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20.1. Introduction

Similar to receive processing (e.g., [1]), linear transmit processing (see, e.g., [2])
can be outperformed by nonlinear transmit processing. Peel et al. [3, 4] recently
proposed the minimization of the necessary transmit energy for every vector sym-
bol of a flat fading MIMO system, when assuming that the receiver applies a mod-
ulo operation. The necessary search for the minimum length vector of a lattice has
exponential complexity (see [5] for a near-optimum variant with O(B4), where B
denotes the number of scalar data streams). Additionally, the transmit signal has to
be weighted with a data-dependent scalar to meet the transmit energy constraint
[3, 4], if the computation of the average transmit energy (a search of exponential
complexity) has to be avoided. Consequently, we do not consider this approach.
Another type of nonlinear transmit processing is the minimization of the bit er-
ror probability by choosing the appropriate transmit signal [6, 7]. As the resulting
nonconvex optimization can only be solved analytically for special channel matri-
ces [7], we will not investigate this approach due to its prohibitive complexity. In
[8], Fischer et al. decomposed the real-valued representation of the channel matrix
into the product of a real-valued matrix and an integer-valued matrix motivated
by the promising result of Yao et al. [9] who included lattice reduction techniques
in the receive filter design and achieved the same diversity order as the maximum
likelihood detector. The precoder of [8] which nearly reaches the diversity order of
the maximum likelihood detector only equalizes the real-valued matrix of the de-
composition, since the modulo operation at the receiver removes the interference
caused by the integer-valued matrix. However, the channel matrix decomposition
was found by Monte-Carlo search in [8], because an algorithm to obtain the de-
composition is an open problem.

An alternative type of nonlinear transmit processing is Tomlinson-Harashima
precoding (THP) which is closely related to the decision feedback equalizer pro-
posed by Austin [10] (see also [11, 12, 13, 14]). Whereas DFE feeds back already
quantized symbols, the already transmitted symbols are fed back in a THP system
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and modulo operations are applied in the transmitter and the receiver(s). The prin-
ciple of THP was introduced by Tomlinson [15] and Harashima et al. [16] nearly
at the same time. They applied THP to a SISO system without adaptive receive
filter in order to suppress the ISI caused by the frequency selectivity of the chan-
nel, since the recursive filter necessary to equalize the channel can be unstable (see
also [17]). Gibbard et al. [18] proposed an asymmetric transmission, where for
the first link, the receiver performs DFE and in the second link, the transmitter
applies THP. This approach leads to a simplification and a lower power consump-
tion of the device(s) at one side of the link (e.g., the mobile terminal(s)). Spatial
THP without ordering for flat fading MIMO channels was proposed by Ginis et
al. in [19] and Fischer et al. in [20]. Whereas Ginis et al. included a feedforward
filter at the transmitter and assumed a receive filter which is a diagonal matrix,
Fischer et al. investigated a system with the feedforward filter at the receiver. THP
was used for a DS-CDMA system by Fischer et al. in [21] and also by Liu et al. in
[22]. THP with partial channel state information at the transmitter has only been
investigated by Fischer et al. [23] and Simeone et al. [24], all other publications as-
sumed full knowledge of the channel at the transmitter. Joham et al. presented the
necessary optimizations for THP with FIR feedforward and feedback filters for fre-
quency selective MIMO channels in [25, 26]. In [27], Fischer et al. designed THP
for frequency selective MIMO channels with IIR feedforward filter by applying a
spectral factorization of the channel transfer function.

We restrict ourselves to systems with nondispersive channels and noncooper-
ative receivers (e.g., mobiles in the downlink), that is, the signals of the different
receivers cannot be jointly transformed. Therefore, the feedforward filter has to be
located at the transmitter and the receivers only apply scalar weightings. For sim-
plicity, we make the additional assumption that all receivers use the same scalar
weight. The examined THP approaches are based on full channel state informa-
tion without estimation errors (for a robust design taking into account the esti-
mation errors, see [28]). Note that the channel can only be fully equalized by the
transmitter in a system with noncooperative receivers. Thus, receive processing is
only a suboptimum approach for such systems.

Contrary to most other contributions on THP, we base the THP filter de-
sign on an optimization. Since the THP optimizations are an extension of the
well-known optimizations for linear transmit filters, we first review the linear
transmit zero-forcing filter (TxZF) and the linear transmit Wiener filter (TxWF)
in Section 20.2. With the linear representation of THP introduced in Section 20.3,
we are able to formulate the optimizations for zero-forcing THP (ZF-THP) and
Wiener THP (WF-THP) including not only the THP filters but also the ordering
in Section 20.4. Thus, we obtain the algorithms for the optimum orderings for
the two THP types and since these algorithms are too complex, we also present
suboptimum ordering algorithms closely related to the vertical Bell Laboratories
Layered Space Time (V-BLAST) algorithm well known for spatial DFE [29]. The
simulation results in Section 20.5 reveal that the Wiener THP clearly outperforms
the state-of-the-art zero-forcing THP approaches.
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Figure 20.1. System with linear transmit filter.

