices all of whose vertices are

at infinity (such simplices are termed ideal).

Moreover, in any n-space of constant curvature, one can decompose con-

vex polytopes and simplices into orthoschemes; these are certain orthogonal

simplices which generalize the notion of right-angled triangles in some way.

They possess exactly two among the n+1 vertices which might be at infinity

(in the extremal case, they are termed doubly asymptotic). Orthoschemes are

very basic and fundamental in the following sense.

Proposition 4.1 (Debrunner-Sah). (1) 	(Hn) is generated by orthoschemes.

(2) 	(H2m+1) is generated by doubly asymptotic orthoschemes.

(3) For n≥ 3 : 	(Hn)!	(Hn)!	(Hn)∞.

Now, the notion of the Dehn invariant can be extended, to include the case of

asymptotic, hyperbolic polyhedra. For example, consider an ideal tetrahedron

S∞(z)⊂H3 =
(
P1(C)×R+,ds2 = |dz|2

(Imz)2

)

with vertices 0,1,∞,z in the upper half space model. S∞(z) has three pairs of

dihedral angles attached at opposite edges, namely

α1 := argz, α2 := arg
(

1− 1
z

)
, α3 := arg

1
1−z =π−

(
α1+α2

)
.

It can be seen that the formula

D
(
S∞(z)

)= 2
3∑
i=1

log
(
2sinαi

)⊗Zαi
extends Dehn’s invariant of a hyperbolic tetrahedron if all vertices tend to

boundary points. Hence, the generalized third Hilbert problem for hyperbolic

space goes as follows.

Conjecture 4.2. P ∼Q in H3 � vol3(P)= vol3(Q), D(P)=D(Q).
Sydler’s original papers (cf. [14]) are difficult to read. The simplification of

Jessen still reflects the principal geometrical idea as expressed by the role
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of orthogonal simplices and the fundamental lemma. That is, consider an or-

thoscheme R(a,b;λ)⊂ E3 defined by the parameters

a= sin2α1, b = sin2α3 whence cos2α2 = a·b,

as well as

λ := l1 ·tanα1 = l2 ·cotα2 = l3 ·tanα3.

Here, α1, α2, and α3 denote the non-right dihedral angles of R attached at

edges of lengths l1, l2, l3 (see Figure 4.1).
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Figure 4.1.

It follows that

vol3
(
R(a,b;λ)

)= λ3

6

(
v(ab)−v(a)−v(b)), where v(x) := 1−x

x
.

For 0<a,b,c < 1, put

X := R(a,b;λ)+R(ab,c;λ), Y := R(a,c;λ)+R(ac,b;λ).

An easy calculation shows that vol3(X)= vol3(Y) and D(X)=D(Y).
Theorem 4.3 (The fundamental lemma). X∼Y , that is,R(a,b;λ)+R(ab,c;λ)

∼ R(a,c;λ)+R(ac,b;λ).

Given this lemma the Dehn-Sydler theorem, according to Jessen, is roughly

proven as follows:

(1) Let � < 	(E3) be generated by the prisms in E3, that is, � ⊂ ker(D),
and suppose 	(E3)/� admits the structure of a real vector space. Moreover,

suppose

vol3 : � �→R is bijective.

Then, one shows that �= ker(D) which finally yields that

vol3×D : 	
(
E3) �→R×(R⊗ZR/πZ) is injective.
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(2) Next, one observes that the class of orthoschemes are generators of

	(E3)/� and that the fundamental lemma provides several important algebraic

relations. A crucial implication of these are the following properties, stated and

proved in a very elegant algebraic setting by Jessen and Thorup.

Theorem 4.4 (Jessen-Thorup). Let F : (0,1)×(0,1) �→ V be a mapping to a

real vector space V satisfying

F(a,b)= F(b,a), F(a,b)+F(ab,c)= F(b,c)+F(a,bc).

Then, there is a mapping f : (0,1) �→ V such that F(a,b) = f(ab)−f(a)−
f(b).

Theorem 4.5 (Jessen-Thorup). Let G : (0,∞)×(0,∞) �→ V be such that

G(a,b)=G(b,a), G(a,b)+G(a+b,c)=G(b,c)+G(a,b+c),
G(ac,bc)= cG(a,b).

Then, there is a mapping g : (0,∞) �→ V such that G(a,b)= g(a+b)−g(a)−
g(b).

(3) To finish the proof, take a polyhedral basis {Qr} of 	(E3)/� so that, for

each polyhedron P , we have

P ∼�

∑
r
mrQr for some mr ∈R.

In particular, we obtain R ∼�

∑
r
FrQr with Fr = Fr (a,b) satisfying the con-

dition of Jessen-Thorup in Theorem 4.4. Therefore, there is a function fr (x)
which is additive, annulates π and is such that

fr (P) :=
∑

l edge of P
l⊗fr (α)

represents Dehn’s invariant. Since R is a generator, one deduces that P ∼�∑
r fr (P)Qr . Finally, one gets A∼�

∑
r fr (A)Qr =

∑
r fr (B)Qr ∼� B.

Now turn to the hyperbolic analogue. Let R(a,b;μ) ⊂ H3 denote a hyper-

bolic orthoscheme with parameters a,b as above and consider the additional

parameter

μ = cos2α2−sin2α1 sin2α3

cos2α1 cos2α3
=: tan2θ, θ ∈

[
0,
π
2

]
.

