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In wireless communication systems, where the space-time propagation channel is
time-varying, block-by-block transmission is adopted and training symbols are
inserted in each block to allow the estimation of the changing channel. The accu-
racy of the training-based estimate, usually performed on a block-by-block basis,
is known to depend on the ratio between the number of channel unknowns and
the number of pilot symbols within the block. As the reliability of channel state
information is critical in space-time receivers, methods have been widely investi-
gated in the last years to improve the channel estimate accuracy, such as paramet-
ric approaches to reduce the number of relevant channel parameters or decision-
based iterative techniques to extend the training set with hard- or soft-valued data
symbols. In the sequel we propose subspace-based methods that exploit both ap-
proaches and are designed for the estimation of a single-input multiple-output
(SIMO) channel between a single-antenna mobile transmitter and a multiple-
antenna receiver.

Two different approaches can be identified in the literature for parametric
estimation of the multipath channel: structured methods for angle and delay es-
timation [1, 2, 3] and unstructured reduced-rank (RR) techniques [4, 5, 6, 7, 8].
Here we focus on the RR approach as it is the preferred one in terms of computa-
tional complexity and stability. RR methods parameterize the space-time channel
in terms of unstructured low-rank matrices whose column space equals the sub-
space spanned by the spatial and/or temporal signatures of the multipath compo-
nents of the channel. These subspaces, here referred to as the spatial and temporal
subspaces, can be related either to instantaneous-fading parameters of the channel
(short-term subspaces) or to slowly-varying features only (long-term subspaces).
In the first case the channel estimate is derived by single-block processing (SB, sub-
space methods [4, 8]), while the second case multiblock observations are required
(MB, subspace methods [9]).

The MB approach is based on the recognition that in mobile wireless systems
the multipath channel is characterized by fast-varying features, such as fading am-
plitudes (that change from block to block), and slowly-varying parameters, such
as second-order statistics of fading, delays, and angles (that can be considered as
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constant over a large number of blocks). In subspace methods the quasistation-
arity of the above-mentioned parameters is converted into the invariance of the
corresponding spatial-temporal channel subspaces. The latter are estimated from
multiple blocks, while the fast-varying parameters are obtained on a block-by-
block basis. As the accuracy of the estimate of the subspaces increases with the
number of blocks, the parameters that affect the variance of the overall channel
estimate reduces asymptotically to the fast-varying features only. This leads to a
significant reduction of the number of parameters which is particularly relevant
in radio environments where the angle-delay spread is small compared to the sys-
tem resolution.

Further improvements of the estimate accuracy are obtained by extending the
training set with hard- or soft-valued data symbols. This is feasible in iterative
receivers where information symbols detected in previous iterations can be fed
back to the channel estimator and used as additional known data. It is well known
how soft decisions can be more effective than the hard ones, as soft information
allows to account for the reliability of the estimate and thus to avoid the error
propagation effects that usually arise in decision feedback. Focusing therefore on
soft-iterative receivers [10] where a priori information on the information-bearing
symbols are available at the channel estimator, we propose a new version of the
MB subspace method that exploits both training and soft-valued data symbols.
For perfect a priori information (i.e., at convergence of the iterative approach),
the accuracy of the estimate is the same that would be obtained from an entire
block of training symbols.

In closing this introduction, we remark that all the SB and MB subspace meth-
ods proposed in this section (either training- or decision-based) are sufficiently
general to be adopted in any block-based transmission system (such as TDMA,
CDMA, OFDM, or hybrid TD-CDMA, multicarrier CDMA, etc.), with single or
multiple antennas at the transmitter and receiver (e.g., SISO, SIMO, or MIMO).
The presentation here is carried out at first for the uplink of a TDMA SIMO sys-
tem, as this is the most intuitive case. An application to time-slotted CDMA sys-
tems, such as the third-generation TD-SCDMA mobile standards [11, 12], is pro-
posed in the final part of the section. The extension to OFDM systems can be
found in [13].

3.1. System description and problem formulation

3.1.1. Signal model

We consider a block-based transmission system where a mobile terminal trans-
mits data blocks by a single-antenna transmitter to a multiple-antenna receiver
through a frequency-selective fading channel. As routinely employed, each block
includes a known training sequence to be used for channel estimation purposes
(Figure 3.1).

A discrete-time baseband model for the signals received within each block is
derived by sampling at the symbol rate 1/T the output of a matched filter at each
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Block 1 Block 2 · · · Block � · · · Block L− 1 Block L

Training sequence Data symbols

W − 1 Zt Zs

Figure 3.1. Block-by-block transmission system.

of the N receiving antennas. The N × 1 resulting signal is

r(i; �) = H(�)s(i; �) + v(i; �), (3.1)

where s(i; �)= [s(i; �) s(i− 1; �) · · · s(i−W + 1; �)]T collectsW transmitted
symbols, s(i; �) denotes the ith (either training or information) complex-valued
symbol within the �th block, chosen from a finite alphabet set. As illustrated in
Figure 3.1, the sequence transmitted within the block contains Zt + W − 1 known
training symbols (for i = −W + 1, . . . ,Zt − 1) and Zs data symbols (for i =
Zt, . . . ,Zs + Zt − 1). The N × 1 additive noise vector v(i; �) ∼ NC(0, Q) is assumed
to be temporally uncorrelated but spatially correlated (to account for cochannel
interference) with correlation function

E
[

v(i; �)vH(i− k; � −m)
] = δ(k)δ(m)Q, (3.2)

where Q denotes the unknown spatial-covariance matrix. The latter is positive
definite, its diagonal entries [Q]n,n = σ2

v for n = 1, . . . ,N represent the noise power
at each antenna element.

The N ×W space-time matrix H(�) describes the discrete-time channel im-
pulse response for the SIMO link. It accounts for the array response, the effects of
path fading, the symbol waveform used for transmission, and the matched filter at
the receiver. Though H(�) is generally time-varying, in many practical situations
its variations within the block interval can be neglected as the block duration is
selected shorter than the channel coherence time. Therefore, we can reasonably
approximate H(�) as invariant within the block but varying from block to block
(block-fading channel).

