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on time scales, Pavel Řehák . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

On linear singular functional-differential equations in one functional
space, Andrei Shindiapin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Nonmonotone impulse effects in second-order periodic boundary
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PREFACE

The International Conference on Differential, Difference Equations and Their Applica-
tions (ICDDEA), dedicated to Professor Evangelos K. Ifantis, took place from 1 to 5 July,
2002, at the Conference and Cultural Centre of the University of Patras, Patras, Greece.
The aim of the conference was to provide a common meeting ground for specialists in
differential equations, difference equations, and related topics, as well as in the rich vari-
ety of scientific applications of these subjects. This conference intended to cover, and was
a forum for presentation and discussion of, all aspects of differential equations, difference
equations, and their applications in the scientific areas of mathematics, physics, and other
sciences.

In this conference, 101 scientists participated from 26 countries (Australia, Bulgaria,
Canada, Chile, Czech Republic, Finland, France, Georgia, Great Britain, Greece, Hun-
gary, Iran, Israel, Italy, Japan, Latvia, Mozambique, Netherlands, Norway, Poland, Roma-
nia, Singapore, Slovakia, Spain, Ukraine, and United States of America). The scientific
program consisted of 4 plenary lectures, 37 invited lectures, and 42 research seminars.
The contributions covered a wide range of subjects of differential equations, difference
equations, and their applications.

The social program of the conference consisted of a welcome dinner and a guided visit
at the Residence of Achaia Clauss winemakers, a Greek evening with traditional Greek
dances and dinner at the private restaurant of the hotel Rio Beach, a visit at the castle of
the picturesque city Nafpaktos with lunch at a traditional Greek taverna at the village of
Eratini, a guided visit to ancient Delphi with dinner at a private restaurant at Nafpaktos,
and a farewell dinner at the private restaurant “Parc de la Paix,” near the conference cite.

This volume contains the papers that were accepted for publication after an ordinary
refereeing process and according to the standards of the journal “Abstract and Applied
Analysis”; we thank the referees, who helped us to guarantee the quality of the papers,
for their work. Also I would like to thank the International Scientific Committee (Ondřej
Došlý, Takasi Kusano, Andrea Laforgia, and Martin Muldoon) for their support and co-
operation concerning the refereeing process, as well as the other members of the Local
Organizing Committee (Chrysoula Kokologiannaki and Eugenia Petropoulou) for their
help. Finally, I would like to thank the editors and especially the Editor-in-Chief, Profes-
sor Athanassios Kartsatos, of the journal “Abstract and Applied Analysis,” which hosted
the Proceedings of the ICDDEA.



vi Preface

We would also like to thank the Research Committee of the University of Patras, the
Hellenic Ministry of Education and Religious Affairs, the Academy of Athens, the Munic-
ipality of Patras, the O.Π.A.Π., the Prefecture of Western Greece, the Agricultural Bank
of Greece, the Patras Papermills S.A., and the Supermarket Kronos S. A. S. I. for their
financial support. The organizers would also like to thank the Directorate General of
Antiquities - Museum Division for the free entrance to the archeological site and the mu-
seums of Delphi, and the Achaia Clauss Winemakers for the guided visit to its residence
and for offering its residence and the wine for the welcome dinner. Finally the organizers
would like to thank the Greek National Organization for offering their brochures and the
following companies for offering their products during the whole week during which the
conference took place: Athenian Brewery S.A., Loux Marlafekas S. A. soft drinks industry,
3E Hellenic Bottling Company, Tirnavos Wine Cooperatives, Tzafettas Greek Traditional
Cheese, and the Plaisio Stores.

Last but not least, I would especially like to express my deep thanks to Lecturer Dr.
Eugenia N. Petropoulou for her help concerning the procedure of the publication of this
Proceedings.

Panayiotis D. Siafarikas
Guest Editor



EVANGELOS K. IFANTIS AND HIS WORK

PANAYIOTIS D. SIAFARIKAS

Received 20 September 2002

The aim of this work is to present briefly the scientific contribution of Professor Evange-
los K. Ifantis in the research field of mathematics, to whom the “International Conference
on Differential, Difference Equations and Their Applications” was dedicated. Professor
Ifantis has worked in many areas of mathematics, including operator theory, difference
equations, differential equations, functional equations, orthogonal polynomials and spe-
cial functions, zeros of analytic functions, and analytic theory of continued fractions.

1. Who is E. K. Ifantis

Evangelos K. Ifantis was born in the village Palamas in Thessaly in central Greece, where
he took elementary education. He finished high school in the city Karditsa of the same
area and received his diploma in mathematics from the University of Athens in 1959. He
attended a school at the Center of High Physical Studies and Philosophy of Science at
the former Nuclear Research Center “Democritus.” He prepared his Ph.D. thesis there,
working alone, and received his Ph.D. from the University of Athens in 1969. In 1974 he
was elected Professor of the Chair “Mathematics for Physicists” of the School of Natural
Sciences of the University of Patras. From 1981 until now he belongs to the Department
of Mathematics of the University of Patras. He retired on September 2002, after 28 years
of academic service. He and his wife Eleni have two daughters (Klairi and Konstantina).

2. The work of E. K. Ifantis

2.1. Spectral theory of difference equations and the quantum mechanical phase prob-
lem. Evangelos K. Ifantis began his research with the following boundary value problem.

Find the values of E such that the functional equation

f (x+α) + f (x−α) + 2
b

x
f (x) = 2

(
E− b

x

)
, x,α∈ R, (2.1)

has solutions which satisfy the conditions f (0) = 0, f (∞) = 0. This equation appears in
energy band theory of the solid state physics and represents the motion of an electron in

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 1–9
2000 Mathematics Subject Classification: 01A65, 01A70, 30B70, 30C15, 33C10, 33C45
URL: http://dx.doi.org/10.1155/9775945143
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2 Evangelos K. Ifantis and his work

a lattice under the influence of a Coulomb potential. The solution of this problem has
been found with classical methods and has been published in [2], which is the only paper
of E. K. Ifantis in German. The eigenvalues have been found to be

Ek =
√

1 +
b2

α2(k+ 1)2
, k = 0,1,2, . . . , b ∈ R, b �= 0, (2.2)

and the corresponding eigenvectors have the form

fk(x) = λ−x/αk

x

α
Pk

(
x

α

)
, (2.3)

where Pk is a polynomial of degree n. This shows in particular that the eigenvalues of the
difference equation (x = n, α= 1)

f (n+ 1) + f (n− 1) + 2
b

n
f (n) = 2E f (n), n= 1,2, . . . , (2.4)

in the space �2(1,∞) are the following:

Ek =
√

1 +
b2

(k+ 1)2
, k = 0,1,2, . . . , (2.5)

for b > 0 and

Ek =−
√

1 +
b2

(k+ 1)2
, k = 0,1,2, . . . , (2.6)

for b < 0. The question, if the corresponding to Ek eigenfunctions form a complete or-
thonormal set in �2, has led him to use the shift operator V defined in an abstract sep-
arable Hilbert space H and to reduce the above problem equivalently in an eigenvalue
problem in H . The answer was negative and the result was published among others in
[1, 3, 4, 8, 25].

At that time, the early 1970’s, a problem studied in quantum physics was the problem
of the quantization of the phase of the harmonic oscillator. In quantum mechanics, the
phase problem begins with the definition of the phase operators C (cosine) and S (sine)
which satisfy commutation rules analogous to the classical Poisson bracket relations

{cosφ,H} = ω sinφ, {sinφ,H} = −ωcosφ, (2.7)

where φ = arg(mωq+ ip), and H = (1/2m)[p2 + (mωq)2] is the classical harmonic oscil-
lator. A well-known empirical rule applied here leads not to one operator but to a class of
operators C and S which satisfy the commutation relations

[C,N] = iS, [S,N] =−iC, (2.8)

where N , defined as Nen = nen, is the well-known number operator.
The problem was to choose suitable phase operators C and S leading to reasonable

physical results. Another problem was to study the general common properties of the



Panayiotis D. Siafarikas 3

phase operators. To this, Professor Ifantis gave an abstract formulation in which the prob-
lem appeared as a peculiar case of the perturbation problem of continuous spectra. More
precisely, the phase operators C and S have been written as

C = 1
2

(
V∗A+AV

)
, S= 1

2i

(
V∗A−AV

)
, (2.9)

where V is the unilateral shift operator in an abstract separable Hilbert space with an or-
thonormal base en, n= 1,2, . . . , defined by Ven = en+1, n= 1,2, . . . , V∗ its adjoint, and A a
diagonal operator defined by Aen = αnen, n= 1,2, . . . , where, because of physical reasons,
it was assumed that αn > 0 and limn→∞αn = 1. The operator C was written in the form

C = 1
2

(V +V∗) +K , (2.10)

where the spectrum of (1/2)(V +V∗) is purely continuous and covers the close interval
[−1,+1], and the operator

K = 1
2

[
(A− I)V +V∗(A− I)

]
(2.11)

is selfadjoint and compact.
It was the first time that the well-known Weyl’s theorem has been applied to the spec-

trum of difference equations. Recall that Weyl’s theorem asserts that the essential spec-
trum of C is the same as the essential spectrum of (1/2)(V + V∗), that is, the interval
[−1,1]. The idea of applying Weyl’s theorem came from the representation (2.10) and
can be easily applied to the more general difference equation

αn fn+1 +αn−1 fn + bn fn = λ fn. (2.12)

Note that in matrix formulation, the result (2.10) can not be easily observed. Later, Weyl’s
theorem was used in the theory of orthogonal polynomials. Results concerning the quan-
tum mechanical oscillator phase problem, the minimal uncertainty states for bounded
observables, the nature of the spectrum of generalized oscillator phase operators and
states, and minimizing the uncertainty product of the oscillator phase operators were
published in a series of papers in [5, 6, 10] (three papers) and in [7]. Even up to now,
people who work in this subject refer to these papers.

2.2. Zeros of analytic functions. Another problem at the beginning of the 1970s, in op-
erator theory, was the study of the properties of the operator T = V + C, where V is
the shift operator (in general a nonnormal isometry) and C a compact operator. Pro-
fessor Ifantis defined the compact operator C f = ( f ,h)e1, h = ∑∞

n=1 cnen, an element
of the Hilbert space H with the orthonormal base en, n = 1,2, . . ., and observed that
the eigenvalues of T∗ are related to the zeros of the function P(z) = −1 +

∑∞
n=1 cnz

n,
which belongs to the Hardy-Lebesgue space H2(∆). Thus Professor Ifantis in collabora-
tion with his colleague in the Nuclear Research Center “Democritus” was led to a Hilbert
space approach to the localization problem of the zeros of analytic functions in H2(∆). It
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was proved, among other things, that a lower bound for the zeros ρ of P(z) is given by
|ρ| ≥ 1/r(T) ≥ 1/‖T‖, where r(T) is the spectral radius of T . Many well-known inequal-
ities for the zeros of a polynomial (Cauchy, Walsh, Parodi, and others) have been derived
from one source, the spectral radius of an operator in a Hilbert space. The results in this
direction, together with a note concerning perturbations of a nonnormal isometry, were
published in [9, 26, 27].

2.3. Differential and functional differential equations in the complex plane. In 1978,
Professor Ifantis developed [11] an effective method for determining the existence of an-
alytic solutions of linear functional differential equations of the form

(L+A) f (z) = 0, (2.13)

where L is the operator

L f (z) =
k∑
i=1

φi(z)
dk−i

dzk−i
f (z), (2.14)

defined in an appropriate dense domain of the Hardy-Lebesgue space H2(∆), and A is the
operator

A f (z) =
∞∑
i=1

αi(z) f
(
qiz

)
, |q| ≤ 1, (2.15)

where φi(z), αi, i = 1,2, . . . , are analytic functions in an open set containing the closed
unit disc.

He also studied systems of differential equations in the Hilbert space

Hk
2 (∆) =H2(∆)×···×H2(∆) (2.16)

of the form

zD
df

dz
=Aij(z) f (z), (2.17)

where f (z) = ( f1(z), f2(z), . . . , fk(z)) is a vector function and Aij(z) is any matrix of
bounded operators in H2(∆).

The method he developed reduces the existence problem of analytic solutions of (2.13)
to a problem of finding the null space of a nonselfadjoint operator in an abstract separable
Hilbert space. In particular, this method is also suitable for the study of entire solutions.
A typical example is the following functional differential equation:

y′(x) = by(x) +αy(λx), 0 ≤ x <∞, (2.18)

α∈ C, b ∈ R, known as the pantograph equation. For 0 < |λ| ≤ 1, it is proved that (2.18)
has a unique entire solution. For |λ| > 1, equation (2.18) has analytic solutions only for
α= 0 and α= −b/λk−1, k = 1,2, . . . . For α �= 0, the solutions of the pantograph equation
(2.13) are polynomials of degree k− 1, k = 1,2, . . . . This extends a result of [55].



Panayiotis D. Siafarikas 5

This method has been extended, later in 1987 [12, 13], in order to cover nonlinear
ordinary differential equations of the form

(L+A) f (z) =G
(
z, f (z)

)
, (2.19)

with initial conditions f (0) = λ, f ′(0) = 0, where G(z, f (z)) is an analytic function of
f (z). For the nonlinear case, the method reduces the existence problem of families of
analytic solutions of H to the study of (2.19) in the Banach space

H1(∆) =
{
f : ∆−→ C, f (z) =

∞∑
n=1

αnz
n−1, analytic in ∆, with

∞∑
n=1

∣∣αn∣∣ < +∞
}

, (2.20)

which is embedded in H2(∆) and predicts solutions which converge absolutely on the
close unit disc. The proofs are essentially based on a factorization of the operator L+A,
which brings (2.19) to the form (

L̃+ Ã
)
f (z) =N( f ), (2.21)

where L̃ and Ã denote the abstract forms of L and A, respectively, in an abstract separa-
ble Hilbert space and N( f ) is the abstract form of G, which has a k-invariant property
playing an important role in the theory presented. Fixed point theory and bifurcation
techniques can be applied, because the nonlinear operator G is Frechét differentiable
in an open sphere of H1(∆). The most important is that the existence theorems have a
constructive character and can provide an answer to the question “how small is the initial
condition f (0) = λ?” As examples, some equations of particular interest, including the
Emden equation, the one-dimensional Schrödinger equation, and others, are studied.

The results of these papers unify, extend, and improve some theorems previously ob-
tained by many authors. Results concerning entire solutions of differential equations were
published in [48].

At the same time, he published a paper [14] concerning solutions in �1 of nonlinear
difference equations of the form

f (n+ k) +
k∑
i=1

(
αi +αi(n)

)
f (n+ k− i) =G

[
f (n)

]
, (2.22)

under suitable conditions on α(n) and G[ f (n)].

2.4. Zeros of Bessel and mixed Bessel functions. In 1980, in my Ph.D. thesis (supervisor
Professor Ifantis), the following was proved among other things: the number ρ �= 0 (in
general complex) is a zero of the ordinary Bessel functions Jν(z) of the first kind and
order ν (in general complex), if and only if the equation

z2 dy

dz
+
(
− ρ

2
+ (ν + 1)z

)
y(z) =−ρ

2
e−ρ2/2, y(0) = 1, (2.23)

has a solution in H2(∆).
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On the other hand, it was proved that the solvability of (2.23) in H2(∆) was equivalent
to the eigenvalue problem of the compact operator

Aν = Lν
(
V +V∗) (2.24)

in an abstract separable Hilbert space H with an orthonormal base en, n= 1,2, . . . , where
Lν is the diagonal operator Lνen = (1/(ν +n))en and V , V∗ the shift operator and its ad-
joint. This result led to an operator approach in an abstract separable Hilbert space for
the study of the zeros of ordinary Bessel functions Jν(z) and allowed us to give some al-
ternative proofs of the properties of the Bessel functions, such as the Lommel-Hurwitz
theorem, the Rayleigh formula, and so forth. Also, we obtained bounds for the real and
complex zeros jν,k of the corresponding Bessel functions Jν(z) and ρν,k of the mixed Bessel
functions αJν(z) + βzJ ′ν(z) and we discovered the following nonlinear differential equa-
tions for these zeros:

djν,k

dν
= jν,k

(
Lνxν,xν

)
,

dρν,k

dν
= ρν,k

(
Lνuν,uν

)
+β2

2
(
uν,uν

)
+αβ+β2ν

. (2.25)

From the above differential equations, we obtained some differential inequalities and
monotonicity properties, which are difficult to be found by classical methods, and im-
proved many results obtained by other authors. The results in this direction were pub-
lished in [20, 22, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 49, 50, 51].

2.5. Variation of eigenvectors and eigenvalues when these depend on a real parameter
and applications to the zeros of orthogonal polynomials. The method we used for the
derivation of the differential equations for the zeros of Bessel and mixed Bessel functions
was applied successfully by Professor Ifantis in 1988 in order to obtain for the first time
a rigorous proof of the Hellmann-Feyman theorem concerning the differentiability of
eigenvectors and eigenvalues, when these depend on a real parameter. The Hellmann-
Feyman theorem is an old result which was used by the physicists formally. Also there are
results concerning the concavity and the convexity of eigenvalues, Perron-Frobenius type
tridiagonal operators with several applications to the zeros of orthogonal polynomials.
The above results were published in [15, 16, 17, 23, 28, 37, 42, 44, 45, 46, 52].

2.6. Criteria for the nonselfadjointness of tridiagonal operators. A tridiagonal opera-
tor of the form

Ten = αnen+1 +αn−1en−1 + bnen, (2.26)

where αn is not bounded, is symmetric, defined on the dense domain consisting of finite
linear combination of the base en. Always T admits selfadjoint extensions. The problem
of finding conditions on αn and bn such that T is essentially selfadjoint (has a unique
selfadjoint extension or not) remains open for large classes of sequences αn and bn. Ifantis
found a new criterion on αn and bn such that T is not essentially selfadjoint [18].
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2.7. Analytic theory of continued fractions. To every continued fraction of the form

K(z) = 1

z− b1 −
α2

1

z− b1 −
α2

1

z−···

, (2.27)

with αi > 0 and bi ∈ R, corresponds a tridiagonal operator of the form (2.26). It is known
that if T is selfadjoint, then K(z) converges to a finite value for every z in the set C−Λ(T),
where Λ(T) is the set of limit points of all zeros of the orthogonal polynomials which
correspond to T . Professor Ifantis has studied conditions under which Λ(T) is equal to
the spectrum σ(T) of T [29, 30].

2.8. Recent results of Professor Ifantis. Recent work of Professor Ifantis concerns the
study of the spectrum of tridiagonal operators [19, 24, 47] and applications of orthogonal
polynomials to semi-infinite Toda lattice [21, 53, 54].
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nonlinear difference equation, Complex Variables Theory Appl. 9 (1987), no. 1, 63–80.
[15] , A theorem concerning differentiability of eigenvectors and eigenvalues with some appli-

cations, Appl. Anal. 28 (1988), no. 4, 257–283.
[16] , Concavity and convexity of eigenvalues, Appl. Anal. 41 (1991), no. 1-4, 209–220.



8 Evangelos K. Ifantis and his work

[17] , Perron-Frobenius-type theorems for tridiagonal operators, Appl. Anal. 44 (1992), no. 3-
4, 159–169.

[18] , A criterion for the nonuniqueness of the measure of orthogonality, J. Approx. Theory 89
(1997), no. 2, 207–218.

[19] , On the spectral measure of a class of orthogonal polynomials, J. Comput. Appl. Math.
133 (2001), no. 1-2, 688–689.

[20] E. K. Ifantis and C. G. Kokologiannaki, Location of the complex zeros of Bessel functions and
Lommel polynomials, Z. Anal. Anwendungen 12 (1993), no. 4, 605–612.

[21] , Stieltjes transforms of a class of probability measures, J. Comput. Appl. Math. 153
(2003), no. 1-2, 249–258.

[22] E. K. Ifantis, C. G. Kokologiannaki, and C. B. Kouris, On the positive zeros of the second deriva-
tive of Bessel functions, J. Comput. Appl. Math. 34 (1991), no. 1, 21–31.

[23] E. K. Ifantis, C. G. Kokologiannaki, and P. D. Siafarikas, Newton sum rules and monotonicity
properties of the zeros of scaled co-recursive associated polynomials, Methods Appl. Anal. 3
(1996), no. 4, 486–497.

[24] , On the support of the measure of orthogonality of a class of orthogonal polynomials, Appl.
Math. Comput. 128 (2002), no. 2-3, 275–288.

[25] E. K. Ifantis and C. B. Kouris, Study of differential equations of physics in the Hardy-Lebesgue
space, J. Mathematical Phys. 13 (1972), 1193–1195.

[26] , A Hilbert space approach to the localization problem of the roots of analytic functions,
Indiana Univ. Math. J. 23 (1973/74), 11–22.

[27] , Lower bounds for the zeros for analytic functions, Numer. Math. 27 (1976/77), no. 2,
239–247.

[28] E. K. Ifantis and P. N. Panagopoulos, On the zeros of a class of polynomials defined by a three
term recurrence relation, J. Math. Anal. Appl. 182 (1994), no. 2, 361–370.

[29] , Convergence of associated continued fractions revised, Acta Appl. Math. 66 (2001), no. 1,
1–24.

[30] , Limit points of eigenvalues of truncated tridiagonal operators, J. Comput. Appl. Math.
133 (2001), no. 1-2, 413–422.

[31] E. K. Ifantis and P. D. Siafarikas, A differential equation for the zeros of Bessel functions, Applica-
ble Anal. 20 (1985), no. 3-4, 269–281.

[32] , An inequality related to the zeros of two ordinary Bessel functions, Applicable Anal. 19
(1985), no. 4, 251–263.

[33] , A functional analytic approach for the study of the zeros of Bessel functions, Linear Alge-
bra Appl. 84 (1986), 391–397.

[34] , Ordering relations between the zeros of miscellaneous Bessel functions, Appl. Anal. 23
(1986), no. 1-2, 85–110.

[35] , Bounds for the first positive zero of a mixed Bessel function, J. Comput. Appl. Math. 21
(1988), no. 2, 245–249.

[36] , A differential equation for the positive zeros of the function αJv(z) + γzJ ′v(z), Z. Anal.
Anwendungen 7 (1988), no. 2, 185–192.

[37] , Differential inequalities on the greatest zeros of Laguerre and Ultraspherical polynomials,
Actas del VI Simposium on Polinomios Orthogonales Y Aplicationes (Gijon, Spain), 1989,
pp. 187–197.

[38] , Differential inequalities for the positive zeros of Bessel functions, J. Comput. Appl. Math.
30 (1990), no. 2, 139–143.

[39] , Inequalities involving Bessel and modified Bessel functions, J. Math. Anal. Appl. 147
(1990), no. 1, 214–227.

[40] , A result on the imaginary zeros of J ′′ν (z), J. Approx. Theory 62 (1990), no. 2, 192–196.



Panayiotis D. Siafarikas 9

[41] , Bounds for modified Bessel functions, Rend. Circ. Mat. Palermo (2) 40 (1991), no. 3,
347–356.

[42] , On the zeros of a class of polynomials including the generalized Bessel polynomials, Pro-
ceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications
(VII SPOA) (Granada), 1991.

[43] , A differential inequality for the positive zeros of Bessel functions, J. Comput. Appl. Math.
44 (1992), no. 1, 115–120.

[44] , On the zeros of a class of polynomials including the generalized Bessel polynomials, J.
Comput. Appl. Math. 49 (1993), no. 1-3, 103–109.

[45] , Differential inequalities and monotonicity properties of the zeros of associated Laguerre
and Hermite polynomials, Ann. Numer. Math. 2 (1995), no. 1-4, 79–91.

[46] , Perturbation of the coefficients in the recurrence relation of a class of polynomials, J.
Comput. Appl. Math. 57 (1995), no. 1-2, 163–170.

[47] , A counterexample to an assertion due to Blumenthal, Univ. Iagel. Acta Math. (2001),
no. 39, 249–254.

[48] E. K. Ifantis, P. D. Siafarikas, and A. D. Jannussis, Entire solutions of a second order linear differ-
ential equation, Complex Variables Theory Appl. 22 (1993), no. 1-2, 23–26.

[49] E. K. Ifantis, P. D. Siafarikas, and C. B. Kouris, Conditions for solution of a linear first-order
differential equation in the Hardy-Lebesgue space and applications, J. Math. Anal. Appl. 104
(1984), no. 2, 454–466.

[50] , Upper bounds for the first zeros of Bessel functions, J. Comput. Appl. Math. 17 (1987),
no. 3, 355–358.

[51] , The imaginary zeros of a mixed Bessel function, Z. Angew. Math. Phys. 39 (1988), no. 2,
157–165.

[52] E. K. Ifantis and K. N. Vlachou, Some results, concerning the variation of eigenvalues, when these
depend on a real parameter, Appl. Anal. 74 (2000), no. 1-2, 113–125.

[53] , Solution of the semi-infinite Toda lattice for unbounded sequences, Lett. Math. Phys. 59
(2002), no. 1, 1–17.

[54] , Exact solutions of the semi-infinite Toda lattice with applications to the inverse spectral
problem, Abstr. Appl. Anal. 2004 (2004), no. 5, 435–451.

[55] T. Kato and J. B. McLeod, The functional-differential equation y′ (x) = ay(λx) + by(x), Bull.
Amer. Math. Soc. 77 (1971), 891–937.

Panayiotis D. Siafarikas: Department of Mathematics, University of Patras, 26500 Patras, Greece
E-mail address: panos@math.upatras.gr

mailto:panos@math.upatras.gr




THE MATHEMATICIANS’ SHARE IN THE GENERAL
HUMAN CONDITION

NICOLAS K. ARTEMIADIS

Received 1 September 2002

Mr. Vice Rector. Mr. Chairman, honorable guests and participants. Ladies and gentle-
men.

First, I would like to thank the organizers of this conference for inviting me to give this
inaugural address. It is, and always was, a pleasure to give a talk in this department, where
I used to teach for many years and from where I retired as an emeritus professor.

Today, in my capacity as a regular member of the Academy of Athens, it is also a great
pleasure to convey to all of you, ladies and gentlemen, on behalf of the Academy, warm
greetings and to welcome you in Greece.

To Professor Eυάγγελoσ Υφαντήσ, to whom this conference is dedicated, I wish hap-
piness and a prosperous life as emeritus. Eύχoµαι κ. Συνάδελφε: Σιδηρoκέφαλoσ, Υγεία
και συν ´εχιση τoυ αξιóλoγoυ ερευνητικoύ σoυ έργoυ.

I come now to the subject of my lecture. A new century has already started. A new mil-
lennium has begun. So, it seemed natural to me that it would be appropriate to express
some thoughts concerning the place of mathematics in a world of values and facts, some-
thing that we mathematicians seldom do, or more precisely to express some thoughts
about the share of mathematicians in the general human condition.

This is a concern of the mathematician, but it is not a topic of mathematics. It is a topic
of philosophy, if one agrees that philosophy is not a specialized science but a discipline
that deals with the interaction of all human endeavors. I nevertheless hope to be able to
make some valid observations.

Mathematics begins with an understanding of the abstract concept of a natural num-
ber (i.e., of the numbers 1, 2, 3, and so on) and the ability to count indefinitely. In this
sense we may say that every human being is a mathematician. Modern historians hardly
mention the mathematical component in the emergence of civilization. It was different in
antiquity. In one of his plays, Aeschylus mentions: αριθµóν έξoχoν σoφισµάτων (number,
outstanding (concept) among the ingenious inventions). “ With the exception of the con-
cept of number, which is man’s invention, everything else was created by God,” Aristotle’s
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saying, Aristotle (384–322 B.C.), could be the starting point for a survey of the role of
mathematicians as an object of philosophical investigations.

I cannot and I do not want to discuss these things. However, I should like to touch,
at least briefly, the work of some eminent philosophers who assigned to mathematics an
extraordinary role in their systems.

Plato (428–348 B.C.) considers knowledge of mathematics to be a prerequisite of citi-
zenship. He states that anyone who calls himself a civilized person should know that there
exist incommensurable quantities in geometry. For example, it is impossible to find a unit
of length such that both the side and the diagonal of a square are whole multiples of this
unit. This requires a sophisticated proof and it is beyond the range of intuitive perception.
But why should everybody know it? Plato wanted everybody to know that some facts are
absolute certainties. To understand this need for certainty, one should read the plays of
Aristophanes, which exhibit the emergence of nihilism in Plato’s time. Nietzsche’s doc-
trine, “Nothing is true. Everything is permitted,” is illustrated in the play Nεφέλαι (The
Clouds). In another play, 0́ρνιθεσ (The Birds), we see the human race entering into an
alliance with birds in order to destroy the power of the gods. These plays were performed
in honor of the god Dionysus. This very god receives, in another play, Bάτραχoι (The
Frogs), a good trashing. So Plato tried to fight nihilism by exhibiting mathematics as a
source of absolute truth and certainty.

Leibniz (1646–1716) was both an eminent mathematician and a philosopher. Accord-
ing to him, mathematics is the science that tells us what is possible. As far as the physical
world is concerned, that is, that aspect of the world that Descartes called res extensa, this
statement contains at least some truth. But according to Leibniz, God created our world
by choosing among all possible worlds, in the sense that our world is “the best of all
possible worlds.”

The success of the exact sciences (which are based on the use of mathematics) has in-
creased the range of our knowledge of the universe to a degree enormously beyond that
available to Leibniz. Paradoxically, this has made many of us (including myself) more
modest because our extensive knowledge has made us more aware of the range of our
ignorance.

Like Leibniz, Descartes (1596–1650) was both a philosopher and an eminent math-
ematician. His philosophy is important to the history of the exact sciences through his
dichotomy of the world into res extensa and res cogitans, but mathematics does not play
an explicit role in his philosophy.

Spinoza (1632–1677) made an attempt to overcome this dualism by using not math-
ematics proper but at least the methods of mathematics. He proposed to derive definite
philosophical truths from self-evident statements more geometrico, that is, in the manner
of Euclid.

Spinoza provided deep and important insights, but we cannot safely say that this is due
to his method, which does not qualify as a mathematical argument. In his main work, the
Ethics, we find the statement “by God I understand being absolutely infinite.” But what is
“absolutely infinite”?

Spinoza did not know of the discovery of Georg Cantor (published in 1895), according
to which there are smaller and larger infinitudes. There are more points in a finite interval
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of a straight line than there are natural numbers 1,2,3, . . . (ad infinitum). There is even an
infinite sequence of infinitudes, each larger than the previous one. Now, if we assume that
there exists an infinitude containing all the previous ones, this assumption would lead to
a contradiction. Now, we may be able to live with a contradiction, but we cannot tolerate
it in a mathematical argument.

This last remark suggests that before relying on mathematics, it is necessary to under-
stand both its potential and its limitations. So the question “what is mathematics?” comes
up naturally.

I am not prepared to make an attempt at giving an epistemological definition of math-
ematics. I will only try to provide an intuitive understanding of mathematics.

Mathematics deals with concepts subject to the rules of logic, in particular to the
postulate of the excluded middle. There exists at least one set of concepts of this type,
namely, that of natural numbers. At this point, some comments and examples are appro-
priate.

It is not true that all statements involve concepts that are subject to logic. We cannot
say that a person is either tall or not tall. Even if we give an artificial definition of tallness
(say 1.84 m or more) we may run into trouble, because no measurement is absolutely
precise. You see, there is a good reason why we have hundreds of thousands of laws. The
law uses strangely defined concepts and has to be more and more casuistic to make them
fit reality.

Nietzsche points out that only man-made concepts are subject to logic, while Kro-
necker, a 19th century mathematician, contrary to Aristotle and to Nietzche, says that
“God made the whole numbers, all the rest is the work of man.”

I think that these remarks will suffice. I will not go further by making statements about
the “reality” of the natural numbers in philosophical (ontological) terms.

Mathematical research has two important and, I believe, unique characteristics: it in-
volves an element of the infinite—being the only secular human activity to do so—and
it produces an increasing wealth of problems with increasing abstraction. The element of
the infinite in mathematics can be used to prove—in this case more geometrico, that is,
in the way Euclid does—that the human mind is “superior” to any conceivable electronic
computer. The human faculty of being able to “understand” is something that must be
achieved by some noncomputational activity of the brain or mind. The description of the
arguments needed here are very technical and they are linked with the name of one of the
greatest mathematicians of our time, Kurt Gödel (1906–1978).

In an age where scientists as well as philosophers try to tell us that we are really noth-
ing particular (a survival mechanism for our genes), they speak about strong artificial
intelligence. Our mathematical abilities provide perhaps the simplest and strongest non-
metaphysical argument for our special position in nature.

To illustrate these remarks, and particularly the one concerning the “element of the
infinite,” we use the following example, which is a theorem of number theory.

Every natural number I is the sum of the squares of at most four natural
numbers. Unless I + 1 is divisible by 8, at most three squares suffice.

It is clear that no amount of direct calculations can prove this theorem because it
involves infinitude of numbers. The proof is neither easy nor obvious and was given (for
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the first part of the theorem) in the late 18th century by Lagrange. This example clearly
shows what is meant by “an element of the infinite.”

The functions of mathematics may be described as an extension of some of the func-
tions of language, and the reason is that our everyday language uses concepts that are not
subject to the formulation of mathematical arguments and results.

The ability to name things—even nonmaterial ones, like feelings and sensations—is an
act of abstraction and image making, and it is used by some philosophers to determine
man’s “specific difference” in the animal kingdom. Now, mathematics provides us with
abstract images of things that are not accessible to the direct perception of our senses. A
sophisticated and very important example of the image-making power of mathematics
is the mathematical image of an atom with a nucleus and electrons. It consists entirely
of formulas. But these formulas permit us to make predictions about the behavior of an
atom. This is an enormous achievement and is but one example of the role of mathemat-
ics in physics, chemistry, and the branches of technology based on these sciences.

Mathematics can tell us that there are things we cannot do with the means at our
disposal. For example, suppose we wish to seat the representatives, one for each, of the
180 members or so of the United Nations at a conference table. We cannot list the possible
seating arrangements since their number would be greater than the number of electrons
and protons in the known universe. Of course we are not particularly interested in such
seating arrangements. But we might be interested in arrangements of genetic material in
chromosomes where the numbers are large, too.

We now make some comments concerning “the phenomenon of mathematics,” where
the term “mathematics” is used in the strict sense: “the systematic derivation of theorems
with the help of explicitly formulated arguments.” Some mathematical insights are intu-
itively clear, for example, that a diameter divides a circle into two equal parts. Thales (ca.
624–548 B.C) has provided this. The fact that the side and the diagonal of a square are
incommensurable is not at all intuitively clear. The Pythagorean School discovered it. A
well-formulated proof of this and of related theorems appeared at the time of Plato and
was due to his friend Theaetelus.

Although Babylonian, Indian, and Chinese scholars developed a body of mathemati-
cal knowledge, it is absolutely certain that mathematics is a creation of the Greeks. This
does not mean the Athenians. With the exception of Theaetelus, none of the great Greek
mathematicians lived in Athens. Euclid lived in Alexandria (Egypt). So did Apollonius.
Archimedes lived in Syracuse (Sicily).

Nothing like the systematic work of Euclid and Apollonius is known from other civili-
zations of similar or earlier times. About Archimedes, the greatest applied mathematician
of all time, Voltaire used to say, “There was more imagination in the head of Archimedes
than in that of Homer.”

What motivated these mathematicians? Not technology, not even astronomy; not a
“practical” matter at all. It is true that Archimedes developed technological applications
of mathematics, but the Romans, who certainly needed and used high technology, never
contributed anything to mathematics. In fact, the systematic use of mathematics for the
development of technology (excluding astronomy) started only in the 18th century. The
case for the development of mathematics was not usefulness.
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Earlier we compared some functions of mathematics to some functions of language.
The analogy goes further. Language, too, is not merely an instrument of power or of
usefulness. Nor is poetry. As far as mathematics is concerned, a good summary of its role
appeared in an editorial (by Chandler and Edwards) in The Mathematical Intelligencer.

“It is a perennial problem for mathematicians to explain to the public at large what
makes mathematics worthwhile if not its practicality. It is like explaining to someone
who has never heard music what a lovely melody is . . . . Do let us try to teach the general
public more of the sort of mathematics that they can use in everyday life but let us not
allow them to think and certainly let us not slip into thinking that this is an essential
quality of mathematics.”

“There is a great cultural tradition to be preserved and enhanced. Each generation
must learn the tradition anew. Let us take care not to educate a generation that will be
deaf to the melodies that are the substance of our great mathematical culture.”

In the past, some poets understood the beauty of mathematics. I already mentioned
Aeschylus. Schiller calls it “divine.” But examples of this type became rare, if not extinct,
in modern times. The reason for this is of course the increasing inaccessibility of mathe-
matics. Our latest products are available only to a very few people. However, little would
be left to human civilization, if we restrict it only to things that enjoy universal appreciation.

There is one more aspect of mathematics that is usually mentioned as a mere curiosity.
I believe it is more than that, since it relates to the idea of evolution. In several cases, sci-
entists found the mathematical tools they needed, ready-made and available, sometimes,
centuries earlier. The conics, for example (ellipse, parabola, hyperbola), have been thor-
oughly investigated by Apollonius in the third century B.C. and were available to Kepler
in the 17th century A.D.

Another example is the theory of probability. First of all, it is strange that even a situa-
tion of complete disorder, that of random events, should be subject to mathematical laws.
Second, what provoked the study of probability was a despised human activity, namely,
gambling. One of the main contributors to the theory of probability was Pascal, who gave
up mathematics because he thought that the only truly important thing in life was to
work for the salvation of one’s soul. And, finally, it turned out that the laws of probability
are essential ingredients of the laws of nature. This insight started in the 19th century with
Boltzmann and culminated in our century with the development of quantum theory.

I will close this lecture by trying to answer the question: what makes a mathematician?
There exists a widespread resentment against mathematics. It is supposed to deal only
with quantity or with computing. None of this is true, but I cannot explain that in a few
words. The claim of the mathematician to be concerned with truth is frequently answered
by saying that mathematical statements are not true, but merely correct. Nevertheless, it is
true that human beings find the results of mathematics. Can anything be said about them?
The answer is, “Not enough to enable us to recognize a mathematician if we meet one in
a plane or at a party.” But there exist properties without which a mathematician cannot
exist. Some of them are a specific talent, an interest in the matter, and persistence to spend
large amounts of time and energy. The mathematician needs an exceptionally great ability
to stand frustration. His field is the only field with an “all-or-nothing” alternative. A piece
of furniture may be more or less perfect. A theorem and a proof is either true or false.



16 The mathematicians’ share in the general human condition

It follows that the mathematician needs the support of a civilization that acknowledges
as valuable the product of theory of pure thought.

One advantage a mathematician has is that his thoughts are eminently communicable,
not perhaps from person to person, but certainly from nation to nation. Nothing is more
international than the community of mathematicians. But I think it is rather time to stop
here. I wish to all of you a very successful meeting and I declare this conference open.

N. K. Artemiadis
Academy of Athens, Greece

upatrasp@otenet.gr
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We study the existence of zero-convergent solutions for the second-order nonlinear dif-
ference equation ∆(anΦp(∆xn)) = g(n,xn+1), where Φp(u) = |u|p−2u, p > 1, {an} is a
positive real sequence for n ≥ 1, and g is a positive continuous function on N× (0,u0),
0 < u0 ≤ ∞. The effects of singular nonlinearities and of the forcing term are treated as
well.

1. Introduction

In this paper, we study decaying nonoscillatory solutions of the second-order difference
equation

∆
(
anΦp

(
∆xn

))= g
(
n,xn+1

)
, (1.1)

where ∆ is the forward difference operator ∆xn = xn+1 − xn, {an} is a positive real se-
quence for n ≥ 1, g is a positive continuous function on N × (0,u0), 0 < u0 ≤ ∞, and
Φp(u) = |u|p−2u with p > 1. The left-hand side in (1.1) is the one-dimensional discrete
analogue of the p-Laplacian u→ div |∇u|p−2∇u that appears in searching for radial solu-
tions of nonlinear partial equations modelling various reaction-diffusion problems (see,
e.g., [8]).

Observe that our assumptions on g allow us to consider the “singular case,” that is, the
case in which the nonlinearity g is unbounded with respect to the second variable in a
right neighborhood of zero. From this point of view, a typical example is the nonlinear
equation

∆
(
anΦp

(
∆xn

))= bn
[
Φq

(
xn+1

)]−1
+ rn, (1.2)

where {bn} and {rn} are real sequences with bn ≥ 0, rn ≥ 0, and bn + rn > 0 for n≥ 1 and
q > 1.
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Equation (1.1) includes also the “regular case” with the forcing term

∆
(
anΦp

(
∆xn

))= bnΦq
(
xn+1

)
+ rn. (1.3)

Positive decreasing solutions of (1.3) when bn > 0 and rn ≡ 0 for n≥ 1 have been investi-
gated in [5, 6].

Our aim is to study the existence of decaying solutions of (1.1), that is, positive solu-
tions {xn} of (1.1) approaching zero as n→ ∞, in view of their crucial role in a variety
of physical applications (see, e.g., [8]). By using a topological approach, we study mainly
the effects of singular nonlinearities and those of the forcing term. Our results are also
motivated also by some recent effects stated in the continuous case, see, for example,
[1, 4, 9, 12] and the references therein. Our results complement the ones in [10, 11],
where the existence of unbounded solutions of (1.1) is considered under the assumption
bn < 0. Finally, we recall that boundary value problems for equations in a discrete inter-
val [1,N0] with singular nonlinear term in this interval have been considered recently in
[2, 3].

2. Notation and preliminaries

A solution {xn} of (1.1) is said to be a decaying solution if xn > 0, ∆xn < 0 eventually, and
limn xn = 0. According to the asymptotic behavior of the quasidifference

x[1]
n = anΦp

(
∆xn

)
, (2.1)

a decaying solution {xn} of (1.1) is called a regularly decaying solution or a strongly decay-

ing solution according to limn x
[1]
n < 0 or limn x

[1]
n = 0, respectively. It is easy to show that

every decaying solution {xn} of (1.1) satisfies, for every n≥ 1,

xn > 0, ∆xn < 0. (2.2)

Indeed, assume that (2.2) is verified for n≥ N > 1 and suppose there exists n0 < N such
that ∆xn0 ≥ 0, ∆xi < 0, xi > 0, for i= n0 + 1, . . . ,N . From (1.1) we obtain

x[1]
N = x[1]

n0
+

N−1∑
i=n0

g
(
i,xi+1

)
> 0 (2.3)

that implies ∆xN > 0, that is, a contradiction.
The set of decaying solutions will be denoted by D and those of regularly decaying

solutions and strongly decaying solutions by DR and DS, respectively. Clearly, D = DR ∪DS

and

DR =
{{

xn
}

solution of (1.1) : xn > 0, ∆xn < 0, lim
n
xn = 0, lim

n
x[1]
n < 0

}
,

DS =
{{

xn
}

solution of (1.1) : xn > 0, ∆xn < 0, lim
n
xn = 0, lim

n
x[1]
n = 0

}
.

(2.4)
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Some notations are in order. Denote

Ya = lim
m→∞

m∑
n=1

1
Φp∗

(
an
) , (2.5)

where p∗ denotes the conjugate number of p, that is, p∗ = p/(p− 1) or 1/p+ 1/p∗ = 1.
When Ya <∞, denote by {An} the sequence given by

An =
∞∑
k=n

1
Φp∗

(
ak
) . (2.6)

We close this section by recalling the following lemma which is the discrete analogue
of the Lebesgue dominated convergence theorem and plays an important role in prov-
ing topological properties of certain operators associated to the problem of existence of
decaying solutions of (1.1).

Lemma 2.1. Let {αi,k} be a double real sequence, αi,k ≥ 0, for i,k ∈ N. Assume that the
series

∑∞
k=1αi,k totally converges, that is, there exists a sequence {βk} such that αi,k ≤ βk,∑∞

k=1βk < ∞, and let limi→∞αi,k = ρk for every k ∈ N. Then the series
∑∞

k=1 ρk converges
and

lim
i→∞

∞∑
k=1

αi,k =
∞∑
k=1

ρk. (2.7)

3. Regularly decaying solutions

In this section, we study the existence of solutions in the class DR. We start with a neces-
sary condition. The following proposition holds.

Proposition 3.1. If DR �= ∅, then Ya <∞.

Proof. Let x = {xn} be a solution of (1.1) in the class DR. Because {x[1]
n } is negative in-

creasing and limn x
[1]
n = x[1]∞ < 0, it holds that

anΦp
(
∆xn

)
< x[1]

∞ . (3.1)

This implies, for n < N ,

Φp∗
(∣∣x[1]

∞
∣∣)N−1∑

j=n
Φp∗

(
1
aj

)
≤ xn − xN (3.2)

that gives the assertion as N →∞. �

Remark 3.2. For any solution {xn} ∈ DR, it holds that anΦp(∆xn) ≥ x[1]
1 . Hence, from

(3.2), we obtain the following upper and lower bounds:

−Φp∗
(
x[1]
∞
)
An ≤ xn ≤−Φp∗

(
x[1]

1

)
An. (3.3)
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In addition, regularly decaying solutions {xn} are asymptotic to the sequence (2.6), that is,

lim
n

xn
An

= cx, 0 < cx <∞, (3.4)

where Φp(cx) = |x[1]∞ |, as the Stolze theorem yields.

Assumption Ya <∞ is not sufficient for the existence of solutions in the class DR as the
following example shows.

Example 3.3. Consider the equation

∆
(
n2Φp

(
∆xn

))= 1
xn+1

. (3.5)

Let {xn} be a solution of (3.5) in the class DR and let n0 ≥ 1 such that xn+1 < 1 for n > n0.
Hence, for n > n0,

∆
(
n2Φp

(
∆xn

))
> 1 (3.6)

or

x[1]
n+1 > x[1]

n0
+n−n0 (3.7)

that gives a contradiction as n→∞.

The following theorem holds.

Theorem 3.4. Assume the following conditions:

(i) Ya <∞;
(ii) there exists a continuous function F : N× (0,δ] → (0,∞), δ < u0, monotone with re-

spect to the second variable such that for (n,v) ∈ N× (0,δ],

g(n,v) ≤ F(n,v), (3.8)
∞∑
n=1

F
(
n,An+1

)
<∞. (3.9)

Then (1.1) has solutions in the class DR. More precisely, for every c ≥ 1, there exists a
positive solution {xn} such that

lim
n

xn
An

= c, (3.10)

where Φp(c) = limn |x[1]
n |.

Proof. First, we prove the statement for F nonincreasing. Choose n0 ≥ 1 such that

Φp∗(2)An0 < δ, (3.11)
∞∑

n=n0

F
(
n,An+1

)
< 1. (3.12)



Mariella Cecchi et al. 21

Denote by �∞n0
the Banach space of all bounded sequences defined for n ≥ n0 and en-

dowed with the topology of supremum norm. Let Ω be the nonempty subset of �∞n0
given

by

Ω= {{
un
}∈ �∞n0

: An ≤ un ≤Φp∗(2)An
}
. (3.13)

Clearly, Ω is a bounded, closed, and convex subset of �∞n0
. We define the mapping T : Ω→

�∞n0
by

wn =
∞∑
j=n

Φp∗

(
1
aj

)
Φp∗

1 +
∞∑
i= j

g
(
i,ui+1

) . (3.14)

We prove that T satisfies the hypotheses of Schauder fixed-point theorem.
(a) The mapping T maps Ω into itself. Obviously, An ≤wn. Conditions (ii) and (3.12)

imply

∞∑
j=n0

g
(
j,uj+1

)≤ ∞∑
j=n0

F
(
j,uj+1

)≤ ∞∑
j=n0

F
(
j,Aj+1

)≤ 1, (3.15)

and taking into account (3.14) and monotonicity of Φp∗ , we have

wn ≤
∞∑
j=n

Φp∗

(
2
aj

)
=Φp∗(2)An. (3.16)

(b) The mapping T is continuous in Ω. Let {U (i)} be a sequence in Ω converging to

U in �∞n0
. Because Ω is closed, U ∈Ω. Let U (i) = {u(i)

n }, U = {un} and W (i) = T(U (i)) =
{w(i)

n }, W = T(U) = {wn}. It holds for every integer n≥ n0 that∥∥T(U (i))−T(U)
∥∥

= sup
n≥n0

∣∣w(i)
n −wn

∣∣
≤ sup

n≥n0

∞∑
k=n

Φp∗

(
1
ak

)∣∣∣∣∣∣Φp∗

1 +
∞∑
j=k

g
(
j,u(i)

j+1

)−Φp∗

1 +
∞∑
j=k

g
(
j,uj+1

)∣∣∣∣∣∣
≤

∞∑
k=n0

αi,k,

(3.17)

where

αi,k =Φp∗

(
1
ak

)∣∣∣∣∣∣Φp∗

1 +
∞∑
j=k

g
(
j,u(i)

j+1

)−Φp∗

1 +
∞∑
j=k

g
(
j,uj+1

)∣∣∣∣∣∣ . (3.18)

From the continuity of g, we obtain

lim
i
g
(
j,u(i)

j+1

)
= g

(
j,uj+1

)
for j ≥ n0, (3.19)
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and, in view of (ii) and the fact that U (i) ∈Ω,∣∣∣g( j,u(i)
j+1

)∣∣∣≤ F
(
j,Aj+1

)
. (3.20)

Then the series
∑∞

j=k g( j,u(i)
j+1) is totally convergent and, by Lemma 2.1,

lim
i
Φp∗

1 +
∞∑
j=k

g
(
j,u(i)

j+1

)=Φp∗

1 +
∞∑
j=k

g
(
j,uj+1

) , (3.21)

that is,

lim
i
αi,k = 0 for every k ≥ n0. (3.22)

In addition, using (3.12), we find

αi,k ≤
(
Φp∗

(
1
ak

))Φp∗

1 +
∞∑
j=k

F
(
j,u(i)

j+1

)+Φp∗

1 +
∞∑
j=k

F( j,uj+1
)

≤ 2
(
Φp∗

(
1
ak

))
Φp∗

1 +
∞∑
j=k

F( j,Aj+1
)≤ 2Φp∗(2)

(
Φp∗

(
1
ak

))
.

(3.23)

Since Ya < ∞, the series
∑∞

k=n0
αi,k is totally convergent. Applying again Lemma 2.1, it

follows from (3.17) and (3.22) that

lim
i

∥∥T(U (i))−T(U)
∥∥≤ lim

i

∞∑
k=n0

αi,k =
∞∑

k=n0

[
lim
i
αi,k

]
= 0. (3.24)

Hence, T is continuous in Ω.
(c) The set T(Ω) is relatively compact. By a result in [7, Theorem 3.3], it is sufficient

to prove that T(Ω) is uniformly Cauchy in the topology of �∞n0
, that is, for every ε > 0,

there exists an integer nε ≥ n0 such that |wm1 −wm2| < ε whenever m1,m2 > ε for every
W = {wn} ∈ T(Ω). Let W = T(U), U = {un}, and, without loss of generality, assume
m1 <m2. From (3.14), we obtain

∣∣wm1 −wm2

∣∣=
∣∣∣∣∣∣
m2−1∑
j=m1

Φp∗

(
1
aj

)
Φp∗

1 +
∞∑
i= j

g
(
i,ui+1

)∣∣∣∣∣∣
≤
∣∣∣∣∣∣
m2−1∑
j=m1

Φp∗

(
1
aj

)
Φp∗

1 +
∞∑
i= j

F
(
i,Ai+1

)∣∣∣∣∣∣
≤Φp∗(2)

m2−1∑
j=m1

Φp∗

(
1
aj

)
,

(3.25)

and the Cauchy criterion gives the relative compactness of T(Ω).
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Hence, by Schauder fixed-point theorem, there exists {xn} ∈Ω such that xn = T(xn)
or, from (3.14),

xn =
∞∑
j=n

Φp∗

 1
aj

1 +
∞∑
i= j

g
(
i,xi+1

) . (3.26)

One can easily check that {xn} is a solution of (1.1) with ∆xn < 0, limn xn = 0, and

limn x
[1]
n = −1, and so {xn} ∈ DR. Clearly, in view of Remark 3.2, {xn} satisfies (3.10)

with c = 1.
To obtain the existence of a positive solution {xn} such that limn[xn/An] = c > 1, it is

sufficient to observe that (3.9) and monotonicity of F imply that the series

∞∑
n=1

F
(
n,λAn+1

)
(3.27)

is convergent for any λ≥ 1. Now, the assertion follows by considering in the subset

Ωλ =
{{
un
}∈ �∞n0

: Φp∗(λ)An ≤ un ≤Φp∗(2λ)An
}

(3.28)

the operator T : {un} → {wn} given by

wn =
∞∑
j=n

Φp∗

(
1
aj

)
Φp∗

λ+
∞∑
i= j

g
(
i,ui+1

) (3.29)

and using an analogous argument as above.
In case F is nondecreasing on (0,δ], the proof is quite similar with some minor chan-

ges. It is sufficient to consider the subset Ω and the operator T as follows:

Ω=
{{

un
}∈ �∞n0

:
1
2
An ≤ un ≤An

}
,

wn =
∞∑
j=n

Φp∗

 1
aj

1
2

+
∞∑
i= j

g
(
i,ui+1

) ,
(3.30)

where n0 is chosen such that

∞∑
n=n0

F
(
n,An+1

)
<

1
2
. (3.31)

The details are left to the reader. �

Remark 3.5. The existence of regularly decaying solutions {xn} satisfying (3.10) for c ∈
(0,1) is guaranteed by the condition

∞∑
n=1

F
(
n,Φp∗(c)An+1

)
<∞ (3.32)

instead of (3.9) and can be proved using an analogous argument as given in the proof of
Theorem 3.4.
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For the special case of (1.2), assumption (ii) of Theorem 3.4 becomes

∞∑
n=1

bn
[
Φq

(
An+1

)]−1
<∞,

∞∑
n=1

rn <∞. (3.33)

In this case, by applying Theorem 3.4 to (1.2), for every c > 0, we obtain the existence of
solutions satisfying (3.10). In addition, for (1.2), conditions Ya <∞ and (3.33) become
also necessary for the existence in DR as the following result shows.

Corollary 3.6. Equation (1.2) has solutions in the class DR if and only if Ya < ∞ and
(3.33) hold.

Proof. In view of Proposition 3.1 and Theorem 3.4, it is sufficient to prove that if DR �= ∅,
then (3.33) is verified. Let {xn} be a solution of (1.2) in the class DR. By the summation
of (1.2) from n to N − 1 and taking into account (3.3), we have

−x[1]
n =−x[1]

N +
N−1∑
j=n

bj
[
Φq

(
xj+1

)]−1
+

N−1∑
j=n

r j

> λ
N∑
j=n

bj
[
Φq

(
Aj+1

)]−1
+

N∑
j=n

r j ,

(3.34)

where λ= [Φq[Φp∗(−x[1]
1 )]]−1. As N →∞, we obtain the assertion. �

Theorem 3.4 is applicable even if the nonlinearity g is bounded with respect to the
dependent variable in a right neighborhood of zero, that is, the boundary value problem
is “regular.” In such a case, assumption (ii) of Theorem 3.4 can be simplified.

Corollary 3.7. If Ya <∞ and

∞∑
n=1

bnΦq
(
An+1

)
<∞,

∞∑
n=1

rn <∞, (3.35)

then (1.3) has solutions in the class DR. More precisely, for every c > 0, there exists a positive

solution {xn} such that (3.10) is verified with Φp(c) = limn |x[1]
n |.

Proof. The assertion follows from Theorem 3.4 and Remark 3.5 by choosing F(n,v) =
bnΦq(v) + rn. �

4. Strongly decaying solutions

Here we study the existence of solutions in the class DS for equations with possible singu-
lar nonlinearity. More precisely, in this section, we will assume that g satisfies the condi-
tion

inf
v∈(0,δ]

g(i,v) =mi > 0 (4.1)

for infinitely many i, where δ is a positive constant, δ < u0. The following necessary con-
ditions hold.
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Proposition 4.1. If DS �= ∅, then

∞∑
n=1

mn <∞, (4.2)

∞∑
j=1

Φp∗

 1
aj

∞∑
i= j

mi

 <∞, (4.3)

where mj is given in (4.1).

Proof. Let {xn} be a solution of (1.1) in the class DS. Without loss of generality, we can
assume xn < δ for n≥ 1. Hence,

g
(
i,xi+1

)≥ inf
v∈(0,δ]

g(i,v) =mi. (4.4)

By summing (1.1) from n to ∞, we obtain

−x[1]
n =

∞∑
i=n

g
(
i,xi+1

)≥ ∞∑
i=n

mi (4.5)

that implies (4.2). By summing again from n to ∞, we have

xn ≥
∞∑
i=n

Φp∗

 1
aj

∞∑
i= j

mi

 , (4.6)

and so (4.3) is proved. �
Remark 4.2. Because

N∑
j=1

Φp∗

 1
aj

N∑
i= j

mj

≥Φp∗

 1
a1

N∑
i=1

mj

=Φp∗

(
1
a1

)
Φp∗

 N∑
i=1

mj

 , (4.7)

condition (4.3) implies (4.2).

A sufficient criterion for existence in DS is given by the following theorem.

Theorem 4.3. Assume (4.1) and (4.3). If there exists a continuous function F : N× (0,δ] →
(0,∞), 0 < δ < u0, nonincreasing with respect to the second variable such that, for (n,v) ∈
N× (0,δ],

g(n,v) ≤ F(n,v),

∞∑
n=1

Φp∗

 1
an

∞∑
j=n

F
(
j,Bj+1

) <∞,
(4.8)

where

Bn =
∞∑
j=n

Φp∗

 1
aj

∞∑
i= j

mi

 , (4.9)

then (1.1) has solutions in the class DS.
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Proof. Choose n0 ≥ 1 such that

Bn0 < δ,
∞∑

n=n0

Φp∗

 1
an

∞∑
j=n

F
(
j,Bj+1

) < δ. (4.10)

Let Ω be the subset of �∞n0
given by

Ω= {{
un
}∈ �∞n0

: Bn ≤ un ≤ δ
}
. (4.11)

In view of (4.1), it holds that Bn > 0. In addition, because {Bn} is nonincreasing, from
(4.10) the set Ω is nonempty. Clearly, Ω is bounded, closed, and convex in �∞n0

. We define
the mapping T : Ω→ �∞n0

by

wn =
∞∑
j=n

Φp∗

 1
an

∞∑
j=n

g
(
j,uj+1

) . (4.12)

Because

g
(
j,uj+1

)≥ inf
v∈(0,δ]

g( j,v) =mj , (4.13)

we have

wn ≥
∞∑
j=n

Φp∗

 1
an

∞∑
j=n

mj

= Bn. (4.14)

In addition, it holds for j ≥ n0 that

∞∑
j=n

g
(
j,uj+1

)≤ ∞∑
j=n

F
(
j,uj+1

)≤ ∞∑
j=n

F
(
j,Bj+1

)
(4.15)

or, in view of (4.10),

wn ≤
∞∑
j=n

Φp∗

 1
an

∞∑
j=n

F
(
j,Bj+1

) < δ. (4.16)

Thus, T(Ω) ⊆Ω. The continuity of T in Ω and the compactness of T(Ω) follow by using a
similar argument as in the proof of Theorem 3.4. Hence, by applying the Schauder fixed-
point theorem, we obtain the existence of a fixed point {xn} of T . Clearly,

xn =
∞∑
j=n

Φp∗

 1
aj

∞∑
i= j

g
(
i,xi+1

) , (4.17)

and so {xn} ∈ DS. �

For the special case of singular equation (1.2) with rn = 0 for n∈ N, Theorem 4.3 yields
the following result.
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Corollary 4.4. Consider the equation

∆
(
anΦp

(
∆xn

))= bn
[
Φq

(
xn+1

)]−1
(4.18)

with bn > 0 for infinitely many n. Assume

lim
m→∞

m∑
n=1

Φp∗

 1
an

m∑
k=n

bk

 <∞ (4.19)

and denote

βn =
∞∑
i=n

Φp∗

 1
ai

∞∑
k=i

bk

 . (4.20)

If

lim
m→∞

m∑
n=1

Φp∗

 1
an

m∑
j=n

bj
[
Φq

(
βj+1

)]−1

 <∞, (4.21)

then (4.18) has solutions in the class DS.

The assumption in Theorem 4.3 (and Corollary 4.4) is not necessary for DS �= ∅ as the
following example shows.

Example 4.5. Consider the equation

∆2xn = 2
n(n+ 1)2(n+ 2)

(
xn+1

)−1
. (4.22)

Clearly, (4.19) is satisfied. We have

βn =
∞∑
i=n

∞∑
j=i

2
j( j + 1)2( j + 2)

<
∞∑
i=n

∞∑
j=i

2
j4
. (4.23)

Taking into account that for n∈ N, n > 1, and γ real positive constant, γ > 1, the following
inequality holds

∞∑
i=n

1
iγ
<
∫∞

n−1

1
xγ

dx = 1
(γ− 1)(n− 1)γ−1 , (4.24)

from (4.23) we obtain

βn+1 <
∞∑

i=n+1

2
3(i− 1)3

= 2
3

∞∑
i=n

1
i3
<

1
3(n− 1)2

. (4.25)

Hence

∞∑
n=1

∞∑
j=n

bj
(
βj+1

)−1
>

∞∑
n=1

∞∑
j=n

6( j− 1)2

j( j + 1)2( j + 2)
=∞, (4.26)
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and so condition (4.21) is not satisfied. But it is easy to verify that the sequence {xn},
xn = 1/n, is a solution of (4.22) and {xn} ∈ DS.

The following result gives an application of Theorem 4.3 to the regular equation (1.3)
with the forcing term.

Corollary 4.6. If rn > 0 for infinitely many n and

lim
m→∞

m∑
n=1

Φp∗

(
1
an

m∑
k=n

(
bk + rk

))
<∞, (4.27)

then (1.3) has solutions in the class DS.

Proof. The assertion follows from Theorem 4.3 by choosing F(n,v) = bn + rn and noting
that (4.1) is satisfied because mi = ri > 0. �

5. Concluding remarks

(1) The continuous case. Decaying solutions of second-order nonlinear singular differ-
ential equations without the forcing term have been investigated in [9, 12]. Corollaries
3.6 and 4.4 can be regarded as the discrete counterparts of [9, Theorem 4.2] and [12,
Theorem 5.2], respectively.

(2) An effect of singular nonlinearities. If Ya =∞ and

lim
m→∞

m∑
n=1

Φp∗

 1
an

m∑
k=n

bk

=∞, (5.1)

then, from Propositions 3.1 and 4.1, it follows that (4.18) does not possess any decaying
solution. This fact cannot occur for equations with regular nonlinearity; for instance, the
linear equation

∆2xn = (1 +n)−1xn+1 (5.2)

has strongly decaying solutions (see, e.g., [5, Corollary 3.3(a)]) and, in this case, Ya =∞
and (5.1) is verified.

(3) An effect of the forcing term rn. As we have already noted, (1.3) without the forcing
term rn has been investigated in [5]. Comparing the results presented here and in [5],
one can see that the existence of regularly decaying solutions of (1.3) remains valid for
the equation with the forcing term rn such that

∑
rn <∞, while the existence of strongly

decaying solutions of (1.3) is caused by the forcing term. More precisely, if (4.19) is sat-
isfied, then (1.3) with rn ≡ 0 and p ≤ q does not have strongly decaying solutions, see [5,
Theorem 2.3]. On the contrary, by Corollary 4.6, (1.3), with the forcing term rn, rn > 0,
for infinitely many n, and satisfying (4.27), has strongly decaying solutions.
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SYMPLECTIC DIFFERENCE SYSTEMS: OSCILLATION THEORY
AND HYPERBOLIC PRÜFER TRANSFORMATION

ONDŘEJ DOŠLÝ

Received 8 October 2002

We present basic methods of oscillation theory of symplectic difference systems (SDSs).
A particular attention is devoted to the variational principle and to the transformation
method. Hyperbolic Prüfer transformation for SDSs is established.

1. Introduction

In this paper, we deal with oscillatory properties and transformations of symplectic dif-
ference systems (SDSs)

zk+1 = �kzk, zk =
(
xk
uk

)
, �k =

(
�k �k

�k �k

)
, (1.1)

where x,u∈ Rn, �,�,�,� ∈ Rn×n, and the matrix � is supposed to be symplectic, that
is,

�T
k ��k = �, � =

(
0 I
−I 0

)
. (1.2)

The last identity translates in terms of the block entries �, �, �, and � as

�T� = �T�, �T� = �T�, �T�−�T� = I. (1.3)

If Z = (
X
U

)
, Z̃ = (

X̃
Ũ

)
are 2n× n matrix solutions of (1.1) and � = (Z Z̃) = (

X X̃
U Ũ

)
, then

using (1.2), we have

∆
(
�T

k ��k
)= �T

k+1��k+1 −�T
k ��k = �T

k

[
�T

k ��k −�
]
�k = 0 (1.4)

which means that �k are symplectic whenever this property is satisfied at one index, say
k = 0. Consequently, (1.1) defines the discrete symplectic flow and this fact, together with
(1.2), is the justification for the terminology symplectic difference system.

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 31–40
2000 Mathematics Subject Classification: 39A10
URL: http://dx.doi.org/10.1155/9775945143
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SDSs cover, as particular cases, a large variety of difference equations and systems,
among them the Sturm-Liouville second-order difference equation

∆
(
rk∆xk

)
+ pkxk+1 = 0, rk �= 0, ∆xk = xk+1 − xk, (1.5)

the higher-order selfadjoint difference equation

n∑
ν=0

(−1)ν∆ν
(
r[ν]
k ∆νyk+n−ν

)
= 0, r[n]

k �= 0, ∆ν = ∆
(
∆ν−1), (1.6)

and the linear Hamiltonian difference system

∆xk =Akxk+1 +Bkuk, ∆uk = Ckxk+1 −AT
k uk, (1.7)

with A,B,C ∈ Rn×n, B and C symmetric (i.e., B = BT , C = CT), and I −A invertible.
Our paper is organized as follows. In the remaining part of this section we recall, for

the sake of later comparison, basic oscillatory properties of the Sturm-Liouville equation
(1.5). Section 2 contains the so-called Roundabout theorem for (1.1) which forms the
basis for the investigation of oscillatory properties of these systems. We also mention
some results concerning transformations of (1.1). Section 3 is devoted to the illustration
of the methods of oscillation theory of (1.1) and Section 4 contains a new result, the so-
called discrete hyperbolic Prüfer transformation. We also formulate some open problems
associated with this type of transformation.

Now, we recall basic facts of the oscillation theory of (1.5) as can be found, for example,
in [1, 2, 11, 14]. We substitute u = r∆x in (1.5). Then this equation can be written as a
2× 2 Hamiltonian system (1.7)

∆

(
xk
uk

)
=
 0

1
rk

−pk 0

(
xk+1

uk

)
(1.8)

and expanding the forward differences as a 2× 2 symplectic system

(
xk+1

uk+1

)
=

 1
1
rk

− pk
rk

1− pk
rk


(
xk
uk

)
. (1.9)

We say that an interval (m,m + 1] contains a focal point (an alternative terminology is
generalized zero, see [13]) of a solution x of (1.5) if xm �= 0 and rmxmxm+1 ≤ 0. Equation
(1.5) is said to be disconjugate in the discrete interval [0,N] if the solution x̃ given by the
initial condition x̃0 = 0, x̃1 = 1/r0 has no focal point in (0,N + 1]. This equation is said to
be nonoscillatory if there exists n ∈ N such that (1.5) is disconjugate on [n,m] for every
m> n, and it is said to be oscillatory in the opposite case.

The next statement, usually referred to as the Roundabout theorem, shows that the
discrete quadratic functional and the discrete Riccati equation play the same role in the
oscillation theory of (1.5) as their continuous counterparts in the oscillation theory of
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the Sturm-Liouville differential equation(
r(t)x′)′ + p(t)x = 0. (1.10)

Proposition 1.1. The following statements are equivalent:

(i) equation (1.5) is disconjugate on the interval [0,N],
(ii) there exists a solution x of (1.5) having no focal point in [0,N + 1],

(iii) there exists a solution w of the Riccati equation (related to (1.5) by the substitution
w = r∆x/x)

∆wk + pk +
w2
k

wk + rk
= 0 (1.11)

which is defined for k ∈ [0,N + 1] and satisfies rk +wk > 0 for k ∈ [0,N],
(iv) the quadratic functional

N∑
k=0

{
rk
(
∆yk

)2 − pk y
2
k+1

}
> 0 (1.12)

for every nontrivial y = {yk}N+1
k=0 with y0 = 0 = yN+1.

Note that the previous proposition actually shows that the Sturmian separation and
comparison theory extend verbatim to (1.5), using the same argument as in the case of
the differential equation (1.10).

2. Oscillation theory of SDSs

First, we turn our attention to Hamiltonian difference systems (1.7). Oscillation theory of
these systems attracted considerable attention in late eighties and early nineties of the last
century (see [8, 12] and the references given therein). Note that in both of these papers,
it is assumed that the matrix B is positive definite and hence nonsingular. However, such
Hamiltonian systems do not cover several important equations, for example, (1.6), in

which case the matrix B = diag{0, . . . ,0,1/r[n]
n } in the Hamiltonian system corresponding

to this equation. This difficulty was removed in the pioneering paper of Bohner [3], where
the concept of the focal point of a matrix solution of (1.7) with B possibly singular was
introduced. Later, this concept was extended to system (1.1) in [5] and reads as follows.
We say that a conjoined basis Z = (

X
U

)
of (1.1) (i.e., a 2n× n matrix solution such that

XTU is symmetric and rank
(
X
U

)≡ n) has a focal point in an interval (m,m+ 1], m∈ Z,
if KerXm+1 �⊆ KerXm or “ ⊆ ” holds, but Pm := XmX

†
m+1�m �≥ 0, here Ker, †, and ≥ mean

the kernel, the generalized inverse, and nonnegative definiteness of a symmetric matrix,
respectively. Note that if the inclusion “ ⊆ ” holds, then the matrix Pm is really symmetric
(see [5]). System (1.1) is said to be disconjugate on [0,N] if the solution Z = (

X
U

)
given

by the initial condition X0 = 0 , U0 = I has no focal point in (0,N + 1]. Oscillation and
nonoscillation of (1.1) are defined via disconjugacy in the same way as for (1.5).

The following statement shows that, similar to the scalar case, certain discrete qua-
dratic functional and Riccati-type difference equation play a crucial role in the oscillation
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theory of (1.1). This statement is proved in [5] and we present it here in a slightly modi-
fied form.

Proposition 2.1. The following statements are equivalent:

(i) system (1.1) is disconjugate in the interval [0,N],
(ii) there exists a conjoined basis Z = (

X
U

)
without any focal point in [0,N + 1] and with

Xk nonsingular in this interval,
(iii) there exists a symmetric solution Q of the Riccati matrix difference equation

Qk+1 = (
�k + �kQk

)(
�k + �kQk

)−1
(2.1)

which is defined for k ∈ [0,N + 1] and the matrix Pk := �T
k (�k −Qk+1�k) is non

negative definite for k ∈ [0,N],

(iv) let � =
(

0 0
I 0

)
. The quadratic functional corresponding to (1.1)

	(z) =
N∑
k=0

zTk
{

�T
k �−�

}
zk

=
N∑
k=0

{
xTk �T

k �kxk + 2xTk �T
k �kuk +uTk �T

k �kuk
} (2.2)

is positive for every z = {zk}N+1
k=0 satisfying �zk+1 = ��kzk, �z0 = 0 = �zN+1, and

�z �≡ 0, that is, if we write z = ( x
u

)
, then 	(x,u) > 0 for every x,u satisfying xk+1 =

�kxk + �kuk, x0 = 0 = xN+1, x �≡ 0.

It is not difficult to verify that if (1.1) is the rewritten equation (1.5), that is, � = 1, � =
1/r, � = −p, and � = 1 − p/r, then the objects appearing in the previous proposition
reduce to their scalar counterparts mentioned in Proposition 1.1.

We finish this section with a short description of the transformation theory of (1.1).
Let 
k be symplectic matrices and consider the transformation of (1.1)

zk = 
kz̃k. (2.3)

This transformation transforms (1.1) into the system

z̃k+1 = �̃kz̃k, �̃k = 
−1
k+1�k
k, (2.4)

which is again a symplectic system as can be verified by a direct computation. The case
when 
 is of the form


k =
(
Hk 0
Gk HT−1

k

)
(2.5)

is of particular importance in oscillation theory of (1.1). In this case, transformation
(2.3) preserves the oscillatory nature of transformed systems (see [5]) and if we write
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�̃ =
(

�̃ �̃
�̃ �̃

)
, then we have

�̃k =H−1
k+1

(
�kHk + �kGk

)
, �̃k =H−1

k+1�kH
T−1
k ,

�̃k =HT
k+1

(
�kHk + �kGk

)−GT
k+1

(
�kHk + �kGk

)
,

�̃k =HT
k+1�kH

T−1
k −GT

k+1�kH
T−1
k .

(2.6)

Consequently, transformation (2.3), with 
 of the form (2.5), is a useful tool in the oscil-
lation theory of (1.1); this system is transformed into an “easier” system and the results
obtained for this “easier” system are then transformed back to the original system. For
some oscillation results obtained in this way, we refer to [6, 9].

3. Oscillation theory of SDSs

In addition to the transformation method mentioned in Section 2, the Roundabout the-
orem (Proposition 2.1) suggests two other methods of the oscillation theory of these sys-
tems. The first one, the so-called Riccati technique, consists in the equivalence (i)⇐⇒(iii).
The oscillation results for (1.7) with B positive definite, mentioned at the beginning of
Section 2, were proved just using this method. However, as we have already mentioned,
this method does not extend directly to a Hamiltonian system with B singular or to gen-
eral SDSs. It is an open problem (which is the subject of the present investigation) how
to modify this method in order to be applicable also in the more general situation.

The second principal method of the oscillation theory of (1.1), the so-called varia-
tional principle, is based on the equivalence of disconjugacy and positivity of quadratic
functional (2.2), which is the equivalence (i)⇔(iv) in Proposition 2.1. Unlike the Riccati
technique, this method extends to general SDSs almost without problems and the illus-
tration of this extension is the main part of this section.

The discrete version of the classical Leighton-Wintner criterion for the Sturm-Liouville
differential equation (1.10) states that the Sturm-Liouville difference equation (1.5) with
rk > 0 is oscillatory provided

∞∑ 1
rk

=∞,
∞∑
pk =∞. (3.1)

In this criterion, equation (1.5) is essentially viewed as a perturbation of the one-term
(nonoscillatory) equation

∆
(
rk∆xk

)= 0. (3.2)

According to the equivalence of oscillation of (1.5) and the existence of a sequence (with
zero boundary values) for which the associated quadratic functional (1.12) is nonposi-
tive, for the oscillation of the “perturbed” equation (1.5), the sequence pk must be, in
a certain sense, sufficiently positive. The second condition in (3.1) is just a quantitative
characterization of the “sufficient positivity” of pk.
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Now, we show how this criterion extends to (1.1). Let �̃k be a sequence of symmetric
nonpositive definite n×n matrices and consider the system

zk+1 = (
�k + �̃k

)
zk, �̃k =

(
0 0

�̃k�k �̃k�k

)
, (3.3)

as a perturbation of (1.1). The quadratic functional corresponding to (3.3) has the same
class of admissible pairs x, u, as the functional corresponding to (1.1), and takes the form

	̃k(x,u) =
N∑
k=0

{
xTk

(
�k + �̃k�k

)T
�kxk + 2xTk

(
�k + �̃k�k

)T
�kuk

+uTk
(
�k + �̃k�k

)T
k �kuk

}
=

N∑
k=0

{
xTk �T

k �kxk + 2xTk �T
k �kuk +uTk �T

k �kuk
}

+
N∑
k=0

xTk+1�̃kxk+1.

(3.4)

In our extension of the Leighton-Wintner-type criterion to (1.1), we will need two
additional concepts of the oscillation theory of these systems. System (1.1) is said to be
eventually controllable if there exists N ∈ N such that the trivial solution z = ( x

u

)≡ (
0
0

)
is

the only solution for which xk = 0 for k ≥N . A conjoined basis Z̃ =
(
X̃
Ũ

)
is said to be the

recessive solution of (1.1) at ∞ if there exists N ∈ N such that X̃k is nonsingular for k ≥N
and

lim
k→∞

( k∑
j=N

X̃−1
j+1� j X̃

T−1
j

)−1

= 0. (3.5)

Note that the principal solution at ∞ exists and it is unique (up to the right multiplica-
tion by a nonsingular constant matrix) whenever (1.1) is nonoscillatory and eventually
controllable (see [5]).

Theorem 3.1. Suppose that (1.1) is nonoscillatory, eventually controllable and let Z̃ =
(
X̃
Ũ

)
be the principal solution at ∞ of this system. If there exists a vector v ∈ Rn such that

∞∑
vTX̃T

k+1�̃kX̃k+1v =−∞, (3.6)

then (3.3) is oscillatory.

We skip the proof of this statement which is based on a rather complicated construc-
tion of an admissible pair x, u for which 	̃(x,u) < 0 (for details, see [4]). We concen-
trate our attention on showing that the previous theorem is really an extension of the
Leighton-Wintner criterion (3.1). Equation (3.2) can be written as the 2 × 2 symplectic
system

(
x

u

)
k+1

=
1

1
rk

0 1

(
x

u

)
k

(3.7)
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which plays the role of system (1.1). The perturbation quantity is �̃ = −p, that is, �̃ =( 0 0
−p −p/r

)
, and hence the symplectic system (1.9) (which is the rewritten equation (1.5))

plays the role of (3.3). Now, the first condition in (3.1) is

∞∑ 1
rk

=∞⇐⇒ lim
k→∞

( k∑ 1
r j

)−1

= 0 (3.8)

which means that x̃k ≡ 1 is the principal solution at ∞ of (3.2). Since �̃ =−p, clearly (3.6)
with v = 1, n = 1, and X̃ = x̃ = 1 is equivalent to the second condition in (3.1). Hence,
the Leighton-Wintner oscillation criterion (3.1) is really a consequence of Theorem 3.1.

4. Hyperbolic Prüfer transformation

The classical Prüfer transformation (established by Prüfer in [15]) is a useful tool in the
qualitative theory of the second-order Sturm-Liouville differential equation(

r(t)x′)′ + p(t)x = 0, (4.1)

where r and p are continuous functions with r(t) > 0. By this transformation, any non
trivial solution x of (4.1) and its quasiderivative rx′ can be expressed in the form

x(t) = ρ(t)sinϕ(t), r(t)x′(t) = ρ(t)cosϕ(t), (4.2)

where ρ and ϕ satisfy the first-order system

ϕ′ = p(t)sin2ϕ+
1

r(t)
cos2ϕ, ρ′ = 1

2
sin2ϕ(t)

(
1

r(t)
− p(t)

)
ρ. (4.3)

Since 1926, when the original paper of Prüfer appeared, the Prüfer transformation has
been extended in various directions (see [7] and the references given therein). Here, we
present another extension: the so-called hyperbolic discrete Prüfer transformation which
is based on the following idea. If the Sturm-Liouville equation (4.1) possesses a solution
x such that (r(t)x′(t))2 − x2(t) > 0 in some interval I ⊂ R, then the solution x and its
quasiderivative rx′ can be expressed via the hyperbolic sine and cosine functions in the
form

x(t) = ρ(t)sinhϕ(t), r(t)x′(t) = ρ(t)coshϕ(t) (4.4)

in this interval, where the functions ρ and ϕ satisfy a first-order system similar to (4.3).
The crucial role in our extension of this transformation is played by the so-called hyper-
bolic symplectic system, which is the SDS of the form

xk+1 = �kxk + �kuk, uk+1 = �kxk + �kuk, (4.5)

that is, the n×n matrices � and � satisfy

�T�−�T� = I , �T� −�T� = 0. (4.6)
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Note that the terminology hyperbolic symplectic system is motivated by the fact that in the
scalar case n= 1, solutions of (4.5) are, in case �k > 0, of the form

xk = sinh

(k−1∑
ϕj

)
, uk = cosh

(k−1∑
ϕj

)
, (4.7)

where ϕk is a sequence given by coshϕk = �k, sinhϕk = �k. For basic properties of solu-
tions of hyperbolic symplectic systems, we refer to [10].

Theorem 4.1. Suppose that (1.1) possesses a conjoined basis
(
X
U

)
such that UT

k Uk −XT
k Xk is

positive definite for k in some discrete interval [m,n], m,n∈ N. Then there exist nonsingular
n×n matrices Hk and n×n matrices �k, �k satisfying (4.6), k ∈ [m,n], such that

Xk = STk Hk, Uk = CT
k Hk, (4.8)

where
(
S
C

)
is a conjoined basis of (4.5) satisfying CTC− STS = I (or, equivalently, CCT −

SST = I , SCT = CST). The matrices � and � are given by the formulas

�k =HT−1
k+1

{(
�kXk + �kUk

)T
Uk −

(
�kXk + �kUk

)T
Xk

}
H−1

k ,

�k =HT−1
k+1

{(
�kXk + �kUk

)T
Uk −

(
�kXk + �kUk

)T
Xk

}
H−1

k .
(4.9)

Proof. Let H be any matrix satisfying HTH = UTU −XTX , that is, H = GD, where D is
the (unique) symmetric positive definite matrix satisfying D2 =UTU −XTX and G is any
orthogonal matrix. Denote � = (U +X)H−1, �̃ = (U −X)H−1. Then the fact that

(
X
U

)
is

a conjoined basis implies that

�k+1 = (
Uk+1 +Xk+1

)
H−1

k+1

= �kHk
(
Uk +Xk

)−1(
UT

k −XT
k

)−1(
UT

k −XT
k

)(
Uk+1 +Xk+1

)
H−1

k+1

= �kH
T−1
k

(
UT

k −XT
k

)(
Uk+1 +Xk+1

)
H−1

k+1

= �k
(
�T

k + �T
k

)
.

(4.10)

By the same computation, we get

�̃k+1 = �̃k
(
�T

k −�T
k

)
. (4.11)

Set

Sk = 1
2

(
�T

k − �̃T
k

)
, Ck = 1

2

(
�T

k + �̃T
k

)
. (4.12)

Then we have

Sk+1 = 1
2

(
�T

k+1 − �̃T
k+1

)= 1
2

[(
�k + �k

)
�T

k − (
�k −�k

)
�̃T

k

]
= �kSk + �kCk,

Ck+1 = 1
2

(
�T

k+1 + �̃T
k+1

)= 1
2

[(
�k + �k

)
�T

k +
(
�k −�k

)
�̃T

k

]
= �kSk + �kCk.

(4.13)
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Further,

CkC
T
k − SkS

T
k = 1

4

(
�T

k + �̃T
k

)(
�k + �̃k

)− 1
4

(
�T

k − �̃T
k

)(
�k − �̃k

)
= 1

2

(
�T

k �̃k + �̃T
k �k

)
= 1

2
HT−1

k

[(
UT

k −XT
k

)(
Uk +Xk

)
+
(
UT

k +XT
k

)(
Uk −Xk

)]
H−1

k

= 1
2
HT−1

k

(
2UT

k Uk − 2XT
k Xk

)
H−1

k = I ,

(4.14)

and similarly CkS
T
k − SkC

T
k = 0. The last two identities imply that the matrix

(
C S
S C

)
is

symplectic. Hence, its transpose has the same property, which means that
(
S
C

)
is a con-

joined basis and CTC− STS= I holds. Finally, from the hyperbolic system (4.5) and the
identities for its solution

(
S
C

)
, we have

�k = Ck+1C
T
k − Sk+1S

T
k , �k = Sk+1C

T
k −Ck+1S

T
k , (4.15)

and by a direct computation, we get ��T − ��T = I and ��T = ��T , which, by the
same argument as above, implies that also �T� − �T� = I and �T� − �T� = 0. This
completes the proof. �

Remark 4.2. Hyperbolic Prüfer transformation suggests an open problem in the trans-
formation theory of (1.1), which can be explained as follows. In the hyperbolic Prüfer
transformation, a conjoined basis

(
X
U

)
is expressed in the form (4.8), where

(
S
C

)
is a con-

joined basis of the hyperbolic system (4.5). By the classical Prüfer transformation for (1.1)
(established in [7]), a conjoined basis of (1.1) is expressed by (4.8), but

(
S
C

)
is a conjoined

basis of the trigonometric SDS

Sk+1 = �kSk + �kCk, Ck+1 =−�kSk + �kCk (4.16)

(similarly, as in the “hyperbolic” case, the terminology trigonometric system is justified
by the fact that in the scalar case n = 1, solutions of (4.16) can be expressed via classi-
cal trigonometric sine and cosine functions). Observe that hyperbolic and trigonometric
systems are SDSs whose matrices satisfy (in addition to (1.2))

�T

(
I 0
0 I

)
� =

(
I 0
0 I

)
, (4.17)

respectively,

�T

(
I 0
0 −I

)
� =

(
I 0
0 −I

)
. (4.18)

Now, let 
 be any 2n× 2n matrix and denote by �
 the subgroup of 2n× 2n symplectic
matrices satisfying

�T
� = 
. (4.19)
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The open problem is under what conditions on (1.1) any conjoined basis of this system
can be expressed in the form (4.8) where

(
S
C

)
is a conjoined basis of the SDS (1.1) whose

matrix � ∈ �
.
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INTEGRAL REPRESENTATION OF THE SOLUTIONS
TO HEUN’S BICONFLUENT EQUATION

S. BELMEHDI AND J.-P. CHEHAB

Received 1 October 2002

First, we trace the genesis of the canonical form of Heun’s biconfluent equation. Second,
we present a method which allows us to find an integral expression as a solution to our
equation, and finally, using the properties of Meijer G-functions, we give an integral rep-
resentation of a fundamental system of solutions to the biconfluent equation.

1. Preliminaries

Heun’s differential equation and its confluent forms are used to build up new classes
of solvable potentials. The Schrödinger equation formed with those potentials can be
reduced to Heun’s biconfluent differential equation. We list some examples:

(i) radial Schrödinger equation for the harmonic oscillator [15];
(ii) radial Schrödinger equation for the doubly anharmonic oscillator [4, 5, 10];

(iii) radial Schrödinger equation of a three-dimensional anharmonic oscillator [7, 8,
10];

(iv) radial Schrödinger equation of a class of confinement potentials [10, 16].

For other kinds of potentials, see [11, 12].
Recently, a very interesting and valuable monography was dedicated to Heun’s equa-

tions [17]. Arscott [1] conjectures that solutions of Heun’s equations are not expressible
in terms of definite or contour integrals involving simpler functions. One should men-
tion the work of Sleeman who gave a solution in the form of factorial series, which leads
to Barnes-type contour integrals [18]. In the sequel, we will see that it is possible to give
integral representations in terms of Mellin’s kernel of solutions to biconfluent Heun’s
equation.

We start with the canonical form of a second-order differential equation with p (p ≥ 2)
elementary singular points (p− 1 finite singularities and the ∞):

y′′ +
p−1∑
r=1

2/p
x− ar

y′ +

∑p−3
k=1 Akxp−3−k∏p−1
r=1

(
x− ar

) y = 0. (1.1)

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 41–52
2000 Mathematics Subject Classification: 33C20, 33C90, 33E30, 33E99, 34L99, 35C15, 34B30
URL: http://dx.doi.org/10.1155/9775945143
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Many differential equations which occur in a large variety of problems arising from pure
or applied mathematics or mathematical physics, often after appropriate algebraic or
transcendental changes of variable, can be derived by the confluences of the singulari-
ties from (1.1). The classes of these equations are characterized by the Klein-Bőcher-Ince
symbol (�,q,r1,r2, . . . ,rs) with

p = � + 2q+
s∑

k=1

(k+ 2)rk, (1.2)

where � is the number of elementary singular points, q is the number of nonelementary
regular singular points, and rk is the number of irregular singular points of kind k. For
the terminology, see [9].

If we set p = 8 by means of confluence process and after parametric reduction, we
mention hereby some remarkable equations.

(1) Heun’s equation (0,4,0). The confluence of a7,a6 → 0, a5,a4 → a, a3,a2 → 1, and
a1 →∞ leads to

y′′(x) +
(
α

x
+

β

x− 1
+

γ

x− a

)
y′(x) +

δη(x− λ)
x(x− 1)(x− a)

y(x) = 0, (1.3)

where α, β, γ, δ, λ, and a are six independent parameters and η = α+β+ γ− δ− 1.
(2) Confluent Heun’s equation (0,2,12). The confluence of a7,a6,a5 → ∞, a4,a3 → 1,

and a2,a1 → 0 leads to

y′′(x) +
(
α+

β+ 1
x

+
γ+ 1
x− 1

)
y′(x)

+

[
δ + (1/2)(α+ γ+ 2)

]
x+η+β/2 + (1/2)(γ−α)(β+ 1)
x(x− 1)

y(x) = 0,
(1.4)

with five independent parameters: α, β, γ, δ, and η.
(3) Biconfluent of Heun’s equation (0,1,14). The confluence of a7,a6,a5,a4,a3 → ∞

and a2,a1 → 0 leads to

xy′′(x) +
(
1 +α−βx− 2x2)y′(x)

+
[

(γ−α− 2)x− 1
2

(δ +β+αβ)
]
y(x) = 0,

(1.5)

with four independent parameters: α, β, γ, and δ.
(4) Double confluent of Heun’s equation (0,0,22). The confluence of a7,a6,a5 → ∞

and a4,a3,a2,a1 → 0 leads to

x2y′′(x) +
[

1 +α
(
x+

1
x

)]
xy′(x)

+
[(

β− α

2

)
1
x

+
δα2

2
− 1

4
+
(
γ+

α

2

)
x
]
y(x) = 0,

(1.6)

with four independent parameters: α, β, γ, and δ.
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(5) Triconfluent of Heun’s equation (0,0,16). The confluence of a7,a6,a5,a4,a3,a2,
a1 →∞ leads to

y′′(x) +
(
γ+ 3x2)y′(x) +

[
α+ (β− 3)x

]
y(x) = 0, (1.7)

with three independent parameters: α, β, and γ.