Notation. Vectors and matrices are denoted by lower-case bold and capital bold
letters, respectively. We use E[•], “∗,” (•)∗, (•)T, and (•)H for expectation, convo-
lution, complex conjugation, transposition, and conjugate transposition, respec-
tively. The pseudoinverse is denoted by (•)+. All random variables are assumed to
be zero mean and stationary. The variance of the scalar random variable y is de-
noted by σ2

y = E[|y|2] and the covariance matrix of the vector random variable x
by Rx = E[xxH]. The N ×M zero matrix is 0N×M , the M-dimensional zero vector
is 0M , and the N ×N identity matrix is 1N , whose nth column is en ∈ {0, 1}N .

20.2. Linear transmit filters

In a system with linear transmit filter, the data signal s = [s1, . . . , sB] ∈ CB com-
prising the symbols for the B noncooperative receivers is passed through the lin-
ear precoder P ∈ CN×B to form the transmit signal of the N transmit antenna
elements

y = Ps ∈ C
N . (20.1)

The transmit filter has to be designed to satisfy the transmit energy constraint,
that is,

E
[‖Ps‖2

2

] = tr
(

PRsPH) = Etr. (20.2)

After propagation over the channel H ∈ CB×N and perturbation by the noise η ∈
CB, the received signal x ∈ CB is weighted with the scalar β−1 to form the estimate
(see Figure 20.1)

s̃ = β−1HPs + β−1η ∈ C
B. (20.3)

Note that the scalar β−1 ∈ R+ at the receiver is necessary to correct the amplitude
of the desired signal part in the estimate s̃, since the transmitter only has a limited
transmit power Etr. The estimate s̃ is the input of the nearest-neighbor quantizer
Q(•), whose output is denoted by ŝ ∈ CB.

The TxZF minimizes the mean square error (MSE) under the transmit energy
constraint (20.2) together with the constraint of full interference suppression and
unbiasedness (see, e.g., [2]):

{
PZF,βZF

} = argmin
{P,β}

E
[‖s − s̃‖2

2

]
s.t. E

[‖Ps‖2
2

] = Etr, s̃|η=0 = s. (20.4)
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The solution of the above optimization can be obtained with the method of La-
grangian multipliers (e.g., [30]) and reads as

PZF = βZFHH(
HHH)−1 ∈ C

N×B,

βZF =
√√√√ Etr

tr
((

HHH
)−1

Rs

) ∈ R+.
(20.5)

Note that the MSE of the TxZF is simply the noise portion at the quantizer
input due to the second constraint of (20.4), that is, E[‖s − s̃‖2

2] = β−2
ZF tr(Rη).

Hence, we can expect that the performance of the TxZF is poor, when the channel
matrix H is ill conditioned (see, e.g., [31]), since the weight βZF is small in this
case.

To reduce this noise enhancement of the TxZF for ill-conditioned H, we have
to drop the second constraint in (20.4) and end up with the TxWF optimization
[32, 33, 2]:

{
PWF,βWF

} = argmin
{P,β}

E
[‖s − s̃‖2

2

]
s.t. E

[‖Ps‖2
2

] = Etr. (20.6)

As shown in [2], we get with Lagrangian multipliers:

PWF = βWF

(
HHH +

tr
(

Rη
)

Etr
1N

)−1

HH ∈ C
N×B,

βWF =
√√√√ Etr

tr
((

HHH +
(

tr
(

Rη
)
/Etr

)
1N

)−1
HHRsH

) ∈ R+.

(20.7)

Obviously, the TxWF leads to a smaller MSE than the TxZF, since the TxZF mini-
mizes the MSE under an additional constraint. Moreover, the TxZF is indepen-
dent of the properties of the noise, whereas the TxWF takes into account the
mean noise power tr(Rη), because it depends on the signal-to-noise ratio (SNR)
ES/N0 = Etr/ tr(Rη), that is, the ratio of the average energy per transmitted scalar
symbol over the average noise power per receive antenna. Thus, we can expect that
the TxZF is outperformed by the TxWF.

20.3. System model for Tomlinson-Harashima precoding

Instead of directly applying the feedforward filter P ∈ CN×B as in the case of linear
transmit processing (see previous subsection), the data signal s = [s1, . . . , sB]T ∈
MB is first transformed by the permutation matrix (see Figure 20.2):

Π(O) =
B∑
i=1

eieT
bi
∈ {0, 1}B×B with Π(O),−1 = Π(O),T, (20.8)
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Figure 20.2. THP transmission over a nondispersive channel.

that is, the bith scalar symbol sbi is put at the ith position for i = 1, . . . ,B. Thus,
the b1th data symbol sb1 is precoded first and the bBth data symbol sbB last. For
compactness, we collect the indices b1, . . . , bB in the B-tupel

O = (
b1, . . . , bB

)
with bi ∈

{
1, . . . ,B

} \ {
b1, . . . , bi−1

}
. (20.9)

We will also use the term ordering for the B-tupel O. The transmitter can choose
the ordering O freely, since the reordering by the permutation matrix Π(O) cannot
be recognized by the receiver. Hence, the ordering O represents additional degrees
of freedom.