One checks that

μ = tanhl1 ·tanα1 = tanhl2 ·cotα2 = tanhl3 ·tanα3,

and that

cos2α2 = a©μ b := ab+μ2(1−a)(1−b).
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For 0<a,b,c < 1, put

U := R(a,b;μ)+R(a©μ b,c;μ
)
, V := R(a,c;μ)+R(a©μ c,b;μ

)
.

Again, it follows that vol3(U)= vol3(V) and D(U)=D(V).
Question 4.6 (Analogue of the fundamental lemma for H3). U ∼ V , that is,

R(a,b;μ)+R(a©μ b,c;μ)∼ R(a,c;μ)+R(a©μ c,b;μ)?

In order to simplify the question, the following observation is useful. Com-

puting the volume of R (an expression in dilogarithm functions), one finds that

vol3
(
R(a,b;μ)

)= vol3
(
R∞(a)

)+vol3
(
R∞(b)

)−vol3
(
R∞

(
a©μ b

))
,

where R∞(a) denotes a simply asymptotic orthoscheme with dihedral angles

α1, θ, (π/2)−θ. Therefore, a way to study Hilbert’s third problem for hyper-

bolic 3-space, is to investigate the above question for 	(H3) and to profit from

the isomorphisms in Proposition 4.1.

5. Algebraic K-theoretical aspects—a brief account. The group 	(H3) ad-

mits further equivalent and very elegant interpretations. The following is a

very short tour around these ideas (due to Sah, Dupont, Thurston, and others).

Let 	(C) be the abelian group generated by {z}, z ∈ C, such that

(1) {0} = {1} = 0;

(2) ∀a �= b ∈ C\{0,1} : {a}−{b}+{a/b}−{1−a/1−b}+{b(1−a)/a(1−
b)} = 0.

This group can be isomorphically identified with the group �(C) generated

by ideal tetrahedra, that is, �(C) is the group of 4-tuples (p0,p1,p2,p3), pi ∈
P1(C), with

(1′) (g(p0),g(p1),g(p2),g(p3))= (p0,p1,p2,p3), ∀g ∈ PSL(2,C),
(2′) ∀p0, . . . ,p4 ∈ C disjoint:

4∑
i=1

(−1)i
(
p0, . . . , p̂i, . . . ,p4

)= 0.

The identification is then performed by using the map(
p0,p1,p2,p3

) & �→ {
z := r(p0,p1,p2,p3

)}
(r denotes cross-ratio).

Furthermore, one has

vol3
(
p0,p1,p2,p3

)= vol3
(
∞,0,1,r(p0,p1,p2,p3

))=D(z),
where

D(z) := log |z| arg(1−z)− ImLi2(z)

denotes the Bloch-Wigner dilogarithm (a modification of the classical diloga-
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rithm Li2(z)) which satisfies the 5-term relation of Spence-Abel

4∑
i=1

(−1)iD
(
r
(
p0, . . . , p̂i, . . . ,p4

))= 0.

Now, the following isomorphisms can be established.

	
(
H3)!	

(
H3

)
∞ !	(C)/〈{z}+{z̄}〉 !	(C)−,

where the exponent − describes the eigenspace to the eigenvalue −1 with re-

spect to complex conjugation. Next, consider the following mappings:

ρ : 	(C) �→Λ2
ZC

× = C×⊗ZC×/〈a⊗b+b⊗a〉, ρ({z}) := z∧(1−z),
D̃ : 	(C) �→R, D̃({z}) :=D(z).

They are related to volume and Dehn’s invariant according to the following

picture:

(a) The composition 	(H3) �→	(C)− D̃
�������������→R is the volume.

(b) The composition 	(H3) �→ 	(C)− ρ−
������������������������������������→ (Λ2

ZC
×)− ! R⊗Z R/πZ is Dehn’s

invariant.

Finally, consider the Bloch group defined by B(C) := ker
(
	(C) ρ

�→ Λ2
ZC

×).
Again, let B(C)− denote the negative part of B(C)with respect to the involution

induced by the conjugation (actually, the Bloch group can be identified with

the group of polyhedra with vanishing Dehn invariant). In this setting, Hilbert’s

third problem for H3 can be reformulated very efficiently as follows:

Is the mapping D̃ : B(C)− �→R injective?
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Real algebraic geometry studies sets defined by systems of polynomial equa-

tions over the reals [5]. Three problems of Hilbert [18] are related to important

aspects of real algebraic geometry.

We first examine these problems, what is known about their solutions, and

what developments they led to. We end with a short discussion on the role

they played in the development of real algebraic geometry during this cen-

tury.

In many cases, the references given in this text point to text books or survey

papers where simple proofs and full references can be found rather than to

the original papers.

1. Hilbert’s 17th problem. It is obvious that a polynomial which is a sum of

squares is everywhere nonnegative. A very natural question is the following:

• Is every polynomial, everywhere nonnegative, a sum of squares?

A polynomial everywhere nonnegative is not always a sum of squares of

polynomials. This result is due to Hilbert [16] but Motzkin [34] was the first in

1967 to construct explicit examples of this situation. For example

P = Z6+X4Z2+X2Y 4−3X2Y 2Z2

is everywhere nonnegative and is not a sum of squares of polynomials. This

is not too hard to prove since the degree of the polynomials to look for is at

most 3.

Minkowski sugggested to Hilbert the following reformulation, which is Hilb-

ert’s 17th problem:

• Is every polynomial, everywhere nonnegative, a sum of squares of rational

functions?