2. The statement of the problem

Let �x be a three-term differential operator [2, 3, 9]

�x = P1(θ)
x

+P0(θ) + xR1(θ), (2.1)

where P1(θ), P0(θ), and R1(θ) are polynomials and θ = x(d/dx).
We are looking for a solution to

�x[y] = 0 (2.2)

as

y(x) =
∫
C
K(x, t)Z(t)dt, (2.3)

where

K(x, t) = K1(xt)
x

+K0(xt) + xL1(xt). (2.4)

The path of integration C and the function Z(t) will be defined in the sequel. We respec-
tively introduce an auxiliary kernel and a companion differential operator:

K̃(x, t) = tK̃1(xt) + K̃0(xt) +
L̃1(xt)

t
,

�t = tP̃1(θ) + P̃0(θ) +
R̃1(θ)
t

.

(2.5)

In this last equation θ symbolizes the operator t(d/dt). We have the following assumption:

�x
[
K(x, t)

]= �t
[
K̃(x, t)

]
. (2.6)

We denote by �̄t and A(K̃ ,Z), respectively, the formal adjoint of �t and the concomitant
(a bilinear functional of K̃ , Z and their derivatives).

If

�̄t
[
Z(t)

]= 0, (2.7)

and A(K̃ ,Z)�C = 0, then (2.3) is a solution to (2.2).
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Setting ζ = xt, (2.6) may be translated into the following system:

P1(θ− 1)
[
K1(ζ)

]= ζ2P̃1(θ + 1)
[
K̃1(ζ)

]
,

P1(θ)
[
K0(ζ)

]
+P0(θ− 1)

[
K1(ζ)

]= ζ
{
P̃1(θ)

[
K̃0(ζ)

]
+ P̃0(θ + 1)

[
K̃1(ζ)

]}
,

P1(θ + 1)
[
L1(ζ)

]
+P0(θ)

[
K0(ζ)

]
+R1(θ− 1)

[
K1(ζ)

]
= P̃1(θ− 1)

[
L̃1(ζ)

]
+ P̃0(θ)

[
K̃0(ζ)

]
+ R̃1(θ + 1)

[
K̃1(ζ)

]
,

ζ
{
P0(θ + 1)

[
L1(ζ)

]
+R1(θ)

[
K0(ζ)

]}= P̃0(θ− 1)
[
L̃1(ζ)

]
+ R̃1(θ)

[
K̃0(ζ)

]
,

ζ2R1(θ + 1)
[
L1(ζ)

]= R̃1(θ− 1)
[
L̃1(ζ)

]
.

(2.8)

According to the study in [2, 3], the previous system may be reduced to

P1(θ)
[
K0(ζ)

]= ζP̃0(θ + 1)
[
K̃1(ζ)

]
, (2.9)

P0(θ)
[
K0(ζ)

]= P̃0(θ)
[
K̃0(ζ)

]
, (2.10)

ζR1(θ)
[
K0(ζ)

]= P̃1(θ− 1)
[
L̃1(ζ)

]
. (2.11)

In the last system, we have three equations for four unknowns. To solve this system, we
have to choose two basic equations and an interdependency relation between the com-
ponents of the auxiliary kernel. Our choice will be guided by the kind of solution we are
looking for.

3. Heun’s biconfluent equation

The canonical form of an equation of class (0,1,14) reads (see [6, 14])

xy′′(x) +
(
1 +α−βx− 2x2)y′(x) +

{
(γ−α− 2)x− 1

2

[
δ + (1 +α)β

]}
y(x) = 0. (3.1)

Using the operator θ = x(d/dx), we get that

{
1
x
θ(θ +α)−

(
βθ +−1

2

[
δ + (1 +α)β

])
+ x(γ−α− 2− 2θ)

}
[y] = 0. (3.2)

We set

P1(θ) = θ(θ +α), (3.3)

P0(θ) =−β(θ + a), (3.4)

where a= (1/2)(δ/β+α+ 1), with β �= 0, and

R1(θ) =−2(θ + b), (3.5)

where b = (α− γ+ 2)/2.
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According to the scheme described in Section 2, the companion operator reads

�t = P̃0(θ) = θ + 1 +d, (3.6)

where d ∈ C.
To solve the system defined by (2.9), (2.10), and (2.11), we will take the first two equa-

tions as basic equations; the interdependency relation is

K̃1 = λK̃0, (3.7)

with λ∈ C∗. By elimination, we obtain{
P̃0(θ− 1)P1(θ)− λζP0(θ + 1)P̃0(θ)

}[
K0

]= 0. (3.8)

Taking into account (3.3), (3.4), and (3.5), we have{
θ(θ +α)(θ +d) +βλζ(θ + 2 +d)(θ + a)

}[
K0

]= 0. (3.9)

If we take

λ=−1
β

, (3.10)

then K0 satisfies {
θ(θ +α)(θ +d)− ζ(θ + 2 +d)(θ + a)

}[
K0

]= 0, (3.11)

which is nothing but a generalized hypergeometric differential equation whose solutions
may be expressed as

K0(ζ) = 2F2

(
2 +d,a

1 +d,1 +α

∣∣∣∣ζ), (3.12)

K0(ζ) = ζ−α2F2

(
2−α+d,a−α
1−α+d,1−α

∣∣∣∣ζ), (3.13)

K0(ζ) = ζ−d2F2

(
2,a−d

1−d,1 +α−d

∣∣∣∣ζ). (3.14)

3.1. First integral representation. In this subsection, we will use the kernel given by
(3.12). First, we will compute the components of the auxiliary kernel. From (2.10), we
have

K̃0(ζ) = [
P̃0(θ)

]−1[
P0(θ)

[
K0(ζ)

]]
. (3.15)

If we take into account (3.4), (3.6), and (3.12), then (3.15) becomes

K̃0(ζ) =−β(θ + 1 +d)−1[(θ + a)
[

2F2

(
2 +d,a

1 +d,1 +α

∣∣∣∣ζ). (3.16)
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Using the properties of the operator θ, we get that

K̃0(ζ) =− aβζ

1 +d

{
1

1 +α
1F1

(
1 + a
2 +α

∣∣∣∣ζ)+ ζ−1
1F1

(
a

1 +α

∣∣∣∣ζ)}, (3.17)

with �(1 +d) > 0.
According to (3.5), (3.6), and (3.12), L̃1 satisfies the following differential equation:

L̃1(ζ) =−2ζ(θ + 1 +d)−1
[

(θ + b)
[

2F2

(
2 +d,a

1 +d,1 +α

∣∣∣∣ζ)]]. (3.18)

The solution to the previous equation is

L̃1(ζ) =− 2ζ2

1 +d

{
a

1 +α
1F1

(
1 + a
1 +α

∣∣∣∣ζ)+ bζ−1
1F1

(
a

1 +α

∣∣∣∣ζ)}, (3.19)

with �(1 +d) > 0.
Thus, the auxiliary kernel reads

K̃(x, t) = 1
1 +d

{
axt2

1 +α

[
1− 2x+β

t

]
1F1

(
1 + a
2 +α

∣∣∣∣xt)

+ t
[
a− 2bx+ aβ

t

]
1F1

(
a

1 +α

∣∣∣∣xt)},

(3.20)

with �(1 +d) > 0.
Using (3.6), the solution to (2.7) takes the form

Z(t) = td. (3.21)

The concomitant associated with (2.6) is given by

A(K̃ ,Z) = tZ(t)K̃(x, t). (3.22)

The conjunction of (3.20), (3.21), and (3.22) leads to

A(K̃ ,Z) = 1
1 +d

{
axt3+d

1 +α

[
1− 2x+β

t

]
1F1

(
1 + a
2 +α

∣∣∣∣xt)

+ t2+d
[
a− 2bx+ aβ

t

]
1F1

(
a

1 +α

∣∣∣∣xt)},

(3.23)

with �(1 +d) > 0.
Now it is time to seek for a path of integration along which the concomitant will van-

ish. With this end in view, we need asymptotic expansion of generalized hypergeometric
function which is obtainable via G-functions.
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Proposition 3.1 [13]. Recall that

1F1

(
A
B

∣∣∣∣u)= Γ(B)
Γ(A)

G1,1
1,2

(
−u

∣∣∣∣ 1−A
0,1−B

)
, (3.24)

where G1,1
1,2 is a Meijer G-function.

If a1 /∈ N, a1 ∈ C, and δ1 −π/2 ≤ Arg(u) ≤ π/2 + δ2, δ1,δ2 > 0, then

G1,1
1,2

(
−u

∣∣∣∣ a1

b1,b2

)
= ua1−1

{N−1∑
k=0

Mku
−k +O

(
u−N)},

∣∣u∣∣−→∞, (3.25)

with

Mk = Γ
(
1 + b1 − a1

)
Γ
(
a1 − b2

) (
1 + b1 − a1,k

)(
1 + b2 − a1,k

)
k!

,

(γ,k) = Γ(γ+ k)
Γ(γ)

.

(3.26)

Corollary 3.2. If A /∈ {1−n, n∈ N}, and δ1 −π/2 ≤ Arg(u) ≤ π/2 + δ2, δ1,δ2 > 0, then

1F1

(
A
B

∣∣∣∣u)= u−A
{N−1∑

k=0

M̃ku
−k +O

(
u−N)},

∣∣u∣∣−→∞, (3.27)

where M̃k = (Γ(B)/Γ(A))Mk.

Finally, we have

A(K̃ ,Z) = t2−a+d

1 +d

{
ax−a

(
1− 2x+β

t

)[N−1∑
k=0

M̃1,k(xt)−k +O
(
(xt)−N

)]

+ x−a
(
a− 2bx+ aβ

t

)[N−1∑
k=0

M̃2,k(xt)−k +O
(
(xt)−N

)]}
,

(3.28)

with

(i)

M̃1,k = Γ(2 +α)
Γ(1 +α− a)

(1 + a,k)(a−α,k)
k!

,

M̃2,k = Γ(1 +α)
Γ(1 +α− a)

(a,k)(a−α,k)
k!

,

(3.29)

(ii) a /∈ {1−n, n∈ N} and �(1 +d) > 0,
(iii) δ1 +π/2 ≤ Arg(xt) ≤ 3π/2 + δ2, δ1,δ2 > 0.

In accordance with what we have already seen, we have the following theorem.
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Theorem 3.3. If a /∈ {1 − n, n ∈ N}, �(a− α) > �(1 + d) > 0, δ1 + π/2 ≤ Arg(xt) ≤
3π/2 + δ2, δ1,δ2 > 0, and C is the path of integration running from ∞ along the direction
Arg(t), surrounding the origin and going back to ∞ following the same direction, then

y(x) =
∫
C

2F2

( 2 +d,a

1 +d,1 +α

∣∣∣∣xt)tddt (3.30)

is a solution of Heun’s biconfluent equation.

3.2. The second integral representation. Now we will work with the kernel given by
(3.13), that is,

K0(ζ) = ζ−α2F2

(2−α+d,a−α

1−α+d,1−α

∣∣∣∣ζ). (3.31)

Using the same technique as above, we get that

K̃(x, t) = 1
1−α+d

{
(a−α)x1−αt2−α

1−α

(
1− 2x

t
− 1
β

)
1F1

(1 + a−α

2−α

∣∣∣∣xt)

+ x−αt1−α
(
a−α− 2(b−α)x

t
− a−α

β

)
1F1

(a−α

1−α

∣∣∣∣xt)},

(3.32)

with �(a−α+d) > 0, and the concomitant takes the following expression:

A(K̃ ,Z) = x1−αt3−α+d

1−α+d

{
a−α

1−α

(
1− 2x

t
− 1
β

)
1F1

(1 + a−α

2−α

∣∣∣∣xt)

+
1
xt

(
a−α− 2x(b−α)

t
− a−α

β

)
1F1

(a−α

1−α

∣∣∣∣xt)}.
(3.33)

Using the machinery of G-functions, we have the following proposition.

Proposition 3.4. If a−α /∈ {1 − n, n ∈ N}, �(α) < �(1 + d) < �(a− 1), δ1 + π/2 ≤
Arg(xt) ≤ 3π/2 + δ2, δ1,δ2 > 0, and C is the path of integration running from ∞ along the
direction Arg(t), surrounding the origin and going back to ∞ following the same direction,
then

A(K̃ ,Z)�C = 0. (3.34)

Under the hypothesis of the previous proposition, we get the following theorem.

Theorem 3.5. Provided that the hypotheses of Proposition 3.4 are satisfied, then

y(x) =
∫
C

(xt)−α2F2

(
2−α+d,a−α
1−α+d,1−α

∣∣∣∣xt)tddt (3.35)

is a solution of Heun’s biconfluent equation.
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The conjunction of Theorems 3.3 and 3.5 gives a fundamental system of solutions to
Heun’s biconfluent equation.

Remarks. A similar study shows that

(i) the kernel K0(ζ) = ζ−d2F2

(
2,a−d

1−d,1+α−d
∣∣∣ζ) does not lead to a solution;

(ii) the interdependency relations

K̃1 = γL̃1, K̃0 = µL̃1 (3.36)

do not allow to produce a solution to the biconfluent equation.

4. Case β = 0

The Heun’s biconfluent equation reads

xy′′(x) +
(
1 +α− 2x2)y′(x) +

{
(γ−α− 2)x− δ

2

}
y(x) = 0 (4.1)

or {
θx
(
θx +α

)
x

− δ

2
− 2x

(
θx +

2 +α− γ

2

)}[
y(x)

]= 0. (4.2)

This situation gives rise to two subcases

4.1. Case δ = 0. Heun’s biconfluent equation becomes a simple hypergeometric equa-
tion, that is,

xy′′(x) +
(
1 +α− 2x2)y′(x) + (γ−α− 2)xy(x) = 0, (4.3)

which has

y1(x) = 1F1


2 +α− γ

4

1 +
α

2

∣∣∣∣∣∣∣∣x2

 ,

y2(x) = x−α
1F1


2−α− γ

4

1− α

2

∣∣∣∣∣∣∣∣x2


(4.4)

as a fundamental system of solutions that admits an integral representation of Mellin’s
type (see [2]).

4.2. Case δ �= 0. In this case, (3.8) becomes{
θζ
(
θζ +α

)(
θζ +d

)
+
λδ

2
ζ
(
θζ + 2 +d

)}[
K0(ζ)

]= 0. (4.5)
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Choosing λ=−2/δ, the previous equation takes the following form:

{
θζ
(
θζ +α

)(
θζ +d

)− ζ
(
θζ + 2 +d

)}[
K0(ζ)

]= 0. (4.6)

Hence

K0(ζ) = 1F2

(
2 +d

1 +d,1 +α

∣∣∣∣ζ), (4.7)

K0(ζ) = ζ−α1F2

(
2−α+d

1−α+d,1−α

∣∣∣∣ζ), (4.8)

K0(ζ) = ζ−d1F2

(
2

1−d,1 +α−d

∣∣∣∣ζ). (4.9)

Proceeding as in Section 3, we get the following proposition.

Proposition 4.1. The pairs of auxiliary kernel and the concomitant associated with (2.6)
are given by

K(x, t) = t

1 +d

{[
2− δ

2
− (2 +α− γ)

x

t

]
0F1

(
1 +α

∣∣∣∣xt)

− 2x
1 +α

0F1

(
2 +α

∣∣∣∣xt)},

A(K̃ ,Z) = t2+d

1 +d

{[
2− δ

2
− (2 +α− γ)

x

t

]
0F1

(
1 +α

∣∣∣∣xt)

− 2x
1 +α

0F1

(
2 +α

∣∣∣∣xt)},

(4.10)

K(x, t) = x−αt1−α

1−α+d

{[
1− δ + 2x(2−α− γ)

t

]
0F1

(
1−α

∣∣∣∣xt)

− 2x2

1−α
0F1

(
2−α

∣∣∣∣xt)},

A(K̃ ,Z) = x−αt2+d−α

1 +d−α

{[
1− δ + 2x(2−α− γ)

t

]
0F1

(
1−α

∣∣∣∣xt)

− 2x2

1−α
0F1

(
2−α

∣∣∣∣xt)}.

(4.11)

Remark 4.2. The kernel given by (4.9) does not lead to an integral representation of a
solution.

Theorem 4.3. If 0 <�(α) <�1 +d < (1/4)�(2α− 3), µ≤ Arg(xt) ≤ 2π − µ, µ > 0, and
C is the path of integration running from ∞ along the direction Arg(t), surrounding the
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origin and going back to ∞ following the same direction, then

y1(x) =
∫
C

1F2

(
2 +d

1 +d,1 +α

∣∣∣∣xt)tddt,
y1(x) =

∫
C

(xt)−α1F2

(
2−α+d

1−α+d,1−α

∣∣∣∣xt)tddt,
(4.12)

is a fundamental system of solutions to the Heun’s biconfluent equation (4.1).

References

[1] F. M. Arscott, Heun’s equation, Heun’s Differential Equation (A. Ronveaux, ed.), Oxford Uni-
versity Press, New York, 1995.
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de Lille, 59655 Villeneuve d’Ascq Cedex, France

E-mail address: belmehdi@athena.univ-lille1.fr

J.-P. Chehab: UFR de Mathematiques Pures et Appliquées, Université des Sciences et Technologies
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ON THE EXTERIOR MAGNETIC FIELD AND SILENT
SOURCES IN MAGNETOENCEPHALOGRAPHY

GEORGE DASSIOS AND FOTINI KARIOTOU

Received 27 September 2002

Two main results are included in this paper. The first one deals with the leading asymp-
totic term of the magnetic field outside any conductive medium. In accord with physical
reality, it is proved mathematically that the leading approximation is a quadrupole term
which means that the conductive brain tissue weakens the intensity of the magnetic field
outside the head. The second one concerns the orientation of the silent sources when
the geometry of the brain model is not a sphere but an ellipsoid which provides the best
possible mathematical approximation of the human brain. It is shown that what char-
acterizes a dipole source as “silent” is not the collinearity of the dipole moment with its
position vector, but the fact that the dipole moment lives in the Gaussian image space at
the point where the position vector meets the surface of the ellipsoid. The appropriate
representation for the spheroidal case is also included.

1. The magnetic field

The mathematical theory of magnetoencephalography (MEG) is governed by the equa-
tions of quasistatic theory of electromagnetism [11, 14, 15, 19, 20]. If we denote by V−

the region occupied by the conductive brain tissue, with conductivity σ > 0 and magnetic
permeability µ0 > 0, then, as Geselowitz has shown [3, 9, 10], the magnetic field in the
exterior of V− region, V+, due to the internal electric dipole current

Jp(r) = Qδ
(

r− r0
)
, r0 ∈V−, (1.1)

assumes the representation

B(r) = µ0

4π
Q× r− r0∣∣r− r0

∣∣3 − µ0σ

4π

∫
∂V−

u−(r′)n̂′ × r− r′

|r− r′|3
ds(r′), (1.2)

where r ∈V+ and Q stands for the electric dipole moment.

Copyright © 2004 Hindawi Publishing Corporation
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The scalar field u− in the integrand of (1.2), over the boundary ∂V− of V−, describes
the interior electric potential and solves the interior Neumann problem

σ∆u−(r) =∇· Jp(r), r ∈V−, (1.3a)

∂

∂n
u−(r) = 0, r ∈ ∂V−, (1.3b)

where Jp is given by (1.1) and the boundary ∂V− is assumed to be smooth.
Note that the solution of the boundary value problem (1.3) is unique up to an additive

constant. Hence, the general solution of (1.3) has the form

u−
c (r) = c+u−(r), r ∈V−, (1.4)

where u− satisfies (1.3).
What we are going to show in the sequel is that, no matter what the shape of the

smooth bounded boundary ∂V− is, the leading term of the multipole expansion of (1.2)
is not a dipole but a quadrupole term. Observe that an expansion of the source term, in
(1.2) in terms of inverse powers of r, offers the leading dipole term

µ0

4π
Q× r− r0∣∣r− r0

∣∣3 = µ0

4π
Q× r̂
r2

+O
(

1
r3

)
, r −→∞, (1.5)

where r = r r̂.
Similarly, the surface integral in (1.2) provides the expansion

− µ0σ

4π

∫
∂V−

u−(r′)n̂′ × r− r′

|r− r′|3
ds(r′)

=−µ0σ

4π

∫
∂V−

u−(r′)n̂′ds(r′)× r̂
r2

+O
(

1
r3

)
, r −→∞.

(1.6)

We will show that

Q = σ
∫
∂V−

u−(r)n̂ds(r). (1.7)

To this end we consider the Biot-Savart law

B(r) = µ0

4π

∫
V−

J(r′)× r− r′

|r− r′|3
dυ(r′), r ∈V+, (1.8)

where the total current J is written as

J(r′) = Jp(r′) + σE−(r′) = Qδ
(

r′ − r0
)− σ∇r′u

−(r′) (1.9)

and

E− = −∇u− (1.10)

is the interior electric field. The quasistatic form of the Ampere-Maxwell equation

∇×B = µ0J (1.11)
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implies that the total current is a solenoidal field, that is,

∇· J = 0. (1.12)

Then condition (1.12) is used to prove the dyadic identity

∇· (J⊗ r) = (∇· J)r + J ·∇⊗ r = J, (1.13)

in view of which

B(r) = µ0

4π

∫
V−

J(r′)×
(
−∇r

1
|r− r′|

)
dυ(r′)

= µ0

4π
∇r ×

∫
V−

J(r′)
|r− r′|dυ(r′)

= µ0

4π
∇r ×

[
1
r

∫
V−

J(r′)dυ(r′) +O
(

1
r2

)]
= µ0

4π
∇r ×

[
1
r

∫
V−

∇r′ ·
(

J(r′)⊗ r′
)
dυ(r′) +O

(
1
r2

)]
= µ0

4π
∇r ×

[
1
r

∫
∂V−

n̂′ · J(r′)⊗ r′ds(r′) +O
(

1
r2

)]
=− µ0

4π
r̂
r2

×
∫
∂V−

n̂′ · J(r′)⊗ r′ds(r′) +O
(

1
r3

)
.

(1.14)

The fact that r0 ∈V−, the expression (1.9) for the current J, and the boundary condition
(1.3b) on ∂V− imply that

n̂′ · J(r′) = 0, r′ ∈ ∂V−. (1.15)

Consequently, (1.14) concludes that

B(r) =O
(

1
r3

)
, r −→∞. (1.16)

In other words, the leading term of B in the exterior of V− is a quadrupole for any smooth
boundary ∂V−. This result is compatible with physical reality.

Note that in the absence of conductive material, surrounding the source dipole current
at r0, the expansion of B starts with a dipole term, that is , a term of order r−2. But, in the
presence of conductive material, the corresponding expansion starts with a quadrupole
term, that is, a term of order r−3. Hence, the conductive material partially “hides” the
dipole.

As far as MEG measurements are concerned, this means that the conductive brain
tissue weakens the intensity of the magnetic field exterior to the head.

This result is in accord with what is known for the special cases, where ∂V− is a sphere
[12, 17], a spheroid [1, 4, 5, 6, 7, 13], or an ellipsoid [2].
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2. Silent sources

For the case of a sphere [17], where a complete expression for the magnetic field outside
the sphere is known in the form

B(r) = µ0

4π

(
Q× r0

) · [Ĩ− r⊗∇]F(r)
F2(r)

(2.1)

with

F(r) = r
∣∣r− r0

∣∣2
+ r · (r− r0

)∣∣r− r0
∣∣, (2.2)

it is obvious that if Q is collinear to r0, then B vanishes. This is then characterized as a
silent source since it represents a nontrivial activity of the brain that is not detectable in
the exterior to the head space.

Unfortunately, the complete expression for B, when ∂V− is an ellipsoid, is not known
and it seems far from being possible with the present knowledge of ellipsoidal harmonics.
On the other hand, since the human brain is actually shaped in the form of an ellipsoid,
with average semiaxes 6, 6.5, and 9 cm [18], even the leading analytic approximation [2]
is of value.

In fact, the quadrupole term of B for a sphere, a prolate spheroid, and an ellipsoid can
be written as

Bq(r) = lim
r→∞r

3B(r) = µ0

8π
d · G̃(r), (2.3)

where d is a vector which involves the location, the intensity, and the orientation of the
source and G̃ is a dyadic which is solely dependent on the geometry of the conductive
medium. Hence, d represents the source and G̃ represents the geometry.

In particular, if ∂V− is a sphere of radius α, then

d = dsr = Q× r0, (2.4)

G̃sr(r) = 1
r3

(Ĩ− 3r̂⊗ r̂). (2.5)

If ∂V− is the prolate spheroid

x2
1

α2
1

+
x2

2 + x2
3

α2
2

= 1, α2 < α1, (2.6)

then

d = dsd = (
Q× r0

) · x̂1 ⊗ x̂1 + 2Q · S̃× r0 ·
(

Ĩ− x̂1 ⊗ x̂1
)

(2.7)

with

S̃ = α2
1

α2
1 +α2

2
x̂1 ⊗ x̂1 +

α2
2

α2
1 +α2

2

(
Ĩ− x̂1 ⊗ x̂1

)
, (2.8)

and Ĝsd is some complicated dyadic function given in [13].
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Finally, if ∂V− is the triaxial ellipsoid

x2
1

α2
1

+
x2

2

α2
2

+
x2

3

α2
3
= 1, α3 < α2 < α1, (2.9)

then

d = del = 2
(

Q · M̃× r0
) · Ñ (2.10)

with

M̃ = α2
1x̂1 ⊗ x̂1 +α2

2x̂2 ⊗ x̂2 +α2
3x̂3 ⊗ x̂3,

Ñ = x̂1 ⊗ x̂1

α2
2 +α2

3
+

x̂2 ⊗ x̂2

α2
1 +α2

3
+

x̂3 ⊗ x̂3

α2
1 +α2

2
,

(2.11)

where again G̃el is given in terms of elliptic integrals and complicated expressions which
can be found in [2].

Note that the dyadic M̃ specifies the ellipsoid in the sense that the equation

r · M̃−1 · r = 1 (2.12)

coincides with the ellipsoid (2.9), while the dyadic Ñ characterizes the principal moments
of inertia of the ellipsoid since

Ñ = m

5
L̃−1, (2.13)

where L̃ is the inertia dyadic of the ellipsoid (2.9) and m is its total mass.
Obviously, the ellipsoid is considered to be homogeneous, in which case its inertia

dyadic reflects its geometrical characteristics.
It is worth noticing that the dyadic S̃ divides the space into the 1D axis of revolution

represented by x̂1 ⊗ x̂1 and its 2D orthogonal complement represented by

Ĩ− x̂1 ⊗ x̂1 = x̂2 ⊗ x̂2 + x̂3 ⊗ x̂3, (2.14)

where all directions are equivalent (2D isotropy).
In the limit, as α1 → α and α2 → α,

S̃ −→ 1
2

Ĩ,

dsd −→ Q× r0 = dsr.
(2.15)

Similarly, the complete geometrical anisotropy, carried by the ellipsoid, is expressed via
the dyadics M̃ and Ñ, which dictate the characteristics of each principal direction in space.
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In the limit, as α1 → α, α2 → α, and α3 → α, the following limits are obtained

M̃ −→ α2Ĩ, Ñ −→ 1
2α2

Ĩ,

del −→ Q× r0 = dsr,
(2.16)

so that the spherical behavior is recovered.
Obviously, the vector dsd for the spheroid and the vector del for the ellipsoid incor-

porate the modifications of the cross product (2.4) that are imposed by the particular
geometry.

If the quadrupole contribution Bq is known, then

d = 8π
µ0

Bq(r) · G̃−1(r), (2.17)

where G̃ is also known if the geometry is given.
This means that, if the spherical model is considered, then Q and r0 belong to the

plane, through the origin, which is perpendicular to dsd.
For the case of the ellipsoid,

del · Ñ−1 = 2Q · M̃× r0, (2.18)

which means that the modified del vector, that is, the vector del · Ñ−1, defines a perpen-
dicular plane on which both the modified moment Q · M̃ and the position vector r0 lie.

The intermediate case of the spheroid shows that if dsd is known, then we can extract
information about the x1-component of Q × r0 and the projection of 2Q · S̃ × r0 on the
orthogonal complement of x̂1.

This geometric analysis of the d’s identifies the orientation of the silent sources.
For the simplest case of the sphere, a silent source is a dipole with a radial moment

[17]. For the general case of the ellipsoid a silent source is a dipole with a modified mo-
ment Q · M̃ parallel to r0. Then, since M̃−1 represents the Gaussian map [16], which takes
a position vector on the surface of the ellipsoid to a vector in the normal to the surface
direction at that point, it follows that Q will be silent if it is parallel to the normal of the
ellipsoid in the direction of r0.

This silent direction for Q becomes parallel to r0 for the case of a sphere, but it is now
clear that it is the normal to the surface direction, and not the collinearity with r0, that
characterizes a dipole as silent.

Finally, we consider the spheroidal case. From (2.7), it follows that the vanishing of dsd

comes from the simultaneous solvability of the system(
Q× r0

) · x̂1 = 0, (2.19)(
Q · S̃× r0

) · x̂2 = 0, (2.20)(
Q · S̃× r0

) · x̂3 = 0. (2.21)

Condition (2.19) holds whenever the projections of Q and r0 on the x2x3-plane are paral-
lel, while (2.20) and (2.21) hold whenever the projections of Q · S̃ and r0 on the x1x3 and
on the x1x2 planes are also parallel.
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From (2.20) and (2.21), we obtain

α2
1

α2
2

Q1

Q2
= x01

x02
,

α2
1

α2
2

Q1

Q3
= x01

x03
, (2.22)

where Q = (Q1,Q2,Q3) and r0 = (x01,x02,x03).
Taking the ratio of (2.22), we obtain

Q2

Q3
= x02

x03
, (2.23)

which is exactly what comes out of (2.19). Interpreting everything in geometrical lan-
guage, we see that the vectors Q and r0 should be coplanar and they should lie on the
meridian plane specified by r0. Then Q should point in the direction of the normal to the
ellipse on this meridian plane in the direction of r0. We see, once more, that Q should be
normal to the surface of the spheroid in the direction of r0. The only difference with the
ellipsoid is that, as a consequence of the rotational symmetry, both Q and r0 always lie on
a meridian plane.

As a final conclusion we remark that modeling the human brain, which is a genuine
triaxial ellipsoid, by a sphere, the MEG measurements are misinterpreted, since detectable
sources are considered as silent while at the same time information is lost from detectable
sources that we think they are silent.

For a complete characterization of silent electromagnetic activity within the brain,
which concerns not only a single dipole but any current distribution inside a spherical
conductor, we refer to the work of Fokas, et al. [8].
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NEW SINGULAR SOLUTIONS OF PROTTER’S PROBLEM
FOR THE 3D WAVE EQUATION

M. K. GRAMMATIKOPOULOS, N. I. POPIVANOV, AND T. P. POPOV

Received 10 September 2002

In 1952, for the wave equation, Protter formulated some boundary value problems
(BVPs), which are multidimensional analogues of Darboux problems on the plane. He
studied these problems in a 3D domain Ω0, bounded by two characteristic cones Σ1 and
Σ2,0 and a plane region Σ0. What is the situation around these BVPs now after 50 years?
It is well known that, for the infinite number of smooth functions in the right-hand side
of the equation, these problems do not have classical solutions. Popivanov and Schneider
(1995) discovered the reason of this fact for the cases of Dirichlet’s or Neumann’s con-
ditions on Σ0. In the present paper, we consider the case of third BVP on Σ0 and obtain
the existence of many singular solutions for the wave equation. Especially, for Protter’s
problems in R3, it is shown here that for any n∈ N there exists a Cn(Ω̄0) - right-hand side
function, for which the corresponding unique generalized solution belongs to Cn(Ω̄0\O),
but has a strong power-type singularity of order n at the point O. This singularity is iso-
lated only at the vertex O of the characteristic cone Σ2,0 and does not propagate along the
cone.

1. Introduction

In 1952, at a conference of the American Mathematical Society in New York, Protter in-
troduced some boundary value problems (BVPs) for the 3D wave equation

�u≡ ux1x1 +ux2x2 −utt = f (1.1)

in a domain Ω0 ⊂ R3. These problems are three-dimensional analogous of the Darboux
problems (or Cauchy-Goursat problems) on the plane. The simply connected domain

Ω0 :=
{(

x1,x2, t
)

: 0 < t <
1
2

, t <
√
x2

1 + x2
2 < 1− t

}
(1.2)
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is bounded by the disk

Σ0 := {(
x1,x2, t

)
: t = 0, x2

1 + x2
2 < 1

}
, (1.3)

centered at the origin O(0,0,0) and by the two characteristic cones of (1.1)

Σ1 :=
{(

x1,x2, t
)

: 0 < t <
1
2

,
√
x2

1 + x2
2 = 1− t

}
,

Σ2,0 :=
{(

x1,x2, t
)

: 0 < t <
1
2

,
√
x2

1 + x2
2 = t

}
.

(1.4)

Similar to the plane problems, Protter formulated and studied [24] some 3D problems
with data on the noncharacteristic disk Σ0 and on one of the cones Σ1 and Σ2,0. These
problems are known now as Portter’s problems, defined as follows.

Protter’s problems. Find a solution of the wave equation (1.1) in Ω0 with the boundary
conditions

(P1) u|Σ0∪Σ1 = 0,
(P1∗) u|Σ0∪Σ2,0 = 0,

(P2) u|Σ1 = 0, ut|Σ0 = 0,
(P2∗) u|Σ2,0 = 0, ut|Σ0 = 0.

Substituting the boundary condition on Σ0 by the third-type condition [ut +αu]|Σ0 =
0, we arrive at the following problems.

Problems (Pα) and (P∗
α ). Find a solution of the wave equation (1.1) in Ω0 which satisfies

the boundary conditions

(Pα) u|Σ1 = 0, [ut +αu]|Σ0\O = 0,
(P∗

α ) u|Σ2,0 = 0, [ut +αu]|Σ0\O = 0,

where α∈ C1(Σ̄0\O).
The boundary conditions of problem (P1∗) (resp., of (P2∗)) are the adjoined bound-

ary conditions to such ones of (P1) (resp., of (P2)) for the wave equation (1.1) in Ω0. Note
that Garabedian in [10] proved the uniqueness of a classical solution of problem (P1).
For recent results concerning Protter’s problems (P1) and (P1∗), we refer to [23] and the
references therein. For further publications in this area, see [1, 2, 8, 14, 17, 18, 19, 21].
For problems (Pα), we refer to [11] and the references therein. In the case of the hyper-
bolic equation with the wave operator in the main part, which involves either lower-order
terms or other type perturbations, problem (Pα) in Ω0 has been studied by Aldashev in
[1, 2, 3] and by Grammatikopoulos et al. [12]. On the other hand, Ar. B. Bazarbekov and
Ak. B. Bazarbekov [5] give another analogue of the classical Darboux problem in the same
domain Ω0. Some other statements of Darboux-type problems can be found in [4, 6, 16]
in bounded or unbounded domains different from Ω0.

It is well known that, in contrast to the Darboux problem on the plane, the 3D prob-
lems (P1) and (P2) are not well posed. It is due to the fact that their adjoint homogeneous
problems (P1∗) and (P2∗) have smooth solutions, whose span is infinite-dimensional
(see, e.g., Tong [26], Popivanov and Schneider [22], and Khe [18]).
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Now we formulate the following useful lemma, the proof of which is given in Section 2.

Lemma 1.1. Let (ρ,ϕ, t) be the polar coordinates in R3 : x1 = ρcosϕ, x2 = ρ sinϕ, and x3 = t.
Let n∈ N, n≥ 4,

Hn
k (ρ, t) =

k∑
i=0

Ak
i
t
(
ρ2 − t2

)n−3/2−k−i

ρn−2i
,

En
k (ρ, t) =

k∑
i=0

Bk
i

(
ρ2 − t2

)n−1/2−k−i

ρn−2i
,

(1.5)

where

Ak
i := (−1)i

(k− i+ 1)i(n− 1/2− k− i)i
i!(n− i)i

,

Bk
i := (−1)i

(k− i+ 1)i(n+ 1/2− k− i)i
i!(n− i)i

,
(1.6)

and ai := a(a+ 1)···(a+ i− 1). Then the functions

Vn,1
k (ρ, t,ϕ) =Hn

k (ρ, t)sinnϕ, Vn,2
k (ρ, t,ϕ) =Hn

k (ρ, t)cosnϕ, (1.7)

for k = 0,1, . . . , [n/2]− 2, are classical solutions of the homogeneous problem (P1∗) (i.e., for
f ≡ 0), and the functions

Wn,1
k (ρ, t,ϕ) = En

k(ρ, t)sinnϕ, Wn,2
k (ρ, t,ϕ) = En

k(ρ, t)cosnϕ, (1.8)

for k = 0,1, . . . , [(n− 1)/2]− 1, are classical solutions of the homogeneous problem (P2∗).

A necessary condition for the existence of a classical solution for problem (P2) is the
orthogonality of the right-hand side function f to all solutions Wn,i

k of the homoge-
neous adjoined problem. In order to avoid an infinite number of necessary conditions
in the frame of classical solvability, Popivanov and Schneider in [22, 23] gave definitions
of a generalized solution of problem (P2) with an eventual singularity on the characteris-
tic cone Σ2,0, or only at its vertex O. On the other hand, Popivanov and Schneider [23]
and Grammatikopoulos et al. [11] proved that for the right-hand side f =Wn,i

0 the cor-
responding unique generalized solution of problem (Pα) behaves like (x2

1 + x2
2 + t2)−n/2

around the origin O (for more comments about this subject, we refer to Remarks 1.4 and
1.6). Now we know some solutions, Wn,i

k , of the homogeneous adjoined problem (P2∗),
and if we take one of these solutions in the right-hand side of (1.1), then we have to ex-
pect that the generalized solution of problem (Pα) will also be singular, possibly with a
different power type of singularity. An analogous result, in the case of problem (P1) and
functions Vn,i

k , has been proved by Popivanov and Popov in [21]. Having this in mind,
here we are looking for some new singular solutions of problem (Pα), which are different
from those found in [11].

In the case of problem (Pα) with α(x) �= 0, there are only few publications, while for
problem (Pα), concerning the wave equation (1.1), see the results of [11]. Moreover, some
results of this type can also be found in Section 3.
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For the homogeneous problem (P∗
α ) even for the wave equation (except the case α ≡

0, i.e., except problem (P2∗)), we do not know nontrivial solutions analogous to (1.7)
and (1.8). In Section 2, we give an approach for finding nontrivial solutions. Relatively,
we refer to Khe [18], who found nontrivial solutions for the homogeneous problems
(P1∗) and (P2∗), but in the case of the Euler-Poisson-Darboux equation. These results
are closely connected to such ones of Lemma 1.1.

In order to obtain our results, we formulate the following definition of a generalized
solution of problem (Pα) with a possible singularity at O.

Definition 1.2. A function u= u(x1,x2, t) is called a generalized solution of the problem

(Pα) �u= f , u|Σ1 = 0, [ut +α(x)u]|Σ0 = 0,

in Ω0, if

(1) u∈ C1(Ω̄0\O), [ut +α(x)u]|Σ0\O = 0, and u|Σ1 = 0,
(2) the identity∫

Ω0

(
utvt −ux1vx1 −ux2vx2 − f v

)
dx1dx2dt =

∫
Σ0

α(x)(uv)(x,0)dx1dx2 (1.9)

holds for all v in

V0 := {
v ∈ C1(Ω̄0

)
:
[
vt +αv

]∣∣
Σ0

= 0, v = 0 in a neighborhood of Σ2,0
}
. (1.10)

Existence and uniqueness results for a generalized solution of problems (P1) and (P2)
can be found in [23], while for problem (Pα), see [11].

In order to deal successfully with the encountered difficulties, as are singularities of
generalized solutions on the cone Σ2,0, we introduce the region

Ωε =Ω0 ∩{ρ− t > ε}, ε ∈ [0,1), (1.11)

which in polar coordinates becomes

Ωε =
{

(ρ,ϕ, t) : t > 0, 0 ≤ ϕ < 2π, ε+ t < ρ < 1− t
}
. (1.12)

Note that a generalized solution u, which belongs to C1(Ω̄ε)∩C2(Ωε) and satisfies the
wave equation (1.1) in Ωε, is called a classical solution of problem (Pα) in Ωε, ε ∈ (0,1). It
should be pointed out that the case ε = 0 is totally different from the case ε �= 0.

This paper is an extension of some results obtained in [11, 12] and, besides the in-
troduction, involves two more sections. In Section 2, we formulate the 2D BVPs corre-
sponding to the 3D Protter’s problems. Using Riemann functions, we show the way for
finding nontrivial solutions. For the same goal, we consider functions orthogonal to the
Legendre one and formulate some open questions for finding more functions of this type
in the frame of nontrivial solutions of problems (P1∗), (P2∗), and (P∗

α ). Also, using the
results of Sections 1 and 2, in Section 3, we study the existence of a singular generalized
solution of 3D problem (Pα). To investigate the behavior of such singular solutions, we
need some information about them. In Theorem 3.1, we state a maximum principle for
the singular generalized solution of 2D problem (Pα,2), corresponding to problem (Pα)
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in Ω0. This solution is a classical one in each domain Ωε, ε ∈ (0,1). Note that this max-
imum principle can be applied even in the cases where the right-hand side changes its
sign in the domain. (Theorem 1.3 deals exactly with this special situation.) Other max-
imum principles can be found in [6, 25]. Using information of this kind, we present
singular generalized solutions which are smooth enough away from the point O, while at
the point O, they have power-type singularity. More precisely, in Section 3, we prove the
following theorem.

Theorem 1.3. Let α= α(ρ) ∈ C∞(0,1]∩C[0,1] and let α(ρ) ≥ 0 be an arbitrary function.
Then, for each n∈ N, n≥ 4, there exists a function fn ∈ Cn−3(Ω̄0)∩C∞(Ω0), for which the
corresponding unique generalized solution un of problem (Pα) belongs to Cn−1(Ω̄0\O) and
satisfies the estimates

∣∣un(x1,x2,|x|)∣∣≥ 1
2

∣∣un(2x1,2x2,0
)∣∣+ |x|−(n−2)

∣∣∣∣cosn
(

arctan
x2

x1

)∣∣∣∣,∣∣∣∣un(x1,x2,
1− τn1

1 + τn1
|x|

)∣∣∣∣≥ |x|−(n−2)
∣∣∣∣cosn

(
arctan

x2

x1

)∣∣∣∣, 0 ≤ τ ≤ 1,
(1.13)

where the constant n1 ∈ (0,1) depends only on n.

Remark 1.4. For the right-hand side of the wave equation equals Wn,2
0 , the exact be-

havior of the corresponding singular solution un(x1,x2, t) around the origin O is (x2
1 +

x2
2 + t2)−n/2 cosn(arctanx2/x1) (see [11, 12]), while for the right-hand side equals
Wn,2

1 = ∂2/∂t2{Wn,2
0 }, the singularities are at least of type (x2

1 + x2
2 + t2)−(n−2)/2 cos

n(arctanx2/x1) (see Theorem 1.3 ). The following open question arises: is this the exact
type of singularity or not? If the last case is true, it would be possible, using an appropri-
ate linear combination of both right-hand sides, to find a solution of the last lower-type
singularity. Then the result of this kind could give an answer to Open Question (1).

Remark 1.5. It is interesting that for any parameter α(x) ≥ 0, involved in the bound-
ary condition (Pα) on Σ0, there are infinitely many singular solutions of the wave equa-
tion. Note that all these solutions have strong singularities at the vertex O of the cone
Σ2,0. These singularities of generalized solutions do not propagate in the direction of the
bicharacteristics on the characteristic cone. It is traditionally assumed that the wave equa-
tion with right-hand side sufficiently smooth in Ω̄0 cannot have a solution with an iso-
lated singular point. For results concerning the propagation of singularities for second-
order operators, see Hörmander [13, Chapter 24.5]. For some related results in the case
of the plane Darboux problem, see [20].

Remark 1.6. Considering problems (P1) and (P2), Popivanov and Schneider [22] an-
nounced the existence of singular solutions for both wave and degenerate hyperbolic
equations. First a priori estimates for singular solutions of Protter’s problems (P1) and
(P2), concerning the wave equation in R3, were obtained in [23]. In [1], Aldashev men-
tioned the results of [22] and, for the case of the wave equation in Rm+1, showed that
there exist solutions of problem (P1) (resp., (P2)) in the domain Ωε, which grow up on
the cone Σ2,ε like ε−(n+m−2) (resp., ε−(n+m−1)), and the cone Σ2,ε := {ρ = t + ε} approxi-
mates Σ2,0 when ε → 0. It is obvious that, for m = 2, these results can be compared to
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the estimates of [11]. Finally, we point out that in the case of an equation which involves
the wave operator and nonzero lower-order terms, Karatoprakliev [15] obtained a priori
estimates, but only for the enough smooth solutions of problem (P1) in Ω0.

We fix the right-hand side as a trigonometric polynomial of the order l:

f
(
x1,x2, t

)= l∑
n=2

{
f 1
n (t,ρ)cosnϕ+ f 2

n (t,ρ)sinnϕ
}
. (1.14)

We already know that the corresponding solution u(x1,x2, t) may have behavior of type
(x2

1 + x2
2 + t2)−l/2 at the point O. We conclude this section with the following questions.

Open Questions. (1) Find the exact behavior of all singular solutions at the point O,
which differ from those of Theorem 1.3. In other words,

(i) are there generalized solutions for the right-hand side (1.14) with a higher order
of singularity, for example, of the form (x2

1 + x2
2 + t2)−k−l/2, k > 0?

(ii) are there generalized solutions for the right-hand side (1.14) with a lower order
of singularity, for example, of the form (x2

1 + x2
2 + t2)k−l/2, k > 0?

(2) Find appropriate conditions for the function f under which problem (Pα) has only
classical solutions. We do not know any kind of such results even for problem (P2).

(3) From the a priori estimates, obtained in [11], for all solutions of problem (Pα),
including singular ones, it follows that, as ρ → 0, none of these solutions can grow up
faster than the exponential one. The arising question is: are there singular solutions of
problem (Pα) with exponential growth as ρ → 0 or any such solution is of polynomial
growth less than or equal to (x2

1 + x2
2 + t2)−l/2?

(4) Why there appear singularities for smooth right-hand side, even for the wave equa-
tion? Can we explain this phenomenon numerically?

In the case of problem (P1), the answers to Open Questions (1), (2), and (3) can be
found in [21].

2. Nontrivial solutions for the homogeneous problems (P1∗), (P2∗), and (P∗
α )

Suppose that the right-hand side f of the wave equation is of the form

f (ρ, t,ϕ) = f 1
n (ρ, t)cosnϕ+ f 2

n (ρ, t)sinnϕ, n∈ N. (2.1)

Then we are seeking solutions of the wave equation of the same form

u(ρ, t,ϕ) = u1
n(ρ, t)cosnϕ+u2

n(ρ, t)sinnϕ, (2.2)

and due to this fact, the wave equation reduces to

(
un
)
ρρ +

1
ρ

(
un
)
ρ −

(
un
)
tt −

n2

ρ2
un = fn (2.3)

in G0 = {0 < t < 1/2; t < ρ < 1− t} ⊂ R2.
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Now introduce the new coordinates x = (ρ+ t)/2, y = (ρ− t)/2 and set

v(x, y) = ρ1/2un(ρ, t), g(x, y) = ρ1/2 fn(ρ, t). (2.4)

Then, denoting ν = n− (1/2), problems (P1∗), (P2∗), and (P∗
α ) transform into the fol-

lowing problems.

Problems (P31), (P32), and (P3α). Find a solution v(x, y) of the equation

vxy − ν(ν + 1)
(x+ y)2

v = g (2.5)

in the domain D = {0 < x < 1/2; 0 < y < x} with the following corresponding boundary
conditions:

(P31) v(x,x) = 0, x ∈ (0,1/2) and v(1/2, y) = 0, y ∈ (0,1/2),
(P32) (vy − vx)(x,x) = 0, x ∈ (0,1/2) and v(1/2, y) = 0, y ∈ (0,1/2),
(P3α) (vy − vx)(x,x)−α(x)v(x,x) = 0, x ∈ (0,1/2) and v(1/2, y) = 0, y ∈ (0,1/2).

A basic tool for our treatment of problems (P3) is the Legendre functions Pν (for more
information, see [9]). Note that the function

R
(
x1, y1;x, y

)= Pν

(
(x− y)

(
x1 − y1

)
+ 2x1y1 + 2xy(

x1 + y1
)
(x+ y)

)
(2.6)

is a Riemann one for (2.5) (see Copson [7]), that is, with respect to the variables (x1, y1),
it is a solution of (2.5) with g = 0, and

R
(
x, y1;x, y

)= 1, R
(
x1, y;x, y

)= 1. (2.7)

Therefore, we can construct the function u(x, y) in the following way. Integrating (2.5)
over the characteristic triangle � with vertices M(x, y) ∈ D, P(y, y), and Q(x,x), and
using the properties (2.7) of the Riemann function, we see that∫∫

�
R
(
x1, y1;x, y

)
g
(
x1, y1

)
dx1dy1

=
∫ x

y

[
R
(
x1,x1;x, y

)
vx1

(
x1,x1

)−R
(
x1, y;x, y

)
vx1

(
x1, y

)]
dx1

−
∫ x

y

[
Ry1

(
x, y1;x, y

)
v
(
x, y1

)−Ry1

(
y1, y1;x, y

)
v
(
y1, y1

)]
dy1

=
∫ x

y

[
R
(
x1,x1;x, y

)
vx1

(
x1,x1

)
+Ry1

(
x1,x1;x, y

)
v
(
x1,x1

)]
dx1

− v(x, y) + v(y, y).

(2.8)

Hence

v(x, y) = v(y, y) +
∫ x

y

[
R
(
x1,x1;x, y

)
vx1

(
x1,x1

)
+Ry1

(
x1,x1;x, y

)
v
(
x1,x1

)]
dx1

−
∫∫

�
R
(
x1, y1;x, y

)
g
(
x1, y1

)
dx1dy1.

(2.9)
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In the case of g = 0, we obtain

v(x, y) = v(y, y) +
∫ x

y

[
Pν

(
x2

1 + xy

x1(x+ y)

)
vx1

(
x1,x1

)
+P′

ν

(
x2

1 + xy

x1(x+ y)

)(
x1 − x

)(
x1 + y

)
2x2

1(x+ y)
v
(
x1,x1

)]
dx1.

(2.10)

Using the condition v(x,0) = 0, finally we find that

0 =
∫ x

0
Pν

(
x1

x

)
vx1

(
x1,x1

)
+P′

ν

(
x1

x

)(
x1 − x

)
2x1x

v
(
x1,x1

)
dx1

=
∫ x

0
Pν

(
x1

x

){
vx1

(
x1,x1

)− ∂

∂x1

[
v
(
x1,x1

)(x1 − x
)

2x1

]}
dx1

(2.11)

if we suppose, in addition, that lim t−1v(t, t) = 0, t → +0. Thus,

∫ 1

0
Pν(t)

{
t+ 1
t

vx(tx, tx) +
1− t

t
vy(tx, tx)− 1

xt2
v(tx, tx)

}
dt = 0. (2.12)

Suppose that there exist two functions ψ and ψ1 such that

ψ(t)ψ1(x) = t+ 1
t

vx(tx, tx) +
1− t

t
vy(tx, tx)− 1

xt2
v(tx, tx). (2.13)

Then we are looking for a solution ψ(t) of the equation

∫ 1

0
Pν(t)ψ(t)dt = 0. (2.14)

Now we are ready to formulate the following useful lemma.

Lemma 2.1. The following identity holds:

∫ 1

0
tpPν(t)dt = 0, p = ν− 2,ν− 4, . . . ; p >−1. (2.15)

Proof. As known, the Legendre functions Pν(t) are solutions of the Legendre differential
equation

(
1− t2)z′′ − 2tz′ + ν(ν + 1)z = 0. (2.16)
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Using this fact, we see that

ν(ν + 1)
∫ 1

0
tpPν(t)dt =

∫ 1

0
tp
[(
t2 − 1

)
P′

ν(t)
]′
dt

=−p
∫ 1

0

(
tp+1 − tp−1)P′

ν(t)dt

= p
∫ 1

0

(
tp+1 − tp−1)P′

ν(t)dt

= p
∫ 1

0

[
(p+ 1)tp − (p− 1)tp−2]Pν(t)dt

(2.17)

if p > 1. This means that

[
ν(ν + 1)− p(p+ 1)

]∫ 1

0
tpPν(t)dt =−p(p− 1)

∫ 1

0
tp−2Pν(t)dt, p > 1. (2.18)

Since, for p = ν, the left-hand side here is zero, clearly∫ 1

0
tν−2Pν(t)dt = 0. (2.19)

Using this fact and (2.18) with p = ν− 2, we conclude that∫ 1

0
tν−4Pν(t)dt = 0, if ν− 2 > 1, (2.20)

and so the proof of the lemma follows by induction. �

Since, in our case, ν = n− 1/2, returning to problems (P1∗), (P2∗), and (P∗
α ), we re-

mark that, for each of these problems, we have the following conclusions.

Problem (P1∗). On the line {y = x}, we have the condition v(x,x) = 0. Thus, (vx + vy)(x,
x) = 0 and (2.13) becomes ψ(t)ψ1(x) = 2vx(tx, tx). It follows that in this case, by Lemma
2.1, possible solutions are the functions

v(x,x) = 0, vx(x,x) = xp, (2.21)

where p=n− 5/2, n− 9/2, . . . ,1/2, if n is an odd number, or p = n− 5/2, n− 9/2, . . . ,−1/2,
if n is an even number. Thus, the solution v(x, y) of the homogeneous problem (P1∗) is
explicitly found by (2.10) with values of v and vx on {y = x} given by (2.21).

Problem (P2∗). In this case, for y=x, we have (vx − vy)(x,x)=0. Denote h(x) := v(x,x),
then h′(x) = vx(x,x) + vy(x,x). Hence, we see that vx = vy = h′/2 and (2.13) becomes

ψ
(
z

x

)
ψ1(x) = x

z
h′(z)− x

z2
h(z) = x

(
h(z)
z

)′
. (2.22)

By Lemma 2.1, possible solutions of the above equation are the functions

v(x,x) = xp, vx(x,x) = pxp−1

2
, (2.23)
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where p = n− 1/2, n− 5/2, . . . ,5/2, if n is an odd number, or p = n− 1/2, n− 5/2, . . . ,3/2,
if n is an even number. The corresponding solution v(x, y) of the homogeneous problem
(P2∗) is found again by (2.10) with values of v(x,x) and vx(x,x) given by (2.23).

Problem (P∗
α ). Denote h(x) := v(x,x). Then together with the condition on the line

{y = x}, we see that

h′(x) = vx(x,x) + vy(x,x), vy(x,x)− vx(x,x)−α(x)v(x,x) = 0, (2.24)

from where we have vy = (h′ +αh)/2 and vx = (h′ −αh)/2. In this case, (2.13) becomes

ψ
(
z

x

)
ψ1(x) = x

(
h(z)
z

)′
−α(z)h(z). (2.25)

If α(z) is not identically zero, it is not obvious whether there are some nontrivial solutions
of problem (P∗

α ) or not.

Open problems. (1) Find a solution ψ(t) of (2.14), different from those of (2.15), which
gives a new nontrivial solution of problem (P1∗) or (P2∗).

(2) Using the way described above, find nontrivial solutions of problem (P∗
α ), when

α(x) is a nonzero function.
The representation (2.10), together with (2.21) and (2.23), gives us exact formulae

for the solution of the homogeneous problems (P1∗) and (P2∗). Using Lemma 1.1, we
obtain a different representation of the same solutions. The solutions Vn,i

0 and Wn,i
0 were

found by Popivanov and Schneider, while the functions Hn
k and En

k can be found in [18]
with a different presentation, where they are defined by using the Gauss hypergeometric
function.

The following result implies Lemma 1.1.

Lemma 2.2. The representations

∂

∂t
Hn

k (ρ, t) = 2(n− k− 1)En
k+1(ρ, t), (2.26)

∂

∂t
En
k (ρ, t) =−2

(
n− k− 1

2

)
Hn

k (ρ, t) (2.27)

hold, where Hn
k and En

k represent derivatives of En
0 (ρ, t) with respect to t, that is,

Hn
k (ρ, t) = (−1)k+1

(2n− 2k− 1)2k+1

(
∂

∂t

)2k+1
(

ρ2 − t2
)n−1/2

ρn

 ,

En
k(ρ, t) = (−1)k

(2n− 2k)2k

(
∂

∂t

)2k
(

ρ2 − t2
)n−1/2

ρn

 .

(2.28)

Proof. It is enough to check directly formulae (2.26) and (2.27). �
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Proof of Lemma 1.1. We already know (see [23]) that Vn,i
0 and Wn,i

0 (i = 1,2) are solu-
tions of the wave equation (1.1). Using formulae (2.26) and (2.27), we conclude that Vn,i

k

and Wn,i
k are also solutions of the wave equation. Thus, the functions ρ1/2Hn

k (t,ρ) and
ρ1/2En

k(t,ρ) are solutions of the 2D equation (2.5). It is easy to see directly that

∂
(
ρ1/2En

k

)
∂t

(ρ,0) = 0,
(
ρ1/2En

k

)
(ρ,0) = ρn−2k−1/2

k∑
i=0

Ak
i . (2.29)

These Cauchy conditions on {x = y} (i.e., on {t = 0}) coincide with the conditions of
(2.23) for p = n− 2k− 1/2 with the accuracy of a multiplicative constant. Moreover, be-
cause of the uniqueness of the solution of Cauchy problem for (2.5), the function v(x, y)
defined by (2.10), together with the conditions of (2.23) for p = n− 2k− 1/2, coincides
with the function (

∑k
i=0A

k
i )−1ρ1/2En

k (ρ, t). �

3. New singular solutions of problem (Pα)

We are seeking a generalized solution of BVP (Pα) for the wave equation

�u= 1
ρ

(
ρuρ

)
ρ +

1
ρ2
uϕϕ −utt = f (ρ,ϕ, t), (3.1)

which has some power type of singularity at the origin O. While in [11, 23] the function
Wn,i

0 (ρ, t,ϕ) has been used systematically as the right-hand side function, we will try to
use here, for the same reason, the function Wn,i

1 (ρ, t,ϕ). Due to the fact that the function
En

1 (ρ, t) changes its sign inside the domain, the appearing situation causes some compli-
cations. Note first that, by Lemma 1.1, the functions

Wn,2
1 (ρ,ϕ, t) =


(
ρ2 − t2

)n−3/2

ρn
− (n− 3/2)

(n− 1)

(
ρ2 − t2

)n−5/2

ρn−2

cosnϕ, n≥ 4, (3.2)

with Wn,2
1 ∈ Cn−3(Ω̄0), are classical solutions of problem (P∗

α ) when α≡ 0.
To prove Theorem 1.3, consider now the special case of problem (Pα):

�u= 1
ρ

(
ρuρ

)
ρ +

1
ρ2
uϕϕ −utt =Wn,2

1 (ρ,ϕ, t) in Ω0, (3.3)

u|Σ1 = 0,
[
ut +α(ρ)u

]|Σ0\O = 0. (3.4)

Theorem 5.1 of [11] declares that problem (3.3), (3.4) has at most one generalized so-
lution. On the other hand, by [11, Theorem 5.2], we know that for this right-hand side
there exists a generalized solution in Ω0 of the form

un(ρ,ϕ, t) = u(1)
n (ρ, t)cosnϕ∈ Cn−1(Ω̄0\O

)
, (3.5)

which is a classical solution in Ωε, ε ∈ (0,1). By introducing a new function

u(2)(ρ, t) = ρ1/2u(1)(ρ, t), (3.6)
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we transform (3.3) into the equation

u(2)
ρρ −u(2)

tt − 4n2 − 1
4ρ2

u(2) = ρ1/2En
1 (ρ, t), (3.7)

with the string operator in the main part. The domain, corresponding to Ωε in this case, is

Gε =
{

(ρ, t) : t > 0, ε+ t < ρ < 1− t
}
. (3.8)

In order to use directly the results of [11], we introduce the new coordinates

ξ = 1− ρ− t, η = 1− ρ + t (3.9)

and transform the singular point O into the point (1,1).
From (3.7), we derive that

Uξη − 4n2 − 1
4(2− ξ −η)2

U = 1
4
√

2
(2−η− ξ)1/2F(ξ,η) (3.10)

in Dε = {(ξ,η) : 0 < ξ < η < 1− ε}, where

U(ξ,η) = u(2)(ρ(ξ,η), t(ξ,η)
)
, F(ξ,η) = En

1

(
ρ(ξ,η), t(ξ,η)

)
. (3.11)

In order to investigate the smoothness or the singularity of a solution for the original 3D
problem (Pα) on Σ2,0, we are seeking a classical solution of the corresponding 2D problem
(Pα,2), not only in the domain Dε but also in the domain

D(1)
ε := {

(ξ,η) : 0 < ξ < η < 1, 0 < ξ < 1− ε
}

, ε > 0. (3.12)

Clearly, Dε ⊂D(1)
ε . Thus, we arrive at the Goursat-Darboux problem.

Problem (Pα,2). Find a solution of the following BVP:

Uξη − c(ξ,η)U = g(ξ,η) in D(1)
ε ,

U(0,η) = 0,
[
Uη −Uξ +α(1− ξ)U

]∣∣
η=ξ = 0.

(3.13)

Here, the coefficients c(ξ,η) and g(ξ,η) are defined by

c(ξ,η) = 4n2 − 1
4(2−η− ξ)2

∈ C∞(D̄(1)
ε

)
, n≥ 4, ε > 0, (3.14)

g(ξ,η) = 2n−(5/2)


[
(1− ξ)(1−η)

]n−3/2

(2−η− ξ)n−1/2
− (n− 3/2)

4(n− 1)

[
(1− ξ)(1−η)

]n−5/2

(2−η− ξ)n−5/2

 , (3.15)
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where g ∈ Cn−3(D̄(1)
ε ). In this case, it is obvious that c(ξ,η) ≥ 0 in D̄0\(1,1), but the func-

tion g(ξ,η) is not nonnegative in D0.
Note that, according to [11], solving problem (Pα,2) is equivalent to solving the follow-

ing integral equation:

U
(
ξ0,η0

)= ∫ ξ0

0

∫ η0

ξ0

[
g(ξ,η) + c(ξ,η)U(ξ,η)

]
dηdξ

+ 2
∫ ξ0

0

∫ η

0

[
g(ξ,η) + c(ξ,η)U(ξ,η)

]
dξ dη

+
∫ ξ0

0
α(1− ξ)U(ξ,ξ)dξ for

(
ξ0,η0

)∈ D̄(1)
ε .

(3.16)

For this reason, we define (see [11]) the following sequence of successive approximations
U (m):

U (m+1)(ξ0,η0
)= ∫ ξ0

0

∫ η0

ξ0

[
g(ξ,η) + c(ξ,η)U (m)(ξ,η)

]
dηdξ

+ 2
∫ ξ0

0

∫ η

0

[
g(ξ,η) + c(ξ,η)U (m)(ξ,η)

]
dξ dη

+
∫ ξ0

0
α(1− ξ)U (m)(ξ,ξ)dξ,

(
ξ0,η0

)∈ D̄(1)
ε ,

U (0)(ξ0,η0
)= 0 in D1

ε .

(3.17)

In [11], the uniform convergence of U (m) in each domain D(1)
ε , ε > 0, has been proved.

To use this fact here, we now formulate the following maximum principle, which is very
important for the investigation of the singularity of a generalized solution of problem
(Pα).

Theorem 3.1 (maximum principle). Let c(ξ,η),g(ξ,η) ∈ C(D̄(1)
ε ), let c(ξ,η) ≥ 0 in D̄(1)

ε ,
let α(ξ) ≥ 0 for 0 ≤ ξ ≤ 1, and

(a) let

∫ ξ0

0

∫ η0

ξ0

g(ξ,η)dηdξ + 2
∫ ξ0

0

∫ η

0
g(ξ,η)dξ dη ≥ 0 in D̄(1)

ε . (3.18)

Then, for the solution U(ξ,η) of problem (3.13), it holds that

U(ξ,η) ≥ 0 in D̄(1)
ε . (3.19)

(b) If

∫ ξ0

0
g
(
ξ,η0

)
dξ ≥ 0 in D̄(1)

ε , (3.20)
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then

U(ξ,η) ≥ 0, Uη(ξ,η) ≥ 0 for (ξ,η) ∈ D̄(1)
ε . (3.21)

(c) If g(ξ,η) ≥ 0 in D̄(1)
ε , then

U(ξ,η) ≥ 0, Uη(ξ,η) ≥ 0, Uξ(ξ,η) ≥ 0 in D̄(1)
ε . (3.22)

Remark 3.2. Other variants of this maximum principle can be found in [11, 12]. In the
cases which we consider below, the conditions of [11, 12] are not satisfied. For example,
there are subdomains of D(1)

ε where En
1 < 0.

Proof of Theorem 3.1. (a) Condition (3.18) says that for the first approximation U (1) of
the sequence (3.17), we directly haveU (1)(ξ0,η0)≥0. Suppose that (U (m)−U (m−1))(ξ0,η0)≥
0 for some m∈ N. Then

(
U (m+1) −U (m))(ξ0,η0

)= ∫ ξ0

0

∫ η0

ξ0

c(ξ,η)
(
U (m) −U (m−1))(ξ,η)dηdξ

+ 2
∫ ξ0

0

∫ η

0
c(ξ,η)

(
U (m) −U (m−1))(ξ,η)dξ dη

+
∫ ξ0

0
α(1− ξ)

(
U (m) −U (m−1))(ξ,ξ)dξ

≥ 0 in D̄(1)
ε ,

(3.23)

and thus, by induction,

U
(
ξ0,η0

)= ∞∑
m=0

(
U (m+1) −U (m))(ξ0,η0

)≥ 0 in D̄(1)
ε . (3.24)

(b) If condition (3.20) is satisfied, then it is easy to check that U (1)(ξ0,η0) ≥ 0 for any

(ξ0,η0) ∈ D̄(1)
ε , and so, in view of (a), we see that U(ξ0,η0) ≥ 0 for (ξ0,η0) ∈ D̄(1)

ε . Using
the results of [11], we derive the following representation:

Uη0

(
ξ0,η0

)= ∫ ξ0

0
g
(
ξ,η0

)
dξ +

∫ ξ0

0
c
(
ξ,η0

)
U
(
ξ,η0

)
dξ, (3.25)

and hence we conclude that Uη0 ≥ 0 in D̄(1)
ε .

(c) If g(ξ,η) ≥ 0 in D̄(1)
ε , then conditions (3.18) and (3.20) are obviously satisfied, and

thus U ≥ 0 and Uη0 ≥ 0 in D̄(1)
ε . The conclusion Uξ0 ≥ 0 in D̄(1)

ε follows from the fact that
(see [11])

Uξ0

(
ξ0,η0

)= α
(
1− ξ0

)
U
(
ξ0,ξ0

)
+
∫ ξ0

0

[
g
(
ξ,ξ0

)
+ c

(
ξ,ξ0

)
U
(
ξ,ξ0

)]
dξ

+
∫ η0

ξ0

[
g
(
ξ0,η

)
+ c

(
ξ0,η

)
U
(
ξ0,η

)]
dη.

(3.26)

�
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In order to prove our results, we make use of the following proposition.

Proposition 3.3. Let U(ξ,η) be the unique generalized solution for problem (3.13), where
c(ξ,η) and g(ξ,η) are given by (3.14) and (3.15). Then U(ξ,η) ∈ Cn−1(D̄0\(1,1)) and
U(ξ,η) ≥ 0 in D̄0\(1,1); in addition Uξ(ξ,η) ≥ 0, Uη(ξ,η) ≥ 0 in some neighborhood of
the point (1,1).

Proof. First note that in this case neither condition g(ξ,η) ≥ 0 nor condition (3.20) is
fulfilled. We will prove that condition (3.18) is satisfied. Introduce the polar coordinates
(ρ, t) and consider the function g(ρ, t) = ρ1/2En

1 (ρ, t) in the domain G0 = {(ρ, t) : t > 0, t <
ρ < 1− t}, then the representation formula (see (2.26))

∂

∂t
ρ1/2Hn

0 (ρ, t) = 2(n− 1)ρ1/2En
1 (ρ, t) = 2(n− 1)g(ρ, t) (3.27)

holds. Let 0 ≤ ρ1 ≤ ρ2 ≤ 1. Using (3.27), it is easy to see that, for the first approximation
U (1) of the solution, one has (see (3.17))

2(n− 1)U (1)
(
ρ1 + ρ2

2
,
ρ2 − ρ1

2

)
=
∫ 1

(1+ρ1)/2
ρ1/2Hn

0 (ρ,1− ρ)dρ+
∫ (1+ρ1)/2

ρ1

ρ1/2Hn
0

(
ρ,ρ− ρ1

)
dρ

−
∫ ρ2

(ρ2+ρ1)/2
ρ1/2Hn

0

(
ρ,ρ2 − ρ

)
dρ−

∫ (ρ2+ρ1)/2

ρ1

ρ1/2Hn
0

(
ρ,ρ− ρ1

)
dρ

+
∫ 1

(1+ρ2)/2
ρ1/2Hn

0 (ρ,1− ρ)dρ+
∫ (1+ρ2)/2

ρ2

ρ1/2Hn
0

(
ρ,ρ− ρ2

)
dρ.

(3.28)

Since Hn
0 ≥ 0, to prove that U (1) ≥ 0, it is enough to show that

I =
∫ 1

(1+ρ1)/2
ρ1/2Hn

0 (ρ,1− ρ)dρ−
∫ ρ2

(ρ2+ρ1)/2
ρ1/2Hn

0

(
ρ,ρ2 − ρ

)
dρ ≥ 0. (3.29)

For this purpose, we see that

I =
∫ 1

(1+ρ1)/2
(1− ρ)ρ−n+1/2(2ρ− 1)n−3/2dρ

−
∫ ρ2

(ρ2+ρ1)/2

(
ρ2 − ρ

)
ρ−n+1/2ρn−3/2

2

(
2ρ− ρ2

)n−3/2
dρ

=
∫ 1

(1+ρ1)/2
(1− ρ)ρ−1

(
2− 1

ρ

)n−3/2

dρ

−
∫ 1

(2+ρ1−ρ2)/2
(1− ρ)

(
ρ+ ρ2 − 1

)−1
ρn−3/2

2

(
2− ρ2

ρ+ ρ2 − 1

)n−3/2

dρ.

(3.30)

As a final step, notice that

2− 1
t
≥ 2− ρ2

t+ ρ2 − 1
≥ 0 for

2 + ρ1 − ρ2

2
≤ t ≤ 1, (3.31)
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and therefore I ≥ 0. So, we conclude that condition (3.18) is satisfied. It follows now,
by Theorem 3.1, that U(ρ, t) ≥ 0 in G0\(0,0). More precisely, for ρ2 < δ, the last term in
(3.30) is small enough for small positive δ, and so

I ≥
∫ 1

3/4
(1− ρ)

(
2− 1

ρ

)n−1/2

dρ := c0 > 0. (3.32)

Thus, we find that U (1)(ρ, t) ≥ c0 > 0 in a small neighborhood of the origin (0,0). There-
fore, for the solution U(ξ,η) of problem (Pα,2) in coordinates (ξ,η), it follows that
U(ξ,η) ≥U (1)(ξ,η) ≥ c0 > 0 in the corresponding neighborhood of the point (1,1). Using
the representation

Uη0

(
ξ0,η0

)= ∫ ξ0

0

g(ξ,η0
)

+
4n2 − 1

4
(
2−η0 − ξ

)2 U
(
ξ,η0

)dξ, (3.33)

it is easy to see now that Uη0 (ξ0,η0) ≥ 0 for 1 − δ ≤ ξ0 ≤ η0 ≤ 1 if δ > 0 is small enough.
Furthermore, using the representation (3.26) of Uξ0 (ξ0,η0), we can prove an analogous
result for Uξ0 (ξ0,η0). �

Remark 3.4. In our opinion, the analogous result follows for all functions En
k(ρ, t), k =

2,3, . . . , [n/2] −1. As before, for k > 0, the function En
k (ρ, t) changes its sign in the domain,

but due to the monotonicity of the solution U(ξ,η), the desired result would follow. Also,
by using the more general formula

∂

∂t
Hn

k (ρ, t) = 2(n− k− 1)En
k+1(ρ, t), (3.34)

this result could be obtained for k > 1 too.

Now we are ready to prove Theorem 1.3 formulated in the introduction.

Proof of Theorem 1.3. We will find the desired lower estimates for the singular solution
u(ρ,ϕ, t) of problem (3.3), (3.4). For the corresponding right-hand side g(ξ,η), defined
by (3.15), set

K =
∫
D(1)

1/2

g2(ξ,η)dηdξ > 0. (3.35)

Let ε ∈ (0,1/2) be fixed. Then, for the generalized solution U(ξ,η) of problem (3.13), it
follows that

0 < K ≤
∫
D(1)
ε

g2(ξ,η)dξ dη

=
∫
D(1)
ε

Uξη(ξ,η)g(ξ,η)dξ dη−
∫
D(1)
ε

c(ξ,η)U(ξ,η)g(ξ,η)dξ dη

=: I1 + I2,

(3.36)
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where

I1 =
∫ 1−ε

0

∫ 1

ξ
Uξη(ξ,η)g(ξ,η)dηdξ

=
∫ 1−ε

0

[
Uξ(ξ,1)g(ξ,1)−Uξ(ξ,ξ)g(ξ,ξ)

]
dξ

−
∫
D(1)
ε

(
Uξgη

)
(ξ,η)dηdξ.

(3.37)

In view of (3.15), it is obvious that g(ξ,1) = 0. Thus,

I1 =−
∫ 1−ε

0
Uξ(ξ,ξ)g(ξ,ξ)dξ −

∫
D(1)
ε

(
Uξgη

)
(ξ,η)dηdξ. (3.38)

Since

∫
D(1)
ε

(
Uξgη

)
(ξ,η)dξ dη =

∫ 1−ε

0

∫ η

0

(
Uξgη

)
(ξ,η)dξ dη

+
∫ 1

1−ε

∫ 1−ε

0

(
Uξgη

)
(ξ,η)dξ dη

=
∫ 1−ε

0

[(
Ugη

)
(η,η)− (

Ugη
)
(0,η)

]
dη

+
∫ 1

1−ε

[(
Ugη

)
(1− ε,η)− (

Ugη
)
(0,η)

]
dη

−
∫
D(1)
ε

(
Ugξη

)
(ξ,η)dξ dη

=
∫ 1−ε

0

(
Ugη

)
(η,η)dη+

∫ 1

1−ε

(
Ugη

)
(1− ε,η)dη

−
∫
D(1)
ε

(
Ugξη

)
(ξ,η)dξ dη,

(3.39)

(3.38) becomes

I1 =−
∫ 1−ε

0

[
Uξ(ξ,ξ)g(ξ,ξ) +U(ξ,ξ)gη(ξ,ξ)

]
dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη+

∫
D(1)
ε

(
Ugξη

)
(ξ,η)dξ dη.

(3.40)

An elementary calculation shows that

gξη(ξ,η)− c(ξ,η)g(ξ,η) = 0,

gξ(ξ,ξ) = gη(ξ,ξ) = 1
32(n− 1)

(5− 2n)(1− ξ)n−7/2 < 0.
(3.41)
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By (3.40) and (3.36), it follows that

0 < K ≤ I1 + I2 =−
∫ 1−ε

0

[
Uξ(ξ,ξ)g(ξ,ξ) +U(ξ,ξ)gξ(ξ,ξ)

]
dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη

+
∫
D(1)
ε

U(ξ,η)
[
gξη − cg

]
(ξ,η)dξ dη.

(3.42)

Thus, we see that

0 < K ≤ I1 + I2 =−
∫ 1−ε

0

[
Uξ(ξ,ξ)g(ξ,ξ) +U(ξ,ξ)gξ(ξ,ξ)

]
dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη,

(3.43)

where, as it is easy to check,

gξ(ξ,ξ) = 1
2

[
g(ξ,ξ)

]
ξ . (3.44)

The function U(ξ,η) is a classical solution of (3.13) in D̄ε, ε∈ (0,1), with

Uξ(ξ,ξ) = 1
2

[
U(ξ,ξ)

]
ξ +

1
2
α(1− ξ)U(ξ,ξ). (3.45)

If we substitute (3.44) and (3.45) into (3.43), we get

K ≤ I1 + I2 =−1
2

∫ 1−ε

0

[
U(ξ,ξ)g(ξ,ξ)

]
ξdξ −

1
2

∫ 1−ε

0
α(1− ξ)U(ξ,ξ)g(ξ,ξ)dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη

=−1
2

(Ug)(1− ε,1− ε)− 1
2

∫ 1−ε

0
α(1− ξ)U(ξ,ξ)g(ξ,ξ)dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη.

(3.46)

Note that α(ξ) ≥ 0, g(ξ,ξ) ≥ 0, and according to Proposition 3.3, we have

U(ξ,η) ≥ 0 in D̄(1)
ε , Uη(1− ε,η) ≥ 0 for small enough ε > 0. (3.47)

Calculating gη(1− ε,η) and denoting

1−ηε := ε
(2n− 3)(2n+ 1)− 2

√
2(2n− 3)(2n+ 1)(n− 1)

4n2 − 1
:= εn1, (3.48)

where the number n1 ∈ (0,1), we find

gη(1− ε,η) < 0 for 1− ε < η < ηε,

gη(1− ε,η) > 0 for ηε < η < 1.
(3.49)
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This, together with (3.46), implies that

K ≤ I1 + I2 ≤
∫ ηε

1−ε
U(1− ε,η)

∣∣gη(1− ε,η)
∣∣dη− 1

2
(Ug)(1− ε,1− ε)

−
∫ 1

ηε
U(1− ε,η)

∣∣gη(1− ε,η)
∣∣dη

≤U(1− ε,ηε)
[
g(1− ε,1− ε)− g

(
1− ε,ηε

)]
−U

(
1− ε,ηε

)[
g(1− ε,1)− g

(
1− ε,ηε

)]− 1
2

(Ug)(1− ε,1− ε)

=
[
U
(
1− ε,ηε

)− 1
2
U(1− ε,1− ε)

]
g(1− ε,1− ε)

(3.50)

because g(1− ε,1) = 0. Moreover, since g(1− ε,1− ε) = εn−5/2/8(n− 1), we see that

0 < K ≤
[
U
(
1− ε,1− εn1

)− 1
2
U(1− ε,1− ε)

]
cnε

n−(5/2). (3.51)

Using the fact that U ≥ 0 and Uη ≥ 0, we obtain

0 < K ≤U
(
1− ε,1− τεn1

)
cnε

n−(5/2), 0 ≤ τ ≤ 1, (3.52)

0 < K ≤
[
U(1− ε,1)− 1

2
U(1− ε,1− ε)

]
cnε

n−(5/2). (3.53)

For ξ = 1− ε, η = 1, we have ρ = t = ε/2 and (3.53) becomes

0 < K1ε
(5/2)−n ≤ u(2)

n

(
ε

2
,
ε

2

)
− 1

2
u(2)
n (ε,0). (3.54)

Finally, the inverse transformation gives

u(1)
n (ρ,ρ) ≥ 1

2
u(1)
n (2ρ,0) +K2ρ

−(n−2) ≥ K2ρ
−(n−2), (3.55)

where the positive constant K2 depends only on n. Analogously, (3.52) gives

u(1)
n

(
ρ,

1− τn1

1 + τn1
ρ
)
≥ K2ρ

−(n−2), 0 ≤ τ ≤ 1. (3.56)

Multiplying the function un by K−1
2 , we see that

∣∣un(ρ,ϕ,ρ)
∣∣≥ 1

2

∣∣un(2ρ,ϕ,0)
∣∣+ ρ−(n−2)

∣∣cosnϕ
∣∣≥ ρ−n+2

∣∣cosnϕ
∣∣,∣∣∣∣un(ρ,ϕ,

1− τn1

1 + τn1
ρ
)∣∣∣∣≥ ρ−(n−2)|cosnϕ|, 0 ≤ τ ≤ 1,

(3.57)

hold, and then (1.13) follows. The proof of the theorem is complete. �
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LINEAR DIFFERENTIAL EQUATIONS WITH UNBOUNDED
DELAYS AND A FORCING TERM

JAN ČERMÁK AND PETR KUNDRÁT

Received 10 September 2002

The paper discusses the asymptotic behaviour of all solutions of the differential equa-
tion ẏ(t) = −a(t)y(t) +

∑n
i=1 bi(t)y(τi(t)) + f (t), t ∈ I = [t0,∞), with a positive continu-

ous function a, continuous functions bi, f , and n continuously differentiable unbounded
lags. We establish conditions under which any solution y of this equation can be esti-
mated by means of a solution of an auxiliary functional equation with one unbounded
lag. Moreover, some related questions concerning functional equations are discussed as
well.

1. Introduction

In this paper, we study the problem of the asymptotic bounds of all solutions for the delay
differential equation

ẏ(t) =−a(t)y(t) +
n∑
i=1

bi(t)y
(
τi(t)

)
+ f (t), t ∈ I = [

t0,∞)
, (1.1)

where a is a positive continuous function on I ; bi, f are continuous functions on I , τi are
continuously differentiable functions on I fulfilling τi(t) < t, 0 < τ̇i(t) ≤ λi < 1 for all t ∈ I
and τi(t) →∞ as t →∞, i= 1, . . . ,n.

The prototype of such equations may serve the equation with proportional delays

ẏ(t) =−ay(t) +
n∑
i=1

bi y
(
λit

)
+ f (t), t ≥ 0, (1.2)

where a > 0, bi �= 0, 0 < λi < 1, i = 1, . . . ,n, are real scalars. There are numerous inter-
esting applications for (1.2) and its modifications, such as collection of current by the
pantograph head of an electric locomotive, probability theory on algebraic structures or
partition problems in number theory. Various special cases of (1.2) have been studied
because of these applications, as well as for theoretical reasons (see, e.g., Bereketoglu and
Pituk [1], Lim [11], Liu [12], or Ockendon and Taylor [15]).

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 83–91
2000 Mathematics Subject Classification: 34K25, 39B22
URL: http://dx.doi.org/10.1155/9775945143
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The study of these differential equations with proportional delays turned out to be the
useful paradigm for the investigation of qualitative properties of differential equations
with general unbounded lags. Some results of the above-cited papers have been general-
ized in this direction by Heard [7], Makay and Terjéki [13], and in [2, 3, 4]. For further
related results on the asymptotic behaviour of solutions, see, for example, Diblı́k [5, 6],
Iserles [8], or Krisztin [9].

In this paper, we combine standard methods from the theory of functional differential
equations and some results of the theory of functional equations and difference equations
to analyze the asymptotic properties of all solutions of (1.1). The main results are formu-
lated in Sections 3 and 4. In Section 3, we derive the asymptotic estimate of all solutions
of (1.1). Section 4 discusses some particular cases of (1.1) and improves the above de-
rived estimate for these special cases. Both sections also present the illustrating examples
involving, among others, (1.2).

2. Preliminaries

Let t−1 := min{τi(t0), i= 1,2, . . . ,n} and I−1 := [t−1,∞). By a solution of (1.1), we under-
stand a real-valued function y ∈ C(I−1)∩C1(I) such that y satisfies (1.1) on I .

In the sequel, we introduce the notion of embeddability of given functions into an
iteration group. This property will be imposed on the set of delays {τ1, . . . ,τn} throughout
next sections.

Definition 2.1. Let ψ ∈ C1(I−1), ψ̇ > 0 on I−1. Say that {τ1, . . . ,τn} can be embedded into
an iteration group [ψ] if for any τi there exists a constant di such that

τi(t) = ψ−1(ψ(t)−di
)
, t ∈ I. (2.1)

Remark 2.2. The problem of embeddability of given functions {τ1, . . . ,τn} into an itera-
tion group [ψ] is closely related to the existence of a common solution ψ to the system of
the simultaneous Abel equations

ψ
(
τi(t)

)= ψ(t)−di, t ∈ I , i= 1, . . . ,n. (2.2)

The complete solution of these problems have been described by Neuman [14] and Zdun
[16]. These papers contain conditions under which (2.1) holds for any τi, i= 1, . . . ,n (see
also [10, Theorem 9.4.1]). We only note that the most important necessary condition is
commutativity of any pair τi, τj , i, j = 1, . . . ,n. Notice also, that if τi are delays, then di
must be positive.

3. The asymptotic bound of all solutions of (1.1)

The aim of this section is to formulate and prove the asymptotic estimate of all solutions
of (1.1). We assume that all the assumptions imposed on a, bi, τi, and f in Section 1 are
valid.
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Theorem 3.1. Let {τ1, . . . ,τn} be embedded into an iteration group [ψ]. Let y be a solution
of (1.1), where a(t) ≥ K/ exp{αψ(t)}, 0 <

∑n
i=1 |bi(t)| ≤Ma(t) for all t ∈ I and suitable real

constants K > 0, M > 0, α < 1. If f (t) =O(exp{βψ(t)}) as t →∞ for a suitable real β, then

y(t) =O
(

exp
{
γψ(t)

})
as t −→∞, γ > max

(
α+β,

logM
d1

, . . . ,
logM
dn

)
, (3.1)

where di, i= 1, . . . ,n, are given by (2.1).

Proof. The substitution

s= ψ(t), z(s) = exp
{− γψ(t)

}
y(t) (3.2)

transforms (1.1) into the form

z′(s) =−[a(h(s)
)
h′(s) + γ

]
z(s) +

n∑
i=1

bi
(
h(s)

)
exp

{− γdi
}
h′(s)z

(
µi(s)

)
+ f

(
h(s)

)
exp{−γs}h′(s),

(3.3)

where “′” stands for d/ds, h(s) = ψ−1(s), and µi(s) = ψ(τi(h(s))) = s− di on ψ(I), i =
1, . . . ,n. This form can be rewritten as

d

ds

[
exp

{
γs+

∫ h(s)

s0

a(u)du

}
z(s)

]

=
n∑
i=1

bi
(
h(s)

)
exp

{− γdi
}
h′(s)exp

{
γs+

∫ h(s)

s0

a(u)du

}
z
(
s−di

)
+ exp

{
γs+

∫ h(s)

s0

a(u)du

}
f
(
h(s)

)
exp{−γs}h′(s),

(3.4)

where s0 ∈ ψ(I) is such that γ+ a(h(s))h′(s) > 0 for all s≥ s0.
Put δ := min(d1, . . . ,dn) > 0, sk := s0 + kδ, Jk := [sk−1,sk], k = 1,2, . . . . Let s∗ ∈ Jk+1. The

integration of (3.4) over [sk,s∗] yields

exp

{
γs+

∫ h(s)

s0

a(u)du

}
z(s)

∣∣s∗
sk

=
n∑
i=1

∫ s∗

sk
bi
(
h(s)

)
exp

{− γdi
}
h′(s)exp

{
γs+

∫ h(s)

s0

a(u)du

}
z
(
s−di

)
ds

+
∫ s∗

sk
exp

{
γs+

∫ h(s)

s0

a(u)du

}
f
(
h(s)

)
exp{−γs}h′(s)ds,

(3.5)
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that is,

z
(
s∗
)= exp

{
γ
(
sk − s∗

)−∫ h(s∗)

h(sk)
a(u)du

}
z
(
sk
)

+ exp

{
−
∫ h(s∗)

s0

a(u)du− γs∗
}

×
n∑
i=1

∫ s∗

sk
bi
(
h(s)

)
exp

{− γdi
}
h′(s)exp

{
γs+

∫ h(s)

s0

a(u)du

}
z
(
s−di

)
ds

+ exp

{
−
∫ h(s∗)

s0

a(u)du− γs∗
}

×
∫ s∗

sk
exp

{
γs+

∫ h(s)

s0

a(u)du

}
f
(
h(s)

)
exp{−γs}h′(s)ds.