After the reordering by Π(O), the signal is passed through the nonlinear feed-
back loop to get the signal v ∈ MB. The modulo operator in Figure 20.2 is defined
element-wise:

M(x) = [
M

(
x1
)
, . . . , M

(
xB

)]T ∈ M
B with x ∈ C

B,

M
(
xi
) = xi −

⌊
Re

(
xi
)

τ
+

1
2

⌋
τ − j

⌊
Im

(
xi
)

τ
+

1
2

⌋
τ,

(20.10)

where xi ∈ C, i = 1, . . . ,B, denotes the ith entry of x and �• denotes the floor
operator which gives the largest integer smaller than or equal to the argument.
Note that the amplitude of the modulo operator is upper bounded, since M(xi) ∈
M, where

M =
{
z ∈ C | −τ

2
≤ Re(z) <

τ

2
and − τ

2
≤ Im(z) <

τ

2

}
. (20.11)

The modulo constant τ ∈ R+ is chosen depending on the modulation alphabet (all
symbols of the modulation alphabet have to be elements of M, see, for example,
[34]). For example, we set τ = 2

√
2 for QPSK modulation (see Figure 20.3) whose

symbols are elements of the set {exp(jµπ/4) | µ ∈ {−3,−1, +1, +3}}.
We assume that the scalar entries v1, . . . , vB ∈ M of the modulo operator

output v ∈ MB are uncorrelated due to the modulo operation M(•), that is,
Rv = diag(σ2

v1
, . . . , σ2

vB ) ∈ RB×B
+ . Additionally, we make the popular assumption

that the ith output vi, i = 2, . . . ,B, of the modulo operator M(•) at the transmitter
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Figure 20.4. Linear representation of the modulo operator at the transmitter.

is uniformly distributed over M, which results in the variance

σ2
vi = σ2

v = E
[∣∣vi∣∣2

]
= τ2

6
, i = 2, . . . ,B. (20.12)

Since the first modulo operator output v1 is simply sb1 as we will see in the follow-
ing, its variance is σ2

v1
= σ2

s , where σ2
s = E[|sb1|2].

Since M(•) is defined element-wise and we assume an ordering such that the
first entry of the permuted data vector Π(O)s is precoded first and the last entry
last, the feedback filter F ∈ CB×B has to be lower triangular with zero main diagonal
to ensure the realizability of the feedback loop.1 This property of F is often called
spatial causality, as only data symbols which have already been precoded are fed
back.

Due to the definition of M(•) in (20.10), we can follow that the output of the
modulo operator M(•) is simply the sum of the input and a term which ensures
that all scalar entries of the output are elements of M. When taking this observa-
tion into account, we end up with the linear representation of the feedback loop at
the transmitter depicted in Figure 20.4. Note that the auxiliary signal Π(O)a ∈ CB,

1The scalar signal v1 is constructed without feedback (the first row of F is zero) and is equal to
sb1 , whereas the scalar signal vB depends on sbB and v1, . . . , vB−1 but not on itself (the last element of
the last row of F is zero). We could also assume alternative orderings, for example, the reverse ordering,
that is, sbB is precoded first and sb1 last. The resulting F would be upper triangular with zero main
diagonal instead.
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Figure 20.5. Linear representation of THP transmission.

whose scalar entries have real and imaginary parts which are integer multiples of
the modulo constant τ, can be moved from the inside to the front of the feedback
loop.2 When replacing the modulo operators in Figure 20.2 by the summation
with the appropriate auxiliary signals and moving the auxiliary signal Π(O)a at the
transmitter to the front of the feedback loop, we obtain the linear representation
in Figure 20.5. As the auxiliary signals a and −ã which are added at the transmitter
and the receiver, respectively, are included automatically by the modulo operators,
we use d as the desired signal and d̃ as the estimate in the following optimiza-

tions. We see in Figure 20.5 that the system whose input and output is d and d̃,
respectively, is linear. Consequently, we can apply the optimizations for the lin-
ear transmit filters reviewed in the previous subsection also for the design of the
THP filters, but we have to take into account the special structure of the feedback
filter F and the statistical properties of the modulo operator output v. We can con-
clude that the advantage of THP compared to the linear transmit filters is due to
the advantageous statistical properties of the signal v, whose amplitude is upper
bounded, since v ∈ MB.

The desired signal d as a function of the modulo operator output v ∈ MB can
be expressed as (see Figure 20.5)

d = Π(O),T(1B − F
)

v ∈ C
B. (20.13)

The output v of the modulo operator is passed through the feedforward filter P ∈
CNa×B, propagates over the channel H ∈ CB×Na , is perturbed by the noise η ∈ CB,
and is weighted with β−1 at the receiver to form the estimate

d̃ = β−1HPv + β−1η ∈ C
B. (20.14)

Note that the scalar weight β−1 at the receiver is always necessary in a THP system,
since the choice of the modulo constant τ is based on the assumption that the

2From Figure 20.4, we see that v = Π(O)s + Π(O)a + Fv or equivalently, we obtain for the output
signal of the modulo operator at the transmitter v = (1B − F)−1Π(O)(s + a). Consequently, a can be
directly added to s in front of the feedback loop.
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amplitude at the modulo operator input is correct. The transmit signal is simply
y = Pv ∈ CNa and hence, the expression for the transmit energy reads as

E
[∥∥y

∥∥2
2

]
= tr

(
PRvPH)

. (20.15)

20.4. Spatial Tomlinson-Harashima precoding

20.4.1. Zero-forcing spatial Tomlinson-Harashima precoding

The zero-forcing variant of spatial THP (S-THP) for nondispersive channels can
be found by applying an optimization which is based on the optimization for linear
zero-forcing transmit processing (cf. (20.4)). First, we have to replace the desired
signal s by d and the estimate ŝ by d̃. Second, we have to include the ordering O
and a constraint that the feedback filter F ∈ CB×B is spatially causal:

{
PTHP

ZF , FTHP
ZF ,βTHP

ZF , OTHP
ZF

}
= argmin

{P,F,β,O}
E
[∥∥d − d̃

∥∥2
2

]
s.t. : d̃|η=0B = d, E

[∥∥y
∥∥2

2

]
= Etr,

F : lower triangular, zero main diagonal.