This section is focused on the following topics: estimation of the channels
{H(�)}L�=1 and the noise covariance matrix Q from the training signals received
in L different blocks, by exploiting the knowledge of the transmitted symbols
{s(i; �)}; detection of the information-bearing symbols {s(i; �)} contained in the
data fields of each block, by using the estimate of the channel responses. Chan-
nel estimation is performed by exploiting structural properties of the multipath
propagation that are described below.
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3.1.2. Algebraic structure of the channel

According to the multipath model for propagation, H(�) is modelled as the super-
position of P paths, the ith path being characterized by direction of arrival ϑi, delay
τi, and complex-valued amplitude αi(�). As discussed in [9], in practical systems
the variations of angles and delays stay below the receiver angular-temporal resolu-
tion for several blocks, thus the pair {ϑi, τi} can be reasonably assumed as constant
for L � 1 blocks (the value of L depends on the terminal speed and multipath
geometry). On the other hand, the fading amplitude αi(�) is fast varying and it
randomly changes from block to block due to the terminal mobility. According to
these assumptions the channel matrix can be written as

H(�) =
P∑

p=1

αp(�)a
(
ϑp
)

gT(τp) = AD(�)GT, (3.3)

where the W × 1 real-valued vector

g
(
τp
) = [g(− τp

)
g
(
T − τp

) · · · g
(
(W − 1)T − τp

)]T
(3.4)

contains samples of the delayed waveform g(τ), that represents the convolution
between the transmitter and receiver filters. The complex-valued vector a(ϑp) =
[a1(ϑp) · · · aN (ϑp)]T denotes the N × 1 array response to a plane-wave im-
pinging from the direction ϑp. For instance, for a uniform linear array of half-
wavelength-spaced omnidirectional antennas, the entries of a(ϑp) are an(ϑp) =
exp(− jπ(n − 1) sin ϑp) [14]. By collecting the set of P temporal/spatial vectors
into the temporal/spatial matrices

G =
[

g
(
τ1
) · · · g

(
τP
)]

,

A =
[

a
(
ϑ1
) · · · a

(
ϑP
)]

,
(3.5)

the multipath formulation for the space-time channel matrix simplifies as indi-
cated in the third member of (3.3), where D(�) = diag[α1(�), . . . ,αP(�)] embodies
the fading amplitudes. The latter are assumed to follow the WSSUS [15] model
and to be uncorrelated from block to block:

Cα(m) = E
[

D(� + m)DH(�)
] = δ(m) diag

[
σ2

1 , . . . , σ2
P

]
(3.6)

(see [9] for the generalization to correlated fading).
In order to avoid the computationally expensive estimation of the angle-delay

pairs, in the following we reparameterize the channel (3.3) in terms of unstruc-
tured block-fading or stationary matrices. Let the spatial (qS) and the temporal
(qT) diversity orders be defined as, respectively,

qS = rank[A] ≤ N , (3.7a)

qT = rank[G] ≤ W. (3.7b)
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As a rule of thumb, the first rank order accounts for the number of angles that
can be resolved in ϑ = [ϑ1, . . . , ϑP] (given the array aperture), while the second
one equals the number of the resolvable delays in τ = [τ1, . . . , τP] (given the band-
width of the transmitted signal). Though the number of paths can be very large, in
many practical situations the diversity orders depend only on few groups of lead-
ing scatterers with moderate angle-delay spread so that it is qS < N and/or qT < W .
Under these reduced-rank constraints, the multipath channel matrix (3.3) can be
rewritten as the combination of three full-rank matrices: the spatial and tempo-
ral stationary components US (N × qS) and UT (W × qT), and the block-fading
component Γ(�) (qS × qT). The new channel model is

H(�) = USΓ(�)UH
T . (3.8)

Differently from A and G in (3.3), here US and UT are unstructured matrices,
whose column space equals the subspace spanned by the stationary spatial and
temporal responses of the multipath channel, namely the long-term spatial sub-
space R[US] = R[A] and the long-term temporal subspace R[UT] = R[G] for the
channel matrix H(�).

An example of the parameterization (3.8) can be easily obtained from the
model (3.3) by considering the singular value decompositions A = USΣSVH

S , G =
UTΣTVH

T , and by further defining Γ(�) = ΣSVH
S D(�)VTΣ

H
T . In this case, US and UT

are orthonormal bases for the spatial and the temporal subspaces, respectively.

3.2. Training-based subspace methods for channel estimation

The discrete-time model (3.1) for the signals received during the training period
of the �th block is rewritten into the standard form

Rt(�) = H(�)St + Vt(�), (3.9)

by gathering the received signals into the N × Zt matrix

Rt(�) =
[

r(0; �) · · · r
(
Zt − 1; �

)]
(3.10)

(the first W − 1 samples are discarded as affected by the interference from the pre-
ceding data symbols). TheW×Zt Toeplitz matrix St = [s(0; �) · · · s(Zt − 1; �)]

represents the convolution of the channel with the training sequence {s(i; �)}Zt−1
i=−W+1

that is assumed to be the same for all blocks. The N × Zt matrix

Vt(�) =
[

v(0; �) · · · v
(
Zt − 1; �

)]
(3.11)

collects the noise samples. We further assume that Zt > N + W .
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3.2.1. Subspace-based estimation

The problem addressed herein is the maximum likelihood estimation (MLE) of
the channel matrices {H(�)}L�=1 from the received signals {Rt(�)}L�=1, under the
constraint (3.8), for known rank orders {qS, qT} and unknown noise spatial co-
variance Q.

For qS = N and qT = W , the MLE reduces to the unconstrained or full-rank
(FR) MLE estimate [16]

Hu(�) = Rt(�)SH
t C−1

t , � = 1, . . . ,L, (3.12)

where Ct = StSH
t is the (positive definite) correlation matrix of the training se-

quence. The estimate (3.12) is unbiased with covariance matrix [16]

Cu = Cov
[

hu(�)
] = (C−1

t

)∗ ⊗ Q, (3.13)

where hu(�) = vec[Hu(�)] is the vectorized channel estimate.
For any qS ≤ N and qT ≤ W , it can be shown [17, 18] that the MLE equals

asymptotically (for Zt → ∞) the minimizer of

F =
L∑

�=1

tr
[

Q−1
u,L

(
Hu(�) − USΓ(�)UH

T

)
Ct
(

Hu(�) − USΓ(�)UH
T

)H
]

, (3.14)

where Qu,L is the unconstrained estimate (assumed to be positive definite) for the
noise covariance matrix

Qu,L = 1
ZtL

L∑
�=1

(
Rt(�) − Hu(�)St

)(
Rt(�) − Hu(�)St

)H
. (3.15)

It follows that loss function (3.14) coincides [19], apart from unimportant con-
stant terms, with the negative log-likelihood function for the model

Hu(�) = USΓ(�)UH
T + ∆Hu(�), � = 1, . . . ,L, (3.16)

where the zero-mean Gaussian noise ∆Hu(�) is now spatially and temporally corre-
lated, with spatial covariance Q = Qu,∞ and temporal covariance C−1

t (see (3.13)).
As a consequence, the constrained MLE can be seen as a parametric reestimate
from the preliminary noisy estimates {Hu(�)}L�=1 under the parameterization (3.8).