(3.6)

Put Mk := sup{|z(s)|, s∈∪k
p=1Jp}, k = 1,2, . . . . Then one can estimate z(s∗) as

∣∣z(s∗)∣∣≤Mk exp

{
γ
(
sk − s∗

)−∫ h(s∗)

h(sk)
a(u)du

}

+Mk exp

{
−
∫ h(s∗)

s0

a(u)du− γs∗
}

×
∫ s∗

sk

n∑
i=1

∣∣bi(h(s)
)∣∣exp

{− γdi
}
h′(s)exp

{
γs+

∫ h(s)

s0

a(u)du

}
ds

+ exp

{
−
∫ h(s∗)

s0

a(u)du− γs∗
}

×
∫ s∗

sk
exp

{
γs+

∫ h(s)

s0

a(u)du

}∣∣ f (h(s)
)∣∣exp{−γs}h′(s)ds.

(3.7)

Noting that

n∑
i=1

∣∣bi(h(s)
)∣∣exp

{− γdi
}≤M exp

{− γdi
}
a
(
h(s)

)
< a

(
h(s)

)
,∣∣ f (h(s)

)∣∣exp{−γs} ≤ K1 exp
{

(β− γ)s
}

, K1 > 0,

(3.8)

we can rewrite (3.7) as

∣∣z(s∗)∣∣≤Mk exp

{
γ
(
sk − s∗

)−∫ h(s∗)

h(sk)
a(u)du

}

+Mk exp

{
−
∫ h(s∗)

s0

a(u)du− γs∗
}

×
∫ s∗

sk
a
(
h(s)

)
h′(s)exp

{
γs+

∫ h(s)

s0

a(u)du

}
ds
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+K1 exp

{
−
∫ h(s∗)

s0

a(u)du− γs∗
}

×
∫ s∗

sk
exp

{
γs+

∫ h(s)

s0

a(u)du

}
h′(s)exp

{
(β− γ)s

}
ds.

(3.9)

From here, we get

∣∣z(s∗)∣∣≤Mk exp

{
γ
(
sk − s∗

)−∫ h(s∗)

h(sk)
a(u)du

}

+
(
Mk +K2 exp

{
(α+β− γ)sk

})
exp

{
−
∫ h(s∗)

s0

a(u)du− γs∗
}

×
∫ s∗

sk
a
(
h(s)

)
h′(s)exp

{
γs+

∫ h(s)

s0

a(u)du

}
ds,

(3.10)

where K2 = K1/K . Using the assumptions imposed on a and τ̇i, we can estimate the inte-

gral I := ∫ s∗
sk a(h(s))h′(s)exp{γs+

∫ h(s)
s0

a(u)du}ds as

I ≤ exp

{
γs+

∫ h(s)

s0

a(u)du

}∣∣s∗
sk

(
1 +K3e

−ωsk), K3 > 0, ω = 1−α > 0 (3.11)

(for a similar situation see also [4]). Hence,

∣∣z(s∗)∣∣≤Mk exp

{
γ
(
sk − s∗

)−∫ h(s∗)

h(sk)
a(u)du

}

+
(
Mk +K2 exp

{
(α+β− γ)sk

})
exp

{
−
∫ h(s∗)

s0

a(u)du− γs∗
}

× exp

{
γs+

∫ h(s)

s0

a(u)du

}∣∣∣∣s∗
sk

(
1 +K3 exp

{−ωsk
})

≤Mk
(
1 +K3 exp

{−ωsk
})

+K2 exp
{

(α+β− γ)sk
}(

1 +K3 exp
{−ωsk

})
≤M∗

k

(
1 +N exp

{− κsk
})

,

(3.12)

where M∗
k := max(Mk,K2), κ := min(ω,γ − α− β) > 0, and N > 0 is a constant large

enough. Since s∗ ∈ Jk+1 was arbitrary,

M∗
k+1 ≤M∗

k

(
1 +N exp

{− κsk
})≤M∗

1

k∏
j=1

(
1 +N exp

{− κsj
})
. (3.13)

Now, the boundedness of (M∗
k ) as k → ∞ implies via substitution (3.2) the asymptotic

estimate (3.1). �

Remark 3.2. This remark concerns the possible extension of our results to differential
equations with delays intersecting the identity at the initial point t0. These equations
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form a wide and natural class of delay differential equations (see the following examples)
and have many applications (some of them have been mentioned in Section 1). Since we
are interested in the behaviour at infinity, it is obvious that the main notions and results
of this paper can be easily reformulated to this case.

Example 3.3. Consider the equation

ẏ(t) =−(a+ cexp{−t})y(t) +
n∑
i=1

bi y
(
λit

)
+ f (t), t ≥ 0, (3.14)

where a > 0, c ≥ 0, bi �= 0, 0 < λi < 1, i = 1, . . . ,n are constants and f ∈ C([0,∞)) fulfils
f (t) = O(tβ) as t → ∞. Let ψ(t) = log t, then functions {λ1t, . . . ,λnt} can be embedded
into an iteration group [ψ]. Indeed,

ψ
(
λit

)= ψ(t)− logλ−1
i , t > 0, i= 1, . . . ,n. (3.15)

Then, by Theorem 3.1, the estimate

y(t) =O
(
tγ
)

as t −→∞, γ > max

(
β,

log
∑n

i=1

∣∣bi∣∣/a
logλ−1

1
, . . . ,

log
∑n

i=1

∣∣bi∣∣/a
logλ−1

n

)
(3.16)

holds for any solution y of (3.14).

4. Some particular cases of (1.1)

In this section, we first consider (1.1) in the homogeneous form

ẏ(t) =−a(t)y(t) +
n∑
i=1

bi(t)y
(
τi(t)

)
, t ∈ I. (4.1)

Using a simple modification of the proof of Theorem 3.1, we improve the conclusion of
this theorem for the case of (4.1). We assume that all the assumptions of Theorem 3.1
are valid (the assumptions on f are missing, of course). Using the same notation as in
Theorem 3.1, we have the following theorem.

Theorem 4.1. Let y be a solution of (4.1). Then

y(t) =O
(

exp
{
γψ(t)

})
as t −→∞, γ = max

(
logM
d1

, . . . ,
logM
dn

)
. (4.2)

Proof. Following the proof of Theorem 3.1, we can see that the condition on γ in (3.1)
becomes

γ > max

(
logM
d1

, . . . ,
logM
dn

)
(4.3)
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in view of f ≡ 0 on I . Moreover, the inequality (3.8) can be replaced by

n∑
i=1

∣∣bi(h(s)
)∣∣exp

{− γdi
}≤ a

(
h(s)

)
, (4.4)

and this implies the validity of (4.2). �

Now, we consider (1.1) in another special form

ẏ(t) =−ay(t) + by
(
τ(t)

)
+ f (t), t ∈ I , (4.5)

where a > 0, b �= 0 are constants, τ ∈ C1(I), τ(t) < t, 0 < τ̇(t) ≤ λ < 1 for all t ∈ I , τ(t) →∞
as t →∞, and f ∈ C(I) fulfils f (t) =O(exp{βψ(t)}) as t →∞. Under these assumptions
on τ, there exists a function ψ ∈ C1(I), ψ̇ > 0 on I such that

ψ
(
τ(t)

)= ψ(t)− logλ−1, t ∈ I (4.6)

(for this and related results concerning (4.6) see, e.g., [10]). Then applying Theorem 3.1
to (4.5), we can easily deduce that the property

y(t) =O
(

exp
{
γψ(t)

})
as t −→∞, γ > max

(
α+β,

log
(|b|/a)

logλ−1

)
(4.7)

holds for any solution y of (4.5).
The asymptotic behaviour of (4.5) has been studied in [3]. If we put

σ := log
(|b|/a)

logλ−1
, (4.8)

then using the previous notation we can recall the following result.

Theorem 4.2 [3, Theorem 2.3]. Consider (4.5), where a > 0, b �= 0 are constants, τ, f ∈
C1(I), τ(t) < t, 0 < τ̇(t) ≤ λ < 1 for all t ∈ I , τ(t) →∞, f (t) =O(exp{βψ(t)}), and ḟ (t) =
O(exp{(β− 1)ψ(t)}) as t→∞. If y is a solution of (4.5), then

y(t) =


O
(

exp
{
σψ(t)

})
as t −→∞ if β < σ ,

O
(

exp
{
σψ(t)

}
ψ(t)

)
as t −→∞ if β = σ ,

O
(

exp
{
βψ(t)

})
as t −→∞ if β > σ.

(4.9)

It is easy to see that relations (4.9) yield sharper estimates of solutions than (4.7). On
the other hand, we emphasize that the proof technique used in [3] is effective just for (4.5)
and cannot be applied to more general equation (1.1). In the final part of this paper, we
propose a simple way on how to extend the conclusions of Theorem 4.2 to some equation
(4.5) with nonconstant coefficients. To explain the main idea, we consider (4.5), where
the delayed argument is a power function.

Example 4.3. We consider the delay equation

ẏ(t) =−ay(t) + by
(
tλ
)

+ f (t), t ≥ 1, (4.10)
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where a > 0, b �= 0, 0 < λ < 1 are constants and f ∈ C1([1,∞)) fulfils the properties

f (t) =O
(
(log t)β

)
, ḟ (t) =O

(
(log t)β−1) as t −→∞. (4.11)

The corresponding Abel equation (4.6) has the form

ψ
(
tλ
)= ψ(t)− logλ−1, t ≥ 1, (4.12)

and admits the function ψ(t) = loglog t as a solution with the required properties. Substi-
tuting this ψ into assumptions and conclusions of Theorem 4.2, we obtain the following
result, where σ is given by (4.8), if y is a solution of (4.10), then

y(t) =


O
(
(log t)σ

)
as t −→∞ if β < σ ,

O
(
(log t)σ loglog t

)
as t −→∞ if β = σ ,

O
(
(log t)β

)
as t −→∞ if β > σ.

(4.13)

Now, we consider the equation

ẏ(t) =−a

t
y(t) +

b

t
y
(
tλ
)

+ f (t), t ≥ 1, (4.14)

where a, b, and λ are the same as above and f ∈ C1([1,∞)).
Setting

s= log t, z(s) = y(t), (4.15)

we can convert (4.14) into the form

z′(s) =−az(s) + bz(λs) + f
(

exp{s})exp{s}, s≥ 0. (4.16)

Now if the forcing term in (4.16) fulfils the required asymptotic properties, then applying
Theorem 4.2 to (4.16) and substituting this back into (4.15), we get that relations (4.13)
are valid for any solution y of (4.14).

Remark 4.4. Following Example 4.3, we can extend asymptotic estimates (4.13) also to
some other equations of the form

ẏ(t) =−ϕ̇(t)
[
ay(t)− by

(
tλ
)]

+ f (t), t ≥ 1, (4.17)

where ϕ∈ C1([1,∞)) and ϕ̇ > 0 on [1,∞). If we introduce the change of variables

s= ϕ(t), z(s) = y(t), (4.18)

then (4.17) can be transformed into

z′(s) =−az(s) + bz
(
µ(s)

)
+ f

(
ϕ−1(s)

)(
ϕ−1)′(s), (4.19)

where µ(s) = ϕ((ϕ−1(s))λ), s∈ ϕ(I). Now if the delayed argument and the forcing term in
(4.19) fulfil the assumptions of Theorem 4.2, then we can apply this theorem to (4.19)
and via substituting (4.18) obtain the validity of (4.13) for any solution y of (4.17).
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[13] G. Makay and J. Terjéki, On the asymptotic behavior of the pantograph equations, Electron. J.
Qual. Theory Differ. Equ. (1998), no. 2, 1–12.

[14] F. Neuman, Simultaneous solutions of a system of Abel equations and differential equations with
several deviations, Czechoslovak Math. J. 32(107) (1982), no. 3, 488–494.

[15] J. R. Ockendon and A. B. Taylor, The dynamics of a current collection system for an electric loco-
motive, Proc. Roy. Soc. London Ser. A 322 (1971), 447–468.

[16] M. C. Zdun, On simultaneous Abel’s equations, Aequationes Math. 38 (1989), no. 2-3, 163–177.
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COMPARISON OF DIFFERENTIAL REPRESENTATIONS
FOR RADIALLY SYMMETRIC STOKES FLOW

GEORGE DASSIOS AND PANAYIOTIS VAFEAS

Received 10 September 2002

Papkovich and Neuber (PN), and Palaniappan, Nigam, Amaranath, and Usha (PNAU)
proposed two different representations of the velocity and the pressure fields in Stokes
flow, in terms of harmonic and biharmonic functions, which form a practical tool for
many important physical applications. One is the particle-in-cell model for Stokes flow
through a swarm of particles. Most of the analytical models in this realm consider spher-
ical particles since for many interior and exterior flow problems involving small particles,
spherical geometry provides a very good approximation. In the interest of producing
ready-to-use basic functions for Stokes flow, we calculate the PNAU and the PN eigen-
solutions generated by the appropriate eigenfunctions, and the full series expansion is
provided. We obtain connection formulae by which we can transform any solution of
the Stokes system from the PN to the PNAU eigenform. This procedure shows that any
PNAU eigenform corresponds to a combination of PN eigenfunctions, a fact that reflects
the flexibility of the second representation. Hence, the advantage of the PN representation
as it compares to the PNAU solution is obvious. An application is included, which solves
the problem of the flow in a fluid cell filling the space between two concentric spherical
surfaces with Kuwabara-type boundary conditions.

1. Introduction

Slow motion of a mass of particles relative to a viscous fluid has been studied extensively
because of its importance in practical applications. In order to construct tractable math-
ematical models of the flow systems involving particles, it is necessary to conform to a
number of simplifications. A dimensionless criterion, which determines the relative im-
portance of inertial and viscous effects, is the Reynolds number [3]. Stokes equations for
the steady flow of a viscous, incompressible fluid at small Reynolds number (creeping
flow) have been known for over one and a half centuries (1851). They connect the vector
velocity with the scalar total pressure field [3]. The total pressure and vorticity fields are
harmonic, while the velocity is biharmonic and divergence-free.

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 93–106
2000 Mathematics Subject Classification: 76D07, 35C10, 35D99
URL: http://dx.doi.org/10.1155/9775945143
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Complications often arise because of the complex geometry encountered in assem-
blages composed of particles of arbitrary shape. There are many efficient methods in use
to solve this kind of problems with Stokes flow, such as numerical computation, stream-
function techniques, and analytic-function methods [10]. One of the largest physical ar-
eas of importance concerns the construction of particle-in-cell models which are useful
in the development of simple but reliable analytical expressions for heat and mass trans-
fer in swarms of particles. The technique of cell models is based on the idea according to
which a large enough porous concentration of particles within a fluid can be represented
by many separate unit cells where every cell contains one particle. Thus, the considera-
tion of a full-dimensional porous media is being referred to as that of a single particle
and its fluid cover. That way, the mathematical formulation of any physical problem is
significantly simplified. For many interior and exterior flow problems involving small
particles, spherical geometry [6] provides very good approximation and stands for the
simplest geometry that can be employed. Although relative physical problems enjoy ro-
tational symmetry, we retain the nonaxisymmetric character of three-dimensional (3D)
flows.

The introduction of differential representations of the solutions of Stokes equations
[1, 8, 9, 10] serves to unify our own approach on all 3D incompressible fluid motions.
Based on the previous formulation of cell models, the problem is now focused on the use
of the appropriate representation that coincides with the physical problem. The major
advantage of the differential representations is that they provide us with the flow fields
for Stokes flow in terms of harmonic potentials. The most famous general spatial so-
lutions are the PN solution [8, 10], the Boussinesq-Galerkin solution [1, 10], and the
PNAU solution [9]. Recently, a method of connecting 3D differential representations has
been developed [2], where the PN and the Boussinesq-Galerkin differential representa-
tions were interrelated and connection formulae between the corresponding spherical
harmonic and biharmonic potentials were developed.

Here we are interested in the connection of the PN solution with the PNAU repre-
sentation in spherical coordinates. This is made possible by connecting the appropriate
eigenfunctions that generate the flow fields through these representations. Our aim is
to calculate the nonaxisymmetric flow fields, generated by the vector spherical harmonic
eigenfunctions [4, 7], through the PN representation and then to face the inverse problem
of determining those vector spherical harmonic and biharmonic eigenfunctions [4, 6, 10],
which lead to the same velocity and total pressure fields via the PNAU representation.
Furthermore, both the internal and the external flow problems are being examined. The
above procedure cannot be inverted as a consequence of the flexibility that the PN repre-
sentation enjoys as it compares to the PNAU solution. This indicates that the use of the
PN differential representation forms a more complete way to solve particle-in-cell flow
problems.

As a demonstration of the usefulness and the possibilities offered by the PN repre-
sentation, we derive the solution of the problem of creeping flow through a swarm of
stationary spherical particles, embedded within an otherwise quiescent Newtonian fluid
that moves with constant uniform velocity in the axial direction using the Kuwabara-type
boundary conditions [5].
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2. Fundamentals of stokes flow

Stokes flow which is characterized by steady, nonaxisymmetric 3D, creeping (Re � 1),
incompressible (density ρ = const), and viscous (dynamic viscosity µ = const) motion
around particles embedded within smooth, bounded domains Ω(R3) is governed by the
following set of partial differential equations [3]:

µ∆v(r)−∇P(r) = 0, r ∈Ω
(
R

3), (2.1)

∇· v(r) = 0, r ∈Ω
(
R

3), (2.2)

where v(r) is the biharmonic velocity field, P(r) is the harmonic total pressure field, and
r stands for the position vector. An immediate consequence of (2.1) is that, for creeping
flow, the generated pressure is compensated by the viscous forces while equation (2.2) se-
cures the incompressibility of the fluid. Once the velocity field is obtained, the harmonic
vorticity field is defined as

ω(r) =∇× v(r), r ∈Ω
(
R

3). (2.3)

Papkovich and Neuber [8] proposed the following 3D differential representation of
the solutions for Stokes flow, in terms of the harmonic potentials Φ(r) and Φ0(r):

vPN(r) =Φ(r)− 1
2
∇(

r ·Φ(r) +Φ0(r)
)
, r ∈Ω

(
R

3),

PPN(r) = PPN
0 −µ∇·Φ(r), r ∈Ω

(
R

3),
(2.4)

whereas PPN
0 is a constant pressure and

∆Φ(r) = 0, ∆Φ0(r) = 0, r ∈Ω
(
R

3). (2.5)

On the other hand, Palaniappan et al. [9] assumed another 3D differential representa-
tion for the solutions of Stokes equations as a function of the harmonic and biharmonic
potentials A(r) and B(r), respectively:

vPNAU(r) =∇×∇× (
rA(r)

)
+∇× (

rB(r)
)
, r ∈Ω

(
R

3),

PPNAU(r) = PPNAU
0 +µ

(
1 + r ·∇)

∆A(r), r ∈Ω
(
R

3),
(2.6)

where PPNAU
0 is a constant pressure, while

∆2A(r) = 0, ∆B(r) = 0, r ∈Ω
(
R

3), (2.7)

and ∆ and ∇ stand for the Laplacian and the gradient operators, respectively.
In what follows, we find the interrelation of these differential representations in or-

der to obtain connection formulae between the spherical harmonic (Φ,Φ0,B) and bihar-
monic (A) eigenfunctions. Putting it in a different way, given an eigenmode of one of the
representations, we look for the particular combination of eigenmodes of the other repre-
sentation that generates the same velocity and total pressure fields. Initially, the physically
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important internal and external fields of the velocity and the total pressure (v,P) are con-
structed using the representations (2.4) and (2.6). Since spherical geometry is employed,
we are using vector spherical harmonics [7] in order to simplify our calculations.

Furthermore, in order to demonstrate the usefulness of the PN differential represen-
tation, we use it to solve the Stokes flow problem within a fluid cell limited between
two concentric spherical surfaces. In this way, we are led to recover the solution of the
Kuwabara-type problem [5] for the small Reynolds number flow around spheres embed-
ded in a viscous fluid.

3. Vector spherical harmonic and biharmonic eigenfunctions

Introducing the spherical coordinate system [6] (ζ = cosθ, −1 ≤ ζ ≤ 1),

x1 = r
√

1− ζ2 cosϕ, x2 = r
√

1− ζ2 sinϕ, x3 = rζ , (3.1)

where 0 ≤ r < +∞, 0 ≤ θ ≤ π, and 0 ≤ ϕ < 2π, we define the sphere Br for r > 0 as the set

Br =
{

r ∈ R
3 | x2

1 + x2
2 + x2

3 ≤ r2}. (3.2)

The outward unit normal vector on the surface of the sphere r = r0 is furnished by the
formula

n̂
(
r0,ζ ,ϕ

)= (√
1− ζ2 cosϕ,

√
1− ζ2 sinϕ,ζ

)
= r

(
r0,ζ ,ϕ

)
r0

, (3.3)

where for any nondegenerate sphere Br0 , we have r0 > 0. Furthermore, |ζ| ≤ 1. The differ-
ential operators ∇ and ∆, in spherical coordinates, assume the forms

∇= r̂
∂

∂r
−
√

1− ζ2

r
ζ̂
∂

∂ζ
+

1

r
√

1− ζ2
ϕ̂

∂

∂ϕ
, (3.4)

∆= 1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

∂

∂ζ

[(
1− ζ2) ∂

∂ζ

]
+

1
r2
(
1− ζ2

) ∂2

∂ϕ2
, (3.5)

while r̂, ζ̂ , and ϕ̂ stand for the coordinate unit vectors of our system for r > 0 and |ζ| ≤ 1.
For every value of n = 0,1,2, . . . , there exist (2n + 1) linearly independent spherical

surface harmonics [4] given by

Yms
n (r̂) = Pm

n (ζ)

cosmϕ, s= e,

sinmϕ, s= o,
(3.6)

for m= 0,1,2, . . . ,n, |ζ| ≤ 1, ϕ∈ [0,2π), where∮
S2
Yms
n (r̂)Ym′s′

n′ (r̂)dS(r̂) = 4π
2n+ 1

(n+m)!
(n−m)!

δnn′δmm′δss′
1
εm

, (3.7)

with δi j , i = n,m,s, j = n′,m′,s′, the Kronecker delta, εm the Neumann factor (εm = 1,
m = 0, and εm = 2, m ≥ 1), and s denoting the even (e) or the odd (o) character of the
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spherical surface harmonics; Pm
n = Pm

n (ζ) are the associated Legendre functions of the
first kind [4] given by the relation

Pm
n (ζ) =

(
1− ζ2

)m/2

2nn!
dn+m

dζn+m

(
ζ2 − 1

)n
, |ζ| < 1, (3.8)

where n denotes the degree and m the order.
In spherical coordinates, the linear space of harmonic functions can be expressed via

the complete set of internal and external solid spherical harmonics, that is,

∆g(r) = 0 ⇐⇒ g(r) =
rnYms

n (r̂),

r−(n+1)Yms
n (r̂),

(3.9)

for n≥ 0, m= 0,1, . . . ,n, and s= e,o. Similarly, according to the representation theorem
of Almansi (1897) [10], every biharmonic function permits an appropriate decomposi-
tion into two harmonic functions h1(r) and h2(r), that is,

h(r) = h1(r) + r2h2(r) with ∆h1(r) = ∆h2(r) = 0. (3.10)

For every −1 ≤ ζ ≤ 1 and ϕ∈ [0,2π), the vector spherical surface harmonics [7] which
are defined by the relations

Pms
n (r̂) = r̂Yms

n (r̂), (3.11)

Bms
n (r̂) = 1√

n(n+ 1)

[
−
√

1− ζ2ζ̂
∂

∂ζ
+

1√
1− ζ2

ϕ̂
∂

∂ϕ

]
Yms
n (r̂), (3.12)

Cms
n (r̂) =− 1√

n(n+ 1)
r̂×

[
−
√

1− ζ2ζ̂
∂

∂ζ
+

1√
1− ζ2

ϕ̂
∂

∂ϕ

]
Yms
n (r̂), (3.13)

for any n≥ 0, m= 0,1, . . . ,n, and s= e,o, are pointwise perpendicular; that is,

Pms
n ·Cms

n = Cms
n ·Bms

n = Bms
n ·Pms

n = 0. (3.14)

Moreover they satisfy the orthogonality relations∮
S2

Pms
n (r̂) ·Pm′s′

n′ (r̂)dS(r̂) =
∮
S2

Bms
n (r̂) ·Bm′s′

n′ (r̂)dS(r̂)

=
∮
S2

Cms
n (r̂) ·Cm′s′

n′ (r̂)dS(r̂)

= 4π
2n+ 1

(n+m)
(n−m)

δnn′δmm′δss′
1
εm

,

(3.15)

where

εm =
1, m= 0,

2, m≥ 1.
(3.16)
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Thus, for any r ∈Ω(R3), the internal vector spherical harmonics [7] are provided as

N(i)ms
n (r) =∇(

rn+1Yms
n+1(r̂)

)= √
(n+ 1)(n+ 2)rnBms

n+1(r̂) + (n+ 1)rnPms
n+1(r̂) (3.17)

for n= 0,1,2, . . ., m= 0,1, . . . ,n+ 1, and s= e,o;

M(i)ms
n (r) =∇× (

rrnYms
n (r̂)

)= √
n(n+ 1)rnCms

n (r̂) (3.18)

for n= 1,2, . . ., m= 0,1, . . . ,n, and s= e,o;

G(i)ms
n (r) = r2n+1N(e)ms

n (r) =
√
n(n− 1)rnBms

n−1(r̂)−nrnPms
n−1(r̂) (3.19)

for n = 0,1,2, . . ., m = 0,1, . . . ,n− 1, and s = e,o. On the other hand, the external vector
spherical harmonics [7] assume the forms

N(e)ms
n (r) =∇(

r−nYms
n−1(r̂)

)= √
n(n− 1)r−(n+1)Bms

n−1(r̂)−nr−(n+1)Pms
n−1(r̂) (3.20)

for n= 1,2, . . ., m= 0,1, . . . ,n− 1, and s= e,o;

M(e)ms
n (r) =∇× (

rr−(n+1)Yms
n (r̂)

)= √
n(n+ 1)r−(n+1)Cms

n (r̂) (3.21)

for n= 1,2, . . ., m= 0,1, . . . ,n, and s= e,o;

G(e)ms
n (r) = r−(2n+1)N(i)ms

n (r)

=
√

(n+ 1)(n+ 2)r−(n+1)Bms
n+1(r̂) + (n+ 1)r−(n+1)Pms

n+1(r̂)
(3.22)

for n= 0,1,2, . . ., m= 0,1, . . . ,n+ 1, and s= e,o. Then, the following complete expansion
of any vector function u(r) which belongs to the kernel space of the operator ∆ is ob-
tained:

u(r) =
∑
s=e,o

a(i)0s
0 N(i)0s

0 (r) +
∑
s=e,o

a(i)1s
0 N(i)1s

0 (r)

+
∑
s=e,o

c(e)0s
0 G(e)0s

0 (r) +
∑
s=e,o

c(e)1s
0 G(e)1s

0 (r)

+
∞∑
n=1

n+1∑
m=0

∑
s=e,o

a(i)ms
n N(i)ms

n (r) +
∞∑
n=1

n−1∑
m=0

∑
s=e,o

a(e)ms
n N(e)ms

n (r)

+
∞∑
n=1

n∑
m=0

∑
s=e,o

b(i)ms
n M(i)ms

n (r) +
∞∑
n=1

n∑
m=0

∑
s=e,o

b(e)ms
n M(e)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

c(i)ms
n G(i)ms

n (r) +
∞∑
n=1

n+1∑
m=0

∑
s=e,o

c(e)ms
n G(e)ms

n (r)

(3.23)

for every r ∈Ω(R3). In the interest of making this work more complete and independent,
we provide in an appendix some relations between the vector spherical harmonics. The
relevant information and recurrence relations for the associated Legendre functions of
the first kind can be found in [4].
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4. PN eigenflows

In view of equations (2.4), (2.5) and (3.9), (3.23), the harmonic eigenfunctions Φ(r) and

Φ0(r), r ∈Ω(R3), with constant coefficients a(i)ms
n , b(i)ms

n , c(i)ms
n , a(e)ms

n , b(e)ms
n , c(e)ms

n , and
d(i)ms
n , d(e)ms

n , respectively,

Φ(r) =
∞∑
n=0

n+1∑
m=0

∑
s=e,o

a(i)ms
n N(i)ms

n (r) +
∞∑
n=1

n∑
m=0

∑
s=e,o

b(i)ms
n M(i)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

c(i)ms
n G(i)ms

n (r) +
∞∑
n=1

n−1∑
m=0

∑
s=e,o

a(e)ms
n N(e)ms

n (r)

+
∞∑
n=1

n∑
m=0

∑
s=e,o

b(e)ms
n M(e)ms

n (r) +
∞∑
n=0

n+1∑
m=0

∑
s=e,o

c(e)ms
n G(e)ms

n (r),

(4.1)

Φ0(r) =
∞∑
n=0

n∑
m=0

∑
s=e,o

d(i)ms
n

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

d(e)ms
n

(
r−(n+1)Yms

n (r̂)
)

(4.2)

generate the velocity and total pressure fields vPN, PPN. In terms of (3.11)–(3.22) and
(A.1)–(A.11), the PN flow fields are written as

vPN(r) =
∞∑
n=0

n+1∑
m=0

∑
s=e,o

[
− (n− 1)

2
a(i)ms
n − 1

2
d(i)ms
n+1 +

(n+ 2)(2n+ 5)
2(2n+ 3)

c(i)ms
n+2 r2

]
N(i)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

[
(n+ 2)

2
a(e)ms
n − 1

2
d(e)ms
n−1 − (n− 1)(2n− 3)

2(2n− 1)
c(e)ms
n−2 r2

]
N(e)ms

n (r)

+
∞∑
n=1

n∑
m=0

∑
s=e,o

[
b(i)ms
n

]
M(i)ms

n (r) +
∞∑
n=1

n∑
m=0

∑
s=e,o

[
b(e)ms
n

]
M(e)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

[
(n− 1)

(2n− 1)
c(i)ms
n

]
G(i)ms

n (r)

+
∞∑
n=0

n+1∑
m=0

∑
s=e,o

[
(n+ 2)

(2n+ 3)
c(e)ms
n

]
G(e)ms

n (r),

(4.3)

PPN(r) = PPN
0 +µ

{ ∞∑
n=0

n∑
m=0

∑
s=e,o

(n+ 1)(2n+ 3)c(i)ms
n+1

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

n(2n− 1)c(e)ms
n−1

(
r−(n+1)Yms

n (r̂)
)} (4.4)

for every r ∈Ω(R3).
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5. PNAU eigenflows

According to (2.6), (2.7) and (3.9), (3.10), (3.23), the biharmonic and harmonic eigen-

functions A(r) and B(r), r ∈Ω(R3), with constant coefficients f (i)ms
n , g(i)ms

n , f (e)ms
n , g(e)ms

n ,

and e(i)ms
n , e(e)ms

n , respectively,

A(r) =
∞∑
n=0

n∑
m=0

∑
s=e,o

f (i)ms
n

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

f (e)ms
n

(
r−(n+1)Yms

n (r̂)
)

+ r2
∞∑
n=0

n∑
m=0

∑
s=e,o

g(i)ms
n

(
rnYms

n (r̂)
)

+ r2
∞∑
n=0

n∑
m=0

∑
s=e,o

g(e)ms
n

(
r−(n+1)Yms

n (r̂)
)
,

(5.1)

B(r) =
∞∑
n=0

n∑
m=0

∑
s=e,o

e(i)ms
n

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

e(e)ms
n

(
r−(n+1)Yms

n (r̂)
)

(5.2)

generate the PNAU velocity and total pressure fields vPNAU and PPNAU by virtue of (3.11)–
(3.22) as well as (A.1)–(A.11). That is,

vPNAU(r) =
∞∑
n=0

n+1∑
m=0

∑
s=e,o

[
(n+ 2) f (i)ms

n+1 +
(n+ 2)(2n+ 5)

(2n+ 3)
g(i)ms
n+1 r2

]
N(i)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

[
− (n− 1) f (e)ms

n−1 − (n− 1)(2n− 3)
(2n− 1)

g(e)ms
n−1 r2

]
N(e)ms

n (r)

+
∞∑
n=1

n∑
m=0

∑
s=e,o

[
e(i)ms
n

]
M(i)ms

n (r) +
∞∑
n=1

n∑
m=0

∑
s=e,o

[
e(e)ms
n

]
M(e)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

[
2(n− 1)
(2n− 1)

g(i)ms
n−1

]
G(i)ms

n (r)

+
∞∑
n=0

n+1∑
m=0

∑
s=e,o

[
2(n+ 2)
(2n+ 3)

g(e)ms
n+1

]
G(e)ms

n (r),

(5.3)

PPNAU(r) = PPNAU
0 +µ

{ ∞∑
n=0

n∑
m=0

∑
s=e,o

2(n+ 1)(2n+ 3)g(i)ms
n

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

2n(2n− 1)g(e)ms
n

(
r−(n+1)Yms

n (r̂)
)}

,

(5.4)

for every r ∈Ω(R3).

6. Comparison of the PN and PNAU representations

In this section, our aim is to find the exact harmonic and biharmonic potentials given
by equations (4.1), (4.2) and (5.1), (5.2), which lead to the same velocity and total pres-
sure fields. From this point of view, we look for connection formulae for the differential
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representations that secure the identities

vPN(r) = vPNAU(r), PPN(r) = PPNAU(r), r ∈Ω
(
R

3). (6.1)

By virtue of (6.1), we proceed by interrelating the PN flow fields (4.3), (4.4) with the
corresponding PNAU flow fields (5.3), (5.4). This correlation leads to connection formu-
lae that interrelate the corresponding constant coefficients of the potentials (4.1), (4.2),
(5.1), and (5.2). What is actually happening is that the connection of the velocity and
total pressure fields has been transferred to the corresponding connection of the constant
coefficients of the potentials. Indeed, after some calculations, we obtain the relations

c(i)ms
n+1 = 2g(i)ms

n for n= 0,1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.2)

c(e)ms
n−1 = 2g(e)ms

n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.3)

b(i)ms
n = e(i)ms

n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.4)

b(e)ms
n = e(e)ms

n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.5)

(n− 2)a(i)ms
n−1 +d(i)ms

n =−2(n+ 1) f (i)ms
n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.6)

(n+ 3)a(e)ms
n+1 −d(e)ms

n =−2n f (e)ms
n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.7)

which establish the connection between the PN and PNAU representations at the coef-
ficient level. The cases that do not follow the general relations (6.2)–(6.7) for n = 0 are
treated separately. These concern the coefficients

g(e)0e
0 , e(i)0e

0 , e(e)0e
0 , d(i)0e

0 , f (i)0e
0 , f (e)0e

0 ∈ R. (6.8)

Furthermore, the interrelation of the total pressures implies the equation of the constant
pressures defined earlier, that is,

PPN
0 = PPNAU

0 . (6.9)

Flows of zero vorticity are irrotational flows. Consequently, irrotational fields force the
corresponding terms of the potentials, or of the flow fields, to vanish. Then, according to
(4.3) and (5.3) of the velocity fields, in view of (2.3) and the relations (A.7), (A.9), and
(A.11), the following constant coefficients are set to zero on the basis of orthogonality
arguments:

c(i)ms
n+1 = g(i)ms

n = 0 for n= 0,1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.10)

c(e)ms
n−1 = g(e)ms

n = 0 for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.11)

b(i)ms
n = e(i)ms

n = 0 for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.12)

b(e)ms
n = e(e)ms

n = 0 for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o. (6.13)
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Even though the biharmonic part of the biharmonic potential A and the harmonic
potential B are connected directly to the G-component and the M-component of the
harmonic potential Φ, respectively, as shown from the general equations (6.2)–(6.5), the
procedure of interrelation is not invertible. The reason for this lack of invertibility is due
to the general connection relations (6.6) and (6.7), where the harmonic part of the bihar-
monic potential A is given through the N-component of the harmonic potential Φ and
through the harmonic potential Φ0. The transformation from one representation to the
other is not obtainable analytically in the sense that one can start with the PN differential
representation and regain the results from the PNAU differential solution through the
relations above, but one cannot come the opposite way since two sets of internal and ex-
ternal constant coefficients of the PN solution cannot be determined. Consequently, we
deal with a higher number of degrees of freedom for the PN differential representation,
a fact that implies the flexibility of the PN representation. In other words, for the same
eigenflow, the PN representation lives in a higher-dimensional space than the PNAU one.

7. Application: the Kuwabara sphere-in-cell model

In order to demonstrate the usefulness of the PN differential representation ((2.4), (2.5)
or (4.3), (4.4)), we use it to solve the axisymmetric Stokes flow problem through a swarm
of stationary spherical particles, embedded within an otherwise quiescent Newtonian
fluid that moves with constant uniform velocity in the polar direction. In other words,
according to the idea of particle-in-cell models described in the introduction, we are in-
terested in solving the creeping flow within a fluid cell limited between two concentric
spherical surfaces.

Two concentric spheres are considered. The inner one, indicated by Sα, at r = α, is solid
and stationary. It lives within a spherical layer, which is confined by the outer sphere in-
dicated by Sb, at r = b. A uniformly approaching velocity of magnitude U , in the negative
direction of the x3-axis, generates the axisymmetric flow in the fluid layer between the
two spheres. The boundary conditions assume the forms

υr = 0 on r = α, (7.1)

υζ = 0 on r = α, (7.2)

υr =−Uζ on r = b, (7.3)

ωϕ ≡ ϕ̂ ·ω = 0 on r = b, (7.4)

where υr and υζ are the r and ζ components of the axisymmetric PN velocity field and ωϕ

refers to the ϕ component of the vorticity field given by (2.3). Equations (7.1) and (7.2)
express the nonslip flow condition. Equation (7.3) implies that there is a flow across the
boundary of the fluid envelope Sb. Furthermore, according to the Kuwabara argument,
the vorticity is assumed to vanish on the external sphere, as shown by equation (7.4). This
completes the statement of a well-posed boundary value problem.

Since the PN representation covers 3D flow fields, for 2D flows, as in our case, we are
obliged to make a considerable reduction considering rotational symmetry. This is attain-
able and requires the same velocity field on every meridian plane. That is, the velocity is
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independent of the azimuthal angle ϕ:

∂vPN(r)∂ϕ= 0, r ∈Ω
(
R

3), (7.5)

and its vector lives on a meridian plane:

ϕ̂ · vPN(r) = 0, r ∈Ω
(
R

3). (7.6)

Now, imposing the axisymetric conditions (7.5) and (7.6) to our representation, the
velocity field (4.3) is written in a suitable form:

vPN(r,ζ) = υPN
r (r,ζ)r̂ + υPN

ζ (r,ζ)ζ̂ , r > 0, |ζ| ≤ 1, (7.7)

where the components of the velocity are expressed in terms of the radial component and
Legendre functions of the first kind via

υPN
r (r,ζ) =

∞∑
n=0

1
2

{
(n+ 1)

(
(n+ 3)

(2n+ 3)
c̃(e)
n+1 + d̃(e)

n

)
r−(n+2) +

n(n+ 1)
(2n− 1)

c̃(e)
n−1r

−n

−n
(

(n− 2)
(2n− 1)

c̃(i)
n−1 + d̃(i)

n

)
rn−1 − n(n+ 1)

(2n+ 3)
c̃(i)
n+1r

n+1
}
Pn(ζ),

(7.8)

υPN
ζ (r,ζ) =

∞∑
n=1

1
2

{(
(n+ 3)

(2n+ 3)
c̃(e)
n+1 + d̃(e)

n

)
r−(n+2) +

(n− 2)
(2n− 1)

c̃(e)
n−1r

−n

+
(

(n− 2)
(2n− 1)

c̃(i)
n−1 + d̃(i)

n

)
rn−1 +

(n+ 3)
(2n+ 3)

c̃(i)
n+1r

n+1
}
P1
n(ζ),

(7.9)

while for the total pressure we obtain, from equation (4.4),

PPN(r,ζ) = PPN
0 −µ

∞∑
n=0

{
(n+ 1)c̃(i)

n+1r
n −nc̃(e)

n−1r
−(n+1)

}
Pn(ζ), r > 0, |ζ| ≤ 1. (7.10)

The vorticity field given in (2.3), in view of (7.7), (7.8), and (7.9), is easily confirmed to
be expressible in

ωPN(r,ζ) = ϕ̂ωPN
ϕ (r,ζ), r > 0, |ζ| ≤ 1, (7.11)

whereas

ωPN
ϕ (r,ζ) =

∞∑
n=1

{
c̃(i)
n+1r

n + c̃(e)
n−1r

−(n+1)
}
P1
n(ζ). (7.12)

The constant coefficients c̃(i)
n , c̃(e)

n , d̃(i)
n , and d̃(e)

n , n≥ 0, must be determined from the ap-
propriate boundary conditions.
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In order to apply the boundary conditions (7.1)–(7.4), we use the expressions (7.8),
(7.9), and (7.12) as well as certain recurrence and orthogonality relations for the Le-
gendre functions [4]. After some extensive algebra, one obtains a complicated system of
linear algebraic equations involving the unknown constant coefficients, where only the
first term provides us with the solution and then we obtain the corrected solution of the
Kuwabara-type boundary value problem [5], that is,

vPN(r,ζ
)= υPN

r

(
r,ζ

)
r̂ + υPN

ζ

(
r,ζ

)
ζ̂ , (7.13)

υPN
r

(
r,ζ

)= Uζ

2K

[
3

5�3

(
r

α

)2

−
(

2 +
1
�3

)
+ 3

(
α

r

)
−
(

1− 2
5�3

)(
α

r

)3]
, (7.14)

υPN
ζ

(
r,ζ

)=−U
√

1− ζ2

2K

[
6

5�3

(
r

α

)2

−
(

2 +
1
�3

)
+

3
2

(
α

r

)
+

1
2

(
1− 2

5�3

)(
α

r

)3]
, (7.15)

ωPN(r,ζ
)= ϕ̂

3U
√

1− ζ2

2αK

[
− 1
�3

(
r

α

)
+
(
α

r

)2]
, (7.16)

PPN(r,ζ
)= PPN

0 +
3µUζ

2αK

[
2
�3

(
r

α

)
+
(
α

r

)2]
, (7.17)

where � = b/α > 1, K = (�− 1)3(1 + 3� + 6�2 + 5�3)/5�6, and α, b are the radii of the con-
centric spheres. We remark here on the simple way one can obtain the solution preserving
at the same time the mathematical rigor.

8. Conclusions

A method for connecting two differential representations for nonaxisymmetric Stokes
flow was developed. Based on this method, we examined the Papkovich-Neuber (PN)
[8, 10] and the Palaniappan et al. (PNAU) [9] differential representations, which offer so-
lutions for such flow problems in spherical geometry. The important physical flow fields
(velocity, total pressure) are presented in terms of vector spherical harmonics. Further-
more, interrelation of the flow fields leads to connection formulae for the constant co-
efficients of the potentials, using the corresponding potentials as a function of spherical
eigenfunctions. An immediate consequence of the interrelation of our representations for
Stokes flow is that this procedure cannot be inverted. Consequently, one can always cal-
culate the flow fields via the PNAU representation once the PN eigenmodes are known,
but one cannot obtain relations that provide the PN potentials through the harmonic and
biharmonic PNAU potentials.

An application of the present theory to an axisymmetric Stokes flow problem in a
spherical cell (as a mean of modeling flow through a swarm of spherical particles) with
the help of the PN differential representation was provided. An extension of the problem
presented here to the case of ellipsoidal geometry for the creeping flow of small ellipsoidal
particles is under current investigation.
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Appendix

For completeness, we present the following relations between the vector surface and solid
spherical harmonics:

Bms
n ×Pms

n = Yms
n Cms

n , Pms
n ×Cms

n = Yms
n Bms

n , (A.1)

Bms
n = r̂×Cms

n , Cms
n = Bms

n × r̂, (A.2)

Pms
n (r̂) = r−n+1

(2n+ 1)
N(i)ms

n−1 (r)− rn+2

(2n+ 1)
N(e)ms

n+1 (r), (A.3)

Bms
n (r̂) =

√
n+ 1
n

r−n+1

(2n+ 1)
N(i)ms

n−1 (r) +
√

n

n+ 1
rn+2

(2n+ 1)
N(e)ms

n+1 (r), (A.4)

Cms
n (r̂) = r−n

2
√
n(n+ 1)

M(i)ms
n (r) +

rn+1

2
√
n(n+ 1)

M(e)ms
n (r), (A.5)

for n= 0,1,2, . . ., m= 0,1, . . . ,n+ 1, s= e,o, and r ∈Ω(R3). Finally, for the vector spheri-
cal harmonics, one can easily derive the following relations:

∇·N(i)ms
n (r) = 0, ∇·N(e)ms

n (r) = 0, (A.6)

∇×N(i)ms
n (r) = 0, ∇×N(e)ms

n (r) = 0, (A.7)

∇·M(i)ms
n (r) = 0, ∇·M(e)ms

n (r) = 0, (A.8)

∇×M(i)ms
n (r) = (n+ 1)N(i)ms

n−1 (r), ∇×M(e)ms
n (r) =−nN(e)ms

n+1 (r), (A.9)

∇·G(i)ms
n (r) =−n(2n+ 1)rn−1Yms

n−1(r̂),

∇·G(e)ms
n (r) =−(n+ 1)(2n+ 1)r−(n+2)Yms

n+1(r̂),
(A.10)

∇×G(i)ms
n (r) =−(2n+ 1)M(i)ms

n−1 (r), ∇×G(e)ms
n (r) = (2n+ 1)M(e)ms

n+1 (r). (A.11)
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[8] H. Neuber, Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie, Z. Angew.

Math. Mech. 14 (1934), 203–212 (German).



106 Differential representations for Stokes flow

[9] D. Palaniappan, S. D. Nigam, T. Amaranath, and R. Usha, Lamb’s solution of Stokes’s equations:
a sphere theorem, Quart. J. Mech. Appl. Math. 45 (1992), no. 1, 47–56.

[10] X. Xu and M. Wang, General complete solutions of the equations of spatial and axisymmetric
Stokes flow, Quart. J. Mech. Appl. Math. 44 (1991), no. 4, 537–548.

George Dassios: Division of Applied Mathematics, Department of Chemical Engineering, Uni-
versity of Patras, 26504 Patras; Institute of Chemical Engineering and High Temperature Chemical
Processes (ICE/HT), Foundation for Research Technology-Hellas (FORTH), 26504 Patras, Greece

E-mail address: dassios@chemeng.upatras.gr

Panayiotis Vafeas: Division of Applied Mathematics, Department of Chemical Engineering, Uni-
versity of Patras, 26504 Patras; Institute of Chemical Engineering and High Temperature Chemical
Processes (ICE/HT), Foundation for Research Technology-Hellas (FORTH), 26504 Patras, Greece

E-mail address: vafeas@chemeng.upatras.gr

mailto:dassios@chemeng.upatras.gr
mailto:vafeas@chemeng.upatras.gr


ZERO-DISPERSION LIMIT FOR INTEGRABLE EQUATIONS
ON THE HALF-LINE WITH LINEARISABLE DATA

A. S. FOKAS AND S. KAMVISSIS
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We study the zero-dispersion limit for certain initial boundary value problems for the
defocusing nonlinear Schrödinger (NLS) equation and for the Korteweg-de Vries (KdV)
equation with dominant surface tension. These problems are formulated on the half-line
and they involve linearisable boundary conditions.

1. An initial boundary value problem for soliton equations

In recent years, there has been a series of results of Fokas and collaborators on boundary
value problems for soliton equations (see [3] for a comprehensive review). The method
of Fokas in [3] goes beyond existence and uniqueness. In fact, it reduces these problems
to Riemann-Hilbert factorisation problems in the complex plane, thus generalising the
existing theory which reduces initial value problems to Riemann-Hilbert problems via
the method of inverse scattering. One of the main advantages of the Riemann-Hilbert
formulation is that one can use recent powerful results on the asymptotic behaviour of
solutions to these problems (as some parameter goes to infinity) to derive asymptotics
for the solution of the associated soliton equation. For the study of the long-time asymp-
totics, such methods were pioneered by Its and then made rigorous and systematic by
Deift and Zhou; the method is known as “nonlinear steepest descent” in analogy with the
linear steepest descent method which is applicable to asymptotic problems for Fourier-
type integrals (see, e.g., [2]). A generalisation of the steepest descent method developed
in [1] is able to give rigorous results for the so-called “semiclassical” or “zero-dispersion”
limit of the solution of the Cauchy problem for (1 + 1)-dimensional integrable evolution
equations, in the case where the Lax operator is selfadjoint. The method has been further
extended in [9] for the “nonselfadjoint” case.

In a recent paper [8], Kamvissis, by making use of the nonlinear steepest descent
method, has studied the “zero-dispersion” limit of the initial boundary value problem for
the (1 + 1)-dimensional, integrable, defocusing, nonlinear Schrödinger (NLS) equation
on the half-line, for quite general initial and boundary data. In this paper, we consider

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 107–116
2000 Mathematics Subject Classification: 37K15
URL: http://dx.doi.org/10.1155/9775945143
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the simplest case of “linearisable” data. More precisely, we consider the two “archetypal”
soliton equations

ihut(x, t) +h2uxx(x, t)− 2
∣∣u(x, t)

∣∣2
u(x, t) = 0, x ≥ 0, t ≥ 0,

u(x,0) = u0(x) ∈ S
(
R

+), 0 < x <∞,
(1.1)

with the linearisable boundary condition

ux(0, t)− χu(0, t) = 0, t > 0, (1.2)

for some constant χ ≥ 0, where h is the semiclassical parameter which is assumed to be
small and positive and S(R+) denotes the Schwartz class on [0,∞);

ut(x, t) +ux(x, t) + 6uux(x, t)−h2uxxx(x, t) = 0, x ≥ 0, t ≥ 0,

u(x,0) = u0(x) ∈ S
(
R

+), 0 < x <∞,
(1.3)

with the linearisable boundary condition

u(0, t) = χ, uxx(0, t) = χ + 3χ2, t ≥ 0, (1.4)

for some constant χ, where h is the dispersion parameter which is assumed to be small
and positive.

It is well known that these equations admit a “Lax-pair” formulation. Namely, these
equations are the compatibility condition for the equations Lµ= 0 and Bµ= 0, where L
and B are differential operators on a Hilbert space. In the NLS equation case, for example,
they are given by

L=
(
∂x − ik iu
−iū ∂x + ik

)
,

B =
(
ih∂t + 4ik2 + i|u|2 −2ku− iut

−2kū+ iūt ih∂t − i|u|2

)
.

(1.5)

Here, the bar denotes complex conjugation, k is the spectral variable, and u = u(x, t) is
the solution of (1.1).

The traditional method of solving initial value problems for soliton equations that ad-
mit a Lax-pair formulation is to focus on the operator L and apply the theory of scattering
and inverse scattering to this operator.

On the other hand, one of the main ideas of the method of Fokas is that for initial
boundary value problems, the two operators L and B should be on an equal footing. The
scattering transform should be applied to both operators simultaneously, while a so-called
global relation has to be imposed on the data to ensure compatibility (see relation (2.6)).
The global relation will ensure existence, uniqueness, and the validity of the Riemann-
Hilbert formulation.
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2. The Riemann-Hilbert problem

As shown in [4], initial boundary value problems for integrable evolution PDEs can be
reduced to a Riemann-Hilbert factorisation problem, under the special assumption that
the so-called global relation, a condition on the given data, holds (see relation (2.6)).

Consider first the NLS equation with general boundary conditions. Namely, either
u(0, t), ux(0, t), or a relation between u(0, t) and ux(0, t) is given. The situation for
Korteweg-de Vries (KdV) equation is similar where two boundary conditions are given.

Let Σ be the contour R∪ iR with the following orientation:

(i) the real axis is oriented from left to right,
(ii) the positive imaginary axis is oriented from infinity towards zero,

(iii) the negative imaginary axis is oriented from infinity towards zero.

We use the following convention: the +-side of an oriented contour is always to its left,
according to the given orientation.

Letting M+ and M− denote the limits of M on Σ from left and right, respectively, we
define the Riemann-Hilbert factorisation problem

M+(x, t,k) =M−(x, t,k)J(x, t,k), (2.1)

where

J(x, t,k) =


J−1
4 , k ∈ R+,

J−1
1 , k ∈ iR+,

J−1
3 , k ∈ iR−,

J2 = J3J
−1
4 J1, k ∈ R

−,

(2.2)

with

J1 =
(

1 0
Γ(k)e2iΘ 1

)
,

J3 =
(

1 −Γ̄(k̄)e−2iΘ

0 1

)
,

J4 =
(

1 −γ(k)e−2iΘ

γ̄(k)e2iΘ 1−∣∣γ(k)
∣∣2

)
,

Θ(x, t,k) = θ

h
, θ = kx+ 2k2t.

(2.3)

The functions γ and Γ are defined in terms of the spectral functions of the problem (see
[5, (2.25), (2.28)]), with important analyticity properties (see [5, (2.21), (2.22)]). In par-
ticular,

Γ(k) = 1

a(k)
(
a(k)

(
Ā
(
k̄
)
/B̄
(
k̄
))− b(k)

) , (2.4)
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where a, b are the spectral functions for the x-problem and A, B are the spectral functions
for the t-problem. The functions a, b are analytic and bounded in the upper half-plane,
while A, B are analytic and bounded in the first and third quadrants of the k-plane.

The solution of the NLS equation can be recovered from the solution of (2.1) as fol-
lows:

u(x, t) = 2ih lim
k→∞

(
kM12(x, t,k)

)
, (2.5)

where the index 12 denotes the (12)-entry of a matrix.
The following “global relation” is imposed on the scattering data:

a(k)B(k)− b(k)A(k) = e4ik2Tc(k), (2.6)

where c(k) is analytic and bounded for Im k > 0, and c(k) =O(1/k) as k →∞. Here, T is
the time up to which we solve the initial boundary value problem for NLS. In general, A,
B are functions of T .

There exists a complicated relation between u(0, t) and ux(0, t); the global relation is
the expression of this in the spectral space.

In our particular case (problem (1.1)), T =∞ and the global relation becomes

a(k)B(k)− b(k)A(k) = 0 (2.7)

for arg(k) ∈ [0,π/2].
The KdV is treated similarly. The contour ΣKdV consists of the real line oriented from

left to right, together with the curves

l+ =
{
k = kR + ikI , kI > 0,

1
4

+ 3k2
R − k2

I = 0
}

,

l− =
{
k = kR + ikI , kI < 0,

1
4

+ 3k2
R − k2

I = 0
} (2.8)

oriented from right to left. Instead of (2.1), the Riemann-Hilbert problem becomes

MKdV
+ (x, t,k) =MKdV

− (x, t,k)JKdV(x, t,k), (2.9)

where

JKdV(x, t,k) =

(
JKdV
1

)−1
, k ∈ l−,(

JKdV
3

)−1
, k ∈ l+,

JKdV
2 = JKdV

3

(
JKdV
4

)−1
JKdV
1 , k ∈ R,

(2.10)
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with

JKdV
1 =

(
1 0

Γ(k)e2iΘKdV
1

)
,

JKdV
3 =

(
1 −Γ̄(k̄)e−2iΘKdV

0 1

)
,

JKdV
4 =

(
1 −γ(k)e−2iΘKdV

γ̄(k)e2iΘKdV
1−∣∣γ(k)

∣∣2

)
,

ΘKdV(x, t,k) = θKdV

h
, θKdV =−kx+

(
k+ 4k3)t.

(2.11)

Here, Γ is still defined via (2.4) and the spectral functions a, b, A, and B still satisfy (2.7),
where of course these functions are now expressed in terms of the KdV spectral problems.

3. Linearisable data

In general, the global relation together with the definition of A(k) and B(k) imply a
nonlinear Volterra integral equation for the missing boundary values. For example, it is
shown in [5] that in the case of the defocusing NLS equation with q(0, t) = f0(t) given, the
unknown boundary value qx(0, t) = f1(t) satisfies a nonlinear Volterra equation which
has a global solution.

We note that the analogous step for linear evolution equations is solved by algebraic
manipulations [3]. This is a consequence of the invariance of the unknown terms in the
global relation under k→ ν(k), where ω(ν(k)) = ω(k) and ω is k2 and k+ 4k3 for the NLS
and KdV, respectively. Unfortunately, the global relation now involves the solution of the
t-problem Φ(t,k) which in general breaks the invariance. However, for a particular class
of boundary conditions, this invariance survives. This is precisely the class of “linearisable
problems,” namely a class of problems for which A(k) and B(k) can be explicitly written
in terms of a(k) and b(k).

It is shown in [4] that for the NLS equation with the boundary condition (1.2),

B(k)
A(k)

=− 2k+ iχ

2k− iχ

b(−k)
a(−k)

, (3.1)

while for the KdV with the boundary condition (1.4),

B(k)
A(k)

= f (k)b
(
ν(k)

)− a
(
ν(k)

)
f (k)a

(
ν(k)

)− b
(
ν(k)

) , (3.2)

where

ν2 + kν + k2 +
1
4
= 0,

f (k) = ν + k

ν− k

(
1− 4νk

χ

)
.

(3.3)
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Now we restrict ourselves to NLS equation first. It is then easy to see that B/A is analytic
and O(1/k) in the first quadrant. Hence, the coefficient Γ is analytic (at least) in the first
quadrant of the k-plane, and bounded there.

This has an important consequence. Noting the decay properties of the term exp(2iΘ)
as k → ∞ in the first quadrant, it is immediate that the positive imaginary axis of the
contour can be deformed clockwise to the positive real part. This deformation is exact,
not approximate.

Similarly, the negative imaginary part of the contour can be deformed to the negative
real axis. We end up with a Riemann-Hilbert problem with jumps only along the real axis.
In fact, let

N(x, t,k) =M(x, t,k), arg(k) ∈
(
π

2
,
3π
2

)
,

N(x, t,k) =M(x, t,k)J−1
1 , arg(k) ∈

(
0,
π

2

)
,

N(x, t,k) =M(x, t,k)J−1
3 , arg(k) ∈

(
3π
2

,2π
)
.

(3.4)

The Riemann-Hilbert problem becomes

N+(x, t,k) =N−(x, t,k)J(x, t,k), k ∈ R, lim
k→∞

N(x, t,k) = I ,

where JN (x, t,k) =
(

1
(
γ− Γ̄

)
(k)e−2iΘ

−(γ̄−Γ
)
(k)e2iΘ 1−∣∣γ(k)

∣∣2

)
,

(3.5)

and formula (2.5) holds with N instead of M. Again, we stress that problems (2.1) and
(3.5) are exactly equivalent, not just approximately equivalent.

Note that for k ≥ 0, γ(k) − Γ̄(k) = 0. This follows from the definition in (2.4) and
the global relation (2.6). For negative k, γ(k) − Γ̄(k) = (bA− aB)/(āA− b̄B) has all the
smoothness and decay properties that are required from a bona fide reflection coefficient
corresponding to a realised potential. For example, if the initial data u0 belongs to the
Schwartz class of R+, then a and b are also Schwartz, while A and B are smooth and
bounded. Hence, R= γ− Γ̄ belongs to the Schwartz class of R. There is a unique potential
v0 corresponding to R, which is a continuation of u0. The Riemann-Hilbert problem (3.5)
then gives the evolution of the solution to the NLS equation under initial data v0.

Thus, we have shown that, in the linearisable case for NLS equation, the half-line prob-
lem can be recovered from the solution of the full real line problem by appropriately
continuing the initial data.

The above observations are an immediate consequence of the question of studying
the semiclassical limit of NLS equation. Since the initial boundary value problem can be
considered as a restriction of an initial value problem and since the initial value problem
for NLS equation is well understood (studied by Jin et al. in [6, 7]), the results for the
initial boundary value problem are recovered immediately.
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More precisely, with the introduction of a small dispersive constant h, the changes in
the Riemann-Hilbert problem (2.1) will be as follows:

(i) x, t will be replaced by x/h, t/h;
(ii) the coefficients γ, Γ will now be dependent on h.

Since the deformation leading to (3.5) is exact, that is, there is no error (possibly de-
pendent on h), the reduction to a Riemann-Hilbert problem on the line is possible, ex-
actly as in the h= 1 case.

Phenomenologically, one sees that the half-plane x, t ≥ 0 can be divided into two re-
gions. In the first “smooth” region, strong semiclassical limits exist and satisfy the for-
mally limiting system. In the NLS equation case, letting ρ = |u|2, µ = hIm(ūux), the
strong limits ρ̃, µ̃, as h→ 0, exist and satisfy

ρ̃t + µ̃x = 0, µ̃t +
(
µ̃2

ρ̃
− ρ̃2

2

)
x
= 0. (3.6)

In the second “turbulent” region, fast oscillations appear that can be described in terms
of slowly modulating finite-gap solutions. Only weak limits exist for ρ, µ as h→ 0 and they
can be expressed in terms of the solutions of the so-called Whitham system. Rigorous
asymptotic formulae for ρ, µ are also easily available (see, e.g., [9]).

In the case of the KdV equation, even with the appropriate changes of contour and
phase, the situation is more complicated. It is not true anymore, even for linearisable
data, that the half-line problem can be recovered from the solution of the full real line
problem by appropriately continuing the initial data, for any value of the small dispersion
parameter h. However, we will show that this reduction is possible asymptotically as h→ 0.

Denote by D1 and D2 the domains bounded by l+ ∪ R and l− ∪ R, respectively. In
order to follow the argument used above for the NLS equation, we need to “deform” the
curves l− and l+ to the real line. This is not possible because Γ̄(k̄)e−2iΘKdV

and Γ(k)e2iΘKdV

are not bounded as k →∞ in the domains D1 and D2, respectively. What we can do is to
“conjugate away” the jumps on l− and l+ by introducing an auxiliary Riemann-Hilbert
problem which can be reduced to a scalar (hence explicitly solvable) Riemann-Hilbert
problem. This is possible because of the triangularity of the jump matrices JKdV

1 and JKdV
3 .

In the end, we still obtain a Riemann-Hilbert problem on the real line, which, however,
is not of the “standard” KdV form, at least for general h. As long as we are only interested
in the asymptotics h→ 0, though, the reduction to a “standard” Riemann-Hilbert prob-
lem is possible. This means that the already existing analysis of the zero-dispersion limit
of KdV on the full line (see [10, 11, 12, 13]) is after all applicable.

More precisely, following [8], we consider the following Riemann-Hilbert problem:

L+(x, t,k) = L−(x, t,k)JKdV(x, t,k), (3.7)

where

JKdV(x, t,k) = (
JKdV
3

)−1
, k ∈ l+, (3.8)
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with

JKdV
3 =

(
1 −Γ̄(k̄)e−2iΘKdV

0 1

)
, ΘKdV(x, t,k) = θKdV

h
, (3.9)

where

θKdV =−kx+
(
k+ 4k3)t, (3.10)

such that limk→∞L(x, t,k) = I .
This problem can be solved explicitly as follows:

L(x, t,k) =
(

1 l(x, t,k)
0 1

)
, (3.11)

where

l(x, t,k) = 1
2πi

∫
l+

−Γ̄(s̄)e−2iΘKdV(x,t,s)ds

s− k
. (3.12)

Similarly, consider

U+(x, t,k) =U−(x, t,k)
(
JKdV
1

)−1
(x, t,k), k ∈ l−, (3.13)

with

JKdV
1 =

(
1 0

Γ(k)e2iΘKdV
1

)
, (3.14)

such that limk→∞U(x, t,k) = I . We now have

U(x, t,k) =
(

1 0
u(x, t,k) 1

)
, (3.15)

where

u(x, t,k) = 1
2πi

∫
l−

Γ(s)e2iΘKdV(x,t,s)ds

s− k
. (3.16)

Now set

N(x, t,k) =


M(x, t,k)U−1(x, t,k), k ∈D1,

M(x, t,k)L−1(x, t,k), k ∈D2,

M(x, t,k), otherwise.

(3.17)
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Then N(x, t,k) is analytic in C \R, with limk→∞N(x, t,k) = I , and across R the jump is
given by

N+(x, t,k) =N−(x, t,k)L(x, t,k)J(x, t,k)U−1(x, t,k). (3.18)

An easy deformation argument shows that L= I +O(h), U = I +O(h) as h→ 0 (one can
simply deform the contour “upwards” or “downwards” and the real part of the phase will
become negative). This means that the factor L can be ignored asymptotically. (This is not
entirely obvious at this point. The full-line zero-dispersion analysis of KdV involves the
introduction of a so-called g-function and a conjugation of the Riemann-Hilbert problem
by a term eσ3g/h. Only after obtaining the new “conjugated” Riemann-Hilbert problem
one is allowed to use the fact that L,U = I +O(h) as h→ 0. See [8] for details.)

Again, the half-plane x, t ≥ 0 can be divided into two regions. In the first “smooth” re-
gion, a strong zero-dispersion limit ũ= limh→0u exists and satisfies the formally limiting
system

ũt(x, t) + ũx(x, t) + 6ũũx(x, t) = 0. (3.19)

In the second “turbulent” region, fast oscillations appear that can be described in terms
of slowly modulating finite-gap solutions. Only a weak limit exists for u as h→ 0 and it
can be expressed in terms of the solutions of the Whitham system for KdV. A rigorous
asymptotic formula for u is also easily available (see, e.g., [13]).
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ON SAMPLING EXPANSIONS OF KRAMER TYPE

ANTHIPPI POULKOU
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We treat some recent results concerning sampling expansions of Kramer type. The link
of the sampling theorem of Whittaker-Shannon-Kotelnikov with the Kramer sampling
theorem is considered and the connection of these theorems with boundary value prob-
lems is specified. Essentially, this paper surveys certain results in the field of sampling
theories and linear, ordinary, first-, and second-order boundary value problems that gen-
erate Kramer analytic kernels. The investigation of the first-order problems is tackled in
a joint work with Everitt. For the second-order problems, we refer to the work of Everitt
and Nasri-Roudsari in their survey paper in 1999. All these problems are represented by
unbounded selfadjoint differential operators on Hilbert function spaces, with a discrete
spectrum which allows the introduction of the associated Kramer analytic kernel. How-
ever, for the first-order problems, the analysis of this paper is restricted to the specification
of conditions under which the associated operators have a discrete spectrum.

1. Introduction

This paper surveys certain results in the area of sampling theories and linear, ordinary,
first- and second-order boundary value problems that produce Kramer analytic kernels.

1.1. Notations. The symbol H(U) represents the class of Cauchy analytic functions that
are holomorphic (analytic and regular) on the open set U ⊆ C, that is, H(C) represents
the class of all entire or integral functions on C. The symbol I = (a,b) denotes an arbitrary
open interval of R; the use of “loc” restricts a property to compact subintervals of R. All
the functions f : (a,b) → C are taken to be Lebesgue measurable on (a,b), all integrals are
in the sense of Lebesgue, and AC denotes absolute continuity with respect to Lebesgue
measure.

If w is a weight function on I , then the Hilbert function space L2(I ;w) is the set

of all complex-valued, Lebesgue measurable functions f : I → C such that
∫ b
a w| f |2 ≡∫ b

a w(x)| f (x)|2dx < +∞ and then, with due regard to equivalence classes, the norm and
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inner product are given by

‖ f ‖2
w :=

∫
I
w| f |2, ( f ,g)w :=

∫ b

a
w(x) f (x)ḡ(x)dx. (1.1)

1.2. The W.S.K. sampling theorem. This sampling theorem owes its first appearance to
Whittaker, in 1915. The same result was obtained later and independently by Kotel’nikov,
in 1933, and by Shannon, in 1949. So, it is presently known in the mathematical litera-
ture as the W.S.K. theorem (see [31, 35, 40]). However, there are more names who have
legitimate claims to be included and for a historical review, we refer to [26, 27]. Turning
to the seminal paper by Shannon, this theorem, the proof of which is found in [35], reads
as follows.

Theorem 1.1 (see [35]). If a signal (function) f (t) contains no frequencies higher than
W/2 cycles per second, that is, is band limited to [−πW ,πW], which means that f (t) is of
the form

f (t) =
∫ πW

−πW
g(x)exp(ixt)dx, (1.2)

then f (t) is completely determined by giving its ordinates at a sequence of points spaced 1/W
apart and f (t) is the sum of its “scaled” cardinal series

f (t) =
∞∑

n=−∞
f
(
n

W

)
sinπ(Wt−n)
π(Wt−n)

. (1.3)

Remark 1.2. This is the first of the sampling theory results; the signal f cannot change to
a substantially new value in a time less than half a cycle of its highest frequency, W/2 cy-
cles per second. And moreover, the collection of “samples” { f (n/W) : n= 0,±1,±2, . . .}
specifies g via its Fourier series, since the general Fourier coefficient of g (in (1.2)) is
f (n/W), and then g specifies f via (1.2). So, if f can be “measured” at the sampling
points {n/W : n∈ Z}, which are equidistantly spaced over the whole real line R, then f
can be reconstructed uniquely at every point of the real line R. The engineering principle
established in this way leads to the assertion that certain functions whose frequency con-
tent is bounded are equivalent to an information source with discrete time. This has a ma-
jor application in signal analysis, and in order to obtain, in general, a great appreciation
of the broad scope of sampling theory, we refer, for example, to [4, 5, 6, 26, 28, 30, 33].

The contents of the paper are as follows: Section 2 gives an analytical background in-
formation about the original and the analytic form of the Kramer theorem followed by
a discussion concerning quasidifferential problems and operators; Section 3 gives an ac-
count of results with respect to the generation of Kramer analytic kernels from first-order
boundary value problems, but without mentioning the spectral properties that yield a dis-
crete spectrum of the associated operators; and finally, Section 4 deals with results about
the connection of second-order linear ordinary boundary value problems and the Kramer
sampling theorem.
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2. Introduction to the analytical background

2.1. The original and the analytic form of the Kramer theorem. In 1959, Kramer pub-
lished the following remarkable result, the proof of which is given in [32].

Theorem 2.1 (Kramer theorem). Suppose that f (t) := ∫
I K(x, t)g(x)dx, t ∈ R, for some

g ∈ L2(I), where I is an open interval of R and the kernel K : I ×R → R satisfies the proper-
ties that, for each real t, K(·, t) ∈ L2(I), and there exists a countable set of reals {tn : n∈ Z}
such that {K(·, tn) : n∈ Z} forms a complete orthogonal set on L2(I). Then

f (t) =
∑
n∈Z

f
(
tn
)
Sn(t), Sn(t) :=

∫
I K(x, t)K̄

(
x, tn

)
dx∫

I

∣∣K(·, tn
)∣∣2

dx
. (2.1)

And moreover, the conditions on the kernel are met by certain solutions of selfadjoint eigen-
value problems, where the parameter t is an eigenvalue parameter; the eigenvalues are chosen
to be the sampling points and the complete orthogonal system of eigenfunctions, the set of
functions {K(x,λn) : n∈ Z}.

Remark 2.2. (i) Each eigenvalue problem that produces a complete set of eigenfunctions
and also real simple and countably infinite many eigenvalues is suitable for the Kramer
theorem. For a study of Kramer kernels constructed from boundary value problems, see,
for example, [7, 32].

(ii) A certain class of boundary value problems transforms the W.S.K. sampling theo-
rem (Theorem 1.1) into a particular case of the Kramer theorem. For example, take under
consideration the selfadjoint, regular eigenvalue problem, for σ > 0, λ∈ R:

−iy′(x) = λy(x), x ∈ [−σ ,σ], y(−σ) = y(σ). (2.2)

The eigenvalues are given by λn = nπ/σ , n∈ Z, and the corresponding eigenfunctions are
yn(x) = exp(inπx/σ), n ∈ Z. The general solution K(x,λ) = exp(ixλ) of the differential
equation is a suitable kernel for Theorem 1.1. So, if f is of the form

f (λ) =
∫ σ

−σ
exp(ixλ)g(x)dx, g ∈ L2(−σ ,σ), λ∈ R, (2.3)

then there exists the sampling representation

f (λ) =
∑
n∈Z

f
(
nπ

σ

)
sin(σλ−nπ)

(σλ−nπ)
. (2.4)

(iii) The Kramer kernel that arises from the above example has a significant prop-
erty. This property also emerges in a number of other cases of symmetric boundary value
problems and is not predicted in the statement of Kramer’s theorem, that is, K(x,·) ∈
H(C), x ∈ I (see Section 1.1). For additional details of the previous boundary value prob-
lem, see the results in [15, Section 5.1].

The following theorem gives an analytic form of the Kramer theorem in the way that
allows analytic dependence of the kernel on the sampling parameter.
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Theorem 2.3. Let I = (a,b) be an arbitrary open interval of R and let w be a weight func-
tion on I . Let the mapping K : I ×C → C satisfy the following properties:

(1) K(·,λ) ∈ L2(I ;w) (λ∈ C),
(2) K(x,·) ∈ H(C) (x ∈ (a,b)),
(3) there exists a sequence {λn ∈ R : n∈ Z} satisfying

(i) λn < λn+1 (n∈ Z),
(ii) limn→±∞ λn =±∞,

(iii) the sequence of functions {K(·,λn) : n∈ Z} forms a locally linearly independent
and a complete orthogonal set in the Hilbert space L2(I ;w),

(4) the mapping λ �→ ∫ b
a w(x)|K(x,λ)|2dx is locally bounded on C.

Define the set of functions {K} as the collection of all functions F : L2(I ;w) × C → C

determined by, for f ∈ L2(I ;w),

F( f ;λ) ≡ F(λ) :=
∫ b

a
w(x)K(x,λ) f (x)dx (λ∈ C). (2.5)

Then for all F ∈ {K},

(a) F( f ,·) ∈ H(C) ( f ∈ L2(I ;w));
(b) if Sn : C → C is defined by, for all n∈ Z,

Sn(λ) := ∥∥K(·,λn
)∥∥−2

w

∫ b

a
w(x)K(x,λ)K̄

(
x,λn

)
dx (λ∈ C), (2.6)

then Sn ∈ H(C);
(c) F( f ,λ) ≡ F(λ) = ∑

n∈ZF(λn)Sn(λ), for all F ∈ {K}, where the series is absolutely
convergent, for each λ∈ C, and locally uniformly convergent on C.

Proof. For the proof of this theorem see [18, Theorem 2 and Corollary 1]; the ideas for
these results come from [10] and [21, Theorem 1.1]. �

Remark 2.4. (i) Suitable problems for the above theorem are, for example, regular selfad-
joint eigenvalue problems of nth-order and singular selfadjoint problems of second-order
in the limit-circle endpoint case (for classifications of eigenvalue problems, see [34], and
for information concerning Kramer analytic kernels, see, e.g., [15, 19, 41]).

(ii) As outlined in Remark 2.2(ii), the W.S.K. theorem can be seen as a particular case
of Kramer’s result for a certain class of problems. So, the question arises whether these two
theorems are equivalent to each other or not. The link of the W.S.K. “sampling results”
and Kramer’s theorem has been the concern of many authors. The first person who dealt
with this problem was Campbell in 1964 (see [7]). Later, there is a lot to be found in
the literature; see, for example, [29, 42]. Also, an extensive historical perspective of the
equivalence of Kramer and W.S.K. theorems for second-order boundary value problems
is given in [24]; there also may be found some results for the Bessel and the general Jacobi
cases.
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2.2. Quasidifferential problems and operators. The environment of the general theory
of quasiderivatives is the best for the study of symmetric (selfadjoint) boundary value
problems which, as noticed in Remark 2.4(i), are a source for the generation of Kramer
analytic kernels. Furthermore, all the classical differential expressions appear as special
cases of quasidifferential expressions; for confirmation, we refer to [13, 14, 20, 25, 34].
Finally, the Shin-Zettl quasidifferential expressions are considered to be the most gen-
eral ordinary linear differential expressions so far defined, for order n∈ N and n≥ 2; for
details see [9, 11, 22, 23, 36, 37, 38, 43]. Accordingly, the general formulation of quasidif-
ferential boundary value problems will be performed as follows.

Let I = (a,b) be an open interval of the real line R. Let Mn be a linear ordinary differen-
tial expression. In the classical case, Mn is of finite order n≥ 1 on I with complex-valued
coefficients, and of the form

Mn[ f ] = pn f
(n) + pn−1 f

(n−1) + ···+ p1 f
′ + p0 f , (2.7)

where pj : I → C with pj ∈ L1
loc(I), j = 0,1, . . . ,n− 1, n, and further pn ∈ ACloc(I) with

pn(x) �= 0, for almost all x ∈ I . For the special case n= 1, see details in [12].
In the more general quasidifferential case, the expression Mn is defined as in [23] and

[14, Section I]. For n≥ 2, the expression Mn :=MA is determined by a complex Shin-Zettl
matrix A= [ars] ∈ Zn(I) with the domain D(Mn) of MA defined by

D
(
MA

)
:=

{
f : I −→ C : f [r−1]

A ∈ ACloc(I), for r = 1,2, . . . ,n
}

,

MA[ f ] := in f [n]
A

(
f ∈D

(
MA

))
,

(2.8)

where the quasiderivatives f
[ j]
A , for j = 1,2, . . . ,n, are taken relative to the matrix A ∈

Zn(I). For these results and additional properties, see the notes [9]. In this investigation,
MA is Lagrange symmetric in the notation of [9, 20].

Every classical ordinary linear differential expression Mn, as in (2.7), can be written as
a quasidifferential expression MA, as in (2.8), with the same order n≥ 2. The first-order
differential expressions are essentially classical in form. Therefore, we can assume that
when n ≥ 2, Mn is a quasidifferential expression specified by an appropriate Shin-Zettl
matrix A∈ Zn(I). When n= 1, we consider M1 as a classical expression and the analysis
given here works also in this case.

Now, the Green’s formula for Mn has the form

∫ β

α

{
ḡMn[ f ]− f Mn[g]

}= [ f ,g](β)− [ f ,g](α)
(
f ,g ∈D

(
Mn

))
, (2.9)

for any compact subinterval [α,β] of (a,b). Here the skew-symmetric sesquilinear form
[·,·] is taken from (2.9); that is, it maps D(Mn) ×D(Mn) → C and is defined, for n≥ 2,
by

[ f ,g](x) := in
n∑

r=1

(−1)r−1 f [n−r](x)g(r−1)(x)
(
x ∈ (a,b), f ,g ∈D

(
Mn

))
(2.10)
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and, for n= 1, by

[ f ,g](x) := iρ(x) f (x)ḡ(x)
(
x ∈ (a,b), f ,g ∈D

(
M1

))
. (2.11)

From the Green’s formula (2.9), it follows the limits

[ f ,g](a) := lim
x→a+

[ f ,g](x),

[ f ,g](b) := lim
x→b−

[ f ,g](x),
(2.12)

both exist and are finite in C.
The spectral differential equations associated with the pairs {Mn,w}, wherew is a given

nonnegative weight (see Section 1.1), are

Mn[y] = λwy on (a,b) (2.13)

with the spectral parameter λ∈ C. The solutions of (2.13) are considered in the Hilbert
function space L2((a,b);w) (see Section 1.1). In order to define symmetric boundary
value problems in this space, linear boundary conditions of the form (see (2.9), (2.10),
(2.11), and (2.12))[

y,βr
]≡ [

y,βr
]
(b)− [

y,βr
]
(a) = 0, r = 1,2, . . . ,d, (2.14)

have to be connected, where the family {βr , r = 1,2, . . . ,d} is a linearly independent set of
maximal domain functions chosen to satisfy the symmetry condition[

βr ,βs
]
(b)− [

βr ,βs
]
(a) = 0 (r,s= 1,2, . . . ,d). (2.15)

The integer d ∈ N0 is the common deficiency index of (2.13) determined in L2((a,b);w)
and gives the number of boundary conditions needed for the boundary value problem
((2.13), (2.14)) to be symmetric, that is, to produce a selfadjoint operator in L2((a,b);w).
This boundary value problem generates a uniquely determined unbounded selfadjoint
operator T in the space L2((a,b);w); see [23].

If the problem is regular on an interval (a,b), in which case this interval has to be
bounded, then d = n and the generalized boundary conditions (2.14) require the point-
wise values of the solution y and its quasiderivatives at the endpoints a and b. For this
regular case when the order n = 2m is even and the Lagrange symmetric matrix is real
valued, see details in [34]. In the case n = 1, the index d can take the values 0 or 1, but
the value 0 is rejected (see Remark 3.3). In the case n= 2, essentially the Sturm-Liouville
case, the index d may take the values 0, 1, or 2; this value depends on the regular/limit-
point/limit-circle classification, in L2(I ;w), at the endpoints a and b of the differential
expression Mn (cf. [39, Chapter II]).

For the connection between the classical and quasidifferential systems, we refer to [14].

3. First-order problems

In this section, we investigate in greater details the link between the Kramer sampling
theorem and linear ordinary differential equations of first-order. The results we present
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here are given in [19]. We only point out that the development of our operator theory
as a source for the construction of Kramer analytic kernels is not given here; see [19] for
details of these Kramer kernels. The operator theory required is to be found in [1, 2, 8]; for
the classical theory of selfadjoint extensions of symmetric operators as based on Hilbert
space constructions, see [34].

3.1. Differential equations and operators. The selfadjoint boundary value problems
considered here are generated by the general first-order Lagrange symmetric linear dif-
ferential equation which defines the differential expression M1 and is of the form

M1[y](x) : = iρ(x)y′(x) +
1
2
iρ′(x)y(x) + q(x)y(x)

= λw(x)y(x), ∀x ∈ (a,b),
(3.1)

where −∞≤ a < b ≤ +∞ and λ∈ C is the spectral parameter. Also,

ρ,q,w : (a,b) −→ R,

ρ ∈ ACloc(a,b), ρ(x) > 0, ∀x ∈ (a,b),

q,w ∈ L1
loc(a,b),

w(x) > 0, for almost all x ∈ (a,b).

(3.2)

Under conditions (3.2), the differential equation (3.1) has the following initial value
properties; let c ∈ (a,b) and γ ∈ C, then there exists a unique mapping y : (a,b)×C → C

with

(i) y(·,λ) ∈ ACloc(a,b), for all λ∈ C,
(ii) y(x,·) ∈ H, for all x ∈ (a,b),

(iii) y(c,λ) = γ, for all λ∈ C,
(iv) y(·,λ) satisfies (3.1), for almost all x ∈ (a,b) and all λ∈ C.

However, direct formal integration shows that the required solution y is given by

y(x,λ) = γ

√√√ ρ(c)
ρ(x)

exp
(∫ x

c

(
λw(t)− q(t)

)
iρ(t)

dt
)

, ∀x ∈ (a,b), ∀λ∈ C. (3.3)

Remark 3.1 (see [19, Lemma 2.1]). A necessary and sufficient condition to ensure that
the solution y(·,λ) ∈ L2((a,b);w), for all λ∈ C, is

∫ b

a

w(t)
ρ(t)

dt < +∞. (3.4)

We notice that if there are any selfadjoint operators T in L2((a,b);w) generated by M1

(see (3.1)), then all such operators have to satisfy the inclusion relation

T0 ⊆ T = T∗ ⊆ T1 = T∗
0 , (3.5)
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where T0 and T1 are the minimal and maximal operators, respectively, generated by M1.
From the general theory of unbounded operators in Hilbert space, such selfadjoint oper-
ators exist if and only if the deficiency indices (d−,d+) of T0 are equal; see [34, Chapter
IV]. Thus for selfadjoint extensions of T0 to exist, there are only two possibilities:

(i) d− = d+ = 0,
(ii) d− = d+ = 1.

Remark 3.2 (see [19, Lemma 4.1]). (i) The indices d− = d+ = 0 if and only if, for some
c ∈ (a,b), w/ρ /∈ L1(a,c] and w/ρ /∈ L1[c,b).

(ii) The indices d− = d+ = 1 if and only if w/ρ∈ L1(a,b).

Remark 3.3. (a) In the case of Remark 3.2(i), if we define the operator T by T := T∗
0 = T0,

then T is the (unique) selfadjoint operator in L2((a,b);w) generated by the differential
expression M1 of (3.1). The selfadjoint boundary value problem, in this case, consists
only of the differential equation (3.1). In fact, the spectrum of T is purely continuous and
occupies the whole real line, that is, σ(T) = Cσ(T) = R. We note that this case can give
no examples of interest for sampling theories. As an example in L2(−∞,+∞), consider
iy′(x) = λy(x), for all x ∈ (−∞,+∞).

(b) In the case of Remark 3.2(ii), which covers all regular cases of (3.1) and all singular
cases when condition (3.4) is satisfied, the general Stone/von Neumann theory of selfad-
joint extensions of closed symmetric operators in Hilbert space proves that there is a con-
tinuum of selfadjoint extensions {T} of the minimal operator T0 with T0 ⊂ T ⊂ T1. These
extensions can be determined by the use of the generalized Glazman-Krein-Naimark
(GKN) theory for differential operators as given in [12, Section 4, Theorem 1]. The do-
main of any selfadjoint extension T of T0 can be obtained as a restriction of the do-
main of the maximal operator T1. These restrictions are obtained by choosing an element
β ∈D(T1) such that β arises from a nonnull member of the quotient space D(T1)/D(T0)
with the symmetric property (recall (2.15)) [β,β](b−)− [β,β](a+) = 0. With this bound-
ary condition function β ∈D(T1), the domain D(T) is now determined by

D(T) := {
f ∈D

(
T1
)

: [ f ,β]
(
b−)− [ f ,β]

(
a+)= 0

}
, (3.6)

and the selfadjoint operator is defined by T f :=w−1M[ f ], for all f ∈D(T).
For an example of such a boundary condition function β, see [19, Section 4, (4.20)].

Now, the selfadjoint boundary value problem consists of considering the possibility
of finding nontrivial solutions y(·,λ) of the differential equation (3.1) with the property
y(·,λ) ∈ L2((a,b);w) that satisfies the boundary condition

[
y(·,λ),β

](
b−)− [

y(·,λ),β
](
a+)= 0. (3.7)

The solution of this problem depends upon the nature of the spectrum σ(T) of the
selfadjoint operator T determined by the choice of the boundary condition element β.

In the case of Remark 3.2(ii), it is shown in [19, Theorem 5.1] that the spectrum of
σ(T) of any selfadjoint extension T of T0 is discrete, simple, and has equally spaced eigen-
values on the real line of the complex spectral plane.
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3.2. Kramer analytic kernels. The results in [19] read as follows.

Theorem 3.4. Suppose that (3.1) satisfies (3.2) and also (3.4) to give equal deficiency indices
d− = d+ = 1. Let the selfadjoint operator T be determined by imposing a coupled bound-
ary condition (3.6) on the domain D(T1) of the maximal operator T1 using a symmetric
boundary condition function β as in Remark 3.3(b). Denote the spectrum σ(T) of T by
{λn : n∈ Z}. Define the mapping K : (a,b)×C → C by, where c ∈ (a,b) is fixed,

K(x,λ) := 1√
ρ(x)

exp
(∫ x

c

λw(t)− q(t)
iρ(t)

dt
)

, ∀x ∈ (a,b), λ∈ C. (3.8)

Then the kernel K , together with the point set {λn : n ∈ Z}, satisfies all the conditions
required for the application of Theorem 2.3 to yield K as a Kramer analytic kernel in the
Hilbert space L2((a,b);w).

Proof. See [19]. �

For an example of this general result, we refer to [19, Theorem 7.1] (cf. Remark 2.2(ii)).
This example is considered in [15] too.

4. Second-order problems

In this section, we deal with the generation of Kramer analytic kernels from second-order
linear ordinary boundary value problems. The results given here can be found in [15].

4.1. Sturm-Liouville theory. Sturm-Liouville boundary value problems are effective in
generating Kramer analytic kernels. These problems concern the classic Sturm-Liouville
differential equation

−(p(x)y′(x)
)′

+ q(x)y(x) = λw(x)y(x)
(
x ∈ I = (a,b)

)
, (4.1)

where −∞≤ a≤ b≤ +∞ and λ∈ C is the spectral parameter. Also,

p,q,w : (a,b) −→ R,

p−1,q,w ∈ L1
loc(a,b),

w(x) > 0, for almost all x ∈ (a,b).

(4.2)

For a discussion on the significance of these conditions, see [16, page 324]. For the
general theory of Sturm-Liouville boundary value problems, see [39, Chapters I and II].
Accordingly, we impose a structural condition.

Condition 4.1. The endpoint a of the differential equation (4.1) is to be regular or limit-
circle in L2(I ;w); independently, the endpoint b is to be regular or limit-circle in L2(I ;w)
(cf. [21]).

Remark 4.2. The endpoint classification of Condition 4.1 leads to a minimal, closed, sym-
metric operator in L2(I ;w) generated by (4.1) with deficiency indices d± = 2; in turn, this



126 On sampling expansions of Kramer type

requires that all selfadjoint extensions A of this minimal, symmetric operator are deter-
mined by applying two linearly independent, symmetric boundary conditions and either

(i) both conditions are separated with one applied at a and with one applied at b, or
(ii) both conditions are coupled.

4.1.1. Regular or limit-circle case with separated boundary conditions. This case of Condi-
tion 4.1 and Remark 4.2(i) concerns the results of [21]. The Sturm-Liouville differential
equation is given by (4.1) and satisfies (4.2). The separated boundary conditions are[

y,κ−
]
(a) = [

y,κ+
]
(b) = 0, (4.3)

where, for a given pair of functions {κ−,χ−}, the following conditions are fulfilled:

(C1) κ−,χ− : (a,b) ⇒ R are maximal domain functions,
(C2) [κ−,χ−](a) = 1.