Now, since denominators are allowed, the space of search for an expression

as a sum of squares is much bigger, and there are no a priori limitations on

the degrees to consider.

Emil Artin’s positive answer [2], in 1925, is one of the most convincing suc-

cesses of modern algebra, which was starting at that time.
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In order to prove a result about the reals, the method of the proof uses much

more abstract objects, namely real closures of the field of rational functions.

Artin’s proof goes this way:
•Consider a polynomial P which is not a sum of squares of rational functions

with real coefficients.
• Since P is not a sum of squares, the set of sums of squares is a proper

cone of the field of rational functions which does not contain P (a cone of a

ring contains the squares, is closed under addition and multiplication and a

proper cone also does not contain −1).
• Using Zorn’s lemma, and taking a maximal proper cone which does not

contain P , we get a total order on the field of rational functions for which P is

negative.
• Taking the real closure of the field of rational functions for this order,

which is the biggest possible ordered field extending the given order and al-

gebraic over the field of rational functions, we get a field in which P takes

negative values.
• It remains to prove that if P takes negative values in a real closed field

containing the reals, P takes negative values over the reals.

So, for example, Motzkin’s polynomial above is a sum of squares of rational

functions, even though it may not be easy to write it explicitly so.

Artin’s proof which we just sketched is the starting point of the abstract the-

ory of the reals. Real closed fields originally defined by Artin and Schreier [3]

as ordered fields with no algebraic ordered extension, have later been charac-

terized by Tarski [46] as fields which are ordered, where every positive element

is a square and every odd degree polynomial has a root. The real closure of an

ordered field is the smallest real closed field containing it.

Many problems remain after Artin’s proof. Among them:
• quantitative aspects: how many squares?
• effectivity problems: is there an algorithm checking that a given polyno-

mial is everywhere nonnegative and providing the sum of squares?
• complexity problems: what are the best possible bounds on the degrees

of the sum of squares?

A bound on the number of squares was proved by Pfister in 1967 [36]: 2n

squares are enough if n is the number of variables of the polynomial P . It is

remarkable that the degree of the polynomial plays no role in the bound on

the number of squares needed. The proof uses Pfister’s theory of multiplicative

quadratic forms [36].

The exact bound is far from being known, since the only known lower bound

on the number of squares needed is n+2.
Since Artin’s proof is based on Zorn’s lemma, no explicit bound can be easily

extracted from its inspection (see [10, 27] though). The explicit construction

of the sum of squares is a difficult problem and has attracted much attention

and many contributions (see [10, 11] for a detailed account of the literature on

this topic).
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Hilbert’s 17th problem can be seen as part of a much more general problem,

which is to provide a dictionary between algebra and geometry in the real case.

In complex algebraic geometry, this dictionary is very classical and given by

the correspondance between algebraic sets and radical ideals (a particularly

easy to read presentation can be found in [8]). Artin’s result relates nonnega-

tivity, which is a geometric property, to sums of squares, which is an algebraic

notion. Stengle’s positivstellensatz [45], proved in 1974, provides a quite gen-

eral version of a dictionary between algebra and geometry in the real case. The

version we present here can be found in [5].

Weak Positivstellensatz. Let R be a real closed field, �,�, and � are

three finite subsets of R[X1, . . . ,Xn], � the cone generated by �, � the monoid

generated by �, and � the ideal generated by �.

The following are equivalent:

(i) The set{
x ∈ Rn | ∀f ∈�f(x)≥ 0,∀g ∈ � g(x)≠ 0,∀h∈� h(x)= 0

}
is empty.

(ii) There exist f ∈�, g ∈�, and h∈ � such that f +g2+h= 0.

This result can be interpreted as follows: if a family of inequalities and equal-

ities is incompatible, there exists an algebraic certificate testifying it.

Using a classical trick due to Rabinovitch the following result [45] follows.

Positivstellensatz. Let � be a finite subset of R[X1, . . . ,Xn], and let

W = {
x ∈ Rn | ∀g ∈ � g(x)≥ 0

}
.

Let � be the cone of R[X1, . . . ,Xn] generated by �, and let f ∈ R[X1, . . . ,Xn].
Then ∀x ∈Wf(x) > 0� ∃g, h∈� such that fg = 1+h.

As an immediate consequence of the Positivstellensatz, when � = ∅, one

recovers that a nonnegative polynomial is a quotient of sums of squares, hence

also a sum of squares.

The proof of these results rely on Zorn’s lemma and uses the notion of a

prime cone [5, 7].

It is natural to wonder whether there exists an algorithm producing the

algebraic identities announced. The answer is yes [26]; however there remains

a lot to do to provide an efficient algorithm [28].

2. Hilbert’s 16th problem. The first part of this problem is to determine

• the different possible shapes of an algebraic curve, or more generally of

a real hypersurface in projective space.

We do not discuss the second part of the problem here.

Consider a nonsingular algebraic hypersurface H of degree d in RPn. This

polynomial has a set of zeroes RH in the real projective space RPn. The first

part of Hilbert’s 16th problem asks what are the possible topological types of
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the pairs (RPn,RH) (for a given degree d). For the curves of RP2 the complete

answer is known only up to degree 7. For the surfaces of RP3 the complete

answer is known only up to degree 4.

To make progress on this problem it is necessary to work in two main direc-

tions: first to find restrictions on the topological types of (RPn,RH), second

to construct hypersurfaces with the types which are not forbidden.