In the sequel, the minimization of loss function (3.14) with respect to channel
parameters (3.8) is performed at first for L = 1 and then for L > 1. For single-block
(SB) processing the constrained MLE coincides with the well-known reduced-rank
(RR) estimate [4], while for multiblock (MB) processing the solution is the MB
space-time (MB-ST) estimate [9].

In both cases, the reestimate is obtained from the preliminary estimates
{Hu(�)}L�=1 through the following operations: (i) weighting of the unconstrained
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channel estimate by the spatial and temporal factors, WS,L = Q−H/2
u,L and WT =

C1/2
t , to get

H̃u(�) = WS,LHu(�)WH
T ; (3.17)

(ii) estimation of the long-short term spatial-temporal channel subspaces from
{H̃u(�)}L�=1 and projection of each channel matrix H̃u(�) onto the estimated sub-
spaces; (iii) inverse weighting of the projected channel matrix to get the final esti-
mate.

It is understood that the weighting operation is simply an asymptotic whiten-
ing of the preliminary estimate error ∆hu(�) = vec[∆Hu(�)]. For Zt → ∞, it is
indeed WS,L → Q−H/2 and the weighted estimate error

∆h̃u(�) = vec
[

WS,L∆Hu(�)WH
T

] = (W∗
T ⊗ WS,L

)
∆hu(�) �→ C−H/2

u ∆hu(�) (3.18)

has covariance Cov[∆h̃u(�)] → INW .

Single-block (SB) approach. For SB processing (L = 1) parameterization (3.8) is
equivalent to the RR constraint:

q = rank
[

H(�)
] = min

(
qS, qT

) ≤ min(N ,W). (3.19)

The constrained MLE equals in this case the block-by-block RR estimate [4] that
can be expressed by any of the following equivalent formulations [8, 20]

ĤSB(�) = W−1
S,1Π̂S(�)H̃u(�)W−H

T = W−1
S,1H̃u(�)Π̂T(�)W−H

T , (3.20)

where Π̂S(�) and Π̂T(�) are the projectors onto the (short term) subspaces spanned
by the q leading eigenvectors of, respectively, the spatial and temporal SB sample
correlations:

ĈS,1 = H̃u(�)H̃H
u (�), (3.21a)

ĈT,1 = H̃H
u (�)H̃u(�). (3.21b)

Efficient implementations of estimate (3.20) can be found in [20]. Extensions
of the RR approach to both spatially and temporally correlated noise are proposed
in [21].

Multiblock (MB) approach. The MB estimate is an extension of the RR algorithm
to MB processing (L > 1). With respect to the block-by-block estimation, the MB
approach allows the estimation of both the spatial and temporal subspaces by dif-
ferentiating between the spatial (qS) and temporal (qT) rank orders.

The MB space-time (MB-ST) MLE is obtained by minimizing loss function
(3.14) with respect to the block-independent parameters {US, UT} and the block-
dependent terms {Γ(�)}L�=1. The solution is [9]

ĤMB(�) = W−1
S,LΠ̂SH̃u(�)Π̂TW−1

T for � = 1, 2, . . . ,L, (3.22)



34 Subspace methods for space-time processing

where Π̂S and Π̂T represent the projectors onto the (long term) subspaces spanned
by, respectively, the qS principal eigenvectors of the spatial sample correlation ĈS,L

and the qT principal eigenvectors of the temporal sample correlation ĈT,L:

ĈS,L = 1
L

L∑
�=1

H̃u(�)H̃H
u (�), (3.23a)

ĈT,L = 1
L

L∑
�=1

H̃H
u (�)H̃u(�). (3.23b)

In dense multipath radio environments where the temporal order rises to
qT � W , it is convenient to neglect the temporal projection and set Π̂T = IW
in (3.22). The resulting channel estimate exploits the stationarity of the spatial
subspace only and it is referred to as MB-spatial (MB-S) estimator (see also [22]).
Dually, for a large angular spread and/or a small number of antennas (qS � N),
it might be advisable not to use the spatial projection and set Π̂S = IN in (3.22).
This leads to the MB-temporal (MB-T) estimator that exploits the stationarity of
the temporal subspace only.

It can be easily seen that for L = 1, MB-ST estimate (3.22) coincides with RR
or SB estimate (3.20). On the other hand, for L → ∞ (but still stationary channel
structural properties), it is WS,∞ = Q−H/2 and the estimates {Π̂S, Π̂T} tend to the
projectors {ΠS,ΠT} onto the subspaces of the weighted channel matrix

H̃(�) = WS,∞H(�)WH
T = ÃD(�)G̃T, (3.24)

where Ã = WS,∞A and G̃ = WTG are the spatial-temporal components of H̃(�).
Namely, Π̂S tends to the projector ΠS onto the spatial subspace R[Ã] and Π̂T

tends to the projector ΠT onto the temporal subspace R[G̃]. This can be proved by
simply evaluating the sample correlation matrices (3.23a)–(3.23b) for L → ∞ [9]:

ĈS,∞ = E
[

H̃u(�)H̃H
u (�)

] = CS + WIN , (3.25a)

ĈT,∞ = E
[

H̃H
u (�)H̃u(�)

] = CT + NIW. (3.25b)

Here the spatial (CS) and temporal (CT) correlations for the true-weighted channel
matrix H̃(�) are defined as

CS = E
[

H̃(�)H̃H(�)
] = ÃΛSÃH, (3.26a)

CT = E
[

H̃H(�)H̃(�)
] = G̃ΛTG̃T. (3.26b)

ΛS = G̃TG̃	Cα(0) andΛT = ÃHÃ	Cα(0) are diagonal matrices, and 	 denotes the
element-wise product. From (3.25a) and (3.26a), it is easy to see that the subspace
spanned by the qS leading eigenvectors of the matrix ĈS,L equals asymptotically the
spatial subspace R[CS] = R[Ã]. Dually, the subspace spanned by the qT leading
eigenvectors of the matrix ĈT,L coincides, for L → ∞, with the temporal subspace
R[CT] = R[G̃].
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Remarks. In real systems the rank orders (q, or both qS and qT) have to be esti-
mated from the received signals. As discussed in [23], the order that minimizes the
mean square error (MSE) of the estimate is a trade-off between distortion (due to
under-parameterization) and noise (due to over-parameterization). Methods for
optimal trade-off selection are proposed in [24] (for uncorrelated noise) and in [8]
(for spatially correlated noise) by using the minimum description length (MDL)
criterion [25].