The pair {κ+,χ+} satisfies analogous conditions at the endpoint b.
This symmetric boundary value problem gives a selfadjoint differential operator T

with the following properties:

(a) T is unbounded in L2((a,b);w),
(b) the spectrum of T is real and discrete with limit points at +∞ or −∞ or both,
(c) the spectrum of T is simple,
(d) the eigenvalues and eigenvectors satisfy the boundary value problem.

The results in [21] are given by the following theorem.

Theorem 4.3. Let the coefficients p, q, and w satisfy the conditions (4.2); let the Sturm-
Liouville quasidifferential equation (4.1) satisfy the endpoint classification of Condition 4.1;
let the separated boundary conditions be given by (4.3), where the boundary condition func-
tions {κ−,χ−} and {κ+,χ+} satisfy conditions (C1) and (C2); let the selfadjoint differential
operator T be determined by the separated, symmetric boundary value problem; let the sim-
ple, discrete spectrum of T be given by {λn : n∈ Z} with limn→±∞ λn =±∞; let {ψn : n∈ Z}
be the eigenvectors of T ; and let the pair of basis solutions {φ1,φ2} of (4.1) satisfy the initial
conditions, for some point c ∈ (a,b):

φ1(c,λ) = 1,
(
pφ′

1

)
(c,λ) = 0,

φ2(c,λ) = 0,
(
pφ′

2

)
(c,λ) = 1.

(4.4)

Define the analytic Kramer kernel K− : (a,b)×C → C by

K−(x,λ) := [
φ1(·,λ),κ−

]
(a)φ2(x,λ)− [

φ2(·,λ),κ−
]
(a)φ1(x,λ). (4.5)

Then

(i) K−(·,λ) is a solution of (4.1), for all λ∈ C, and K−(·,λ) ∈ R (λ∈ R);
(ii) K−(·,λ) is an element of the maximal domain and in particular of L2((a,b);w);

(iii) [K−(·,λ),κ−](a) = 0;
(iv) [K−(·,λ),κ+](b) = 0 if and only if λ∈ {λn : n∈ Z};
(v) K−(x,·) ∈ H(C) (x ∈ (a,b));
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(vi) K−(·,λn) = knψn, where kn ∈ R\{0} (n∈ Z);
(vii) K− is unique up to multiplication by a factor e(·) ∈ H(C) with e(λ) �= 0 (λ∈ C) and

e(λ) ∈ R (λ∈ R).

Remark 4.4. The notation K− is chosen for technical reasons; there is a kernel K+ with
similar properties, but with a and κ− replaced by b and κ+.

For an example, we refer to [15, Section 5.2, Example 5.8]. This example can also be
found in [21].

4.1.2. Regular or limit-circle case with coupled boundary conditions. This case of Condition
4.1 and Remark 4.2(ii) covers the results of [16]. Here the situation is different. Let (4.1)
satisfy (4.2) and let the boundary conditions be given by

y(b) = eiαTy(a), for some α∈ [−π,π] (4.6)

with the 2× 2 matrix T = [trs], where trs ∈ R (r,s= 1,2), det(T) = 1, and the 2× 1 vector
y is defined by

y(t) :=
(

[y,θ](t)
[y,φ](t)

) (
t ∈ (a,b)

)
; (4.7)

T is called boundary condition matrix. The functions θ and φ are chosen such that

(i) θ and φ are real-valued maximal domain functions;
(ii) [θ,φ](a) = limt→a+ [θ,φ](t) = 1;

(iii) [θ,φ](b) = limt→b−[θ,φ](t) = 1.

For example, θ and φ can be real-valued solutions of (4.1) on (a,b).
The boundary conditions (4.6) are coupled and selfadjoint, for each endpoint either

regular or limit-circle, and are in canonical form (see [3]).
Let the pair of basis solutions {u,υ} of the differential equation (4.1) be specified by

the possibly singular initial conditions (cf. [3]), for all λ∈ C,

[u,θ](a,λ) = 0, [u,φ](a,λ) = 1,

[υ,θ](a,λ) = 1, [υ,φ](a,λ) = 0.
(4.8)

To define a differential operator A, choose any boundary condition matrix T and any
α∈ [−π,π]; the boundary value problem gives a selfadjoint differential operator with the
properties (a), (b), and (d) and, in place of (c), the property that the multiplicity of the
spectrum is either 1 or 2.

Remark 4.5. For complex boundary conditions, that is, when 0 <∝< π or −π <∝< 0, the
spectrum is always simple. In the case of real boundary conditions, that is, α= −π,0,π,
the spectrum may or may not be simple (see [3]).

The complex case. According to the comments made in Remark 4.5, the results in [16]
are divided into two parts. The first part is referred to as the complex case when 0 < α < π
or −π < α < 0 and this gives the following theorem.



128 On sampling expansions of Kramer type

Theorem 4.6. Let (4.1) satisfy Condition 4.1, where the coefficients p, q, and w satisfy (4.2)
and let the symmetric, coupled, and complex boundary condition be given by, see (4.6),

y(b) = eiαTy(a), for some α∈ (−π,0)∪ (0,π); (4.9)

let A be the unique selfadjoint, unbounded differential operator in L2((a,b);w), specified
by (4.1) and (4.6); let the discrete spectrum σ of A be represented by {λn : n ∈ Z} with
limn→±∞ λn =±∞, and let {ψn : n∈ Z} represent the corresponding eigenfunctions. Let the
analytic function D(T ,·) : C → C be defined by, with solutions u, υ determined by (4.8),

D(T ,λ) :=t11
[
u(·,λ),φ

]
(b) + t22

[
υ(·,λ),θ

]
(b)

− t12
[
υ(·,λ),φ

]
(b)− t21

[
u(·,λ),θ

]
(b).

(4.10)

Then

(i) D(T ,·) ∈ H(C);
(ii) λ is an eigenvalue of A if and only if λ is a zero of D(T ,λ)− 2cos(α);

(iii) the zeros of D(T ,λ)− 2cos(α) are real and simple;
(iv) the eigenvalues of A are simple.

Let the above-stated definitions and conditions hold; then the boundary value prob-
lem (4.1) and (4.6) generate two independent analytic Kramer kernels K1 and K2:

K1(x,λ) := ([
u(·,λ),θ

]
(b)− eiαt12

)
υ(x,λ)− ([

υ(·,λ),θ
]
(b)− eiαt11

)
u(x,λ),

K2(x,λ) := ([
u(·,λ),φ

]
(b)− eiαt22

)
υ(x,λ)− ([

υ(·,φ),θ
]
(b)− eiαt21

)
u(x,λ).

(4.11)

Proof. See [16]. �

The real case. The second part of [16] is concerned with real boundary value problems,
that is, α=−π,0,π, for which the following structural condition holds (see Remark 4.5).

Condition 4.7. In the real case α=−π,0,π, all the eigenvalues are assumed to be simple.
The results in this case are similar to the results stated in Theorem 4.6 except that a

phenomenon of degeneracy may occur; see [16, Section 8, Definition 3].

Theorem 4.8. Let all the conditions of Theorem 4.6 hold with the addition of conditions
(4.6); let the kernels K1 and K2 be given by (4.11) and the phenomenon of degeneracy be
defined as in [16]. For r = 1,2, let the subspaces L2

r ((a,b);w) of L2((a,b);w) be defined by

L2
r

(
(a,b);w

)
:= span

{
ψn; n∈ Zr

}
(r = 1,2). (4.12)

Then

(i) every eigenvalue in {λn : n∈ Z} is nondegenerate for at least one Kr ;
(ii) for r = 1,2, the kernel Kr is an analytic Kramer kernel for the subspace L2

r ((a,b);w);
(iii) K(x,λ) = α1K1(x,λ) + α2K2(x,λ) (x ∈ (a,b); λ ∈ C) is an analytic Kramer kernel

for the whole space L2((a,b);w), for α1,α2 ∈ R.
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Proof. See [16]. �

Remark 4.9. The case when the multiplicity of the spectrum σ(A) is 2 is fully examined
in [17].

Examples for both the above complex and real cases can be found in [16] and also in
[15, Section 5.2]. In all the examples, the regular differential equation

−y′′(x) = λy(x)
(
x ∈ [−π,π]

)
(4.13)

is considered and θ(x) = cosx and φ(x) = sinx are chosen so as to give the boundary
conditions (see (4.6))

y(π) ≡
(
y′(π)
−y(π)

)
= eiαT

(
y′(−π)
−y(−π)

)
≡ eiαTy(−π). (4.14)

The functions u and υ that satisfy the initial conditions are

u(x,λ) =−cos
(√

λ(x+π)
)
,

υ(x,λ) = 1√
λ

sin
(√

λ(x+π)
)
.

(4.15)
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A DENSITY THEOREM FOR LOCALLY CONVEX LATTICES
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Let E be a real, locally convex, locally solid vector lattice of (AM)-type. First, we prove an
approximation theorem of Bishop’s type for a vector subspace of such a lattice. Second,
using this theorem, we obtain a generalization of Nachbin’s density theorem for weighted
spaces.

1. Introduction

In this paper, we introduce the concept of antisymmetric ideal with respect to a pair
(A,F), when A is a subset of the real part of the center of E, and F is a vector subspace of E.
This notion is a generalization, for locally convex lattices, of the notion of antisymmetric
set from the theory of function algebras.

Further, we study some properties of the family of antisymmetric ideals. For example,
we show that every element of this family contains a unique minimal element belonging
to this family.

The main result of this paper is Theorem 4.2 which states that for every x ∈ E we have
x ∈ F if and only if πI(x) ∈ πI(F) for any minimal (A,F)-antisymmetric ideal I , where πI
denotes the canonical mapping E→ E/I .

This theorem is a Bishop’s type approximation theorem and generalizes a similar result
for C(X).

Finally, we show that if the pair (A,F) fulfils some supplementary conditions, then F
is dense in E, and also show how Nachbin’s density theorem for weighted spaces follows
from this theorem.

2. Preliminaries

In the sequel, E denotes a real, locally convex, locally solid vector lattice of (AM)-type.
For every closed ideal I of E, we will denote by πI the canonical mapping E→ E/I and by
π′
I it’s adjoint. The center Z(E) of E is the algebra of all order-bounded endomorphisms

on E, that is, those U ∈ L(E,E) for which there exists λU > 0 such that |U(x)| ≤ λU |x|, for
all x ∈ E. The real part of the center is ReZ(E) = Z(E)+ −Z(E)+.

Copyright © 2004 Hindawi Publishing Corporation
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Definition 2.1. For every closed ideal I of E and every U ∈ ReZ(E), πI(U) : E/I → E/I is
defined by

πI(U)
(
πI(x)

)= πI
(
U(x)

)
, x ∈ E. (2.1)

It is easily seen that the operator πI(U) is well defined. For every A⊂ Z(E), we denote

πI(A) = {
πI(U); U ∈A

}
. (2.2)

Remark 2.2. If A⊂ ReZ(E), then πI(A) ⊂ ReZ(E/I).

Indeed, if U ∈ A, then, for every x ∈ E, we have∣∣πI(U)
(
πI(x)

)∣∣= ∣∣πI(U(x)
)∣∣= πI

(∣∣U(x)
∣∣)

≤ πI
(
λU |x|

)= λUπI
(|x|)= λU

∣∣πI(x)
∣∣,

(2.3)

hence πI(U) ∈ Z(E/I).

Definition 2.3. Let I and J be two closed ideals of E such that I ⊂ J . Then the following
two mappings can be defined: πIJ : E/I → E/J given by

πIJ
[
πI(x)

]= πJ(x), x ∈ E, (2.4)

and MIJ : ReZ(E/I) → ReZ(E/J) given by

MIJ(U)
(
πJ(x)

)= πIJ
(
U
(
πI(x)

))
, U ∈ ReZ(E/I). (2.5)

As a consequence of the inequality,∣∣MIJ(U)
(
πJ(x)

)∣∣= ∣∣πIJ(U(
πI(x)

))∣∣
= πIJ

(∣∣U(
πI
)
(x)

∣∣)≤ πIJ
(
λU

∣∣πI(x)
∣∣)

= λUπIJ
(∣∣πI(x)

∣∣)= λUπJ
(|x|)= λU

∣∣πJ(x)
∣∣,

(2.6)

for every x ∈ E, the range of MIJ is included in ReZ(E/J).

3. Antisymmetric ideals

Let A be a subset of ReZ(E) containing 0 and let F be a vector subspace of E.

Definition 3.1. A closed ideal I of E is said to be antisymmetric with respect to the pair
(A,F) if, for every U ∈ πI(A) with the property U[πI(F)] ⊂ πI(F), it follows that there
exists a real number α such that U = α1E/I , where 1E/I is the identity operator on E/I .

Of course, E itself is an antisymmetric ideal with respect to the pair (A,F) for every
A⊂ ReZ(E) and every vector subspace F of E.

Further, we denote by �A,F(E) the family of all (A,F)-antisymmetric ideals of E.
Now we consider the particular case E = C(X ,R), where X is a compact Hausdorff

space. It is well known that there is a one-to-one correspondence between the class of the
closed ideals of C(X ,R) and the class of the closed subsets of X . Namely, for every closed
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subset S of X , the set IS = { f ∈ C(X ,R); f |S= 0} is a closed ideal of C(X ,R) and every
closed ideal of C(X ,R) has this form.

Definition 3.2. Let A be a subset of C(X ,R) with 0 ∈ A and let F be a closed subset of
C(X ,R). A closed subset S of X is said to be antisymmetric with respect to the pair (A,F)
if every f ∈A with the property f · g|S∈ F|S for every g ∈ F is constant on S.

Remark 3.3. A closed subset S of X is (A,F)-antisymmetric if and only if the correspond-
ing ideal IS is (A,F)-antisymmetric in the sense of Definition 3.1.

Indeed, it is sufficient to observe that πIS(a) = a|S for every subset S of X .

Lemma 3.4. Let (Iα) be a family of elements of �A,F(E) such that J =∑
αIα �= E. Then

I =∩αIα ∈ �A,F(E). (3.1)

Proof. If U ∈ πI(A) has the property U[πI(F)] ⊂ πI(F), then

MIIα(U)
(
πIα(F)

)= πIIα
[
U
(
πI(F)

)]⊂ πIIα
[
πI(F)

]= πIα(F). (3.2)

Let V ∈A be such that U = πI(V). For every x ∈ E, we have

MIIα(U)
(
πIα(x)

)= πIIα
[
U
(
πI(x)

)]= πIIα
[
πI(V)

(
πI(x)

)]
= πIIα

[
πI
(
V(x)

)]= πIα
[
V(x)

]= πIα(V)
(
πIα(x)

)
.

(3.3)

Thus, MIIα(U) = πIα(V) ∈ πIα(A) ⊂ ReZ(E/Iα) and MIIα(U)(πIα(F)) ⊂ πIα(F). Since
Iα ∈ �A,F(E), it follows that an aα ∈ R exists such that MIIα(U) = aα · 1E/Iα .

On the other hand, we have

MIJ(U) =MIαJ
[
MIIα(U)

]= aα · 1E/Iα . (3.4)

Since J �= E, it follows that aα = a (constant) for any α. Therefore,

MIIα(U) = a · 1E/Iα = a ·MIIα

(
1E/I

)
, (3.5)

hence,

MIIα

(
U − a · 1E/I

)= 0, (3.6)

for any α, and this involves U = a · 1E/I . �

Corollary 3.5. Every I ∈ �A,F(E) contains a unique minimal ideal Ĩ ∈ �A,F(E).

Proof. Let I ∈ �A,F(E) be such that I �= E and let Ĩ = ∩{J ∈ �A,F(E); J ⊂ I}. According
to Lemma 3.4, Ĩ ∈ �A,F(E). It is now obvious that Ĩ ⊂ I and Ĩ is minimal. �

Further, we denote by �̃A,F(E) the family of all minimal closed ideals of E, antisym-
metric with respect to the pair (A,F).
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4. Bishop’s type approximation theorem

Lemma 4.1. Let A be a subset of ReZ(E) with 0 ∈ A, let F be a vector subspace of E, and
let V be a convex and solid neighborhood of the origin of E, which is also a sublattice. If
f ∈ Ext{V 0 ∩F0} and I = {x ∈ E; | f |(|x|) = 0}, then I ∈ �A,F(E).

Proof. Let U ∈ πI(A) be such that U[πI(F)] ⊂ πI(F). We can suppose that 0 ≤U ≤ 1E/I .
Since f ∈ I0, there exists g ∈ (E/I)′ such that f = π′

1g. Obviously, g ∈ {[πI(V)]0

∩ [πI(F)]0}. We denote g1 =U ′g, g2 = (1E/I −U)′g, and ai = inf{λ > 0 : gi∈λ[πI(V)]0}=
sup{|gi(y)| : y ∈ πI(V)}, for i= 1,2.

Since g=g1 + g2 ∈ (a1 + a2)[πI(V)]0, it follows that f ∈ (a1 + a2)V 0, hence a1 + a2 ≥ 1.
On the other hand, for any y1, y2 ∈ πI(V), we have

∣∣g1
(
y1
)∣∣+

∣∣g2
(
y2
)∣∣= ∣∣g(U(

y1
))∣∣+

∣∣g(1E/I −U
)(
y2
)∣∣

≤ |g|(U(∣∣y1
∣∣∨∣∣y2

∣∣))+
(

1E/I −U
)(∣∣y1

∣∣∨∣∣y2
∣∣)

= |g|(∣∣y1
∣∣∨∣∣y2

∣∣). (4.1)

Since πI(V) is a sublattice and g ∈ [πI(V)]0, it follows that |y1|∨ |y2| ∈ πI(V), hence
|g|(|y1|∨ |y2|) ≤ 1.

Therefore, |g1(y1)| + |g2(y2)| ≤ 1 for any y1, y2 ∈ πI(V) and this yields a1 + a2 ≤ 1,
hence a1 + a2 = 1.

Now, we observe that if |g|(|y|) = 0, then y = 0. Indeed, let x ∈ E be such that y =
πI(x).

We have 0 = |g|(|πI(x)|) = |π′
I g|(|x|) = | f |(|x|).

If follows that x ∈ I , hence y = πI(x) = 0.
This remark involves that if g1 = U ′g = 0, then U = 0 and, analogously, g2 = (1E/I −

u)′g = 0 implies U = 1E/I .
Therefore, we can suppose that gi �= 0 for i= 1,2, and hence ai > 0, i= 1,2. Further, we

have

g = a1
g1

a1
+ a2

g2

a2
,

gi
ai

∈ [
πI(V)

]0 ∩ [
πI(F)

]0
, i= 1,2. (4.2)

Since g ∈ Ext{[π1(V)]0 ∩ [πI(F)]0}, either g = g1/a1 or g = g2/a2. In the first
case, (U − a11E/I)′(g) = 0.

The last equality yields U = a11E/I . �

The main result concerning antisymmetric ideals is the following Bishop’s type ap-
proximation theorem.

Theorem 4.2. Let E be a real, locally convex, locally solid vector lattice of (AM)-type, A⊂
ReZ(E) with 0 ∈A, and let F be a vector subspace of E. Then, for any x ∈ E,

x ∈ F ⇐⇒ πI(x) ∈ πI(F) (4.3)

for every I ∈ �̃A,F(E).
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Proof. The necessity is clear. We suppose that πI(x) ∈ πI(F) for any I ∈ �̃A,F(E) and that
x /∈ F. Then, there exists f ∈ E′ such that f (x) �= 0 and f (y) = 0 for any y ∈ F.

Let V be a solid, convex neighborhood of the origin which is also a sublattice of E. By
the Krein-Milman theorem, we may assume that f ∈ Ext{V 0 ∩F0}. If we denote J = {x ∈
E; | f |(|x|) = 0}, then, according to Lemma 4.1, we have J ∈ �̃A,F(E). On the other hand,

by Corollary 3.5, it follows that there exists J0 ∈ �̃A,F(E) such that J0 ⊂ J . Since πJ0 (x) ∈
πJ0 (F) and f ∈ J0

0 ∩F0, we have f (x) = 0, and this contradicts the choice of f . �

Theorem 4.3. Let E be a real, locally convex, locally solid vector lattice of (AM)-type, let A
be a subset of ReZ(E) with 0 ∈ A, and let F be a vector subspace of E with the properties

(i) AF ⊂ F,
(ii) F is not included in any maximal ideal of E,

(iii) every closed (A,F)-antisymmetric ideal I of E with the property πI(A) ⊂ R · 1E/I is a
maximal ideal.

Then F = E.

Proof. Let x ∈ E and I ∈ �̃A,F(E). Hypothesis (i) involves that πI(A)[πI(F)] ⊂ πI(F), and
since I is (A,F)-antisymmetric, we have πI(U) = αU · 1E/I for any U ∈ A. Now, from (iii),
it results that I is a maximal ideal and thus that the dimension of πI(E) is one.

Since F ⊂ E, we have either πI(F) = {0} or πI(F) = πI(E).
From (ii), it results that πI(F) �= {0}. Therefore, we have πI(F) = πI(E) and thus

πI(x) ∈ πI(F) for any I ∈ �̃A,F(E). According to Theorem 4.2, it follows that x ∈ F. �

5. The case of weighted spaces

Typical examples of locally convex lattices are the weighted spaces.
Let X be a locally compact Hausdorff space and let V be a Nachbin family on X , that

is, a set of nonnegative upper semicontinuous functions on X directed in the sense that,
given v1,v2 ∈V and λ > 0, a v ∈A exists such that vi ≤ λv, i= 1,2. We denote by CV0(X)
the corresponding weighted spaces, that is,

CV0(X) = {
f ∈ C(X ,R); f v vanishes at infinity for any v ∈V

}
. (5.1)

The weighted topology on CV0(X) is denoted by ωV and it is determined by the semi-
norms {pv}v∈V , where

pv( f ) = sup
{∣∣ f (x)

∣∣v(x) : x ∈ X
}

, for any f ∈ CV0(X). (5.2)

The topology ωV is locally convex and has a basis of open neighborhoods of the origin
of the form

Dv =
{
f ∈ CV0(x) : pv( f ) < 1

}
. (5.3)

Clearly, CV0(X) is a locally convex, locally solid vector lattice of (AM)-type with re-
spect to the topology ωV and to the ordering f ≤ g if and only if f (x) ≤ g(x), x ∈ X .
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A result of Goullet de Rugy [1, Lemma 3.8] states that for every closed ideal I of
CV0(X) there exists a closed subset Y of X such that

I = {
f ∈ CV0(X) : f |Y = 0

}
. (5.4)

Therefore, there exists a one-to-one map from the family of closed ideals of CV0(X)
onto the family of closed subsets of X .

If X is a compact Hausdorff space and V = {1}, then CV0(X) = C(X ,R) and the
weighted topology ωV coincides with the uniform topology of C(X ,R).

Further, we denote by Cb(X ,R) the algebra of all real bounded continuous functions
on X .

As in the case of C(X), we have the following definition.

Definition 5.1. Let A be a subset of Cb(X) with 0 ∈ A and let F be a vector subspace of
CV0(X). A closed subset S of X is called antisymmetric with respect to the pair (A,F) if
and only if the corresponding ideal

IS =
{
f ∈ CV0(X) : f |S= 0

}
(5.5)

is an (A,F)-antisymmetric ideal, and this means that every a ∈ A with the property
α ·h|S∈ F|S, for any h∈ F, is constant on S.

It is easily seen that every x ∈ X belongs to a maximal (A,F)-antisymmetric set Sx. At
the same time, if x �= y, we have either Sx = Sy or Sx ∩ Sy =∅.

Theorem 4.2 then involves the following theorem.

Theorem 5.2. Let A and F be as in Definition 5.1. Then, a function f ∈ CV0(X) belongs
to F if and only if f |Sx ∈ F|Sx for any x ∈ X .

The following theorem is a generalization of Nachbin’s density theorem for weighted
spaces in the real case.

Theorem 5.3. Let A be a subset of Cb(X ,R) with 0 ∈ A and let F be a vector subspace of
CV0(X) with the properties

(i) AF ⊂ F,
(ii) A separates the points of X ,

(iii) for every x ∈ X , there is an f ∈ F such that f (x) �= 0.

Then F = CV0(X).

Proof. Since the centre of the lattice E = CV0(X) is the algebra Cb(X) of all continuous
bounded functions on X (see, e.g., [2]), it follows that A⊂ ReZ(E). On the other hand,
from (iii), it follows that F is not included in any maximal ideal. Since AF ⊂ F and A
separates the points of X , it results that every (A,F)-antisymmetric subset S of X is a
singleton, and thus the corresponding ideal IS is a maximal ideal. Thus the hypotheses of
Theorem 4.3 are satisfied and so Theorem 5.3 is proved. �
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[2] G. Păltineanu and D. T. Vuza, A generalisation of the Bishop approximation theorem for locally
convex lattices of (AM)-type, Rend. Circ. Mat. Palermo (2) Suppl. II (1998), no. 52, 687–694.

Dimitrie Kravvaritis: Department of Mathematics, National Technical University of Athens,
Zografou Campus, 15780 Zografou, Greece

E-mail address: dkrav@math.ntua.gr
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ON PERIODIC-TYPE SOLUTIONS OF SYSTEMS OF LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

I. KIGURADZE

Received 1 October 2002

We establish nonimprovable, in a certain sense, sufficient conditions for the existence of
a unique periodic-type solution for systems of linear ordinary differential equations.

1. Formulation of the problem and statement of the main results

Let n1 and n2 be natural numbers, ω > 0, Λi ∈ Rni×ni (i= 1,2) nonsingular matrices, and
�ik : R → Rni×nk (i,k = 1,2) and qi : R → Rni (i= 1,2) matrix and vector functions whose
components are Lebesgue integrable on each compact interval. We consider the problem
on the existence and uniqueness of a solution of the linear differential system

dxi
dt

= �i1(t)x1 + �i2(t)x2 + qi(t) (i= 1,2), (1.1)

satisfying the conditions

xi(t+ω) =Λixi(t) for t ∈ R (i= 1,2). (1.2)

When Λ1 and Λ2 are unit matrices, this problem becomes the well-known problem on
a periodic solution which has been the subject of numerous studies (see, e.g., [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the references therein).

In this paper, sufficient conditions for the unique solvability of problem (1.1), (1.2)
are established, which are nonimprovable in a certain sense and in particular provide
new results on the existence of a unique ω-periodic solution of system (1.1).

The following notation is used in the paper:

(1) R is the set of real numbers;
(2) Rn is the n-dimensional real Euclidean space;
(3) x = (ξi)ni=1 ∈ Rn is the column vector with components ξ1, . . . ,ξn,

|x| = (∣∣ξi∣∣)ni=1, ‖x‖ =
( n∑

i=1

ξ2
i

)1/2

; (1.3)

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 141–152
2000 Mathematics Subject Classification: 34B40, 34C25
URL: http://dx.doi.org/10.1155/9775945143
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(4) x · y is the scalar product of vectors x,y ∈ Rn;
(5) Rm×n is the space of m×n matrices X = (ξik)m,n

i,k=1 with components ξik (i= 1, . . . ,
m;k = 1, . . . ,n),

|X| = (∣∣ξik∣∣)m,n
i,k=1, ‖X‖ =

( n∑
k=1

m∑
i=1

ξ2
ik

)1/2

; (1.4)

(6) X∗ is the transposed matrix of the matrix X ;
(7) En is the unit n×n matrix;
(8) det(X) is the determinant of the matrix X ;
(9) r(X) is the spectral radius of the matrix X ∈ Rn×n;

(10) if X ∈ Rn×n, then λ0(X) is a minimal eigenvalue of the matrix (1/2)(X +X∗).

Inequalities between the matrices and the vectors are understood componentwise.
Throughout the paper, it will be assumed that

�ik(t+ω) =Λi�ik(t)Λ−1
k , qi(t+ω) =Λiqi(t) for t ∈ R (i,k = 1,2). (1.5)

For each i∈ {1,2}, consider the differential system

dx

dt
= �ii(t)x (1.6)

and denote by Xi its fundamental matrix satisfying the initial condition

Xi(0) = Eni . (1.7)

If, however, the matrix Λi −Xi(ω) is nonsingular, then it is assumed that

Gi(t,τ) = Xi(t)
(
X−1
i (ω)Λi −Eni

)−1
X−1
i (τ). (1.8)

For each i∈ {1,2}, we define a matrix function Λi0 : [0,3ω] → Rni×ni in the following
manner:

Λi0(s) = Eni for 0 ≤ s≤ ω, (1.9)

Λi0(s) = ∣∣Λk
i

∣∣ for kω < s≤ (k+ 1)ω (k = 1,2). (1.10)

Theorem 1.1. Let

det
(
Λi −Xi(ω)

) �= 0 (i= 1,2), (1.11)

and there exists a nonnegative matrix A∈ Rn1×n1 such that r(A) < 1, and∫ t+ω

t

∫ τ+ω

τ

∣∣G1(t,τ)�12(τ)G2(τ,s)�12(s)
∣∣Λ10(s)dsdτ ≤A for 0 ≤ t ≤ ω. (1.12)

Then problem (1.1), (1.2) has a unique solution.
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Example 1.2. Let n1 = n2 = 1, Λ1 =Λ2 = 1, qi(t) ≡ 0, �i1(t) ≡ pi(t), and �i2(t) =−pi(t),
where pi : R →]0,+∞[ (i = 1,2) are the integrable on [0,ω] ω-periodic functions. Then
conditions (1.5), (1.11), and (1.12), where A= 1, are fulfilled. On the other hand, in the
considered case, system (1.1) has the form

dxi
dt

= pi(t)
(
x1 − x2

)
(i= 1,2) (1.13)

and therefore problem (1.1), (1.2) has an infinite set of solutions{(
x1,x2

)
: x1(t) ≡ x2(t) ≡ c, c ∈ R

}
. (1.14)

This example shows that the condition r(A) < 1 in Theorem 1.1 is nonimprovable and it
cannot be replaced by the condition r(A) ≤ 1.

Theorem 1.3. Let

Xi(ω) =Λ1, det
(
Λ2 −X2(ω)

) �= 0, (1.15)

det
(
Q0

) �= 0, (1.16)

where

Q0 =
∫ ω

0
X−1

1 (τ)�12(τ)Q(τ)dτ,

Q(t) =
∫ t+ω

t
G2(t,s)�21(s)X1(s)ds.

(1.17)

Let, further, there exist a nonnegative matrix A∈ Rn2×n2 such that r(A) < 1, and∫ t+ω

t

[
H(t,τ) +

∫ τ+ω

τ

∣∣Q(t)Q−1
0 X−1

1 (τ)�12(τ)
∣∣H(τ,s)ds

]
dτ ≤A for 0 ≤ t ≤ ω,

(1.18)

where

H(t,τ) =
∫ τ

0

∣∣G2(t,τ)�21(τ)X1(τ)X−1
1 (s)�12(s)

∣∣Λ20(s)ds. (1.19)

Then problem (1.1), (1.2) has a unique solution.

Example 1.4. Consider the problem

dx1

dt
= B1x2,

dx2

dt
= εB2x1 +Bx2,

xi(t+ω) = xi(t) for t ∈ R (i= 1,2),
(1.20)

where ε is a positive constant, B1 ∈ Rn1×n2 , B2 ∈ Rn2×n1 , B ∈ Rn2×n2 , and det(B) �= 0. This
problem is obtained from problem (1.1), (1.2) when Λi = Eni (i= 1,2), �1 is a zero ma-
trix, �12(t) ≡ B1, �21(t) ≡ εB2, �22(t) ≡ B, and q(t) ≡ 0. It is obvious that conditions
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(1.5) and (1.15) are fulfilled for this problem. On the other hand, by virtue of (1.17) and
(1.19), we have

Q(t) ≡ εB−1B2, Q0 = εωB1B
−1B2,

H(t,τ) = τε
∣∣(exp(−ωB)−En2

)−1
exp

(
(t− τ)B

)
B2B1

∣∣. (1.21)

Therefore, condition (1.16) is fulfilled if and only if

det
(
B1B

−1B2
) �= 0. (1.22)

If the latter inequality is fulfilled, then, by Theorem 1.3, there exists ε0 > 0 such that, for
arbitrary ε ∈]0,ε0[, problem (1.20) has only a trivial solution. If det(B1B−1B2) = 0, then,
for arbitrary ε, problem (1.20) has an infinite set of solutions

{(
x1,x2

)
: x1(t) ≡ cx10, x2(t) = cx20, c ∈ R

}
, (1.23)

where x10 ∈ Rn1 is the eigenvector of the matrix B1B−1B2 corresponding to the zero eigen-
value and x20 =−εB−1B2x10.

Example 1.4 shows that condition (1.16) is essential and cannot be omitted.

Theorem 1.5. Let there exist a matrix A ∈ Rn1×n2 , symmetric matrices Ai ∈ Rni×ni

(i= 1,2), and an integrable function δ : [0,ω] → [0,+∞[ such that

Λ∗
2 AΛ1 =A, Λ∗

i AiΛi =Ai (i= 1,2) (1.24)

and the following inequalities are fulfilled almost everywhere on [0,ω]:

λ0
(
A1�11(t) +A∗�21(t)

)≥ δ(t), λ0
(
A2�22(t) +A�12(t)

)≥ δ(t), (1.25)

δ(t) ≥ p(t), (1.26)

where

p(t) = 1
2

(∥∥A1�12(t) +A∗�22(t)
∥∥+

∥∥A2�21(t) +A�11(t)
∥∥). (1.27)

If, moreover,

∫ ω

0

(
δ(t)− p(t)

)
dt > 0, (1.28)

then problem (1.1), (1.2) has a unique solution.

Example 1.2 shows that conditions (1.5), (1.24), (1.25), and (1.26) do not guarantee
the unique solvability of problem (1.1), (1.2). Therefore, condition (1.28) in Theorem 1.5
is essential and cannot be omitted.
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2. Auxiliary propositions

In this section, we consider the problem

dx

dt
= �(t)x+ q(t), (2.1)

x(t+ω) =Λx(t) for t ∈ R, (2.2)

assuming that Λ ∈ Rn×n is a nonsingular matrix, and � : R → Rn×n and q : R → Rn are
matrix and vector functions with components Lebesgue integrable on [0,ω] and satisfy-
ing the conditions

�(t+ω) =Λ�(t)Λ−1 for t ∈ R, (2.3)

q(t+ω) =Λq(t) for t ∈ R. (2.4)

We denote by X the fundamental matrix of the homogeneous differential system

dx

dt
= �(t)x, (2.5)

satisfying the initial condition

X(0) = En. (2.6)

Condition (2.3) immediately implies the following lemma.

Lemma 2.1. The matrix function X satisfies the identity

X(t+ω) =ΛX(t)Λ−1X(ω) for t ∈ R. (2.7)

Lemma 2.2. Problem (2.5), (2.2) has only a trivial solution if and only if

det
(
Λ−X(ω)

) �= 0. (2.8)

Proof. Let x be an arbitrary solution of system (2.5). Then

x(t) = X(t)c for t ∈ R, (2.9)

where c ∈ Rn. Hence, by Lemma 2.1, it follows that x is a solution of problem (2.5), (2.2)
if and only if (

ΛX(t)−ΛX(t)Λ−1X(ω)
)
c = 0 for t ∈ R. (2.10)

However, for the latter identity to be fulfilled, it is necessary and sufficient that c be a
solution of the system of algebraic equations(

Λ−X(ω)
)
c = 0. (2.11)

Therefore, problem (2.5), (2.2) has only a trivial solution if and only if the latter system
has only a trivial solution, that is, if (2.8) is fulfilled. �
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Lemma 2.3. Problem (2.1), (2.2) is uniquely solvable if and only if the corresponding homo-
geneous problem (2.5), (2.2) has only a trivial solution, that is, if inequality (2.8) is fulfilled.
Moreover, if (2.8) is fulfilled, then the solution of problem (2.1), (2.2) admits the representa-
tion

x(t) =
∫ t+ω

t
G(t,s)q(s)ds for t ∈ R, (2.12)

where

G(t,s) = X(t)
(
X−1(ω)Λ−En

)−1
X−1(s). (2.13)

Proof. By Lemma 2.2, to prove Lemma 2.3, it is sufficient to establish that if inequality
(2.8) is fulfilled, then the vector function x given by equality (2.12) is a solution of prob-
lem (2.1), (2.2).

According to (2.7) and (2.13), we have

∂G(t,s)
∂t

= �(t)G(t,s) for s∈ R and almost all t ∈ R,

G(t, t+ω)Λ−G(t, t) = X(t)
(
X−1(ω)Λ−En

)−1(
X−1(t+ω)Λ−X−1(t)

)
= X(t)

(
X−1(ω)Λ−En

)−1(
X−1(ω)Λ−En

)
X−1(t)

= En for t ∈ R,

G(t+ω,s+ω) =ΛX(t)Λ−1X(ω)
(
X−1(ω)Λ−En

)−1

× (
Λ−1X(ω)

)−1
X−1(t)Λ−1

=ΛG(t,s)Λ−1 for s∈ R, t ∈ R.

(2.14)

If, along with these identities, we also take into consideration condition (2.4), then, from
(2.12), we obtain

dx(t)
dt

= �(t)x(t) +G(t, t+ω)q(t+ω)−G(t, t)q(t)

= �(t)x(t) +
(
G(t, t+ω)Λ−G(t, t)

)
q(t)

= �(t)x(t) + q(t) for almost all t ∈ R
n,

x(t+ω) =
∫ t+2ω

t+ω
G(t+ω,s)q(s)ds=

∫ t+ω

t
G(t+ω,s+ω)q(s+ω)ds

=Λ

∫ t+ω

t
G(t,s)q(s)ds=Λx(t) for t ∈ R.

(2.15)

Thus x is a solution of problem (2.1), (2.2). �
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3. Proofs of the main results

Proof of Theorem 1.1. By Lemma 2.3, it is sufficient to show that the homogeneous prob-
lem

dxi
dt

= �i1(t)x1 + �i2(t)x2, (3.1)

xi(t+ω) =Λixi(t) for t ∈ R (i= 1,2) (3.2)

has only a trivial solution.
Let (x1,x2) be an arbitrary solution of this problem. By virtue of Lemma 2.3, condition

(1.11) and the equalities

�12(t+ω)x2(t+ω) =Λ1�12(t)x2(t),

�21(t+ω)x1(t+ω) =Λ2�21(t)x1(t) for almost all t ∈ R
(3.3)

guarantee the validity of the representations

x1(t) =
∫ t+ω

t
G1(t,s)�12(s)x2(s)ds,

x2(t) =
∫ t+ω

t
G2(t,s)�21(s)x1(s)ds.

(3.4)

Therefore,

x1(t) =
∫ t+ω

t

∫ τ+ω

τ
G1(t,τ)�12(τ)G2(τ,s)�21(s)x1(s)ds. (3.5)

Let

x1(t) = (
x1k(t)

)n1

k=1,

ρk = max
{∣∣x1k(t)

∣∣ : 0 ≤ t ≤ ω
} (

k = 1, . . . ,n1
)
, ρ= (

ρk
)n1

k=1.
(3.6)

Then by (1.9), (1.10) for i= 1, we have∣∣x1(s)
∣∣≤Λ10(s)ρ for 0 ≤ s≤ 3ω. (3.7)

If, along with this, we also take into consideration inequality (1.12), then, from represen-
tation (3.5), we obtain ∣∣x1(t)

∣∣≤ Aρ for 0 ≤ t ≤ ω. (3.8)

Hence ρ ≤Aρ and, therefore, (
En1 −A

)
ρ ≤ 0. (3.9)

According to the condition r(A) < 1 and the nonnegativeness of the matrix A, the matrix
En1 −A is nonsingular and (En1 −A)−1 is nonnegative. Hence the multiplication of the
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latter vector inequality by (En1 −A)−1 gives ρ ≤ 0. Therefore, ρ = 0, that is,

x1(t) = 0 for 0 ≤ t ≤ ω. (3.10)

By virtue of this equality, from (3.4), it follows that xi(t) = 0 for t ∈ R (i= 1,2). �

Proof of Theorem 1.3. Let (x1,x2) be an arbitrary solution of problem (3.1), (3.2). Then
by the Cauchy formula, we have

x1(t) = X1(t)c+
∫ t

0
X1(t)X−1

1 (τ)�12(τ)x2(τ)dτ, (3.11)

where c ∈ Rn1 . On the other hand, by Lemma 2.3, the nonsingularity of the matrix Λ2 −
X2(ω) and the equality

�21(t+ω)x1(t+ω) =Λ2�21(t)x1(t) for almost all t ∈ R (3.12)

guarantee the validity of the representation

x2(t) =
∫ t+ω

t
G2(t,τ)�21(τ)x1(τ)dτ. (3.13)

Hence, by virtue of equalities (1.17) and (3.11), it follows that

x2(t) =Q(t)c+
∫ t+ω

t
z(t,τ)dτ, (3.14)

where

z(t,τ) =
∫ τ

0
G2(t,τ)�21(τ)X1(τ)X−1

1 (s)�12(s)x2(s)ds. (3.15)

By Lemma 2.1 and the equality X1(ω) =Λ1, we have

X1(t+ω) =Λ1X(t) for t ∈ R. (3.16)

Therefore, from (3.11), we find

x1(t+ω) =Λ1X1(t)c+Λ1

∫ t+ω

0
X1(t)X−1

1 (τ)�12(τ)x2(τ)dτ. (3.17)

Hence, by (3.2), it follows that

x1(t) = X1(t)c+
∫ t+ω

0
X1(t)X−1

1 (τ)�12(τ)x2(τ)dτ. (3.18)

If now we again apply representation (3.11), then it becomes clear that the identity∫ t+ω

t
X−1

1 (τ)�12(τ)x2(τ)dτ = 0 for t ∈ R (3.19)

is valid.
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Using (3.14), from the latter identity, we find

Q̃(t)c =−
∫ t+ω

t

∫ τ+ω

τ
X−1

1 (τ)�12(τ)z(τ,s)dsdτ, (3.20)

where

Q̃(t) =
∫ t+ω

t
X−1

1 (τ)�12(τ)Q(τ)dτ. (3.21)

By Lemma 2.1,

G2(t+ω,s+ω) =Λ2G2(t,s)Λ−1
2 . (3.22)

If, along with this identity, we also take into account identities (1.5) and (3.16), then we
obtain

Q(t+ω) =
∫ t+ω

t
G2(t+ω,s+ω)�21(s+ω)X1(s+ω)ds=Λ2Q(t). (3.23)

Therefore, from (1.17) and (3.21), we have

Q̃(t) =
∫ ω

t
X−1

1 (τ)�12(τ)Q(τ)dτ

+
∫ t

0
X−1

1 (τ +ω)�12(τ +ω)Q(τ +ω)dτ

=
∫ ω

t
X−1

1 (τ)�12(τ)Q(τ)dτ

+
∫ t

0
X−1

1 (τ)�12(τ)Q(τ)dτ =Q0 for t ∈ R.

(3.24)

By virtue of this fact and condition (1.16), from (3.11), (3.14), and (3.20), we get

x1(t) =
∫ t

0
X1(t)X−1

1 (τ)�12(τ)x2(τ)dτ

−X1(t)
∫ ω

0

∫ τ+ω

τ
Q−1

0 X−1
1 (τ)�12(τ)z(τ,s)dsdτ,

(3.25)

x2(t) =
∫ t+ω

t

(
z(t,τ)−

∫ τ+ω

τ
Q(t)Q−1

0 X−1
1 (τ)�12(τ)z(τ,s)ds

)
dτ. (3.26)

Let x2(t) = (x2k(t))n2
k=1,

ρk = max
{∣∣x2k(t)

∣∣ : 0 ≤ t ≤ ω
} (

k = 1, . . . ,n2
)
, ρ = (

ρk
)n2

k=1. (3.27)

Then, by (1.9), (1.10) for i= 2, we have∣∣x2(s)
∣∣≤Λ20(s)ρ for 0 ≤ s≤ 3ω. (3.28)

By this inequality and the notation (1.19) and (3.15), we have∣∣z(t,τ)
∣∣≤H(t,τ)ρ for t ∈ R, 0 ≤ τ ≤ 3ω. (3.29)
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Due to this estimate and inequality (1.18), from (3.26), we find

∣∣x2(t)
∣∣≤ Aρ for 0 ≤ t ≤ ω. (3.30)

Hence it is clear that ρ ≤Aρ and, therefore,

(
En2 −A

)
ρ ≤ 0. (3.31)

By virtue of the condition r(A) < 1 and the nonnegativeness of the matrix A, the latter
inequality implies ρ = 0. Therefore,

x2(t) = 0, z(t,τ) = 0 for 0 ≤ t ≤ ω, 0 ≤ τ ≤ 3ω, (3.32)

due to which we find from (3.2) and (3.25) that xi(t) = 0 for t ∈ R (i= 1,2). Thus prob-
lem (3.1), (3.2) has only a trivial solution. By Lemma 2.3, this fact guarantee the unique
solvability of problem (1.1), (1.2). �

Proof of Theorem 1.5. By virtue of Lemma 2.3, it is sufficient to establish that problem
(3.1), (3.2) has only a trivial solution.

Let (x1,x2) be an arbitrary solution of problem (3.1), (3.2) and

u(t) = 1
2

(
A1x1(t) · x1(t) +A2x2(t) · x2(t)

)
+Ax1(t) · x2(t). (3.33)

Then

u′(t) =A1x
′
1(t) · x1(t) +A2x

′
2(t) · x2(t) +Ax′

1(t) · x2(t) +A∗x′
2(t) · x1(t)

= (
A1�11(t) +A∗�21(t)

)
x1(t) · x1(t)

+
(
A2�22(t) +A�12(t)

)
x2(t) · x2(t) +

(
A1�12(t) +A∗�22(t)

)
x2(t) · x1(t)

+
(
A2�21(t) +A�11(t)

)
x1(t) · x2(t) for almost all t ∈ R.

(3.34)

However, by conditions (1.25) and the Schwartz inequality, for almost all t ∈ [0,ω], we
have

(
A1�11(t) +A∗�21(t)

)
x1(t) · x1(t) ≥ δ(t)

∥∥x1(t)
∥∥2

,(
A2�22(t) +A�12(t)

)
x2(t) · x2(t) ≥ δ(t)

∥∥x2(t)
∥∥2

,(
A1�12(t) +A∗�22(t)

)
x2(t) · x1(t) +

(
A2�21(t) +A�11(t)

)
x1(t) · x2(t)

≤ 2p(t)
∥∥x1(t)

∥∥∥∥x2(t)
∥∥≤ p(t)

(∥∥x1(t)
∥∥2

+
∥∥x2(t)

∥∥2
)

,

(3.35)

where p is the function given by equality (1.27). Therefore,

u′(t) ≥ (
δ(t)− p(t)

)(∥∥x1(t)
∥∥2

+
∥∥x2(t)

∥∥2
)

for almost all t ∈ [0,ω]. (3.36)
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On the other hand, by virtue of (1.24) and (3.2), we have

u(ω) = 1
2

(
A1Λ1x1(0) ·Λ1x1(0) +A2Λ2x2(0) ·Λ2x2(0)

)
+AΛ1x1(0) ·Λ2x2(0)

= 1
2

(
Λ∗

1 A1Λ1x1(0) · x1(0) +Λ∗
2 A2Λ2x2(0) · x2(0)

)
+Λ∗

2 AΛ1x1(0) · x2(0) = u(0).

(3.37)

Thus

0 =
∫ ω

0
u′(t)dt ≥

∫ ω

0

(
δ(t)− p(t)

)(∥∥x1(t)
∥∥2

+
∥∥x2(t)

∥∥2
)
dt. (3.38)

Hence, by virtue of conditions (1.26) and (1.28), it follows that there exists t0 ∈ [0,ω]
such that

xi
(
t0
)= 0 (i= 1,2). (3.39)

Therefore, xi(t) = 0 for t ∈ R (i= 1,2) since system (3.1) with the zero initial conditions
has only a trivial solution. �
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ON THE SOLUTIONS OF NONLINEAR INITIAL-BOUNDARY
VALUE PROBLEMS

VLADIMÍR ĎURIKOVIČ AND MONIKA ĎURIKOVIČOVÁ

Received 27 September 2002

We deal with the general initial-boundary value problem for a second-order nonlinear
nonstationary evolution equation. The associated operator equation is studied by the
Fredholm and Nemitskii operator theory. Under local Hölder conditions for the non-
linear member, we observe quantitative and qualitative properties of the set of solutions
of the given problem. These results can be applied to different mechanical and natural
science models.

1. Introduction

The generic properties of solutions of the second-order ordinary differential equations
were studied by Brüll and Mawhin in [2], Mawhin in [7], and by Šeda in [8]. Such ques-
tions were solved for nonlinear diffusional-type problems with the Dirichlet-, Neumann-,
and Newton-type conditions in [5, 6].

In this paper, we study the set structure of classic solutions, bifurcation points and
the surjectivity of an associated operator to a general second-order nonlinear evolution
problem by the Fredholm operator theory. The present results allow us to search the
generic properties of nonparabolic models which describe mechanical, physical, reaction-
diffusion, and ecology processes.

2. The formulation of the problem and basic notions

Throughout this paper, we assume that the set Ω ⊂ Rn for n ∈ N is a bounded do-
main with the sufficiently smooth boundary ∂Ω. The real number T is positive and
Q := (0,T]×Ω, Γ := (0,T]× ∂Ω.

We use the notation Dt for ∂/∂t, Di for ∂/∂xi, Dij for ∂2/∂xi∂xj , where i, j = 1, . . . ,n,
and D0u for u. The symbol clM means the closure of a set M in Rn.

We consider the nonlinear differential equation (possibly of a nonparabolic type)

Dtu−A
(
t,x,Dx

)
u+ f

(
t,x,u,D1u, . . . ,Dnu

)= g(t,x) (2.1)

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 153–170
2000 Mathematics Subject Classification: 35K20, 35K60, 47F05, 47A53, 47H30
URL: http://dx.doi.org/10.1155/9775945143
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for (t,x) ∈Q, where the coefficients ai j , ai, a0, for i, j = 1, . . . ,n, of the second-order linear
operator

A
(
t,x,Dx

)
u=

n∑
i, j=1

ai j(t,x)Diju+
n∑
i=1

ai(t,x)Diu+ a0(t,x)u (2.2)

are continuous functions from the space C(clQ,R). The function f is from the space
C(clQ×Rn+1,R) and g ∈ C(clQ,R).

Together with (2.1), we consider the following general homogeneous boundary con-
dition:

B3
(
t,x,Dx

)
u|Γ :=

n∑
i=1

bi(t,x)Diu+ b0(t,x)u|Γ = 0, (2.3)

where the coefficients bi, for i= 1, . . . ,n, and b0 are continuous functions from C(clΓ,R).
Furthermore, we require for the solution of (2.1) to satisfy the homogeneous initial

condition

u|t=0 = 0 on clΩ. (2.4)

Remark 2.1. In the case where bi = 0, for i= 1, . . . ,n, and b0 = 1 in (2.3), we get the Dirich-
let problem studied in [5].

If we consider the vector function ν := (0,ν1, . . . ,νn) : clΓ→ Rn+1 and the value ν(t,x)
which means the unit inner normal vector to clΓ at the point (t,x) ∈ clΓ and we let bi = νi
for i= 1, . . . ,n on clΓ, then problem (2.1), (2.3), (2.4) represents the Newton or Neuman
problem investigated in [6].

Our considerations are concerned with a broad class of nonparabolic operators.
In the following definitions, we will use the notations

〈u〉st,µ,Q := sup
(t,x),(s,x)∈clQ

t �=s

∣∣u(t,x)−u(s,x)
∣∣

|t− s|µ ,

〈u〉yx,ν,Q := sup
(t,x),(t,y)∈clQ

x �=y

∣∣u(t,x)−u(t, y)
∣∣

|x− y|ν
,

〈 f 〉s,y,v
t,x,u := ∣∣ f (t,x,u0,u1, . . . ,un

)− f
(
s, y,v0,v1, . . . ,vn

)∣∣,

〈 f 〉s,y,v(s,y)
t,x,u(t,x) := ∣∣ f [t,x,u(t,x),D1u(t,x), . . . ,Dnu(t,x)

]
,

− f
[
s, y,v(s, y),D1v(s, y), . . . ,Dnv(s, y)

]∣∣,

(2.5)

where x = (x1, . . . ,xn), y = (y1, . . . , yn) are from Rn, |x − y| = [
∑n

i=1(xi − yi)2]1/2, and
µ,ν ∈ R.

We will need the following Hölder spaces (see [4, page 147]).
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Definition 2.2. Let α∈ (0,1).

(1) By the symbol C(1+α)/2,1+α
t,x (clQ,R) we denote the vector space of continuous func-

tions u : clQ→ R which have continuous derivatives Diu for i = 1, . . . ,n on clQ, and the
norm

‖u‖(1+α)/2,1+α,Q :=
n∑
i=0

sup
(t,x)∈clQ

∣∣Diu(t,x)
∣∣+ 〈u〉st,(1+α)/2,Q

+
n∑
i=1

〈
Diu

〉s
t,α/2,Q +

n∑
i=1

〈
Diu

〉y
x,α/2,Q

(2.6)

is finite.
(2) The symbol C(2+α)/2,2+α

(t,x) (clQ,R) means the vector space of continuous functions u :
clQ→ R for which there exist continuous derivatives Dtu, Diu, Diju on clQ, i, j = 1, . . . ,n,
and the norm

‖u‖(2+α)/2,2+α,Q =
n∑
i=0

sup
(t,x)∈clQ

∣∣Diu(t,x)
∣∣+ sup

(t,x)∈clQ

∣∣Dtu(t,x)
∣∣

+
n∑

i, j=1

sup
(t,x)∈clQ

∣∣Diju(t,x)
∣∣+

n∑
i=1

〈
Diu

〉s
t,(1+α)/2,Q +

〈
Dtu

〉s
t,α/2,Q

+
n∑

i, j=1

〈
Diju

〉s
t,α/2,Q +

〈
Dtu

〉y
x,α,Q +

n∑
i, j=1

〈
Diju

〉y
x,α,Q

(2.7)

is finite.
(3) The symbol C(3+α)/2,3+α

t,x (clQ,R) means the vector space of continuous functions
u : clQ → R for which the derivatives Dt, Diu, DtDiu, Diju, Dijku, i, j,k = 1, . . . ,n, are
continuous on clQ, and the norm

‖u‖(3+α)/2,3+α,Q :=
n∑
i=0

sup
(t,x)∈clQ

∣∣Diu(t,x)
∣∣+

n∑
i, j=1

sup
(t,x)∈clQ

∣∣Diju(t,x)
∣∣

+
n∑
i=0

sup
(t,x)∈clQ

∣∣DtDiu(t,x)
∣∣+

n∑
i, j,k=1

sup
(t,x)∈clQ

∣∣Dijku(t,x)
∣∣

+
〈
Dtu

〉s
t,(1+α)/2,Q +

n∑
i, j=1

〈
Diju

〉s
t,(1+α)/2,Q

+
n∑
i=1

〈
DtDiu

〉s
t,α/2,Q +

n∑
i, j,k=1

〈
Dijku

〉s
t,α/2,Q

+
n∑
i=1

〈
DtDiu

〉y
x,α,Q +

n∑
i, j,k=1

〈
Dijku

〉y
x,α,Q

(2.8)

is finite.
The above-defined norm spaces are Banach ones.
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Definition 2.3 (the smoothness condition (S1+α
3 )). Let α ∈ (0,1). The differential oper-

ators A(t,x,Dx) from (2.1) and B3(t,x,Dx) from (2.3) satisfy the smoothness condition
(S1+α

3 ) if, respectively,

(i) the coefficients ai j , ai, a0 from (2.1), for i, j = 1, . . . ,n, belong to the space

C(1+α)/2,1+α
t,x (clQ,R) and ∂Ω∈ C3+α,

(ii) the coefficients bi from (2.3), for i=1, . . . ,n, belong to the spaceC(2+α)/2,2+α
t,x (clΓ,R).

Definition 2.4 (the complementary condition (C)). If at least one of the coefficients bi,
for i= 1, . . . ,n, of the differential operator B3(t,x,Dx) in (2.3) is not zero, then B3(t,x,Dx)
satisfies the complementary condition (C).

Now, we are prepared to formulate hypotheses for deriving fundamental lemmas.

Definition 2.5. (1) Fredholm conditions.
(A1) Consider the operator A3 : X3 → Y3, where

A3u=Dtu−A
(
t,x,Dx

)
u, u∈ X3, (2.9)

and the operators A(t,x,Dx) and B3(t,x,Dx) satisfy the smoothness condition
(S1+α

3 ) for α ∈ (0,1) and the complementary condition (C). Here, we consider the vec-
tor spaces

D
(
A3

)
:= {

u∈ C(3+α)/2,3+α
t,x (clQ,R); B3

(
t,x,Dx

)
u|Γ = 0, u|t=0(x) = 0 for x ∈ clQ

}
,

H
(
A3

)
:= {

v ∈ C(1+α)/2,1+α
t,x (clQ,R); B3

(
t,x,Dx

)
v(t,x)|t=0,x∈∂Ω = 0

}
(2.10)

and Banach subspaces (of the given Hölder spaces)

X3 = (
D
(
A3

)
,‖ · ‖(3+α)/2,3+α,Q

)
,

Y3 = (
H
(
A3

)
,‖ · ‖(1+α)/2,1+α,Q

)
.

(2.11)

(A2) There is a second-order linear homeomorphism C3 : X3 → Y3 with

C3u=Dtu−C
(
t,x,Dx

)
u, u∈ X3, (2.12)

where

C
(
t,x,Dx

)
u=

n∑
i, j=1

ci j(t,x)Diju+
n∑
i=1

ci(t,x)Diu+ c0(t,x)u, (2.13)

satisfying the smoothness condition (S1+α
3 ). The operator C3 is not necessarily a parabolic

one.
(2) Local Hölder and compatibility conditions.
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Let f := f (t,x,u0,u1, . . . ,un) : clQ × Rn+1 → R, α ∈ (0,1), and let p, q, pr , for r =
0,1, . . . ,n be nonnegative constants. Here, D represents any compact subset of (clQ) ×
Rn+1. For f , we need the following assumptions:

(B1) let f ∈ C1(clQ× Rn+1,R) and let the first derivatives ∂ f /∂xi, ∂ f /∂uj be locally
Hölder continuous on clQ×Rn+1 such that

〈
∂ f

∂xi

?s,y,v

t,x,u
≤ p|t− s|α/2 + q|x− y|α +

n∑
r=0

pr
∣∣ur − vr

∣∣,

〈
∂ f

∂uj

?s,y,v

t,x,u
≤ p|t− s|α/2 + q|x− y|α +

n∑
r=0

pr
∣∣ur − vr

∣∣,

(2.14)

for i= 1, . . . ,n, j = 0,1, . . . ,n, and any D;
(B2) let f ∈ C3(clQ×Rn+1,R) and let the local growth conditions for the third deriva-

tives of f hold on any D:

〈
∂3 f

∂τ∂xi∂uj

?t,x,v

t,x,u
≤

n∑
s=0

ps
∣∣us − vs

∣∣βs ,
〈

∂3 f

∂τ∂uj∂uk

?t,x,v

t,x,u
≤

n∑
s=0

ps
∣∣us − vs

∣∣βs ,
〈

∂3 f

∂xi∂xl∂uj

?t,x,v

t,x,u
≤

n∑
s=0

ps
∣∣us − vs

∣∣βs ,
〈

∂3 f

∂xi∂uj∂uk

?t,x,v

t,x,u
≤

n∑
s=0

ps
∣∣us − vs

∣∣βs ,
〈

∂3 f

∂uj∂uk∂ur

?t,x,v

t,x,u
,≤

n∑
s=0

ps
∣∣us − vs

∣∣βs ,

(2.15)

where βs > 0 for s= 0,1, . . . ,n and i, l = 1, . . . ,n; j,k,r = 0,1, . . . ,n;
(B3) the equality of compatibility

n∑
i=1

bi(t,x)Di f (t,x,0, . . . ,0) + b0(t,x) f (t,x,0, . . . ,0)|t=0,x∈∂Ω = 0 (2.16)

holds.

(3) Almost coercive condition.
Let, for any bounded set M3 ⊂ Y3, there exist a number K > 0 such that for all solutions

u ∈ X3 of problem (2.1), (2.3), (2.4) with the right-hand sides g ∈ M3, the following
alternative holds:
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(C1) either
(α1) ‖u‖(1+α)/2,1+α,Q ≤ K , f := f (t,x,u0) : clQ×R → R, and the coefficients of the

operators A3 and C3 (see (2.1) and (A2)) satisfy the equations

ai j = ci j , ai = ci, for i, j = 1, . . . ,n, a0 �= c0 on clQ, (2.17)

or
(α2) ‖u‖(2+α)/2,2+α,Q ≤ K , f := f (t,x,u0,u1, . . . ,un) : clQ×Rn+1 → R, and the coef-

ficients of the operators A3 and C3 satisfy the relations

ai j = ci j for i, j = 1, . . . ,n, ai �= ci for at least one i= 1, . . . ,n (2.18)

on clQ.

Remark 2.6. (1) Especially, condition (A2) is satisfied for the diffusion operator

C3u=Dtu− � u, u∈ X3, (2.19)

or for any uniformly parabolic operator C3 with sufficiently smooth coefficients. How-
ever, the operator C3 is not necessarily uniform parabolic.

(2) The local Hölder conditions in (B1) and (B2) admit sufficiently strong growths of
f in the last variables u0,u1, . . . ,un. For example, they include exponential and power-type
growths.

Definition 2.7. (1) A couple (u,g) ∈ X3 × Y3 will be called the bifurcation point of the
mixed problem (2.1), (2.3), (2.4) if u is a solution of that mixed problem and there exists
a sequence {gk} ⊂ Y3 such that gk → g in Y3 as k →∞, and problem (2.1), (2.3), (2.4) for
g = gk has at least two different solutions uk, vk for each k ∈ N and uk → u, vk → u in X3

as k→∞.
(2) The set of all solutions u ∈ X3 of (2.1), (2.3), (2.4) (or the set of all functions

g ∈ Y3) such that (u,g) is a bifurcation point of problem (2.1), (2.3), (2.4) will be called
the domain of bifurcation (the bifurcation range) of that problem.

3. Fundamental lemmas

Lemma 3.1. Let conditions (A1) and (A2) hold (see Definition 2.5). Then,

(1) dimX3 = +∞;
(2) the operator A3 : X3 → Y3 is a linear bounded Fredholm operator of the zero index.

Proof. (1) To prove the first part of this lemma, we use the decomposition theorem from
[9, page 139].

Let X be a linear space and let x∗ : X → R be a linear functional on X such that x∗ �= 0.
Furthermore, let M = {x ∈ X ; x∗(x) = 0} and let x0 ∈ X −M. Then, every element x ∈ X
can be expressed by the formula

x =
[
x∗(x)
x∗(x0

)]x0 +m, m∈M, (3.1)

that is, there is a one-dimensional subspace L1 of X such that X = L1 ⊕M.
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If we now let

M1 :=
{
u∈ C(3+α)/2,3+α

t,x (clQ,R) =: H3+α; B3
(
t,x,Dx

)
u|Γ = 0

}
, (3.2)

which is the linear subspace of H3+α, then there exists a linear subspace L1 of H3+α

with dimL1 = 1 such that H3+α = L1 ⊕M1. Similarly, if we take M2 := {u ∈M1; u|t=0 =
0 on clΩ}, then there is a subspace L2 of M1 with dimL2 = 1 such that M1 = L2 ⊕M2.
Hence, we have H3+α = L1 ⊕L2 ⊕D(A3). Since dimH3+α = +∞, we get that dimX3 = +∞.

(2) (a) In the first step, we prove the boundedness of the linear operator A3. To this
end, we observe the norm ‖A3u‖(1+α)/2,1+α,Q for u∈D(A3). From the assumption (S1+α

3 )
we get for k = 0,1, . . . ,n,

sup
(t,x)∈clQ

∣∣DkA3u(t,x)
∣∣≤ K1‖u‖(3+α)/2,3+α,Q, K1 > 0. (3.3)

Applying again the smoothness assumption (S1+α
3 ), the mean value theorem for the

functions u and Diu, and the boundedness of Q, we obtain for the second member of the
above-mentioned norm the following estimation:

〈
A3u

〉s
t,(1+α)/2,Q = sup

(t,x),(s,x)∈clQ
t �=s

∣∣A3u(t,x)−A3u(s,x)
∣∣

|t− s|(1+α)/2

≤ K2‖u‖(3+α)/2,3+α,Q, K2 > 0.

(3.4)

For the third member of the norm (2.6), we estimate for k = 1, . . . ,n as follows:

〈
DkA3u

〉s
t,α/2,Q = sup

(t,x),(s,x)∈clQ
t �=s

∣∣DkA3u(t,x)−DkA3u(s,x)
∣∣

|t− s|α/2

≤ K3‖u‖(3+α)/2,3+α,Q, K3 > 0.

(3.5)

An estimation of the last member in (2.6) for A3u is given by the following inequality
for k = 1, . . . ,n:

〈
DkA3u

〉y
x,α/2,Q = sup

(t,x),(t,y)∈clQ
x �=y

∣∣DkA3u(t,x)−DkA3u(t, y)
∣∣

|x− y|α/2

≤ K4‖u‖(3+α)/2,3+α,Q, K4 > 0.

(3.6)

From the estimations (3.3), (3.4), (3.5), and (3.6), we can conclude that∥∥A3u
∥∥
Y3

= ∥∥A3u
∥∥

(1+α)/2,1+α,Q ≤ K
(
n,T ,α,Ω,ai j ,ai,a0

)‖u‖X3 . (3.7)

(b) To prove that A3 is a Fredholm operator with the zero index, we express it in the
form

A3u= C3u+
[
C
(
t,x,Dx

)−A
(
t,x,Dx

)]
u=: C3u+T3u, (3.8)
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where C3 : X3 → Y3 is a linear homeomorphism and C is the linear operator from (A2).
By the decomposition Nikoľskii theorem [10, page 233], it is sufficient to show that T3 :
X3 → Y3 is a linear completely continuous operator.

The complete continuity of T3 can be proved by the Ascoli-Arzelá theorem (see [11,
page 141]).

From (S1+α
3 ), the uniform boundedness of the operator

T3u=
n∑

i, j=1

[
ci j(t,x)− ai j(t,x)

]
Diju+

n∑
i=1

[
ci(t,x)− ai(t,x)

]
Diu

+
[
c0(t,x)− a0(t,x)

]
u

(3.9)

follows by the same way as the boundedness of the operator A3 in the previous part (1).
Thus, for all u∈M ⊂ X3, where M is a set bounded by the constant K1 > 0, we obtain the
estimate

∥∥T3u
∥∥
Y3

≤ K
(
n,αT ,Ω,ai j ,ci j ,ai,ci,a0,c0

)‖u‖X3 ≤ KK1. (3.10)

Using the smoothness condition of the operators A and C, we get the inequalities

∣∣T3u(t,x)−T3u(s, y)
∣∣≤

n∑
i, j=1

∣∣[ci j − ai j
]
(t,x)− [

ci j − ai j
]
(s, y)

∣∣∣∣Diju(t,x)
∣∣

+
n∑

i, j=1

∣∣ci j(s, y)− ai j(s, y)
∣∣∣∣Diju(t,x)−Diju(s, y)

∣∣
+

n∑
i=1

∣∣[ci − ai
]
(t,x)− [

ci − ai
]
(s, y)

∣∣∣∣Diu(t,x)
∣∣

+
n∑
i=1

∣∣ci(s, y)− ai(s, y)
∣∣∣∣Diu(t,x)−Diu(s, y)

∣∣
+
∣∣[c0 − a0

]
(t,x)− [

c0 − a0
]
(s, y)

∣∣∣∣u(t,x)
∣∣

+
∣∣c0(s, y)− a0(s, y)

∣∣∣∣u(t,x)−u(s, y)
∣∣

≤ 4K1Kn
2[|t− s|α/2 + |x− y|α]

+ 2K1Kn
[(|t− s|α/2 + |x− y|α)+

(|t− s|(1+α)/2 + |x− y|)]
+ 2K1K

[(|t− s|α/2 + |x− y|α)+
(|t− s|+ |x− y|)],

(3.11)

where K1, K are positive constants. Hence, the equicontinuity of T3M ⊂ Y3 follows. This
finishes the proof of Lemma 3.1. �

Lemma 3.1 implies the following alternative.
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Corollary 3.2. Let L mean the set of all second-order linear differential operators

A3 =Dt −A
(
t,x,Dx

)
: X3 −→ C(1+α)/2,1+α

t,x (clQ,R) (3.12)

satisfying conditions (C) and (S1+α
2 ). Then, for each A3 ∈ L, the mixed homogeneous problem

A3u= 0 on Q, (2.3), and (2.4) has a nontrivial solution or any A3 ∈ L is a linear bounded
Fredholm operator of the zero-index mapping X3 onto Y3.

The following lemma establishes the complete continuity of the Nemitskii operator
from the nonlinear part of (2.1).

Lemma 3.3. Let assumptions (B1) and (B3) be satisfied. Then the Nemitskii operator N3 :
X3 → Y3 defined by (

N3u
)
(t,x) = f

[
t,x,u(t,x),D1u(t,x), . . . ,Dnu(t,x)

]
(3.13)

for u∈ X3 and (t,x) ∈ clQ is completely continuous.

Proof. Let M3 ⊂ X3 be a bounded set. By the Ascoli-Arzelá theorem, it is sufficient to show
that the set N3(M3) is uniformly bounded and equicontinuous. We will use assumption
(B3) to prove the inclusion N3(M3) ⊂ Y3.

Take u ∈M3. According to assumption (B1), we obtain the local boundedness of the
function f and of its derivatives ∂ f /∂xi on (clQ) × Rn+1 for i = 1, . . . ,n. From this and
from the equation

Di
(
N3u

)
(t,x) =

{
Di f [·] +

n∑
l=0

∂ f

∂ul
[·]DiDlu

}[·,·,u,D1u, . . . ,Dnu
]
(t,x), (3.14)

we have the estimation

sup
(t,x)∈clQ

∣∣Di
(
N3u

)
(t,x)

∣∣≤ K1 (3.15)

for i= 0,1, . . . ,n with a positive sufficiently large constant K1 not depending on u∈M3.
Using the differentiability of f and the mean value theorem in the variable t for the

difference of the derivatives of u, we can write〈
N3u

〉s
t,(1+α)/2,Q ≤ K1. (3.16)

Similarly, by (2.14), we have〈
DiN3u

〉s
t,α/2,Q ≤ K1,

〈
DiN3u

〉y
x,α,Q ≤ K1, (3.17)

for i= 1, . . . ,n and u∈M3. The previous estimations yield the inequality∥∥N3u
∥∥
Y3

≤ K1 (3.18)

for all u∈M3.
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With respect to (B1), for any u ∈ M3 and (t,x),(s, y) ∈ clQ such that |t− s|2 + |x−
y|2 < δ2 with a sufficiently small δ > 0, we have∣∣N3u(t,x)−N3u(s, y)

∣∣ < ε, ε > 0, (3.19)

which is the equicontinuity of N3(M3). This finishes the proof of Lemma 3.3. �

Lemma 3.4. Let assumptions (A1), (A2), (B1), (B3), and (C1) hold. Then the operator
F3 = A3 +N3 : X3 → Y3 is coercive.

Proof. We need to prove that if the set M3 ⊂ Y3 is bounded in Y3, then the set of argu-
ments F−1

3 (M3) ⊂ X3 is bounded in X3.
In both cases (α1) and (α2), we get for all u∈ F−1

3 (M3),∥∥N3u
∥∥

(1+α)/2,1+α,Q ≤ K1, (3.20)

where K1 > 0 is a sufficiently large constant. Hence,∥∥A3u
∥∥
Y3

≤ K1 (3.21)

for any u∈ F−1
3 (M3).

Hypothesis (A2) ensures the existence and uniqueness of the solution u ∈ X3 of the
linear equation

C3u= y, (3.22)

and for any y ∈ Y3,

‖u‖X3 ≤ K1‖y‖Y3 . (3.23)

If we write

C3u= A3u+
n∑

i, j=1

[
ai j(t,x)− ci j(t,x)

]
Diju

+
n∑
i=1

[
ai(t,x)− ci(t,x)

]
Diu+

[
a0(t,x)− c0(t,x)

]
u,

(3.24)

then in both cases and for each u∈ F−1
3 (M3), we obtain

‖y‖Y3 ≤
∥∥C3u

∥∥
Y3

≤ K1, (3.25)

whence, by inequality (3.23), we can conclude that the operator F3 is coercive. �

Lemma 3.5. Let the Nemitskii operator N3 : X3 → Y3 from (3.13) satisfy conditions (B2)
and (B3). Then the operator N3 is continuously Fréchet-differentiable, that is, N3 ∈ C1(X3,
Y3) and it is completely continuous.
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Proof. From (B2), we obtain (B1) which implies by Lemma 3.3 the complete continuity
of N3. To obtain the first part of the assertion of this lemma, we need to prove that the
Fréchet derivative N ′

3 : X3 → L(X3,Y3) defined by the equation

N ′
3(u)h(t,x) =

n∑
j=0

∂ f

∂uj

(
t,x,u(t,x),D1u(t,x), . . . ,Dnu(t,x)

]
Djh(t,x) (3.26)

for u,h∈ X3 is continuous on X3. Thus, we must prove, for every v ∈ X3, that

∀ε > 0 ∃δ(ε,v) > 0, ∀u∈ X3, ‖u− v‖X3 < δ : sup
h∈X3,‖h‖X3≤1

∥∥[N ′
3(u)−N ′

3(v)
]
h
∥∥
Y3
< ε.

(3.27)

Using the norms (2.6), (2.8) and the estimation ‖u− v‖X3 < δ, we have for the first term
of (3.27) by the mean value theorem,

n∑
i=0

sup
(t,x)∈clQ

∣∣Di
[
N ′

3(u)−N ′
3(v)

]
h(t,x)

∣∣
≤

n∑
i, j=0

sup
(t,x)∈clQ

[〈
∂2 f

∂xi∂uj

?t,x,v(t,x)

t,x,u(t,x)

∣∣Djh(t,x)
∣∣

+
n∑

k=0

〈
∂2 f

∂uj∂uk

?t,x,v(t,x)

t,x,u(t,x)

∣∣Diku
∣∣ ·∣∣Djh

∣∣(t,x)

+
n∑

k=0

∣∣∣∣ ∂2 f

∂uj∂uk

(
t,x,v(t,x), . . .

)∣∣∣∣∣∣Diku−Dikv
∣∣∣∣Djh

∣∣(t,x)

+
〈
∂ f

∂uj

?t,x,v(t,x)

t,x,u(t,x)

∣∣Dijh(t,x)
∣∣] < Kδ, K > 0.

(3.28)

For the second term of (3.27), we estimate as follows:

〈[
N ′

3(u)−N ′
3(v)

]
h
〉s
t,(1+α)/2,Q

≤
n∑
j=0

sup
clQ, t �=s

|t− s|−(1+α)/2
[∣∣∣∣∫ t

s
Dτ

〈
∂ f

∂uj

?τ,x,v(τ,x)

τ,x,u(τ,x)
dτ

∣∣∣∣∣∣Djh(t,x)
∣∣

+
〈
∂ f

∂uj

?s,x,v(s,x)

s,x,u(s,x)

∣∣∣∣∫ t

s
DτDjh(τ,x)dτ

∣∣∣∣]
≤ Kδ, K > 0.

(3.29)

Here, we have used the mean value theorem for ∂2 f /∂τ∂uj , ∂2 f /∂uj∂uk, and ∂ f /∂uj for
j,k = 0,1, . . . ,n.
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The third term of (3.27) gives by (2.15),

n∑
i=1

〈
Di
{[
N ′

3(u)−N ′
3(v)

]
h
}〉s

t,α/2,Q

≤
n∑
i=1

n∑
j=0

sup
clQ, t �=s

|t− s|−α/2

×
{∣∣∣∣∫ t

s
Dτ

〈
∂2 f

∂xi∂uj

?τ,x,v(τ,x)

τ,x,u(τ,x)
dτ

∣∣∣∣∣∣Djh(t,x)
∣∣

+
〈

∂2 f

∂xi∂uj

?s,x,v(s,x)

s,x,u(s,x)

∣∣∣∣∫ t

s
DτDjh(τ,x)dτ

∣∣∣∣
+

n∑
k=0

[∣∣∣∣∫ t

s
Dτ

〈
∂2 f

∂uj∂uk

?τ,x,v(τ,x)

τ,x,u(τ,x)
dτ

∣∣∣∣∣∣Diku
∣∣∣∣Djh

∣∣(t,x)

+
∣∣∣∣∫ t

s
Dτ

[
∂2 f

∂uj∂uk
(τ,x,v, . . .)dτ

]∣∣∣∣
×∣∣Diku(t,x)−Dikv(t,x)

∣∣∣∣Djh(t,x)
∣∣

+
〈

∂2 f

∂uj∂uk

?s,x,v(s,x)

s,x,u(s,x)

∣∣Diku(t,x)−Diku(s,x)
∣∣∣∣Djh(t,x)

∣∣
+
∣∣∣∣ ∂2 f

∂uj∂uk
(s,x,v, . . .)

∣∣∣∣
×∣∣Diku(t,x)−Dikv(t,x)− [

Diku(s,x)−Dikv(s,x)
]∣∣∣∣Djh(t,x)

∣∣
+
〈

∂2 f

∂uj∂uk

?s,x,v(s,x)

s,x,u(s,x)

∣∣Diku(s,x)
∣∣∣∣∣∣∫ t

s
DτDjh(τ,x)dτ

∣∣∣∣
+
∣∣∣∣ ∂2 f

∂uj∂uk
(s,x,v, . . .)

∣∣∣∣∣∣Diku(s,x)−Dikv(s,x)
∣∣

×
∣∣∣∣∫ t

s
DτDjh(τ,x)dτ

∣∣∣∣
+
∣∣∣∣∫ t

s
Dτ

〈
∂ f

∂uj

?τ,x,v(τ,x)

τ,x,u(τ,x)
dτ

∣∣∣∣∣∣Dijh(t,x)
∣∣

+
〈
∂ f

∂uj

?s,x,v(s,x)

s,x,u(s,x)

∣∣Dijh(t,x)−Dijh(s,x)
∣∣]}

≤ K

( n∑
s=0

δβs + δ

)
, K > 0.

(3.30)
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Making the corresponding changes, the last term of (3.27), by condition (B2), gives the
required estimation:

n∑
i=1

〈
Di
{[
N ′

3(u)−N ′
3(v)

]
h
}〉y

x,α,Q. (3.31)

This finishes the proof of Lemma 3.5. �

4. Generic properties for continuous operators

On a mutual equivalence between the solution of the given initial-boundary value prob-
lem and an operator equation, we have the following lemma.

Lemma 4.1. Let A3 : X3 → Y3 be the linear operator from Lemma 3.1, let N3 : X3 → Y3 be
the Nemitskii operator from Lemma 3.3, and let F3 = A3 +N3 : X3 → Y3. Then,

(1) the function u ∈ X3 is a solution of the initial-boundary value problem (2.1), (2.3),
(2.4) for g ∈ Y3 if and only if F3u= g;

(2) the couple (u,g) ∈ X3 ×Y3 is the bifurcation point of the initial-boundary value prob-
lem (2.1), (2.3), (2.4) if and only if F3(u) = g and u∈ Σ, where Σ means the set of all
points of X3 at which F3 is not locally invertible.

Proof. (1) The first equivalence directly follows from the definition of the operator F3 and
of the mixed problem (2.1), (2.3), (2.4).

(2) If (u,g) is a bifurcation point of the mixed problem (2.1), (2.3), (2.4) and uk, vk,
and gk for k = 1,2, . . . have the same meaning as in Definition 2.7, then with respect to (1)
we have F3(u) = g, F3(uk) = gk = F3(vk). Thus, F3 is not locally injective at u. Hence, F3 is
not locally invertible at u, that is, u∈ Σ. Conversely, if F3 is not locally invertible at u and
F3(u) = g, then F3 is not locally injective at u. Indirectly, from Definition 2.7, we see that
the couple (u,g) is a bifurcation point of (2.1), (2.3), (2.4). �

Lemma 4.2. Let

(i) the operator A(t,x,Dx) �= 0 from (2.1) and the operator B3(t,x,Dx) from (2.3) satisfy
the smoothness condition (S1+α

3 );
(ii) the nonlinear part f of (2.1) belong to C(clQ×Rn+1,R);

(iii) the operator A3 +N3 : X3 → Y3 be nonconstant.

Then, for any compact set of the right-hand sides g ∈ Y3 from (2.1), the set of all solutions
of problem (2.1), (2.3), (2.4) is compact (possibly empty).

Proof. Following the proof of Lemma 3.1, we see that dimX3 = +∞ and the linear opera-
tor A3 : X3 → Y3 is continuous and accordingly closed. From hypothesis (ii) the Nemitskii
operator N3 : X3 → Y3 given in (4.9) is closed too. By [8, Proposition 2.1], the operator
F3 = A3 + N3 : X3 → Y3 is proper, and with respect to Lemma 4.1 we get our assertion.

�

Theorem 4.3. Under assumptions (A1), (A2) and (B1), (B3), the following statements hold
for problem (2.1), (2.3), (2.4):
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(a) the operator F3 = A3 +N3 : X3 → Y3 is continuous;
(b) for any compact set of the right-hand sides g ∈ Y3 from (2.1), the corresponding set of

all solutions is a countable union of compact sets;
(c) for u0 ∈ X3, there exist neighborhoods U(u0) of u0 and U(F3(u0)) of F3(u0) ∈ Y3

such that for each g ∈ U(F3(u0)), there is a unique solution of (2.1), (2.3), (2.4) if
and only if the operator F3 is locally injective at u0.

Moreover, if (C1) is assumed, then

(d) for each compact set of Y3, the corresponding set of all solutions is compact (possibly
empty).

Proof. Assertion (a) is evident by Lemmas 3.1 and 3.3.
Using the Nikoľskii theorem for A3, we can write

F3 = C3 +
(
T3 +N3

)
, (4.1)

where C3 : X3 → Y3 is a linear homeomorphism and is proper (see [8, Proposition 2.1])
and T3 +N3 : X3 → Y3 is a completely continuous mapping.

Now take the compact sets K ⊂ Y3 and F−1
3 (K). Then there exists a sequence of the

closed and bounded sets Mn ⊂ F−1
3 (K) ⊂ X3 for n= 1,2, . . . such that

⋃∞
n=1Mn = F−1

3 (K).
According to [8, Proposition 2.2], the restrictions F3|Mn for n = 1,2, . . . are proper

mappings and
F3|Mn

−1
(K) =Mn is a compact set. Hence, the operator F3 is σ-proper,

which gives the result (b).
Assertion (d) is a direct consequence of [8, Proposition 2.2].
Suppose now that F3 is injective in a neighborhood U(u0) of u0 ∈ X3. From the de-

composition (4.1) the mapping

C−1
3 F3 = I +C−1

3

(
T3 +N3

)
, (4.2)

where I : X → Y is the identity, is completely continuous and injective in U(u0). On the
basis of the Schauder domain invariance theorem (see [3, page 66]), the set
C−1

3 F3(U(u0)) is open inX3 and the restrictionC−1
3 F3|U(u0) is a homeomorphism ofU(u0)

onto C−1
3 F3(U(u0)). Therefore, F3 is locally invertible. From Lemma 4.1 we obtain (c).

The most important properties of the mapping F3, whereby A3 is a linear bounded
Fredholm operator of zero index, N3 is completely continuous, and F3 is coercive, give
the following theorem. �

Theorem 4.4. If hypotheses (A1), (A2), (B1), (B3), and (C1) are satisfied, then for the
initial-boundary value problem (2.1), (2.3), (2.4), the following statements hold.

(e) For each g ∈ Y3, the set S3g of all solutions is compact (possibly empty).
(f) The set R(F3) = {g ∈ Y3 : there exists at least one solution of the given problem} is

closed and connected in Y3.
(g) The domain of bifurcation D3b is closed in X3 and the bifurcation range R3b is closed

in Y3. F3(X3 −D3b) is open in Y3.
(h) If Y3 − R3b �= ∅, then each component of Y3 − R3b is a nonempty open set (i.e., a

domain).
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The number n3g of solutions is finite, constant (it may be zero) on each component of the set
Y3 −R3b, that is, for every g belonging to the same component of Y3 −R3b.

(i) If R3b = 0, then the given problem has a unique solution u∈ X3 for each g ∈ Y3 and
this solution continuously depends on g as a mapping from Y3 onto X3.

(j) If R3b �= ∅, then the boundary of the F3-image of the set of all points from X3 in which
the operator F3 is locally invertible is a subset of the F3-image of the set of all points
from X3 in which F3 is not locally invertible, that is,

∂F3
(
X3 −D3b

)⊂ F3
(
D3b

)= R3b. (4.3)

Proof. Statement (e) follows immediately from Theorem 4.3(d).
(f) Let the sequence {gn}n∈N ⊂ R(F3) ⊂ Y3 converge to g ∈ Y3 as n→∞. By Theorem

4.3(d), there is a compact set of all solutions {uγ}γ∈I ⊂ X3 (I is an index set) of the equa-
tions F3(u) = gn for all n= 1,2, . . . . Then there exists a sequence {unk}k∈N ⊂ {uγ}γ∈I con-
verging to u∈ X3 for which F3(unk ) = gnk → g. Since the operator F3 is proper, whence it
is closed, we have F3(u) = g. Hence, g ∈ R(F3) and R(F3) is a closed set.

The connectedness of R(F3) = F3(X3) follows from the fact that R(F3) is a continuous
image of the connected set X3.

(g) According to Lemma 4.1(2), D3b = Σ3 and R3b = F3(D3b). Since X3 −Σ3 is an open
set, D3b and its continuous image R3b are closed sets in X3 and Y3, respectively.

Since X3 −D3b is a set of all points in which the mapping F3 is locally invertible, then
it ensures that to each u0 ∈ X3 −D3b there is a neighborhood U1(F3(u0)) ⊂ F3(X3 −D3b),
which means that the set F3(X3 −D3b) is open.

(h) The set Y3 −R3b = Y3 − F3(D3b) �= 0 is open in Y3, then each of its components is
nonempty and open.

The second part of (h) follows from Ambrosetti theorem [1, page 216].
(i) Since R3b =∅, the mapping F3 is locally invertible in X3. From [8, Proposition 2.2],

we get that F3 is a proper mapping. Then the global inverse mapping theorem [12, page
174] proves this statement.

(j) By (f) and (g), we have (Σ3 =D3b)

F3
(
X3

)= F3
(
Σ3
)∪F3

(
X3 −Σ3

)= F3
(
Σ3
)∪F3

(
X3 −Σ3

)= F
(
X3

)
. (4.4)

Furthermore, ∂F3(X3 −Σ3) = F(X3 −Σ3)−F(X3 −Σ3), and thus the previous equality
implies assertion (j). �

Theorem 4.5. Under assumption (A1), (A2), (B1), (B3), and (C1), each of the following
conditions is sufficient for the solvability of problem (2.1), (2.3), (2.4) for each g ∈ Y3:

(k) for each g ∈ R3b, there is a solution u of (2.1), (2.3), (2.4) such that u∈ X3 −D3b;
(l) the set Y3 −R3b is connected and there is a g ∈ R(F3)−R3b.

Proof. First of all, we see that conditions (k) and (l) are mutually equivalent to the fol-
lowing conditions:
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(k′) F3(D3b) ⊂ F3(X3 −D3b),
(l′) Y3 −R3b is a connected set and

F3
(
X3 −D3b

)−R3b �= ∅, (4.5)

respectively (D3b = Σ3).

Then it is sufficient to show that conditions (k′) and (l′), respectively, are sufficient for
the surjectivity of the operator F3 : X3 → Y3.

(k′) From the first equality of (4.4), we obtain F3(X3) = F3(X3 −D3b). Hence, R(F3) is
an open as well as a closed subset of the connected space Y3. Thus, R(F3) = Y3.

(l′) By Theorem 4.4(h), cardF−1
3 ({q}) = const =: k ≥ 0 for every q ∈ Y3 −R3b.

If k = 0, then F3(X3) = R3b and F3(X3 −D3b) ⊂ R3b. This is a contradiction to (4.5).
Then k > 0 and R(F3) = Y3. �

The other surjectivity theorem is true.

Theorem 4.6. Let hypotheses (A1), (A2), (B1), (B3), and (C1) hold and

(i) there exists a constant K > 0 such that all solutions u ∈ X3 of the initial-boundary
value problem for the equation

C3u+µ
[
A3u−C3u+N3u

]= 0, µ∈ (0,1), (4.6)

with data (2.3), (2.4), fulfil one of conditions (α1) and (α2) of the almost coercive
condition (C1), then

(m) problem (2.1), (2.3), (2.4) has at least one solution for each g ∈ Y3;
(n) the number n3g of solutions of (2.1), (2.3), (2.4) is finite, constant, and different from

zero on each component of the set Y3 −R3b (for all g belonging to the same component
of Y3 −R3b).