In the study of the topology of real algebraic curves, it is traditional to pay

special attention toM-curves. AnM-curve is a curve of RP2 such that its set of

real points has the maximal number of connected components; this number is

equal to (d−1)(d−2)/2+1 for degree d by Harnack’s theorem [14].

An oval of a real algebraic projective curve Γ is a connected component of

Γ whose complement is not connected. The orientable connected component

of this complement is the interior of the oval.

Harnack’s theorem gives no restriction on the relative position of the ovals.

The relative position of ovals in the projective place can be described in terms

of nest, when an oval contains another oval in its interior. The depth of an oval

Ω of Γ is the number of ovals containing Ω in their interiors. Bezout’s theorem

creates restrictions. An M-curve of degree 4 with 4 ovals cannot have a nest,

because otherwise a line having at least 6 points of intersection with the curve

could be easily constructed. So the only configuration for anM-curve of degree

4 is 4 ovals without any nest.

This simple argument is no more sufficient in degree 6. This case has only

been completely solved in 1971. The M-curves of degree 6 have 11 ovals. Be-

zout’s theorem proves that an oval of depth 2 is impossible and also that there

exists at most one oval with other ovals in its interior. A construction due to

Harnack gives anM-curve with the following configuration: an oval containing

another oval in its interior and the nine other ovals outside, without any nest.

This configuration is denoted by 1〈1〉∐9. A construction by Hilbert [17] gives

a different configuration denoted 1〈9〉∐1: an oval containing nine ovals in its

interior, the last oval being outside.

For a long time people wondered whether there were other configurations

for an M-curve of degree 6, until Gudkov constructed such a curve with a

configuration 1〈5〉∐5 [13].

These three configurations are the only possible for the M-curves of degree

6. This is a consequence of a famous congruence conjectured by Gudkov and

proved by Rokhlin [41, 48].

Let Γ be a nonsingular real algebraic curve of even degree 2k in P2(R). It is

possible to choose a homogeneous equation F of Γ , such that F(x,y,z)≤ 0 for

every (x :y : z) outside all the ovals of Γ . Then, with

B+ =
{
(x :y : z)∈ P2(R) | F(x,y,z)≥ 0

}
.

Rokhlin-Gudkov’s congruence. The Euler-Poincaré characteristic of B+
is congruent to k2 modulo 8.
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Figure 2.1.

χ(B+), the Euler-Poincaré characteristic of B+, can be computed in the fol-

lowing way. An oval of Γ is even (respectively, odd) if its depth is even (respec-

tively, odd). The number of even (respectively, odd) ovals of Γ is denoted by p
(respectively, n). Then χ(B+)= p−n.

For an M-curve of degree 6, p+n= 11 and, using the congruence p−n≡ 9

(mod 8), the only possibilites are (p = 10, n = 1), (p = 6, n = 5), or (p = 2,
n= 9). Thus the three configurations described above are the only possible.

The numbersp andn have been considered first by Virginia Ragsdale (1) [37]

who proposed the conjecture that for every curve of degree 2k,

p ≤ 3k(k−1)
2

+1, n≤ 3k(k−1)
2

.

The spectacular development of the topology of real algebraic varieties in

the 1970s implies new restrictions on the topology of a real algebraic vari-

ety. V. Arnold [1], V. Rokhlin [41, 42, 43], and V. Kharlamov [22, 23, 24] have

obtained important general obstructions. The discovery of new invariants for

the varieties of dimension 4 by Seberg and Witten and the proof of Thom’s

conjecture in 1994 [25] have implied new restrictions in the topology of real

algebraic curves [31].

Although a lot of work had been done on obstructions, the methods of con-

struction had not changed much from the 19th century. In 1980, Viro proposed

a completely new method to construct real algebraic varieties [20, 21]. The

combinatorial patchwork, which is a particular case of Viro’s method, gives

a recipe to construct hypersurfaces using a simple combinatorial procedure.

For simplicity the recipe is explained here for curves but the general case is

completely similar.

In order to construct a real algebraic curve in RP2, the following combina-

torial data are given.

Let d be a positive integer and T the triangle

{
(x,y)∈R2 : x ≥ 0,y ≥ 0,x+y ≤ d}.
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Figure 2.2.

The number d is the degree of the curve constructed and the triangle T is the

Newton polygon of the curve.

Suppose that T is triangulated in such a way that all the vertices of the

triangulation have integer coordinates. Suppose also that a sign distribution,

ai,j =± is given at the vertices of the triangulation, (see Figure 2.2). A piecewise

linear curve L in RP2 is constructed as follows.

Take copies Tx = sx(T), Ty = sy(T), Txy = s(T) of T , where s = sx ◦sy and

sx,sy are reflections against the axis of coordinates. Extend the triangulation

of T to a symmetric triangulation of T ∪Tx ∪Ty ∪Txy , and extend the sign

distribution to a sign distribution at the vertices of the extended triangulation

with the following rule: When a vertex is transformed into its mirror image

with respect to a coordinate axis, its sign is preserved when the distance to

the axis is even and changed when this distance is odd (see Figure 2.3).

If a triangle of the triangulation has vertices with different signs, a segment

is drawn from the middle of the edges to isolate + from −. The union of these

segments is denoted by L′ and is contained in T∪Tx∪Ty∪Txy (see Figure 2.3).