An adaptive implementation of the MB methods, that allows to cancel the la-
tency in providing the channel estimate and alleviate the computational burden,
can be obtained through subspace tracking techniques [26]. The estimate of the
spatial and temporal subspaces is updated on a block-by-block basis, allowing an-
gles and delays to vary continuously (but still slowly) over the blocks [9]. In case
of severe fading (i.e., for large-block duration and/or high velocity of the mobile
user), a tracking of the fast-varying channel parameters is needed as well within
each block interval [27].

Example 3.1. The advantage of the subspace methods with respect to the uncon-
strained one is illustrated by an example in Figures 3.2 and 3.3. The noise is spa-
tially white (Q = σ2

v IN ) and the training sequence is uncorrelated (Ct = σ2
s ZtIW ),

so that the weighting terms can be neglected (as H̃u(�) ∝ Hu(�)). The multipath
propagation is composed of P = 5 paths having Cα(0) = diag[0.33, 0.25, 0.19, 0.14,
0.083]. The path pattern is described in Figure 3.2a. Figures 3.2b and 3.2c show the
power-delay-angle (PDA) diagram for the channel in the first block and the un-
constrained estimate evaluated in six different blocks. As illustrated by PDA plots,
the simulated angle-delay pattern is invariant over the blocks, while the fading
amplitudes change from block to block.

The subspace-based channel estimates are shown in Figure 3.3. Since α1 = α2,
α3 = α4, and τ4 = τ5, the spatial and temporal diversity orders are, respectively,
qS = q = 3 and qT = 4. The SB and MB (for L → ∞) estimates are calculated by
using as rank orders q̂S = q̂ = 1 ÷ 3, q̂T = 1 ÷ 4. Figure 3.3 compares the PDA
diagrams of all channel estimates for � = 1 and illustrates how the projection onto
the short-long term spatial-temporal channel subspace reduces the estimate error
with respect to the preliminary unconstrained estimate. The comparison shows
that the most accurate estimate is obtained by double projection (both spatial and
temporal) onto the long-term subspaces. This is proved analytically in the follow-
ing.

3.2.2. Performance analysis and comparison

In the following we evaluate and compare the performance for the SB and MB
subspace-based estimates with the unconstrained one under the following con-
ditions: known q, Zt → ∞ and L = 1 for the SB estimate; known {qS, qT} and
{Zt,L} → ∞ for the MB estimate (performance for any L is in [8]). Notice that for
Zt → ∞ it is Qu,L = Q, as for known noise covariance matrix.
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Figure 3.2. Example of block-by-block unconstrained estimation for a block-faded channel with sta-
tionary angle-delay pattern: (a) multipath model with P = 5 paths, qS = q = 3 and qT = 4; (b) power-
delay-angle diagram for the channel in the first block; and (c) power-delay-angle diagram for the un-
constrained estimate in six different blocks.

Let Hc(�) be any of the SB or MB constrained estimates, it can be shown [8, 9]
that the relationship between the constrained ∆hc(�) = vec[Hc(�)−H(�)] and the
unconstrained ∆hu(�) = vec[Hu(�) − H(�)] estimate error is

∆hc(�) = CH/2
u ΠC−H/2

u ∆hu(�), (3.27)

where Cu is covariance (3.13) of the unconstrained estimate and Π is a projec-
tor onto a long/short term spatial/temporal channel subspace depending on the
specific constrained estimate. Namely, for the SB estimate, Π is the instantaneous-
fading projector

Π = IW ⊗ΠS(�) + Π∗
T (�) ⊗Π⊥

S (�) (3.28)

obtained from the projector ΠS(�) onto the short-term spatial subspace R[H̃(�)]
and the projector ΠT(�) onto the short-term temporal subspace R[H̃H(�)]. On
the other hand, for the MB methods the fading is averaged over L → ∞ blocks and
Π is related to the long-term projectors: Π = Π∗

T ⊗ΠS for MB-ST; Π = IW ⊗ΠS

for MB-S; Π = Π∗
T ⊗ IN for MB-T.
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(a)

q̂ = 1 q̂ = 2 q̂ = 3

(b)

q̂T = 1 q̂T = 2 q̂T = 3 q̂T = 4

(c)

q̂S = 1 q̂S = 2 q̂S = 3

(d)

q̂S = 3 q̂T = 4

(e)

Figure 3.3. Comparison between the PDA of all channel estimates in the first block for the exam-
ple in Figure 3.2. (a) Unconstrained estimate. (b), (c), (d) Subspace-based estimates: (b) single-block;
(c) multiblock time for q̂T = 1, . . . , 4; and (d) multiblock space for q̂S = 1, . . . , 3. (e) Multiblock space-
time for q̂T = qT and q̂S = qS.

From (3.27), the covariance matrix of the subspace-based estimate is

Cov
[

hc(�)
] = E

[
∆hc(�)∆hH

c (�)
]

= CH/2
u ΠC−H/2

u Cov
[

hu(�)
] = CH/2

u ΠC1/2
u .

(3.29)

As expected, the covariance of the constrained reestimate is obtained from the un-
constrained estimate covariance through following operations: (i) whitening (i.e.,
by means of the spatial-temporal weighting factors); (ii) projection onto the long-
short term spatial-temporal channel subspaces; (iii) inverse weighting. Notice that,
due to the projection, the effect of the constrained re-estimation is always a reduc-
tion of the unconstrained estimate error.

This is confirmed by the asymptotic MSE of the estimate, MSE = E[‖Ĥ(�) −
H(�)‖2], that is obtained as the trace of covariance matrix (3.29). From (3.13) and
by exploiting the Kronecker product properties [28], we get the results summa-
rized in Table 3.1 where the operator Φ[·] is defined as Φ[Π, C] = tr[CH/2ΠC1/2].
The MSE expressions simplify for spatially uncorrelated noise (Q = σ2

v IN ) and
training sequence with ideal correlation properties (Ct = σ2

s ZtIW ), as shown in the
third column in Table 3.1. In this case the MSE is linearly related to the ratio be-
tween the number of independent channel parameters to be estimated within the
block and the training sequence length (Zt). For instance, for the unconstrained
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Table 3.1. Asymptotic MSE for training-based estimates: unconstrained estimate (FR); single-block
(SB) and multiblock (MB) subspace methods.