Proof. (m) It is sufficient to prove the surjectivity of the mapping F3 : X3 → Y3. By Lemma
3.1, we can write

F3 =A3 +N3 = C3 +
(
T3 +N3

)
, (4.7)

where C3 : X3 → Y3 is a linear homeomorphism from X3 onto Y3 and T3 +N3 : X3 → Y3 is
a completely continuous operator. Then the operator

C−1
3 F3 = I +C−1

3

(
T3 +N3

)
: X3 −→ X3 (4.8)

is completely continuous and condensing (see [12, page 496]). The set Σ3 =D3b is the set
of all points u∈ X3 where C−1

3 F3, as well as F3, is not locally invertible.
Denote S1 ⊂ X3 a bounded set. Then C3(S1) =: S is bounded in Y3, and by Lemma 3.4,

F−1
3 (S) = F−1

3 (C3(S1)) = (C−1
3 ◦F3)−1(S1) is a bounded set in X3. Thus, the operator C−1

3 ◦
F3 is coercive.

Now we show that condition (i) implies the conditions from [8, Theorem 3.2, Corol-
lary 3.3, and Remark 3.1] for F(u) = C−1

3 ◦F3(u) and C(u) =G(u) = u, u∈ X3.
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In fact, as C−1
3 ◦F3(u) = ku if and only if F3(u) = kC3(u), we get for k < 0,

C3u+ (1− k)−1[A3u−C3u+N3u
]= 0, (4.9)

where (1− k)−1 ∈ (0,1).
In case (α1), there is a constant K > 0 such that for all solutions u∈ X3 of (4.9),

‖u‖(1+α)/2,1+α,Q ≤ K , (4.10)

and in case (α2),

‖u‖(2+α)/2,2+α,Q ≤ K. (4.11)

Furthermore, by the same method as in Lemma 3.4, we get the estimation

‖u‖X3 < K1, K1 > 0, (4.12)

for all solutions u ∈ X3 of C−1
3 ◦ F3u = ku. Hence, we get the surjectivity of F3 and thus

(m).
(n) From Theorem 4.4(h) and the surjectivity of F3, it follows that there is n3g �= 0.

This finishes the proof of Theorem 4.6. �
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ON A NONLOCAL CAUCHY PROBLEM
FOR DIFFERENTIAL INCLUSIONS

E. GATSORI, S. K. NTOUYAS, AND Y. G. SFICAS

Received 3 September 2002

We establish sufficient conditions for the existence of solutions for semilinear differential
inclusions, with nonlocal conditions. We rely on a fixed-point theorem for contraction
multivalued maps due to Covitz and Nadler and on the Schaefer’s fixed-point theorem
combined with lower semicontinuous multivalued operators with decomposable values.

1. Introduction

In this paper, we are concerned with proving the existence of solutions of differential
inclusions, with nonlocal initial conditions. More precisely, in Section 2, we consider the
following differential inclusion, with nonlocal initial conditions:

y′ ∈ F(t, y), t ∈ J = [0,b], (1.1a)

y(0) +
p∑

k=1

ck y
(
tk
)= y0, (1.1b)

where F : J ×Rn → �(Rn) is a multivalued map, �(Rn) is the family of all subsets of Rn,
y0 ∈ Rn, and 0 ≤ t1 < t2 < ··· < tp ≤ b, p ∈ N, ck �= 0, k = 1,2, . . . , p.

The single-valued case of problem (1.1) was studied by Byszewski [5], in which a new
definition of mild solution was introduced. In the same paper, it was remarked that the
constants ck, k = 1, . . . , p, from condition (1.1b) can satisfy the inequalities |ck| ≥ 1, k =
1, . . . , p. As pointed out by Byszewski [4], the study of initial value problems with nonlocal
conditions is of significance since they have applications in problems in physics and other
areas of applied mathematics.

The initial value problem (1.1) was studied by Benchohra and Ntouyas [1] in the semi-
linear case where the right-hand side is assumed to be convex-valued. Here, we drop
this restriction and consider problem (1.1) with a nonconvex-valued right-hand side.
By using the fixed-point theorem for contraction multivalued maps due to Covitz and
Nadler [7] and the Schaefer’s theorem combined with a selection theorem of Bressan

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 171–180
2000 Mathematics Subject Classification: 34A60, 34G20, 34G25
URL: http://dx.doi.org/10.1155/9775945143
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and Colombo for lower semicontinuous (l.s.c.) multivalued operators with decompos-
able values, existence results are proposed for problem (1.1).

In this section, we introduce notations, definitions, and preliminary facts from multi-
valued analysis, which are used throughout this paper.

We denote by �(E) the set of all subsets of E normed by ‖ · ‖� and by C(J ,Rn) the
Banach space of all continuous functions from J into Rn with the norm

‖y‖∞ = sup
{∣∣y(t)

∣∣ : t ∈ J
}
. (1.2)

Also, L1(J ,Rn) denotes the Banach space of measurable functions y : J → Rn which are
Lebesgue integrable and normed by

‖y‖L1 =
∫ b

0

∣∣y(t)
∣∣dt. (1.3)

Let A be a subset of J × Rn. The set A is � ⊗ � measurable if A belongs to the σ-
algebra generated by all sets of the form N ×D, where N is Lebesgue measurable in J and
D is Borel measurable in Rn. A subset B of L1(J ,Rn) is decomposable if, for all u,v ∈ B
and N ⊂ J measurable, the function uχN + vχJ−N ∈ B, where χ denotes the characteristic
function.

Let E be a Banach space, X a nonempty closed subset of E, and G : X → �(E) a
multivalued operator with nonempty closed values. The operator G is l.s.c. if the set
{x ∈ X : G(x) ∩ C �= ∅} is open for any open set C in E. The operator G has a fixed
point if there is x ∈ X such that x ∈G(x). For more details on multivalued maps, we refer
to Deimling [8], Górniewicz [10], Hu and Papageorgiou [11], and Tolstonogov [13].

Definition 1.1. Let Y be a separable metric space and let N : Y → �(L1(J ,Rn)) be a mul-
tivalued operator. The operator N has property (BC) if

(1) N is l.s.c.;
(2) N has nonempty closed and decomposable values.

Let F : J ×Rn → �(Rn) be a multivalued map with nonempty compact values. Assign
to F the multivalued operator

	 : C
(
J ,Rn

)−→ �
(
L1(J ,Rn

))
(1.4)

by letting

	(y) = {
w ∈ L1(J ,Rn

)
: w(t) ∈ F

(
t, y(t)

)
for a.e. t ∈ J

}
. (1.5)

The operator 	 is called the Niemytzki operator associated with F.

Definition 1.2. Let F : J ×Rn → �(Rn) be a multivalued function with nonempty com-
pact values. The multivalued map F is of l.s.c. type if its associated Niemytzki operator 	
is l.s.c. and has nonempty closed and decomposable values.

Next, we state a selection theorem due to Bressan and Colombo [3].



E. Gatsori et al. 173

Theorem 1.3 (see [3]). Let Y be a separable metric space and let N : Y → �(L1(J ,Rn)) be
a multivalued operator which has property (BC). Then N has a continuous selection, that is,
there exists a (single-valued) continuous function g : Y → L1(J ,Rn) such that g(y) ∈ N(y)
for every y ∈ Y .

Let (X ,d) be a metric space. We use the following notations:

P(X) = {
Y ∈ �(X) : Y �= ∅}

,

Pcl(X) = {
Y ∈ P(X) : Y closed

}
,

Pb(X) = {
Y ∈ P(X) : Y bounded

}
,

Pcp(X) = {
Y ∈ P(X) : Y compact

}
.

(1.6)

Consider Hd : P(X)×P(X) → R+ ∪{∞} given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}

, (1.7)

where d(A,b) = infa∈A d(a,b) and d(a,B) = infb∈B d(a,b).
Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a generalized metric space.

Definition 1.4. A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd
(
N(x),N(y)

)≤ γd(x, y) for each x, y ∈ X ; (1.8)

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

For more details on multivalued maps and the proofs of known results cited in this
section, we refer to Deimling [8], Górniewicz [10], Hu and Papageorgiou [11], and Tol-
stonogov [13].

In the sequel, we will use the following fixed-point theorem for contraction multival-
ued operators given by Covitz and Nadler [7] (see also Deimling [8, Theorem 11.1]).

Lemma 1.5. Let (X ,d) be a complete metric space. If N : X → Pcl(X) is a contraction, then
fixN �= ∅.

2. Main results

Definition 2.1. Assume that
∑p

k=1 ck �= −1. A function y ∈ C(J ,Rn) is called a mild solu-
tion of (1.1) if there exists a function v ∈ L1(J ,Rn) such that v(t) ∈ F(t, y(t)) a.e. on J ,
and

y(t) = A

(
y0 −

p∑
k=1

ck

∫ tk

0
v(s)ds

)
+
∫ t

0
v(s)ds, (2.1)

where A= (1 +
∑p

k=1 ck)−1.
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We will need the following assumptions:

(H1) F : J ×Rn → Pcp(Rn) has the property that F(·, y) : J → Pcp(Rn) is measurable for
each y ∈ Rn;

(H2) there exists l ∈ L1(J ,R+) such that

Hd
(
F(t, y),F(t, y)

)≤ l(t)|y− y| for almost each t ∈ J , y, y ∈ R
n,

d
(
0,F(t,0)

)≤ �(t) for almost each t ∈ J ;
(2.2)

(H3) assume that

p∑
k=1

ck �= −1; (2.3)

(H4) |A|∑p
k=1 |ck|L(tk) +L(b) < 1, where L(t) = ∫ t

0 l(s)ds.

Theorem 2.2. Assume that hypotheses (H1), (H2), (H3), and (H4) are satisfied. Then prob-
lem (1.1) has at least one mild solution on J .

Proof. Transform problem (1.1) into a fixed-point problem. Consider the multivalued
operator N : C(J ,Rn) → �(C(J ,Rn)) defined by

N(y) :=
{
h∈ C

(
J ,Rn

)
: h(t) =A

(
y0 −

p∑
k=1

ck

∫ tk

0
g(s)ds

)
+
∫ t

0
g(s)ds : g ∈ SF,y

}
, (2.4)

where

SF,y =
{
g ∈ L1(J ,Rn

)
: g(t) ∈ F

(
t, y(t)

)
for a.e. t ∈ J

}
. (2.5)

We will show that N satisfies the assumptions of Lemma 1.5. The proof will be given
in two steps.
Step 1. We prove that N(y) ∈ Pcl(C(J ,Rn)) for each y ∈ C(J ,Rn).

Indeed, let (yn)n≥0 ∈N(y) such that yn → ỹ in C(J ,Rn). Then ỹ ∈ C(J ,Rn) and there
exist gn ∈ SF,y such that

yn(t) = A

(
y0 −

p∑
k=1

ck

∫ tk

0
gn(s)ds

)
+
∫ t

0
gn(s)ds. (2.6)

Using the fact that F has compact values, and from (H2), we may pass to a subsequence
if necessary to get that gn converges to g in L1(J ,E) and hence g ∈ SF,y . Then for each
t ∈ [0,b],

yn(t) −→ ỹ(t) =A

(
y0 −

p∑
k=1

ck

∫ tk

0
g(s)ds

)
+
∫ t

0
g(s)ds. (2.7)

So, ỹ ∈N(y).
Step 2. We prove that Hd(N(y1),N(y2)) ≤ γ‖y1 − y2‖∞ for each y1, y2 ∈ C(J ,Rn) (where
γ < 1).
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Let y1, y2 ∈ C(J ,Rn) and h1 ∈N(y1). Then there exists g1(t) ∈ F(t, y1(t)) such that

h1(t) =A

(
y0 −

p∑
k=1

ck

∫ tk

0
g1(s)ds

)
+
∫ t

0
g1(s)ds, t ∈ J. (2.8)

From (H2), it follows that

Hd
(
F
(
t, y1(t)

)
,F
(
t, y2(t)

))≤ l(t)
∣∣y1(t)− y2(t)

∣∣, t ∈ J. (2.9)

Hence, there is w ∈ F(t, y2(t)) such that∣∣g1(t)−w
∣∣≤ l(t)

∣∣y1(t)− y2(t)
∣∣, t ∈ J. (2.10)

Consider U : J → �(Rn) given by

U(t) = {
w ∈ R

n :
∣∣g1(t)−w

∣∣≤ l(t)
∣∣y1(t)− y2(t)

∣∣}. (2.11)

Since the multivalued operator V(t) = U(t) ∩ F(t, y2(t)) is measurable (see [6, Proposi-
tion III.4]), there exists g2(t) a measurable selection for V . So, g2(t) ∈ F(t, y2(t)) and∣∣g1(t)− g2(t)

∣∣≤ l(t)
∣∣y1(t)− y2(t)

∣∣ for each t ∈ J. (2.12)

We define for each t ∈ J ,

h2(t) =A

(
y0 −

p∑
k=1

ck

∫ tk

0
g2(s)ds

)
+
∫ t

0
g2(s)ds, t ∈ J. (2.13)

Then we have

∣∣h1(t)−h2(t)
∣∣≤

∣∣∣∣∣A
p∑

k=1

ck

∫ tk

0

[
g1(s)− g2(s)

]
ds+

∫ t

0

[
g1(s)− g2(s)

]
ds

∣∣∣∣∣
≤ |A|

p∑
k=1

∣∣ck∣∣∥∥y1 − y2
∥∥∞

∫ tk

0
�(s)ds

+
∥∥y1 − y2

∥∥∞

∫ t

0
l(s)ds

≤
(
|A|

p∑
k=1

∣∣ck∣∣L(tk)+L(b)

)∥∥y1 − y2
∥∥∞.

(2.14)

Then

∥∥h1 −h2
∥∥∞ ≤

(
|A|

p∑
k=1

∣∣ck∣∣L(tk)+L(b)

)∥∥y1 − y2
∥∥∞. (2.15)

By the analogous relation obtained by interchanging the roles of y1 and y2, it follows that

Hd
(
N
(
y1
)
,N

(
y2
))≤ (

|A|
p∑

k=1

∣∣ck∣∣L(tk)+L(b)

)∥∥y1 − y2
∥∥∞. (2.16)
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From (H4), we have that

γ := |A|
p∑

k=1

∣∣ck∣∣L(tk)+L(b) < 1. (2.17)

Then N is a contraction, and thus, by Lemma 1.5, it has a fixed point y which is a mild
solution to (1.1). �

Remark 2.3. Consider the Bielecki-type norm (see [2]) on C(J ,Rn), defined by

‖y‖� = max
t∈J

{∣∣y(t)
∣∣e−τL(t)}, (2.18)

where L(t) = ∫ t
0 l(s)ds. Since

e−τL(b)‖y‖∞ ≤ ‖y‖� ≤ ‖y‖∞, (2.19)

the norms ‖y‖� and ‖y‖∞ are equivalent.
Then we can prove Step 2 of Theorem 2.2, that is, Hd(N(y1),N(y2)) ≤ γ‖y1 − y2‖�

for each y1, y2 ∈ C(J ,Rn), where

γ = 1
τ

(
|A|

p∑
k=1

∣∣ck∣∣eτL(tk) + 1

)
. (2.20)

Indeed, we have

∥∥h1 −h2
∥∥

� = max
t∈J

e−τL(t)

∣∣∣∣∣A
p∑

k=1

ck

∫ tk

0

[
g1(s)− g2(s)

]
ds

+
∫ t

0

[
g1(s)− g2(s)

]
ds

∣∣∣∣∣
≤ |A|

p∑
k=1

∣∣ck∣∣∥∥y1 − y2
∥∥

�

∫ tk

0
�(s)eτL(s)ds

+
∥∥y1 − y2

∥∥
�

∫ t

0
l(s)eτL(s)ds

≤
(
|A|

p∑
k=1

∣∣ck∣∣eτL(tk)

τ
+

1− e−τL(b)

τ

)∥∥y1 − y2
∥∥

�

≤
(
|A|

p∑
k=1

∣∣ck∣∣eτL(tk)

τ
+

1
τ

)∥∥y1 − y2
∥∥

�.

(2.21)

We can choose τ such that γ < 1. In this case, (H4) must be deleted.

By the help of the Schaefer’s fixed-point theorem combined with the selection theorem
of Bressan and Colombo for l.s.c. maps with decomposable values, we will present an
existence result for problem (1.1). Before this, we introduce the following hypotheses
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which are assumed hereafter:

(H5) F : J ×C(J ,Rn) → �(Rn) is a nonempty compact-valued multivalued map such
that
(a) (t,u) �→ F(t,u) is �⊗� measurable;
(b) u �→ F(t,u) is l.s.c. for a.e. t ∈ J ;

(H6) for each r > 0, there exists a function hr ∈ L1(J ,R+) such that

∥∥F(t,u)
∥∥

� := sup
{|v| : v ∈ F(t,u)

}≤ hr(t) for a.e. t ∈ J , u∈ R
n with |u| ≤ r.

(2.22)

In the proof of Theorem 2.5, we will need the next auxiliary result.

Lemma 2.4 (see [9]). Let F : J ×C(J ,Rn) → �(Rn) be a multivalued map with nonempty,
compact values. Assume that (H5) and (H6) hold. Then F is of l.s.c. type.

Theorem 2.5. Suppose, in addition to hypotheses (H5) and (H6), that the following also
holds:

(H7) Assume that ‖F(t, y)‖� := sup{|v| : v ∈ F(t, y)} ≤ p(t)ψ(|y|) for almost all t ∈ J
and all y ∈ Rn, where p ∈ L1(J ,R+) and ψ : R+ → (0,∞) is continuous and increas-
ing with

∫∞ du

ψ(u)
=∞. (2.23)

Then the initial value problem (1.1) has at least one solution on J .

Proof. By Lemma 2.4, (H5) and (H6) imply that F is of l.s.c. type. Then, from Theorem
1.3, there exists a continuous function f : C(J ,Rn) → L1(J ,Rn) such that f (y) ∈ 	(y) for
all y ∈ C(J ,Rn).

We consider the problem

y′(t) = f (y)(t), t ∈ J ,

y(0) +
p∑

k=1

ck y
(
tk
)= y0.

(2.24)

We remark that if y ∈ C(J ,Rn) is a solution of problem (2.24), then y is a solution to
problem (1.1).

Transform problem (2.24) into a fixed-point problem by considering the operator N1 :
C(J ,Rn) → C(J ,Rn) defined by

N1(y)(t) := A

(
y0 −

p∑
k=1

ck

∫ tk

0
f (y)(s)ds

)
+
∫ t

0
f (y)(s)ds. (2.25)

We will show that N1 is a compact operator.



178 On a nonlocal Cauchy problem for differential inclusions

Step 1. The operator N1 is continuous.
Let {yn} be a sequence such that yn → y in C(J ,Rn). Then

∣∣∣N1
(
yn
)
(t)−N1(y)(t)

∣∣∣≤ |A|
p∑

k=1

∣∣ck∣∣∫ tk

0

∣∣ f (yn)(s)− f (y)(s)
∣∣ds

+
∫ t

0

∣∣ f (yn)(s)− f (y)(s)
∣∣ds

≤ |A|
p∑

k=1

∣∣ck∣∣∫ b

0

∣∣ f (yn)(s)− f (y)(s)
∣∣ds

+
∫ b

0

∣∣ f (yn)(s)− f (y)(s)
∣∣ds.

(2.26)

Since the function f is continuous, then∥∥N1
(
yn
)−N1(y)

∥∥∞ −→ 0 as n−→∞. (2.27)

Step 2. The operator N1 maps bounded sets into bounded sets in C(J ,Rn).
Indeed, it is enough to show that there exists a positive constant c such that for each

y ∈ Bq = {y ∈ C(J ,E) : ‖y‖∞ ≤ q}, one has ‖N1(y)‖∞ ≤ c. By (H6), we have for each
t ∈ J ,

∣∣N1(y)(t)
∣∣≤ |A|

(∣∣y0
∣∣+

p∑
k=1

∣∣ck∣∣∫ tk

0

∣∣ f (y)(s)
∣∣ds)+

∫ t

0

∣∣ f (y)(s)
∣∣ds

≤ |A|
(∣∣y0

∣∣+
p∑

k=1

∣∣ck∣∣∥∥hq∥∥L1

)
+
∥∥hq∥∥L1(J ,R+).

(2.28)

Step 3. The operator N1 maps bounded sets into equicontinuous sets of C(J ,Rn).
Let τ1,τ2 ∈ J , τ1 < τ2, and Bq = {y ∈ C(J ,Rn) : ‖y‖∞ ≤ q} a bounded set of C(J ,E).

Thus,

∣∣N1(y)
(
τ2
)−N1(y)

(
τ1
)∣∣≤

∫ τ2

τ1

hq(s)ds. (2.29)

As τ2 → τ1, the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1, 2, and 3, together with the Arzelá-Ascoli theorem, we can

conclude that N1 is completely continuous.
Step 4. Now, it remains to show that the set

�
(
N1

)
:= {

y ∈ C
(
J ,Rn

)
: y = λN1(y) for some 0 < λ < 1

}
(2.30)

is bounded.
Let y ∈ �(N1). Then y = λN1(y) for some 0 < λ < 1 and

y(t) = λA

(
y0 −

p∑
k=1

ck

∫ tk

0
f (y)(s)ds

)
+ λ

∫ t

0
f (y)(s)ds, t ∈ J. (2.31)
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This implies, by (H7), that for each t ∈ J , we have

∣∣y(t)
∣∣≤ |A|∣∣y0

∣∣+ |A|
p∑

k=1

∣∣ck∣∣∫ tk

0
p(t)ψ

(∣∣y(t)
∣∣)dt+

∫ t

0
p(s)ψ

(∣∣y(s)
∣∣)ds. (2.32)

We take the right-hand side of the above inequality as v(t), then we have

v(0) = |A|∣∣y0
∣∣+ |A|

p∑
k=1

∣∣ck∣∣∫ tk

0
p(t)ψ

(∣∣y(t)
∣∣)dt, ∣∣y(t)

∣∣≤ v(t), t ∈ J ,

v′(t) = p(t)ψ
(∣∣y(t)

∣∣), t ∈ J.

(2.33)

Using the nondecreasing character of ψ, we get

v′(t) ≤ p(t)ψ
(
v(t)

)
, t ∈ J. (2.34)

This implies that for each t ∈ J ,

∫ v(t)

v(0)

du

ψ(u)
≤
∫ b

0
p(s)ds < +∞. (2.35)

This inequality, together with hypothesis (H7), implies that there exists a constant d such
that v(t) ≤ d, t ∈ J , and hence ‖y‖∞ ≤ d, where d depends only on the functions p and
ψ. This shows that �(N1) is bounded. As a consequence of Schaefer’s theorem [12], we
deduce that N1 has a fixed point y which is a solution to problem (2.24). Then y is a
solution to problem (1.1). �
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EXACT SOLUTIONS OF THE SEMI-INFINITE TODA LATTICE
WITH APPLICATIONS TO THE INVERSE SPECTRAL
PROBLEM

E. K. IFANTIS AND K. N. VLACHOU

Received 30 July 2002

Several inverse spectral problems are solved by a method which is based on exact solu-
tions of the semi-infinite Toda lattice. In fact, starting with a well-known and appropriate
probability measure µ, the solution αn(t), bn(t) of the Toda lattice is exactly determined
and by taking t = 0, the solution αn(0), bn(0) of the inverse spectral problem is obtained.
The solutions of the Toda lattice which are found in this way are finite for every t > 0
and can also be obtained from the solutions of a simple differential equation. Many other
exact solutions obtained from this differential equation show that there exist initial con-
ditions αn(0) > 0 and bn(0) ∈ R such that the semi-infinite Toda lattice is not integrable
in the sense that the functions αn(t) and bn(t) are not finite for every t > 0.

1. Introduction

We write the semi-infinite Toda lattice as follows:

dαn(t)
dt

= αn(t)
(
bn+1(t)− bn(t)

)
, (1.1)

dbn(t)
dt

= 2
(
α2
n(t)−α2

n−1(t)
)
, t ≥ 0, n= 1,2, . . . (1.2)

and we ask for solutions which satisfy the initial conditions

αn(0) = αn, bn(0) = bn, (1.3)

where αn, bn are real sequences with αn > 0. In an attempt to compute the functions bn(t)
and αn(t) in some problems where the existence and uniqueness of a solution is proved,
we observed that many solutions of the initial value problem (1.1), (1.2), (1.3) satisfy the
relation

α̇1(t)
α1(t)

= δb1(t) + c, (1.4)

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 181–197
2000 Mathematics Subject Classification: 34A55, 37K10, 37L60
URL: http://dx.doi.org/10.1155/9775945143
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where δ, c are real numbers with δ ≥ 0 and the dot means differentiability with respect to
t. Then it follows easily that

α2
n(t) =

(
n(n− 1)

2
δ +n

)
α2

1(t),

bn(t) = [
(n− 1)δ + 1

]
b1(t) + (n− 1)c.

(1.5)

An example, where relation (1.4) holds and the functions α1(t) and b1(t) can be exactly
determined, has been published among others in [7]. Here, we present many exam-
ples starting from the well-known probability measures which determine uniquely the
sequences in (1.3). All these examples provide alternative solutions of important well-
known inverse spectral problems. (For details about the inverse spectral problem, see
Section 3.) In other words, the solution of many well-known and important inverse spec-
tral problems is obtained from one source, a class of exactly solvable Toda lattices.

The solutions of the Toda lattice which are found in this way are finite for every t > 0.
These global solutions can also be obtained from the solutions of the differential equation

b̈1(t) = 2
(
δb1(t) + c

)
ḃ1(t). (1.6)

Any solution of this equation satisfies (1.4). Given the initial conditions b1(0) and α1(0) >
0 of the Toda lattice, we find the solution b1(t) of (1.6) which satisfies these conditions.
We have the possibility to choose δ and c according to the form of the solution we want
to construct. Moreover, from (1.6), we can find solutions of the Toda lattice with poles.
Thus, many solutions of (1.6) show that there exist initial conditions αn(0) and bn(0)
such that the Toda lattice is not global integrable in the sense that the functions αn(t)
and bn(t) are not finite for every t > 0 (see Example 2.1 and Remark 4.10). In Section 2,
we give the proofs of (1.5) and (1.6) and we obtain from (1.5) and (1.6) several forms of
exact solutions of the Toda lattice. In Section 3, we define the inverse spectral problem
and present preliminary results which we need. For many measures whose support is
not bounded from above, the standard method of determining the function b1(t), and
consequently α1(t), b2(t), and so on, fails. With respect to the inverse spectral problem,
we avoid this difficulty by using Theorem 3.2 (see also Remark 3.3). In Section 4, we give
five examples of inverse spectral problems which can be solved by the method which
is based on the determination of exact solutions of the Toda lattice. Note that all the
exact solutions obtained in Section 2, by solving (1.6), and in Section 4, by solving several
inverse spectral problems, are solutions with unbounded initial conditions.

2. Solutions of b̈1(t) = 2(δb1(t) + c)ḃ1(t)

First, we give the proofs of relations (1.5) and (1.6).
From (1.1) (for n= 1) and (1.4), we have

α̇1(t)
α1(t)

= δb1(t) + c = b2(t)− b1(t) (2.1)

or

b2(t) = (δ + 1)b1(t) + c. (2.2)
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From (2.2) and (1.2), we find

ḃ2(t) = (δ + 1)ḃ1(t) = 2
(
α2

2(t)−α2
1(t)

)
. (2.3)

Since, from (1.2), we have

ḃ1(t) = 2α2
1(t), (2.4)

we obtain

α2
2(t) = (δ + 2)α2

1(t). (2.5)

Continuing in this way, we find b3(t) = (2δ + 1)b1(t) + 2c and α2
3(t) = (3δ + 3)α2

1(t). For-
mulas (1.5) are obtained by induction. From (2.4), we obtain

b̈1(t) = 4α1(t)α̇1(t). (2.6)

Thus from (2.4), (2.6), and (1.4), we obtain (1.6).
Equation (1.6) can be easily integrated. We present below several forms of the obtained

solutions. The forms of the solutions depend on the initial conditions α1(0) and b1(0) and
the values of δ and c.

Case 1 (δ = 0, c = 0). In this case, the solution of (1.6) is b1(t) = 2α2
1(0)t + b1(0). From

this and (2.4), we find α1(t) = α1(0) and from (1.5), we obtain

αn(t) =√
nα1(0), bn(t) = b1(t) = 2α2

1(0)t+ b1(0), n= 1,2, . . . . (2.7)

The solution in this case is finite for every t > 0 (global solution).

Case 2 (δ = 0, c �= 0). In this case, the solution of (1.6) is

b1(t) = α2
1(0)
c

(
e2ct − 1

)
+ b1(0) (2.8)

and the solution αn(t), bn(t) of the system (1.1), (1.2) is

αn(t) =√
nα1(0)ect,

bn(t) = α2
1(0)
c

(
e2ct − 1

)
+ b1(0) + (n− 1)c.

(2.9)

Case 3 (δ > 0, c = 0). The solution of (1.6) depends on the value

A0 = 2α2
1(0)− δb2

1(0). (2.10)

If A0 = 0, the global solution of (1.6) has the form

b1(t) = b1(0)
1− δb1(0)t

, b1(0) < 0 (2.11)
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and the solution αn(t), bn(t) of the system (1.1), (1.2) is given by

αn(t) =
√
n(nδ− δ + 2)

−√
δb1(0)

2
(
1− δb1(0)t

) ,

bn(t) = n
δb1(0)

1− δb1(0)t
+

(1− δ)b1(0)
1− δb1(0)t

.

(2.12)

If A0 > 0, the solution of (1.6) is

b1(t) =
√

A0

δ
tan

(√
δA0t+Γ1

)
, (2.13)

αn(t) =
√
n(nδ− δ + 2)A0

1

2cos
(√

δA0t+Γ1
) ,

bn(t) =
(
n+

1
δ
− 1

)√
A0δ tan

(√
A0δt+Γ1

)
,

(2.14)

where Γ1 = arctan(
√
δ/A0b1(0)). In order to have a global solution of the form (2.14), the

condition cos(
√
A0δt+Γ1) �= 0, for all t > 0, should hold.

If A0 < 0, the solution of (1.6) is given by

b1(t) = Γ2
(−√−A0δ

)
e−2t

√
−A0δ −√−A0δ

δ
(

1−Γ2e−2t
√

−A0δ
) (2.15)

and the functions αn(t) and bn(t) have the form

αn(t) =
√
n(nδ− δ + 2)Γ2

(−A0
) e−t

√
−A0δ

1−Γ2e−2t
√

−A0δ
,

bn(t) = [
(n− 1)δ + 1

]Γ2
(−√−A0δ

)
e−2t

√
−A0δ −√−A0δ

δ
(

1−Γ2e−2t
√

−A0δ
) ,

(2.16)

where Γ2 = (δb1(0) +
√−A0δ)/(δb1(0)−√−A0δ). We have a global solution if and only if

1− δb1(0) +
√−A0δ

δb1(0)−√−A0δ
e−2t

√
−A0δ �= 0, t ≥ 0. (2.17)

Case 4 (δ > 0, c �= 0). In this case, the solution of (1.6) and consequently the form of the
solution of the system (1.1), (1.2) depends on the value

A= (
2α2

1(0)− δb2
1(0)− 2cb1(0)

)
δ− c2. (2.18)
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If A= 0, the solution of (1.6) and the functions αn(t) and bn(t) have the form

b1(t) = 2cB1e2ct

δ
(
1−B1e2ct

) , (2.19)

αn(t) =
√

n(nδ− δ + 2)B1

δ

cect

1−B1e2ct
,

bn(t) = nc
1 +B1e2ct

1−B1e2ct
+
cB1e2ct(2− δ)− cδ

δ
(
1−B1e2ct

) ,

(2.20)

where B1 = δb1(0)/(δb1(0) + 2c). In order to construct a global solution of the form
(2.20), we must choose δ, c, b1(0), and α1(0) such that δb1(0) + 2c �= 0, A = (2α2

1(0) −
δb2

1(0)− 2cb1(0))δ− c2 = 0, and 1−B1e2ct �= 0, for every t > 0.
If A > 0, we have

b1(t) =
√
A

δ
tan

(√
At+B2

)− c

δ
, (2.21)

αn(t) =
√

n(nδ− δ + 2)A
δ

1
2cos

(√
At+B2

) ,

bn(t) =
(
n+

1
δ
− 1

)√
A tan

(√
At+B2

)− c

δ
,

(2.22)

where B2 = arctan((δb1(0) + c)/
√
A). In order to have a global solution of the form (2.22),

the condition cos(
√
At+B2) �= 0, for all t > 0, should hold. Finally, for A < 0, the solutions

are exponential with

b1(t) = B3
(
c−√−A)e−2t

√−A −√−A− c

δ
(
1−B3e−2t

√−A) , (2.23)

αn(t) =
√

n(nδ− δ + 2)B3(−A)
δ

e−t
√−A

1−B3e−2t
√−A ,

bn(t) = [
(n− 1)δ + 1

]
b1(t) + (n− 1)c,

(2.24)

where B3 = (δb1(0) + c+
√−A)/(δb1(0) + c−√−A) and b1(t) is given by (2.23). In order

to have a solution without poles, the condition

1− δb1(0) + c+
√−A

δb1(0) + c−√−Ae−2t
√−A �= 0, t ≥ 0, (2.25)

must be satisfied.

Example 2.1. Taking δ = 2, c = 1 − λ, b1(0) = 1, and α1(0) = √
λ, 0 < λ < 1, we find A =

−(λ− 9)(λ− 1) < 0 for 0 < λ < 1, B3 = (3− λ+
√−A)/(3− λ−√−A) > 1. This means that

condition (2.25) is not satisfied for every t > 0. We conclude that the Toda lattice, with
initial conditions b1(0) = 1, α1(0) = √

λ, and bn(0), αn(0) given by (1.5) for t = 0, δ = 2,
and c = 1 − λ, is not integrable in the sense that the functions αn(t) and bn(t) are not
finite for every t > 0.
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Example 2.2. Taking δ = 2, c = 1− λ, b1(0) =−1, α1(0) =√
λ, 0 < λ < 1, αn(0) = n

√
λ, and

bn(0) = −(1 + λ)n+ λ, we have A = −(1 − λ)2, B3 = λ. Then condition (2.25) is satisfied
and b1(t) is given by

b1(t) =− 1− λ

1− λe−2(1−λ)t
. (2.26)

This example is a particular case of Example 4.5. In fact, (2.26) is the same with (4.11) for
β = 0 and κ= 1− λ > 0.

3. The inverse spectral problem

It is well known that any probability measure µ on the real line with finite moments and
infinite support determines uniquely a pair of real sequences αn, bn with αn > 0 and a
class of orthonormal polynomials Pn(x) (

∫∞
−∞Pn(x)Pm(x)dµ(x) = δnm), which satisfy the

relation

αnPn+1(x) +αn−1Pn−1(x) + bnPn(x) = xPn(x),

P0(x) = 0, P1(x) = 1.
(3.1)

Conversely, for any pair of real sequences αn, bn with αn > 0, there exists at least one
probability measure µ such that the polynomials (3.1) are orthonormal. The measure µ is
unique if and only if the tridiagonal operator L(0), defined on finite linear combination
of an orthonormal basis en, n= 1,2, . . . , of a Hilbert space H :

L(0)en = αnen+1 +αn−1en−1 + bnen,

L(0)e1 = α1e2 + b1e1,
(3.2)

is (essentially) selfadjoint (see [1, 8, 11] for these subjects and their relationships). If L(0)
is selfadjoint, then there exists a one parameter family Et, −∞ < t < ∞, of orthogonal
projections on H such that for every x, ‖x‖ = 1, the function F(t) = (Etx,x), where (·,·)
means scalar product, is a distribution function, that is, a nondecreasing function which
is continuous on the right and satisfies F(−∞) = 0, F(∞) = 1. In particular, for x = e1,
the distribution function

F(t) = (
Ete1,e1

)
(3.3)

is the distribution function which corresponds to the unique probability measure µ, that
is, µ and F are connected by (see Theorem 3.1)

µ
(
(−∞, t]

)= F(t). (3.4)

The direct problem of orthogonal polynomials is the following.
Given the real sequences αn > 0 and bn, find the measure of orthogonality of the poly-

nomials which are defined by (3.1). This problem has a long history. Only the problem of
finding conditions on αn and bn, such that the above problem has a unique solution (note
that at least one solution always exists), is connected with many important problems in
analysis, for instance, the moment problem, the problem of selfadjoint extensions of an
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unbounded symmetric operator, and others [1, 8, 11] (see also [5]). Note that the mea-
sure of orthogonality is a probability measure on the real line with finite moments and
support consisting of infinitely many points.

The inverse problem of orthogonal polynomials is the following.
Given a probability measure µ on the real line with finite moments and infinite sup-

port, find the coefficients αn and bn which define the polynomials Pn in (3.1). Sometimes
we say the inverse problem of the operator L(0) or the inverse problem of µ instead of the
inverse problem of the polynomials (3.1).

There exists a standard procedure, which determines uniquely the sequences αn and bn
but this procedure involves many and arduous calculations, and exact solutions are very
difficult to be found. In fact, multiplication by Pn(x) in (3.1) and integration gives

bn =
∫∞

−∞
xP2

n(x)dµ(x). (3.5)

First, we find from (3.5) that b1 = ∫∞
−∞ xdµ(x). Consequently, taking n = 1 in (3.1) and

multiplying the relation α1P2(x) + b1 = x by P2(x), we obtain α2
1 = ∫∞

−∞ x2dµ(x)− b2
1. After

this, knowing the polynomial P2(x), we determine b2 from (3.5). Then we find α2, the
polynomial P3(x), and so on. The inverse problem of a selfadjoint operator is the problem
of finding the operator when some of its properties are given, for instance, its spectrum. It
is well known that the spectrum is not always enough for the solution of this problem. In
the present case, the spectrum of L(0) is not enough to determine uniquely the sequences
αn, bn. However, the knowledge of the distribution function (Ete1,e1) is enough, because
of the following well-known theorem, which we prove for completeness.

Theorem 3.1. Let L(0), defined by (3.2), be selfadjoint and let Et, −∞ < t <∞ be its spectral
family. Then the measure which corresponds to the distribution function (Ete1,e1) is the
unique measure of orthogonality of the polynomials Pn defined by (3.1).

Proof. Let L(0) = T . Then T can be written as

T =
∫∞

−∞
t dEt, (3.6)

in the sense that

(Tx, y) =
∫∞

−∞
t d
(
Etx, y

)
(3.7)

for every x, y in the definition domain of T . Then the operator Pm(T)Pn(T) can be writ-
ten as follows:

Pm(T)Pn(T) =
∫∞

−∞
Pm(t)Pn(t)dEt,

(
Pm(T)Pn(T)e1,e1

)= ∫∞

−∞
Pm(t)Pn(t)d

(
Ete1,e1

)
.

(3.8)

The operator Pn(T) acting on the element e1 produces the vector en, that is,

Pn(T)e1 = en, n= 1,2, . . . . (3.9)
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Relation (3.9) is obvious for n = 1 and for n ≥ 2 it follows from (3.2) and the relation
αnPn+1(T) +αn−1Pn−1(T) + bnPn(T) = TPn(T), by induction. Thus,∫∞

−∞
Pm(t)Pn(t)d

(
Ete1,e1

)= (
Pm(T)Pn(T)e1,e1

)
= (

Pn(T)e1,Pm(T)e1
)

= (
en,em

)= δn,m.

(3.10)

�

The measure which corresponds to the distribution function (3.3) is called spectral
measure of the tridiagonal operator L(0).

Another theorem that we will need is the following one.

Theorem 3.2. Assume that the operator

L(0) : L(0)en = αnen+1 +αn−1en−1 + bnen, n= 1,2, . . . , (3.11)

is essentially selfadjoint with spectral measure µ. Then the operator

L1(0) : L1(0)en = αnen+1 +αn−1en−1 − bnen (3.12)

is also essentially selfadjoint with spectral measure µτ−1, where τ(x) =−x.

Proof. By Theorem 3.1 and by the equivalence of the properties “essential selfadjointness”
of L(0) and “uniqueness of the measure of orthogonality” of the corresponding polyno-
mials, it is enough to prove that µτ−1 is a measure of orthogonality of the polynomials

αnRn+1(x) +αn−1Rn−1(x)− bnRn(x) = xRn(x),

R0(x) = 0, R1(x) = 1,
(3.13)

provided that µ is a measure of orthogonality of the polynomials (3.1). It is easy to see
that the polynomials Rn(x) and Pn(x) are related by

Rn(x) = (−1)nPn(−x). (3.14)

Assume that ∫∞

−∞
Pn(x)Pm(x)dµ= δn,m. (3.15)

Then by a well-known property in measure theory, we have∫∞

−∞
Rn(x)Rm(x)dµτ−1 =

∫∞

−∞
Rn

(
τ(x)

)
Rm

(
τ(x)

)
dµ

=
∫∞

−∞
Rn(−x)Rm(−x)dµ

= (−1)n+m
∫∞

−∞
Pn(x)Pm(x)dµ= δn,m.

(3.16)

�
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Given the initial conditions αn and bn of the Toda lattice, we assume that the operator
L(0) is (essentially) selfadjoint which means that the measure µ of orthogonality of the
polynomials (3.1) is unique.

The method of the inverse spectral problem works as follows: system (1.1), (1.2) is
equivalent to the equation

dL(t)
dt

=M(t)L(t)−L(t)M(t), (3.17)

where L(t) and M(t) are the tridiagonal operators

L(t)en = αn(t)en+1 +αn−1(t)en−1 + bn(t)en,

M(t)en = αn(t)en+1 −αn−1(t)en−1.
(3.18)

Under suitable assumptions on αn, bn, one finds the spectral measure µ(t) of the operator
L(t) [7]. Note that the spectral measure µ can be found by solving the direct problem of
the operator L(0). For the Toda lattice, as it is written in (1.1), (1.2), µ(t) has the form

dµ(t)(x) = e2xtdµ(x)∫∞
−∞ e2xtdµ(x)

, t ≥ 0. (3.19)

The solution of the Toda lattice is obtained by solving the inverse problem of L(t). In fact,
starting from the spectrum measure µ(t), we consider the linearly independent elements
1,x,x2, . . . of the space L2(µ(t)), the orthogonalization of which by the use of the Gram-
Schmidt method gives the orthogonal polynomials Pn(t,x) which satisfy

αn(t)Pn+1(t,x) +αn−1(t)Pn−1(t,x) + bn(t)Pn(t,x) = xPn(t,x),

P0(t,x) = 0, P1(t,x) = 1,
(3.20)

with αn(t) > 0 and bn(t) real. By a well-known procedure, the sequences αn(t), bn(t) can
be found from the above recurrence relation. Moreover, they satisfy system (1.1), (1.2).
In our case, it is enough to determine exactly the function b1(t), which is given by

b1(t) =
∫∞
−∞ xe2xtdµ(x)∫∞
−∞ e2xtdµ(x)

, t ≥ 0. (3.21)

What we need for the solution of the Toda lattice is the spectral measure µ of L(0). If the
spectrum of L(0) is discrete with eigenvalues λn and normalized eigenvectors xn, then

µ
({
λn
})= ∣∣(e1,xn

)∣∣2 = σ2
n (3.22)

and b1(t) is given by

b1(t) =
∑∞

n=1 λne
2λntσ2

n∑∞
n=1 e2λntσ2

n
. (3.23)
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In Section 4, we begin with a probability measure µ without knowing the initial condi-
tions αn(0), bn(0). Then we determine the element b1(t) from (3.21) or (3.23) and exam-
ine the validity of the relation (1.4). After this, the solution of the Toda lattice is given by
(1.5). The solution of the inverse problem of µ is given by

α2
n(0) =

(
n(n− 1)

2
δ +n

)
α2

1(0),

bn(0) = [
(n− 1)δ + 1

]
b1(0) + (n− 1)c.

(3.24)

Remark 3.3. The usefulness of Theorem 3.2 is that if the support of the measure µ lies
in the interval [α,∞), α ∈ R, and if it is not a bounded set, then the integrals in (3.21)
may not be finite. In this case, we find the solution αn(0), bn(0) of the inverse spectral
problem of the measure µτ−1, τ(x) = −x, whose support is bounded from above. Then
the solution of the inverse spectral problem of µ, due to Theorem 3.2, is αn(0), −bn(0),
n= 1,2, . . . .

4. Examples

In all the following examples, we begin with a probability measure µ on the real line with
finite moments µn = ∫∞

−∞ xndµ(x), µ0 = 1, and infinite support.

Example 4.1. Consider the probability measure µ whose distribution function is given by

F(x) = 1
Γ(α+ 1)

∫ x

0
ξαe−ξdξ, α >−1, (4.1)

where Γ is the gamma function. The moments

µk = 1
Γ(α+ 1)

∫∞

0
xkxαe−xdx = Γ(α+ k+ 1)

Γ(α+ 1)
, k = 0,1,2, . . . , (4.2)

are finite. Moreover, we can see that there exists a positive number r such that the series

∞∑
m=1

µmrm

m!
(4.3)

converges and by a well-known criterion (see, e.g., [2, Theorem 30.1]), the moment prob-
lem is determined or equivalently the operator L(0) is selfadjoint (see [1]).

Since the integrals of (3.21) do not exist for this measure, we consider the measure
µτ−1, τ(x) =−x instead of µ. We find from (3.21)

b1(t) =− α+ 1
2t+ 1

, α1(t) =
√
α+ 1

2t+ 1
,

α̇1(t)
α1(t)

= 2
α+ 1

b1(t)
(
δ = 2

α+ 1
, c = 0

)
.

(4.4)
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Thus, from (1.5), we obtain

αn(t) =
√
n(n+α)
2t+ 1

,

bn(t) =−2n+α− 1
2t+ 1

, t ≥ 0, n= 1,2, . . . .
(4.5)

Conclusion 4.2. The solution of the Toda lattice with initial conditions

αn(0) =
√
n(n+α),

bn(0) =−(2n+α− 1)
(4.6)

is given by (4.5). The solution of the inverse problem of µτ−1 is given by (4.6). Due to
Theorem 3.2, the solution of the inverse problem of the measure µ is

αn(0) =
√
n(n+α),

bn(0) = (2n+α− 1).
(4.7)

Remark 4.3. The solution of the inverse problem that we studied in this example is well
known in the theory of Laguerre polynomials defined by

√
n(n+α)Pn+1(x) +

√
(n− 1)(n− 1 +α)Pn−1(x) + (2n+α− 1)Pn(x) = xPn(x),

P0(x) = 0, P1(x) = 1.
(4.8)

In fact, it is well known that the measure of orthogonality of Pn(x) is unique and its
distribution function is given by (4.1) (see [3]).

Remark 4.4. In the following examples, we have a difficulty to establish the convergence of
the series (4.3). We avoid this difficulty as follows: suppose that we start with a measure of
the form (3.19) and we have found exactly a solution of the Toda lattice αn(t), bn(t) for t ≥
0. This means that we have found exactly the coefficients of the polynomials Pn(t,x) which
are orthonormal with respect to the measure µ(t). In all the examples that we will give, we
can see from the coefficients αn(t), bn(t) that µ(t) is the unique measure of orthogonality
for every t ≥ 0. In fact, the well-known criterion of Carleman [1] can easily be applied.
For t = 0, we find the coefficients of the polynomials whose measure of orthogonality is
the measure µ. In this way, we solve both the inverse and the direct spectral problem of µ.

Example 4.5. Consider the discrete probability measure

µ
({−κn+β})= (1− λ)λn−1, 0 < λ < 1, n= 1,2, . . . , κ > 0. (4.9)
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Obviously, its support is infinite consisting of the points −κ+β, −2κ+β, −3κ+β, . . ., and
the moments µk = (1− λ)

∑∞
n=1(−κn+β)kλn−1, k = 0,1,2, . . . , are finite. We have∫∞

−∞
e2xtdµ(x) = (1− λ)

∞∑
n=1

e−2κnt+2βtλn−1

= (1− λ)e2βt

λ

∞∑
n=1

(
λ

e2κt

)n

= (1− λ)e2βt

e2κt − λ
,

∫∞

−∞
xe2xtdµ(x) =

∞∑
n=1

(−κn+β)e−2κnte2βt(1− λ)λn−1

= β(1− λ)e2βt

e2κt − λ
− κ(1− λ)e2βt

e2κt(1−µ)2
, µ= λ

e2κt
.

(4.10)

Thus, from (3.21), we obtain

b1(t) = β− κ

1− λe−2κt
. (4.11)

From (1.2), we find

ḃ1(t)
2

= α2
1(t) = λκ2e−2κt(

1− λe−2κt
)2 , α1(t) = κ

√
λe−κt

1− λe−2κt
(4.12)

and after some manipulation, we obtain

α̇1(t)
α1(t)

= 2b1(t) + κ− 2β. (4.13)

Now, from (1.5), we find the solution of the Toda lattice which is

αn(t) = nκ
√
λe−κt

1− λe−2κt
,

bn(t) = (2n− 1)
(
β− κ

1− λe−2κt

)
+ κ(n− 1)− 2β(n− 1).

(4.14)

The inverse problem of L(0) can be solved by setting t = 0 in (4.14), that is,

αn(0) = nκ
√
λ

1− λ
,

bn(0) =− (1 + λ)κn
1− λ

+β+
κ

1− λ
− κ.

(4.15)

Due to Theorem 3.2, the solution of the inverse problem of the measure

µ
({κn−β})= (1− λ)λn−1, 0 < λ < 1, n= 1,2, . . . , κ > 0 (4.16)

is

αn(0) = nκ
√
λ

1− λ
, bn(0) = (1 + λ)κn

1− λ
−β− κ

1− λ
+ κ. (4.17)
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Remark 4.6. For β = 0, κ = 1, the inverse problem of the measure in (4.16) has been
solved in [4] by a different method. Also for β = 0, κ= 1− λ, the inverse problem of the
measure in (4.16) can be solved by using a result of Stieltjes in [9, 10]. In fact, Stieltjes
considered the continued fraction

F(z,λ) = 1

z+
1

1 +
λ

z+
2

1 +
2λ

z+
3

1 +
3λ

z+...

(4.18)

This fraction, by the identity

z+ c1 − c1c2

c2 + k1
= z+

c1

1 + c2/k1
, (4.19)

where α2
n = c2n−1c2n and bn = c2n−2c2n−1, b1 = c1, can be transformed into the fraction

F(z,λ) = 1

z+ b1 − α2
1

z+ b2 − α2
2

z+ b3−...

=
∫∞

−∞
dµ(x)
z+ x

(4.20)

Stieltjes gives in [9, 10] what we call nowadays the Stieltjes transform of the measure
(4.16):

∫∞

−∞
dµ(x)
z+ x

=
∞∑
n=1

(1− λ)λn−1

z+n(1− λ)
. (4.21)

From the analytic theory of continued fractions [6], it follows that the coefficients αn,
bn of the orthogonal polynomials corresponding to µ are given by αn = √

λn and bn =
n(1 + λ)− λ.

In fact, it is well known that if the tridiagonal operator L(0) is selfadjoint with spectral
measure µ, then the Stieltjes transform of µ is given by

∫∞

−∞
dµ(x)
z+ x

= 1

z+ b1 − α2
1

z+ b2 − α2
2

z+ b3−...

(4.22)
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In case the measure is discrete with mass points λ1,λ2, . . . , the Stieltjes transform is given
by

∫∞

−∞
dµ(x)
z+ x

=
∞∑
k=1

µ
({
λk
})

z+ λk
. (4.23)

Conversely, from the solution of the inverse problem, the Stieltjes transform of the mea-
sure (4.16) follows. This transform was presented by Stieltjes without proof in [9, 10] (see
also [12, page 367]).

Example 4.5 is a particular case of the following example.

Example 4.7. Consider the probability measure

µ
({β− κn})= (α)n−1(1− λ)αλn−1

(n− 1)!
, α > 0, 0 < λ < 1, n= 1,2, . . . , (4.24)

where (α)n−1 = α(α+ 1)···(α+ n− 2). The support of this measure is infinite and the
moments

µκ =
∞∑
n=1

(−κn+β)κα(α+ 1)···(α+n− 2)(1− λ)αλn−1

(n− 1)!
(4.25)

are finite.
From (4.24), we obtain

∫∞

−∞
e2xtdµ=

∞∑
n=1

e2t(−κn+β)(α)n−1λn−1(1− λ)α

(n− 1)!
= (1− λ)αe2βt−2κt(

1− λe−2κt
)α ,

∫∞

−∞
xe2xtdµ= (1− λ)αe2βt−2κt

[
(κλ− καλ−βλ)e−2κt +β− κ

](
1− λe−2κt

)α+1 .

(4.26)

Thus,

b1(t) = β+
λκe−2κt(1−α)− κ

1− λe−2κt
,

ḃ1(t) = 2λκ2αe−2κt(
1− λe−2κt

)2 = 2α2
1(t),

α1(t) = κ
√
λαe−κt

1− λe−2κt
,

α̇1(t)
α1(t)

= 2
α
b1(t) +

2κ
α

− 2β
α

− κ.

(4.27)
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From this relation, we see that in this case we have δ = 2/α and c = 2κ/α− 2β/α− κ. Then
from (1.5), it follows that

αn(t) = κ
√
n(n+α− 1)λe−κt

1− λe−2κt
,

bn(t) =
(−κ(1 + λe−2κt

)
1− λe−2κt

)
n+

(
1− 2

a

)
b1(t)− 2κ

α
+

2β
α

+ κ.
(4.28)

The solution of the inverse problem is given by

αn(0) = κ
√
n(n+α− 1)λ

1− λ
,

bn(0) = −κ(1 + λ)n+ λκ(2−α) +β(1− λ)
1− λ

.

(4.29)

We note that this inverse spectral problem is well known in the theory of the measure of
orthogonality of the Meixner polynomials (see [3, page 175]), which we find here by an
alternative method.

Using Theorem 3.2, we can derive the solution of the inverse problem of the measure
(4.24). This solution is given by

αn(0) = κ
√
n(n+α− 1)λ

1− λ
,

bn(0) = κ(1 + λ)n− λκ(2−α)−β(1− λ)
1− λ

.

(4.30)

Example 4.8. Consider the probability measure

µ
({β− γn})= e−ααn−1

(n− 1)!
, α > 0, γ > 0, n= 1,2, . . . . (4.31)

From (4.31), we obtain∫∞

−∞
e2xtdµ= e−α+2βt−2γt+αe−2γt

,∫∞

−∞
xe2xtdµ= e−α+2βt−2γt+αe−2γt(

β− γ−αγe−2γt). (4.32)

Thus,

b1(t) = β− γ−αγe−2γt. (4.33)

From (4.33),

ḃ1(t) = 2αγ2e−2γt = 2α2
1(t), (4.34)

and from (1.2), we find

α̇1(t)
α1(t)

=−γ. (4.35)
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From (4.35), we see that in this case we have δ = 0 and c =−γ. Then from (1.5), it follows
that

αn(t) = γ
√
nαe−γt, bn(t) = β− γ−αγe−2γt − (n− 1)γ. (4.36)

The solution of the inverse problem is

αn(0) = γ
√
nα, bn(0) = β−αγ−nγ (4.37)

for β = 1/γ, α = 1/γ2. Thus, we have obtained the example studied in [7]. Here we note
that we obtain an alternative derivation of the measure of orthogonality of the Charlier
polynomials (see appendix in [7]).

In this example, we solved the inverse problem of the measure (4.31). Due to Theorem
3.2, we can see that the solution of the inverse problem of the measure

µ
({γn−β})= e−ααn−1

(n− 1)!
, α > 0, γ > 0, n= 1,2, . . . , (4.38)

is

αn(0) = γ
√
nα, bn(0) =−β+αγ+nγ. (4.39)

Example 4.9. Consider the probability measure µ whose distribution function is given by

F(x) = 1
σ
√

2π

∫ x

−∞
e−(ξ−m)2/2σ2

dξ, m,σ > 0. (4.40)

The moments µk = (1/σ
√

2π)
∫∞
−∞ xke−(x−m)2/2σ2

dx are finite.
We calculate the integrals∫∞

−∞
e2xtdµ= 1

σ
√

2π

∫∞

−∞
e2xt−(x−m)2/2σ2

dx = e2t(m+σ2t),∫∞

−∞
xe2xtdµ= 1

σ
√

2π

∫∞

−∞
xe2xt−(x−m)2/2σ2

dx = (
m+ 2σ2t

)
e2t(m+σ2t).

(4.41)

Thus relation (3.21) gives

b1(t) =m+ 2σ2t (4.42)

and so

α̇1(t)
α1(t)

= 0 (δ = c = 0). (4.43)

Then from (1.5), we obtain

αn(t) = σ
√
n, bn(t) = b1(t) =m+ 2σ2t, n= 1,2, . . . . (4.44)

As a consequence, the solution of the inverse problem of µ is

αn(0) = σ
√
n, bn(0) =m, n= 1,2, . . . . (4.45)
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Due to Theorem 3.2, the solution of the inverse problem of the measure µτ−1 is

αn(0) = σ
√
n, bn(0) =−m, n= 1,2, . . . . (4.46)

Remark 4.10. In [7], we proved that the Toda lattice has a unique solution αn(t), bn(t)
provided that the tridiagonal operator L(0) is (essentially) selfadjoint and bounded from
above. This means that the support of the measure µ is a set bounded from above. Exam-
ples showed that there exist spectral measures µ with support not bounded from above
such that the integrals in (3.21) do not exist (see, e.g., the measure µ in Example 4.1 or
the measure µτ−1 in Examples 4.5, 4.7, and 4.8). What can be said for the integrability of
these systems? From (1.6), we see that in these cases the solution αn(t), bn(t) has poles for
some t > 0.
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NONANALYTIC SOLUTIONS OF THE KdV EQUATION
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To Professor E. K. Ifantis on the occasion of his 67th birthday

We construct nonanalytic solutions to the initial value problem for the KdV equation
with analytic initial data in both the periodic and the nonperiodic cases.

1. Introduction

It is well known that the solution to the Cauchy problem of the KdV equation with an
analytic initial profile is analytic in the space variable for a fixed time (see Trubowitz [11]
and Kato [7]). However, analyticity in the time variable fails. Here, we will present several
examples demonstrating this phenomenon of the KdV equation. More precisely, we will
show that the initial value problem

∂tu+ ∂3
xu+u∂xu= 0,

u(x,0) = ϕ(x), x ∈ R or T, t ∈ R,
(1.1)

where ϕ(x) is an appropriate analytic function, cannot have an analytic solution in t for
fixed x, say x = 0. By replacing x with −x, we see that it suffices to consider the equivalent
problem

∂tu= ∂3
xu+u∂xu, (1.2)

u(x,0) = ϕ(x). (1.3)

If u(x, t) was analytic in t at t = 0, then it could be written as a power series of the follow-
ing form:

u(x, t) =
∞∑
j=0

∂
j
t u(x,0)
j!

t j (1.4)

Copyright © 2004 Hindawi Publishing Corporation
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with a nonzero radius of convergence. In particular, there must be some constant A such
that

∂nt u(x,0) ≤Ann! (1.5)

for every positive integer n.
In computing the values of ∂nt u(x,0), we will rely on the fact (to be demonstrated

shortly) that if u(x, t) is a solution to (1.2), then ∂
j
t u(x, t) can be written as a polynomial

of u(x, t),∂xu(x, t),∂2
xu(x, t), . . . ,∂

3 j
x u(x, t).

To motivate the discussion that will follow, we will first look at ∂tu(x, t) and ∂2
t u(x, t).

The initial value problem (1.2) and (1.3) gives

∂tu(x,0) = ϕ′′′(x) +ϕ(x)ϕ′(x). (1.6)

Then, differentiating (1.2), we obtain

∂2
t u= ∂t

[
∂3
xu+u∂xu

]= ∂3
x∂tu+u∂x∂tu+ ∂xu∂tu

= ∂3
x

(
∂3
xu+u∂xu

)
+u∂x

(
∂3
xu+u∂xu

)
+ ∂xu

(
∂3
xu+u∂xu

)
= ∂6

xu+u∂4
xu+ 3∂3

xu∂xu+ 3∂2
xu∂

2
xu+ ∂3

xu∂xu

+u∂4
x +u∂xu∂xu+uu∂2

xu+ ∂xu∂
3
xu+u∂xu∂xu

= ∂6
xu+ 2u∂4

xu+ 5∂xu∂3
xu+ 3∂2

xu∂
2
xu+uu∂2

xu+ 2u∂xu∂xu,

(1.7)

and hence

∂2
t u(x,0) = ϕ(6) + 2ϕϕ(4) + 5ϕ(1)ϕ(3) + 3ϕ(2)ϕ(2) +ϕϕϕ(2) + 2ϕϕ(1)ϕ(1). (1.8)

Now, suppose that the initial data is a function of the form

u(x,0) = ϕ(x) = (a− x)−d, (1.9)

where a is some (complex-valued) constant. Then we have

∂tu(x,0) = d(d+ 1)(d+ 2)(a− x)−(d+3) +d(a− x)−(2d+1), (1.10)

and we make our key observation: the exponent of (a− x) will be the same for both terms
if and only if

d = 2. (1.11)
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In a similar way, we compute for the terms of ∂2
t u at t = 0,

∂6
xu= d(d+ 1)(d+ 2)(d+ 3)(d+ 4)(d+ 5)(a− x)−(6+d),

u∂4
xu= d(d+ 1)(d+ 2)(d+ 3)(a− x)−(4+2d),

∂xu∂
3
xu= d ·d(d+ 1)(d+ 2)(a− x)−(4+2d),

∂2
xu∂

2
xu= d(d+ 1) ·d(d+ 1)(a− x)−(4+2d),

uu∂2
xu= d(d+ 1)(a− x)−(2+3d),

u∂xu∂xu= d ·d(a− x)−(2+3d),

(1.12)

and we again see that for all the terms in the expression of ∂2
t u(x,0) to have equal expo-

nents, we must have d = 2.
Next, we will show that with this choice of d, the “homogeneity” degree of all the terms

in the expression of ∂
j
t u(x,0) is the same number which is equal to 3 j + 2. More precisely,

if, for a term of the form

(
∂α1
x u

)(
∂α2
x u

)···(∂α�x u), αm ∈ {0,1,2, . . .}, (1.13)

we assign the “homogeneity” degree

(
α1 + 2

)
+
(
α2 + 2

)
+ ···+

(
α� + 2

)= |α|+ 2�, (1.14)

then we have the following lemma.

Lemma 1.1. If u(x, t) is a solution to the initial value problem (1.2) and (1.3), then

∂
j
t u= ∂

3 j
x u+

∑
|α|+2�=3 j+2

Cα
(
∂α1
x u

)···(∂α�x u) (1.15)

with Cα ≥ 0.

Here, for a multi-index α= (α1, . . . ,α�), we use the notation |α| = α1 + ···+α� .

Proof. Our computations above show that Lemma 1.1 is true for j = 0,1,2. Next, we as-
sume that it is true for j and we will show that it is true for j + 1. We have

∂
j+1
t u= ∂

3 j
x
(
∂tu

)
+

∑
|α|+2�=3 j+2

Cα∂t
[(
∂α1
x u

)(
∂α2
x u

)···(∂α�x u)]. (1.16)

The first term is equal to

∂
3 j
x
(
∂3
xu+u∂xu

)= ∂
3( j+1)
x u+ ∂

3 j
x
(
u∂xu

)
, (1.17)

where ∂
3( j+1)
x u is the leading term in the expression of ∂

j+1
t u and ∂

3 j
x (u∂xu), and by using

Leibniz rule, it can be written as a sum of terms of the form (∂α1
x u)(∂α2

x u) of homogeneity
degree 3( j + 1) + 2. Also, using the product rule for differentiation, each term of the sum
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in (1.15) gives

∂t
[(
∂α1
x u

)(
∂α2
x u

)···(∂α�x u)]
= ∂α1

x ∂tu · (∂α2
x u

)···(∂α�x u)+ ···+
(
∂α1
x u

)(
∂α2
x u

)···∂α�x ∂tu. (1.18)

Finally, replacing ∂tu by ∂3
xu+ u∂xu in each term of the last sum gives the desired result.

For example, the first term is equal to

∂α1
x

[
∂3
xu+u∂xu

] · (∂α2
x u

)···(∂α�x u), (1.19)

and each term that results by applying ∂α1
x on ∂3

xu+u∂xu has nonnegative coefficients and
homogeneity degree equal to

α1 + 5 +
(
α2 + 2

)
+ ···+

(
a� + 2

)= |α|+ 3 = 3 j + 2 + 3 = 3( j + 1) + 2. (1.20)

�

2. Nonperiodic case

Using the initial condition

u(x,0) = (a− x)−2, (2.1)

we find that

∂αmx u(x,0) = (
αm + 1

)
!(a− x)−(αm+2). (2.2)

Therefore, at t = 0, relations (1.15) and (2.2) give that

∂
j
t u(x,0) =

(
(3 j + 1)! +

∑
|α|+2�=3 j+2

Cα
[(
α1 + 1

)
!
]···[(α� + 1

)
!
])

(a− x)−(3 j+2) (2.3)

or

∂
j
t u(x,0) = [

(3 j + 1)! + bj
]
(a− x)−(3 j+2), (2.4)

where bj ≥ 0.
Finally, using (2.4), we see that

∣∣∂j
t u(x,0)

∣∣≥ |a− x|−(3 j+2)(3 j)!. (2.5)

Inequality (2.5) shows that u(x, t) cannot be analytic near t = 0 for any fixed x �= a.
Observe that if a∈ R, then u(x,0) = (a− x)−2 is real-valued and analytic in R−{a}.

So, one may ask if there are nonanalytic solutions to KdV when the initial data are analytic
everywhere in R.
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Globally analytic data. If a∈ C−R, then u(x,0) = (a− x)−2 is analytic in R. In particu-
lar, if we choose a= i and x = 0, then we have

∂
j
t u(0,0) = i−(3 j+2)[(3 j + 1)! + bj

]
. (2.6)

However, in this case, the KdV solution is complex-valued. Thus, one may ask the ques-
tion if we can have real-valued initial data which are analytic on R and for which the KdV
solution is not analytic in t.

Real-valued globally analytic data. Next we choose

u(x,0) =�(i− x)−2. (2.7)

Then

∂kxu(x,0) = (k+ 1)!�(i− x)−2−k, (2.8)

∂kxu(0,0) =−(k+ 1)!�i−k =


−1, k = 4 j,

1, k = 4 j + 2,

0, otherwise.

(2.9)

Using (1.15) and (2.8), we have

∂
j
t u(x,0)

=�(3 j + 1)!(i− x)−(3 j+2)

+
∑

|α|+2�=3 j+2

Cα
((
α1 + 1

)
!�(i− x)−2−α1

)···((αk + 1
)
!�(i− x)−2−αk),

(2.10)

so

∂
j
t u(0,0)

= (3 j + t)!�i−(3 j+2)

+
∑

|α|+2�=3 j+2

Cα
[(
α1 + 1

)
!
][�i−(2+α1)]···[(α� + 1

)
!
][�i−(2+α�)]. (2.11)

We have

�i−(3 j+2) = (−1)1/2(3 j+2),[�i−(2+α1)]···[�i−(2+α�)]= (−1)�
(�i−α1

)···(�i−α�
)
.

(2.12)

If αm is an odd number for some m, then the last product equals zero, while if αm is even
for all m, then the last product equals

(−1)�(−1)(1/2)(α1+···+α�) = (−1)(1/2)(3 j+2). (2.13)

Therefore, if j is even, then

∂
j
t u(0,0) =−(−1)3 j/2[(3 j + 1)! + bj

]
, (2.14)
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where bj ≥ 0, which shows that the solution u(x, t) which exists (see, e.g., [8, 9, 10])
cannot be analytic in t near t = 0 when x = 0.

3. Periodic case

Now, for the periodic case, define

g(x) = −eix
2− eix

=−
∞∑
k=1

2−keikx. (3.1)

Then

g(n)(x) =−
∞∑
k=1

2−k(ik)neikx, (3.2)

g(n)(0) = in+2An, (3.3)

where

An =
∞∑
k=1

2−kkn > 2−nnn. (3.4)

Let u(x, t) be a solution to the initial value problem (1.2) and (1.3) with initial data
φ(x) = g(x). Then, by (1.15), we have

∂
j
t u(0,0) = g(3 j)(0) +

∑
|α|+2�=3 j+2

Cα
(
g(α1)(0)

)···(g(α�)(0)
)

=
(
A3 j +

∑
|α|+2�=3 j+2

CαAα1 ···Aα�

)(
i3 j+2),

(3.5)

and by (3.4), we have that for any j,

∣∣∂j
t u(0,0)

∣∣≥A3 j > 2−3 j(3 j)3 j > ( j!)3. (3.6)

Therefore, u(x, t) is not analytic in the t-variable at the point (0,0).

Real-valued solutions. Let u(x, t) be the solution to the Cauchy problem (1.2) and (1.3)
with initial data φ(x) =�g(x). By (1.15), we have

∂
j
t u(0,0) =�g(3 j)(0) +

∑
|α|+2�=3 j+2

Cα�
(
g(α1)(0)

)···�(
g(α�)(0)

)
. (3.7)

Now, by (3.3), we note that

�g(n)(0) =
g(n)(0), for n even,

0, for n odd,
(3.8)
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and thus, any product of the form

�(
g(α1)(0)

)···�(
g(α�)(0)

)
(3.9)

must be equal to either 0 or (
g(α1)(0)

)···(g(α�)(0)
)
. (3.10)

Therefore, if we assume that j is even, then for some sequence of real, nonnegative
coefficients Dα (specifically where Dα ∈ {0,Cα}), we have

∂
j
t u(0,0) = g(3 j)(0) +

∑
|α|+2�=3 j+2

Dα
(
g(α1)(0)

)···(g(α�)(0)
)

=
(
A3 j +

∑
|α|+2�=3 j+2

DαAα1 ···Aα�

)(
i3 j+2). (3.11)

It follows that for any even j,

∣∣∂j
t u(0,0)

∣∣≥A3 j > 2−3 j(3 j)3 j > ( j!)3. (3.12)

Therefore, the solution u(x, t) which exists (see, e.g., [1]) is not analytic in the t-variable
at the point (0,0).

4. Concluding remarks

One of the motivations for this work has been the results in [5, 4]. There, it was proved
that, unlike the KdV, the Cauchy problem for the evolution equation

∂tu− ∂t∂
2
xu+ 3u∂xu− 2∂xu∂2

xu−u∂3
xu= 0, x ∈ T, t ∈ R, (4.1)

with analytic initial data is analytic in both the space and the time variables, globally in x
and locally in t. This equation was introduced independently by Fuchssteiner and Fokas
[3] and by Camassa and Holm [2] as an alternative to KdV modeling shallow water waves.
In the past decade, it has been the subject of extensive studies from the analytic as well as
the geometric and algebraic points of view.

Finally, we note that one may obtain nonanalytic solutions to the KdV by using other
analytic initial data. For example, G. Łysik in a private communication mentioned that
in the nonperiodic case, he can show that the Cauchy problem for the KdV with initial
data ϕ(x) = 1/(1 + x2) is not analytic (like in the heat equation). For more results about
the analyticity and smoothing effects of the KdV, we refer the reader to the paper of Kato
and Ogawa [6] and the references therein.
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SUBDOMINANT POSITIVE SOLUTIONS OF THE DISCRETE
EQUATION ∆u(k+n) =−p(k)u(k)
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A delayed discrete equation ∆u(k + n) = −p(k)u(k) with positive coefficient p is con-
sidered. Sufficient conditions with respect to p are formulated in order to guarantee the
existence of positive solutions if k→∞. As a tool of the proof of corresponding result, the
method described in the author’s previous papers is used. Except for the fact of the exis-
tence of positive solutions, their upper estimation is given. The analysis shows that every
positive solution of the indicated family of positive solutions tends to zero (if k→∞) with
the speed not smaller than the speed characterized by the function

√
k · (n/(n+ 1))k. A

comparison with the known results is given and some open questions are discussed.

1. Introduction and motivation

In this contribution, the delayed scalar linear discrete equation

∆u(k+n) =−p(k)u(k) (1.1)

with fixed n ∈ N \ {0}, N := {0,1, . . .}, and variable k ∈ N(a), N(a) := {a,a+ 1, . . .}, a ∈
N, is considered. The function p : N(a) → R is supposed to be positive. We are interested
in the existence of positive solutions of (1.1). As a tool of the proof, the method described
in [2, 5] is used.

Equation (1.1) can be considered as a discrete analogue of the delayed linear differen-
tial equation of the form

ẋ(t) =−c(t)x(t− τ) (1.2)

with positive coefficient c on I = [t0,∞), t0 ∈ R, which was considered in many works. We
mention at least the books by Győri and Ladas [14] and by Erbe et al. [12] and the papers
by Domshlak and Stavroulakis [9], by Elbert and Stavroulakis [11], by Győri and Pituk
[16], and by Jaroš and Stavroulakis [18]. Note that close problems were investigated, for
example, by Castillo [3], Čermák [4], Kalas and Baráková [19], and Slyusarchuk [22].

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 207–216
2000 Mathematics Subject Classification: 39A10, 39A11
URL: http://dx.doi.org/10.1155/9775945143
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In [6], it was investigated that if (1.2) admits a positive solution x̃ on an interval I ,
then it admits on I two positive solutions x1 and x2, satisfying

lim
t→∞

x2(t)
x1(t)

= 0. (1.3)

Moreover, every solution x of (1.2) on I is represented by the formula

x(t) = Kx1(t) +O
(
x2(t)

)
, (1.4)

where K ∈ R depends on x and O is the Landau order symbol. In this formula, the solu-
tions x1, x2 can be changed to any couple of positive on I solutions x̃1, x̃2 of (1.2) satisfying
the property

lim
t→∞

x̃2(t)
x̃1(t)

= 0 (1.5)

(see [6, pages 638-639]). This invariance property led to the following terminology: if
(x1,x2) is a fixed couple of positive solutions (having the above-indicated properties) of
(1.2), then the solution x1 is called a dominant solution and the solution x2 is called a
subdominant solution. Subdominant solutions can serve as an analogy to “small solutions”
as they are used, for example, in the book by Hale and Verduyn Lunel [17], and dominant
solutions express an analogy to the notion of “special solution” which is used in many
investigations (see, e.g., Rjabov [20]).

In the present contribution, we will give sufficient conditions for the existence of pos-
itive solutions of (1.1). We will discuss known sufficient conditions too, and we will show
that our conditions have a more general character than the previous ones. Otherwise
the method of the proof of corresponding result permits to express an estimation of
the considered positive solution. Taking into account the fact that this solution tends
to zero (if k → ∞) with speed not smaller than the speed characterized by the function√
k · (n/(n+ 1))k, we can conclude that this solution is an analogy to the notion of sub-

dominant solution introduced above, in the case of scalar delayed linear differential equa-
tions. Moreover, the supporting motivation for the terminology used is the fact that our
result does not hold for nondelayed equations of type (1.1), that is, it does not hold if
n = 0. This is in full accordance with differential equations again, since obviously the
subdominant solution does not appear if τ = 0, in (1.2), that is, it does not appear in the
case of ordinary differential equations.

2. Preliminary

We consider the scalar discrete equation

∆u(k+ ñ) = f
(
k,u(k),u(k+ 1), . . . ,u(k+ ñ)

)
, (2.1)

where f (k,u0,u1, . . . ,uñ) is defined on N(a)×Rñ+1, with values in R, a∈ N, and ñ∈ N.
Together with the discrete equation (2.1), we consider an initial problem. It is posed

as follows: for a given s ∈ N, we are seeking the solution of (2.1) satisfying ñ+ 1 initial



J. Baštinec and J. Diblı́k 209

conditions

u(a+ s+m) = us+m ∈ R, m= 0,1, . . . , ñ, (2.2)

with prescribed constants us+m.
We recall that the solution of the initial problem (2.1), (2.2) is defined as an infinite

sequence of numbers{
u(a+ s) = us, u(a+ s+ 1) = us+1, . . . ,

u(a+ s+ ñ) = us+ñ,u(a+ s+ ñ+ 1),u(a+ s+ ñ+ 2), . . .
} (2.3)

such that, for any k ∈N(a+ s), equality (2.1) holds.
The existence and uniqueness of the solution of the initial problem (2.1), (2.2) are

obvious for every k ∈ N(a + s). If the function f satisfies the Lipschitz condition with
respect to u-arguments, then the initial problem (2.1), (2.2) depends continuously on
the initial data [1].

We define, for every k ∈N(a), a set ω(k) as

ω(k) := {
u∈ R : b(k) < u < c(k)

}
, (2.4)

where b(k), c(k), b(k) < c(k) are real functions defined on N(a).
The following theorem is taken from the investigation in [2].

Theorem 2.1. Suppose that f (k,u0,u1, . . . ,uñ) is defined on N(a)×Rñ+1 with values in R

and for all (k,u0,u1, . . . ,uñ),(k,v0,v1, . . . ,vñ) ∈N(a)×Rñ+1:

∣∣ f (k,u0,u1, . . . ,uñ
)− f

(
k,v0,v1, . . . ,vñ

)∣∣≤ λ(k)
ñ∑
i=0

∣∣ui − vi
∣∣, (2.5)

where λ(k) is a nonnegative function defined on N(a). If, moreover, the inequalities

f
(
k,u0,u1, . . . ,uñ−1,b(k+ ñ)

)− b(k+ ñ+ 1) + b(k+ ñ) < 0, (2.6)

f
(
k,u0,u1, . . . ,uñ−1,c(k+ ñ)

)− c(k+ ñ+ 1) + c(k+ ñ) > 0 (2.7)

hold for every k ∈N(a), every u0 ∈ ω(k), and u1 ∈ ω(k + 1), . . . ,uñ−1 ∈ ω(k + ñ− 1), then
there exists an initial problem

u∗(a+m) = u∗
m ∈ R, m= 0,1, . . . , ñ, (2.8)

with

u∗
0 ∈ ω(a),u∗

1 ∈ ω(a+ 1), . . . ,u∗
n ∈ ω(a+ ñ) (2.9)

such that the corresponding solution u= u∗(k) of (2.1) satisfies the inequalities

b(k) < u∗(k) < c(k), (2.10)

for every k ∈N(a).
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3. Existence of subdominant positive solutions

In this section, we prove the existence of a positive solution of (1.1). In the proof of the
corresponding theorem (see Theorem 3.2 below), the following elementary lemma con-
cerning asymptotic expansion of the indicated function is necessary. The proof is omitted
since it can be done easily with the aid of binomial formula.

Lemma 3.1. For k→∞ and fixed σ ,d ∈ R, the following asymptotic representation holds:

(
1 +

d

k

)σ

= 1 +
σd

k
+
σ(σ − 1)d2

2k2
+
σ(σ − 1)(σ − 2)d3

6k3
+O

(
1
k4

)
. (3.1)

Theorem 3.2 (subdominant positive solution). Let a∈ N and n∈ N \ {0} be fixed. Sup-
pose that there exists a constant θ ∈ [0,1) such that the function p : N(a) → R satisfies the
inequalities

0 < p(k) ≤
(

n

n+ 1

)n

·
(

1
n+ 1

+
θn

8k2

)
, (3.2)

for every k ∈ N(a). Then there exist a positive integer a1 ≥ a and a solution u = u(k), k ∈
N(a1), of (1.1) such that the inequalities

0 < u(k) <
√
k ·

(
n

n+ 1

)k

(3.3)

hold for every k ∈N(a1).

Proof. In the proof, Theorem 2.1 with ñ= n is used. We define

f
(
k,u(k),u(k+ 1), . . . ,u(k+n)

)
:=−p(k)u(k),

b(k) := 0, c(k) :=
√
k ·

(
n

n+ 1

)k

,
(3.4)

for every k ∈N(a). In this case (see (2.4)),

ω(k) := {
u∈ R : b(k) < u < c(k)

}≡
{
u∈ R : 0 < u <

√
k ·

(
n

n+ 1

)k
}
. (3.5)

Due to the linearity of equation (1.1), the Lipschitz-type condition (2.5) is obviously
satisfied with λ(k) ≡ p(k). We verify that the inequality of type (2.6) holds. It is easy to
see that, for every k ∈N(a), ñ= n,

f
(
k,u0,u1, . . . ,un−1,b(k+n)

)− b(k+n+ 1) + b(k+n) =−p(k)u0 < 0 (3.6)

since the function p is, by (3.2), positive and u0 is a positive term too since u0 ∈ ω(k).
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We start the verification of inequality (2.7). We get, for sufficiently large k ∈N(a) and
for ñ= n,

f
(
k,u0,u1, . . . ,un−1,c(k+n)

)− c(k+n+ 1) + c(k+n)

=−p(k)u0 −
√
k+n+ 1 ·

(
n

n+ 1

)k+n+1

+
√
k+n ·

(
n

n+ 1

)k+n

.
(3.7)

Since u0 ∈ ω(k), that is,

−u0 >−
√
k ·nk/(n+ 1)k, k ∈N(a), (3.8)

we get

f
(
k,u0,u1, . . . ,un−1,c(k+n)

)− c(k+n+ 1) + c(k+n)

>−p(k)
√
k ·

(
n

n+ 1

)k

−
(

n

n+ 1

)k

·
(

n

n+ 1

)n+1√
k+n+ 1

+
(

n

n+ 1

)k

·
(

n

n+ 1

)n√
k+n= �1

(3.9)

with

�1 :=
(

n

n+ 1

)k√
k ·

[
− p(k)−

(
n

n+ 1

)n+1

·
√

1 +
n+ 1
k

+
(

n

n+ 1

)n

·
√

1 +
n

k

]
.

(3.10)

Now applying formula (3.1) twice, with σ = 1/2, d = n+ 1, to the expression

√
1 +

n+ 1
k

(3.11)

and, with σ = 1/2, d = n, to the expression

√
1 +

n

k
, (3.12)

we obtain

�1 =
(

n

n+ 1

)k√
k

×
[
− p(k)−

(
n

n+ 1

)n+1

·
(

1 +
n+ 1

2k
− (n+ 1)2

8k2
+

(n+ 1)3

16k3
+O

(
1
k4

))

+
(

n

n+ 1

)n

·
(

1 +
n

2k
− n2

8k2
+

n3

16k3
+O

(
1
k4

))]
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=
(

n

n+ 1

)k√
k ·

[
− p(k)−

(
n

n+ 1

)n+1

+
(

n

n+ 1

)n

+
1
k

( −nn+1

2(n+ 1)n
+

nn+1

2(n+ 1)n

)
+

1
k2

(
nn+1

8(n+ 1)n−1
− nn+2

8(n+ 1)n

)

+
1
k3

( −nn+1

16(n+ 1)n−2
+

nn+3

16(n+ 1)n

)
+O

(
1
k4

)]

=
(

n

n+ 1

)k√
k ·

[
− p(k) +

(
n

n+ 1

)n−n+n+ 1
n+ 1

+
1
k2

nn+1(n+ 1)−nn+2

8(n+ 1)n

+
1
k3

−nn+1(n+ 1)2 +nn+3

16(n+ 1)n
+O

(
1
k4

)]
= �2

(3.13)

with

�2 : =
(

n

n+ 1

)k√
k ·

[
− p(k) +

(
n

n+ 1

)n 1
n+ 1

+
1

8k2

(
n

n+ 1

)n

·n

+
1

16k3

−2nn+2 −nn+1

(n+ 1)n
+O

(
1
k4

)]
.

(3.14)

Due to inequality (3.2), we obtain that

�2 ≥
(

n

n+ 1

)k√
k

·
[
−
(

n

n+ 1

)n

·
(

1
n+ 1

+
θn

8k2

)
+
(

n

n+ 1

)n 1
n+ 1

+
1

8k2

(
n

n+ 1

)n

·n+
1

16k3

−2nn+2 −nn+1

(n+ 1)n
+O

(
1
k4

)]

=
(

n

n+ 1

)k√
k ·�3

(3.15)

with

�3 := 1− θ

8k2

(
n

n+ 1

)n

·n− 1
16k3

nn+1(1 + 2n)
(n+ 1)n

+O
(

1
k4

)
. (3.16)

Now, it is obvious that there exists an integer a1 ≥ a such that the inequality �3 > 0 holds
for every k ∈N(a1). Consequently,

f
(
k,u0,u1, . . . ,un−1,c(k+n)

)− c(k+n+ 1) + c(k+n) > 0, (3.17)
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that is, inequality (2.7) holds for every k ∈N(a1). So, all the suppositions of Theorem 2.1
are met with a := a1, ñ= n. Then, following its affirmation, there exists an initial problem

u∗(a1 +m
)= u∗

m ∈ R, m= 0,1, . . . ,n, (3.18)

with

u∗
0 ∈ ω

(
a1
)
,u∗

1 ∈ ω
(
a1 + 1

)
, . . . ,u∗

n ∈ ω
(
a1 +n

)
(3.19)

such that the corresponding solution u= u∗(k) of (1.1) satisfies the inequalities

b(k) = 0 < u∗(k) < c(k) =
√
k ·

(
n

n+ 1

)k

, (3.20)

for every k ∈N(a1), that is, (3.3) holds. The theorem is proved. �

4. Comparisons and concluding remarks

We remark that analogous (in a sense) problems are discussed, for example, in [10, 13,
14, 15, 21]. The following known result (see [14, page 192]) will be formulated with a
notation adapted with respect to our notation.

Theorem 4.1. Assume n∈ N \ {0}, p(k) > 0 for k ≥ 0, and

p(k) ≤ nn

(n+ 1)n+1
. (4.1)

Then the difference equation (1.1), where k = 0,1,2, . . . , has a positive solution

{
u(0),u(1),u(2), . . .

}
. (4.2)

Comparing this result with the result given by Theorem 3.2, we conclude that inequal-
ity (3.2) is a substantial improvement over (4.1) since the choice θ = 0 in (3.2) gives
inequality (4.1). Moreover, inequality (3.2), unlike inequality (4.1), involves the variable
k on the right-hand side. As noted in [14, page 179], for p(k) ≡ p = const, inequality
(4.1) is sharp in a sense, since in this case the necessary and sufficient condition for the
oscillation of all solutions of (1.1) is the inequality

p >
nn

(n+ 1)n+1
. (4.3)

Inequality (3.2) can be considered as a discrete analogy of the inequality

c(t) ≤ 1
e

+
1

8et2
(4.4)

(t is supposed to be sufficiently large) used in [11, Theorem 3], in order to give a guarantee
of the existence of a positive solution of (1.2).
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5. Open questions

We indicate problems, still unsolved , whose solution will lead to progress in the consid-
ered theory.

Open Question 5.1. Does the affirmation of Theorem 2.1 remain valid if θ = 1? In other
words, can inequality (3.2) be replaced by a weaker one

0 < p(k) ≤
(

n

n+ 1

)n

·
(

1
n+ 1

+
n

8k2

)
? (5.1)

Open Question 5.2. As a motivation for the following problem, we state this known fact:
equation (1.1) with “limiting” value of coefficient (corresponding to θ = 0), that is, the
equation

∆u(k+n) =− nn

(n+ 1)n+1
·u(k), (5.2)

admits two positive and asymptotically noncomparable solutions: a dominant one (we
use a similar terminology as involved in Section 1)

u1(k) = k ·
(

n

n+ 1

)k

(5.3)

and a subdominant one

u2(k) =
(

n

n+ 1

)k

, (5.4)

since

lim
k→∞

u2(k)
u1(k)

= lim
k→∞

1
k
= 0. (5.5)

In this connection, the next problem arises: is it possible to prove (under the same con-
ditions as indicated in Theorem 3.2) the existence of the second solution u�(k) of the
equation

lim
k→∞

u(k)
u�(k)

= 0? (5.6)

In other words, is the couple of solutions u�(k) and u(k) a couple of dominant and sub-
dominant solutions?

Open Question 5.3. Together with the investigation of linear discrete problems, the de-
velopment of methods for the investigation of nonlinear discrete problems is a very im-
portant problem too. Is it, for example, possible (based on the similarity of continuous
and discrete methods) to obtain analogies of the results of the investigation of singular
problems for ordinary differential equations performed in [7, 8] in the discrete case?
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[18] J. Jaroš and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math. 29
(1999), no. 1, 197–207.
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E-mail address: bastinec@feec.vutbr.cz

Josef Diblı́k: Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering,
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ELECTROMAGNETIC FIELDS IN LINEAR AND NONLINEAR
CHIRAL MEDIA: A TIME-DOMAIN ANALYSIS

IOANNIS G. STRATIS AND ATHANASIOS N. YANNACOPOULOS

Received 30 September 2002

We present several recent and novel results on the formulation and the analysis of the
equations governing the evolution of electromagnetic fields in chiral media in the time
domain. In particular, we present results concerning the well-posedness and the solv-
ability of the problem for linear, time-dependent, and nonlocal media, and results con-
cerning the validity of the local approximation of the nonlocal medium (optical response
approximation). The paper concludes with the study of a class of nonlinear chiral me-
dia exhibiting Kerr-like nonlinearities, for which the existence of bright and dark solitary
waves is shown.