(20.16)

When plugging (20.13), (20.14), and (20.15) into the above optimization, we get

{
PTHP

ZF , FTHP
ZF ,βTHP

ZF , OTHP
ZF

}
= argmin

{P,F,β,O}
β−2 tr

(
Rη

)
s.t. β−1HP = Π(O),T(1B − F

)
, tr

(
PRvPH) = Etr,

SiFei = 0i, i = 1, . . . ,B,

(20.17)

where we split up the constraint on the spatial causality of F into B constraints for
the columns of F. Here, ei ∈ {0, 1}B and we introduced the selection matrix

Si = S(0,i,B−i) =
[

1i, 0i×B−i
] ∈ {0, 1}i×B (20.18)

which cuts out the first i elements of a B-dimensional vector.
Obviously, the optimization in (20.17) is not convex due to the first con-

straint. However, we obtain necessary conditions for the optimum zero-forcing
S-THP (ZF-S-THP) filters, when setting the derivatives of the Lagrangian func-
tion

L
(

P, F,β, O,Λ, ρ,µ1,µ2, . . . ,µB
)

= β−2 tr
(

Rη
)− ρ

(
tr
(

PRvPH)− Etr
)

− 2 Re
(

tr
(
Λ
(
β−1HP −Π(O),T(1B − F

))))− B∑
i=1

2 Re
(
µT
i SiFei

)
,

(20.19)
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with the Lagrangian multipliers Λ ∈ CB×B, ρ ∈ R, and µi ∈ Ci, i = 1, . . . ,B, to
zero:

∂L
(

P, F,β,Λ, ρ,µ1,µ2, . . . ,µB
)

∂P
= −β−1HTΛT − ρP∗RT

v = 0Na×B,

∂L
(

P, F,β,Λ, ρ,µ1,µ2, . . . ,µB
)

∂F
= −Π(O)ΛT −

B∑
i=1

ST
i µie

T
i = 0B×B,

∂L
(

P, F,β,Λ, ρ,µ1,µ2, . . . ,µB
)

∂β
= −2β−3 tr

(
Rη

)
+ β−2 Re

(
tr(ΛHP)

)
.

(20.20)

From the derivative with respect to the feedback filter F, it follows that

ΛH = −Π(O),T
B∑
i=1

ST
i µ

∗
i eT

i . (20.21)

Plugging this result into the derivative of the Lagrangian function with respect to
the feedforward filter P yields

ρσ2
viPei = β−1HHΠ(O),TST

i µ
∗
i , (20.22)

where we multiplied by ei ∈ {0, 1}B and used the assumption that the output v of
the modulo operation at the transmitter is uncorrelated. Due to the first constraint
of (20.17), the ith column of the feedback filter can be written as

Fei = ei − ρ−1σ−2
vi β

−2Π(O)HHHΠ(O),TST
i µ

∗
i . (20.23)

Consequently, by employing the last constraint of (20.17), we obtain for the La-
grangian multiplier

µ∗
i = ρσ2

viβ
2(SiΠ

(O)HHHΠ(O),TST
i

)−1
Siei, (20.24)

which leads to following expression for the ith column of the feedforward filter P:

Pei = βHHΠ(O),TST
i

(
SiΠ

(O)HHHΠ(O),TST
i

)−1
Siei. (20.25)

Note that the columns of P are orthogonal, that is,

eT
j PHPei = 0, (20.26)

for j �= i, since the selection matrix Si = [1i, 0i×B−i] ∈ {0, 1}i×B has the following
properties:

S j = S jST
i Si, S jei = 0 j , for j < i. (20.27)
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Since the modulo output v is uncorrelated, we can rewrite the transmit energy
constraint:

tr
(

PRvPH) = β2
B∑
i=1

σ2
vie

T
i ST

i

(
SiΠ

(O)HHHΠ(O),TST
i

)−1
Siei = Etr, (20.28)

which leads to the ZF-S-THP solution depending on the ordering O:

PTHP
ZF = βTHP

ZF

B∑
i=1

HHΠ(O),TST
i

(
SiΠ

(O)HHHΠ(O),TST
i

)−1
SieieT

i ,

FTHP
ZF = 1B − βTHP,−1

ZF Π(O)HPTHP
ZF ∈ C

B×B,

βTHP
ZF =

√√√√ Etr∑B
i=1 σ2

vie
T
i ST

i

(
SiΠ(O)HHHΠ(O),TST

i

)−1
Siei

∈ R+.