Sides of T∪Tx∪Ty∪Txy are glued using s. The space T∗ so obtained is home-

omorphic to RP2. The curve L is the image of L′ in T∗.

A pair (T∗,L) is a chart of a real algebraic curve C in RP2, if there exists a

homeomorphism between the pairs (T∗,L) and (RP2,RC).
Suppose now that the triangulation of T is convex. This means that there

exist a piecewise convex function ν : T �→ R linear on each triangle of the

triangulation and not linear on the union of two triangles.

Viro’s theorem. If the triangulation of T is convex, there exists a nonsin-

gular real algebraic curve C of degree d in RP2 with chart (T∗,L).
A curve with chart (T∗,L) is called a T -curve.

It is easy to verify that the triangulation of

{
(x,y)∈R2 : x ≥ 0, y ≥ 0, x+y ≤ 3

}



THE ROLE OF HILBERT PROBLEMS IN REAL ALGEBRAIC GEOMETRY 195

+

+

+

+

−

+

−

−

−

−

+

−−

−+
−−−

−

−

+

+

−

−

Figure 2.3.

+

+

+

+

−

+

−

−

−

−

+

−−

−+
−−−

−

−

+

+

−

−

Figure 2.4.



196 MARIE-FRANÇOISE ROY

in Figure 2.2 is convex. Thus, Figure 2.3 is a topological picture of a curve

of degree 3 in RP2. The set of real points of this curve has two connected

components in RP2.

The class of T -curves is quite rich. For example, all curves of RP2 up to

degree 6 are T -curves. For every degree, there exists a T -curve which is an M-

curve. T -curves have been constructed as counter-examples to Ragsdale con-

jecture [19, 20, 21]. There are also real algebraic curves of RP2 which are not

T -curves [19].

3. Hilbert’s 10th problem. The problem is to answer the following question:

• Is there an algorithm deciding the existence of integer solutions to a set

of Diophantine equations?

This is for a set of polynomial equations with integer coefficients.

The answer is of course yes for univariate polynomials since there are easy

bounds on the roots in terms of the coefficients.

The negative answer for the general problem was proved by a young russian

mathematician Matiyasevich [29, 30] in 1972. His work used results of Davis,

Putnam, and Robinson (2) [9, 40].

Interestingly the corresponding problems when real solutions are looked for

has a positive answer. The decision problem over the reals:

• Is there an algorithm deciding the existence of real solutions to a set of

polynomial equations with integer coefficients?

was solved with a yes answer by Tarski [46] and Seidenberg [44].

Again the existence of an algorithm raises complexity questions. This is an

active field of research [4, 6, 12, 15, 39].

4. Brief discussion. Hilbert’s problems have played an important role in the

development of real algebraic geometry. The previous discussions illustrate

this point. However, some very important ideas were developed without any

connection to these problems. Morse, for example, related the change in topol-

ogy to the existence and local behaviour of critical points of a function [32] (see

Figure 4.1). Morse theory plays a key role in the quantitative [33, 35, 47] (3) and

algorithmic aspects of real algebraic geometry [4, 12].
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MINUTES OF THE GENERAL ASSEMBLY

Place: Kloster Loccum, Loccum, Germany.

Time: September 3, 1999, 14.05–18.40.

Present: Twenty members from ten countries, three nonmembers.

1. Opening of the general assembly. Moderators: Catherine (Cathy) Hobbs,

UK and Marjatta Näätänen, Finland.

The ninth meeting of the EWM was announced in the EWM newsletter on

April 1998 and March 1999, and on the EWM web pages. The requirement for

majority was also met. Thus Cathy Hobbs declared the general assembly to be

legal.

Cathy Hobbs welcomed everybody to the general assembly.

As a member of the standing committee, Cathy Hobbs also thanked people

for their work during the past two years.

Hobbs and Näätänen proposed an agenda for the general assembly. The

agenda was accepted.

2. Appointing people to various tasks during the general assembly

2.1. Appointing people to take notes at the assembly.

Nadja Kutz, Germany

Maren Riemewschneider, Germany

Rachel Camina, UK

Sandra Pott, UK

2.2. Appointing two people to check the minutes.

Emilia Mezzetti, Italy

Tsou Sheung Tsun, UK

2.3. Appointing people to count the votes.

Ina Kersten, Germany

Lisbeth Fajstrup, Denmark

3. Approving new members. The moderators suggested that those present

who were not yet members of the EWM could join now if they so wished. Their

fee for 1999 would be waived. The suggestion was approved.

The general assembly approved those who had joined after the previous

general assembly in Trieste, Italy, and those who joined at the place of the

present meeting.
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4. Approving the minutes of the previous general assembly. The minutes

of the previous general assembly held during the eighth meeting of the EWM

were approved.

5. Electing two auditors and a deputy auditor. The former auditors Kirsi

Peltonen, Finland, and Seija Kämäri, Finland, were re-elected. No deputy auditor

was seen necessary.

6. Confirming the financial statement and discharging those responsible

for liabilities. Marjatta Näätänen gave the financial reports for 1997 and 1998

(appendix), which were confirmed. The auditors have suggested that those re-

sponsible for liabilities should be discharged which the general assembly did.

7. Deciding fees. The general assembly agreed to keep fees the same as

before: 1 Euro (low), 20 Euro (standard), and 50 Euro (high).

8. Electing standing committee and convenor and deputy convenor(s) for

2000–2001. In the statutes of the EWM, it is stipulated that the term of half

of the members will expire and the other half will continue.