1. Introduction

Chiral media are isotropic birefringent substances that respond to either electric or mag-
netic excitation with both electric and magnetic polarizations. Such media have been
known since the end of the nineteenth century (e.g., the study of chirality by Pasteur)
and find a wide range of applications from medicine to thin film technology. The under-
standing of the properties of such media, the differences from ordinary dielectrics, and
their possible applications requires detailed mathematical modelling. The mathematical
modelling of chiral media is done through the modification of the constitutive relations
for normal dielectrics. While for a normal dielectric material the electric displacement
D depends solely on the electric field E, and the magnetic field B depends solely on the
magnetic induction H , in a chiral medium, D and B depend on a combination of E and
H , [9, 11]. In most cases of interest these constitutive laws are nonlocal relations con-
taining E and H . This is a common model for time-dispersive chiral media. Also these
constitutive laws may be either linear or nonlinear relations of the fields corresponding
to the modelling of linear or nonlinear chiral media, respectively.

Most of the mathematical work on chiral media so far treats the time-harmonic case;
see [3] and the references therein. It is the aim of this paper to collect and review some
recent results as well as to present some novel ones on the mathematical study of linear
and nonlinear chiral media in the time domain. The structure of the paper is as follows.
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We first present some general well-posedness results for models of linear nonlocal chiral
media. Then, we introduce a well-known local approximation to nonlocal chiral media,
the Drude-Born-Fedorov (DBF) approximation, and study its validity. In the case where
the medium under consideration presents a periodic spatial structure, with rapidly vary-
ing physical parameters, we study the problem of homogenization, exhibiting that the
solution of the problem converges to the solution of a related problem for an effective
spatially homogeneous medium whose (constant) parameters are determined.

So far, attention has mainly focused on linear media, with or without time dispersion.
However, there is a rapidly growing interest on nonlinear chiral media. The study of such
systems is still in its initial stages and very little work has been done in this direction; see,
for example, [7, 14]. In the last section we present some recent results on the evolution
of electromagnetic fields in chiral media with cubic nonlinearity, in the weak-dispersion,
low-chirality limit, where a set of four coupled partial differential equations of the non-
linear Schrödinger (NLS) type for the evolution of the slowly varying envelopes of the
electromagnetic fields is derived and the existence in certain limits of vector solitons of
the dark-bright type is established.

2. Formulation of the problem for linear media

In this section, we establish the equations governing the evolution of electromagnetic
fields in chiral media.

We will start with the Maxwell postulates for a general medium; see, for example, [10].
For a chiral material we have the following constitutive relations that connect the various
fields

D = εE+ ε1�E+ ζ�H , B = µH +µ1�H + ξ�E, (2.1)

where by� we denote the convolution operator, that is, α�U = ∫ t
0 α(x,τ)U(x, t− τ)dτ.

For a linear medium, the condition that the fields B and D are divergence-free is equiv-
alent to the condition that the fields E and H are divergence-free. Thus the equations for
the evolution of the fields in a chiral medium will take the form

curlE =− ∂

∂t

(
µH +µ1�H + ξ�E

)
+F,

curlH = ∂

∂t

(
εE+ ε1�E+ ζ�H

)
+G,

divH = divE = 0,

(2.2)

supplemented with the initial conditions

E(x,0) = 0, H(x,0) = 0. (2.3)

This initial value problem will be called hereafter Problem I. The above formulation is
valid in unbounded space. The problem may be treated also in domains Ω with suffi-
ciently smooth boundary ∂Ω using a boundary condition that corresponds to the physi-
cal situation at hand. We will treat here the boundary condition for a perfect conductor.
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In this case the Maxwell equations will have to be complemented with the boundary con-
ditions [10]

n×E = 0, n ·H = 0 on ∂Ω, (2.4)

where n is the unit outward normal vector to ∂Ω. We now treat the solvability of this
problem. First we write it in a more compact form. We define the matrices

A=
[
εI3 0
0 µI3

]
, K =

[
ε1I3 ζI3

ξI3 µ1I3

]
, (2.5)

where I3 is the 3 × 3 unit matrix and 0 is the zero matrix. We further introduce the six-
vector notation

� = (E,H), � = (D,B), 	 = (F,G), (2.6)

and the differential operator

L=
[

0 curl
−curl 0

]
, (2.7)

where again 0 is the zero 3× 3 matrix. The domain of this operator is taken to be

D(L) = {
Φ |Φ= (φ,ψ) ∈ X , curlφ ∈ (

L2(Ω)
)3

, curlψ ∈ (
L2(Ω)

)3
, n×φ= 0 on ∂Ω

}
,

(2.8)

where X is the linear space X := L2 := L2(Ω)3 ⊕ L2(Ω)3 which is a Hilbert space when
equipped with the inner product

〈�,�〉 =
∫
Ω
εu1 · v̄1dx+

∫
Ω
µu2 · v̄2dx = 〈

εu1,v1
〉

0 +
〈
µu2,v2

〉
0, (2.9)

where �,� ∈ L2, with � = (u1,u2), � = (v1,v2), and the overbar denotes complex con-
jugation.

In this notation, Problem I assumes the form

d

dt
(A� +K ��) = L� + 	 (2.10)

which is to be solved for given 	 and for homogeneous initial conditions �(x,0) = 0.
We will use the Laplace transform û(s) = ∫∞

0 u(t)e−stdt defined for a real function
u : R → R and for a complex variable s= σ + iη, provided the integral exists [5]. In the fol-
lowing we denote by �(R) the (linear) space of functions u∈ L1

loc(R) such that suppu⊂
[0,∞), and for which the set

Iu =
{
σ ∈ R :

∫∞

0

∣∣u(t)
∣∣e−σtdt <∞

}
(2.11)

is not empty. We also define the space

�0 = {
� ∈ L1

loc

(
R,L2) :

∥∥�(·)
∥∥∈ �(R)

}
. (2.12)
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In the sequel we impose the following three assumptions on the data of the problem:

(A1) ε and µ are positive and bounded functions of x;
(A2) 	 has a well-defined Laplace transform (i.e., 	 ∈ �0);
(A3) the Laplace transform of K exists and converges to the zero matrix as σ → ∞ in

any matrix norm.

We take the Laplace transform of (2.10), and using the properties of the Laplace trans-
form and multiplying by A−1 from the left, we obtain

(N − sI)�̂ = sK̂0�̂− 	̂0, (2.13)

where

N = A−1L, K̂0 = A−1K̂ , 	̂0 = A−1	̂. (2.14)

This is an equivalent form of the original problem (2.10).
To study the solvability of problem (2.13) we must study the properties of the dif-

ferential operator N . The domain of this operator is D[N] = D[L] and it can be shown
that the operator N is unbounded, densely defined, and iN is selfadjoint. Furthermore,
if Re(s) �= 0, the operator N − sI is invertible and the norm of the inverse satisfies the
estimate ∥∥(N − sI)−1

∥∥≤ 1
|σ| . (2.15)

The proofs of these claims are similar to the ones provided for the case of unbounded
domains [6].

So, for s= σ ∈ R+, (2.13) is equivalent to the equation

�̂ = s(N − sI)−1K̂0�̂− (N − sI)−1	̂0. (2.16)

But (2.16) is in the form of a fixed point problem, T� = �, for the affine operator T :
L2 → L2 where

T� = s(N − sI)−1K̂0�− (N − sI)−1	̂0. (2.17)

Using this remark as our starting point we are now in a position to state the main result
of this section whose proof can be performed along the same lines as in [6]. In particular,
the divergence-free property of E and H follows by taking the projection of D and B on
the space H(div0,R3)⊕H(div0,R3). Recall that H(div0,R3) = {V ∈ L2(R3), divV = 0}.
For the properties of H(div0,R3) and related spaces, see, for example, [4].

Theorem 2.1. Under the assumptions (A1), (A2), and(A3), Problem I has a unique solution
in D[N].

Problem I in a spatially periodic chiral medium (with rapidly varying physical pa-
rameters) has been studied from a rigorous homogenization theory point of view in [2]
(where in fact the more general case of bianisotropic media is treated). In that work, it has
been shown that the solution of the corresponding problem converges to the solution of
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Problem I for an effective spatially homogeneous medium whose (constant) coefficients
are determined.

3. The optical response approximation

In the previous section, we treated the full nonlocal set of equations, modelling disper-
sive chiral media, as far as solvability is concerned. Though the mathematical treatment
of the full problem is feasible, in a number of important applications (e.g., in wave propa-
gation or scattering problems), the full nonlocal problem may be cumbersome to handle.
Thus, local approximations to the full problem have been proposed, that will keep the
general features of chiral media, without the mathematical complications introduced by
the nonlocality of the model.

In practice, a very common approximation scheme to the full constitutive relations for
the medium is used, where essentially the convolution integrals are truncated to a Taylor
series in the derivative of the fields. Using this expansion of the convolution integrals and
the Maxwell constitutive relations, we may obtain the so-called DBF constitutive relations
for chiral media

D = ε(I +βcurl)E, B = µ(I +βcurl)H , (3.1)

where β is the chirality measure, considered here as a parameter that will be chosen so
that a criterion for optimality is satisfied. This approximation is usually called the op-
tical response approximation. For such constitutive relations, the equations for the fields
become

curl Ẽ =− ∂

∂t

{
µ(I +βcurl)H̃

}
,

curlH̃ = ∂

∂t

{
ε(I +βcurl)Ẽ

}
,

div Ẽ = 0, div H̃ = 0,

(3.2)

supplemented with the initial conditions

Ẽ(x,0) = E0(x), H̃(x,0) =H0(x), (3.3)

and the boundary conditions corresponding to the perfect conductor problem. This prob-
lem will be called hereafter Problem II. Its solvability is established in the following
theorem.

Theorem 3.1. Under the assumptions A1 and A2, Problem II has a unique solution in D[N]
for sufficiently small β.

In this case the Laplace transformed operator equation is of the form ΘL� = P� + 	,
where Θ and P are suitably defined matrix operators depending on s and β. It can be
shown that Θ is invertible; the rest of the proof is similar to that of Theorem 2.1.
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The solution to Problem II is a commonly used approximation to the full solution of
Problem I.

A very popular method of treating electromagnetic problems in the frequency domain
is through the use of Beltrami fields. This method has been used for the explicit construc-
tion of the solution of Problem II in [1].

Another interesting approach to Problem II is through the use of Moses eigenfunctions
[13]. These form a complete orthonormal basis for L2 consisting of eigenfunctions of the
curl operator.

Specifically, Moses [13] introduced three-dimensional complex vectors K(x, p;λ) with
x, p ∈ R3 which satisfy

curlK(x, p;λ) = λ|p|K(x, p;λ), λ= 0,±1; (3.4)

that is, K(x, p;λ) are eigenvectors of the curl operator and λ|p| are the associated eigen-
values. These fields (that will be called Beltrami-Moses fields) satisfy some interesting
orthogonality and completeness relations.

We may now define the fields

Q±(x, t) = {E± iηH}(x, t), η =
√
µ

ε
, (3.5)

which implies that

E(x, t) = 1
2

{
Q+ +Q−

}
(x, t), H(x, t) = 1

2iη

{
Q+ −Q−

}
(x, t). (3.6)

Using these fields, we may proceed formally to rewrite Problem II in the following
form:

curlQ± = ±i√µε ∂
∂t

{
(I +βcurl)Q±(x, t)

}
,

divQ±(x, t) = 0.
(3.7)

The associated initial values are

Q±(x,0) = E0(x)± iηH0(x). (3.8)

Using these Beltrami-Moses fields as kernels for an integral transform, we may define a
generalized Fourier transform for vector functionsψ(x, t), the Beltrami-Moses transform,
as follows:

ψ̂(p, t;λ) =
∫
K(x, p;λ)ψ(x, t)dx. (3.9)
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The inverse transform is given by the formula

ψ(x, t) =
∑
λ

∫
K(x, p;λ)ψ̂(p, t;λ)dp. (3.10)

Expanding the fields Q± in terms of the Moses eigenfunctions and using the property
that both of these fields have to be divergence-free, we may reduce Problem II to a set of
first-order ordinary differential equations for the field amplitudes corresponding to λ =
±1. The electromagnetic fields may be obtained by inversion of the integral transform.
This approach is related to the spectral approach to Problem II.

4. The error of the optical response approximation

Recall that (E,H) and (Ẽ,H̃) are, respectively, the solutions of Problems I and II. We
introduce a third problem, the solution of which will furnish the error of the optical
response approximation. So, let

wE = E− Ẽ, wH =H − H̃. (4.1)

After some elementary manipulations, we find that the error of the optical response ap-
proximation satisfies the equations

curlwE =− ∂

∂t

{
µwH +µ1�wH + ξ�wE +µ1� H̃ + ξ� Ẽ−µβcurlH̃

}
,

curlwH = ∂

∂t

{
εwE + ε1�wE + ζ�wH + ε1� Ẽ+ ζ� H̃ − εβcurl Ẽ

}
,

curl Ẽ =− ∂

∂t

{
µ(I +βcurl)H̃

}
,

curlH̃ = ∂

∂t

{
ε(I +βcurl)Ẽ

}
,

divwE = divwH = div Ẽ = div H̃ = 0,

(4.2)

supplemented with the initial conditions

wE(x,0) = 0, wH(x,0) = 0, Ẽ(x,0) = E0(x), H̃(x,0) =H0(x). (4.3)

This problem will be hereafter called Problem III. The solution of Problem III will furnish
the error of the optical response approximation for a given solution (Ẽ,H̃). Observe that
the equations for the approximate fields are decoupled from the equations for the error.

A priori estimates are obtained on the solution of Problem III. This is done by reducing
the error equations to the form of a Volterra equation of the second kind. By expanding
the solution in Moses eigenfunctions, we may rewrite the original system for the error in
the compact form

A1w = d

dt

{
A2w+A3�w+ S

}
, (4.4)



224 Electromagnetic fields in chiral media

where

w =
(
wE,λ

wH ,λ

)
, A1 =

(
λ|p| 0

0 λ|p|
)

,

A2 =
(

0 −µ
ε 0

)
, A3 =

( −ξ −µ1(τ)
ε1(τ) ζ

)
,

S=
(
S1,λ

S2,λ

)
=
(−µ1� H̄λ − ξ� Ēλ + λβµ|p|H̄λ

ε1� Ēλ + ζ� H̄λ − λβε|p|Ēλ

)
.

(4.5)

Now integrate once over time to rewrite the equation for the error in the following form:

w = φ�w+ g, (4.6)

where

φ= A−1
2

(
A1 −A3

)
, g =−A−1

2 S. (4.7)

For the specific system we study here, we have that

φ =


−ε1(τ)

ε
λ|p|− ζ

ε

−λ|p|+ ξ

µ
−µ1(τ)

µ

 , g =


ε1

ε
� Ēλ +

ζ

ε
� H̄λ − λβ|p|Ēλ

µ1

µ
� H̄λ +

ξ

µ
� Ēλ − λβ|p|H̄λ

 . (4.8)

This matrix Volterra equation will be used to obtain a priori estimates for the error of the
optical response approximation in terms of the Moses transformed fields. The following
two results were proved in [6].

Theorem 4.1. Let

Ψ(t) :=
(

1− 2sup
i, j

∥∥φij∥∥L1(0,t)

)−1

> 0. (4.9)

Then, the solution of (4.6) satisfies the following a priori error bound

sup
i

∥∥wi

∥∥
Lp(0,t) ≤Ψ(t)sup

i

∥∥gi∥∥Lp(0,t). (4.10)

It is interesting to notice that an alternative method of obtaining a priori bounds can
be developed using the Gronwall inequality. Indeed, in this manner we can readily obtain
the following result.

Theorem 4.2. Suppose that ε > 0, µ > 0, ξ > 0, and ζ > 0, and that |p| ≤ min(ξ,ζ). As-
suming that the functions φij are bounded, the following estimate holds:

sup
t

∣∣w1(t) +w2(t)
∣∣≤ sup

t

∣∣g1(t) + g2(t)
∣∣. (4.11)
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The above estimate provides us with a way to minimize the error of the optical
response approximation. One way to do this is by minimizing the upper bound
supi‖gi‖Lr (0,t). This amounts to choosing the value of β so as to minimize the integrals

∥∥g1
∥∥
Lr (0,t) =

{∫ t

0

∣∣∣∣ε1

ε
� Ēλ +

ζ

ε
� H̄λ − λβ|p|Ēλ

∣∣∣∣rdt′}1/r

,

∥∥g2
∥∥
Lr (0,t) =

{∫ t

0

∣∣∣∣µ1

µ
� H̄λ +

ξ

µ
� Ēλ − λβ|p|H̄λ

∣∣∣∣rdt′}1/r

.

(4.12)

A series of other results were obtained for each p using the expansion of Problem
III in Moses eigenfunctions. This approach allows us to find exact forms for the Laplace
transform of the error for specified wavenumbers. Numerical techniques can thus be used
for the inversion of the Laplace transform and the retrieval of the time dependence of the
error term.

An estimate of the error in the spatial variables rather than in terms of the wavenum-
bers can be obtained in the following way. Adopting the notation of Section 2, the equa-
tion for the error may be written in the form

Lw = ∂

∂t
(Aw+K �w+Φ), (4.13)

where Φ is a source term which is related to the solutions of the optical response equa-
tion H̃ and Ẽ. Multiplying by w, integrating over space, and using the properties of the
operator L, we obtain

1
2
d

dt

(‖w‖2)+
〈
d

dt
(K �w),w

?
+ 〈Φ,w〉. (4.14)

Under the assumption that the convolution kernel is such that

K1Aw ≤ d

dt
(K �w) ≤ K2Aw, (4.15)

we obtain

d

dt
‖w‖2 +K1‖w‖2 ≤ |Φ|‖w‖, (4.16)

from which by use of the Gronwall inequality we may obtain a priori bounds for the error.
Similar bounds may be obtained by slight modification of the conditions on the kernels.

5. Homogenization for spatially periodic chiral media

We will now consider Problem I in a spatially periodic chiral medium, that is, we will
consider the parameters of the medium ε, ε1, µ, µ1, ζ , and ξ to be periodic functions of
x with a period ε. The period ε will be considered to be a small number, a fact that will
correspond to a fast spatially varying medium.
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This leads us to considering the problem of homogenization for such media, that is,
the approximation of a spatially periodic medium with a homogeneous medium (i.e., a
medium with constant parameters) having the same properties as the original medium in
the limit as ε→ 0. The homogenization problem for periodic structures is a long standing
problem in the mathematical and engineering community that has led to the introduc-
tion of interesting mathematical techniques and also to interesting engineering applica-
tions.

Though the problem of homogenization for the Maxwell equations has been studied
extensively in the past, there has been little progress on this subject as far as bianisotropic
or chiral media are concerned. While some papers treat versions of the problem from
the engineering point of view, the problem has been left untouched from the rigorous
mathematical point of view. This aspect of the problem has been studied in [2] for the
more general case of bianisotropic media.

Consider the spatially periodic version of Problem I, which consists of Maxwell’s equa-
tions

∂tD
ε = curlHε +F(x, t),

∂tB
ε =−curlEε +G(x, t), x ∈Ω, t > 0,

Eε(x,0) = 0, Hε(x,0) = 0, x ∈Ω,

(5.1)

subject to the constitutive laws

Dε = εεEε + ζε ∗Hε + εε1 ∗Eε,

Bε = µεHε + ξε ∗Eε +µε1 ∗Hε.
(5.2)

The functions εε(x) and µε(x) as well as the functions εε1(x, t), µε1(x, t), ξε(x, t), and ζε(x, t)
are periodic in x of period εY . We assume that there exists c > 0 such that the block matrix

(
ε+ ε̂1 ζ̂

ξ̂ µ+ µ̂1

)
=: A(x, p) (5.3)

satisfies

〈
A(x, p)U ,U

〉≥ c‖U‖2, x ∈Ω, p ∈ C+, U ∈ R
6. (5.4)

We fix a domain V ⊂Ω and consider the operator

Lε =
(
−div

((
ε+ ε̂1

)
grad

) −div
((
ζ̂
)

grad
)

−div
((
ξ̂
)

grad
) −div

((
µ+ µ̂1

)
grad

)) : H1
0 (V) −→H−1(V) (5.5)

and the corresponding homogenization limit

Lh =:

(−div
(
ε̃h grad

) −div
(
ζ̃ h grad

)
−div

(
ξ̃h grad

) −div
(
µ̃h grad

)) . (5.6)
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Note that while the coefficients of Lh are spatially constant, they do depend on p ∈ C+.
We assume that for fixed x ∈Ω, the functions ε̃h, ξ̃h, ζ̃ h, and µ̃h are the Laplace transforms
of functions εh, ξh, ζh, and µh on (0,∞). We then have the following theorem.

Theorem 5.1. Assume that the Maxwell system (5.1) and (5.2) is uniquely solvable for all
ε > 0 and that ‖Eε‖2,‖Hε‖2 ≤ c for all ε, t > 0. Then the solution (Eε,Hε) of the above system
satisfies

Eε −→ E∗, Hε −→H∗, ∗-weakly in L∞((0,∞),L2(Ω)
)
, (5.7)

where (E∗,H∗) is the unique solution of the Maxwell system

∂tD
∗ = curlH∗ +F,

∂tB
∗ = −curlE∗ +G, x ∈Ω, t > 0,

E∗(x,0) = 0, H∗(x,0) = 0,

(5.8)

subject to the constitutive laws

D∗ = εh ∗E∗ + ζh ∗H∗,

B∗ = ξh ∗E∗ +µh ∗H∗.
(5.9)

We do not provide the proof of the theorem here (for a complete proof see [2]) but
simply note that in order to prove the above result, we have to work with the Laplace
transform of the original problem which assumes the form of an elliptic partial differ-
ential equation with spatially periodic coefficients. The homogenization problem for the
latter may be addressed using generalizations of standard homogenization techniques
based on the use of the div-curl lemma, thus leading to a spatially homogenized equa-
tion in Laplace space. Then, inverting the Laplace transform, we arrive at the announced
result. For details see [2].

Remark 5.2. (1) The above theorem gives the homogenized coefficients as inverse Laplace
transforms of certain functions. In concrete cases one can use numerical schemes to ob-
tain precise approximations of εh, ξh, ζh, and µh. The Laplace transforms of the homoge-
nized coefficients may be obtained by a proper averaging of the parameters of the medium
weighted by the solution of an appropriately formulated “cell problem.” For the definition
of the cell problem see [2].

(2) It is clear that the functions F and G can also depend on ε > 0, provided that one
makes suitable assumptions on their behaviour as ε→ 0.

For completeness here, we present the expressions for the homogenized coefficients
for the medium, in Laplace space.

We let H1
per(Y) denote the closed subspace of H1(Y) that consists of periodic functions

and define the operator Lper : H1
per(Y) → (H1

per(Y))∗ by

Lper =
(−div

(
εI3 grad

) −div
(
ζI3 grad

)
−div

(
ξI3 grad

) −div
(
µI3 grad

)) . (5.10)
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This operator may be proved to be invertible modulo constants. In particular, we can

define (modulo constants) the functions u
j
1, u

j
2, v

j
1, and v

j
2, j = 1,2,3, by the relations

Lper

uj
1

u
j
2

=


∂εi j
∂yi

∂ξi j
∂yi

 , Lper

v j1
v
j
2

=


∂ζi j
∂yi

∂µi j
∂yi

 . (5.11)

We define the homogenized constant coefficient matrices εh, ξh, ζh, and µh by

εhi j =
〈
εi j + εik∂yku

j
1 + ζik∂yku

j
2

〉
,

ξhi j =
〈
ξi j + ξik∂yku

j
1 +µik∂yku

j
2

〉
,

ζhi j =
〈
ζi j + ζik∂yk v

j
2 + εik∂yk v

j
1

〉
,

µhi j =
〈
µi j +µik∂yk v

j
2 + ξik∂yk v

j
1

〉
,

(5.12)

where 〈g〉 := |Y |−1
∫
Y g. It is not obvious but it is easy to prove that the block matrix

Ah =
(
εh ζh

ξh µh

)
(5.13)

is symmetric and positive definite. We note here that one can also deduce relations (5.12)
formally by postulating a double-scale expansion for Eε and Hε.

6. Nonlinear chiral media

The results presented so far were results valid for chiral media constitutive relations with
linear (local or nonlocal) laws involving the electromagnetic fields. Nevertheless there is
a rapidly growing interest in nonlinear chiral media. The study of such systems is still in
its initial stages and very little work has been done in this direction (see, e.g., [7, 14]). In
this section we will examine the effects of nonlinearity on the constitutive relations for
chiral media. In particular, we will present some recent results related to the evolution
of electromagnetic fields in chiral media with cubic nonlinearity in the weak-dispersion,
low-chirality limit. This limit is quite interesting and has been studied in the linear case
(for general mathematical results for time-harmonic fields see, e.g., [3] and the references
therein). For cubically nonlinear, weakly dispersive media with low-chirality parameter,
we derive a set of four coupled partial differential equations of the NLS type for the evo-
lution of the slowly varying envelopes of the electromagnetic fields. With the use of re-
ductive perturbation theory, we reduce the system to a set of integrable partial differential
equations, the Mel’nikov system, and thus show the existence in certain limits of vector
solitons of the dark-bright type.

6.1. The field equations in the general case. The starting point for the modelling of a
nonlinear chiral medium is the Maxwell postulates, in the absence of sources. We assume
furthermore that the medium is of infinite extent. To obtain a description of the fields,
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the above equations will have to be complemented by the constitutive relations for the
medium, that give the connection of D and B on the fields E and H . For a weakly nonlin-
ear, weakly dispersive chiral medium with a cubic nonlinearity, we may assume that the
constitutive relations in the time domain are of the form

D = εE+ ε1�E+ ζ�H + δε2 f1
(|E|2)E,

B = µH +µ1�H + ξ�E+ δµ2 f2
(|H|2)H ,

(6.1)

where by� we denote the convolution ( f �G)(x, t) = ∫∞
−∞ f (t− t′)G(x, t′)h(t− t′)dt′. In

the above relation, ε and µ are the permittivity and permeability of the medium, respec-
tively, and ξ and ζ are the chirality parameters of the medium. Causality in the linear part
is ensured by the appearance of the Heaviside function h whereas the nonlinear part is
local (and therefore causal). The assumption of locality for the nonlinear part is consis-
tent with the weak dispersion—the weak nonlinearity case we consider. The parameter
δ is a small parameter which is associated with the weak nonlinearity. The fact that we
have low-chirality and weak nonlinearity is shown in the above constitutive relations by
the fact that the nonlinearity in D depends only on E while the nonlinearity in B depends
only on H . We further assume that the chirality effects are weaker than the nonlinearity
so as to be able to neglect cross terms in the fields H and E. In this work we use constitu-
tive relations with nonlinearities expressed directly in the fields E and H , and not in the
Beltrami fields in which they may be decomposed (see, e.g., [14]).

The well-posedness of the above problem in the general case is an intriguing mathe-
matical problem which is currently under consideration. Here we will study the problem
for a special class of fields, that is, fields which in the frequency domain are of the form

E(z,ω) = u1(z,ω)e+ + v1(z,ω)e−,

H(z,ω) = u2(z,ω)e+ + v2(z,ω)e−,
(6.2)

where e± = (1/
√

2)(x̂± iŷ). This ansatz contains the most general dependence of the fields
in e+ and e− (which is a complete basis in the x, y plane). On the other hand it does not
contain the longitudinal component and/or transverse dependence of the fields, never-
theless it is still consistent with the divergence-free property of the fields D and B which
is valid in this case.

Substituting this ansatz in the Maxwell postulates, we arrive at the following set of
nonlinear equations (in the frequency domain):

−i ∂u1

∂z
=−iω(µu2 + µ̂1u2 + ζ̂u1 + δµ2 f2

(∣∣u2
∣∣2

+
∣∣v2

∣∣2)
u2
)
,

−i ∂u2

∂z
= iω

(
εu1 + ε̂1u1 + ξ̂u2 + δε2 f1

(∣∣u1
∣∣2

+
∣∣v1

∣∣2)
u1
)
,

i
∂v1

∂z
=−iω(µv2 + µ̂1v2 + ζ̂v1 + δµ2 f2

(∣∣u2
∣∣2

+
∣∣v2

∣∣2)
v2
)
,

i
∂v2

∂z
= iω

(
εv1 + ε̂1v1 + ξ̂v2 + δε2 f1

(∣∣u1
∣∣2

+
∣∣v1

∣∣2)
v1
)
,

(6.3)
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where by φ̂(ω) we denote the Fourier transform of φ(t) (the ω dependence is dropped for
convenience). We note that in the above set of equations in the absence of nonlinearity
(δ = 0), the first two equations decouple from the other two, that is, the field components
in the e+ and e− directions evolve independently. The components, in the absence of
boundary conditions, are coupled only through the nonlinearity.

6.2. Derivation of the amplitude equations. Assuming solutions of the form

uj(z,ω) =Uj exp
(
ik+z

)
, vj(z,ω) =Vj exp

(
ik−z

)
, j = 1,2, (6.4)

which in the time domain correspond to wave solutions, we see that in the weakly non-
linear case they will have to satisfy the dispersion relations

k2
± ± iω

(
ζ̂ − ξ̂

)
k± +ω2{ξ̂ ζ̂ − (

ε+ ε̂1 + δε2 f1
)(
µ+ µ̂1 + δµ2 f2

)}= 0,

fi = fi
(∣∣Ui

∣∣2
+
∣∣Vi

∣∣2)
, i= 1,2.

(6.5)

In the absence of nonlinearity (δ = 0), these two dispersion relations reduce to the dis-
persion relations for the right-handed and the left-handed polarized waves that are well
known to propagate in linear chiral media.

We will now assume that the nonlinear medium supports wave solutions of the form
(6.4), where the Fourier transforms ofUj andVj are considered to be slowly varying func-
tions of space and time. In other words, Uj and Vj are considered to be the envelopes of
the wave fields. Using reductive perturbation theory, we may derive modulation equa-
tions for the evolution of the envelopes of the fields. One way of doing that is through
the dispersion relation of the weakly nonlinear waves in the following way: we expand
the dispersion relations in a Taylor expansion around the point (k0,ω0) which is a so-
lution of the linear dispersion relation. For the problem at hand, it is enough to keep
terms up to the second order. As a result we obtain a polynomial expression in k and
ω, and Ii = |Ui|2 + |Vi|2, i = 1,2, the coefficients of the polynomial, are derivatives of ω
calculated at the points k = k0 and Ii = 0 (linear case).

In order to obtain modulation equations for the envelopes of the fields, we have to re-
turn back to physical space and time. This is done through the substitution (ω± −ω0,±) →
i(∂/∂t), (k− k0) →−i(∂/∂z), and assuming that these operators act on the envelope of the
waves and on the relevant temporal and spatial scales. The modulation equations may be
derived in an alternative manner by the use of reductive perturbation theory.

Following the procedure described above, we obtain a set of four evolution equations
for the envelopes of the wave fields, in the time domain, of the form

i
∂Uj

∂t
= i

∂ω+

∂k

∂Uj

∂z
+

1
2
∂2ω+

∂k2

∂2Uj

∂z2
+
(
∂ω+

∂I1
I1 +

∂ω+

∂I2
I2

)
Uj ,

i
∂Vj

∂t
= i

∂ω−
∂k

∂Vj

∂z
+

1
2
∂2ω−
∂k2

∂2Vj

∂z2
+
(
∂ω−
∂I1

I1 +
∂ω−
∂I2

I2

)
Vj ,

(6.6)

where j = 1,2. These NLS equations are coupled through the nonlinear terms I1 and I2.
The spatial and temporal coordinates appearing in these equations are scaled variables,
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relevant to the slow variations of the envelopes of the fields. For more details on the
derivation of the modulation equations see [7].

6.3. Reduction of the modulation equations to the Mel’nikov system. The coupled NLS
equations which arose as modulation equations for the evolution of the fields in chiral
media are not integrable by the use of the inverse scattering transform. However, it is
possible, through the use of reductive perturbation theory, to reduce the system in the
proper spatial and time scales to an integrable system that approximates the behaviour of
the original system. This procedure is a general way of understanding the properties of
solutions of nonintegrable systems that has been proven fruitful in a number of similar
situations (see [7] and the references therein).

To obtain the reduction to an integrable system, we restrict ourselves to solutions of
the type

U2 = ρ1U1, V2 = ρ2V1, (6.7)

for which the original system of NLS equations reduces to a system of two equations.
We will now look for solutions of the above system satisfying the boundary conditions∣∣U1

∣∣−→ |u|, as z −→∞,∣∣V1
∣∣−→ 0, as z −→∞,

(6.8)

that is, we will look for solutions of the dark soliton type in the right-handed component
u, and solutions of the bright soliton type in the left-handed component v. It is clear that
the above boundary conditions may be reversed.

With the use of reductive perturbation theory (for details see [7]), a lengthy proce-
dure leads to a system of the Mel’nikov type [12], which is fully integrable by the inverse
scattering transform for special cases of the parameters. The Mel’nikov system has soli-
ton solutions in the form of a dark soliton in the right-handed component and a bright
soliton in the left-handed component, that is, a localized nonlinear wave propagating in
a dispersive medium, on top of a continuous wave background, keeping its shape undis-
torted. The bright soliton represents a bulge on top of the continuous wave background,
whereas the dark soliton represents a dip. For more details on the definition and the
properties of dark and bright solitons see, for example, [8].
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We suggest some criteria for the stabilization of planar linear systems via linear hybrid
feedback controls. The results are formulated in terms of the input matrices. For instance,
this enables us to work out an algorithm which is directly suitable for a computer realiza-
tion. At the same time, this algorithm helps to check easily if a given linear 2× 2 system
can be stabilized (a) by a linear ordinary feedback control or (b) by a linear hybrid feed-
back control.

1. Introduction

Consider a linear control 2× 2 system

ẋ =Ax+Bu, y = Cx, (1.1)

on [0,∞), where x ∈ R2 is the state variable of the system, y ∈ Rm is the output variable,
u∈ R� is the control variable, and B and C are given real matrices of the sizes 2 × � and
m× 2, respectively.

If the pair (A,B) is controllable, or more generally, stabilizable, and rankC = 2 (which
describes the case of complete observability of the solutions), then it is always possi-
ble (see, e.g., [5, 6]) to achieve exponential stability of the zero solution to the control
system (1.1) with an arbitrary matrix A. In such a case, there exists a linear ordinary
feedback control of the form u = Gy with an �×m matrix G, which yields exponential
stability.

Similarly, if rankB = 2 and the pair (A,C) is observable, or at least detectable, then
again a suitable linear feedback control of the form u= Gy solves the stabilization prob-
lem for system (1.1).

However, it is known that in practice, neither the condition rankB = 2 nor the com-
plete observability of the solutions (i.e., rankC = 2) can be unavailable. The most inter-
esting situation for applications is, therefore, the case when rankB = rankC = 1.

Copyright © 2004 Hindawi Publishing Corporation
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A simple example of such a system is the harmonic oscillator with the external force as
the control, where

A=
(

0 1
−1 0

)
, B =

(
0
1

)
, C =

(
1 0

)
. (1.2)

Here, the displacement variable x1 is available for measurements, while the controller
can only change the velocity variable x2 (we assume that x = ( x1 x2 )$ ∈ R2). This control
system is both controllable and observable, but it cannot be stabilized by ordinary (even
nonlinear and discontinuous) output feedback controls of the form u = f (y) (see, e.g.,
[1]).

However, as it was shown by Artstein [1], there exists a hybrid feedback control which
provides asymptotical stability of the zero solution to (1.1) with the matrices from (1.2).

A hybrid feedback control includes essentially two features (see Section 3 for the for-
mal definitions): a discrete time controller (an automaton) attached to the given dynam-
ical system (i.e., to (1.1) in our case) via the matrices B and C, and a switching algorithm
describing when and how a control u should be changed. Artstein’s example shows that
such a hybrid feedback control may help even when the ordinary feedback fails to stabilize
the system.

In [2, 3], the following result is obtained for B and C being nonzero matrices of rank
1: system (1.1) is stabilizable by a linear hybrid feedback control (LHFC) if and only if for
at least one α∈ R, the matrix A+αBC does not have nonnegative real eigenvalues. This
result gives a necessary and sufficient stabilization condition, and it is straightforward that
making use of hybrid feedback controls provides a better stabilization criterion compared
to any one we can obtain exploiting ordinary feedback controls.

However, the shortcoming of this criterion is that it does not give any explicit descrip-
tion of how its assumptions can be verified in practice. In other words, it does not suggest
any efficient, finite-step algorithm in terms of the given matrices (A,B,C), which would
answer the question when system (1.1) admits a stabilizing feedback control.

In contrast to [2, 3], the present paper aims at
(1) finding verifiable criteria for LHFC stabilization of system (1.1),
(2) constructing efficient algorithms (which should also be “computer-friendly”),

which can easily test a specific system (1.1) in terms of the input matrices (A,B,C) to
find out whether the zero solution to (1.1) can be stabilized by an ordinary feedback
linear control or by an LHFC.

2. Notations and relevant facts of control theory

We define by N, R, and C the sets of all natural, real, and complex numbers, respectively.
The set R will in the sequel be naturally identified with {z | Imz = 0} ⊂ C. By 〈·,·〉 and
| · | we mean the scalar product and the Euclidean norm in R2, respectively. We write
Span{b} for the one-dimensional vector space containing a given vector b ∈ R2. We also
put C− := {z ∈ C | Rez < 0}, C+ := C \C−, and C2

s :={(λ1,λ2) ∈ C2 | λ1 = λ̄2}.
Let M(�,m) denote the set of all real �×m matrices. Matrices will often be addressed as

linear operators in the appropriate vector spaces. In the sequel, I and Θ will stand for the
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identity 2× 2 matrix and the zero 2× 2 matrix, respectively. Given a matrix D ∈M(2,2),
we will denote its spectrum by σ(D).

In what follows, we will consider system (1.1) for arbitrary but fixed matrices A ∈
M(2,2), B ∈M(2,�), and C ∈M(m,2) (�,m∈ N). We also suppose that σ(A) = {λ1,λ2}.
Moreover, if σ(A) ⊂ R, then we suppose, without loss of generality, that λ1 ≤ λ2 (the case
λ1 = λ2 is not excluded either).

The characteristic and the minimal polynomials of the matrix A will be denoted by
πA(λ) and pA(λ), respectively. Clearly, πA(λ) = λ2 − trA · λ+ detA. The decomposition
C = C− %C+ implies also a special factorization of the minimal polynomial pA = p−

A p
+
A,

where the zeros of p−
A(λ) and p+

A(λ) belong to C− and C+, respectively. The notation
〈A|B〉 is used for the controllability space of the pair (A,B), that is, 〈A|B〉 := B(R�) +
AB(R�).

We recall some well-known facts (see, e.g., [5, 6]) from the theory of control linear
systems, which are summarized in Definitions 2.1, 2.3, and 2.6 and Lemmas 2.2, 2.4, 2.5,
2.7, 2.8, and 2.9. Although some of the results are quite general, we will formulate them
for the case of 2× 2 systems, as it is the case of interest in this paper.

Definition 2.1. A matrix A is called stable if σ(A) ⊂ C−.

Lemma 2.2. The following conditions are equivalent:

(1) A is stable;
(2) trA < 0, detA > 0;
(3) the trivial solution to ẋ = Ax is asymptotically stable.

Definition 2.3. The pair (A,B) is controllable if 〈A|B〉 = R2. The pair (A,C) is observable
if the pair (A$,C$) is controllable.

Lemma 2.4. (I) The following conditions are equivalent:

(1) the pair (A,B) is controllable;
(2) rank(B AB ) = 2;
(3) for all Λ∈ C2

s , there exists F ∈M(�,2) such that σ(A+BF) =Λ.

(II) The following conditions are equivalent:

(1) the pair (A,C) is observable;
(2) rank

(
C
CA

)= 2;
(3) for all Λ∈ C2

s , there exists F ∈M(2,m) such that σ(A+FC) =Λ.

Lemma 2.5. If rankB ≥ 2, then (A,B) is controllable, and if rankC ≥ 2, then (A,C) is ob-
servable.

Definition 2.6. The pair (A,B) is called stabilizable if there exists F ∈M(�,2) such that
the matrix A+BF is stable.

The pair (A,C) is called detectable if there exists F ∈ M(2,m) such that the matrix
A+FC is stable.

Lemma 2.7. The pair (A,B) is stabilizable if and only if ker p+
A(A) ⊂ 〈A|B〉.

Lemma 2.8. The pair (A,C) is detectable if and only if (A$,C$) is stabilizable.
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Lemma 2.9. If the pair (A,B) is controllable, then (A,B) is stabilizable, and if the pair (A,C)
is observable, then (A,C) is detectable.

Remark 2.10. We point out that the converse to Lemma 2.9 is not true in general. In-
deed, for the matrices A = (

1 0
0 −1

)
and B = ( 1 0 )$, the pair (A,B) is stabilizable but not

controllable and the pair (A,B$) is detectable but not observable.

3. Definitions of linear hybrid feedback controls and hybrid feedback stabilization

Definition 3.1. By a discrete automaton we mean in the sequal a 6-tuple ∆= (Q,I ,�,T , j,
q0), where

(i) Q is a finite set of all possible automaton states (locations);
(ii) the finite set I contains the input alphabet;

(iii) the transition map � : Q× I → Q indicates the location after a transition time,
based on the previous location q and input i∈ I at the time of transition;

(iv) T : Q→ (0,∞) is a mapping which sets a period T(q) between transitions times;
(v) j : Rm → I is a function with property j(λy) = j(y), y ∈ Rm, λ > 0;

(vi) q0 = q(0) is the state of the automaton at the initial time.

In [1, 4], a similar definition (without condition (v)) is considered. We add (v) to
the standard requirements as we are going to use LHFCs in this particular paper (see
Definition 3.2).

Intuitively, the automaton follows the output y and uses this information to determine
switching times and the values of the new continuous piece of the control function.

For any automaton ∆ satisfying (i)–(vi), we can iteratively define a special feedback
operator F∆. Given y : [0,∞) → Rm, the function F∆y : [0,∞) → Q is defined by the fol-
lowing:

(1) (F∆y)(0) = q0, t1 = T(q0), (F∆y)(t) ≡ q0, t ∈ [0, t1);
(2) (F∆y)(t1) = �(q0, j(y(t1))) := q(t1), t2 = t1 + T(q(t1)), (F∆y)(t) ≡ q(t1), t ∈

[t1, t2);
(3) if t1, . . . , tk and the values (F∆y)(t) for t ∈ [0, tk) are already known, then tk+1 and

(F∆y)(t) are defined for t ∈ [tk, tk+1) by the equalities

(
F∆y

)(
tk
)= �

(
q
(
tk−1

)
, j
(
y
(
tk
)))

:= q
(
tk
)
, tk+1 = tk +T

(
q
(
tk
))

,(
F∆y

)
(t) ≡ q

(
tk
)
, t ∈ [

tk, tk+1
)
.

(3.1)

The sequence {tk}∞k=0 (t0 = 0), constructed in the definition of F∆y, determines when
the automaton should switch between locations. Note that the sequence {tk} is allowed
to depend on the output function y(·).

Definition 3.2. The pair (∆,{Gq}), where ∆ is a discrete automaton and {Gq | q ∈ Q} ⊂
M(�,m), will be addressed as an LHFC; dependence between the control function u(·)
and the output function y(·) is defined by u(t) =Gq(tk)y(t), t ∈ [tk, tk+1) and k = 0,1, . . . ,
where {tk}∞k=0 is the corresponding sequence of the switching times.
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The set of all LHFCs will in the sequel be denoted by ��, while u= (∆,{Gq}) ∈ ��
will stand for a specific control. According to Definition 3.2, system (1.1), governed by a
control u= (∆,{Gq}) ∈ �� (in short, the u-governed system (1.1)), is equivalent to the
nonlinear functional differential equation

ẋ(t) = (
A+BG(F∆Cx)(t)C

)
x(t), t ∈ [0,∞). (3.2)

The dynamics of system (1.1), governed by an LHFC u, is a triple H(t)=(x(t),q(t),τ(t)),
where x(·) is a solution to (1.1), q(t) is the automaton’s location at instance t, and τ(t) is
the time remaining till the next transition instance (see [1]). The function H(·) : [0,∞) →
R2 ×Q× (0,∞) is also called a hybrid trajectory of system (1.1).

Typical switching procedures (with examples) for systems with LHFC are described
in [1, 4] in detail. In [4], some general properties of hybrid trajectories for linear and
nonlinear finite-dimensional systems are discussed. In the same paper, one can find a
review of the authors’ results on some properties of the hybrid dynamics.

We mention here the main existence result from [4], which has a direct relevance to
system (1.1) governed by a hybrid feedback control.

Lemma 3.3. For any u∈ �� and for any α∈ R2, there exists the unique hybrid trajectory
(x(·),q(·),τ(·)) of the u-governed system (1.1) with the property x(0) = α (evidently, x ≡ 0
if α= 0).

In the sequel, we define by ��1 ⊂ �� the class of those LHFCs, for which Q con-
tains only one point. Clearly, the class ��1 can naturally be identified with the class of
ordinary linear feedback controls of the form u=Gy with G being an appropriate matrix.

Definition 3.4 [1]. System (1.1) is said to be stabilizable by a control u∈ �� (u-stab.) if
the trivial solution to (1.1) is uniformly asymptotically stable. In other words,

(a) for any ε > 0, there is δ > 0 such that every solution x(·) with the property |x(0)| <
δ satisfies the estimate |x(t)| < ε for t ≥ 0;

(b) for every solution x(·), |x(t)| → 0 as t → ∞, the convergence being uniform with
respect to initial points x(0) ∈ K for any bounded K ⊂ R2.

Definition 3.5. Let � ⊂ ��. System (1.1) is called �-stabilizable (�-stab.) if there exists
u∈ � such that (1.1) is u-stab. A matrix triple (A1,B1,C1) is called u-stab. or �-stab. if
the corresponding system (1.1) with A=A1, B = B1, and C = C1 is u-stab. or �-stab.

4. Some elementary and well-known facts about hybrid stabilization

Lemma 4.1. Putting rankB = �1 and rankC =m1, let B1 ∈M(2,�1) be a matrix consisting
of �1 linearly independent columns of the matrix B, and C1 ∈M(m1,2) a matrix consisting
of m1 linearly independent rows of the matrix C. Then the following statements are valid.

(1) For all G∈M(�,m), there exists the unique matrix G1 ∈M(�1,m1) such that

BGC = B1G1C1. (4.1)

Conversely, for all G1 ∈M(�1,m1), there exists G∈M(�,m) such that (4.1) is valid.
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(2) The triple (A,B,C) is ��-stab. (resp., ��1-stab.) if and only if (A,B1,C1) is ��-
stab. (resp., ��1-stab.).

The first statement of the lemma is just a simple exercise from the matrix algebra, while
the second statement is a straightforward corollary from the first if one takes into account
the definition of the classes �� and ��1 in Section 3.

Lemma 4.2. The triple (A,B,C) is ��1-stab. if and only if there exists G ∈M(�,m) such
that the matrix A+BGC is stable.

Corollary 4.3. Let B = (b1 b2
$) �= 0 and C = ( c1 c2 ) �= 0. Then the triple (A,B,C) is ��1-

stab. if and only if there exists α∈ R : σ(A+αBC) ⊂ C−.

Corollary 4.4. Assume that one of the following statements is valid:

(1) the pair (A,B) is stabilizable and rankC = 2,
(2) the pair (A,C) is detectable and rankB = 2.

Then (A,B,C) is ��1-stab.

Proof. Suppose that the first statement is valid. By Lemma 4.1, one can then assume that
C ∈ M(2,2), detC �= 0. By Definition 2.6, there exists F ∈ M(�,2) such that the matrix
A + BF is stable. Then A + BGC is stable, where G = FC−1. According to Lemma 4.2,
(A,B,C) is ��1-stab. Case (2) can be treated similarly. �

Corollary 4.5. If rankB ≥ 2 and rankC ≥ 2, then (A,B,C) is ��1-stab.

In [2, 3], the following result is proved.

Theorem 4.6. Let b = (b1 b2 )$ �= 0 and c = ( c1 c2 ) �= 0. The triple (A,B,C) is ��-stab. if
and only if there exists α∈ R : σ(A+αBC)∩ [0,∞) =∅ (in other words, A+αBC does not
have nonnegative real eigenvalues).

The results of this section show that if we wish to construct an algorithm which would
test whether a given triple (A,B,C) provides ��1-stabilizability or ��-stabilizability of
system (1.1), then we need to do the following:

(1) study the cases when the pair (A,B) is not stabilizable or the pair (A,C) is not
detectable,

(2) find efficient algorithms for verifying the assumptions of Corollary 4.3 and
Theorem 4.6.

5. The cases where (A,B) is not stabilizable and (A,C) is not detectable

Everywhere in Sections 5, 6, and 7, excluding Theorem 5.8, we assume that B=(b1 b2 )$ �=0
and C = ( c1 c2 ) �= 0.

Lemma 5.1. The pair (A,B) is controllable if and only if for all λ∈ σ(A)∩R, B �∈ ker(A−
λI).

Proof. By Lemma 2.4, the pair (A,B) is not controllable if and only if det(B AB ) = 0, which
implies that λ∈ σ(A)∩R, B ∈ ker(A− λI). �
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Corollary 5.2. If Imλi �= 0, then (A,B) is controllable.

Lemma 5.3. For λ1 ≥ 0, (A,B) is controllable if and only if (A,B) is stabilizable.

Proof. For λ1 ≥ 0,[p+
A(A) = pA(A) =Θ] ⇒ [ker p+

A(A) = R2]. If (A,B) is stabilizable, then
the latter implication and Lemma 2.7 give the relation 〈A|B〉 = R2. According to Defini-
tion 2.3, the pair (A,B) is therefore controllable. The converse statement follows easily
from Lemma 2.9. �

Lemma 5.4. Let λ1 < 0 ≤ λ2. Then the following statements are true:

(1) [(A,B) is controllable] ⇔ [B �∈ ker(A− λiI), i= 1,2];
(2) [(A,B) is not controllable, but stabilizable] ⇔ [B ∈ ker(A− λ2I) \ ker(A− λ1I)];
(3) [(A,B) is not stabilizable] ⇔ [B ∈ ker(A− λ1I) \ ker(A− λ2I)].

Proof. The first statement follows from Lemma 5.1. The case B ∈ ker(A− λiI), i= 1,2, is
irrelevant. Indeed, under this assumption, we get (λ1 − λ2)B = 0, which contradicts the
conditions λ1 �= λ2 and B �= 0.

Let B ∈ ker(A− λ1I)�ker(A− λ2I). Then det(B AB ) = 0, which implies that 〈A|B〉 =
Span{B}. Taking into account that p+

A(λ) = λ− λ2 and using Lemma 2.7, we obtain that
[(A,B) is stabilizable ] ⇔ [ker(A− λ2I) = Span{B}] ⇔ [B ∈ ker(A− λ2I)]. �

Lemmas 2.4, 2.8, 5.1, 5.3, and 5.4 yield the following theorem.

Theorem 5.5. For the matrices A, B, C from (1.1), [(A,B) is not stabilizable ] ⇔ [(λ1 ≥ 0,
det(B AB ) = 0) ∨ (λ1 < 0 ≤ λ2, AB = λ1B)]; [(A,C) is not detectable] ⇔ [(λ1 ≥ 0,
det

(
C
CA

)
= 0)∨ (λ1 < 0 ≤ λ2, CA= λ1C)].

Remark 5.6. The condition λ1 ≥ 0 is equivalent to trA ≥ 0 and tr2A ≥ 4detA ≥ 0, and
the condition λ1 < 0 ≤ λ2 is equivalent to [detA < 0]∨ [detA= 0 and trA < 0].

Lemma 5.7. If the pair (A,B) is not controllable, then for all F = ( f1 f2 ), σ(A+BF) =
{λ∗,λj} for some j ∈ {1,2}, where λ∗ = λi +FB, i �= j; in this case B ∈ ker(A+BF − λ∗I).

Proof. By virtue of Lemma 5.4, B ∈ ker(A− λiI) for at least one i∈ {1,2}. Let λ∗ = λi +
FB. Then (A + BF − λ∗I)B = (A− λiI)B = 0, that is, λ∗ ∈ σ(A + BF) and B ∈ ker(A +
BF − λ∗I).

Clearly, the zeros λ1 and λ2 of the polynomial πA(λ) and the zeros λ∗ and λ∗∗ of the
polynomial πA+BF(λ) are related to each other in the following way: λ1 + λ2 = trA and
λ∗ + λ∗∗ = tr(A+BF). These equalities imply that λ∗ + λ∗∗ = trA+FB = λ1 + λ2 +FB =
λ∗ + λj , where j �= i. Thus, λ∗∗ = λj . �
Theorem 5.8. Let A∈M(2,2), B ∈M(2,�), C ∈M(m,2), and either the pair (A,B) is not
stabilizable or the pair (A,C) is not detectable. Then (A,B,C) is not ��-stab.

Proof. Assume that (A,B) is not stabilizable. By virtue of Lemmas 2.5 and 2.9, one has
that rankB ≤ 1, and according to Lemma 4.1, one can assume, without loss of generality,
that B = (b1 b2 )$. If B = 0, then the statement of the theorem is evident. Let B �= 0. By
Theorem 5.5, only one of the following cases can occur:

(1) 0 ≤ λ1 < λ2;
(2) λ1 < 0 ≤ λ2;
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(3) λ := λ1 = λ2 ≥ 0, ker(A− λI) = R2;
(4) λ := λ1 = λ2 ≥ 0, dimker(A− λI) = 1.

Using Lemma 5.4, one can easily show that in cases (2) and (3),

B ∈ ker
(
A− λ1I

)
, ker

(
A− λ2I

) \ Span{B} �=∅. (5.1)

In case (1), either (5.1) or its counterpart, where λ1 and λ2 are interchanged, is true. We
assume, with no loss of generality, that (5.1) holds true in case (1).

We prove the theorem for cases (1), (2), and (3) simultaneously by choosing D ∈ R2

so that

B ∈ ker
(
A− λ1I

)
, D ∈ ker

(
A− λ2I

) \ Span{B}. (5.2)

Let P : R2 → R be the projector onto the subspace Span{D} along the subspace
Span{B} so that PB = 0, PD =D, (I −P)B = B, and (I −P)D = 0.

We choose an arbitrary F ∈M(1,2) and consider a trajectory x(·) of the equation

ẋ = (A+BF)x (5.3)

such that Px(t0) �= 0 at some instance t0 ≥ 0.
Evidently,

δ
(
t0
)

:= d|Px|
dt

∣∣∣∣
t=t0

= 1
|Px| 〈Px,Pẋ〉

∣∣∣∣
t=t0

= 1
|Px|

〈
Px,P(A+BF)x

〉∣∣∣∣
t=t0

. (5.4)

Conditions (5.2) imply that for some µ∈ R,

P(A+BF)x = PAx = PA
(
Px+ (I −P)x

)
= PAPx+µPAB = λ2PX +µλ1PB = λ2PX.

(5.5)

Then (5.4) and λ2 ≥ 0 yield

δ
(
t0
)= 1

|Px| · λ2 · |Px|2
∣∣∣∣
t=t0

= λ2
∣∣Px(t0)∣∣≥ 0. (5.6)

The last relation can be used to verify the following properties:

∣∣Px(·)
∣∣ does not decrease on

[
t0,∞)

,
∣∣x(t)

∣∣≥ β
∣∣Px(t0)∣∣, t ≥ t0, (5.7)

where β > 0 does not depend on F.
We now fix some u= (∆,{Gq}) ∈ �� and consider an arbitrary trajectory (x(·),q(·),

τ(·)) of the u-governed system (1.1) with α := |Px(0)| �= 0. Let {tn}∞n=0 be the correspond-
ing sequence of the automaton’s switching instances, t0 = 0. Then for all [tn, tn+1), n ∈
N∪{0}, the first component x(·) of the hybrid trajectory satisfies (5.3), where F = GqC



Elena Litsyn et al. 241

for some q ∈Q. Due to (5.7),

∣∣x(t)
∣∣≥ β

∣∣Px(tn)∣∣≥ β
∣∣Px(0)

∣∣= αβ > 0, t ∈ [
tn, tn+1

)
. (5.8)

As n is arbitrary, x(t) �→ 0, t →∞. Thus, the theorem is proved for cases (1), (2), and (3).
The proof of case (4) will be divided into two parts.
(a) IfCB �= 0, then there exists G∈M(1,m) such thatGBC �=0. By Lemma 5.7, σ(AG) =

{λ,λ∗}, where AG = A+BGC and λ∗ = λ+GCB �= λ. Clearly, the pair (AG,B) is not sta-
bilizable. It has already been proved that in case (1) or (2) the triple (AG,B,C) is not
��-stab. According to Definitions 3.2 and 3.5, the triple (A,B,C) is not ��-stab. either.

(b) If CB = 0, then (see Lemma 5.7) for all G ∈M(1,m), one has B ∈ ker(AG − λI).
Hence, the solution to ẋ = AGx, x(0) = B is given by x(t) = eAGtB = eλtB, t ≥ 0. The last
equality does not depend on G, so that it constitutes a solution to the u-governed system
(1.1) satisfying x(0) = B for any u∈ ��. Since λ≥ 0, system (1.1) is not ��-stab.

The theorem can be proved in a similar manner if (A,C) is not detectable. �

6. Efficient criteria for ��1-stabilizability of the triple (A,B,C)

Everywhere in Sections 6 and 7, it is assumed that A ∈ M(2,2), B ∈ M(2,1) �= 0, and
C ∈M(1,2) �= 0. In these two sections, we will use the following notation: Aα = A+αBC,
α∈ R, ω = trA−CAB/CB if CB �= 0 (we assume also that ω is not defined if CB = 0).

Lemma 6.1. Let a,b,c,d ∈ R. The system of inequalities

a+ b ·α < 0, c+d ·α > 0 (6.1)

is solvable with respect to α∈ R if and only if one of the following conditions holds:

(1) b = d = 0, a < 0, c > 0;
(2) b = 0, d �= 0, a < 0;
(3) d/b < 0;
(4) d/b ≥ 0, c > ad/b.

Theorem 6.2. The triple (A,B,C) is ��1-stab. if and only if one of the following conditions
holds:

(1) CB = CAB = 0, trA < 0, detA > 0;
(2) CB = 0, CAB �= 0, trA < 0;
(3) ω < 0;
(4) ω ≥ 0, detA > trA ·ω.

Proof. Corollary 4.3 and Lemma 2.2 imply that

[
(A,B,C) is ��1-stab.

]⇐⇒ [∃α∈ R : trAα < 0 and detAα > 0
]
. (6.2)

Simple direct calculations yield

trAα = trA+αCB, detAα = detA+α(trA ·CB−CAB). (6.3)
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Thus, the conditions in the right-hand side of (6.2) are equivalent to the solvability of
(6.1) with respect to α∈ R, where a = trA, b = CB, c = detA, and d = trA ·CB−CAB.
Referring to Lemma 6.1 completes the proof. �

Corollary 6.3. Assume that the matrix A is not stable. Then the triple (A,B,C) is ��1-
stab. if and only if one of conditions (2), (3), and (4) of Theorem 6.2 is fulfilled.

7. Efficient criteria for ��-stabilizability in terms of the triple (A,B,C)

The equality πA(λ) = λ2 − trA · λ+ detλ implies the following lemma.

Lemma 7.1. For a 2 × 2 matrix A, σ(A) ∩ [0,∞) = ∅ if and only if one of the following
conditions holds:

(a) trA < 0, detA > 0,
(b) tr2A− 4detA < 0.

Lemma 7.1, Theorem 4.6, and relation (6.2) yield the following corollary.

Corollary 7.2. For the matricesA,B,C from (1.1), [(A,B,C) is ��1-stab.]⇔[there exists
α ∈ R : trAα < 0, detAα > 0]; [(A,B,C) is ��-stab.] ⇔ [there exists α ∈ R : (trAα < 0,
detAα > 0)∨ (tr2Aα−4detAα<0)].

The main result of the paper is the following criterion.

Theorem 7.3. The triple (A,B,C) is ��-stab. if and only if one of the following conditions
is fulfilled:

(1) CB = 0, CAB = 0, trA < 0, detA > 0;
(2) CB = 0, CAB �= 0;
(3) ω < 0;
(4) ω ≥ 0, detA > (CAB/CB) ·ω.

Proof. By (6.3), we have for all α∈ R that

f (α) := tr2Aα − 4detAα = (CB)2α2 − 2(CB · trA− 2CAB)α+ tr2A− 4detA. (7.1)

Consider the inequality

f (α) < 0 (7.2)

in some special situations.
(a) If CB = 0 and CAB �= 0, then (7.2) is equivalent to the inequality

4CAB ·α+ tr2A− 4detA < 0 (7.3)

which is clearly solvable with respect to α∈ R.
(b) If CB �= 0, then the solvability of (7.2) is equivalent to the positivity of the discrim-

inant 4d of the quadratic equation f (α) = 0, that is, to the condition

d = 4(CAB)2 − 4CAB · trA ·CB+ 4detA · (CB)2 > 0. (7.4)
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The last inequality, in turn, is equivalent to

detA >
CAB

CB
·ω. (7.5)

Now we are able to continue the proof of the theorem.
(1) Let CB = CAB = 0. Due to Theorem 4.6, Lemma 7.1, and relation (6.3), ��-

stabilizability of (A,B,C) is equivalent to the condition trA < 0, detA > 0.
(2) Let CB = 0 and CAB �= 0. Because of (a), the triple (A,B,C) is ��-stab.
(3) Let ω < 0. By Theorem 6.2, (A,B,C) is ��-stab.
(4) Let ω ≥ 0. By Corollary 7.2, Theorem 6.2, and (b), ��-stabilizability of the triple

(A,B,C) is equivalent either to (7.5) or to

detA≥ trA ·ω. (7.6)

Moreover, ω= trA−CAB/CB ≥ 0 guarantees the implication (7.6)⇒(7.5). Thus, ��-
stabilizability of (A,B,C) is equivalent to (7.5). �

The next two theorems follow directly from Theorems 6.2 and 7.3 and Corollary 7.2.

Theorem 7.4. The triple (A,B,C) is not ��1-stab. but ��-stab. if and only if one of the
following conditions is satisfied:

(1) CB = 0, CAB �= 0, trA≥ 0;
(2) ω > 0, CAB/CB < detA/ω ≤ trA.

Theorem 7.5. Assume that (A,B,C) is not ��1-stab. Then (A,B,C) is ��-stab. if and
only if one of the following conditions is satisfied:

(1) CB = 0, CAB �= 0;
(2) detA > CAB/CB ·ω.

8. A detailed algorithm which tests ��1- and ��-stabilizability of the triple (A,B,C)

First of all, we introduce some new notation:

(i) 1 = {(A,B,C) |A∈M(2,2), B ∈M(2,�), C ∈M(m,2) for some �,m∈ N},
(ii) LH0 = {Ω∈ 1 |A is stable},

(iii) LH1 = {Ω∈ 1 |A is not stable, Ω is ��1-stab.},
(iv) LH = {Ω∈ 1 |Ω is not ��1-stab., but is ��-stab.},
(v) LH− = {Ω∈ 1 |Ω is not ��-stab.}.

Evidently, 1 = LH0 %LH1 %LH%LH−.
Algorithm 8.1 tests if a given triple Ω= (A,B,C) ∈ 1 belongs to one of the classes LH0,

LH1, LH, and LH−.

Remark 8.1. The items 1(YES) and 3(YES) of the algorithm follow from Lemma 2.2 and
Corollary 4.5, respectively. The items 5(YES) and 7(YES) are implied by Theorems 5.5
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1 Condition: trA < 0, detA > 0.
(YES) −→Ω∈ LH0 −→ END
(NO) −→ CONTINUE

2 Condition: B or C is the zero matrix.
(YES) −→Ω∈ LH− −→ END
(NO) −→ CONTINUE

3 Condition: rankB ≥ 2, rankC ≥ 2.
(YES) −→Ω∈ LH1 −→ END
(NO) −→ find σ(A) = {λ1,λ2} −→ CONTINUE

4 Condition: rankB = 1.
(YES) −→ find a nonzero column b

of the matrix B −→ CONTINUE
(NO) −→ find a nonzero row c

of the matrix C −→ go to 7
5 Condition: [λ1 ≥ 0, λ2 ≥ 0, det(b Ab) = 0] ∨[λ1 < 0 ≤ λ2, Ab = λ1b]

∨[λ2 < 0 ≤ λ1, Ab = λ2b].
(YES) −→Ω∈ LH− −→ END
(NO) −→ CONTINUE

6 Condition: rankC ≥ 2.
(YES) −→Ω∈ LH1 −→ END
(NO) −→ find a nonzero row c
of the matrix C −→ go to 8

7 Condition:
[
λ1 ≥ 0, λ2 ≥ 0, det

(
c
cA

)
= 0

]
∨ [λ1 < 0 ≤ λ2, cA= λ1c]

∨[λ2 < 0 ≤ λ1, cA= λ2c].
(YES) −→Ω∈ LH− −→ END
(NO) −→Ω∈ LH1 −→ END

8 Condition: [cb = 0, cAb �= 0, trA < 0]∨ [trA− cAb/cb < 0]
∨[trA− cAb/cb ≥ 0, detA > trA(trA− cAb/cb)].
(YES) −→Ω∈ LH1 −→ END
(NO) −→ CONTINUE

9 Condition: [cb = 0, cAb �= 0] ∨[detA > (cAb/cb)(trA− cAb/cb)].
(YES) −→Ω∈ LH −→ END
(NO) −→Ω∈ LH− −→ END.

Algorithm 8.1

and 5.8, and the items 6(YES) and 7(NO) can be obtained from Corollary 4.4. In the
items 4(YES) and 6(NO), we use Lemma 4.1 to reduce the stabilization problem for the
triple (A,B,C) to that for either (A,b,C) or (A,b,c), where b is a nonzero column of B
and c is a nonzero row of C (B = b and C = c if � =m = 1). For 8(YES), the statement
follows from Corollary 6.3. Finally, 9 is implied by Theorem 7.5.
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WHICH SOLUTIONS OF THE THIRD PROBLEM
FOR THE POISSON EQUATION ARE BOUNDED?

DAGMAR MEDKOVÁ

Received 10 September 2002

This paper deals with the problem ∆u= g on G and ∂u/∂n+u f = L on ∂G. Here, G⊂ Rm,
m> 2, is a bounded domain with Lyapunov boundary, f is a bounded nonnegative func-
tion on the boundary of G, L is a bounded linear functional on W1,2(G) representable by
a real measure µ on the boundary of G, and g ∈ L2(G)∩Lp(G), p > m/2. It is shown that
a weak solution of this problem is bounded in G if and only if the Newtonian potential
corresponding to the boundary condition µ is bounded in G.

Suppose that G ⊂ Rm, m > 2, is a bounded domain with Lyapunov boundary (i.e.,
of class C1+α). Denote by n(y) the outer unit normal of G at y. If f ,g,h ∈ C(∂G) and
u∈ C2(clG) is a classical solution of

∆u= g on G,

∂u

∂n
+u f = h on ∂G,

(1)

then Green’s formula yields∫
G
∇u ·∇vd�m +

∫
∂G
u f vd�m−1 =

∫
∂G
hvd�m−1 −

∫
G
gvd�m (2)

for each v ∈ �, the space of all compactly supported infinitely differentiable functions
in Rm. Here, ∂G denotes the boundary of G and clG is the closure of G; �k is the k-
dimensional Hausdorff measure normalized so that �k is the Lebesgue measure in Rk.
Denote by �(G) the set of all functions from � with the support in G.

For an open set V ⊂ Rm, denote by W1,2(V) the collection of all functions f ∈ L2(V),
the distributional gradient of which belongs to [L2(V)]m.

Definition 1. Let f ∈ L∞(�), g ∈ L2(G) and let L be a bounded linear functional on
W1,2(G) such that L(ϕ) = 0 for each ϕ∈ �(G). We say that u∈W1,2(G) is a weak solution

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 247–256
2000 Mathematics Subject Classification: 35B65
URL: http://dx.doi.org/10.1155/9775945143
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248 Boundedness of solutions

in W1,2(G) of the third problem for the Poisson equation

∆u= g on G,

∂u

∂n
+u f = L on ∂G,

(3)

if ∫
G
∇u ·∇vd�m +

∫
∂G
u f vd� = L(v)−

∫
G
gvd�m (4)

for each v ∈W1,2(G).

Denote by �′(∂G) the Banach space of all finite signed Borel measures with support
in ∂G with the total variation as a norm. We say that the bounded linear functional L on
W1,2(G) is representable by µ∈ �′(∂G) if L(ϕ) = ∫

ϕdµ for each ϕ∈ �. Since � is dense
in W1,2(G), the operator L is uniquely determined by its representation µ∈ �′(∂G).

For x, y ∈ Rm, denote

hx(y) =
(m− 2)−1A−1|x− y|2−m for x �= y,

∞ for x = y,
(5)

where A is the area of the unit sphere in Rm. For the finite real Borel measure ν, denote

�ν(x) =
∫

Rm
hx(y)dν(y) (6)

the Newtonian potential corresponding to ν, for each x for which this integral has sense.
We denote by �′

b(∂G) the set of all µ∈ �′(∂G) for which �µ is bounded on Rm \ ∂G.
Remark that �′

b(∂G) is the set of all µ∈ �′(∂G) for which there is a polar set M such
that �µ(x) is meaningful and bounded on Rm \M, because Rm \ ∂G is finely dense in Rm

(see [1, Chapter VII, Sections 2, 6], [7, Theorems 5.10 and 5.11]) and �µ= �µ+ −�µ−

is finite and fine-continuous outside of a polar set. Remark that �m−1(M) = 0 for each
polar set M (see [7, Theorem 3.13]). (For the definition of polar sets, see [4, Chapter 7,
Section 1]; for the definition of the fine topology, see [4, Chapter 10].)

Denote by � the restriction of �m−1 to ∂G.

Lemma 2. Let µ∈ �′(∂G). Then the following assertions are equivalent:

(1) µ∈ �′
b(∂G),

(2) �µ is bounded in G,
(3) �µ∈ L∞(�).

Proof. (2)⇒(3). Since ∂G is a subset of the fine closure of G by [1, Chapter VII, Sections
2, 6] and [7, Theorems 5.10 and 5.11], �µ = �µ+ − �µ− is finite and fine-continuous
outside of a polar set M, and �m−1(M) = 0 by [4, Theorem 7.33] and [7, Theorem 3.13],
then we obtain that �µ∈ L∞(�).
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(3)⇒(1). Let µ = µ+ − µ− be the Jordan decomposition of µ. For z ∈ G, denote by µz
the harmonic measure corresponding to G and z. If y ∈ ∂G and z ∈G, then∫

∂G
hy(x)dµz(x) = hy(z) (7)

by [7, pages 264, 299]. Using Fubini’s theorem, we get∫
�µ+dµz =

∫
∂G

∫
∂G
hy(x)dµz(x)dµ+(y) =

∫
∂G
hy(z)dµ+(y) = �µ+(z). (8)

Similarly,
∫

�µ−dµz = �µ−(z). Since �µ∈ L∞(�), µz is a nonnegative measure with the
total variation 1 (see [4, Lemma 8.12]) which is absolutely continuous with respect to �
by [2, Theorem 1], then we obtain that |�µ(z)| ≤ ‖�µ‖L∞(�).

If z ∈ Rm \ clG, choose a bounded domain V with smooth boundary such that clG∪
{z} ⊂ V . Repeating the previous reasonings for V \ clG, we get |�µ(z)| ≤ ‖�µ‖L∞(�).

�

Lemma 3. Let f ∈ L∞(�) and g ∈ L2(G)∩Lp(Rm), where p > m/2, g = 0 on Rm \G. Then
�(g�m) ∈ �(Rm)∩W1,2(G). Moreover, there is a bounded linear functional L on W1,2(G)
representable by µ∈ �′

b(∂G) such that �(g�m) is a weak solution in W1,2(G) of the third
problem for the Poisson equation

∆u=−g on G,
∂u

∂n
+u f = L on ∂G. (9)

Proof. Suppose first that g is nonnegative. Since �(g�m) ∈ �(Rm) by [3, Theorem A.6],
the energy

∫
g�(g�m)d�m <∞. According to [7, Theorem 1.20], we have∫ ∣∣∇�

(
g�m

)∣∣2
d�m =

∫
g�

(
g�m

)
d�m <∞, (10)

and therefore �(g�m) ∈W1,2(G) (see [7, Lemma 1.6] and [16, Theorem 2.1.4]).
Since �(g�m) ∈ �(Rm) ∩W1,2(G), f ∈ L∞(�) and the trace operator is a bounded

operator from W1,2(G) to L2(�) by [8, Theorem 3.38], then the operator

L(ϕ) =
∫
G
∇ϕ ·∇�

(
g�m

)
d�m +

∫
∂G

�
(
g�m

)
f ϕd�m−1 −

∫
G
gϕd�m (11)

is a bounded linear functional on W1,2(G).
According to [7, Theorem 4.2], there is a nonnegative ν ∈ �′(∂G) such that �ν =

�(g�m) on Rm \ clG. Choose a bounded domain V with smooth boundary such that
clG⊂ V . Since �ν is bounded in V \ clG⊂ Rm \ clG, Lemma 2 yields that ν ∈ �′

b(∂(V \
clG)). Therefore, ν ∈ �′

b(∂G). According to [13, Lemma 4], there is ν̃ ∈ �′
b(∂G) such that∫

Rm\clG
∇ϕ ·∇�

(
g�m

)
d�m =

∫
Rm\clG

∇ϕ ·∇�νd�m =
∫
∂G
ϕdν̃ (12)

for each ϕ∈ �. Let µ= ν̃− f �(g�m)�. Since �( f �(g�m)�) ∈ �(Rm) by [6, Corollary
2.17 and Lemma 2.18] and �( f �(g�m)�)(x) → 0 as |x| → ∞, we have f �(g�m)�
∈ �′

b(∂G). Therefore, µ∈ �′
b(∂G).
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If ϕ ∈ �, then ϕ = �((−∆ϕ)�m) by [3, Theorem A.2]. According to [7, Theorem
1.20],

∫
Rm

∇ϕ ·∇�
(
g�m

)
d�m =

∫
Rm

∇�
(
(−∆ϕ)�m

) ·∇�
(
g�m

)
d�m

=
∫

Rm
g�

(
(−∆ϕ)�m

)
d�m

=
∫

Rm
gϕd�m.

(13)

Since �m(∂G) = 0,

∫
G
∇ϕ ·∇�

(
g�m

)
d�m +

∫
∂G

�
(
g�m

)
f ϕd�m−1

=
∫
G
gϕd�m +

∫
∂G

�
(
g�m

)
f ϕd�m−1

−
∫

Rm\clG
∇ϕ ·∇�

(
g�m

)
d�m

=
∫
G
gϕd�m +

∫
∂G
ϕdµ.

(14)

�

Lemma 4. Let f ∈ L∞(�) and g ∈ L2(G)∩Lp(Rm), where p > m/2, g = 0 on Rm \G. Let
L be a bounded linear functional on W1,2(G) representable by µ∈ �′(∂G). If u∈ L∞(G)∩
W1,2(G) is a weak solution in W1,2(G) of problem (3), then µ∈ �′

b(∂G).

Proof. Let w = u−�(g�m). According to Lemma 3, there is a bounded linear functional
L̃ on W1,2(G) representable by ν ∈ �′

b(∂G) such that w is a weak solution in W1,2(G) of
the problem

∆w = 0 on G,

∂w

∂n
+w f = L− L̃ on ∂G.

(15)

Fix x ∈G. Choose a sequence Gj of open sets with C∞ boundary such that clGj ⊂Gj+1 ⊂
G, x ∈ G1, and ∪Gj = G. Fix r > 0 such that Ω2r(x) ⊂ G1. Choose an infinitely differ-
entiable function ψ such that ψ = 0 on Ωr(x) and ψ = 1 on Rm \Ω2r(x). According to
Green’s identity,

w(x) = lim
j→∞

[∫
∂Gj

hx(y)
∂w(y)
∂n

d�m−1(y)−
∫
∂Gj

w(y)n(y) ·∇hx(y)d�m−1(y)

]

= lim
j→∞

[∫
Gj

∇w(y) ·∇(
hx(y)ψ(y)

)
d�m(y)

−
∫
Gj

∇(
w(y)ψ(y)

) ·∇hx(y)d�m(y)

]
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=
∫
G
∇w(y) ·∇(

hx(y)ψ(y)
)
d�m(y)−

∫
G
∇(

w(y)ψ(y)
) ·∇hx(y)d�m(y)

= �(µ− ν− f w�)(x)−
∫
G
∇(

w(y)ψ(y)
) ·∇hx(y)d�m(y).

(16)

According to [16, Theorem 2.3.2], there is a sequence of infinitely differentiable func-
tions wn such that wn →wψ in W1,2(G). According to [6, Section 2],

w(x) = �(µ− ν− f w�)(x)− lim
n→∞

∫
G
∇wn(y) ·∇hx(y)d�m(y)

= �(µ− ν− f w�)(x)− lim
n→∞

∫
∂G
wn(y)n(y) ·∇hx(y)d�m−1(y).

(17)

Since the trace operator is a bounded operator from W1,2(G) to L2(�) by [8, Theorem
3.38], we obtain

w(x) = �(µ− ν− f w�)(x)−
∫
∂G
w(y)n(y) ·∇hx(y)d�m−1(y). (18)

Since w ∈ L∞(G) by Lemma 3, the trace of w is an element of L∞(�). Since∣∣∣∣∣
∫
∂G
w(y)n(y) ·∇hx(y)d�m−1(y)

∣∣∣∣∣
≤ ‖w‖L∞(�)

∫
∂G

∣∣n(y) ·∇hx(y)
∣∣d�m−1(y)

≤ ‖w‖L∞(�)

[
sup
z∈∂G

∫
∂G

∣∣n(y) ·∇hz(y)
∣∣d�m−1(y) +

1
2

]
<∞

(19)

by [6, Lemma 2.15 and Theorem 2.16] and the fact that ∂G is of class C1+α, the function

x �−→
∫
∂G
w(y)n(y) ·∇hx(y)d�m−1(y) (20)

is bounded in G. Since �ν is bounded in G and �( f w�) is bounded in G by [6, Corollary
2.17 and Lemma 2.18], the function �µ is bounded in G by (18). Thus, µ ∈ �′

b(∂G) by
Lemma 2. �

Notation 5. Let X be a complex Banach space and T a bounded linear operator on X . We
denote by KerT the kernel of T , by σ(T) the spectrum of T , by r(T) the spectral radius of
T , by X ′ the dual space of X , and by T′ the adjoint operator of T . Denote by I the identity
operator.

Theorem 6. Let X be a complex Banach space and K a compact linear operator on X . Let Y
be a subspace of X ′ and T a closed linear operator from Y to X such that y(Tx) = x(Ty) for
each x, y ∈ Y . Suppose that K ′(Y) ⊂ Y and KTy = TK ′y for each y ∈ Y . Let α∈ C \ {0},
Ker(K ′ − αI)2 = Ker(K ′ − αI) ⊂ Y , and {β ∈ σ(K ′); (β− α) · α ≤ 0} ⊂ {α}. If x, y ∈ X ,
(K ′ −αI)x = y, then x ∈ Y if and only if y ∈ Y .
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Proof. If x ∈ Y , then y ∈ Y . Suppose that y ∈ Y . Since K is a compact operator, the
operator K ′ is a compact operator by [14, Chapter IV, Theorem 4.1]. Suppose first that
α∈ σ(K ′). Since K ′ is compact, then α is a pol of the resolvent by [5, Satz 50.4]. Since

Ker(K ′ −αI)2 = Ker(K ′ −αI), (21)

the ascent of (K ′ − αI) is equal to 1. Since α is a pol of the resolvent and the ascent of
(K ′ −αI) is equal to 1, [5, Satz 50.2] yields that the space X ′ is the direct sum of Ker(K ′ −
αI) and (K ′ − αI)(X ′) and the descent of (K ′ − αI) is equal to 1. Since the descent of
(K ′ −αI) is equal to 1, we have

(K ′ −αI)2(X ′) = (K ′ −αI)(X ′). (22)

Since the space X ′ is the direct sum of Ker(K ′ −αI) and (K ′ −αI)(X ′) = (K ′ −αI)2(X ′),
the operator (K ′ −αI) is invertible on (K ′ −αI)(X ′). If α �∈ σ(K ′), then the space X ′ is the
direct sum of Ker(K ′ −αI) and (K ′ −αI)(X ′), and the operator (K ′ −αI) is invertible on
(K ′ − αI)(X ′). Therefore, there are x1 ∈ Ker(K ′ − αI) ⊂ Y and x2 ∈ (K ′ − αI)(X ′) such
that x1 + x2 = x. We have (K ′ −αI)x2 = y.

Denote by Z the closure of Y . Since K ′(Y) ⊂ Y , we obtain K ′(Z) ⊂ Z. Denote by K ′
Z

the restriction of K ′ to Z. Then K ′
Z is a compact operator in Z. Since Ker(K ′ −αI)2 ⊂ Y ,

we have

Ker
(
K ′
Z −αI

)2 = Ker(K ′ −αI)2 = Ker(K ′ −αI) = Ker
(
K ′
Z −αI

)
. (23)

If α �∈ σ(K ′
Z), then the space Z is the direct sum of Ker(K ′

Z − αI) and (K ′
Z − αI)(Z), and

the operator (K ′
Z − αI) is invertible on Z. Suppose that α∈ σ(K ′

Z). Since K ′
Z is compact,

then α is a pol of the resolvent by [5, Satz 50.4]. Since

Ker
(
K ′
Z −αI

)2 = Ker
(
K ′
Z −αI

)
, (24)

the ascent of (K ′
Z − αI) is equal to 1. Since α is a pol of the resolvent and the ascent of

(K ′
Z −αI) is equal to 1, [5, Satz 50.2] yields that the space Z is the direct sum of Ker(K ′

Z −
αI) and (K ′

Z − αI)(Z) and the descent of (K ′
Z − αI) is equal to 1. Since the descent of

(K ′
Z −αI) is equal to 1, we have

(
K ′
Z −αI

)2
(Z) = (K ′ −αI)(Z). (25)

Since the space Z is the direct sum of Ker(K ′
Z − αI) and (K ′

Z − αI)(Z) = (K ′
Z − αI)2(Z),

the operator (K ′
Z − αI) is invertible on (K ′

Z − αI)(Z). Since y ∈ Y ⊂ Z, there are y1 ∈
Ker(K ′

Z − αI) and y2 ∈ (K ′
Z − αI)(Z) such that y = y1 + y2. Since X ′ is the direct sum of

Ker(K ′ − αI) = Ker(K ′
Z − αI) and (K ′ − αI)(X ′) ⊃ (K ′

Z − αI)(Z) and y ∈ (K ′ − αI)(X ′),
we obtain that y1 = 0 and y2 = y. Thus, y ∈ (K ′

Z − αI)(Z). Since (K ′
Z − αI) is invertible

on (K ′
Z −αI)(Z), there is z ∈ (K ′

Z −αI)(Z) such that (K ′
Z −αI)(z) = y. Since (K ′ −αI) is

invertible on (K ′ −αI)(X ′), we deduce that x2 = z ∈ (K ′
Z −αI)(Z) ⊂ Z.
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Now, let w ∈ Ker(K ′ −αI). Fix a sequence {zk} ⊂ Y such that zk → z = x2. Then

w(Ty) = y(Tw) = [
(K ′ −αI)x2

]
(Tw) = lim

k→∞
[
(K ′ −αI)zk

]
(Tw)

= lim
k→∞

zk
(
(K −αI)Tw

)= lim
k→∞

zk
(
T(K ′ −αI)w

)= lim
k→∞

zk(0) = 0.
(26)

Since w(Ty) = 0 for each w ∈ Ker(K ′ − αI), [15, Chapter 10, Theorem 3] yields Ty ∈
(K −αI)(X).

Denote by K̃ ′ the restriction of K ′ to (K ′ − αI)(X). If we denote by P the spectral
projection corresponding to the spectral set {α} and the operator K ′, then P(X ′) = (K ′ −
αI)(X ′) by [5, Satz 50.2] and σ(K̃ ′) = σ(K ′) \ {α} by [14, Chapter VI, Theorem 4.1].
Therefore,

σ
(
K̃ ′)= σ(K ′) \ {α} ⊂ {

β; (β−α) ·α > 0
}⊂ ∪

t>0

{
β; |β−α− tα| < |tα|}. (27)

Since {β; |β− α− t1α| < |t1α|} ⊂ {β; |β− α− t2α| < |t2α|} for 0 < t1 < t2 and σ(K̃ ′) is
a compact set (see [14, Chapter VI, Theorem 1.3, and Lemma 1.5], there is t > 0 such
that σ(K̃ ′) ⊂ {β; |β− α− tα| < |tα|}. Therefore, r(K̃ ′ − αI − tαI) < |tα|. Since we have
r(t−1α−1(K̃ ′ −αI − tαI)) < 1, the series

V =
∞∑
k=0

(−1)k
[
t−1α−1(K̃ ′ −αI − tαI

)]k
(28)

converges. Easy calculation yields that V is the inverse operator of the operator I +
t−1α−1(K̃ ′ − αI − tαI) = t−1α−1(K̃ ′ − αI). Since t−1α−1y = t−1α−1(K̃ ′ − αI)x2, we have
x2 = t−1α−1V y. Denote zk = t−1α−1[−t−1α−1(K̃ ′ −αI − tαI)]k y. Then

x2 =
∞∑
k=0

zk. (29)

SinceK ′(Y)⊂Y , zk∈Y for each k. SinceKT=TK ′ onY , we haveTzk= t−1α−1[−t−1α−1(K
−αI − tαI)]kT y.

Since (K −αI), (K −αI)2, (K ′ −αI), and (K ′ −αI)2 are Fredholm operators with in-
dex 0 (see [14, Chapter V, Theorem 3.1]), [14, Chapter VII, Theorem 3.2] yields

dimKer(K −αI)2 = dimKer(K ′ −αI)2 = dimKer(K ′ −αI) = dimKer(K −αI), (30)

and thus Ker(K −αI)2 = Ker(K −αI). If α �∈ σ(K), then the space X is the direct sum of
Ker(K −αI) and (K −αI)(X), and the operator (K −αI) is invertible on X . Suppose that
α∈ σ(K). Since K is compact, then α is a pol of the resolvent by [5, Satz 50.4]. Since

Ker(K −αI)2 = Ker(K −αI), (31)

the ascent of (K − αI) is equal to 1. Since α is a pol of the resolvent and the ascent of
(K −αI) is equal to 1, [5, Satz 50.2] yields that the spaceX is the direct sum of Ker(K −αI)
and (K −αI)(X) and the descent of (K −αI) is equal to 1. Since the descent of (K −αI)
is equal to 1, we have (K − αI)2(X) = (K − αI)(X). Since the space X is the direct sum
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of Ker(K − αI) and (K − αI)(X) = (K − αI)2(X), the operator (K − αI) is invertible on
(K − αI)(X). Denote by K̂ the restriction of K to (K − αI)(X). If we denote by Q the
spectral projection corresponding to the spectral set {α} and the operatorK , thenQ(X) =
(K − αI)(X) by [5, Satz 50.2] and σ(K̂) = σ(K) \ {α} by [14, Chapter VI, Theorem 4.1].
Since σ(K) = σ(K ′) by [14, Chapter VI, Theorem 4.6], we obtain σ(K̂) ⊂ {β; |β− α−
tα| < |tα|}. Therefore, r(K̂ − αI − tαI) < |tα|. Since Ty ∈ (K − αX) and r(t−1α−1(K̂ −
αI − tαI)) < 1, the series

∞∑
k=0

Tzk =
∞∑
k=0

t−1α−1[− t−1α−1(K̂ −αI − tαI
)]k

T y (32)

converges. Since T is closed, x2 =∑
zk, and

∑
Tzk converges, then the vector x2 lies in Y ,

the domain of T . �

Theorem 7. Let f ∈ L∞(�), f ≥ 0, and g ∈ L2(G) ∩ Lp(Rm), where p > m/2, g = 0 on
Rm \G. Let L be a bounded linear functional on W1,2(G) representable by µ∈ �′(∂G). If u
is a weak solution in W1,2(G) of problem (3), then u∈ L∞(G) if and only if µ∈ �′

b(∂G).

Proof. If u∈ L∞(G), then µ∈ �′
b(∂G) by Lemma 4.

Suppose now that µ∈ �′
b(∂G). Let w = u−�(g�m). According to Lemma 3, there is

a bounded linear functional L̃ on W1,2(G) representable by µ̃∈ �′
b(∂G) such that w is a

weak solution in W1,2(G) of the problem

∆w = 0 on G,

∂w

∂n
+w f = L̃ on ∂G.