(20.29)

We observe that the ith column of the ZF-S-THP feedforward filter PTHP
ZF only

depends on the first i rows of the sorted channel matrix Π(O)H. Thus, the first
column of PTHP

ZF is simply the weighted transmit matched filter (TxMF, see, e.g.,
[2]) for the first scalar data stream sb1 and the last column is the weighted bBth
column of the linear TxZF PZF. We can conclude that the first scalar data stream
sb1 is transmitted without taking into account the interference which is introduced
in the other scalar estimates, since this interference is removed by the feedback fil-
ter FTHP

ZF and the modulo operations. The second column of the feedforward filter
PTHP

ZF is orthogonal to the b1th row of the channel H, that is, the second precoded
signal v2 is not interfering with the estimate s̃b1 of the first scalar data stream, but as
the second column of PTHP

ZF only depends on the first two rows of the sorted chan-
nel matrix Π(O)H, the signal v2 contributes interference to the other estimates,
namely, the estimates for sb3 , . . . , sbB . This interference has to be removed by the
feedback filter FTHP

ZF and the modulo operations. The signals v1, . . . , vB−1 cause in-
terference in the estimate for the last data stream sbB . Thus, the feedback filter FTHP

ZF

has to suppress this interference and the resulting output of the modulo operation
vB does not interfere with the estimates of the other data streams, since the last
column of PTHP

ZF is orthogonal to the first B − 1 rows of the sorted channel matrix
Π(O)H.

Note that we can employ the Cholesky factorization (e.g., [31, 35]) of the chan-
nel Gram with symmetric permutation,3

Π(O)HHHΠ(O),T = LLH, (20.30)

3Alternatively, we can use the QR factorization (e.g., [31, 35]) of the Hermitian HHΠ(O),T = QR
of the sorted channel matrix. Then, L = RH.
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with the lower triangular matrix L ∈ CB×B, to find following alternative expres-
sions for the ZF-S-THP filters:

PTHP
ZF = βTHP

ZF HHΠ(O),TLH,−1 diag
(
l−1
1,1, . . . , l−1

B,B

)
,

FTHP
ZF = 1B − L diag

(
l−1
1,1, . . . , l−1

B,B

)
,

(20.31)

and

βTHP
ZF =

√
Etr

tr
(

diag
(
l−2
1,1, . . . , l−2

B,B

)
Rv

) , (20.32)

where li,i ∈ R+ denotes the ith diagonal element of L. Remember that we have
obtained this result by solving the optimization in (20.17) and afterwards rewrit-
ing the solution with the Cholesky decomposition of the symmetrically permuted
channel Gram or the QR factorization of the Hermitian of the sorted channel
matrix. Contrarily, no optimization was performed and the expressions for the
S-THP filters were found intuitively by using the unsorted QR factorization in
[19, 21], where the weighting at the receiver was assumed to be the diagonal matrix
diag(l−1

1,1, . . . , l−1
B,B) instead of β−11B, although this choice for the diagonal weighting

is suboptimum (see [25]).
When using the projector

Π
(O)
i = Π(O),TST

i SiΠ
(O) = 1B −

B∑
j=i+1

ebj e
T
bj

∈ {0, 1}B×B, (20.33)

we can rewrite the ZF-S-THP solution in (20.29):

PTHP
ZF = βTHP

ZF

B∑
i=1

HHΠ
(O)
i

(
Π

(O)
i HHHΠ

(O)
i

)+
ebie

T
i ∈ C

Na×B,

FTHP
ZF = 1B − βTHP,−1

ZF Π(O)HPTHP
ZF ,

βTHP
ZF =

√√√√√ Etr∑B
i=1 σ2

vie
T
bi

(
Π

(O)
i HHHΠ

(O)
i

)+
ebi

∈ R+.

(20.34)

The result for the scalar weight βTHP
ZF depending on the ordering O enables us to

further minimize the MSE by the appropriate ordering:

O′
ZF = argmin

O

tr
(

Rη
)

Etr

B∑
i=1

σ2
vie

T
bi

(
Π

(O)
i HHHΠ

(O)
i

)+
ebi . (20.35)

Thus, the optimal ordering O′
ZF can only be found by computing the MSEs for all

B! possible orderings and choosing the ordering with the minimum MSE. Since the
above optimization is very complex, we suggest to use the following suboptimum
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approach. Instead of minimizing the sum of MSEs for the B scalar data streams,
the ordering is found by successively minimizing each MSE summand under the
assumption that the ordering of the succeeding MSE summands is fixed:

OZF = (
bZF,1, . . . , bZF,B

)
(20.36)

with

bZF,i = argmin
b∈{1,...,B}\{bZF,i+1,...,bZF,B}

eT
b

(
Π

(OZF)
i HHHΠ

(OZF)
i

)+
eb, (20.37)

where i = B, . . . , 1. Note that Π(OZF)
i only depends on the already computed bZF,i+1,

. . . , bZF,B and hence, the pseudoinverse of Π(OZF)
i HHHΠ

(OZF)
i is independent of b.

Therefore, the complexity is O(B4), whereas the optimum ordering of (20.35) has
O(B!B3). The above suboptimum procedure for ZF-S-THP is similar to the order-
ing optimization known as V-BLAST for spatial DFE, but the sorting is computed
starting with the index for the data stream precoded last, whereas V-BLAST starts
with the index of the data stream detected first.