The continuing members of the standing committee, which all wanted to

continue, were as follows:

Christine Bessenrodt, Germany

Cathy Hobbs

Irene Sciriha, Malta

Betül Tanbay, Turkey

Tsou Sheung Tsun

Inna Yemelyanova, Russia

The current standing committee proposed the following as new members:

Polina Agranovich, Ukraine

Laura Fainsilber, Sweden

Laura Tedeschini-Lalli, Italy

Lyudmila Bordag, Germany

Marjatta Näätänen

Irene Pieper-Seier, Germany

Of these six, Agranovich and Fainsilber have been members of the standing

committee for 1998–1999.

The general assembly agreed with the standing committee’s proposal and

elected those mentioned above.

Laura Tedeschini-Lalli pointed out that it was regrettable that there would

be no French or Spanish members in the standing committee, given the impor-

tance of the Femmes et Mathematiques, especially. The moderators agreed with

this, but pointed out that there were no French or Spanish members present

at the general assembly to be asked to.
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9. Electing the convenor and deputy convenors. The newly elected stand-

ing committee proposed Irene Sciriha as the convenor. However, she had not

given her consent by the time of the general assembly. Therefore, it was agreed

that the standing committee could elect the convenor among themselves in the

case that Irene Sciriha would refuse (Irene Sciriha has since agreed to be the

convenor). Laura Fainsilber and Christine Bessenrodt were elected as deputy

convenors. It was decided that they should contact the standing committee to

elect the convenor.

10. Electing international coordinators. The following persons were pro-

posed:

Marie Demlova, Czech Republic (Central and East)

Laura Fainsilber (North)

Rosa-Maria Spitaleri, Italy (South and West)

Tatiana Vasilieva (Russia)

Their election was approved.

11. Confirming the regional coordinators. By the time of the general as-

sembly not all the regional coordinators could have been contacted. Therefore,

it was decided that Riitta Ulmanen, Finland, would get in touch with those who

had not given their answer so far. The general assembly confirmed the follow-

ing regional coordinators:

Andrea Blunck, Austria Nerute Kligiene, Lithuania

Elena Gavrilova, Bulgaria Irene Sciriha, Malta

Marie Demlova, Czech Republic Coby Geijsel, The Netherlands

Lisbeth Fajstrup, Denmark Ragni Piene, Norway

Helle Hein, Estonia Magdalena Jaroszewska, Poland

Marja Kankaanrinta, Finland Emilia Petrisor, Romania

Christine Charretton, France Galina Riznichenko, Russia

Sybille Handrock, Germany Rosa Maria Miro Roig, Spain

Cathy Hobbs and Sandra Pott, UK Gerd Brandell, Sweden

Maria Leftaki, Greece Karin Baur, Switzerland

Barbara Fantechi, Italy Betül Tanbay, Turkey

Daina Taimina, Latvia Lyudmila Kirichenko, Ukraine

12. Choosing time, place, and organizing committee for the next meeting.

(Malta has since been chosen to the place of the next meeting.)

12.1. Place. The general assembly discussed possible places for the next

meeting in 2001. The following places were suggested:

• Cambridge

• Canary Islands

• Crete
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• Estonia, Tartu

• Malta

• Switzerland

• Sweden or Denmark

For the year 2003, Croatia and Italy, Trieste, were mentioned as possible

places.

12.2. Organizing committee. The following persons were chosen for the

organizing committee:

Tsou Sheung Tsun, coordinator

Marie-Francoise Coste Roy, France

Christine Bessenrodt

Laura Fainsilber

It was decided that the organizing committee would complete itself if nec-

essary. Also, the decision on the place and time was left to the organizing

committee to decide following the guidelines given above in Subsection 12.1.

12.3. Suggested themes for the next meeting:

• probability/statistics: applied to economics,

• uses of geometry (interdisciplinary),

• financial mathematics,

• nonlinearity,

• cohomology theories (expository),

• engineering mathematics,

• history of mathematics,

• Lie theory,

• Cauchy-Riemann geometry,

• commutative algebra,

• noncommutative geometry.

Nonmathematical topics:

• math education,

• mathematics and the public.

In addition to plenary talks, also short, prepared communications related to

the topic in question were suggested.

13. Setting up commissions.

• Link with the European Mathematical Society (EMS): Emilia Mezzetti

• Link with the Association for Women in Mathematics (AMS): Christine

Bessenrodt

• Link with third world countries: Laura Tedeschini-Lalli

• Newsletter: Nadia Larsen, Denmark, Maren Riemewschneider, Germany

• Proceedings: Rachel Camina, UK, Lisbeth Faijstrup, Denmark

• Web page: Olga Capriotti, Italy

• E-mail network: Sarah Rees, UK



MINUTES OF THE GENERAL ASSEMBLY 209

• Funding committee: Cathy Hobbs (Treasurer), Bettina Kürner, Germany,

Emilia Mezzetti

14. Proceedings. The general assembly discussed the contents of the meet-

ing proceedings.

The proceedings would comprise of all the contributions of invited speak-

ers. Also, talks presented at Kloster Loccum which the speakers wished to be

included, would be in the proceedings.

It was agreed that these latter contributions to the proceedings, and articles

to the newsletter as well, could/would be sent to be refereed by a commis-

sion or a referee. It was also recommended that those willing to present their

posters in the proceedings should write a half a page resume on the subject.

Polina Agranovich will be in charge of editing the poster section.