(33)

Define for ϕ∈ L∞(�) and x ∈ ∂G,

Tϕ(x) = 1
2
ϕ(x) +

∫
∂G
ϕ(y)

∂

n(y)
hx(y)d�(y) + �( f ϕ�). (34)

Since �( f �) ∈ �(Rm) by [6, Corollary 2.17 and Lemma 2.18], the operator T is a
bounded linear operator on L∞(�) by [11, Proposition 8] and [6, Lemma 2.15]. The
operator T − (1/2)I is compact by [12, Theorem 20] and [6, Theorem 4.1 and Corollary
1.11]. According to [10, Theorem 1], there is ν ∈ �′(∂G) ⊂ (L∞(�))′ such that T′ν = µ̃
and ∫

G
∇�ν ·∇vd�m +

∫
∂G

�ν f vd� =
∫
vdµ̃, (35)

for each v ∈ �.
Remark that �′(∂G) is a closed subspace of (L∞(�))′. According to [11, Proposition

8], we have T′(�′(∂G)) ⊂ �′(∂G). Denote by τ the restriction of T′ to �′(∂G). Accord-
ing to [10, Lemma 11] and [14, Chapter VI, Theorem 1.2], we have σ(τ) ⊂ {β; β ≥ 0}.
Since σ(τ′) = σ(τ) (see [15, Chapter VIII, Section 6, Theorem 2]), each β ∈ σ(T) is an
eigenvalue (see [14, Chapter VI, Theorem 1.2]), and T is the restriction of τ′ to L∞(�),
we obtain that σ(T′) = σ(T) ⊂ {β; β ≥ 0} by [15, Chapter VIII, Section 6, Theorem 2].
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According to [9, Theorem 1.11], we have KerT′ ⊂ �′
b(∂G). According to [9, Lemma 1.10]

and [10, Lemmas 12 and 13], KerT′ = Ker(T′)2. Denote, for ρ ∈ �′
b(∂G), by Vρ the re-

striction of �ρ to ∂G. Then V is a closed operator from �′
b(∂G) to L∞(�) by [13, Lemma

5]. If ρ ∈ �′
b(∂G), then VT′ρ = TVρ by [13, Lemma 4]. If ρ1,ρ2 ∈ �′

b(∂G), then ρ1 and
ρ2 have finite energy by [13, Proposition 23], [7, Theorem 1.20], and∫

�ρ1dρ2 =
∫

Rm
∇�ρ1 ·∇�ρ2d�m =

∫
�ρ2dρ1. (36)

Since T′ν = µ̃ ∈ �′
b(∂G), Theorem 6 yields that ν ∈ �′

b(∂G). Since ν has finite energy∫
�νdν and

∫
�νdν = ∫ |∇�ν|2d�m by [7, Theorem 1.20], we obtain that �ν ∈W1,2(G)

(see [7, Lemma 1.6] and [16, Theorem 2.14]). Since � is dense in W1,2(G) by [16, The-
orem 2.3.2], relation (35) yields that the function �ν is a weak solution in W1,2(G) of
(33). Since v = �ν−w is a weak solution in W1,2(G) of the problem

∆v = 0 on G,

∂v

∂n
+ v f = 0 on ∂G,

(37)

and f ≥ 0, we obtain

0 =
∫
G
∇v ·∇vd�m +

∫
∂G
v f vd� ≥

∫
G
|∇v|2d�m ≥ 0. (38)

Therefore, ∇v = 0 on G and there is a constant c such that v(x) = c for �m-a.a. x ∈
G by [16, Corollary 2.1.9]. Since ν ∈ �′

b(∂G), the function �ν is bounded in G. Since
u(x) = �(g�m)(x) + �ν(x) − c for �m-a.a. x ∈ G and �(g�m) ∈ �(Rm) by Lemma 3,
we obtain u∈ L∞(G). �

Acknowledgment

The author was supported by GAČR Grant no. 201/00/1515.
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115 67 Praha 1, Czech Republic

Current address: Department of Technical Mathematics, Faculty of Mechanical Engineering, Czech
Technical University, Karlovo nám. 13, 121 35 Praha 2, Czech Republic

E-mail address: medkova@math.cas.cz

mailto:medkova@math.cas.cz


DARBOUX-LAMÉ EQUATION
AND ISOMONODROMIC DEFORMATION

MAYUMI OHMIYA
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The Darboux-Lamé equation is defined as the double Darboux transformation of the
Lamé equation, and is studied from the viewpoint of the isomonodromic deformation
theory. It is shown that the second-order ordinary differential equation of Fuchsian type
on P1 corresponding to the second Darboux-Lamé equation is obtained as isomono-
dromic deformation of some specific Gauss’ hypergeometric differential equation.

1. Introduction

We consider the nth Lamé equation

∂2

∂x2
f (x)− (

n(n+ 1)℘(x,τ)− λ
)
f (x) = 0, (1.1)

where n is a natural number and ℘(x,τ) is the Weierstrass elliptic function with the fun-
damental periods 1 and τ such that 'τ > 0. If the fundamental period τ and the discrete
eigenvalue λ satisfy a kind of degenerate condition obtained in [6], we can construct the
nth algebro-geometric elliptic potential u∗∗

n,λ (x,ξ) with the complex parameter ξ by the
method of double Darboux transformation. We call the ordinary differential equation

∂2

∂x2
f (x)− (

u∗∗
n,λ (x,ξ)− λ

)
f (x) = 0 (1.2)

the nth Darboux-Lamé equation of degenerate type. The purpose of the present work is
to clarify the isomonodromic property of equation (1.2) regarding ξ as the deformation
parameter. Various authors have formerly clarified the isospectral property of the double
Darboux transformation (the double commutation) of the nth algebro-geometric po-
tential. See, for example, [2, 6] and the references therein. However, we could not treat
the isomonodromic deformation problems, for n≥ 3, in this paper, while the isospectral
deformation problem have been almost completely solved for general n.

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 257–270
2000 Mathematics Subject Classification: 34M55, 34M35
URL: http://dx.doi.org/10.1155/9775945143
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2. Preliminaries

In this section, the necessary materials are summarized. We refer the reader to [5, 6] for
more precise information.

We consider the second-order linear ordinary differential operator in the complex do-
main

H(u) =− ∂2

∂x2
+u(x), x ∈ C, (2.1)

where u(x) is a meromorphic function. The functions Zn(u), n∈ N, defined by the recur-
sion relation

Z0(u) ≡ 1, Zn(u) =Λ(u)Zn−1(u), n= 1,2, . . . , (2.2)

which are the differential polynomials in u(x), are called the KdV polynomials, where

Λ(u) =
(
∂

∂x

)−1

·
(

1
2
u′ +u

∂

∂x
− 1

4
∂3

∂x3

)
(2.3)

is the Λ-operator associated with the differential operator H(u).
Let V(u) be the linear span of all KdV polynomials over C. If dimV(u) = n+ 1, then

u(x) is called the nth algebro-geometric potential and we write rankV(u) = n. If u(x)
is the nth algebro-geometric potential, then there uniquely exist the polynomials aj(λ),
j = 0,1, . . . ,n, in the spectral parameter λ of degree n− j + 1 such that

Zn+1(u− λ) =
n∑
j=0

aj(λ)Zj(u− λ). (2.4)

For this fact, see [5, 6]. The M-function M(x,λ;u) associated with u(x) is the differential
polynomial defined by

M(x,λ;u) = Zn(u− λ)−
n∑
j=1

aj(λ)Zj−1(u− λ). (2.5)

The spectral discriminant

∆(λ;u) =Mx(x,λ;u)2 − 2M(x,λ;u)Mxx(x,λ;u) + 4
(
u(x)− λ

)
M(x,λ;u)2 (2.6)

is the polynomial of degree 2n+ 1 in λ with constant coefficients. Let

SpecH(u) = {
λ | ∆(λ;u) = 0

}
, (2.7)

which corresponds to the discrete spectrum of the operator H(u). If λj ∈ SpecH(u), then
we have (

H(u)− λj
)
M
(
x,λj ;u

)1/2 = 0. (2.8)

We call M(x,λj ;u)1/2 the M-eigenfunction.
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For f (x) ∈ ker(H(u) − λ) \ {0}, the Darboux transformation is the operator H(u∗)
with the potential u∗(x) defined by

u∗(x) = u(x)− 2
∂2

∂x2
log f (x). (2.9)

We sometimes call the resulted potential u∗(x) itself the Darboux transformation.
Suppose f (x) ∈ ker(H(u)− λ) \ {0}, then we have

1
f (x)

∈ ker
(
H
(
u∗)− λ

) \ {0}. (2.10)

This fact is called Darboux’s lemma [1]. The Darboux transformation of the algebro-
geometric potential u(x) by the corresponding M-eigenfunction

u∗
λj

(x) = u(x)− 2
∂2

∂x2
logM

(
x,λj ;u

)1/2 = u(x)− ∂2

∂x2
logM

(
x,λj ;u

)
(2.11)

is called the algebro-geometric Darboux transformation (ADT). Let

M̂
(
x,λj ;u

)= ∫
M
(
x,λj ;u

)
dx (2.12)

and fix the integration constant appropriately; then, by Darboux’s lemma, mentioned
above, it follows that the function Fλj (x,ξ), defined by

Fλj (x,ξ) = φλj (ξ) + ξM̂
(
x,λj ;u

)
M
(
x,λj ;u

)1/2 , (2.13)

is the 1-parameter family of the eigenfunction of H(u∗
λj

) associated with the eigenvalue
λj , that is, (

H
(
u∗
λj

)
− λj

)
Fλj (x,ξ) = 0, (2.14)

where φλj (ξ) is an arbitrary function which depends only on ξ. The function φλj (ξ) will be
determined exactly so that the ADDT, which is defined below, of the nth Lamé equation
is isomonodromic.

The algebro-geometric double Darboux transformation (ADDT) is defined as the Dar-
boux transformation of u∗

λj
(x) by Fλj (x,ξ):

u∗∗
λj

(x,ξ) = u∗
λj

(x)− 2
∂2

∂x2
logFλj (x,ξ)

= u(x)− 2
∂2

∂x2
log

(
φλj (ξ) + ξM̂

(
x,λj ;u

))
.

(2.15)

In what follows, we assume that φλj (ξ) does not identically vanish since φλj (ξ) ≡ 0, then
the ADDT u∗∗

λj
(x,ξ) does not depend on ξ.
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Let

SpecmH(u) = {
λj | the multiple roots of ∆(λ;u) = 0

}
(2.16)

which we call the multiple spectrum of H(u). It is shown in [6] that if u(x) is the nth
algebro-geometric potential, then u∗

λj
(x) is the (n− 1)th algebro geometric potential if

and only if SpecmH(u) �= ∅ and λj ∈ SpecmH(u).
If n is a natural number, then the nth Lamé potential un(x,τ) = n(n + 1)℘(x,τ) is

known to be the nth algebro-geometric potential (see, e.g., [5]).
Let Mn(x,λ,τ) be the M-function associated with the nth Lamé potential un(x,τ), that

is, Mn(x,λ,τ) =M(x,λ;un(x,τ)). Let

D
(
τ;un

)= R
(
∆
(
λ;un

)
,
d

dλ
∆
(
λ;un

))
, (2.17)

where R(P,Q) is the resultant of polynomials P(λ) and Q(λ). If D(τ∗;un) = 0 for τ∗ ∈H+,
then there exists λ∗ ∈ SpecmH(un), that is, λ∗ is the multiple root of ∆(λ;un) = 0 and

ranku∗
n,λ∗

(
x,τ∗

)= n− 1, (2.18)

where u∗
n,λ∗(x) is the Darboux transformation of the nth Lamé potential un(x) by the

corresponding M-eigenfunction Mn(x,λ∗,τ∗)1/2, that is,

u∗
n,λ∗

(
x,τ∗

)= un
(
x,τ∗

)− ∂2

∂x2
logMn

(
x,λ∗,τ∗

)
. (2.19)

Let

Θn = {
τ |D(τ;un

)= 0
}⊂H+ (2.20)

and we call it the lattice of degenerate periods associated with the nth Lamé potential un(x).
One can immediately see that the lattice of degenerate periods Θn is the discrete subset
of H+.

Now, we enumerate several examples of the degenerate condition for the Lamé poten-
tials. For this purpose, we must carry out elementary but very complicated computation.
Hence, here we explain only the simplest case n = 1. See also [3] for another method of
computation.
KdV polynomials. We have

Z0
(
un
)= 1, Z1

(
un
)= 1

2
un, Z2

(
un
)= 3

8
u2
n −

1
8
u′′
n . (2.21)

Computation of the M-function M2(x,λ,τ). Let ρ0 and ρ1 be the constants such that

Z2
(
u1
)= (

3
8

)(
4℘2)−(

1
8

)
(2℘′′)

= ρ0Z0
(
u1
)

+ ρ1Z1
(
u1
)= ρ0 + ρ1℘.

(2.22)
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Hence, ρ1 = 0 and ρ0 = (1/8)g2 follow immediately. On the other hand, according to [5,

Theorem 3, page 414], define the coefficients α(n)
ν , ν = 0,1,2, . . . ,n, for n= 0,1,2, then we

immediately have

α(2)
1 = 3

2
, α(2)

0 = 1, α(1)
0 = 1

2
, α(1)

1 = α(0)
0 = 1. (2.23)

Moreover, by [5, Lemma 7, page 417], we have

Z2
(
u1 − λ

)= a1(λ)Z1
(
u1 − λ

)
+ a0(λ)Z0

(
u1 − λ

)
, (2.24)

where

a0(λ) =−α(2)
0 λ2 +α(1)

0 ρ1λ+α(0)
0 ρ0 =−λ2 +

1
8
g2,

a1(λ) =−α(2)
1 λ+α(1)

1 =−3
2
λ.

(2.25)

Hence, we have

M1(x,λ,τ) = 1
2

(2℘− λ)−
(
− 3

2
λ
)
= ℘+ λ. (2.26)

Computation of the spectral discriminant ∆(λ;u1). Using the M-function M1(x,λ,τ) ob-
tained above, we have

∆
(
λ;u1

)= ℘′2 − 2(℘+ λ)℘′′ + 4(2℘− λ)(℘+ λ)2 =−4λ3 + g2λ− g3. (2.27)

For the first Lamé potential u1(x,τ), since g2(τ)3 − 27g3(τ)2 �= 0 for any τ ∈ H+,
SpecmH(u1) =∅ holds for any τ ∈H+, that is, Θ1 =∅.

On the other hand, for the second Lamé potential u2(x,τ), we can compute the spectral
discriminant similarly to the above example, and

∆
(
λ;u2

)=−4
(
λ2 − 3g2(τ)

)(
λ3 − 9

4
g2(τ)λ− 27

4
g3(τ)

)
(2.28)

follows. Hence SpecmH(u2) �= ∅ holds if and only if g2(τ) = 0. Note that g2(τ) = 0 holds
if and only if J(τ) = 0, where J(τ) = g2(τ)3/(g2(τ)3 − 27g3(τ)2) is the elliptic modular
function. Since g2(e2πi/3) = 0, by the modular invariance of J(τ), we have

Θ2 =
{
τ | τ = ae2πi/3 + b

ce2πi/3 +d
,

(
a b
c d

)
∈ SL(2,Z)

}
⊂H+

= {τ | 'τ > 0}.
(2.29)

3. The second Darboux-Lamé equation

Suppose that τ∗ ∈Θn and λ∗ ∈ SpecmH(un(x,τ∗)). Let Mn(x,λ∗,τ∗) be the M-function
corresponding to the nth Lamé potential un(x,τ∗). By (2.15), the ADDT of un(x,τ∗) is
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expressed as

u∗∗
n,λ∗(x,ξ) = un

(
x,τ∗

)− 2
∂2

∂x2
log

(
φλ∗(ξ) + ξM̂n

(
x,λ∗,τ∗

))
, (3.1)

where M̂n(x,λ∗,τ∗) is defined by (2.12). We call the 1-parameter family of the ordinary
differential equation (1.2) with the potential u∗∗

n,λ∗(x,ξ), defined above, the nth Darboux-
Lamé equation of degenerate type, and DLn(τ∗,λ∗,ξ) denotes that 1-parameter family
(1.2).

In what follows, we construct exactly the second Darboux-Lamé equation of degener-
ate type. Suppose that τ∗ ∈Θ2, then, by the direct calculation parallel to that for M1(x,
λ,τ), we have

M2
(
x,λ,τ∗

)= λ2 + 3℘
(
x,τ∗

)
λ+ 9℘

(
x,τ∗

)2
. (3.2)

Since we have shown g2(τ∗) = 0 in Section 2,

∆
(
λ;u2

)=−4λ2
(
λ3 − 27

4
g3
(
τ∗
))

(3.3)

follows. Hence SpecmH(u2(x,τ∗)) = {0} and we have

M2
(
x,0,τ∗

)1/2 = 3℘
(
x,τ∗

)∈ kerH
(
u2
)
. (3.4)

Therefore, the ADT u∗
2,0(x) is given by

u∗
2,0(x) = 2℘

(
x,τ∗

)− 2g3
(
τ∗
)

℘
(
x,τ∗

)2 (3.5)

and, by Darboux’s lemma, we have

1

M2
(
x,0,τ∗

)1/2 = 1
3℘

(
x,τ∗

) ∈ kerH
(
u∗

2,0

)
. (3.6)

On the other hand, we have

M̂2
(
x,0,τ∗

)= ∫
M2

(
x,0,τ∗

)
dx =

∫
9℘

(
x,τ∗

)2
dx = 3

2
℘′(x,τ∗

)
. (3.7)

Hence, by (3.1),

u∗∗
2,0

(
x,τ∗

)= u2(x)− 2
∂2

∂x2
log

(
φ0(ξ) +

3
2
ξ℘′(x,τ)

)
(3.8)

follows. Thus we have the following lemma.

Lemma 3.1. The second Darboux-Lamé equation of degenerate type is explicitly expressed
as

∂2

∂x2
f (x) = 6℘

(
x,τ∗

)(
φ0(ξ)2 − 3ξφ0(ξ)℘′(x,τ) + (27/4)g3

(
τ∗
)
ξ2
)(

φ0(ξ) + (3/2)ξ℘′(x,τ∗
))2 f (x). (3.9)
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Moreover,

F0(x,ξ) = φ0(ξ) + (3/2)ξ℘′(x,τ∗
)

3℘
(
x,τ∗

) . (3.10)

The isospectral property of the potential u∗∗
2,0 (x,τ∗) will be discussed in the forthcom-

ing paper [7].

4. The Fuchsian equation on P1

Suppose that τ∗ ∈Θ2, that is, g2(τ∗) = 0. Since g2(τ∗)3 − 27g3(τ∗)2 �= 0, g3(τ∗) �= 0 fol-
lows. In what follows, we fix one of the square roots of g3(τ∗) and denote it by γ, that is,
γ2 = g3(τ∗). Then, by the variable transformation

z = 1
2iγ
℘′(x,τ∗

)
+

1
2

, (4.1)

the second Darboux-Lamé equation DL2(τ∗,0,ξ) is transformed to the second-order or-
dinary differential equation of Fuchsian type on P1:

z(z− 1)
∂2

∂z2
f̂ (z,ξ) +

(
4
3
z− 2

3

)
∂

∂z
f̂ (z,ξ) = Γ

(
z,

3iγξ − 2φ0(ξ)
6iγξ

)
f̂ (z,ξ) (4.2)

with the parameter ξ, where

Γ(x,s) = 2
3

(2s− 1)z+ s(s− 2)
(z− s)2

, f̂ (z,ξ) = f (x,ξ). (4.3)

We denote the 1-parameter family of the ordinary differential equation (4.2) by D̂L2(τ∗,
0,ξ). The regular singular points of equation (4.2) are

z = 0,1,∞, s= s(ξ) = 3iγξ − 2φ0(ξ)
6iγξ

. (4.4)

In what follows, we assume that φ0(0) �= 0. Then it follows that s(0) = ∞, and that the
differential equation D̂L2(τ∗,0,0) coincides with the hypergeometric equation

z(z− 1)
∂2

∂z2
f̂ (z) +

(
4
3
z− 2

3

)
∂

∂z
f̂ (z) = 2

3
f̂ (z). (4.5)

Now, we construct the fundamental system of solutions of D̂L2(τ∗,0,ξ) (4.2). Suppose
ξ �= 0. Then, by Darboux’s lemma and (3.1),

f1(x,ξ) = 1
F0(x,ξ)

= 6℘
(
x,τ∗

)
2φ0(ξ) + 3ξ℘′(x,τ∗

) ,

f2(x,ξ) = f1(x,ξ)
∫

1
f1(x,ξ)2

dx

= ℘
(
x,τ∗

)
6
(
2φ0(ξ) + 3ξ℘′(x,τ∗

)) ∫ (
2φ0(ξ) + 3ξ℘′(x,τ∗

))2

℘
(
x,τ∗

)2 dx

(4.6)
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are the fundamental system of solutions of the second Darboux-Lamé equation

H
(
u∗∗

2,0 (x,ξ)
)
f (x,ξ) =− ∂2

∂x2
f (x,ξ) +u∗∗

2,0 (x,ξ) f (x,ξ) = 0 (4.7)

such that W[ f1, f2] = f1 f2x − f1x f2 = 1. By the variable transformation (4.1), we have

℘
(
x,τ∗

)= γ2/3z1/3(1− z)1/3, ℘′(x,τ∗
)= iγ(2z− 1). (4.8)

Let f̂ j(z,ξ) = f j(x,ξ), j = 1,2. We immediately have

f̂1(z,ξ) = 6γ2/3z1/3(1− z)1/3

2φ0(ξ) + 3iγξ(2z− 1)
. (4.9)

Similarly, we have

f̂2(z,ξ) = iz1/3(1− z)1/3

18γ
(
2φ0(ξ) + 3iγξ(2z− 1)

) ∫ (
2φ0(ξ) + 3iγξ(2z− 1)

)2

z4/3(1− z)4/3
dz. (4.10)

5. Isomonodromic property of D̂L2(τ∗,0,ξ)

The following is the well-known criterion for the isomonodromic property.

Lemma 5.1. Suppose that the second-order ordinary differential equation

∂2

∂z2
f (z,ξ) + p(z,ξ)

∂

∂z
f (z,ξ) + q(z,ξ) f (z,ξ) = 0 (5.1)

is of Fuchsian type on P1 with the parameter ξ. The monodromy group for this equation
is independent of the parameter ξ if and only if there exist a(z,ξ) and b(z,ξ), which are
rational in z, such that

∂

∂ξ
f (z,ξ) = a(z,ξ)

∂

∂z
f (z,ξ) + b(z,ξ) f (z,ξ). (5.2)

By the above general criterion, to show that the monodromy matrix associated with

the fundamental system f̂1(z,ξ), f̂2(z,ξ) is independent of the parameter ξ, it suffices to
show that a(z,ξ) and b(z,ξ), defined by

a(z,ξ) =

∣∣∣∣ f̂1ξ(z,ξ) f̂1(z,ξ)

f̂2ξ(z,ξ) f̂2(z,ξ)

∣∣∣∣
∣∣∣∣ f̂1z(z,ξ) f̂1(z,ξ)

f̂2z(z,ξ) f̂2(z,ξ)

∣∣∣∣
, b(z,ξ) =

∣∣∣∣ f̂1z(z,ξ) f̂1ξ(z,ξ)

f̂2z(z,ξ) f̂2ξ(z,ξ)

∣∣∣∣
∣∣∣∣ f̂1z(z,ξ) f̂1(z,ξ)

f̂2z(z,ξ) f̂2(z,ξ)

∣∣∣∣
, (5.3)

are rational functions of z. Let

g(z,ξ) =
(
2φ0(ξ) + 3iγξ(2z− 1)

)2

z4/3(1− z)4/3
, (5.4)
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then, by (4.9) and (4.10), the expression

f̂2(z,ξ) = f̂1(z,ξ)
∫
g(z,ξ)dz (5.5)

follows. Hence, we have∣∣∣∣∣ f̂1z(z,ξ) f̂1(z,ξ)

f̂2z(z,ξ) f̂2(z,ξ)

∣∣∣∣∣=− f̂1(z,ξ)2g(z,ξ),

∣∣∣∣∣ f̂1ξ(z,ξ) f̂1(z,ξ)

f̂2ξ(z,ξ) f̂2(z,ξ)

∣∣∣∣∣=− f̂1(z,ξ)2
∫
gξ(z,ξ)dz.

(5.6)

Thus

a(z,ξ) =
∫
gξ(z,ξ)dz
g(z,ξ)

(5.7)

follows. On the other hand, we immediately have

b(z,ξ) =− f̂1z(z,ξ)

f̂1(z,ξ)
a(z,ξ) +

f̂1ξ(z,ξ)

f̂1(z,ξ)
. (5.8)

We have

f̂1z(z,ξ)

f̂1(z,ξ)
= ∂

∂z
log f̂1(z,ξ) = 1− 2z

3z(1− z)
− 6iγξ

2φ0(ξ) + 3iγξ(2z− 1)
,

f̂1ξ(z,ξ)

f̂1(z,ξ)
= ∂

∂ξ
log f̂1(z,ξ) =− 2φ′

0(ξ) + 6iγz
2φ0(ξ) + 3iγξ(2z− 1)

.

(5.9)

These are both rational functions of z. Hence, if a(z,ξ) is a rational function of z, then
b(z,ξ) is also a rational function of z. Therefore, we have the following lemma.

Lemma 5.2. The family D̂L2(τ∗,0,ξ) is isomonodromic if and only if the integral constant
of the indefinite integral

G(z,ξ) = (
z− z2)1/3

∫
4φ0(ξ)φ′

0(ξ)− 9ξg3
(
τ∗
)
(1− 2z)2(

z− z2
)4/3 dz (5.10)

is determined so that G(z,ξ) is the rational function of z for all ξ.

Proof. By direct calculation, we have

a(z,ξ) = z− z2(
2φ0 − 3iγξ(1− 2z)

)2

2G(z,ξ)− 12iγ
(
φ0(ξ)

+ξφ′
0(ξ)

)(
z− z2)1/3

∫
1− 2z(
z− z2

)4/3 dz

 .

(5.11)



266 Darboux-Lamé equation and isomonodromic deformation

On the other hand, we have∫
1− 2z(
z− z2

)4/3 dz =
(

3
z− 1

− 3
z

)(
z− z2)2/3

+ const . (5.12)

This completes the proof. �

Next we have the following lemma.

Lemma 5.3. The integral constant of the indefinite integral

(
z− z2)1/3

∫
z2 + c(

z− z2
)4/3 dz (5.13)

can be determined so that it is the rational function of z if and only if c =−1.

Proof. Firstly, suppose c =−1, then we immediately have

∫
z2 − 1(
z− z2

)4/3 dz =
3
(
z− z2

)2/3

z
+α. (5.14)

Hence, putting α= 0, we have

(
z− z2)1/3

∫
z2 − 1(
z− z2

)4/3 dz = 3(1− z). (5.15)

Secondly, by the above, we have

(
z− z2)1/3

∫
z2 + c(

z− z2
)4/3 dz = (c+ 1)

(
z− z2)1/3

∫
1(

z− z2
)4/3 dz+ 3(1− z). (5.16)

Let

p(z) = (
z− z2)1/3

∫
1(

z− z2
)4/3 dz, (5.17)

then we have

∂

∂z
log p(z) = 1− 2z

3
(
z− z2

) +
1(

z− z2
)
p(z)

. (5.18)

This implies that

z(z− 1)
∂

∂z
p(z) = 1

3
(2z− 1)p(z)− 1. (5.19)

Assume that one can choose the integration constant so that p(z) is the rational function.
Then there exist the polynomials p1(z), p2(z), and p3(z) such that p1(0) = p2(0) = 0 and

p(z) = p1

(
1
z

)
+ p2

(
1

z− 1

)
+ p3(z). (5.20)
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Let

p1

(
1
z

)
=

l∑
j=1

αj

z j
, p2

(
1

z− 1

)
=

m∑
j=1

βj

(z− 1) j
, p3(z) =

n∑
j=0

γjz
j , (5.21)

then we have

z(z− 1)
∂

∂z
p1

(
1
z

)
− 1

3
(2z− 1)p1

(
1
z

)

=−
l∑

j=1

jαj

z j−1 +
l∑

j=1

jαj

z j
−

l∑
j=1

2
3

αj

z j−1 +
l∑

j=1

1
3

αj

z j
= c1,

z(z− 1)
∂

∂z
p2

(
1

z− 1

)
− 1

3
(2z− 1)p2

(
1

z− 1

)
= (

(z− 1)2 + (z− 1)
) ∂

∂z
p2

(
1

z− 1

)
− 1

3

(
2(z− 1) + 1

)
p2

(
1

z− 1

)

=−
m∑
j=1

jβj

(z− 1) j−1 −
m∑
j=1

jβj

(z− 1) j
−

l∑
j=1

2
3

βj

(z− 1) j−1 −
l∑

j=1

1
3

βj

(z− 1) j
= c2,

z(z− 1)
∂

∂z
p3(z)− 1

3
(2z− 1)p3(z)

=
n∑
j=1

jγ jz
j+1 −

m∑
j=1

jγ jz
j −

m∑
j=0

2
3
γjz

j+1 +
m∑
j=0

1
3
γjz

j = c3,

(5.22)

where c1 + c2 + c3 =−1. By these relations, we have

lαl − 1
3
αl = 0. (5.23)

Hence αl = 0 follows. Moreover, one verifies that

− jαj + ( j− 1)αj−1 − 2
3
αj +

1
3
αj−1 = 0, j = 2,3, . . . , l,

−α1 − 2
3
α1 = c1.

(5.24)

These imply that αl = αl−1 = ··· = α1 = 0, that is, p1(z) = 0 and c1 = 0. Similarly, one can
show that p2(z) = 0 and c2 = 0. On the other hand, we have

nγn − 2
3
γn = 0. (5.25)

Hence γn = 0 follows. Moreover, we have

jγ j − ( j + 1)γj+1 − 2
3
γj +

1
3
γj+1 = 0, j = 1,2, . . . ,n− 1,

−γ1 − 2
3
γ0 +

1
3
γ1 = 0.

(5.26)
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These imply that γn = γn−1 = ··· = γ0 = 0. On the other hand, we have

−1
3
γ0 = c3. (5.27)

Hence c3 = 0 follows. This is contradiction. This completes the proof. �

Let

K =−4φ0(ξ)φ′
0(ξ)

9ξg3
(
τ∗
) , (5.28)

then we have

G(z,ξ) =−9ξg3
(
τ∗
)(
z− z2)1/3

∫
(1− 2z)2 −K(

z− z2
)4/3 dz

=−9ξg3
(
τ∗
)(
z− z2)1/3

(
2
∫

1− 2z(
z− z2

)4/3 dz+ 4
∫
z2 − (K + 1)/4(

z− z2
)4/3 dz

)
.

(5.29)

Hence, we can determine the integral constant so that G(z,ξ) is the rational function of z
if and only if K = 3. Since we assumed that φ0(0) �= 0, we have

φ0(ξ) =
(
− 27

4
g3
(
τ∗
)
ξ2 + c

)1/2

, c �= 0. (5.30)

Thus, we proved the following theorem.

Theorem 5.4. Suppose τ∗ ∈Θ2. Let φ0(ξ) be defined as in (5.30). Then, the monodromy
group for D̂L2(τ∗,0,ξ) is isomorphic to that for Gauss’ hypergeometric differential equation
(4.5) for every ξ ∈ P1.

6. Monodromy group of D̂L2(τ∗,0,0)

By Theorem 5.4, to carry out the calculation of the monodromy group of D̂L2(τ∗,0,ξ), it
suffices to do it for D̂L2(τ∗,0,0).

We denote D = P1 \ {0,1,∞} and let π1(D,z0) be the fundamental group of D with the
base point z0 ∈D. Let

y1(z) = f̂ (z), y2(z) = z f̂ ′(z)− 1
3
f̂ (z), (6.1)

and X(z) = t(y1(z), y2(z)). Then the Okubo form [4, page 177] of the Gauss’ hypergeo-
metric differential equation (4.5) is expressed as

(z−B)
∂

∂z
X = AX , (6.2)

where

B =
(

0 0
0 1

)
, A=

(
1/3 1
4/9 −2/3

)
. (6.3)
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Let χ(z,z0) = (X1(z),X2(z)) be the fundamental system of solutions of the Okubo form
(6.2) near z0. On the other hand, let γ ∈ π1(D,z0) and let χγ(z,z0) be the analytic con-
tinuation along the closed path γ. Then there exists Mγ ∈ GL(2,C) such that χγ(z,z0) =
χ(z,z0)Mγ. The map µχ : π1(D,z0) → GL(2,C) defined by µχ(γ) =Mγ is the linear repre-
sentation of the fundamental group π1(D,z0). The image G = µχ(π1(D,z0)) is called the
monodromy group associated with the fundamental system χ(z,z0).

Let F(α,β,γ;z) be the hypergeometric function. According to [4, pages 178-179], de-
fine the holomorphic solutions Y(z,a) and the nonholomorphic solutions X(z,a), for
a= 0,1, as follows:

Y(z,0) = t
(
− 1

3
F
(

1,−2
3

,
2
3

;z
)

,F
(

1,−2
3

,−1
3

;z
))

,

X(z,0) = t
(
z1/3F

(
4
3

,−1
3

,
4
3

;z
)

,−1
3
z1/3F

(
7
3

,
2
3

,
7
3

;z
))

,

Y(z,1) = t
(
F
(

1,−1
3

,
2
3

;1− z
)

,
9
4
F
(

1,−1
3

,−1
3

;1− z
))

,

X(z,1) = t
(

3(z− 1)1/3F
(
− 1

3
,
4
3

,
1
3

;1− z
)

, (z− 1)−2/3F
(
− 4

3
,
1
3

,−2
3

;1− z
))

.

(6.4)

The matrix functions (Y(z,0),X(z,0)) and (Y(z,1),X(z,1)) are both the fundamental
systems of solutions of the Okubo form (6.2) defined near z = 0 and z = 1, respectively. By
the method explained precisely in [4, pages 193–199], using these fundamental systems,
one can solve the connection problem and finally obtain the generators M0 and M1 of the
monodromy group G as follows:

M0 =
exp

(
2
3
πi
)

exp
(

2
3
πi
)
− 1

0 1

 , M1 =
 1 0

−exp
(
− 1

3
πi
)
− 1 1

 . (6.5)

It is easy to see that the monodromy group of the Okubo form (6.2) coincides with that
of Gauss’ hypergeometric equation (4.5).
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(1882), 1456–1459 (French).

[2] F. Gesztesy and H. Holden, Darboux-type transformations and hyperelliptic curves, J. Reine
Angew. Math. 527 (2000), 151–183.

[3] F. Gesztesy and R. Weikard, Spectral deformations and soliton equations, Differential Equations
with Applications to Mathematical Physics (W. F. Ames, E. M. Harrell II, and J. V. Herod,
eds.), Math. Sci. Engrg., vol. 192, Academic Press, Massachusetts, 1993, pp. 101–139.

[4] M. Kohno, Global Analysis in Linear Differential Equations, Mathematics and Its Applications,
vol. 471, Kluwer Academic Publishers, Dordrecht, 1999.
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MULTIVALUED SEMILINEAR NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH NONCONVEX-VALUED
RIGHT-HAND SIDE

M. BENCHOHRA, E. GATSORI, AND S. K. NTOUYAS

Received 3 September 2002

We investigate the existence of mild solutions on a compact interval to some classes of
semilinear neutral functional differential inclusions. We will rely on a fixed-point theo-
rem for contraction multivalued maps due to Covitz and Nadler and on Schaefer’s fixed-
point theorem combined with lower semicontinuous multivalued operators with decom-
posable values.

1. Introduction

This paper is concerned with the existence of mild solutions defined on a compact real
interval for first- and second-order semilinear neutral functional differential inclusions
(NFDIs).

In Section 3, we consider the following class of semilinear NFDIs:

d

dt

[
y(t)− f

(
t, yt

)]∈Ay(t) +F
(
t, yt

)
, a.e. t ∈ J := [0,b],

y(t) = φ(t), t ∈ [−r,0],
(1.1)

where F : J ×C([−r,0],E) → �(E) is a multivalued map, A is the infinitesimal generator
of a strongly continuous semigroup T(t), t ≥ 0, φ ∈ C([−r,0],E), f : J ×C([−r,0],E) →
E, �(E) is the family of all subsets of E, and E is a real separable Banach space with norm
| · |.

Section 4 is devoted to the study of the following second-order semilinear NFDIs:

d

dt

[
y′(t)− f

(
t, yt

)]∈ Ay(t) +F
(
t, yt

)
, t ∈ J ,

y(t) = φ(t), t ∈ [−r,0], y′(0) = η,
(1.2)

where F, φ, f , �(E), and E are as in problem (1.1), A is the infinitesimal generator of a
strongly continuous cosine family {C(t) : t ∈ R}, and η ∈ E.

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 271–287
2000 Mathematics Subject Classification: 34A60, 34G20, 34G25, 34K05, 34K40
URL: http://dx.doi.org/10.1155/9775945143
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For any continuous function y defined on the interval [−r,b] and any t ∈ J , we denote
by yt the element of C([−r,0],E), defined by

yt(θ) = y(t+ θ), θ ∈ [−r,0]. (1.3)

Here, yt(·) represents the history of the state from time t− r, up to the present time t.
In the last two decades, several authors have paid attention to the problem of existence

of mild solutions to initial and boundary value problems for semilinear evolution equa-
tions. We refer the interested reader to the monographs by Goldstein [11], Heikkilä and
Lakshmikantham [13], and Pazy [19], and to the paper of Heikkilä and Lakshmikantham
[14]. In [17, 18], existence theorems of mild solutions for semilinear evolution inclusions
are given by Papageorgiou. Recently, by means of a fixed-point argument and the semi-
group theory, existence theorems of mild solutions on compact and noncompact intervals
for first- and second-order semilinear NFDIs with a convex-valued right-hand side were
obtained by Benchohra and Ntouyas in [1, 4]. Similar results for the case A= 0 are given
by Benchohra and Ntouyas in [2]. Here, we will extend the above results to semilinear
NFDIs with a nonconvex-valued right-hand side. The method we are going to use is to
reduce the existence of solutions to problems (1.1) and (1.2) to the search for fixed points
of a suitable multivalued map on the Banach space C([−r,b],E). For each intial value
problem (IVP), we give two results. In the first one, we use a fixed-point theorem for
contraction multivalued maps due to Covitz and Nadler [7] (see also Deimling [8]). This
method was applied recently by Benchohra and Ntouyas in [3], in the case when A = 0
and f ≡ 0. In the second one, we use Schaefer’s theorem combined with a selection theo-
rem of Bressan and Colombo [5] for lower semicontinuous (l.s.c) multivalued operators
with decomposable values.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multival-
ued analysis, which are used throughout this paper.

We denote by �(E) the set of all subsets of E normed by ‖ · ‖�. Let C([−r,0],E) be the
Banach space of all continuous functions from [−r,0] into E with the norm

‖φ‖ = sup
{∣∣φ(θ)

∣∣ : −r ≤ θ ≤ 0
}
. (2.1)

By C([−r,b],E) we denote the Banach space of all continuous functions from [−r,b] into
E with the norm

‖y‖∞ := sup
{∣∣y(t)

∣∣ : t ∈ [−r,b]
}
. (2.2)

A measurable function y : J → E is Bochner-integrable if and only if |y| is Lebesgue-
integrable. (For properties of the Bochner-integral, see, e.g., Yosida [24].) By L1(J ,E) we
denote the Banach space of functions y : J → E which are Bochner-integrable and normed
by

‖y‖L1 =
∫ b

0

∣∣y(t)
∣∣dt, (2.3)
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and by B(E) the Banach space of bounded linear operators from E to E with norm

‖N‖B(E) = sup
{∣∣N(y)

∣∣ : |y| = 1
}
. (2.4)

We say that a family {C(t) : t ∈ R} of operators in B(E) is a strongly continuous cosine
family if

(i) C(0) = I (I is the identity operator in E),
(ii) C(t+ s) +C(t− s) = 2C(t)C(s) for all s, t ∈ R,

(iii) the map t �→ C(t)y is strongly continuous for each y ∈ E.

The strongly continuous sine family {S(t) : t ∈ R}, associated to the given strongly
continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)y =
∫ t

0
C(s)yds, y ∈ E, t ∈ R. (2.5)

The infinitesimal generator A : E→ E of a cosine family {C(t) : t ∈ R} is defined by

Ay = d2

dt2
C(t)y|t=0. (2.6)

For more details on strongly continuous cosine and sine families, we refer the reader
to the books of Fattorini [9], Goldstein [11], and to the papers of Travis and Webb [22,
23]. For properties of semigroup theory, we refer the interested reader to the books of
Goldstein [11] and Pazy [19].

Let (X ,d) be a metric space. We use the following notations:

P(X) = {
Y ∈ �(X) : Y �= ∅}

,

Pcl(X) = {
Y ∈ P(X) : Y closed

}
,

Pb(X) = {
Y ∈ P(X) : Y bounded

}
,

Pcp(X) = {
Y ∈ P(X) : Y compact

}
.

(2.7)

Consider Hd : P(X)×P(X) → R+ ∪{∞}, given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)

}
, (2.8)

where d(A,b) = infa∈A d(a,b) and d(a,B) = infb∈B d(a,b).
Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a generalized (complete) met-

ric space (see [16]).
A multivalued map N : J → Pcl(X) is said to be measurable if, for each x ∈ X , the

function Y : J → R, defined by

Y(t) = d
(
x,N(t)

)= inf
{
d(x,z) : z ∈N(t)

}
, (2.9)

is measurable.
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Definition 2.1. A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd
(
N(x),N(y)

)≤ γd(x, y), for each x, y ∈ X ; (2.10)

(b) contraction if and only if it is γ-Lipschitz with γ < 1.

The multivalued operator N has a fixed point if there is x ∈ X such that x ∈ N(x). The
fixed-point set of the multivalued operator N will be denoted by FixN .

We recall the following fixed-point theorem for contraction multivalued operators
given by Covitz and Nadler [7] (see also Deimling [8, Theorem 11.1]).

Theorem 2.2. Let (X ,d) be a complete metric space. If N : X → Pcl(X) is a contraction, then
FixN �= ∅.

Let � be a subset of J ×C([−r,0],E). The set � is �⊗� measurable if � belongs to
the σ-algebra generated by all sets of the form � × �, where � is Lebesgue-measurable
in J and � is Borel-measurable in C([−r,0],E). A subset B of L1(J ,E) is decomposable if,
for all u,v ∈ B and � ⊂ J measurable, the function uχ� + vχJ−� ∈ B, where χ� denotes the
characteristic function for �.

Let E be a Banach space, X a nonempty closed subset of E, and G : X → �(E) a
multivalued operator with nonempty closed values. The operator G is l.s.c. if the set
{x ∈ X : G(x)∩C �= ∅} is open for any open set C in E. For more details on multivalued
maps, we refer to the books of Deimling [8], Górniewicz [12], Hu and Papageorgiou [15],
and Tolstonogov [21].

Definition 2.3. Let Y be a separable metric space and let N : Y → �(L1(J ,E)) be a multi-
valued operator. The operator N has property (BC) if it satisfies the following conditions:

(1) N is l.s.c.;
(2) N has nonempty, closed, and decomposable values.

Let F : J ×C([−r,0],E) → �(E) be a multivalued map with nonempty compact values.
Assign to F the multivalued operator

	 : C
(
[−r,b],E

)−→ �
(
L1(J ,E)

)
(2.11)

by letting

	(y) = {
w ∈ L1(J ,E) : w(t) ∈ F

(
t, yt

)
for a.e. t ∈ J

}
. (2.12)

The operator 	 is called the Niemytzki operator associated with F.

Definition 2.4. Let F : J ×C([−r,0],E) → �(E) be a multivalued function with nonempty
compact values. We say that F is of l.s.c. type if its associated Niemytzki operator 	 is l.s.c.
and has nonempty closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo.
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Theorem 2.5 (see [5]). Let Y be separable metric space and let N : Y → �(L1(J ,E)) be a
multivalued operator which has property (BC). Then N has a continuous selection, that is,
there exists a continuous function (single-valued) g : Y → L1(J ,E) such that g(y) ∈N(y) for
every y ∈ Y .

3. First-order semilinear NFDIs

Now, we are able to state and prove our first theorem for the IVP (1.1). Before stating and
proving this result, we give the definition of a mild solution of the IVP (1.1).

Definition 3.1. A function y ∈ C([−r,b],E) is called a mild solution of (1.1) if there exists
a function v ∈ L1(J ,E) such that v(t) ∈ F(t, yt), a.e. on J , y0 = φ, and

y(t) = T(t)
[
φ(0)− f (0,φ)

]
+ f

(
t, yt

)
+
∫ t

0
AT(t− s) f

(
s, ys

)
ds

+
∫ t

0
T(t− s)v(s)ds, t ∈ J.

(3.1)

Theorem 3.2. Assume that

(H1) A is the infinitesimal generator of a semigroup of bounded linear operators T(t) in E
such that ‖T(t)‖B(E) ≤M1, for some M1 > 0 and ‖AT(t)‖B(E) ≤M2, for each t > 0,
M2 > 0;

(H2) F : J ×C([−r,0],E) → Pcp(E) has the property that F(·,u) : J → Pcp(E) is measurable
for each u∈ C([−r,0],E);

(H3) there exists l ∈ L1(J ,R) such that

Hd
(
F(t,u),F

(
t,u

))≤ l(t)
∥∥u−u

∥∥, (3.2)

for each t ∈ J and u,u∈ C([−r,0],E), and

d
(
0,F(t,0)

)≤ l(t), for almost each t ∈ J ; (3.3)

(H4) | f (t,u) − f (t,u)| ≤ c‖u− u‖ for each t ∈ J and u,u ∈ C([−r,0],E), where c is a
nonnegative constant;

(H5) c+M2cb+M1�∗ < 1, where �∗ = ∫ b
0 l(s)ds.

Then the IVP (1.1) has at least one mild solution on [−r,b].

Proof. Transform problem (1.1) into a fixed-point problem. Consider the multivalued
operator N : C([−r,b],E) → �(C([−r,b],E)), defined by

N(y) := {
h∈ C

(
[−r,b],E

)} (3.4)

such that

h(t) =


φ(t), if t ∈ [−r,0],

T(t)
[
φ(0)− f (0,φ)

]
+ f

(
t, yt

)
+
∫ t

0
AT(t− s) f

(
s, ys

)
ds

+
∫ t

0
T(t− s)v(s)ds, if t ∈ J ,

(3.5)
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where

v ∈ SF,y =
{
v ∈ L1(J ,E) : v(t) ∈ F

(
t, yt

)
for a.e. t ∈ J

}
. (3.6)

We remark that the fixed points ofN are solutions to (1.1). Also, for each y∈C([−r,b],E),
the set SF,y is nonempty since, by (H2), F has a measurable selection (see [6, Theorem
III.6]).

We will show that N satisfies the assumptions of Theorem 2.2. The proof will be given
in two steps.

Step 1. We prove that N(y) ∈ Pcl(C([−r,b],E)) for each y ∈ C([−r,b],E).

Indeed, let (yn)n≥0 ∈ N(y) such that yn → ỹ in C([−r,b],E). Then ỹ ∈ C([−r,b],E)
and there exists gn ∈ SF,y such that

yn(t) = T(t)
[
φ(0)− f (0,φ)

]
+ f

(
t, yt

)
+
∫ t

0
AT(t− s) f

(
s, ys

)
ds

+
∫ t

0
T(t− s)gn(s)ds, t ∈ J.

(3.7)

Using the fact that F has compact values and from (H3), we may pass to a subsequence if
necessary to get that gn converges to g in L1(J ,E) and hence g ∈ SF,y . Then, for each t ∈ J ,

yn(t) −→ ỹ(t) = T(t)
[
φ(0)− f (0,φ)

]
+ f

(
t, yt

)
+
∫ t

0
AT(t− s) f

(
s, ys

)
ds

+
∫ t

0
T(t− s)g(s)ds, t ∈ J.

(3.8)

So, ỹ ∈N(y).

Step 2. We prove that Hd(N(y1),N(y2)) ≤ γ‖y1 − y2‖∞ for each y1, y2 ∈ C([−r,b],E),
where γ < 1.

Let y1, y2 ∈ C([−r,b],E) and h1 ∈N(y1). Then there exists g1(t) ∈ F(t, y1t) such that

h1(t) = T(t)
[
φ(0)− f (0,φ)

]
+ f

(
t, y1t

)
+
∫ t

0
AT(t− s) f

(
s, y1s

)
ds

+
∫ t

0
T(t− s)g1(s)ds, t ∈ J.

(3.9)

From (H3), it follows that

Hd
(
F
(
t, y1t

)
,F
(
t, y2t

))≤ l(t)
∥∥y1t − y2t

∥∥, t ∈ J. (3.10)

Hence, there is w ∈ F(t, y2t) such that∣∣g1(t)−w
∣∣≤ l(t)

∥∥y1t − y2t
∥∥, t ∈ J. (3.11)

Consider U : J → �(E) given by

U(t) = {
w ∈ E :

∣∣g1(t)−w
∣∣≤ l(t)

∥∥y1t − y2t
∥∥}. (3.12)
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Since the multivalued operator V(t) =U(t)∩F(t, y2t) is measurable (see [6, Proposition
III.4]), there exists g2(t), a measurable selection for V . So, g2(t) ∈ F(t, y2t) and∣∣g1(t)− g2(t)

∣∣≤ l(t)
∥∥y1t − y2t

∥∥, for each t ∈ J. (3.13)

We define, for each t ∈ J ,

h2(t) = T(t)
[
φ(0)− f (0,φ)

]
+ f

(
t, y2t

)
+
∫ t

0
AT(t− s) f

(
s, y2s

)
ds

+
∫ t

0
T(t− s)g2(s)ds.

(3.14)

Then we have∣∣h1(t)−h2(t)
∣∣

≤ ∣∣ f (t, y1t
)− f

(
t, y2t

)∣∣+M2

∫ t

0

∣∣ f (t, y1s
)− f

(
t, y2s

)∣∣ds+M1

∫ t

0

∣∣g1(s)− g2(s)
∣∣ds

≤ c
∥∥y1t − y2t

∥∥+M2c
∫ t

0

∥∥y1s − y2s
∥∥ds+M1

∫ t

0
l(s)

∥∥y1s − y2s
∥∥ds

≤ c
∥∥y1 − y2

∥∥∞ +M2cb
∥∥y1 − y2

∥∥∞ +M1
∥∥y1 − y2

∥∥∞

∫ b

0
l(s)ds

≤ [
c+M2cb+M1�

∗]∥∥y1 − y2
∥∥∞.

(3.15)

Then ∥∥h1 −h2
∥∥∞ ≤ [

c+M2cb+M1�
∗]∥∥y1 − y2

∥∥∞. (3.16)

By the analogous relation, obtained by interchanging the roles of y1 and y2, it follows that

Hd
(
N
(
y1
)
,N

(
y2
))≤ [

c+M2cb+M1�
∗]∥∥y1 − y2

∥∥∞. (3.17)

Since γ := c +M2cb +M1�∗ < 1, N is a contraction, and thus, by Theorem 2.2, it has a
fixed point y which is a mild solution to (1.1). �

Remark 3.3. Recall that, in the proof of Theorem 3.2, we have assumed that γ < 1. Since
this assumption is hard to verify, we would like point out that using the well-known
Bielecki’s renorming method, it can be simplified. The technical details are omitted here.

By the help of Schaefer’s fixed-point theorem, combined with the selection theorem of
Bressan and Colombo for l.s.c. maps with decomposable values, we will present the sec-
ond existence result for problem (1.1). Before this, we introduce the following hypotheses
which are assumed hereafter:

(C1) F : J × C([−r,0],E) → �(E) is a nonempty compact-valued multivalued map
such that
(a) (t,u) �→ F(t,u) is �⊗� measurable,
(b) u �→ F(t,u) is l.s.c. for a.e. t ∈ J ;
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(C2) for each ρ > 0, there exists a function hρ ∈ L1(J ,R+) such that

∥∥F(t,u)
∥∥

� := sup
{|v| : v ∈ F(t,u)

}≤ hρ(t) (3.18)

for a.e. t ∈ J , u∈ C
(
[−r,0],E

)
with ‖u‖ ≤ ρ.

In the proof of our following theorem, we will need the next auxiliary result.

Lemma 3.4 [10]. Let F : J ×C([−r,0],E) → �(E) be a multivalued map with nonempty
compact values. Assume that (C1) and (C2) hold. Then F is of l.s.c. type.

Theorem 3.5. Assume that hypotheses (C1), (C2), and the following ones are satisfied.
(A0) A is the infinitesimal generator of a compact semigroup T(t), t > 0, such that

‖T(t)‖B(E) ≤M1, M1 > 0, and ‖AT(t)‖B(E) ≤M2, for each t ≥ 0, M2 > 0.
(A1) There exist constants 0 ≤ c1 < 1 and c2 ≥ 0 such that

∣∣ f (t,u)
∣∣≤ c1‖u‖+ c2, t ∈ J , u∈ C

(
[−r,0],E

)
. (3.19)

(A2) The function f is completely continuous and, for any bounded set � ⊆ C([−r,b],E),
the set {t → f (t, yt) : y ∈ �} is equicontinuous in C(J ,E).

(A3) There exist p ∈ L1(J ,R+) and a continuous nondecreasing function ψ : R+ → (0,∞)
such that

∥∥F(t,u)
∥∥

� ≤ p(t)ψ
(‖u‖) (3.20)

for a.e. t ∈ J and each u∈ C([−r,0],E) with

∫ b

0
M̂(s)ds <

∫∞

c0

du

u+ψ(u)
, (3.21)

where

c0 = 1
1− c1

[
M1

(‖φ‖+ c1‖φ‖+ c2
)

+ c2 + bc2M2
]
,

M̂(t) = max
{

1
1− c1

c1M2,
1

1− c1
M1p(t)

}
.

(3.22)

(A4) For each t ∈ J , the multivalued map F(t,·) : C([−r,0],E) �→ �(E) maps bounded
sets into relatively compact sets.

Then problem (1.1) has at least one solution.

Proof. Hypotheses (C1) and (C2) imply, by Lemma 3.4, that F is of l.s.c. type. Then, from
Theorem 2.5, there exists a continuous function g : C([−r,b],E) → L1([0,b],E) such that
g(y) ∈ 	(y) for all y ∈ C([−r,b],E).
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Consider the operator N1 : C([−r,b],E) → �(C([−r,b],E)) defined by

N1(y)(t) =


φ(t), if t ∈ [−r,0],

T(t)
[
φ(0)− f (0,φ)

]
+ f

(
t, yt

)
+
∫ t

0
AT(t− s) f

(
s, ys

)
ds+

∫ t

0
T(t− s)g(y)(s)ds, if t ∈ J.

(3.23)

We will show that N1 is completely continuous. The proof will be given in several steps.

Step 1. The operator N1 sends bounded sets into bounded sets in C([−r,b],E).

Indeed, it is enough to show that for any q > 0, there exists a positive constant l such
that, for each y ∈ Bq := {y ∈ C([−r,b],E) : ‖y‖∞ ≤ q}, one has ‖N1(y)‖∞ ≤ l. Let y ∈ Bq,
then

N1(y)(t) = T(t)
[
φ(0)− f (0,φ)

]
+ f

(
t, yt

)
+
∫ t

0
AT(t− s) f

(
s, ys

)
ds

+
∫ t

0
T(t− s)g(y)(s)ds, t ∈ J.

(3.24)

From (A0), (C2), (A1), and (A3), we have, for each t ∈ J ,∣∣N1(y)(t)
∣∣

≤M1
[‖φ‖+

∣∣ f (0,φ)
∣∣]+

∣∣ f (t, yt)∣∣
+
∫ t

0

∥∥AT(t− s)
∥∥
B(E)

∣∣ f (s, ys)∣∣ds+
∫ t

0

∥∥T(t− s)
∥∥
B(E)

∣∣g(y)(s)
∣∣ds

≤M1
[‖φ‖+ c1q+ c2

]
+ c1q+ c2 + bM2c1q+ bM2c2 +M1

∥∥hq∥∥L1 .

(3.25)

Then, for each h∈N(Bq), we have

∥∥N1(y)
∥∥∞ ≤M1

[‖φ‖+ c1q+ c2
]

+ c1q+ c2 + bM2c1q+ bM2c2 +M1
∥∥hq∥∥L1 := l. (3.26)

Step 2. The operator N1 sends bounded sets in C([−r,b],E) into equicontinuous sets.

Using (A2), it suffices to show that the operator N2 : C([−r,b],E) → C([−r,b],E), de-
fined by

N2(y)(t) =


φ(t), if t ∈ [−r,0];

T(t)φ(0) +
∫ t

0
AT(t− s) f

(
s, ys

)
ds

+
∫ t

0
T(t− s)g(y)(s)ds, if t ∈ J ,

(3.27)

maps bounded sets into equicontinuous sets of C([−r,b],E). Let u1,u2 ∈ J , u1 < u2, let
Bq := {y ∈ C([−r,b],E) : ‖y‖∞ ≤ q} be a bounded set in C([−r,b],E), and y ∈ Bq. Then
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we have∣∣N2(y)
(
u2
)−N2(y)

(
u1
)∣∣

≤ ∣∣T(u1
)
φ(0)−T

(
u2
)
φ(0)

∣∣+
(
c1q+ c2

)∫ u1

0

∥∥AT(u2 − s
)−AT

(
u1 − s

)∥∥
B(E)ds

+
(
c1q+ c2

)∫ u2

u1

∥∥AT(u2 − s
)∥∥

B(E)ds+
∫ u1

0

∥∥T(u2 − s
)−T

(
u1 − s

)∥∥
B(E)hq(s)ds

+
∫ u2

u1

∥∥T(u2 − s
)∥∥

B(E)hq(s)ds.

(3.28)

As u2 → u1, the right-hand side of the above inequality tends to zero. The equicontinuity
for the cases u1 < u2 ≤ 0 and u1 ≤ 0 ≤ u2 is obvious.

Step 3. The operator N2 is continuous.

Let {yn} be a sequence such that yn → y in C([−r,b],E). Then∣∣N2
(
yn
)
(t)−N2(y)(t)

∣∣
≤M2

∫ t

0

∣∣ f (s, yn,s
)− f

(
s, ys

)∣∣ds+M1

∫ b

0

∣∣g(yn)(s)− g(y)(s)
∣∣ds. (3.29)

Since the function g is continuous and f is completely continuous, then∥∥N2
(
yn
)−N2(y)

∥∥∞

≤M2 sup
t∈J

∫ t

0

∣∣ f (s, yns)− f
(
s, ys

)∣∣ds+M1
∥∥g(yn)− g(y)

∥∥
L1 −→ 0.

(3.30)

As a consequence of Steps 1, 2, and 3 and (A2), (A4), together with the Arzelá-Ascoli the-
orem, we can conclude that N2 : C([−r,b],E) → C([−r,b],E) is completely continuous.

Step 4. The set �(N1) = {y ∈ C([−r,b],E) : y = λN1(y) for some λ∈ (0,1)} is bounded.

Let y ∈ �(N1). Then y = λN1(y) for some 0 < λ < 1, and for t ∈ [0,b], we have

y(t) = λ

[
T(t)

(
φ(0)− f (0,φ)

)
+ f

(
t, yt

)
+
∫ t

0
AT(t− s) f

(
s, ys

)
ds+

∫ t

0
T(t− s)g(y)(s)ds

]
.

(3.31)

This implies, by (A0), (A1), and (A3), that for each t ∈ J , we have

∣∣y(t)
∣∣≤M1

(‖φ‖+ c1‖φ‖+ c2
)

+ c1
∥∥yt∥∥+ c2 + bc2M2 + c1M2

∫ t

0

∥∥ys∥∥ds
+M1

∫ t

0
p(s)ψ

(∥∥ys∥∥)ds. (3.32)
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We consider the function µ defined by

µ(t) = sup
{∣∣y(s)

∣∣ : −r ≤ s≤ t
}

, 0 ≤ t ≤ b. (3.33)

Let t∗ ∈ [−r,b] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by inequality (3.32), we have, for
t ∈ J ,

µ(t) ≤M1
(‖φ‖+ c1‖φ‖+ c2

)
+ c1µ(t) + c2 + bc2M2 + c1M2

∫ t

0
µ(s)ds

+M1

∫ t

0
p(s)ψ

(
µ(s)

)
ds.

(3.34)

Thus

µ(t) ≤ 1
1− c1

[
M1

(‖φ‖+ c1‖φ‖+ c2
)

+ c2 + bc2M2 + c1M2

∫ t

0
µ(s)ds

+M1

∫ t

0
p(s)ψ

(
µ(s)

)
ds

]
, t ∈ J.

(3.35)

If t∗ ∈ [−r,0], then µ(t) = ‖φ‖ and inequality (3.35) holds. We take the right-hand side
of inequality (3.35) as v(t); then we have

v(0) = 1
1− c1

[
M1

(‖φ‖+ c1‖φ‖+ c2
)

+ c2 + bc2M2
]
, µ(t) ≤ v(t), t ∈ J ,

v′(t) = 1
1− c1

{
c1M2µ(t) +M1p(t)ψ

(
µ(t)

)}
, t ∈ J.

(3.36)

Since ψ is nondecreasing, we have

v′(t) ≤ M̂(t)
{
v(t) +ψ

(
v(t)

)}
, t ∈ J. (3.37)

From this inequality, it follows that∫ t

0

v′(s)
v(s) +ψ

(
v(s)

)ds≤ ∫ t

0
M̂(s)ds. (3.38)

We then have ∫ v(t)

v(0)

du

u+ψ(u)
≤
∫ t

0
M̂(s)ds≤

∫ b

0
M̂(s)ds <

∫∞

v(0)

du

u+ψ(u)
. (3.39)

This inequality implies that there exists a constant K1 such that v(t) ≤ K1, t ∈ J , and hence
µ(t) ≤ K1, t ∈ J . Since for every t ∈ J , ‖yt‖ ≤ µ(t), we have

‖y‖∞ ≤ K ′
1 := max

{‖φ‖,K1
}

, (3.40)

where K ′
1 depends only on b, M1, and M2 and on the functions p and ψ. This shows that

�(N1) is bounded. As a consequence of Schaefer’s theorem (see [20]), we deduce that N1

has a fixed point y which is a solution to problem (1.1). �
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4. Second-order semilinear NFDIs

Definition 4.1. A function y ∈ C([−r,b],E) is called a mild solution of (1.2) if there exists
a function v ∈ L1(J ,E) such that v(t) ∈ F(t, yt) a.e. on J , y0 = φ, y′(0) = η, and

y(t) = C(t)φ(0) + S(t)
(
η− f (0,φ)

)
+
∫ t

0
C(t− s) f

(
s, ys

)
ds+

∫ t

0
S(t− s)v(s)ds. (4.1)

Theorem 4.2. Assume that hypotheses (H2), (H3), and (H4) and the following ones are
satisfied:

(H6) A is an infinitesimal generator of a given strongly continuous bounded and compact
cosine family {C(t) : t > 0} with ‖C(t)‖B(E) ≤M;

(H7) Mb(c+ �∗) < 1.

Then the IVP (1.2) has at least one mild solution on [−r,b].

Proof. Transform problem (1.2) into a fixed-point problem. Consider the multivalued
operator N3 : C([−r,b],E) → �(C([−r,b],E)) defined by

N3(y) := {
h∈ C

(
[−r,b],E

)}
(4.2)

such that

h(t) =



φ(t), if t ∈ [−r,0],

C(t)φ(0) + S(t)
(
η− f (0,φ)

)
+
∫ t

0
C(t− s) f

(
s, ys

)
ds

+
∫ t

0
S(t− s)g(s)ds, if t ∈ J ,

(4.3)

where g ∈ SF,y .
We will show that N3 satisfies the assumptions of Theorem 2.2. The proof will be given

in two steps.
Step 1. We prove that N3(y) ∈ Pcl(C([−r,b],E)) for each y ∈ C([−r,b],E).

Indeed, let (yn)n≥0 ∈ N3(y) such that yn → ỹ in C([−r,b],E). Then ỹ ∈ C([−r,b],E)
and there exists gn ∈ SF,y such that

yn(t) = C(t)φ(0) + S(t)
(
η− f (0,φ)

)
+
∫ t

0
C(t− s) f

(
s, ys

)
ds+

∫ t

0
S(t− s)gn(s)ds.

(4.4)
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Using the fact that F has compact values and from (H3), we may pass to a subsequence,
if necessary, to get that gn converges to g in L1(J ,E) and hence g ∈ SF,y . Then, for each
t ∈ J ,

yn(t) −→ ỹ(t) = C(t)φ(0) + S(t)
(
η− f (0,φ)

)
+
∫ t

0
C(t− s) f

(
s, ys

)
ds

+
∫ t

0
S(t− s)g(s)ds.

(4.5)

So, ỹ ∈N3(y).
Step 2. We prove that Hd(N3(y1),N3(y2)) ≤ γ‖y1 − y2‖∞ for each y1, y2 ∈ C([−r,b],E),
where γ < 1.

Let y1, y2 ∈ C([−r,b],E) and h1 ∈N1(y1). Then there exists g1(t) ∈ F(t, y1t) such that

h1(t) = C(t)φ(0) + S(t)
(
η− f (0,φ)

)
+
∫ t

0
C(t− s) f

(
s, y1s

)
ds

+
∫ t

0
S(t− s)g1(s)ds, t ∈ J.

(4.6)

From (H3), it follows that Hd(F(t, y1t),F(t, y2t)) ≤ l(t)‖y1t − y2t‖, t ∈ J . Hence, there is
w ∈ F(t, y2t) such that |g1(t) −w| ≤ l(t)‖y1t − y2t‖, t ∈ J . Consider U : J → �(E) given
by U(t) = {w ∈ E : |g1(t)−w| ≤ l(t)‖y1t − y2t‖}. Since the multivalued operator V(t) =
U(t)∩F(t, y2t) is measurable (see [6, Proposition III.4]), there exists g2(t), a measurable
selection for V . So, g2(t) ∈ F(t, y2t) and |g1(t) − g2(t)| ≤ l(t)‖y1t − y2t‖, for each t ∈ J .
We define, for each t ∈ J ,

h2(t) = C(t)φ(0) + S(t)
(
η− f (0,φ)

)
+
∫ t

0
C(t− s) f

(
s, y2s

)
ds+

∫ t

0
S(t− s)g2(s)ds. (4.7)

Then we have

∣∣h1(t)−h2(t)
∣∣≤M

∫ t

0

∣∣ f (s, y1s
)− f

(
s, y2s

)∣∣ds+Mb
∫ t

0

∣∣g1(s)− g2(s)
∣∣ds

≤Mc
∫ t

0

∥∥y1s − y2s
∥∥ds+Mb

∫ t

0
l(s)

∥∥y1s − y2s
∥∥ds

≤Mcb
∥∥y1 − y2

∥∥∞ +Mb
∥∥y1 − y2

∥∥∞

∫ t

0
l(s)ds

≤Mb
(
c+ �∗

)∥∥y1 − y2
∥∥∞.

(4.8)

Then ∥∥h1 −h2
∥∥∞ ≤Mb

(
c+ �∗

)∥∥y1 − y2
∥∥∞. (4.9)

By the analogous relation, obtained by interchanging the roles of y1 and y2, it follows that

Hd
(
N3

(
y1
)
,N3

(
y2
))≤Mb

(
c+ �∗

)∥∥y1 − y2
∥∥∞. (4.10)

Since Mb(c+ �∗) < 1, N1 is a contraction, and thus, by Theorem 2.2, it has a fixed point
y which is a mild solution to (1.2). �
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Theorem 4.3. Assume that hypotheses (H6), (C1), (C2), (A1) (with c1,c2 ≥ 0), (A2), and
(A4) and the following one are satisfied:

(A5) there exist p ∈ L1(J ,R+) and a continuous and nondecreasing function ψ : R+ →
(0,∞) such that, for a.e. t ∈ J and each u∈ C([−r,0],E),

∥∥F(t,u)
∥∥

� ≤ p(t)ψ
(‖u‖),

∫ b

0
M(s)ds <

∫∞

c

dτ

τ +ψ(τ)
, (4.11)

where

c =M‖φ‖+ bM
[|η|+ c1‖φ‖+ 2c2

]
,

M(t) = max
{

1,c1M,bMp(t)
}
.

(4.12)

Then the IVP (1.2) has at least one solution on [−r,b].

Proof. Hypotheses (C1) and (C2) imply, by Lemma 3.4, that F is of l.s.c. type. Then,
from Theorem 2.5, there exists a continuous function g : C([−r,b],E) → L1([0,b],E) such
that g(y) ∈ 	(y) for all y ∈ C([−r,b],E). Consider the operator N4 : C([−r,b],E) →
C([−r,b],E) defined by

N4(y)(t) =


φ(t), if t ∈ [−r,0],

C(t)φ(0) + S(t)
[
η− f (0,φ)

]
+
∫ t

0
C(t− s) f

(
s, ys

)
ds+

∫ t

0
S(t− s)g(y)(s)ds, if t ∈ J.

(4.13)

As in Theorem 3.5, we can show that N4 is completely continuous.
Now, we only prove that the set

�(N4) := {
y ∈ C

(
[−r,b],E

)
: y = λN4(y) for some 0 < λ < 1

}
(4.14)

is bounded.
Let y ∈ �(N4). Then y = λN4(y) for some 0 < λ < 1. Thus

y(t) = λC(t)φ(0) + λS(t)
[
η− f (0,φ)

]
+ λ

∫ t

0
C(t− s) f

(
s, ys

)
ds

+ λ
∫ t

0
S(t− s)g(y)(s)ds, t ∈ J.

(4.15)

This implies by (H4), (H6), (A1), and (A5) that, for each t ∈ J ,

∣∣y(t)
∣∣≤M‖φ‖+ bM

(|η|+ c1‖φ‖+ c2
)

+ c1M
∫ t

0

∥∥ys∥∥ds+ bc2M

+ bM
∫ t

0
p(s)ψ

(∥∥ys∥∥)ds. (4.16)

We consider the function µ defined by

µ(t) = sup
{∣∣y(s)

∣∣ : −r ≤ s≤ t
}

, 0 ≤ t ≤ b. (4.17)
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Let t∗ ∈ [−r,b] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by (4.16) we have, for t ∈ J ,

µ(t) ≤M‖φ‖+ bM
(|η|+ c1‖φ‖+ 2c2

)
+
∫ t

0
M(s)µ(s)ds

+
∫ t

0
M(s)ψ

(
µ(s)

)
ds.

(4.18)

If t∗ ∈ [−r,0], then µ(t) = ‖φ‖ and the previous inequality holds.
We take the right-hand side of the above inequality as v(t); then we have

v(0) =M‖φ‖+ bM
(|η|+ c1‖φ‖+ 2c2

)
, µ(t) ≤ v(t), t ∈ J ,

v′(t) =M(t)µ(t) +M(t)ψ
(
µ(t)

)
, t ∈ J.

(4.19)

Using the nondecreasing character of ψ, we get

v′(t) ≤M(t)
[
v(t) +ψ

(
v(t)

)]
, t ∈ J. (4.20)

This implies, for each t ∈ J , that

∫ v(t)

v(0)

dτ

τ +ψ(τ)
≤
∫ b

0
M(s)ds <

∫∞

v(0)

dτ

τ +ψ(τ)
. (4.21)

This inequality implies that there exists a constant K2 such that v(t) ≤ K2, t ∈ J , and hence
µ(t) ≤ K2, t ∈ J . Since for every t ∈ J , ‖yt‖ ≤ µ(t), we have

‖y‖∞ ≤ K ′
2 := max

{‖φ‖,K2
}

, (4.22)

where K ′
2 depends only on b, M, and on the functions p and ψ. This shows that �(N4) is

bounded.
Set X := C([−r,b],E). As a consequence of Schaefer’s theorem (see [20]), we deduce

that N4 has a fixed point y which is a solution to problem (1.2). �

Remark 4.4. The reasoning used above can be applied to obtain the existence results for
the following first- and second-order semilinear neutral functional integrodifferential in-
clusions of Volterra type:

d

dt

[
y(t)− f

(
t, yt

)]−Ay ∈
∫ t

0
k(t,s)F

(
s, ys

)
ds, a.e. t ∈ J ,

y(t) = φ(t), t ∈ [−r,0],

d

dt

[
y′(t)− f

(
t, yt

)]−Ay ∈
∫ t

0
k(t,s)F

(
s, ys

)
ds, a.e. t ∈ J ,

y(t) = φ(t), t ∈ [−r,0],

y′(0) = η,

(4.23)

where A, F, f , φ, and η are as in problems (1.1) and (1.2) and k : D → R, D = {(t,s) ∈
J × J : t ≥ s}.
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CONDITIONS FOR THE OSCILLATION OF
SOLUTIONS OF ITERATIVE EQUATIONS

WIESŁAWA NOWAKOWSKA AND JAROSŁAW WERBOWSKI

Received 14 October 2002

We give some oscillation criteria for linear iterative functional equations. We compare
obtained theorems with known results. We give applications to discrete equations too.

The problem of oscillation of solutions of differential and difference equations has
been investigated by many authors since in the literature, there are many oscillation cri-
teria for these equations (see [2, 5]). However, for the iterative functional equations, the
situation is different. Our aim is to give some new oscillation criteria for iterative func-
tional equations. We are of the opinion that it is worth considering iterative functional
equations because, in particular, they are recurrence equations which have a lot of appli-
cations. They can be used to describe processes in many areas such as biology, meteorol-
ogy, economics, and so on (see [6]). This paper is concerned with the oscillatory solutions
of linear iterative functional equations of the form

Q0(t)x(t) +Q1(t)x
(
g(t)

)
+Q2(t)x

(
g2(t)

)
+ ···+Qm+1(t)x

(
gm+1(t)

)=0, m≥1, (1)

where x is an unknown real-valued function and Qk : I → R, for k = 0,1, . . . ,m+ 1, and
g : I → I are given functions, such that R is the set of real numbers and I denotes an
unbounded subset of R+ = [0,∞). By gm we mean the mth iterate of the function g,
that is,

g0(t) = t, gm+1(t) = g
(
gm(t)

)
, t ∈ I , m= 0,1, . . . . (2)

By g−1 we mean the inverse function of g and g−m−1(t) = g−1(g−m(t)). In this paper,
upper indices at the sign of a function will denote iterations. In each instance, we have the
relation g1(t) = g(t). Exponents of a power of a function will be written after a bracket
containing the whole expression of the function. We also assume that

g(t) �= t, lim
t→∞g(t) =∞, t ∈ I. (3)

Moreover, we assume that g has an inverse function.

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 289–296
2000 Mathematics Subject Classification: 39B12
URL: http://dx.doi.org/10.1155/9775945143
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290 Oscillation of iterative equations

By a solution of (1), we mean a function x : I → R such that sup{|x(s)| : s ∈ It0 =
[t0,∞)∩ I} > 0 for any t0 ∈ R+ and x satisfies I in (1).

A solution x of (1) is called oscillatory if there exists a sequence of points {tn}∞n=1,
tn ∈ I , such that limn→∞ tn =∞ and x(tn)x(tn+1) ≤ 0 for n= 1,2, . . . . Otherwise it is called
nonoscillatory.

The purpose of this paper is to obtain new oscillation criteria for (1). The analogous
problem has been considered in [1, 7, 9].

In this paper, we will use the following lemma.

Lemma 1 [9]. Consider the functional inequalities

x
(
gs(t)

)≥ p(t)x
(
gs−1(t)

)
+ q(t)x

(
gm+1(t)

)
, (4)

x
(
gs(t)

)≤ p(t)x
(
gs−1(t)

)
+ q(t)x

(
gm+1(t)

)
, (5)

where m≥ 1, s∈ {1, . . . ,m}, p,q : I → R+, and g satisfies condition (3). If

liminf
I(t→∞

m−s∑
i=0

q
(
gi(t)

)m−s+1∏
j=1

p
(
gi+ j(t)

)
>
(
m− s+ 1
m− s+ 2

)m−s+2

, (6)

then the functional inequality (4) (resp., (5)) does not have positive (resp., negative) solutions
for large t ∈ I .

It is easy to notice that the existence of oscillatory solutions of (1) is connected with
the sign of the functions Qi (i = 0,1, . . . ,m+ 1) on I . That either Qi(t) > 0 or Qi(t) < 0,
for i = 0,1, . . . ,m+ 1 and t ∈ I , implies that every solution of (1) oscillates. So, similarly
as in our previous considerations (see, e.g., [9]), we will assume that in (1), one of the
coefficients of Qi (i = 1,2, . . . ,m) has the sign opposite to that of others, that is, there
exists s ∈ {1, . . . ,m} such that Qs(t) < 0 and Qi(t) > 0, i ∈ {0,1, . . . ,m+ 1} − {s}. So, we
further assume that for some s∈ {1,2, . . . ,m},

Qs(t) < 0, Qi(t) ≥ 0, i= 0,1, . . . ,s− 1,s+ 1, . . . ,m+ 1 (7)

with

Qs−1(t),Qs+1(t) > 0 for t ∈ I. (8)

Without loss of generality, we may assume that Qs(t) =−1, t ∈ I . Then (1) takes the form

x
(
gs(t)

)= s−1∑
k=0

Qk(t)x
(
gk(t)

)
+

m+1∑
k=s+1

Qk(t)x
(
gk(t)

)
, m≥ 1, (9)

where s∈ {1,2, . . . ,m}, Qi(t) ≥ 0 (i= 0,1, . . . ,s− 1,s+ 1, . . . ,m+ 1), and Qs−1(t),Qs+1(t) >
0 for t ∈ I .

As usual, we take
∑r

j=k aj = 0 and
∏r

j=k aj = 1, where r < k.
We start from the following theorem.
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Theorem 2. Every solution of (9) is oscillatory if one of the following conditions hold:

liminf
I(t→∞

A
(
g(t)

)
B(t) >

1
4

(10)

or

limsup
I(t→∞

{
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
> 1,

(11)

where

A(t) =
s−1∑
k=0

Qk(t)
s−k∏
j=2

Qs+1
(
g− j(t)

)
,

B(t) =
m+1∑
k=s+1

Qk(t)
k−s∏
j=2

Qs−1
(
g j(t)

)
.

(12)

Proof. Suppose that (9) has a nonoscillatory solution x and let x(t) > 0 for t ∈ It1 , t1 ≥ 0.
Then also, in view of assumption (3) about function g, x(gi(t)) > 0, i ∈ {1,2, . . . ,m+ 1},
and t ∈ It2 , t2 ≥ t1. Thus, from (9) we get

x
(
gs(t)

)≥Qi(t)x
(
gi(t)

)
for i= 0,1, . . . ,s− 1,s+ 1, . . . ,m+ 1. (13)

Hence, we have

x
(
gs(t)

)≥Qs+1(t)x
(
gs+1(t)

)
,

x
(
gs−2(t)

)≥Qs+1
(
g−2(t)

)
x
(
gs−1(t)

)
.

(14)

From above we obtain

x
(
gs−3(t)

)≥Qs+1
(
g−3(t)

)
x
(
gs−2(t)

)≥Qs+1
(
g−3(t)

)
Qs+1

(
g−2(t)

)
x
(
gs−1(t)

)
. (15)

Thus,

x
(
gk(t)

)≥ x
(
gs−1(t)

) s−k∏
j=2

Qs+1
(
g− j(t)

)
, k = 0,1,2, . . . ,s− 2. (16)

Similarly from inequality (13) we get

x
(
gs(t)

)≥Qs−1(t)x
(
gs−1(t)

)
,

x
(
gs+2(t)

)≥Qs−1
(
g2(t)

)
x
(
gs+1(t)

)
.

(17)

Hence,

x
(
gs+3(t)

)≥Qs−1
(
g3(t)

)
x
(
gs+2(t)

)≥Qs−1
(
g3(t)

)
Qs−1

(
g2(t)

)
x
(
gs+1(t)

)
, (18)

x
(
gk(t)

)≥ x
(
gs+1(t)

) k−s∏
j=2

Qs−1
(
g j(t)

)
, k = s+ 2, . . . ,m+ 1. (19)



292 Oscillation of iterative equations

Using now (16) and (19) in (9), we obtain

x
(
gs(t)

)≥ A(t)x
(
gs−1(t)

)
+B(t)x

(
gs+1(t)

)
, (20)

where A and B are given by (12). Thus, in view of condition (10) and Lemma 1, inequal-
ity (20) cannot possess positive solutions. We obtain a contradiction. Now we prove the
second part of the theorem. From (20) for i∈ {0,1,2}, we have

x
(
gs+i(t)

)≥ A
(
gi(t)

)
x
(
gs+i−1(t)

)
+B

(
gi(t)

)
x
(
gs+i+1(t)

)
, (21)

x
(
gs(t)

)≥ A(t)x
(
gs−1(t)

)
. (22)

From above we obtain

x
(
gs+2(t)

)≥ A
(
g2(t)

)
x
(
gs+1(t)

)
,

x
(
gs+3(t)

)≥ A
(
g3(t)

)
x
(
gs+2(t)

)
.

(23)

Hence,

x
(
gs+3(t)

)≥ A
(
g2(t)

)
A
(
g3(t)

)
x
(
gs+1(t)

)
. (24)

Using the above inequality in (21) for i= 2, we get

x
(
gs+2(t)

)≥A
(
g2(t)

)
x
(
gs+1(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g2(t)

)
x
(
gs+1(t)

)
. (25)

Now applying inequalities (20) and (25) in (21) for i= 1, we have

x
(
gs+1(t)

)≥A(t)A
(
g(t)

)
x
(
gs−1(t)

)
+
{
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
x
(
gs+1(t)

)
,

(26)

x
(
gs+1(t)

)≥ {
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
x
(
gs+1(t)

)
.

(27)

Dividing both sides of the above inequality by x(gs+1(t)), we get a contradiction with (11).
This completes the proof. �

Remark 3. In the particular case when I = N and g(n) = n+ 1, from iterative functional
equations, we obtain recurrence equations. So, results obtained in this paper can be ap-
plied to recurrence equations, too. For example, condition (10) applied to the second-
order linear difference equation of the form

c(n)x(n+ 1) + c(n− 1)x(n− 1) = b(n)x(n), (28)
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where n ∈ N,b,c : N → (0,∞), gives the result obtained by Hooker and Patula in [4,
Theorem 5]. However, condition (11) applied to (28) improves the result presented in
[3, Theorem 2.3]. Namely, this theorem has the following form: if for some sequence
nk →∞, [

c
(
nk
)]2

b
(
nk
)
b
(
nk + 1

) +

[
c
(
nk + 1

)]2

b
(
nk + 1

)
b
(
nk + 2

) ≥ 1, (29)

then every solution of (28) is oscillatory. On the other hand, condition (11) applied to
(28) has the form

limsup
n→∞

{ [
c(n)

]2

b(n)b(n+ 1)
+

[
c(n+ 1)

]2

b(n+ 1)b(n+ 2)
+

[
c(n+ 1)

]2

b(n+ 1)b(n+ 2)

[
c(n+ 2)

]2

b(n+ 2)b(n+ 3)

}
> 1.

(30)

If we consider (9) with s = 1, I = N, and g(n) = n+ 1, then from Theorem 2, we obtain
conditions of [8, Theorems 5 and 6].

Now we give another condition for the oscillation of all solutions of (9). It can be
applied when Theorem 2 is not satisfied.

Theorem 4. Suppose that

A
(
g(t)

)
B(t) ≥ δ > 0, δ <

1
4

for t ∈ I , (31)

limsup
I(t→∞

{
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
> 1− δ2,

(32)

where A and B are as previously given. Then all solutions of (9) are oscillatory.

Proof. Let x(t) > 0, for t ∈ It1 , t1 ≥ 0, be a nonoscillatory solution of (9). Then, as in the
proof of Theorem 2 for t ∈ It2 , t2 ≥ t1, inequalities (16) and (19) hold. So, inequality (20)
is also true. Thus, for sufficiently large t, inequalities (21) and (26) are also satisfied. From
(21) for i= 0, we have

x
(
gs(t)

)≥ B(t)x
(
gs+1(t)

)
,

A
(
g(t)

)
x
(
gs(t)

)≥A
(
g(t)

)
B(t)x

(
gs+1(t)

)
.

(33)

Using assumption (31) in the above inequality, we obtain

A
(
g(t)

)
x
(
gs(t)

)≥ δx
(
gs+1(t)

)
. (34)

The last inequality gives

A(t)x
(
gs−1(t)

)≥ δx
(
gs(t)

)
,

A(t)A
(
g(t)

)
x
(
gs−1(t)

)≥ δ2x
(
gs+1(t)

)
.

(35)
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Now applying the last inequality in (26), we have

x
(
gs+1(t)

)≥ δ2x
(
gs+1(t)

)
+
{
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
x
(
gs+1(t)

)
.

(36)

Now dividing both sides of the above inequality by x(gs+1(t)), we obtain

1− δ2 ≥ {
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
.

(37)

The last inequality contradicts assumption (32). Thus, the theorem is proved. �

Remark 5. The theorems given in this paper are analogous to those presented in [9] but
conditions given in both papers are independent. For example, from [9, Theorem 1], it
follows that every solution of (9) is oscillatory if

liminf
I(t→∞

m−s∑
i=0

Q
(
gi(t)

)m−s+1∏
j=1

P
(
gi+ j(t)

)
>
(
m− s+ 1
m− s+ 2

)m−s+2

, (38)

where

P(t) =
s−2∑
k=0

Qk(t)
s−k∏
l=2

Qs+1
(
g−l(t)

)
+Qs−1(t),

Q(t) =
m∑

k=s+1

Qk(t)Qm+s−k+1
(
gk−s(t)

)
+Qm+1(t).

(39)

In order to show the independence of conditions (10) and (38), we consider the following
iterative functional equation:

x(t+ 2) = 1
[t]2

x(t) +
4

50t
x(t+ 1) +

15t
50

x(t+ 3) + [t]2x(t+ 4), t > 0. (40)

In this equation, m= 3, s= 2, and g(t) = t+ 1. Thus, condition (10) takes the form

liminf
t→∞

[
Q0(t+ 1)Q3(t− 1) +Q1(t+ 1)

][
Q3(t) +Q4(t)Q1(t+ 2)

]
= lim

t→∞

[
1

[t+ 1]2

15(t− 1)
50

+
4

50(t+ 1)

][
15t
50

+ [t]2 4
50(t+ 2)

]
= 361

2500
<

1
4

,
(41)
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and is not fulfilled. But the above-mentioned equation has only oscillatory solutions be-
cause for this equation, condition (38) has the form

liminf
t→∞

[
Q(t)P

(
g(t)

)
P
(
g2(t)

)
+Q

(
g(t)

)
P
(
g2(t)

)
P
(
g3(t)

)]
>
(

2
3

)3

, (42)

where

P(t) =Q1(t) +Q0(t)Q3
(
g−2(t)

)
,

Q(t) =Q3(t)Q3
(
g(t)

)
+Q4(t),

(43)

and is satisfied because

lim
t→∞

{[
15t
50

15(t+ 1)
50

+ [t]2
][

1
[t+ 1]2

15(t− 1)
50

+
4

50(t+ 1)

]

×
[

1
[t+ 2]2

15t
50

+
4

50(t+ 2)

]

+
[

15(t+ 1)
50

15(t+ 2)
50

+ [t+ 1]2
][

1
[t+ 2]2

15t
50

+
4

50(t+ 2)

]

×
[

1
[t+ 3]2

15(t+ 1)
50

+
4

50(t+ 3)

]}

= 0.314792 >
(

2
3

)3

.

(44)

Now we consider the iterative functional equation of the form

x(t+ 2) = 1
5[t]2

x(t) +
1
4t
x(t+ 1) +

3t
5
x(t+ 3) +

3[t]2

5
x(t+ 4), t > 0. (45)

The above-mentioned equation possesses only oscillatory solutions too. For this equa-
tion, condition (38) is not true but condition (10) is satisfied.
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ON CERTAIN COMPARISON THEOREMS FOR HALF-LINEAR
DYNAMIC EQUATIONS ON TIME SCALES
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We obtain comparison theorems for the second-order half-linear dynamic equation[
r(t)Φ

(
y∆
)]∆

+ p(t)Φ
(
yσ
) = 0, where Φ(x) = |x|α−1 sgnx with α > 1. In particular, it

is shown that the nonoscillation of the previous dynamic equation is preserved if we
multiply the coefficient p(t) by a suitable function q(t) and lower the exponent α in the
nonlinearity Φ, under certain assumptions. Moreover, we give a generalization of Hille-
Wintner comparison theorem. In addition to the aspect of unification and extension, our
theorems provide some new results even in the continuous and the discrete case.