20.4.2. Wiener spatial Tomlinson-Harashima precoding

The Wiener S-THP (WF-S-THP) filters for nondispersive channels results from
the minimization of the mean square error together with the transmit energy con-
straint and the restriction of a spatially causal feedback filter:

{
PTHP

WF , FTHP
WF ,βTHP

WF , OTHP
WF

}
= argmin

{P,F,β,O}
E
[∥∥d − d̃

∥∥2
2

]
s.t. E

[∥∥y
∥∥2

2

]
= Etr, F : lower triangular, zero main diagonal.

(20.38)

With (20.13), (20.14), and (20.15), the above optimization can be written as

{
PTHP

WF , FTHP
WF ,βTHP

WF , OTHP
WF

}
= argmin

{P,F,β,O}
σ2
ε (P, F,β, O)

s.t. tr
(

PRvPH) = Etr, SiFei = 0i, i = 1, . . . ,B,
(20.39)

where the MSE σ2
ε (P, F,β, O) = E[‖d − d̃‖2

2] is defined as

σ2
ε (P, F,β, O)

= −2β−1 tr
(

Re
(
Π(O),T(1B − F

)
RvPHHH))

+ tr
((

1B − F
)

Rv
(

1B − FH))
+ β−2 tr

(
HPRvPHHH + Rη

)
.

(20.40)

The selection matrix Si = [1i, 0i×B−i] ∈ {0, 1}i×B cuts out the first i elements
of a B-dimensional column vector and ei ∈ {0, 1}B. Employing the Lagrangian
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multipliers ρ ∈ R and µi ∈ Ci with i = 1, . . . ,B, we form the Lagrangian function

L
(

P, F,β, O, ρ,µ1,µ2, . . . ,µB
)

= σ2
ε (P, F,β, O) − ρ

(
tr
(

PRvPH)− Etr
)− B∑

i=1

2 Re
(
µT
i SiFei

)
,

(20.41)

whose derivatives with respect to the feedforward filter P, the feedback filter F, and
the scalar weight β must vanish:

∂L(· · · )
∂P

= β−2HTH∗P∗RT
v − β−1HTΠ(O),T(1B − F∗)RT

v

− ρP∗RT
v = 0N×B,

∂L(· · · )
∂F

= −(
1B − F∗)RT

v + β−1Π(O)H∗P∗RT
v −

B∑
i=1

ST
i µie

T
i = 0B×B,

∂L(· · · )
∂β

= 2β−2 tr
(

Re
(
Π(O),T(1B − F

)
RvPHHH))

− 2β−3 tr
(

HPRvPHHH + Rη
) = 0.

(20.42)

When taking the complex conjugate of the derivative with respect to P, multiplying
with PH from the right, and applying the trace operator, we find following equality:

− β−1 tr
(

HHΠ(O),T(1B − F
)

RvPH)
+ β−2 tr

(
HHHPRvPH)− ρ tr

(
PRvPH) = 0.

(20.43)

We can conclude that tr(HHΠ(O),T(1B − F)RvPH) ∈ R, since all other terms are
real valued. Therefore, we can plug the above result into the derivative of the La-
grangian function with respect to the scalar weight β to obtain

ρ = −β−2 tr
(

Rη
)

Etr
, (20.44)

where we used the transmit energy constraint, that is, tr(PRvPH) = Etr. In the
following, we use the abbreviation

ξWF = tr
(

Rη
)

Etr
. (20.45)

Due to the derivative with respect to P and the above expression for the Lagrangian
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multiplier ρ, the feedforward filter can be written as

P = βHH(
HHH + ξWF1B

)−1
Π(O),T(1B − F

)
, (20.46)

where we also applied the matrix inversion lemma. Plugging this result into the
derivative of the Lagrangian function with respect to the feedback filter F yields

F = 1B + ξ−1
WF

(
Π(O)HHHΠ(O),T + ξWF1B

) B∑
i=1

σ−2
vi ST

i µ
∗
i eT

i , (20.47)

which can be used to find the Lagrangian multipliers µi, i = 1, . . . ,B, with the
second constraint of (20.39):

µ∗
i = −ξWFσ

2
vi

(
SiΠ

(O)HHHΠ(O),TST
i + ξWFSiST

i

)−1
Siei, (20.48)

with i = 1, . . . ,B. For the last two expressions, we employed the assumption that
the modulo operator outputs at the transmitter are uncorrelated, that is, Rv =
diag(σ2

v1
, . . . , σ2

vB ). When we replace the identity matrix 1B in the expression for the
feedback filter F by

1B =
B∑
i=1

eieT
i =

B∑
i=1

ST
i SieieT

i

=
B∑
i=1

−ξ−1
WFσ

−2
vi ST

i Si
(
Π(O)HHHΠ(O),T + ξWF1B

)
ST
i µ

∗
i eT

i ,

(20.49)

we obtain for the feedback filter

F =
B∑
i=1

ξ−1
WFσ

−2
vi

(
1B − ST

i Si
)
Π(O)HHHΠ(O),TST

i µ
∗
i eT

i , (20.50)

because ST
i SiST

i − ST
i = 0B×i. With the alternative expression for the Lagrangian

multipliers

µ∗
i = −ξWFσ

2
viSiΠ

(O)
(
Π

(O)
i HHHΠ

(O)
i + ξWF1B

)−1
ebi , i = 1, . . . ,B, (20.51)

where we again introduced the projector

Π
(O)
i = Π(O),TST

i SiΠ
(O) = 1B −

B∑
j=i+1

ebj e
T
bj

∈ {0, 1}B×B, (20.52)
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we finally get the WF-S-THP solution for flat fading channels depending on the
ordering O:

PTHP
WF = βTHP

WF

B∑
i=1

HHΠ
(O)
i A−1

WF,iebie
T
i ∈ C

N×B, (20.53)

FTHP
WF =

B∑
i=1

(
ST
i Si − 1B

)
Π(O)HHHΠ

(O)
i A−1

WF,iebie
T
i , (20.54)

and

βTHP
WF =

√√√√ Etr∑B
i=1 σ2

vie
T
bi

A−2
WF,iΠ

(O)
i HHHΠ

(O)
i ebi

∈ R+, (20.55)

where AWF,i = Π
(O)
i HHHΠ

(O)
i + ξWF1B. The expression for the scalar βTHP

WF was
found with the transmit energy constraint. Interestingly, we get the same scalar
weight ξWF = tr(Rη)/Etr for the identity matrix inside the inverse as for the linear
TxWF (cf. (20.7)). Note that we can alternatively write for the feedback filter:

FTHP
WF = βTHP,−1

WF

B∑
i=1

(
ST
i Si − 1B

)
Π(O)HPTHP

WF eieT
i , (20.56)

that is, the ith column of the feedback filter is constructed by using the ith column
of the filter chain βTHP,−1

WF HPTHP
WF and setting the first i elements to zero. The MSE

for the WF-S-THP approach in terms of the feedback filter FTHP
WF can be expressed

as

σ2
ε

(
PTHP

WF , FTHP
WF ,βTHP

WF , O
)
= ξWF tr

((
1B − FTHP

WF

)
Rv

(
1B − FTHP,H

WF

)
A−1

WF,i

)
. (20.57)

The MSE is further minimized by the choice of the ordering O. With (20.54), we
find the WF-S-THP ordering optimization:

O′
WF = argmin

O
ξWF

B∑
i=1

σ2
vie

T
bi

(
Π

(O)
i HHHΠ

(O)
i + ξWF1B

)−1
ebi . (20.58)

To avoid the high complexity O(B!B3) of this optimization, we suggest to employ
the following suboptimum approach instead:

OTHP
WF =

(
bTHP

WF,1, . . . , bTHP
WF,B

)
(20.59)

with

bTHP
WF,i = argmin

b∈Oi

eT
b

(
Π

(OTHP
WF )

i HHHΠ
(OTHP

WF )
i + ξWF1B

)−1
eb, (20.60)



416 Ordered spatial Tomlinson-Harashima precoding

1: O ← {1, . . . ,B}
G ← H
for i = B, . . . , 1:

4: P ← (GGH + ξWF1B)−1

5: bi ← argmin
b∈O

eT
bPeb

6: pi ← GHPebi
O ← O\{bi}
G ← (1B − ebie

T
bi

)G
for i = 1, . . . ,B:

10: fi ← (ST
i Si − 1B)Π(O)Hpi

11: χ ← σ2
s ‖p1‖2

2 + σ2
v

∑B
i=2 ‖pi‖2

2

β ←
√
Etr/χ

P ← β[p1, . . . , pB]

Algorithm 20.1. Filter and ordering computation for spatial WF-THP over nondispersive channels.

1: for i = 1, . . . ,B:
2: vi ← M

(
sbi +

∑i−1
j=1 eT

i f jv j
)

v = [v1, . . . , vK ]T

y = Pv

Algorithm 20.2. Ordered spatial THP over nondispersive channels.

where Oi = {1, . . . ,B}\{bTHP
WF,i+1, . . . , bTHP

WF,B} and i = B, . . . , 1. Thus, each summand
of (20.58) is minimized for fixed succeeding indices bTHP

WF,i+1, . . . , bTHP
WF,B starting from

the index of the data stream precoded last and ending with the index of the data

stream precoded first. Note that Π
(OTHP

WF )
i only depends on the succeeding indices

bTHP
WF,i+1, . . . , bTHP

WF,B. Thus, the inverse of Π
(OTHP

WF )
i HHHΠ

(OTHP
WF )

i + ξWF1B only has to
be computed once for each step and the complexity of the above optimization is
O(B4).

In Algorithm 20.1, we present the resulting algorithm to compute the WF-
S-THP filters as pseudocode. S-THP for nondispersive channels is illustrated by
Algorithm 20.2. Note that we included the assumption in line 11 that all modulo
outputs have variance σ2

v = τ2/6 except the first modulo output v1 which is equal
to sb1 (see line 2 of Algorithm 20.2).