15. Regional activities. Reports on regional activities were presented on

September 2.

16. Thematic activities. Tsou Sheung Tsun gave a short report on the work-

shop on Moduli Spaces in Mathematics and Physics held in Oxford, July 2–3,

1998. A request for continuing these workshops was presented.

Reports on this and other workshops and meetings held after the eighth

general meeting are in the Newsletter number 6, March 1999.

The following interdisciplinary meetings were suggested:

• a meeting on nonlinearity in Russia. Possibilities to organize this meeting

will be examined and Laura Fainsilber will be the contact person;

• a satellite meeting to the ICM to be held in Barcelona. The satellite meeting

could be a session for students approaching their Ph.D. and those close

after that. Emilia Mezzetti will contact Rosa Maria Miro Roig, Spain, on

this;

• Rosa Maria Spitaleri, Italy, will promote the EWM on meetings she is or-

ganizing on mathematical modelling and related subjects.

17. Open discussion

17.1. It was considered useful if the EWM had, to promote its goals and

ideas, a poster to be used, for example, in conferences and a flyer (a handbill)

to be handed out in other suitable situations, too. It was decided that the EWM

should declare a competition to design these. Possibilities to get funding for

this purpose from companies and other sources should be examined.

17.2. The EWM should send out a questionnaire on age and career. The

common concept being that mathematicians do their best work at an early age.

The EWM wants to contradict this preassumption. Therefore a questionnaire

should be made and send out to mathematicians of all ages and both genders.
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17.3. It was suggested that names of Ph.D. supervisors should be on the

EWM web page with their contact information.

18. Closing the general assembly. Cathy Hobbs thanked everyone for at-

tending and declared the general assembly closed.



NETIQUETTE RULES AND GENERAL USE
OF THE EWM ELECTRONIC NETWORK

At the discussion of the EWM e-mail network we worked out the netiquette

rules below—it was agreed to send them regularily to the list.

The EWM-lists are part of the mailbase system, for details, see the following

URL:

http://www.mailbase.ac.uk

1. How to join ewm-discuss. Send an e-mail (no subject line) to

mailbase@mailbase.ac.uk

with the following content:

JOIN ewm-discuss Emmy Noether

stop

where, instead of Emmy Noether you should put your own name (not your

login, nor e-mail address!).

2. How to leave ewm-discuss. Send an e-mail (no subject line) with the

following content:

LEAVE ewm-discuss

stop

The same procedure applies to the list ewm-all or ewm-uk. NOTE that the

lists ewm-discuss and ewm-uk are subsets (= sublist) of ewm-all, that is, if you

(as an element) leave that lists, but wish to stay in ewm-all you have to sign

up for ewm-all. So if you want to be part of, for example, ewm-discuss sign

up for ewm-all too—you will not get e-mails twice and you can go on and off

ewm-discuss without leaving ewm-all.

3. Netiquette rules. The mailbase system is governed by the Mailbase Ac-

ceptable Use Policy at

http://www.mailbase.ac.uk/docs/aup.html

In addition to the above policy, please observe the following rules:

• At most one e-mail per day per person

For ewm-all

• Send information only.

(This includes job offers, conference announcements, etc., short requests

and quick updates on topics of ewm-discuss.)
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For ewm-discuss

• Write the topic you are commenting on in the subject line.

(e.g., woman in Afghanistan, Age limits, etc.)

• Please do not repeat arguments.

Read the archives concerning the topic you are going to comment on at the

following URL:

http://www.mailbase.ac.uk

• Please try to be short and as clear and productive as possible.

If you have an interesting topic for discussion send it to ewm-discuss!

Every member of the ewm-lists is responsible for the liveliness and efficiency

of our network.

Be active!

Nadja Kutz
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COMMITTEE MEMBERS

(1999–2001)

Standing committee

• Irene Sciriha (Convenor); e-mail: irene@maths.um.mt

• Christine Bessenrodt (Deputy convenor);

e-mail: christine.bessenrodt@mathematik.uni-magdeburg.de

• Catherine Hobbs (Treasurer); e-mail: cahobbs@brookes.ac.uk

• Polina Agranovich; e-mail: agranovich@ilt.kharkov.ua

• Ljudmila Bordag; e-mail: ljudmila@bordag.com

• Laura Fainsilber; e-mail: laura@math.chalmers.se

• Marjatta Näätänen; e-mail: marjatta.naatanen@helsinki.fi

• Irene Pieper-Seier; e-mail: pieper@mathematik.uni-oldenburg.de

• Betül Tanbay; e-mail: tanbay@boun.edu.tr

• Laura Tedeschini Lalli; e-mail: tedeschi@matrm3.mat.uniroma3.it

• Tsou Sheung Tsun; e-mail: tsou@maths.ox.ac.uk

• Inna Yemelyanova; e-mail: yemel@nnucnit.unn.ac.ru

Other members

• Riitta Ulmanen; e-mail: ulmanen@cc.helsinki.fi

Organizing committee for the 10th general meeting in Malta 2001

• Tsou Sheung Tsun; e-mail: tsou@maths.ox.ac.uk

• Christine Bessenrodt;

e-mail: christine.bessenrodt@mathematik.uni-magdeburg.de

• Marie-Francoise Coste Roy; e-mail: marie-francoise.roy@univ-rennes1.fr

• Laura Fainsilber; e-mail: laura@math.chalmers.se

• Helle Hein; e-mail: hhein@ut.ee

• Leiki Loone; e-mail: leiki@ut.ee

• Tatiana Ivanova; e-mail: ita@thsun1.jinr.ru

Link with Association for Women in Mathematics (AWM)