Estimate Correlated noise and training sequence Uncorrelated

FR Φ(IW , C−1
t )Φ(IN , Q)

σ2
v

σ2
s

NW

Zt

SB Φ(IW , C−1
t )Φ(ΠS(�), Q) + Φ(ΠT(�), C−1

t )Φ(Π⊥
S (�), Q)

σ2
v

σ2
s

q[N + W − q]
Zt

MB-ST Φ(ΠT, C−1
t )Φ(ΠS, Q)

σ2
n

σ2
s

qSqT

Zt

MB-S Φ(IW , C−1
t )Φ(ΠS, Q)

σ2
v

σ2
s

WqS

Zt

MB-T Φ(ΠT, C−1
t )Φ(IN , Q)

σ2
v

σ2
s

NqT

Zt

(or FR) method, the unknowns are the NW entries of the channel matrix, while
for the SB estimate (i.e., constrained to have rank equal to q), the number of un-
knowns is reduced to q(N +W − q). On the other hand, all the MB methods have
a definite advantage with respect to the SB technique, as they can estimate the in-
variant spatial and/or temporal subspaces with any degree of accuracy provided
that L is large enough. Therefore, the MSE of the MB methods depends only on
the number of parameters to be estimated on each block: qSqT for MB-ST, qSW
for MB-S, and NqT for MB-T.

The following relation holds among the performances of the unconstrained
and the MB-constrained estimates:

MSEu ≥ {MSEMB-T, MSEMB-S
} ≥ MSEMB-ST. (3.30)

For the comparison between SB- and MB-constrained methods, the MSE of the
SB estimate (MSESB) needs to be averaged with respect to the fading amplitudes
(or, equivalently, averaged over L → ∞ blocks); the following inequalities hold:

MSEu ≥ MSESB ≥
MSEMB-T for q = qT ≤ qS,

MSEMB-S for q = qS ≤ qT,
(3.31)

which imply also MSESB ≥ MSEMB-ST for any q. For the proof of the inequalities
(3.30)–(3.31) see [9].

The analytical MSEs and the relationships (3.30)–(3.31) are verified by simu-
lations in Figure 3.4. The figure compares the asymptotic MSE (lines) with the
simulated MSE (markers) for different values of signal-to-noise ratio SNR =
E[‖H(�)‖2]σ2

s /σ
2
v and number of blocks L. The training sequence is chosen from

the UMTS-TDD standard [12] and it is composed of Zt = 456 QPSK symbols
with a cyclic prefix of 56 symbols. The training signals are received in spatially
correlated Gaussian noise by a ULA with N = 8 half-wavelength-spaced apart ele-
ments. The channel matrix is generated according to model (3.8) for W = 15 and
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Figure 3.4. MSE of the SB and MB subspace-based estimates in spatially correlated noise (a) for vary-
ing SNR and L = 40 and (b) for varying L and SNR = 20 dB.

qS = qT = 3 (rank orders are known at the receiver). The MSE of the estimate is
evaluated for L = 40 and varying SNR (Figure 3.4a), and for SNR = 20 dB and
varying L (Figure 3.4b). The numerical analysis shows that the subspace-based
methods approach the analytical MSE bound and outperform the FR estimate.
Moreover the MB bound for L → ∞ can be easily reached with a reasonable num-
ber of blocks (in practice, L ≥ 30).

3.3. Decision-based subspace methods

The performance analysis in the previous section demonstrates that, for all the
considered methods, the estimate accuracy is inversely related to the number of
training symbols used within each block for the estimation of the channel matrix.
In the following, we extend the analysis to channel estimation in soft-iterative re-
ceivers [10], where after the first iteration, a priori probabilities about the informa-
tion-bearing symbols can be used at the channel estimator to extend the training
set.

3.3.1. Extension to information-bearing signals

Let the N × Zd matrix Rd(�) = [r(Zt + W − 1; �), . . . , r(Zt + Zs − 1; �)] collect
Zd = Zs − W + 1 samples received within the �th data field (to simplify, the first
W − 1 samples are discarded as they contain overlapping between training and
data symbols). Model (3.9) can now be extended with the information-bearing
signals

Rd(�) = H(�)Sd(�) + Vd(�). (3.32)
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Similarly to (3.9), here the W × Zd Toeplitz matrix Sd(�) represents the convo-
lution of the channel with the data sequence {s(i; �)}Zt+Zs−1

i=Zt
, while the N × Zd

matrix Vd(�) contains the noise samples. To simplify the analysis, in the following
we consider QPSK modulation, that is, s(i; �) = σs(b(i; �; 1) + jb(i; �; 2))/

√
2 with

b(i; �; z) ∈ {−1, +1} being the bits corresponding to the ith symbol, z = 1, 2. The
generalization to larger constellations is straightforward.

As in a soft-iterative receiver (after the first equalization and decoding of the
L blocks) [29], we assume that the a priori log-likelihood ratio (LLR)

λ1(b) = log
P[b = +1]
P[b = −1]

(3.33)

is available at the channel estimator for every bit b = b(i; �; z). This soft infor-
mation can be used to compute the mean value s̄(i; �) = E[s(i; �)] and the vari-
ance σ2

i (�) = Var[s(i; �)] = σ2
s − |s̄(i; �)|2 for each data symbol s(i; �), for i =

Zt, . . . ,Zt + Zs − 1. Similarly to [30], the mean values {s̄(i; �)} can be used in addi-
tion to the training symbols to perform channel estimation as described below.

3.3.2. Subspace-based estimation

We arrange the mean values {s̄(i; �)}Zt+Zs−1
i=Zt

into the W × Zd matrix S̄d(�) =
E[Sd(�)]. The signals within the data field are modelled as

Rd(�) = H(�)S̄d(�) + ∆Vd(�) + Vd(�), (3.34)

where the soft-valued data estimates S̄d(�) are treated as additional known training
symbols, while the signals ∆Vd(�) = H(�)∆Sd(�) generated by the data estimate
errors ∆Sd(�) = Sd(�) − S̄d(�) are approximated as an equivalent Gaussian noise.

Within each block a soft unconstrained estimate of the channel matrix is cal-
culated by applying estimator (3.12) to the joint signal R(�) = [Rt(�) Rd(�)] and
by using as training data S̄(�) = [StS̄d(�)]. This yields

Hu(�) = (Rt(�)SH
t + Rd(�)S̄H

d (�)
)(

Ct + C̄d
)−1

, (3.35)

where C̄d is here defined as C̄d = S̄d(�)S̄H
d (�). This estimate is known to be subop-

timal, but, in addition to its simplicity, it has the advantage of being unbiased and
thus facilitates bootstrap and convergence in iterative receivers [31], as shown by
simulation results in Section 3.4. Notice that if data symbols are independent and
Zd is large enough, Cd = Sd(�)SH

d (�) ≈ σ2
s ZdIW and the matrix C̄d can be approx-

imated as C̄d ≈ σ2
s Z̃dIW , where Z̃d represents the effective number of known data
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Table 3.2. Asymptotic MSE for soft-based estimates: unconstrained estimate (FR); single-block (SB)
and multiblock (MB) subspace methods.