The ZF-S-THP variant can be found with a similar algorithm as the one in
Algorithm 20.1, we only have to replace the lines 4–6 and 10 by the respective lines
in Algorithm 20.3. Note that this step is equivalent to the limit ξWF → 0. However,
the replacement is necessary, since we would end up with an inversion of a rank
deficient matrix (see line 4 in Algorithm 20.1).
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4: P ← G+

5: bi ← argminb∈O
‖Peb‖2

2

6: pi ← Pebi
10: fi ← ei −Π(O)Hpi

Algorithm 20.3. Filter and ordering computation for spatial ZF-THP over nondispersive channels.
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Figure 20.6. QPSK transmission over nondispersive MIMO channel with four transmitting and four
receiving antenna elements: BER versus SNR for linear and nonlinear transmit processing.

20.5. Simulation results

We apply the spatial THP approaches discussed in this section to a nondispersive
multiple-input multiple-output (MIMO) system, where we assume that the entries
of the channel matrix are i.i.d. complex Gaussian distributed. The uncoded BER
results are the mean of 240 000 channel realizations, where 100 vector symbols are
transmitted per realization. The linear transmit filters TxZF and TxWF discussed
in Section 20.2 are used for comparison to highlight the capabilities of THP. Ad-
ditionally, we include the uncoded BER results for unitary ZF-S-THP [21] which
is a variant of ZF-S-THP with unitary feedforward filter and a weighting with a
diagonal matrix at the receiver instead of the scalar weighting employed in this
section.

In Figure 20.6, we present the results for a system with four antenna elements
deployed at the transmitter and four antenna elements at the receiver. Four QPSK
symbols are transmitted per channel use. We observe that the S-THP approaches
clearly outperform the respective linear filters, where WF-S-THP needs about 4 dB
less SNR than ZF-S-THP for a BER of 10%. The unitary ZF-S-THP is slightly
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Figure 20.7. 16QAM transmission over nondispersive MIMO channel with four transmitting and four
receiving antenna elements: BER versus SNR for linear and nonlinear transmit processing.

better than ZF-S-THP with scalar weighting, since the diagonal weighting of uni-
tary ZF-S-THP offers more degrees of freedom. Note that the BERs of the two
zero-forcing THP variants have the same slope as the two linear filters for high
SNR. This behavior can be explained by the fact that the last column of the feedfor-
ward filter PTHP

ZF is the weighted bBth column of the TxZF PZF. Thus, the diversity
order of the THP data stream precoded last is the same as the diversity order of the
TxZF data streams (in our case, diversity order 1, slop is one magnitude of BER per
10 dB SNR). As the smallest diversity order is dominant, the ZF-THP approaches
have the same diversity order as the linear transmit filters for high SNR.

The results for 16QAM transmission in Figure 20.7 are similar to the QPSK
results in Figure 20.6. WF-S-THP is superior compared to all other depicted ap-
proaches and outperforms the linear TxWF even for low SNR. This result illus-
trates the dependence of THP on the modulation alphabet, since the modulo op-
eration at the receiver introduces additional allowed constellation points. As the
number of constellation points for 16QAM is larger than for QPSK, the impact of
the modulo operation at the receiver is less pronounced for 16QAM.

When reducing the number of antenna elements at the receiver to three and
transmitting three QPSK symbols per channel use, we end up with the results in
Figure 20.8. Due to the increased number of freedoms compared to the case with
four data streams of Figure 20.6, the linear transmit filters lead to better results
than the THP approaches for low and medium SNRs, for example, the TxWF has
a lower uncoded BER than WF-S-THP for an SNR below 1 dB. We can also observe
that unitary ZF-S-THP is outperformed by ZF-S-THP with scalar weighting at the
receiver. Consequently, the intuitively chosen diagonal weighting of unitary ZF-S-
THP is suboptimum.
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Figure 20.8. QPSK transmission over nondispersive MIMO channel with four transmitting and three
receiving antenna elements: BER versus SNR for linear and nonlinear transmit processing.
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Figure 20.9. 16QAM transmission over nondispersive MIMO channel with four transmitting and
three receiving antenna elements: BER versus SNR for linear and nonlinear transmit processing.

In Figure 20.9, three 16QAM symbols are transmitted per channel use. As
the modulo operation at the receiver is less harmful for 16QAM, WF-S-THP ex-
hibits the best uncoded BER results in the whole depicted SNR region contrary
to Figure 20.8. Note how close the BER curves of the zero-forcing and Wiener
precoder types lie in Figure 20.9 due to the available degrees of freedom, because
the number of receive antenna elements is smaller than the number of transmit
antenna elements.
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Abbreviations

BER Bit error rate

DFE Decision feedback equalizer

DS-CDMA Direct-sequence code-division multiple access

FIR Finite impulse response

IIR Infinite impulse response

MIMO Multiple-input multiple-output

MSE Mean square error

QAM Quadrature amplitude modulation

QPSK Quaternary phase-shift keying

SISO Single-input single-output

SNR Signal-to-noise ratio

S-THP Spatial Tomlinson-Harashima precoding

THP Tomlinson-Harashima precoding

TxMF Transmit matched filter

TxWF Transmit Wiener filter

TxZF Transmit zero-forcing filter

V-BLAST Vertical Bell Laboratories Space Time

WF-S-THP Wiener spatial Tomlinson-Harashima precoding

WF-THP Wiener Tomlinson-Harashima precoding

ZF-S-THP Zero-forcing spatial Tomlinson-Harashima precoding

ZF-THP Zero-forcing Tomlinson-Harashima precoding
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