• Christine Bessenrodt;

e-mail: christine.bessenrodt@mathematik.uni-magdeburg.de

Link with European Mathematical Society (EMS)

• Emilia Mezzetti; e-mail: mezzette@univ.trieste.it

Link with women in developing countries

• Laura Tedeschini Lalli; e-mail: tedeschi@matrm3.mat.uniroma3.it



216 (1999–2001)

Editors of the proceedings of the 9th meeting

• Rachel Camina; e-mail: r.d.camina@dpmms.cam.ac.uk

• Lisbeth Fajstrup; e-mail: fajstrup@math.auc.dk

Newsletter editors

• Nadia Larsen; e-mail: nadia@math.ku.dk

• Maren Riemewschneider; e-mail: mr@mathematik.tu-darmstadt.de

E-mail network

• Sarah Rees; e-mail: sarah.rees@newcastle.ac.uk

Web page administrator

• Olga Caprotti; e-mail: olga@win.tue.nl



COORDINATORS

International coordinators

Central and East

Marie Demlova, Department of Mathematics, Faculty of Electrical Engineering,

Czech Technical University, Technicka 2, 16627 Praha 2, Czech Republic

E-mail address: demlova@math.feld.cvut.cz

North

Laura Fainsilber, Department of Mathematics, Chalmers University of Tech-

nology, Göteborg University, S-41296 Göteborg, Sweden

E-mail address: laura@math.chalmers.se

Russia

Tatiana Vasilieva, Department of Mathematics, Volgograd State University, 2

Ya Prodol’naya 30, 400066 Vologograd, Russian Federation

E-mail address: vasilyeva@math.volsu.ru

South and West

Rosa Maria Spitaleri, Instituto per le Applicazioni del Calcolo-CNR, Viale del

Policlinico 137, I-00161 Roma, Italy

E-mail address: spitaleri@iac.rm.cnr.it

Regional coordinators

Austria

Andrea Blunck, Institut für Geometrie, Technische Universität Wien, Wiedner

Hauptstrasse 8-10, A-1040 Wien, Austria

E-mail address: blunck@geometrie.tuwien.ac.at

Bulgaria

Elena Gavrilova, Department of Mathematics, University of Mining and Geol-

ogy “St. Ivan Rilski,” Sofia 1100, Bulgaria

E-mail address: mathel@staff.mgu.bg

Czech

Marie Demlova, Department of Mathematics, Faculty of Electrical Engineering,

Czech Technical University, Technicka 2, 16627 Praha 2, Czech Republic

E-mail address: demlova@math.feld.cvut.cz
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Denmark

Lisbeth Fajstrup, Department of Mathematical Sciences, University of Aalborg,

Fredrik Bajers vej 7 E3-111, DK9220 Aalborg, Denmark

E-mail address: fajstrup@math.auc.dk

Estonia

Helle Hein, Institute of Applied Mathematics, University of Tartu, 2 Liivi Str,

EE2400 Tartu, Estonia

E-mail address: helle_h@vask.ut.ee

Finland

Marja Kankaanrinta, Department of Mathematics, P.O. Box 4 (Hallituskatu 15),

FIN-00014 University of Helsinki, Finland

E-mail address: mkankaanrint@hylk.helsinki.fi

France

Christine Charretton, Institut Girard Desargues, Batiment 101, Universite

Claude Bernard, F 69622-Villeurbanne Cedex, France

E-mail address: chris@desargues.univ-lyon1.fr

Germany

Sybille Handrock, Technische Universität Chemnitz, Fakultät für Mathematik,

09107 Chemnitz, Germany

E-mail address: handrock@mathematik.tu-chemnitz.de

Great Britain

Catherine Hobbs, School of Computing and Mathematical Sciences, Oxford

Brookes University, Gipsy Lane, Headington, Oxford, OX3 0PB

E-mail address: cahobbs@brookes.ac.uk

Sandra Pott, Department of Mathematics, University of York, Heslington, York

YO10 5DD

E-mail address: sp23@york.ac.uk

Greece

Maria Leftaki, Department of Mathematics, University of Patras, 26110 Patras,

Greece

E-mail address: leftaki@math.upatras.gr

Italy

Barbara Fantechi, Dipartimento di Matematica e Informatica, Università di

Udine, Via delle Scienze 206, 33100 Udine, Italy

E-mail address: fantechi@dimi.uniud.it
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Latvia

Daina Taimina, The University of Latvia, Rainis Blvd 19, Riga, LV1586, Latvia

E-mail address: dtaimina@lanet.lv

Lithuania

Nerute Kligiene, A. Gostauto 12, 2600 Vilnius, Lithuania, Institute of Mathe-

matics and Informatics

E-mail address: nerute.kligiene@mji.lt

Malta

Irene Sciriha, Department of Mathematics, Faculty of Science, University of

Malta, Msida, Malta

E-mail address: irene@cis.um.edu.mt

The Netherlands

Coby Geijsel, Fac. der Wiskunde en Informatica, Universiteit van Amsterdam,

Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands

E-mail address: coby@wins.uva.nl

Norway

Ragni Piene, Department of Mathematics, University of Oslo, P.O. Box 1053-

Blindern, N-0316 Oslo 3, Norway
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