Estimate Correlated noise and training sequence Uncorrelated

Prior information with 0 ≤ σ̄2 ≤ σ2
s

FR Φ(IW , (Ct + C̄d)−1) · [Φ(IN , Q) + Φ(IN ,∆Q)]
σ2
v + ∆σ2

v

σ2
s

NW

Z̃

MB-ST Φ(ΠT, (Ct + C̄d)−1) · [Φ(ΠS, Q) + Φ(IN ,∆Q)]
σ2
v + ∆σ2

v

σ2
s

qSqT

Z̃

Perfect prior information (σ̄2 = 0)

FR Φ(IW , (Ct + Cd)−1) ·Φ(IN , Q)
σ2
v

σ2
s

NW

Zt + Zd

MB-ST Φ(ΠT, (Ct + Cd)−1) ·Φ(ΠS, Q)
σ2
v

σ2
s

qSqT

Zt + Zd

symbols that can be used in each block for channel estimation:

Z̃d = Zd

(
1 − σ2

d

σ2
s

)
, (3.36)

σ2
d = 1

LZd

∑
i,�

σ2
i (�). (3.37)

Starting from preliminary FR estimate (3.35), a soft ST-MB estimate can be
derived according to (3.22) by computing the weighting matrices WS = Q−H/2

u,L

and WT = (Ct + C̄d)−H/2 from both the training and the data signals. If the esti-
mated symbols are unreliable (i.e., at the first iterations of the iterative processing
for moderate SNR), it is Z̃d = 0, S̄d(�) = 0, and the soft MB-ST estimate coincides
with the training-based one (3.22). On the other hand, for perfect a priori infor-
mation (i.e., after a large enough number of iterations, provided that the iterative
approach converges), it is Z̃d = Zd, S̄d(�) = Sd(�), and therefore the soft estimate
equals the training-based estimate that would be obtained from a virtual training
sequence of Z = Zt + Zd symbols.

3.3.3. Performance analysis and comparison

The asymptotic MSE for the soft-iterative channel estimate is evaluated in Table 3.2
by assuming the errors ∆si(�) = si(�) − s̄i(�) of the soft-valued data estimates as
uncorrelated with zero mean and variance σ2

d given in (3.37). The errors are also
considered uncorrelated from the noise samples v(i; �).

We observe that the additional noise term ∆Vd(�), that affects the signals
within the data fields only, is temporally uncorrelated but spatially correlated with
covariance Cov[vec[∆Vd(�)]] = IZd ⊗ (σ2

d CS). Starting from this, it can be shown
that the covariance of the unconstrained soft estimate (3.35) is obtained from the
training-based one (3.13) by simply replacing Ct with Ct + C̄d, and Q with Q+∆Q,
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where ∆Q = (Z̃d/Z̃)σ2
d CS. The covariance of the subspace-based soft estimate is fi-

nally derived through the operations of weighting, projecting, and inverse weight-
ing from the unconstrained soft estimate covariance, as in Section 3.2.2. The trace
of the covariance matrices yields the MSEs summarized in the second column of
Table 3.2.

The MSE expressions can be easily explained in the case of uncorrelated train-
ing sequence (Ct = σ2

s ZtIW ) and spatially white noise (Q = σ2
v IN ). This is shown

in the third column of Table 3.2. As for the training-based methods, the MSE of
the soft estimates is linearly related to the following: the ratio between the number
of channel unknowns and the number Z̃ = Zt + Z̃d of effective training symbols
within each block; the variance σ2

v +∆σ2
v of the overall noise, that is, the sum of the

background noise and the noise generated by soft-decision errors, with

∆σ2
v = tr[∆Q]

N
= σ2

d
Z̃d

Z̃

E
[‖H(�)‖2]

N
. (3.38)

Clearly, for large signal-to-noise ratio and unreliable soft data, the term due to de-
cision errors is dominant (∆σ2

v > σ2
v ) and the soft-based channel estimate can be

less accurate than the training-based one. Still, it has to be noticed that this ex-
treme condition is quite unlikely when the iterative processing converges, as the
signal-to-noise ratio and the data estimate variance σ2

d are highly correlated with
each other. We finally remark that for missing prior information (i.e., at the first
iteration of turbo processing), it is ∆σ2

v = 0, σ2
d = 1, Z̃ = Zt, C̄d = 0, and the

performance in Table 3.2 reduces to the training-based one in Table 3.1. On the
other hand, for perfect prior information (i.e., close to the convergence of the
iterative approach), the MSEs simplify as indicated in Table 3.2 (rows 5–7) for
∆σ2

v = σ2
d = 0, Z̃ = Zt + Zd, and C̄d = Cd = σ2

s ZdIW .
A comparison with simulated performance is in Figure 3.5. A block transmis-

sion system is considered where L = 20 blocks are transmitted over a block-fading
Rayleigh channel to a uniform linear antenna array of N = 8 elements with half-
wavelength interelement spacing. The channel has temporal support W = 16 and
it is composed of P = 6 paths clustered into two groups: in the first set, αp = π/6
for p = 1, 2, 3, and [τ1, τ2, τ3] = [0, 1.2, 2.2]T ; in the second set, αp = 0 for
p = 4, 5, 6 and [τ4, τ5, τ6] = [7.2, 8.2, 9.2]T . The power-delay profile is the same
within each cluster: [σ2

1 , σ2
2 , σ2

3 ] = [σ2
4 , σ2

5 , σ2
6 ] = [1, 0.5, 0.25]/1.75. It follows that

qS = 2, qT = 6. The noise is spatially correlated due to an interferer with direction
of arrival ϑ = π/3: [Q]m,� = σ2

v 0.9|�−m| exp[−iπ(�−m) sin ϑ]. Each block contains
Zt = 31 training symbols (with a cyclic prefix of W − 1 symbols) and Zd = 200
information symbols. The transmitted pulse g(t) is a raised cosine with roll-off

factor 0.22.
Figure 3.5 compares the MSE of the soft SB and MB estimates for different

values of the following: number of blocks L used in the MB estimate for the pro-
jector evaluation; number of soft-valued symbols Zd used for channel estimation;
mutual information I = I[b, λ1(b)] [32] between every bit b = b(i; �; z) and the
corresponding a priori LLR λ1(b) defined in (3.33). Notice that the soft FR esti-
mate here is equivalent to the method proposed in [30]. According to [33], the
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Figure 3.5. MSE of the soft unconstrained, and MB subspace-based estimates for varying mutual
information I and number of data symbols Zd.

TS 1 TS 2 · · · TS � · · · TS L− 1 TS L

Data Training Data GP

User 1
. . .
User K

GuardZc/2 symbolsZt + W − 1 chipsZc/2 symbols

Figure 3.6. Block-by-block transmission in hybrid TD-CDMA systems.

a priori information λ1(b) is modelled as Gaussian. The signal-to-noise ratio is
SNR = 12 dB. The simulated MSE values (markers) are compared with the ana-
lytical results (solid/dashed lines) of Table 3.2. It can be seen that the soft-iterative
channel estimate becomes more accurate for increasing I (or, equivalently, for de-
creasing σ2

d ), from I = 0 (i.e., estimation from training symbols only, σ2
d = 1) to

I = 1 (i.e., estimation from the overall block of Z known symbols, σ2
d = 0). The

maximum performance gain with respect to the training-based estimate (MSEt) is
reached for I = 1 and it is MSEt/MSE = Z/Zt ≈ 9 dB as confirmed by simulations.

3.4. Subspace methods in hybrid TD-CDMA systems

The proposed SB and MB subspace methods can be also applied to communica-
tion systems dominated by multiple access interference (MAI), as block-synchro-
nous time-slotted CDMA systems such as TD-SCDMA 3G standards [11, 12].
Block-by-block transmission is organized as illustrated in Figure 3.6.

Within the same uplink time-slot K users transmit simultaneously a block
that contains a user-specific training sequence of Zt + W − 1 chips and Zc data
symbols spread by a code ck of length Q, for k = 1, . . . ,K . The discrete-time model
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for the signals at the antenna array receiver is obtained as in Section 3.1.1 after chip
matched filtering and sampling at the chip-rate 1/Tc:

r(i; �) =
K∑
k=1

Hk(�)sk(i; �) + v(i; �). (3.39)

Herein i is the chip index within the �th block, the N ×W channel matrix Hk(�)
and theW×1 chip sequence sk(i; �) refer to the kth user. The aim here is to evaluate
the performance of a space-time receiver for model (3.39) complete with channel
estimation and space-time multiuser detection (MUD) [34, 35].

Channel estimation can be performed jointly for theK users by imposing con-
straint (3.8) for each channel matrix Hk(�) (multiuser channel estimation). The
spatial covariance of the noise is estimated from the training data as well (provided
that KW < Zt −N). The estimation of the channel matrices and the noise covari-
ance is obtained by extending the subspace method described in Section 3.2.1 to
multiuser model (3.39) [8]. The method can effectively cope with MAI (due to
the nonorthogonality of the training sequences) and cochannel interference from
neighboring cells.

After channel estimation, data detection is carried out on the data fields of
each block, by using the estimates for the channel responses and the noise co-
variance. Even if the spreading codes are orthogonal at the transmitter, due to the
frequency-selective fading channel, the information-bearing signals at the receiver
are affected by both intersymbol-interference (ISI) and MAI. Block multiuser de-
tection is needed to properly handle the interference, such as linear minimum-
mean-square-error (MMSE) block MUD [36]. Since MAI and ISI are usually lim-
ited to few symbol intervals, block MUD can be carried out with a reduced block
size to lower the computational complexity [37].

We first consider the uplink of a UMTS-TDD system [12] with a ULA of N =
8 half-wavelength-spaced elements at the receiver. Each block contains Zc = 122
information symbols and a training sequence of Zt = 456 chips with a cyclic pre-
fix of length 56. Walsh-Hadamard codes of fixed length Q = 16 are used to spread
the user data. Blocks are transmitted by QPSK modulation at the chip-rate 3.84
Mchip/s using root-raised-cosine pulse shaping at roll-off 0.22. K = 8 users are
simultaneously active within the same cell and they have channel length W = 45.
Perfect power control is assumed so that E[‖Hk(�)‖2] = 1 for all users. The noise is
spatially correlated due to Ki = 6 intercell interferers with equal average power, di-
rection of arrival ϑk uniformly distributed within [−π/3, +π/3], for k = 1, . . . ,Ki.
The power Pk of each interfering signal is subject to Rayleigh fading and log-
normal shadowing (with standard deviation 12 dB). The resulting noise spatial
covariance is approximated as [Q]m,� = ∑Ki

k=1 Pk0.9|�−m| exp[−iπ(� − m) sin ϑk]
with

∑Ki

k=1 Pk = σ2
v .

Realistic propagation environments are simulated according to the stochas-
tic COST-259 directional channel model (COST-259 DCM) [38] that describes
both the temporal and the angular dispersion of the propagation. Four macrocell
radio environments are simulated according to COST-259 DCM specifications:
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Figure 3.7. Power-delay-angle profile for channels generated according to COST-259 DCM propaga-
tion environments: (a) GTU, (b) GBU, (c) GRA, and (d) GHT.

generalized typical urban (GTU), generalized bad urban (GBU), generalized rural
area (GRA), and generalized hill terrain (GHT). Figure 3.7 illustrates the power-
delay-angle profile for a few channels generated by COST-259 model. The example
shows that low-rank models are suitable for GTU and GRA environments as they
are characterized by small angular-delay spread.

Figure 3.8 compares the MSE of the FR and SB-MB subspace methods for
varying SNR. MB-ST estimation is carried out with L = 30 and adaptive selection
of rank orders {qS, qT} by MDL criterion (solid line with star markers). Different
SB subspace estimates are obtained by using a fixed-rank order (with q = 1, 2, 3, 4,
dashed lines) and MDL estimation of the rank order q (solid line with circle mark-
ers). Numerical results show that for low SNR the rank-1 approximation is the
preferred solution (as it minimizes the number of unknowns to be estimated),
while for large SNR the distortion becomes remarkable and a higher rank order
is needed. The SB channel estimate with MDL selection of the rank order outper-
forms the fixed-rank SB estimates and the FR estimate (thick line) for all the SNR
values. The minimum MSE among all the considered methods is obtained by the
MB-ST subspace-based estimate with adaptive rank order.

Figure 3.9 compares the channel estimation methods in terms of BER for un-
coded bits versus Eb/N0 = Qσ2

s E[‖Hk‖2]/(2Nσ2
v ). The adaptive selection of rank

order by MDL criterion (circle-line for SB and star-line for MB) is again the most
appropriate choice. The MB method outperforms both the FR and the SB esti-
mates and it approaches the performance obtained with known channels. This
confirms that the proposed algebraic structure is effective in reducing the channel
description to the minimal number of parameters.

The performance of the soft subspace methods is evaluated by simulating a
soft-iterative multiuser receiver for a convolutionally coded TD-SCDMA system
similar to the UMTS-TDD low chip-rate system [11], with chip-rate 1.28 Mchip/s.
The transmitter structure is shown in Figure 3.10. At the kth transmitter, k =
1, . . . , 4, a sequence {xk(i)} of binary information symbols is encoded with the
four-state convolutional code (7, 5)o with rate R = 1/2. Code bits are then per-
muted by a random interleaver of length 2814, mapped into QPSK symbols, spread
by a Walsh-Hadamard code of length Q = 4, and arranged into L = 16 blocks.
Each block contains Zc = 176 data symbols and a training sequence of Zt = 128
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Figure 3.8. MSE of the unconstrained (FR) and subspace-based (SB and MB) estimates in COST-259
radio environments and spatially correlated noise. (a) GTU, (b) GRA, (c) GBU, and (d) GHT.

chips (plus a cyclic prefix of length 16). Blocks are transmitted over a Rayleigh
fading three-path channel having delays [τ1, τ2, τ3] = [0, 3, 6] microseconds, av-
erage powers [σ2

1 , σ2
2 , σ2

3 ] = [1/8, 1/2, 3/8], and directions of arrival ϑ1 = ϑ2 = ϑ3

uniformly distributed within [−π/3, +π/3]. The noise is spatially correlated with
Ki = 1.

Signals are received by a ULA of N = 4 half-wavelength-spaced elements.
The turbo receiver structure (Figure 3.11) consists of a suboptimal soft-input/soft-
output (SISO) MMSE MUD with sliding window approach [39], a soft channel es-
timator, a set of K = 4 log-maximum-a-posteriori (log-MAP) SISO decoders [40]
and 4 interleavers/deinterleavers. According to the turbo principle [10], channel
estimation, multiuser detection, and decoding are repeated several times on the
same frame of 16 received blocks with exchange of reliability information.
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Figure 3.9. Performance of MMSE space-time MUD with unconstrained (FR) and subspace-based
(SB and MB) channel estimation in COST-259 radio environments and spatially correlated noise. (a)
GTU, (b) GRA, (c) GBU, and (d) GHT.

At each iteration, the soft channel estimator derives (as described in Section
3.3.2) new estimates {Ĥk(�)}L�=1 for the channel matrices of all users, by exploiting
both training chips and a priori LLRs λ1(bk(i; �)) for data chips. At the first it-
eration no a priori information is available and the channel matrices are esti-
mated from training signals only. The estimates {Ĥk(�)}L�=1 and the a priori LLR
λ1(bk(i; �)) are fed to the SISO MUD and used to compute the extrinsic LLR for
every code bit of every user. The extrinsic information is then reversed interleaved,
and passed to the K channel decoders as a priori LLR λ2(bk(i; �)). Each decoder de-
rives a refined extrinsic information that is interleaved again and fed back as new
a priori LLR λ1(bk(i; �)) for further iterations. At the last iteration, the a posteriori
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Figure 3.10. Transmitter structure for a coded CDMA system.
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Figure 3.11. Soft-iterative receiver structure for a coded CDMA system.

LLRs for the information bits xk(i) are computed as well by the decoders to provide
the final estimates x̂k(i).

Figure 3.12 shows the BER performance of the iterative receiver for differ-
ent values of Eb/N0 = Qσ2

s E[‖Hk‖2]/(2RNσ2
v ) (defined for the coded system).

The BER is evaluated at the ith turbo processing iteration for i = 1, 2, 5. Both the
training-based (Figure 3.12a) and soft-based (Figure 3.12b) channel estimators are
compared with the case of known channel. It is evident how the convergence of the
iterative processing depends on the reliability of channel state information: if the
training-based FR method is used, the BER is still high after 5 iterations due to
channel estimate inaccuracy and the convergence is prevented. A remarkable gain
in performance is reached by the training-based MB method. But the advantage
of using soft information is evident: the soft MB subspace method outperforms all
other estimation methods and at the 5th iteration it closely approaches the perfor-
mance for known channel.

3.5. Summary

Subspace methods have been proposed for the estimation of block-fading chan-
nels in block transmission systems. The proposed methods reduce the number



M. Nicoli and U. Spagnolini 49

Training-based FR
Training-based MB
Known channel

−6 −4 −2 0 2 4 6 8

Eb/N0 (dB)

10−6

10−5

10−4

10−3

10−2

10−1
B

E
R

(a)

Soft-based FR
Soft-based MB
Known channel

−6 −4 −2 0 2 4 6 8

Eb/N0 (dB)

10−6

10−5

10−4

10−3

10−2

10−1

B
E

R

(b)

Figure 3.12. Performance of soft-iterative MMSE MUD receivers with FR and MB channel estimation
for number of iterations i = 1, 2, 5: (a) training-based estimation and (b) soft-based estimation.

of relevant channel parameters by exploiting the algebraic spatial-temporal struc-
ture of the propagation and its quasistationarity over a large number of blocks. In
soft-iterative receivers subspace-based estimation has been modified to incorpo-
rate soft-valued information-bearing data. Analytical and simulation results have
shown the benefits of the proposed methods (either training- or data-based) on
the performance of space-time receivers, even in realistic and complex multipath
radio environments.

Abbreviations

BER Bit error rate

CDMA Code division multiple access

COST-259 DCM COST-259 directional channel model

GBU Generalized bad urban

GHT Generalized hill terrian

GRA Generalized rural area

GTU Generalized typical urban

ISI Intersymbol-interference

LLR Log-likelihood ratio

MAI Multiple access interference

MAP Maximum a posteriori

MB Multiblock

MB-S MB-spatial

MB-T MB-temporal

MB-ST MB space-time

MDL Minimum description length

MIMO Multiple-input multiple-output

MLE Maximum likelihood estimation

MMSE Minimum mean square error
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MSE Mean square error

MUD Multiuser detection

FR Full-rank

OFDM Orthogonal frequency division multiplexing

QPSK Quaternary phase-shift keying

RR Reduced-rank

SB Single-block

SIMO Single-input multiple-output

SNR Signal-to-noise ratio

TD-CDMA Time division-code division multiple access

TDMA Time division multiple access

UMTS-TDD Universal mobile telecommunication system-time division duplex

WSSUS Wide sense stationary uncorrelated scattering

3G 3rd generation
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