1. Introduction

In [17], it was shown that the basic results (in particular, the Reid roundabout theorem
and, consequently, the Sturmian theory) known from the oscillation theory of the Sturm-
Liouville differential equation (

r(t)y′
)′

+ p(t)y = 0 (1.1)

can be extended to the half-linear dynamic equation[
r(t)Φ

(
y∆
)]∆

+ p(t)Φ
(
yσ
)= 0 (1.2)

on an arbitrary time scale T (i.e., a closed subset of R), where r(t) and p(t) are real right-
dense continuous (rd-continuous) functions on T with r(t) �= 0 and Φ(x) = |x|α−1 sgnx
with α > 1. Moreover, in the same paper, it was proved that under the assumption of a
right-dense continuity of the coefficients r(t) and p(t), the initial value problem involving
(1.2) is uniquely solvable. The terminology half-linear is justified by the fact that the space
of all solutions of (1.2) is homogeneous, but not generally additive. Thus, it has just half of
the properties of a linear space. Equation (1.2) covers the half-linear differential equation
(when T = R) [

r(t)Φ(y′)
]′

+ p(t)Φ(y) = 0 (1.3)

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 297–311
2000 Mathematics Subject Classification: 34C10, 39A10
URL: http://dx.doi.org/10.1155/9775945143

http://dx.doi.org/10.1155/9775945143


298 Comparison theorems for half-linear dynamic equations

and the half-linear difference equation (when T = Z)

∆
[
rkΦ

(
∆yk

)]
+ pkΦ

(
yk+1

)= 0. (1.4)

Furthermore, (1.1) is a special case of (1.3) (when α= 2), and if Φ= id (i.e., α= 2), then
(1.4) reduces to the Sturm-Liouville difference equation

∆
(
rk∆yk

)
+ pk yk+1 = 0. (1.5)

Finally, the linear dynamic equation

(
r(t)y∆

)∆
+ p(t)yσ = 0, (1.6)

which covers (1.1) and (1.5) when T = R and T = Z, respectively, is a special case of
(1.2) (when α = 2). It means that the theory of (1.2) unifies and extends the theories of
all mentioned equations and also explains some discrepancies between them. Note that
the basic results concerning oscillatory properties of (1.1), (1.5), (1.6), (1.3), and (1.4)
can be found, for example, in [9, 15, 16, 20], [1, 2, 11], [3], [5, 6, 13], and [17, 18, 19],
respectively.

The most important oscillatory properties of (1.2) are described by the so-called Reid
roundabout theorem; see [17, Theorem 2]. There are several important consequences
of this theorem; two of them—the Riccati technique and the Sturm-type comparison
theorem (see the next section)—are used to prove our results.

In this paper, we present two types of comparison theorems. The first one actually con-
tains two statements. First, we give a condition in terms of the inequality between the inte-
grals

∫∞
t p(s)∆s and

∫∞
t P(s)∆s (i.e., we compare the coefficients “on average;” note that in

the classical Sturm-type theorem, the coefficients are compared “pointwise”), where P(t)
is the corresponding coefficient to p(t) of the equation which is compared with (1.2). This
statement unifies and generalizes [12, Theorem 2] and [18, Theorem 4], and for histori-
cal reasons, it can be called of Hille-Wintner type. Note that in [12] (this paper concerns
(1.3)), the coefficient p(t) is assumed to be nonnegative. Second, we assume the condition
in terms of the inequality between the exponents of the power function Φ. This enables,
among others, to compare a half-linear equation with a linear one. Note that, in this sense
(i.e., the relation between two equations with different nonlinearities), the statement is
new even in the continuous case (i.e., when T = R). In the proof, we combine the Riccati
technique with the application of the Schauder fixed-point theorem. Our second type of
comparison theorems says that, under certain additional conditions, the (non)oscillation
of (1.2) is preserved when multiplying the coefficient p(t) by a suitable function q(t). It
extends the result in [7] and its proof is based on the Riccati technique.

The paper is organized as follows. In Section 2, we give basic information concerning
the calculus on time scales, some auxiliary statements including the Riccati technique,
and a background for an application of the Schauder fixed-point theorem. The main
results—comparison theorems—are proved in Section 3, where some comments and an
example can also be found.
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2. Preliminaries

We start with introducing the following concepts related to the notion of time scales. It
was established by Hilger in his Ph.D. dissertation in 1988; see [10]. We refer to [3] for
additional details concerning the calculus on time scales. Let T be a time scale (i.e., a
closed subset of R). We assume throughout that T has the topology that it inherits from
the standard topology on the real numbers R. Because of the character of our result,
we suppose that supT = ∞. Define the forward jump operator σ(t) at t ∈ T by σ(t) :=
inf{τ > t : τ ∈ T}, and the backward jump operator ρ(t) at t ∈ T by ρ(t) := sup{τ < t :
τ ∈ T}. If σ(t) > t, we say t is right-scattered, while if ρ(t) < t, we say t is left-scattered. If
σ(t) = t, we say t is right-dense, while if ρ(t) = t, we say t is left-dense. We will also use
the notation µ(t) := σ(t)− t which is called the graininess function. A function f : T → R

is called (delta) differentiable at t ∈ T with (delta) derivative f ∆(t) ∈ R if there exists the
(finite) limit

f ∆(t) := lim
s→t,σ(s) �=t

f
(
σ(s)

)− f (t)
σ(s)− t

. (2.1)

We use the notation f σ(t) = f (σ(t)) for t ∈ T, that is, f σ = f ◦ σ . The notations [a,b],
[a,b), [a,∞), and so forth denote time scales intervals. A function f : T → R is said to be
rd-continuous provided that f is continuous at right-dense points in T and at left-dense
points in T, left-hand limits exist and are finite. We write f ∈ Crd(T). The integral of a
rd-continuous function f (it indeed exists) is defined by means of the antiderivative F,

that is,
∫ b
a f (t)∆t = F(b)−F(a), where F is such that F∆ = f .

We say that a solution y of (1.2) has a generalized zero at t in case y(t) = 0. We say y
has a generalized zero in (t,σ(t)) in case r(t)y(t)y(σ(t)) < 0 and µ(t) > 0. We say that (1.2)
is disconjugate on the interval [a,b] if there is no nontrivial solution of (1.2) with two (or
more) generalized zeros in [a,b].

Equation (1.2) is said to be nonoscillatory (on [a,∞)) if there exists c ∈ [a,∞) such
that this equation is disconjugate on [c,d] for every d > c. In the opposite case, (1.2)
is said to be oscillatory (on [a,∞)). Oscillation of (1.2) may be equivalently defined as
follows. A nontrivial solution y of (1.2) is called oscillatory if it has infinitely many (iso-
lated) generalized zeros in [a,∞). By the Sturm-type separation theorem, see [17, The-
orem 3], one solution of (1.2) is (non)oscillatory if and only if every solution of (1.2) is
(non)oscillatory. Hence, we can speak about oscillation or nonoscillation of (1.2).

The classical Sturm’s result can be generalized as follows, see [17, Theorem 3].

Proposition 2.1 (Sturm (or Sturm-Picone)-type comparison theorem). Consider the
equation

[
R(t)Φ

(
y∆
)]∆

+P(t)Φ
(
yσ
)= 0, (2.2)

where R and P satisfy the same assumptions as r and p. Suppose that r(t) ≤ R(t) and
P(t) ≤ p(t) on [T ,∞) for all large T . Then (1.2) is nonoscillatory implying that (2.2) is
nonoscillatory.
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Along with (1.2) (defined on a time scale interval of the form [a,∞)), consider the
generalized Riccati dynamic equation


[w] :=w∆ + p(t) + �[w,r;α](t) = 0, (2.3)

where

�[w,r;α] = lim
λ→µ

w

λ

(
1− r

Φ
(
Φ−1(r) + λΦ−1(w)

)). (2.4)

As we will see, it is related to the original equation by the Riccati-type substitution w(t) =
r(t)Φ[y∆(t)/y(t)]. Observe that

�[w,r;α](t) =



{
(α− 1)
Φ−1(r)

|w|β
}

(t) for right-dense t,{
w

µ

(
1− r

Φ
(
Φ−1(r) +µΦ−1(w)

))}(t) for right-scattered t,

(2.5)

where the l’Hôpital’s rule is used in the first case, Φ−1 denotes the inverse of Φ (i.e.,
Φ−1(x) = |x|β−1 sgnx), and β is the conjugate number of α (i.e., 1/α+ 1/β = 1).

The proof of the following statement is based on the Reid roundabout theorem and
Sturm-type comparison theorem (see [17, Lemma 14]), and it is usually referred to as the
Riccati technique.

Proposition 2.2 (Riccati technique). Equation (1.2) is nonoscillatory if and only if there
exists T ∈ [a,∞) and a function w satisfying the generalized Riccati dynamic inequality

[w](t) ≤ 0 with {Φ−1(r) +µΦ−1(w)}(t) > 0 for t ∈ [T ,∞).

A behavior of the operator � with respect to its arguments will be described by the
properties of the function

S(x, y,α) = lim
λ→µ

x

λ

(
1− y

Φ
(
Φ−1(y) + λΦ−1(x)

)). (2.6)

Note that the function S can be understood as a “half-linear generalization” of the func-
tion x2/(y +µx) that corresponds to the operator occurring in the Riccati dynamic equa-
tion associated to linear dynamic equation (1.6), and hence a similar behavior of these
functions can be expected in a certain sense.

Lemma 2.3. The function S has the following properties:

(i) let y > 0, then x(∂S/∂x)(x, y,α) ≥ 0 forΦ−1(y) +µΦ−1(x)>0, where (∂S/∂x)(x, y,α)
= 0 if and only if x = 0;

(ii) S(x, y,α) ≥ 0 for Φ−1(y) +µΦ−1(x) > 0, where the equality holds if and only if x = 0;
(iii) if x > 0, y > 0, and

γ := lim
λ→µ

(1 + λz) ln(1 + λz)− λz lnz
λ

≥ 0, (2.7)

where z := (x/y)1/(α−1), then (∂S/∂α)(x, y,α) ≥ 0.
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Remark 2.4. (i) Using the L’Hôpital’s rule, we have γ = z− z lnz when µ= 0.
(ii) It is easy to see that if µ≥ 1, then γ ≥ 0, since

γ = ln(1 +µz) +µz ln
(
(1 +µz)/z

)
µ

. (2.8)

On the other hand, if µ∈ [0,1), then z being small (more precisely, z ≤ 1, but in fact, the
right-hand side may be greater than 1; it depends on µ) is a sufficient condition for γ to
be nonnegative. We notice how the graininess function plays the role in the monotone
nature of S. Observe that S is not always nondecreasing with respect to α, even when
x, y > 0.

(iii) In view of the last remark, if, for example, w(t) > 0, r(t) > 0, limt→∞w(t) = 0, and
liminf t→∞ r(t) > 0, then ∂�(w(t),r(t);α)/∂α ≥ 0 for large t. It is clear that the last two
conditions may be dropped when µ(t) ≥ 1 eventually.

Proof. For the proof of (i) and (ii), see [17, Lemma 13].
To prove the property (iii), first note that for µ > 0, the function S can be rewritten as

S(x, y,α) = x

µ

[
1−

(
1 +µ

(
x

y

)1/(α−1)
)1−α]

, (2.9)

while for µ = 0 it takes the form S(x, y,α) = (α− 1)x (x/y)1/(α−1). Differentiating S with
respect to α, using the known rules, we get

∂S

∂α
= x

µ
(1 +µz)−α

[
(1 +µz) ln(1 +µz)−µz lnz

]
(2.10)

in case µ > 0. If µ= 0, then we obtain ∂S/∂α= x(z− z lnz). In view of the assumptions of
the lemma, Remark 2.4(i), and the equality

lim
λ→µ

∂

∂α

{
x

λ

[
1−

(
1 + λ

(
x

y

)1/(α−1)
)1−α]}

= ∂

∂α

{
lim
λ→µ

x

λ

[
1−

(
1 + λ

(
x

y

)1/(α−1)
)1−α]}

,

(2.11)

we get the statement. �

The next lemma claims that, under certain assumptions, an eventually positive solu-
tion of (nonoscillatory) equation (1.2) has an eventually positive delta-derivative, conse-
quently, (2.3) has a positive solution.

Lemma 2.5. Assume that r(t) > 0,

liminf
t→∞

∫ t

T
p(s)∆s≥ 0, liminf

t→∞

∫ t

T
p(s)∆s �≡ 0, (2.12)
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for all large T , and

∫∞

a
r1−β(s)∆s=∞. (2.13)

If y is a solution of (1.2) such that y(t) > 0 for t ∈ [T ,∞), then there exists T1 ∈ [T ,∞) such
that y∆(t) > 0 for t ∈ [T1,∞).

Proof. The proof is by contradiction. We consider the following two cases.
Case 1. Suppose that y∆(t) < 0 for t ∈ [T ,∞). Then also [Φ(y)]∆(t) < 0 for t ∈ [T ,∞)
since

[
Φ(y)

]∆
(t) = d

dy
Φ
[
y(ξ)

]
y∆(t) = (α− 1)

∣∣y(ξ)
∣∣α−2

y∆(t) < 0 (2.14)

by [3, Theorem 1.87], where t ≤ ξ ≤ σ(t). Another argument for [Φ(y)]∆(t) < 0 is that if
y is decreasing, then Φ(y) is decreasing as well because of the properties of the function
Φ. Without loss of generality we may assume that T is such that

∫ t
T p(s)∆s≥ 0, t ∈ [T ,∞),

reasoning as in [7, Proof of Lemma 13]. Define Q(t,T) = ∫ t
T p(s)∆s. The integration by

parts gives

∫ t

T
p(s)Φ

[
yσ(s)

]
∆s=

∫ t

T
Q∆(s,T)Φ

(
yσ(s)

)
∆s

=Q(t,T)Φ
(
y(t)

)−∫ t

T
Q(s,T)

[
Φ
(
y(s)

)]∆
∆s≥ 0.

(2.15)

Integrating (1.2), we have, using the last estimate,

r(t)Φ
(
y∆(t)

)− r(T)Φ
(
y∆(T)

)= ∫ t

T

[
r(s)Φ

(
y∆(s)

)]∆
∆s≤ 0. (2.16)

Hence,

y∆(t) ≤ rβ−1(T)y∆(T)
rβ−1(t)

(2.17)

for t ∈ [T ,∞). Integrating (2.17) for t ≥ T , we see that y(t) →−∞ by (2.13), a contradic-
tion. Therefore, y∆(t) < 0 cannot hold for all large t.
Case 2. Next, if y∆(t) �> 0 eventually, then for every (large) T ∈ [a,∞), there exists T0 ∈
[T ,∞) such that y∆(T0) ≤ 0 and we may suppose that liminf t→∞

∫ t
T p(s)∆s ≥ 0. Since

y(t) > 0 for t ∈ [T ,∞), the function w(t) = r(t)Φ[y∆(t)/y(t)] satisfies the generalized
Riccati equation (2.3) with {Φ−1(r) + µΦ−1(w)}(t) > 0 for t ∈ [T ,∞). Integrating (2.3)
from T0 to t, t ≥ T0, gives

w(t) =w
(
T0
)−∫ t

T0

p(s)∆s−
∫ t

T0

�(w,r;α)(s)∆s. (2.18)
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Therefore, it follows that limsupt→∞w(t) < 0, using the facts w(T0) ≤ 0, w(t) is eventually
nontrivial, and (2.12) holds. Indeed, there is M > 0 such that

∫ t
T0

�(w,r;α)(s)∆s≥M and∫ t
T0
p(s)∆s ≥ −M/2 for all large t. Hence, there exists T1 ∈ [T ,∞) such that w(t) < 0 for

t ∈ [T1,∞) and so y∆(t) < 0 for t ∈ [T1,∞), a contradiction to the first part. �

In the next lemma, a necessary condition for the nonoscillation of (1.2) is given in
terms of solvability of generalized Riccati integral inequality under certain assumptions.
Note that a closer examination of the proof of Theorem 3.1 shows that this condition is
also sufficient.

Lemma 2.6. Let the assumptions of Lemma 2.5 hold and assume further that
∫∞
a p(s)∆s =

limt→∞
∫ t
a p(s)∆s is convergent. Let y(t) be a solution of (1.2) such that y(t) > 0 for t ∈

[T ,∞). Then there exists T1 ∈ [T ,∞) such that

w(t) ≥
∫∞

t
p(s)∆s+

∫∞

t
�(w,r;α)(s)∆s (2.19)

for t ∈ [T1,∞), where w(t) = r(t)Φ[y∆(t)/y(t)] > 0.

Proof. From Lemma 2.5, there exists T1 ∈ [T ,∞) such that w(t)> 0 for t∈ [T1,∞) and w
satisfies (2.3) for t ∈ [T ,∞) (clearly, with {Φ−1(r) + µΦ−1(w)}(t) > 0). Integrating (2.3)
from t to s, s≥ t ≥ T1, we get

w(s)−w(t) +
∫ s

t
p(ξ)∆ξ +

∫ s

t
�(w,r;α)(ξ)∆ξ = 0. (2.20)

Therefore,

0 < w(s) ≤w(t)−
∫ s

t
p(ξ)∆ξ, (2.21)

and hence,

w(t) ≥
∫ s

t
p(ξ)∆ξ +

∫ s

t
�(w,r;α)(ξ)∆ξ (2.22)

for s≥ t ≥ T1. Letting s→∞, we obtain (2.19). �

In the last part of this section, we give a background for the application of the Schauder
fixed-point theorem. It will be used in the proof of Theorem 3.1. We start by recalling the
Schauder theorem that is applicable for our setting in dynamic equations.

Proposition 2.7 (Schauder fixed-point theorem, [8, Theorem 6.44]). Let 
 be a normed
space and X be a nonempty, closed, convex subset of 
. If � is a continuous mapping such
that �(X) ⊆ X (i.e., mapping X into itself) and �(X) is relatively compact, then � has a
fixed point in X .

Denote with CB
TS[a,∞) the linear space of all continuous functions f : [a,∞)→ R such

that supt∈[a,∞) | f (t)| <∞. Define this supremum to be the norm ‖ f ‖ = supt∈[a,∞) | f (t)|.
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The following statement can be understood as a time scale version of the Arzelà-Ascoli
theorem. For the discrete analog of this well-known theorem, see [4, Theorem 3.3]. Note
that for T = N we get CB

TS = �∞, and condition (ii) in the next lemma holds trivially.

Lemma 2.8. Let X be a subset of CB
TS[a,∞) having the following properties:

(i) X is bounded;
(ii) on every compact subinterval J of [a,∞), there exists, for any ε > 0, δ > 0 such that

t1, t2 ∈ J , |t1 − t2| < δ implies | f (t1)− f (t2)| < ε for all f ∈ X (i.e., the functions of
X are locally equicontinuous);

(iii) for every ε > 0, there exists b∈ [a,∞) such that t1, t2 ∈ [b,∞) implies | f (t1)− f (t2)|
< ε for all f ∈ X (in the “discrete terminology,” X is said to be uniformly Cauchy).

Then X is relative compact.

Proof. By [8, Theorem 6.33], it is sufficient to construct a finite ε-net for any ε. Since
the proof is more or less obvious, we mention just some of its important points and
omit details. In view of the properties (i), (ii), and (iii), it is possible to construct a two-
dimensional grid, where the vertical values are the elements y1, . . . , ym ∈ R, −K = y1 <
y2 < ··· < ym = K , K being such that ‖ f ‖ ≤ K for all f ∈ X , and sufficiently close to
neighbors, that is, yi+1 − yi is a sufficiently small number depending on ε. The horizontal
values x1, . . . ,xm ∈ T, a= x1 < x2 < ··· < xn = b, are sufficiently close to their neighbors in
the sense that if they are close to dense points, the differences of the values of f ( f ∈ X) at
these points are small—depend on ε (this is possible thanks to the local equicontinuity)—
or they are isolated and sufficiently far from each other; b ≥ a being such that | f (t1) −
f (t2)| is sufficiently small (depends on ε) whenever t1, t2 ∈ [b,∞) for all f ∈ X . Such b
exists thanks to the property (iii). Now, having such grid for any f ∈ X , we can construct
a linear fractional function g which approximate f (in fact, ‖ f − g‖ < ε). The number of
functions g constructed in this way is finite and thus the set of such functions forms a
finite ε-net for X . �

3. Main results

We start with Hille-Wintner-type comparison theorem involving also the condition in
terms of the change of the exponents in the power function Φ. Along with (1.2), consider
the equation

[
R(t)Φᾱ

(
x∆
)]∆

+P(t)Φᾱ
(
xσ
)= 0, (3.1)

where R and P satisfy the same assumptions as r and p, and Φᾱ(x) = |x|ᾱ−1 sgnx with
ᾱ > 1.

Theorem 3.1. Assume 0 < R(t) ≤ r(t),

0 ≤
∫∞

t
p(s)∆s≤

∫∞

t
P(s)∆s (3.2)
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for all large t (in particular, these integrals exist as finite numbers),

∫∞

a
R1−β̄(s)∆s=∞ (3.3)

with β̄ > 1 being the conjugate number to ᾱ, and 1 < α ≤ ᾱ. Further, suppose that
liminf t→∞R(t) > 0 when µ(t) �≥ 1 eventually (if µ(t) ≥ 1 eventually, then this condition may
be dropped—see also Remark 2.4). If (3.1) is nonoscillatory, then so is (1.2).

Proof. By Lemma 2.6, the assumptions of the theorem imply the existence of a function z
(actually, z = RΦᾱ(x∆/x), x being an eventually positive increasing solution of (3.1)) and
T ∈ [a,∞) such that

z(t) ≥
∫∞

t
P(s)∆s+

∫∞

t
�
(
z(s),R(s); ᾱ

)
∆s=: Z(t) (3.4)

with z(t) > 0 for t ≥ T . Without loss of generality, we may assume that (3.2) holds for
t ≥ T . Define the set Ω = {w ∈ CB

TS[T ,∞) : 0 ≤ w(t) ≤ Z(t) for t ≥ T} and the operator
� : Ω→ CB

TS[T ,∞) defined by

�(w)(t) =
∫∞

t
p(s)∆s+

∫∞

t
�
(
w(s),R(s);α

)
∆s (3.5)

for w ∈ �. In view of the assumptions of the theorem and the properties of �, the oper-
ator � is well defined. It is very easy to see that Ω is closed and convex.

We show that � maps Ω into itself. Suppose that w ∈Ω and define v(t) = �(w)(t),
t ≥ T . Obviously, v(t) ≥ 0 for t ≥ T . We prove that v(t) ≤ Z(t). First note that since
w ∈ Ω is small for large t and liminf t→∞R(t) > 0 (provided that µ(t) �≥ 1 eventually),
we have w(t)/R(t) ≤ 1 for large t (without loss of generality, we may suppose that T is
such that Z(t)/R(t) ≤ 1 for t ≥ T in case µ(t) �≥ 1 eventually), and so the assumptions of
Lemma 2.3(iii) are satisfied (see also Remark 2.4). Now we get

v(t) =
∫∞

t
p(s)∆s+

∫∞

t
�
(
w(s),R(s);α

)
∆s

≤
∫∞

t
P(s)∆s+

∫∞

t
�
(
w(s),R(s);α

)
∆s

≤
∫∞

t
P(s)∆s+

∫∞

t
�
(
w(s),R(s); ᾱ

)
∆s≤ Z(t)

(3.6)

by the assumptions of the theorem and by Lemma 2.3. Hence �(Ω) ⊂Ω.
According to Lemma 2.8, to prove the relative compactness of �(Ω), it is sufficient

to verify that conditions (i), (ii), and (iii) hold for �(Ω). Clearly, �(Ω) ⊂ Ω implies
the boundedness of �(Ω). In view of the definition of �, for any w ∈ Ω, we have 0 ≤
−(�(w))∆(t)= p(t) + �(w(t),R(t);α) ≤ p(t) + �(z(t),R(t); ᾱ), which proves the equicon-
tinuity of the elements of �(Ω). Finally, we verify that �(Ω) is “uniformly Cauchy.”
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Let ε > 0 be given. We have to show that there exists t0 ∈ [T ,∞) such that for any t1, t2 ∈
[t0,∞), it holds that |�(w)(t1)−�(w)(t2)| < ε for any w ∈Ω. Without loss of generality,
suppose that t1 < t2. Then we have

∣∣�(w)
(
t1
)−�(w)

(
t2
)∣∣≤

∣∣∣∣∫ t2

t1
p(s)∆s

∣∣∣∣+
∫ t2

t1
�
(
w(s),R(s);α

)
∆s. (3.7)

Since the integrals in (3.7) are convergent, for any ε > 0, one can find t0 ∈ [T ,∞) such
that ∣∣∣∣∫ t2

t1
p(s)∆s

∣∣∣∣ < ε

2
,

∫ t2

t1
�
(
w(s),R(s);α

)
∆s <

ε

2
(3.8)

whenever t2 > t1 ≥ t0. From here and (3.7), we get the desired inequality. Hence, �(Ω) is
relatively compact.

The last hypothesis, which has to be verified, is the continuity of � in Ω. Let {wn},
n ∈ N, be a sequence in Ω which uniformly converges on every compact subinterval
of [T ,∞) to w̄ ∈Ω. Because �(Ω) is relatively compact, the sequence {�(wn)} admits
a subsequence {�(wnj )} converging in the topology of CB

TS[T ,∞) to v̄. The inequality
�(wnj (t),R(t);α) ≤ �(z(t),R(t); ᾱ) implies that the integral

∫∞
t �(wnj (s),R(s);α)∆s is to-

tally convergent. Hence, by the Lebesgue dominated convergence theorem on time scales,
see [14], the sequence {�(wnj )} converges to �(w̄). In view of the uniqueness of the limit,
�(w̄) = v̄ is the only cluster point of the sequence {�(wn)} that proves the continuity of
� in Ω.

Therefore, it follows from Proposition 2.7 that there exists an element w ∈Ω such that
�(w) = w. In view of how the operator � is defined, this (positive) function w satisfies
the equation

w(t) =
∫∞

t
p(s)∆s+

∫∞

t
�
(
w(s),R(s);α

)
∆s, (3.9)

t ≥ T , and hence, also the equation w∆ + p(t) + �(w,R;α)(t) = 0, clearly, with Φ−1(R) +
µΦ−1(w) > 0. Consequently, the function y, given by

y(T) =A �= 0, y∆ =
(
w(t)
R(t)

)β−1

y, (3.10)

t ≥ T , is a nonoscillatory solution of [R(t)Φ(y∆)]∆ + p(t)Φ(yσ) = 0, and hence, this equa-
tion is nonoscillatory. The statement now follows from Proposition 2.1. �

Remark 3.2. (i) A closer examination of the previous proof shows that the necessary
condition for nonoscillation of (1.2) in Lemma 2.6 is also sufficient.

(ii) It is not difficult to make the following observation. If (2.13) holds, p(t) ≥ 0 (and
eventually nontrivial) for all large t,

∫∞
a p(s)∆s converges, and (1.2) has a positive so-

lution y, then the nonnegative function w(t) = r(t)Φ[y∆/y] (in fact, it is a solution of
(2.3)) is eventually nonincreasing and converges to zero. Moreover, it satisfies the integral
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equation

w(t) =
∫∞

t
p(s)∆s+

∫∞

t
�
(
w(s),r(s);α

)
∆s. (3.11)

Clearly, the solvability of (3.11) is also a sufficient condition for the nonoscillation of
(1.2). In this case, it is possible to prove the comparison theorem involving the con-
dition in terms of the inequality between exponents of the nonlinearities immediately
by the Riccati technique without using the Schauder fixed-point theorem. Indeed, we
have 0 =w∆(t) + p(t) + �[w,r;α] ≥w∆(t) + p(t) + �[w,r; ᾱ] for large t provided that α≥
ᾱ > 1 and liminf t→∞ r(t) > 0 (when µ(t) �≥ 1 eventually). The fact that [r(t)Φᾱ(y∆)]∆ +
p(t)Φᾱ(yσ) = 0 is nonoscillatory then follows from Proposition 2.2. In view of Remark
2.4, the statement can be proved in this way even under the assumptions of Lemma 2.5,
provided that µ(t) ≥ 1 eventually, since we do not need a solution of (2.3) to be close to
zero. In particular, this is satisfied in the discrete case, that is, T = Z.

Now, we mention a few background details which serve to motivate our second main
result. Along with (1.2), consider the equation

[
r(t)Φ

(
y∆
)]∆

+ λp(t)Φ
(
yσ
)= 0, (3.12)

where λ is a real constant, and assume that r(t) > 0. We claim that if (1.2) is nonoscillatory
and 0 < λ ≤ 1, then (3.12) is also nonoscillatory. If p(t) ≥ 0, then this statement follows
immediately from the Sturm comparison theorem (Proposition 2.1). If p(t) may change
sign, then dividing (3.12) by λ, we obtain an equivalent equation which is nonoscillatory
again by the Sturm theorem. This can be analogously done for oscillatory counterparts. If
the constant λ is replaced by a function q(t), then the situation is not so easy (when p(t)
may change sign; otherwise the Sturm theorem can be applied immediately). The follow-
ing statements give an answer to the question “what are the conditions which guarantee
that the (non)oscillation of (1.2) is preserved when multiplying the coefficient p(t) by a
function q(t)?” They generalize [7, Theorem 7, Corollary 8]. Along with (1.2), consider
the equation

[
R(t)Φ

(
x∆
)]∆

+ q(t)P(t)Φ
(
xσ
)= 0, (3.13)

where R and P satisfy the same assumptions as r and p.

Theorem 3.3. Assume that q(t) ∈ C1
rd[a,∞), 0 < r(t) ≤ R(t), P(t) ≤ p(t), 0 < q(t) ≤ 1,

and q∆(t) ≤ 0. Further, let (2.12) and (2.13) hold. Then (1.2) is nonoscillatory implying
that (3.13) is nonoscillatory.

Proof. The assumptions of the theorem imply that there exists a solution y of (1.2) and
T ∈ [a,∞) such that y(t) > 0 and y∆(t) > 0 on [T ,∞) by Lemma 2.5. Therefore, the
function w(t) := r(t)Φ(y∆(t)/y(t)) > 0 satisfies (2.3) with {Φ−1(r) + µΦ−1(w)}(t) > 0
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on [T ,∞). We have

q�[w,r;α] = lim
λ→µ

wq

λ

(
1− rq

Φ
[
Φ−1(q)Φ−1(r) + λΦ−1(q)Φ−1(w)

])
= �[qw,qr;α].

(3.14)

Now, multiplying (2.3) by q(t), we get

0 =w∆(t)q(t) + p(t)q(t) + �[qw,qr;α](t)

≥w∆(t)q(t) +P(t)q(t) + �[qw,qr;α](t)

≥w∆(t)q(t) +wσ(t)q∆(t) +P(t)q(t) + �[qw,qr;α](t)

= (wq)∆(t) +P(t)q(t) + �[qw,qr;α](t)

(3.15)

for t ∈ [T ,∞). Hence, the function v(t) = w(t)q(t) satisfies the generalized Riccati in-
equality v∆(t) +P(t)q(t) + �[v,qr;α](t) ≤ 0 with{

Φ−1(qr) +µΦ−1(v)
}

(t) =Φ−1(q)
{
Φ−1(r) +µΦ−1(w)

}
(t) > 0 (3.16)

for t ∈ [T ,∞). Therefore, the equation[
q(t)r(t)Φ

(
x∆
)]∆

+ q(t)P(t)Φ
(
xσ
)= 0 (3.17)

is nonoscillatory by Proposition 2.2, and so (3.13) is nonoscillatory by Proposition 2.1
since q(t)r(t) ≤ r(t) ≤ R(t). �

Theorem 3.4. Assume that q(t) ∈ C1
rd[a,∞), 0 < R(t) ≤ r(t), p(t) ≤ P(t), q(t) ≥ 1, and

q∆(t) ≥ 0. Further, let

liminf
t→∞

∫ t

T
q(s)P(s)∆s≥ 0, liminf

t→∞

∫ t

T
q(s)P(s)∆s �≡ 0, (3.18)

for all large T , and ∫∞

a
R1−β(s)∆s=∞. (3.19)

Then (1.2) is oscillatory implying that (3.13) is oscillatory.

Proof. Suppose, by a contradiction, that (3.13) is nonoscillatory. Then there exists a solu-
tion x of (3.13) and T ∈ [a,∞) such that x(t) > 0 and x∆(t) > 0 on [T ,∞) by Lemma 2.5.
Therefore, the function v(t) := R(t)Φ(x∆(t)/x(t)) > 0 satisfies

v∆(t) + q(t)P(t) + �[v,R;α](t) = 0 (3.20)

with {Φ−1(R) +µΦ−1(v)}(t) > 0 on [T ,∞). We have

v∆(t)
q(t)

≥ v∆(t)q(t)
q2(t)

− v(t)q∆(t)
q2(t)

=
(
v(t)
q(t)

)∆

(3.21)
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at right-dense t, while

v∆(t)
q(t)

= vσ(t)
µ(t)q(t)

− v(t)
µ(t)q(t)

≥ vσ(t)
µ(t)qσ(t)

− v(t)
µ(t)q(t)

=
(
v(t)
q(t)

)∆

(3.22)

at right-scattered t. Dividing (3.20) by q(t) and using the above estimates, we get

0 = v∆(t)
q(t)

+P(t) +
1

q(t)
�[v,R;α](t) ≥

(
v(t)
q(t)

)∆

+ p(t) + �
[
v

q
,
R

q
;α
]

(t) (3.23)

for t ∈ [T ,∞). Hence, the function w(t) = v(t)/q(t) satisfies the inequality w∆(t) + p(t) +
�[w,R/q;α](t) ≤ 0 with {Φ−1(R/q) +Φ−1(w)} > 0 for t ∈ [T ,∞). Therefore, the equation[

R(t)
q(t)

Φ
(
y∆
)]∆

+ p(t)Φ
(
yσ
)= 0 (3.24)

is nonoscillatory by Proposition 2.2. Now, since R(t)/q(t) ≤ R(t) ≤ r(t), (1.2) is nonoscil-
latory by Proposition 2.1, a contradiction. �

Remark 3.5. A closer examination of the proofs shows that the last two theorems can be
improved in the following way (assuming the same conditions).

Theorem 3.3: (1.2) is nonoscillatory implying that (3.17) is nonoscillatory.
Theorem 3.4: (3.24) is oscillatory implying that (3.13) is oscillatory.
Our theorems then follow from the above by virtue of the Sturm-type comparison

theorem.

We conclude the paper by the following application of Theorem 3.3.

Example 3.6. Let T = Z. Then µ(t) ≡ 1, f ∆(t) = ∆ f (t), and
∫ b
a f (t)∆t=∑b−1

t=a f (t). Fur-
ther, let r(t) = [(t+ 1)β−1 − tβ−1]1−α and

p(t) = γ

t(t+ 1)
+
λ(−1)t

t
, (3.25)

where γ and λ are real constants. It is easy to see that p(t) changes sign for λ �= 0. Moreover,

γ− λ < t
∞∑
s=t

p(s) < γ+ λ, (3.26)

t−1∑
s=0

r1−β(s) = tβ−1 −→∞ (3.27)

as t →∞. In [17], it was proved (on general T) that (1.2) is nonoscillatory provided that

lim
t→∞

µ(t)r1−β(t)∫ t
a r

1−β(s)∆s
= 0,

−2α− 1
α

(
α− 1
α

)α−1

< liminf
t→∞ �(t) ≤ limsup

t→∞
�(t) <

1
α

(
α− 1
α

)α−1

,

(3.28)
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where

�(t) :=
(∫ t

a
r1−β(s)∆s

)α−1∫∞

t
p(s)∆s. (3.29)

Hence, if γ ≥ λ > 0 and

γ+ λ <
1
α

(
α− 1
α

)α−1

, (3.30)

then (2.12) holds, (1.2) is nonoscillatory because of (3.26), and

�(t) = t
∞∑
s=t

p(s). (3.31)

Consequently, equation

[(
(t+ 1)β−1 − tβ−1)1−α

Φ
(
y∆
)]∆

+
(

γq(t)
t(t+ 1)

+
λ(−1)tq(t)

t

)
Φ
(
yσ
)= 0, (3.32)

where q(t) is any nonincreasing sequence between 0 and 1, is also nonoscillatory by
Theorem 3.3.
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cations, Birkhäuser Boston, Massachusetts, 2001.

[4] S. S. Cheng and W. T. Patula, An existence theorem for a nonlinear difference equation, Nonlinear
Anal. 20 (1993), no. 3, 193–203.
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Pavel Řehák: Mathematical Institute, Academy of Sciences of the Czech Republic, Žižkova 22,
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ON LINEAR SINGULAR FUNCTIONAL-DIFFERENTIAL
EQUATIONS IN ONE FUNCTIONAL SPACE

ANDREI SHINDIAPIN

Received 1 October 2002

We use a special space of integrable functions for studying the Cauchy problem for linear
functional-differential equations with nonintegrable singularities. We use the ideas de-
veloped by Azbelev and his students (1995). We show that by choosing the function ψ
generating the space, one can guarantee resolubility and certain behavior of the solution
near the point of singularity.

1. Linear Volterra operators in ∆ψ spaces

We consider the following n-dimensional functional-differential equation:

�x
def= ẋ+ (K + S)ẋ+Ax(0) = f , (1.1)

where

(Ky)(t) =
∫ t

0
K(t,s)y(s)ds, (1.2)

(Sy)(t) =
B(t)y

[
g(t)

]
if g(t) ∈ [0,1],

0 if g(t) /∈ [0,1].
(1.3)

The case where K and S are continuous on Lp[0,1] operators is well studied (see, e.g., [1]
and the references therein). Here we suppose that the functions K(t,s) and B(t) may be
nonintegrable at t = 0. More precisely, we will formulate conditions on operators K and
S in Sections 2 and 3. Under such conditions, those operators are not bounded on L[0,1]
and one has to choose other functional spaces for studying (1.1). We propose a space of
integrable functions on [0,1] and show that it may be useful in such a case.

We call ∆
p
ψ space the space of all measurable functions y : [0,1] → Rn, for which

‖y‖∆p
ψ
= sup

0<h≤1

1
ψ(h)

(∫ h

0

∣∣y(s)
∣∣p
ds

)1/p

<∞. (1.4)

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 313–321
2000 Mathematics Subject Classification: 34K10
URL: http://dx.doi.org/10.1155/9775945143
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314 On linear singular FDE

We assume everywhere below that ψ is a nondecreasing, absolutely continuous func-
tion, ψ(0) = 0.

Theorem 1.1. The space ∆
p
ψ is a Banach space.

Let X[a,b], Y[a,b] be spaces of functions defined on [a,b].
We will call V : X[0,1] → Y[0,1] the Volterra operator [3] if for every ξ ∈ [0,1] and for

any x1,x2 ∈ X[0,1] such that x1(t) = x2(t) on [0,ξ], (Vx1)(t) = (Vx2)(t) for t ∈ [0,1].
It is possible to say that each Volterra operator V : X[0,1] → Y[0,1] generates a set

of operators Vξ : X[0,ξ] → Y[0,ξ], where ξ ∈ (0,1]. By yξ , we denote the restriction of
function y defined on [0,1] onto segment [0,ξ].

Theorem 1.2. Let V : L → L be a linear bounded operator. Then V is a linear bounded
operator in ∆

p
ψ and ‖V‖∆p

ψ
≤ ‖V‖Lp .

Proof. Let y ∈ ∆
p
ψ . Then

∥∥V y
∥∥
∆
p
ψ
= sup

0<h≤1

1
ψ(h)

∥∥(Vξ yξ
)∥∥

L[0,ξ]p

≤ sup
0<h≤1

1
ψ(h)

∥∥Vξ

∥∥
L[0,ξ]

∥∥yξ∥∥L[0,ξ] ≤ ‖V‖L‖y‖Lp .
(1.5)

�

Theorem 1.3. Let V : ∆
p
ψ1 → ∆

p
ψ1 be linear bounded operator and let

sup
t∈[0,1]

ψ2(t)
ψ1(t)

<∞. (1.6)

Then V is linear and bounded in ∆
p
ψ2 and

‖V‖∆p
ψ2

≤ ‖V‖∆p
ψ1

sup
ξ∈[0,1]

sup
τ∈[0,ξ]

ψ1(ξ)ψ2(τ)
ψ2(ξ)ψ1(τ)

. (1.7)

Proof. Let y ∈ ∆ψ2. Then

‖V y‖∆p
ψ2

≤ sup
ξ∈[0,1]

∥∥V yξ
∥∥
L[0,ξ]ψ1(ξ)

ψ2(ξ)ψ1(ξ)
≤ sup

ξ∈[0,1]

∥∥V yξ
∥∥
∆
p
ψ1 [0,ξ]ψ1(ξ)

ψ2(ξ)

≤ ‖V‖Mψ1
p sup

∥∥yψ∥∥∆p
ψ1
ψ1(ξ)

ψ2(ξ)

≤ ‖V‖Mψ1
p sup
ξ∈[0,1]

sup
τ∈[0,ψ]

∥∥yτ∥∥L[0,τ]ψ1(ξ)ψ2(τ)

ψ1(τ)ψ2(ξ)ψ2(τ)

≤ ‖y‖∆p
ψ2
‖V‖∆p

ψ1
sup

ξ∈[0,1]
sup

τ∈[0,ξ]

ψ1(ξ)ψ2(τ)
ψ2(ξ)ψ1(τ)

.

(1.8)

�

Corollary 1.4. If V1 : ∆
p
ψ1 → ∆

p
ψ1 and V2 : ∆

p
ψ2 → ∆

p
ψ2 are linear continuous Volterra oper-

ators, then V = V1 +V2 is continuous on space ∆
p
ψ generated by ψ(t) = min(ψ1(t),ψ2(t))

and ‖V‖∆p
ψ
≤ ‖V1‖∆p

ψ1
+‖V2‖∆p

ψ2
.
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2. Operator K

In this section, we consider the integral operator (1.2). We will show that under certain
conditions on matrix K(t,s), a function ψ may be indicated such that K is bounded on
∆ψ and its norm is limited by a given number.

We say that matrix K(t,s) satisfies the 
 condition if for some p and p1 such that
1 ≤ p ≤ p1 <∞ and for any ε ∈ (0,1],

∥∥Kε(t,·)
∥∥
L[0,t] ∈ Lp′[ε,1]. (2.1)

Here Kε(t,s) is a restriction of K(t,s) onto [ε,1]× [0, t], 1/p+ 1/p′ = 1.
The 
 condition admits a nonintegrable singularity at point t = 0.

Lemma 2.1. Let nonnegative function ω : [0,1] → R be nonincreasing and having a nonin-
tegrable singularity at t = 0.

Then ψ(t) = exp[
∫ t

1 ω(s)ds] is absolutely continuous on [0,1], does not decrease, and is a
solution of the equation

∫ t
1 ω(s)x(s)ds= x(t).

Denote

ψ(t) = exp
[

1
C

∫ t

1
vraisup
s∈[0,τ]

∥∥K(τ,s)
∥∥dτ]. (2.2)

Theorem 2.2. Let matrix K(t,s) satisfy the 
 condition with p = 1 and let C be some
positive constant. Then operator K is bounded in ∆ψ with function ψ defined by the equality
(2.2) and ‖K‖∆ψ ≤ C.

Proof. Let x ∈ ∆ψ and y = Kx. From the 
 condition it follows that for almost all t ∈
[0,1], K(·,s) ∈ L∞. Let ω(t) = vraisups∈[0,τ] ‖K(τ,s)‖dτ. Then

(∫ t

0

∥∥y(s)
∥∥ds)≤

[∫ t

0

(∫ τ

0

∥∥K(τ,s)
∥∥∥∥x(s)

∥∥ds)dτ]

≤
∫ t

0

(
vraisup
s∈[0,τ]

∥∥K(τ,s)
∥∥)(∫ τ

0

∥∥x(s)
∥∥ds)dτ

≤ ‖x‖∆ψ

∫ t

0
ω(τ)ψ(τ)dτ.

(2.3)

According to Lemma 2.1, ψ(t) = exp[(1/C)
∫ t

1 ω(s)ds] is a solution of the equation∫ t
1 ω(s)ψ(s)ds = Cψ(t), does not decrease, is absolutely continuous, and ψ(0) = 0. That

implies

(∫ t

0

∥∥y(s)
∥∥ds)≤ C‖x‖∆ψψ(t). (2.4)

�
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Remark 2.3. If K(·,s) has bounded variation on s, it is possible to indicate a “wider” space
∆ψ for which conditions of Theorem 2.2 are satisfied by defining function ψ as

ψ(t) = exp

[
1
C

∫ t

1

(∥∥K(τ,τ)
∥∥dτ +

∫ τ

0
ds var

s∈[0,τ]

∥∥K(τ,s)
∥∥)dτ]. (2.5)

Theorem 2.4. Let matrix K(t,s) satisfy the 
 condition with 1 < p <∞ and let C be some
positive constant. Then operator K is bounded in space ∆

p
ψ generated by

ψ(t) = exp

[
1
pC

∫ t

1

(∫ τ

0

∥∥K(τ,s)
∥∥p′

ds
)p1/p′

dτ

]
(2.6)

and ‖K‖∆p
ψ
≤ C.

Theorem 2.4 can be proved in a way similar to proof of Theorem 2.2.

Lemma 2.5. Let K : ∆
p
ψ → ∆

p
ψ (1 < p <∞) be a bounded operator and let its matrix K(t,s)

satisfy the 
 condition. Then K : ∆
p
ψ → Lp is a compact operator.

Proof. For every t ∈ [0,1], (Ky)(t) is a linear bounded functional on Lp. Let {yi} be a
sequence weakly converging to y0 in Lp. If {yi} ⊂ ∆

p
ψ and ‖yi‖∆p

ψ
≤ 1, then ‖y0‖∆p

ψ
≤ 1.

Indeed, if for some t1 ∈ [0,1], ((1/ψ(t1))
∫ t1

0 ‖y(s)‖pds)1/p > 1, then the sequence lyi =∫ 1
0 l(s)yi(s)ds does not converge to ly0, where

l(s) =
1, if s≤ t1,

0, if s > t1.
(2.7)

Hence, for almost all t ∈ [0,1], {(Kyi)(t)} converges and the set Ky is compact in
measure. Thus, for the operator K : ∆

p
ψ → Lp to be compact, it is necessary and sufficient

that the norms of Ky are equicontinuous for ‖y‖∆p
ψ
≤M. Let δ ∈ (0,1). As K : ∆

p
ψ → ∆

p
ψ

is a bounded operator,

(
1

ψ(δ)

∫ δ

0

∥∥(Ky)(s)
∥∥p
ds

)1/p

≤ ∆0. (2.8)

This implies that for any ε > 0, there exists δ1 > 0 such that if δ < δ1, then

(
∫ δ

0 ‖(Ky)(s)‖pds)1/p ≤ ε/2.
Then, from the 
 condition, there exists δ2 such that if mese ≤ δ2 for some e ⊂ [δ,1],

then (
∫
e ‖(Ky)(s)‖pds)1/p ≤ ε/2.

Finally, for e1 ⊂ [δ,1] such that mese1 ≤ min{δ1,δ2},

(∫
e1

∥∥(Ky)(s)
∥∥p
ds
)1/p

≤
(∫ δ

0

∥∥(Ky)(s)
∥∥p
ds
)1/p

+
(∫ 1

δ

∥∥(Ky)(s)
∥∥p
ds
)1/p

≤ ε. (2.9)

�

Lemma 2.6. Let {yi} → y0 in Lp (1 < p <∞) and let the sequence {(1/u)yi} be bounded in
∆
p
ψ for some continuous increasing function u, u(0) = 0. Then {yi} → y0 in ∆

p
ψ .
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Proof. We have

(∫ t

0

∥∥yi(s)∥∥p
ds
)1/p

≤ u(t)

(∫ t

0

∥∥∥∥ yi(s)u(s)

∥∥∥∥p

ds

)1/p

≤Mu(t)ψ(t). (2.10)

Thus, yi ∈ ∆
p
ψ . Beginning with some N for any t ∈ [0,1] and for any given ε > 0,

(∫ t

0

∥∥yi(s)− y0(s)
∥∥p
ds
)1/p

≤ ε. (2.11)

Hence,(∫ t

0

∥∥y0(s)
∥∥p
ds
)1/p

≤
(∫ t

0

∥∥yi(s)− y0(s)
∥∥p
ds
)1/p

+
(∫ t

0

∥∥yi(s)∥∥p
ds
)1/p

≤ ε+Mu(t)ψ(t) ≤Mu(t)ψ(t),(∫ t

0

∥∥yi(s)− y0(s)
∥∥p
ds
)1/p

≤ 2Mu(t)ψ(t),

(2.12)

beginning with some Nδ for any δ > 0, ‖y0 − yi‖∆p
ψ
< δ. Indeed, Lemma 2.5 guarantees

the existence of τ ∈ (0,1] such that for all t ∈ [0,τ],

(∫ t

0

∥∥yi(s)− y0(s)
∥∥p
ds
)1/p

≤ δψ(t). (2.13)

Let t ∈ [τ,1]. Then for ε = δψ(τ), (2.11) yields (2.13) for all t ∈ [0,1]. �

Let u : [0,1] → R be a continuous increasing function, u(0) = 0. Denote

ψ(t) = exp

[∫ t

1

1
u(τ)

(∫ τ

0

∥∥K(τ,s)
∥∥p′

ds
)p/p′

dτ

]
. (2.14)

Lemmas 2.5 and 2.6 imply the following theorem.

Theorem 2.7. Let matrix K(t,s) satisfy the 
 condition with 1 < p < ∞. And let ψ be
defined by (2.14). Then K : ∆

p
ψ → ∆

p
ψ is a compact operator and its spectral radius is equal to

zero.

3. Operator S

Denote

(
Sg y

)
(t) =

y
[
g(t)

]
if g(t) ∈ [0,1],

0 if g(t) /∈ [0,1],

(Sy)(t) = B(t)
(
Sg
)
(t).

(3.1)

In [2], it is shown that Sg is bounded in Lp if r = (sup(mesg−1(E)/mesE))1/p <∞ and
‖Sg‖Lp = r, where sup is taken on all measurable sets from [0,1].
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Let Ωm be a set of points from [0,1] for which g(t) ≥mt, β(t) is a nonincreasing ma-
jorant of function ‖B(t)‖, and

ϕ(t) = lim
mese→0

mesg−1(e)
mese

, (3.2)

where e is a closed interval containing t.
We say that operator Sg satisfies the � condition if vraisupt∈[ε,1]ϕ(t) <∞ for any

ε ∈ (0,1]vraisup
t∈[ε,1]

∥∥B(t)
∥∥ <∞, (3.3)

and there exists m∈ [0,1) such that

µm = vraisup
t∈g(Ωm)

(
β(t)pϕ(t)

)
<∞. (3.4)

Lemma 3.1. There exists nonincreasing function u : (0,1] → R such that β(t)pϕ(t) ≤ u(t)
and the function

ψ(t) =
tu(t) if t ∈ (0,1],

0 if t = 0,
(3.5)

is absolutely continuous on [0,1].

Proof. Let {ti} be a decreasing sequence, t1 = 1, ti → 0. Denote

ni = vraisup
t∈(ti+1,ti)

(
β(t)pϕ(t)

)
, u(t) = ni+1 −ni

ti+1 − ti
(t− ti) +ni, (3.6)

where t ∈ (ti+1, ti). Then β(t)pϕ(t) ≤ u(t), u increases and is absolutely continuous on
[0,1]. �

Let

νm =mu(1)
[
u(1)− 1

lnm

]
. (3.7)

Theorem 3.2. Let operator Sg satisfy the � condition and let function u satisfy conditions

of Lemma 3.1. Then Sg is bonded in ∆
p
ψ with ψ(t) = tu(t) and∥∥Sg∥∥∆p

ψ
≤ (

νm +µm
)1/p

. (3.8)

Proof. Let y ∈ ∆
p
ψ , ‖y‖∆p

ψ
= 1, and δ ∈ (0,1). Denote measures λ and µ on [δ,1] by λ(e) =∫

e β(s)pds and µ(e) = ∫
g−1(e)β(s)pds. Then by the Radon-Nikodym [2] theorem, we have∥∥∥∥∫ t

δ

∣∣(Sg y)(t)
∣∣p
ds
∥∥∥∥≤

∫
g−1([0,t])∩[δ,1]

∥∥y[g(s)
]∥∥p

dλ(s)

=
∫
g−1([0,t])∩[δ,1]

∥∥y(s)
∥∥p dµ

dλ
(s)dλ(s).

(3.9)
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Then as g(t) ≤ t,

dµ

dλ
(s) = lim

mese→0

∫
g−1(e)β(s)pds∫

e β(s)pds
≤ lim

mese→0

vraisupg−1(e)β(s)pds

vraisupe β(s)p
ϕ(s) = ϕ(s) (3.10)

or ∥∥∥∥∫ t

δ

∣∣(Sg y)(t)
∣∣p
ds
∥∥∥∥≤

∫
g−1([0,t]\Ωm)∩[δ,1]

β(s)p
∥∥y(s)

∥∥p
ϕ(s)ds

+
∫
g−1(Ωm)∩[δ,1]

β(s)p
∥∥y(s)

∥∥p
ϕ(s)ds

≤
∫ mt

0
β(s)p

∥∥y(s)
∥∥p
ϕ(s)ds+

∫ t

0

∥∥y(s)
∥∥p
µmds

≤
∫ mt

0

∥∥y(s)
∥∥p
u(s)ds+µmψ(t)p.

(3.11)

We denote function uk : (0,1] → R by uk(t) = u(ti), where ti = (2k − i)/2k, i = 0,1,2, . . . ,
2k − 1. From uk → u, it follows that∫ mt

0

∥∥y(s)
∥∥p
u(s)ds= lim

k→0

∫ mt

0

∥∥y(s)
∥∥p
uk(s)ds. (3.12)

We write function uk in the form

uk(t) =



u
(
t0
)
, if t ∈ (

t1, t0
]
,

u
(
t0
)

+
[
u
(
t1
)−u

(
t0
)]

, if t ∈ (
t2, t1

]
,

...
...

u
(
tk−2

)
+
[
u
(
tk−1

)−u
(
tk−2

)]
, if t ∈ (

tk, tk−1
]
.

(3.13)

The condition t < ti implies that
∫mt

0 ‖y(s)‖pds≤ ψp(mt) = (mt)u(mt) ≤mpu(ti)ψp(t) and

∫ mt

0

∥∥y(s)
∥∥p
u(s)ds≤

2k∑
i=1

mpu(ti)
[
u
(
ti
)−u

(
ti−1

)]
ψp(t) +u(1)mpu(1)ψp(t)

≤ ψp(t)
[∫∞

u(1)
msds+mu(1)u(1)

]
≤ ψp(t)mu(1)

[
u(1)− 1

lnm

]
,

(3.14)

simultaneously for all k. Finally,∥∥∥∥∫ t

0

∣∣(Sg y)(s)
∣∣p
ds
∥∥∥∥= lim

δ→0

∥∥∥∥∫ t

δ

∣∣(Sg y)(s)
∣∣p
ds
∥∥∥∥

≤ ψp(t)mu(1)
[
u(1)− 1

lnm

]
+ψp(t)µm

≤ ψp(t)
(
νm +µm

)
(3.15)

which proves the theorem. �
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Remark 3.3. From (3.7) and (3.8), it follows that if limm→1 < 1, then there exists function
ψ such that the norm of operator Sg : ∆

p
ψ → ∆

p
ψ is less than 1.

In some particular cases, it is possible to give less strict conditions on function ψ gen-
erating the space ∆

p
ψ . Direct calculations prove the following theorem.

Theorem 3.4. Let B(t) ≤ C1/tα and g(t) = C2tβ with β > 1. Then ‖Sg‖∆p
ψ
≤ C1/C2, where

ψ(t) = tγ, γ ≥ (αp+ β− 1)/p(β− 1). If γ > (αp+ β− 1)/p(β− 1), then the spectral radius
of Sg is equal to zero.

4. The Cauchy problem

We consider the Cauchy problem for (1.1):

(�x)(t) = f (t), x(0) = α. (4.1)

The theorems of this section are immediate corollaries of Theorems 2.2, 2.4, 2.7, 3.2,
and 3.4.

Theorem 4.1. Let matrix K(t,s) satisfy the 
 condition and let operator Sg satisfy the �
condition. Let also vraisupt∈[0,1]u(t) =∞, (µm)1/p ≤ q < 1, and let the function ψ1 be given

by (2.14). Then if C < 1 − q, the Cauchy problem (4.1) has a unique solution in ∆
p
ψ with

ψ(t) = min{ψ1(t), tu(t)} for f and α such that ( f −αA) ∈ ∆
p
ψ .

Let ω be a solution of the equation

mω
(
ω− 1

lnm

)
≤ C

p
1 − q, γ = sup

t∈[0,1]

{
u(t),ω

}
, (4.2)

where 0 ≤ q ≤ C
p
1 < 1, and u satisfies conditions of Lemma 3.1.

Theorem 4.2. Let matrix K(t,s) and operator Sg satisfy the 
 and � conditions, respec-
tively. Let vraisupt∈[0,1]u(t) <∞ and (µm)1/p ≤ q < 1. Then if q < C1, (C1 +C2) < 1, then

the Cauchy problem (4.1) has a unique solution in ∆
p
ψ with ψ(t) = min{ψ1(t), tγ} for f and

α such that ( f −αA) ∈ ∆
p
ψ .

Theorem 4.3. Let matrix K(t,s) satisfy the 
 condition, B(t) ≤ C1/tα, g(t) = C2tβ (β > 1),
and γ > (αp+ β− 1)/p(β− 1). Let also C < 1 and ψ(t) = min{ψ1(t), tγ}. Then the Cauchy
problem (4.1) has a unique solution for f and α such that ( f −αA) ∈ ∆

p
ψ .

Example 4.4. The Cauchy problem

ẋ(t) + p(t)
x
[
h(t)

]
tk

+ q(t)ẋ
(
t2)= f (t), t ∈ [0,1],

x(ξ) = 0, if h(ξ) ≤ 0,
(4.3)

where h(t) ≤ t, k > 1, and p and q are bounded functions, has a solution if
∫ t

0 | f (s)|ds≤
M exp(−t1−k). If (t−h(t)) ≥ τ > 0, then it has a solution if

∫ t
0 | f (s)|ds≤Mtγ for γ > 1.
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NONMONOTONE IMPULSE EFFECTS IN SECOND-ORDER
PERIODIC BOUNDARY VALUE PROBLEMS

IRENA RACHŮNKOVÁ AND MILAN TVRDÝ

Received 23 September 2002

We deal with the nonlinear impulsive periodic boundary value problem u′′ = f (t,u,u′),
u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u′(ti)), i= 1,2, . . . ,m, u(0) = u(T), u′(0) = u′(T). We es-
tablish the existence results which rely on the presence of a well-ordered pair (σ1,σ2) of
lower/upper functions (σ1 ≤ σ2 on [0,T]) associated with the problem. In contrast to pre-
vious papers investigating such problems, the monotonicity of the impulse functions Ji,
Mi is not required here.

1. Introduction

In recent years, the theory of impulsive differential equations has become a well-respected
branch of mathematics. This is because of its characteristic features which provide many
interesting problems that cannot be solved by applying standard methods from the the-
ory of ordinary differential equations. It can also give a natural description of many real
models from applied sciences (see the examples mentioned in [1, 2]).

In particular, starting with [7], periodic boundary value problems for nonlinear
second-order impulsive differential equations of the form (2.1), (2.2), and (2.3) have re-
ceived considerable attention; see, e.g., [1, 3, 5, 6, 8, 9, 14], where the existence results in
terms of lower and upper functions can also be found. However, all impose certain mono-
tonicity requirements on the impulse functions. In contrast to these papers, we provide
existence results using weaker conditions (2.10) and (2.11) instead of monotonicity.

Throughout the paper, we keep the following notation and conventions. For a real
valued function u defined a.e. on [0,T], we put

‖u‖∞ = sup ess
t∈[0,T]

∣∣u(t)
∣∣, ‖u‖1 =

∫ T

0

∣∣u(s)
∣∣ds. (1.1)

For a given interval J ⊂ R, let C(J) denote the set of real-valued functions which are
continuous on J . Furthermore, let C1(J) be the set of functions having continuous first
derivatives on J , and L(J) the set of functions which are Lebesgue integrable on J .

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 323–336
2000 Mathematics Subject Classification: 34B37, 34B15, 34C25
URL: http://dx.doi.org/10.1155/9775945143
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Let m∈ N and let

0 = t0 < t1 < t2 < ··· < tm < tm+1 = T (1.2)

be a division of the interval [0,T]. We denote

D = {
t1, t2, . . . , tm

}
(1.3)

and define C
1
D[0,T] as the set of functions u : [0,T] �→ R,

u(t) =



u[0](t) if t ∈ [
0, t1

]
,

u[1](t) if t ∈ (
t1, t2

]
,

...
...

u[m](t) if t ∈ (
tm,T

]
,

(1.4)

where u[i] ∈ C1[ti, ti+1] for i= 0,1, . . . ,m. Moreover, AC
1
D[0,T] stands for the set of func-

tions u ∈ C
1
D[0,T] having first derivatives absolutely continuous on each subinterval

(ti, ti+1), i= 0,1, . . . ,m. For u∈ C
1
D[0,T] and i= 1,2, . . . ,m+ 1, we write

u′(ti)= u′(ti − )= lim
t→ti−

u′(t), u′(0) = u′(0+) = lim
t→0+

u′(t), (1.5)

‖u‖D = ‖u‖∞ +‖u′‖∞. (1.6)

Note that the set C
1
D[0,T] becomes a Banach space when equipped with the norm ‖ · ‖D

and with the usual algebraic operations.
We say that f : [0,T]×R2 �→ R satisfies the Carathéodory conditions on [0,T]×R2 if

(i) for each x ∈ R and y ∈ R, the function f (·,x, y) is measurable on [0,T];
(ii) for a.e. t ∈ [0,T], the function f (t,·,·) is continuous on R2;

(iii) for each compact set K ⊂ R2, there is a function mK (t) ∈ L[0,T] such that
| f (t,x, y)| ≤mK (t) holds for a.e. t ∈ [0,T] and all (x, y) ∈ K .

The set of functions satisfying the Carathéodory conditions on [0,T]×R2 will be denoted
by Car([0,T]×R2).

Given a Banach space X and its subset M, let cl(M) and ∂M denote the closure and the
boundary of M, respectively.

Let Ω be an open bounded subset of X. Assume that the operator F : cl(Ω) �→ X is
completely continuous and Fu �= u for all u∈ ∂Ω. Then deg(I−F,Ω) denotes the Leray-
Schauder topological degree of I−F with respect to Ω, where I is the identity operator on
X. For a definition and properties of the degree, see, for example, [4] or [10].

2. Formulation of the problem and main assumptions

Here we study the existence of solutions to the following problem:

u′′ = f (t,u,u′), (2.1)

u
(
ti +

)= Ji
(
u
(
ti
))

, u′(ti +
)= Mi

(
u′(ti)), i= 1,2, . . . ,m, (2.2)

u(0) = u(T), u′(0) = u′(T), (2.3)
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where u′(ti) are understood in the sense of (1.5), f ∈ Car([0,T] × R2), Ji ∈ C(R), and
Mi ∈ C(R).

Definition 2.1. A solution of the problem (2.1), (2.2), and (2.3) is a function u∈ AC
1
D[0,T]

which satisfies the impulsive conditions (2.2), the periodic conditions (2.3), and for a.e.
t ∈ [0,T] fulfils the equation u′′(t) = f (t,u(t),u′(t)).

Definition 2.2. A function σ1 ∈ AC
1
D[0,T] is called a lower function of problem (2.1), (2.2),

and (2.3) if

σ ′′
1 (t) ≥ f

(
t,σ1(t),σ ′

1(t)
)

for a.e. t ∈ [0,T],

σ1
(
ti +

)= Ji
(
σ1
(
ti
))

, σ ′
1

(
ti +

)≥ Mi
(
σ ′

1

(
ti
))

, i= 1,2, . . . ,m,

σ1(0) = σ1(T), σ ′
1(0) ≥ σ ′

1(T).

(2.4)

Similarly, a function σ2 ∈ AC
1
D[0,T] is an upper function of problem (2.1), (2.2), and

(2.3) if

σ ′′
2 (t) ≤ f

(
t,σ2(t),σ ′

2(t)
)

for a.e. t ∈ [0,T], (2.5)

σ2
(
ti +

)= Ji
(
σ2
(
ti
))

, σ ′
2

(
ti +

)≤ Mi
(
σ ′

2

(
ti
))

, i= 1,2, . . . ,m, (2.6)

σ2(0) = σ2(T), σ ′
2(0) ≤ σ ′

2(T). (2.7)

Throughout the paper we assume

0 = t0 < t1 < t2 < ··· < tm < tm+1 = T <∞, D = {
t1, t2, . . . , tm

}
,

f ∈ Car
(
[0,T]×R

2), Ji ∈ C(R), Mi ∈ C(R), i= 1,2, . . . ,m;
(2.8)

σ1 and σ2 are, respectively, lower and upper functions of (2.1), (2.2), and (2.3),

σ1 ≤ σ2 on [0,T];
(2.9)

σ1
(
ti
)≤ x ≤ σ2

(
ti
) =⇒ Ji

(
σ1
(
ti
))≤ Ji(x) ≤ Ji

(
σ2
(
ti
))

, i= 1,2, . . . ,m; (2.10)

y ≤ σ ′
1

(
ti
) =⇒ Mi(y) ≤ Mi

(
σ ′

1

(
ti
))

,

y ≥ σ ′
2

(
ti
) =⇒ Mi(y) ≥ Mi

(
σ ′

2

(
ti
))

, i= 1,2, . . . ,m.
(2.11)

Remark 2.3. If Mi(0) = 0 for i = 1,2, . . . ,m and r1 ∈ R is such that Ji(r1) = r1 for i =
1,2, . . . ,m and

f
(
t,r1,0

)≤ 0 for a.e. t ∈ [0,T], (2.12)

then σ1(t) ≡ r1 on [0,T] is a lower function of problem (2.1), (2.2), and (2.3). Similarly,
if r2 ∈ R is such that Ji(r2) = r2 for all i= 1,2, . . . ,m and

f
(
t,r2,0

)≥ 0 for a.e. t ∈ [0,T], (2.13)

then σ2(t) ≡ r2 is an upper function of problem (2.1), (2.2), and (2.3).
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3. A priori estimates

At the beginning of this section, we introduce a class of auxiliary problems and prove
uniform a priori estimates for their solutions.

Take d ∈ R, f̃ ∈ Car([0,T]×R2), J̃i ∈ C(R), and M̃i ∈ C(R), i= 1,2, . . . ,m, such that

f̃ (t,x, y) < f
(
t,σ1(t),σ ′

1(t)
)

for a.e. t ∈ [0,T], all x ∈ (−∞,σ1(t)
)
,

and all y ∈ R such that
∣∣y− σ ′

1(t)
∣∣≤ σ1(t)− x

σ1(t)− x+ 1
;

f̃ (t,x, y) > f
(
t,σ2(t),σ ′

2(t)
)

for a.e. t ∈ [0,T], all x ∈ (
σ2(t),∞)

,

and all y ∈ R such that
∣∣y− σ ′

2(t)
∣∣≤ x− σ2(t)

x− σ2(t) + 1
;

(3.1)

J̃i(x) < Ji
(
σ1
(
ti
))

if x < σ1
(
ti
)
,

J̃i(x) = Ji(x) if x ∈ [
σ1
(
ti
)
,σ2

(
ti
)]

, (i= 1,2, . . . ,m);

J̃i(x) > Ji
(
σ2
(
ti
))

if x > σ2
(
ti
)
,

(3.2)

M̃i(y) ≤ Mi
(
σ ′

1

(
ti
))

if y ≤ σ ′
1

(
ti
)
,

M̃i(y) ≥ Mi
(
σ ′

2

(
ti
))

if y ≥ σ ′
2

(
ti
)
,

(i= 1,2, . . . ,m); (3.3)

σ1(0) ≤ d ≤ σ2(0), (3.4)

and consider an auxiliary Dirichlet problem

u′′ = f̃ (t,u,u′), (3.5)

u
(
ti +

)= J̃i
(
u
(
ti
))

, u′(ti +
)= M̃i

(
u′(ti)), i= 1,2, . . . ,m, (3.6)

u(0) = u(T) = d. (3.7)

Lemma 3.1. Let (2.8), (2.9), and (2.10) and (3.1), (3.2), (3.3), and (3.4) hold. Then every
solution u of (3.5), (3.6), and (3.7) satisfies

σ1 ≤ u≤ σ2 on [0,T]. (3.8)

Proof. Let u be a solution of (3.5), (3.6), and (3.7). Put v(t) = u(t)− σ2(t) for t ∈ [0,T].
Then, by (3.4), we have

v(0) = v(T) ≤ 0. (3.9)

So, it remains to prove that v ≤ 0 on (0,T).

Part (i). First, we show that v does not have a positive local maximum at any point of
(0,T) \D. Assume, on the contrary, that there is α∈ (0,T) \D such that v has a positive
local maximum at α, that is,

v(α) > 0, v′(α) = 0. (3.10)
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This guarantees the existence of β such that [α,β] ⊂ (0,T) \D and

v(t) > 0,
∣∣v′(t)∣∣ < v(t)

v(t) + 1
< 1 (3.11)

for t ∈ [α,β]. Using (2.5), (3.1), and (3.11), we get

v′′(t) = u′′(t)− σ ′′
2 (t) = f̃

(
t,u(t),u′(t)

)− σ ′′
2 (t)

> f
(
t,σ2(t),σ ′

2(t)
)− σ ′′

2 (t) ≥ 0
(3.12)

for a.e. t ∈ [α,β]. Hence,

0 <
∫ t

α
v′′(s)ds= v′(t) (3.13)

for all t ∈ (α,β]. This contradicts that v has a local maximum at α.

Part (ii). Now, assume that there is t j ∈ D such that

max
t∈(t j−1,t j]

v(t) = v
(
t j
)
> 0. (3.14)

Then v′(t j) ≥ 0. By (3.2) and (3.3), we get

J̃ j
(
u
(
t j
))

> J j
(
σ2
(
t j
))

, M̃ j
(
u′(t j))≥ M j

(
σ ′

2

(
t j
))
. (3.15)

By (3.6) and (2.6), the relations

v
(
t j +

)
> 0, v′

(
t j +

)≥ 0 (3.16)

follow. If v′(t j+) > 0, then there is β ∈ (t j , t j+1) such that

v′(t) > 0 on
(
t j ,β

]
. (3.17)

If v′(t j+) = 0, then we can find β such that (t j ,β] ⊂ (0,T) \ D and (3.11) is satisfied on
(t j ,β]. Consequently, (3.17) is valid in this case as well. As by Part (i) v′ cannot change its
sign on (t j , t j+1), in both these cases we have

v′(t) ≥ 0 on
(
t j , t j+1

)
. (3.18)

Now, by (3.16),(3.17), and (3.18), we get

max
t∈(t j ,t j+1]

v(t) = v
(
t j+1

)
> 0. (3.19)

Continuing inductively, we get v(T) > 0 contrary to (3.9).
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Part (iii). Finally, assume that

sup
t∈(t j ,t j+1]

v(t) = v
(
t j +

)
> 0 (3.20)

for some t j ∈ D. In view of (3.2), this is possible only if

J̃ j
(
u
(
t j
))

> J j
(
σ2
(
t j
))
. (3.21)

If u(t j) ∈ [σ1(t j),σ2(t j)], then by (3.2) and (2.10), we have

J̃ j
(
u
(
t j
))= J j

(
u
(
t j
))≤ J j

(
σ2
(
t j
))

, (3.22)

contrary to (3.21). If u(t j) < σ1(t j), then by (3.2), (2.9), and (2.10), we get

J̃ j
(
u
(
t j
))

< J j
(
σ1
(
t j
))≤ J j

(
σ2
(
t j
))

, (3.23)

again a contradiction to (3.21). Therefore, u(t j) > σ2(t j), that is, v(t j) > 0. Further, (3.20)
gives v′(t j+) ≤ 0. If v′(t j+) = 0, then, as in Part (ii), we get (3.17), which contradicts
(3.20). Therefore, v′(t j+) < 0, which yields, with (3.3), that v′(t j) < 0. Thus, in view of
Part (i), we deduce that v′ ≤ 0 on (t j−1, t j), that is, supt∈(t j−1,t j ] v(t) = v(t j−1+) > 0. Con-
tinuing inductively, we get v(0) > 0, contradicting (3.9).

To summarize, we have proved that v ≤ 0 on [0,T] which means that u≤ σ2 on [0,T].
If we put v = σ1 − u on [0,T] and use the properties of σ1 instead of σ2, we can prove
σ1 ≤ u on [0,T] by an analogous argument. �

In the proof of Theorem 4.1, we need a priori estimates for derivatives of solutions. To
this aim we prove the following lemma.

Lemma 3.2. Assume that r ∈ (0,∞) and that

h∈ L[0,T] is nonnegative a.e. on [0,T], (3.24)

ω ∈ C
(
[1,∞)

)
is positive on [1,∞),

∫∞

1

ds

ω(s)
=∞. (3.25)

Then there exists r∗ ∈ (1,∞) such that the estimate

‖u′‖∞ ≤ r∗ (3.26)

holds for each function u∈ AC
1
D[0,T] satisfying ‖u‖∞ ≤ r and∣∣u′′(t)

∣∣≤ ω
(∣∣u′(t)

∣∣)(∣∣u′(t)
∣∣+h(t)

)
for a.e. t ∈ [0,T], for

∣∣u′(t)
∣∣ > 1. (3.27)

Proof. Let u ∈ AC
1
D[0,T] satisfy (3.27) and let ‖u‖∞ ≤ r. The mean value theorem im-

plies that there are ξi ∈ (ti, ti+1) such that

∣∣u′(ξi)∣∣ < 2r
∆

+ 1, i= 1,2, . . . ,m, (3.28)
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where

∆= min
i=0,1,...,m

(
ti+1 − ti

)
. (3.29)

Put

c0 = 2r
∆

+ 1, ρ= ‖u′‖∞. (3.30)

By replacing u by −u if necessary, we may assume that ρ > c0 and

ρ = sup
t∈(t j ,t j+1]

u′(t) for some j ∈ {0,1, . . . ,m}. (3.31)

Thus we have

ρ = u′(α) for some α∈ (
t j , t j+1

]
(3.32)

or

ρ = u′(α+) with α= t j . (3.33)

By (3.28), there is β ∈ (t j , t j+1), β �= α, such that u′(β) = c0 and u′(t) ≥ c0 for all t lying
between α and β. Assume that (3.32) occurs. There are two cases to consider: t j < β < α≤
t j+1 or t j < α < β < tj+1.
Case 1. Let t j < β < α≤ t j+1. Since u′(t) > 1 on [β,α], (3.27) gives

u′′(t) ≤ ω
(
u′(t)

)(
u′(t) +h(t)

)
for a.e. t ∈ [β,α], (3.34)

and hence ∫ ρ

c0

ds

ω(s)
=
∫ α

β

u′′(t)
ω
(
u′(t)

)dt ≤ ∫ α

β
u′(t)dt+‖h‖1 ≤ 2r +‖h‖1. (3.35)

On the other hand, by (3.25), there is r∗ > c0 such that∫ r∗

c0

ds

ω(s)
> 2r +‖h‖1, (3.36)

which is possible only if ρ < r∗, that is, if (3.26) holds.
Case 2. Let t j < α < β < tj+1. By (3.27), we get

−u′′(t) ≤ ω
(
u′(t)

)(
u′(t) +h(t)

)
for a.e. t ∈ [α,β],∫ ρ

c0

ds

ω(s)
=−

∫ β

α

u′′(t)
ω
(
u′(t)

)dt ≤ 2r +‖h‖1,
(3.37)

so the inequality (3.26) follows.
If (3.33) occurs, a similar argument to that in Case 2 applies and gives (3.26) as well.

�
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Remark 3.3. Notice that the condition∫∞

1

ds

ω(s)
=∞ (3.38)

in (3.25) can be weakened. In particular, the estimate (3.26) holds whenever r∗ ∈ (0,∞)
is such that ∫ r∗

c0

ds

ω(s)
> 2r +‖h‖1. (3.39)

4. Main results

The main existence result for problem (2.1), (2.2), and (2.3) is provided by the following
theorem.

Theorem 4.1. Assume that (2.8), (2.9), (2.10), and (2.11) hold. Further, let∣∣ f (t,x, y)
∣∣≤ ω

(|y|)(|y|+h(t)
)

for a.e. t ∈ [0,T] and all x ∈ [
σ1(t),σ2(t)

]
,|y| > 1,

(4.1)

where h andω fulfil (3.24) and (3.25). Then the problem (2.1), (2.2), and (2.3) has a solution
u satisfying (3.8).

Before proving this theorem, we prove the next key proposition where we restrict our-
selves to the case that f is bounded by a Lebesgue integrable function.

Proposition 4.2. Assume that (2.8), (2.9), (2.10), and (2.11) hold. Further, letm∈ L[0,T]
be such that∣∣ f (t,x, y)

∣∣≤m(t) for a.e. t ∈ [0,T] and all (x, y) ∈ [
σ1(t),σ2(t)

]×R. (4.2)

Then the problem (2.1), (2.2), and (2.3) has a solution u fulfilling (3.8).

Proof
Step 1. We construct a proper auxiliary problem.

Let ∆ be given by (3.29). Put

c = ‖m‖1 +

∥∥σ1
∥∥∞ +

∥∥σ2
∥∥∞

∆
+
∥∥σ ′

1

∥∥∞ +
∥∥σ ′

2

∥∥∞, (4.3)

and for t ∈ [0,T] and (x, y) ∈ R2, define

α(t,x) =


σ1(t) if x < σ1(t),

x if σ1(t) ≤ x ≤ σ2(t),

σ2(t) if x > σ2(t),

(4.4)

β(y) =
y if |y| ≤ c,

c sgn y if |y| > c.
(4.5)
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For a.e. t ∈ [0,T] and all (x, y) ∈ R2, ε∈ [0,1], define functions

ωk(t,ε) = sup
y∈[σ ′

k(t)−ε,σ ′
k(t)+ε]

∣∣ f (t,σk(t),σ ′
k(t)

)− f (t,σk(t), y
)∣∣, k = 1,2, (4.6)

J̃i(x) = x+ Ji
(
α
(
ti,x

))−α
(
ti,x

)
,

M̃i(y) = y + Mi
(
β(y)

)−β(y),
i= 1,2, . . . ,m, (4.7)

f̃ (t,x, y) =


f
(
t,σ1(t), y

)−ω1

(
t,

σ1(t)− x

σ1(t)− x+ 1

)
− σ1(t)− x

σ1(t)− x+ 1
if x < σ1(t),

f (t,x, y) if σ1(t) ≤ x ≤ σ2(t),

f
(
t,σ2(t), y

)
+ω2

(
t,

x− σ2(t)
x− σ2(t) + 1

)
+

x− σ2(t)
x− σ2(t) + 1

if x > σ2(t).

(4.8)

We see that ωk ∈ Car([0,T] × [0,1]) are nonnegative and nondecreasing in the second

variable and ωk(0) = 0 for k = 1,2. Consequently, f̃ ∈ Car([0,T]×R2). Furthermore, J̃i,
M̃i ∈ C(R), i= 1,2, . . . ,m. The auxiliary problem is (3.5), (3.6), and

u(0) = u(T) = α
(
0,u(0) +u′(0)−u′(T)

)
. (4.9)

Step 2. We prove that problem (3.5), (3.6), (4.9) is solvable.
Let

G(t,s) =


t(s−T)

T
if 0 ≤ t ≤ s≤ T ,

s(t−T)
T

if 0 ≤ s < t ≤ T ,

G1(t,s) =


− t

T
if 0 ≤ t ≤ s≤ T ,

T − t

T
if 0 ≤ s < t ≤ T.

(4.10)

Define an operator F̃ : C
1
D[0,T] �→ C

1
D[0,T] by

(F̃u)(t) = α
(
0,u(0) +u′(0)−u′(T)

)
+
∫ T

0
G(t,s) f̃

(
s,u(s),u′(s)

)
ds

+
m∑
i=1

G1
(
t, ti

)(̃
Ji
(
u
(
ti
))−u

(
ti
))

+
m∑
i=1

G
(
t, ti

)(
M̃i

(
u′(ti))−u′(ti)). (4.11)

As in [13, Lemma 3.1], we get that F̃ is completely continuous and u is a solution of (3.5),
(3.6), (4.9) if and only if u is a fixed point of F̃.

Denote by I the identity operator on C
1
D[0,T] and consider the parameter system of

operator equations

(I−λF̃)u= 0, λ∈ [0,1]. (4.12)

For R ∈ (0,∞), define B(R) = {u ∈ C
1
D[0,T] : ‖u‖D < R}. By (4.2), (4.4), (4.5), (4.6),

(4.7), (4.8), and (4.11), we can find R0 ∈ (0,∞) such that u ∈ B(R0) for each λ ∈ [0,1]
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and each solution u of (4.12). So, for each R ≥ R0, the operator I−λF̃ is a homotopy on
cl(B(R)) × [0,1] and its Leray-Schauder degree deg(I−λF̃,B(R)) has the same value for
each λ∈ [0,1]. Since deg(I,B(R)) = 1, we conclude that

deg
(

I−F̃,B(R)
)= 1 for R∈ [

R0,∞)
. (4.13)

By (4.13), there is at least one fixed point of F̃ in B(R). Hence there exists a solution of the
auxiliary problem (3.5), (3.6), (4.9).
Step 3. We find estimates for solutions of the auxiliary problem.

Let u be a solution of (3.5), (3.6), (4.9). We derive an estimate for ‖u‖∞. By (4.7), (4.8),

and (2.11), we obtain that f̃ , J̃i, M̃i, i= 1,2, . . . ,m, satisfy (3.1), (3.2), and (3.3). Moreover,
in view of (4.4), we have

σ1(0) ≤ α
(
0,u(0) +u′(0)−u′(T)

)≤ σ2(0). (4.14)

Thus u satisfies (3.8) by Lemma 3.1.
We find an estimate for ‖u′‖∞. By the mean value theorem and (3.8), there are ξi ∈

(ti, ti+1) such that

∣∣u′(ξi)∣∣≤
∥∥σ1

∥∥∞ +
∥∥σ2

∥∥∞
∆

, i= 1,2, . . . ,m. (4.15)

Moreover, by (3.8) and (4.8), u satisfies (2.1) for a.e. t ∈ [0,T]. Therefore, integrating
(2.1) and using (4.2), (4.3), and (4.15), we obtain

‖u′‖∞ ≤ ∣∣u′(ξi)∣∣+‖m‖1 < c. (4.16)

Hence, by (4.7) and (4.9), we see that u fulfils (2.2) and u(0) = u(T) (i.e., the first condi-
tion from (2.3) is satisfied).
Step 4. We verify that u fulfils the second condition in (2.3).

We must prove that u′(0) = u′(T). By (4.9), this is equivalent to

σ1(0) ≤ u(0) +u′(0)−u′(T) ≤ σ2(0). (4.17)

Suppose, on the contrary, that (4.17) is not satisfied. Let, for example,

u(0) +u′(0)−u′(T) > σ2(0). (4.18)

Then, by (4.4), we have α(0,u(0) +u′(0)−u′(T)) = σ2(0). Together with (2.7) and (4.9),
this yields

u(0) = u(T) = σ2(0) = σ2(T). (4.19)
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Inserting (4.19) into (4.18), we get

u′(0) > u′(T). (4.20)

On the other hand, (4.19) together with (3.8) and (4.20) implies that

σ ′
2(0) ≥ u′(0) > u′(T) ≥ σ ′

2(T), (4.21)

a contradiction to (2.7).
If we assume that u(0) +u′(0)−u′(T) < σ1(0), we can argue similarly and again derive

a contradiction to (2.7).
So, we have proved that (4.17) is valid, which means that u′(0) = u′(T). Consequently,

u is a solution of (2.1), (2.2), and (2.3) satisfying (3.8). �

Proof of Theorem 4.1. Put

c = r∗ +
∥∥σ ′

1

∥∥∞ +
∥∥σ ′

2

∥∥∞, (4.22)

where r∗ ∈ (0,∞) is given by Lemma 3.2 for r = ‖σ1‖∞ + ‖σ2‖∞. For a.e. t ∈ [0,T] and
all (x, y) ∈ R2, define a function

g(t,x, y) =


f (t,x, y) if |y| ≤ c,(
2− |y|

c

)
f (t,x, y) if c < |y| < 2c,

0 if |y| ≥ 2c.

(4.23)

Then σ1 and σ2 are, respectively, lower and upper functions of the auxiliary problem (2.2),
(2.3), and

u′′ = g(t,u,u′). (4.24)

There exists a function m∗ ∈ L[0,T] such that

∣∣ f (t,x, y)
∣∣≤m∗(t) (4.25)

for a.e. t ∈ [0,T] and all (x, y) ∈ [σ1(t),σ2(t)]× [−2c,2c]. Hence

∣∣g(t,x, y)
∣∣≤m∗(t) for a.e. t ∈ [0,T], all (x, y) ∈ [

σ1(t),σ2(t)
]×R. (4.26)

Since g ∈ Car([0,T] ×R2), we can apply Proposition 4.2 to problem (4.24), (2.2), (2.3)
and get that this problem has a solution u fulfilling (3.8). Hence ‖u‖∞ ≤ r. Moreover, by
(4.1), u satisfies (3.27). Therefore, by Lemma 3.2, ‖u′‖∞ ≤ r∗ ≤ c. This implies that u is a
solution of (2.1), (2.2), and (2.3). �

The next simple existence criterion, which follows from Theorem 4.1 and Remark 2.3,
extends both [5, Theorem 4] and [13, Corollary 3.4].
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Corollary 4.3. Let (2.8) hold. Furthermore, assume that

(i) Mi(0) = 0 and yMi(y) ≥ 0 for y ∈ R and i= 1,2, . . . ,m;
(ii) there are r1,r2 ∈ R such that r1 < r2, f (t,r1,0) ≤ 0 ≤ f (t,r2,0) for a.e. t ∈ [0,T],

Ji(r1) = r1, Ji(x) ∈ [r1,r2] if x ∈ [r1,r2], Ji(r2) = r2, i= 1,2, . . . ,m;
(iii) there are h and ω satisfying (3.24) and (3.25) with σ1(t) ≡ r1 and σ2(t) ≡ r2 and

such that (4.1) holds.

Then the problem (2.1), (2.2), and (2.3) has a solution u fulfilling r1 ≤ u≤ r2 on [0,T].

Remark 4.4. Let σ1 < σ2 on [0,T] and σ1(ti+) < σ2(ti+) for i = 1,2, . . . ,m. Having G and
G1 from the proof of Proposition 4.2, we define an operator F : C

1
D[0,T] �→ C

1
D[0,T] by

(Fu)(t) = u(0) +u′(0)−u′(T) +
∫ T

0
G(t,s) f

(
s,u(s),u′(s)

)
ds

+
m∑
i=1

G1
(
t, ti

)(
Ji
(
u
(
ti
))−u

(
ti
))

+
m∑
i=1

G
(
t, ti

)(
Mi

(
u′(ti))−u′(ti)). (4.27)

Let r∗ be given by Lemma 3.2 for r = ‖σ1‖∞ +‖σ2‖∞. Define a set

Ω= {
u∈ C

1
D[0,T] : ‖u′‖∞ < r∗, σ1(t) < u(t) < σ2(t) for t ∈ [0,T],

σ1
(
ti +

)
< u

(
ti +

)
< σ2

(
ti +

)
for i= 1,2, . . . ,m

}
.

(4.28)

As in [13, Lemma 3.1], we get that F is completely continuous and u is a solution of
(2.1), (2.2), and (2.3) if and only if u is a fixed point of F. The proofs of Theorem 4.1
and Proposition 4.2 yield the following result about the Leray-Schauder degree of the
operator I−F with respect to Ω.

Corollary 4.5. Let σ1 < σ2 on [0,T] and σ1(ti+) < σ2(ti+) for i = 1,2, . . . ,m, and let the
assumptions of Theorem 4.1 be satisfied. Further, assume that F and Ω are defined by (4.27)
and (4.28), respectively. If Fu �= u for each u∈ ∂Ω, then

deg(I−F,Ω) = 1. (4.29)

Proof. Consider c and g from the proof of Theorem 4.1 and define J̃i, M̃i, i= 1,2, . . . ,m,

and f̃ by (4.7) and (4.8), where we put g instead of f . Define F̃ by (4.11) and put Ω1 =
{u ∈ Ω : σ1(0) < u(0) + u′(0) − u′(T) < σ2(0)}. Suppose that Fu �= u for each u ∈ ∂Ω.
We have

F = F̃ on cl
(
Ω1

)
. (4.30)

and

(Fu= u, u∈Ω) =⇒ u∈Ω1. (4.31)
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By the proof of Proposition 4.2, we have that each fixed point u of F̃ satisfies (3.8) and
consequently ‖u‖∞ ≤ r. Hence, by (4.1), (4.8), and (4.23),∣∣u′′(t)

∣∣= ∣∣g(t,u(t),u′(t)
)∣∣≤ ω

(∣∣u′(t)
∣∣)(∣∣u′(t)

∣∣+h(t)
)

(4.32)

for a.e. t ∈ [0,T] and for |u′(t)| > 1. Therefore Lemma 3.2 implies that ‖u′‖∞ ≤ r∗. So,
by (2.3), u∈ cl(Ω1). Now, choose R in (4.13) such that B(R) ⊃Ω. Then, by the excision
property of the degree, we get

deg(I−F,Ω) = deg
(

I−F,Ω1
)= deg

(
I−F̃,Ω1

)= deg
(

I−F̃,B(R)
)= 1, (4.33)

wherefrom, taking into account (4.30), we obtain (4.29). �

Remark 4.6. Following the ideas from [12, 13], the evaluation of deg(I−F,Ω) enables us
to prove the existence of solutions to problem (2.1), (2.2), and (2.3) also for nonordered
lower/upper functions. This will be included in our next paper [11].
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NONUNIQUENESS THEOREM FOR A SINGULAR
CAUCHY-NICOLETTI PROBLEM

JOSEF KALAS

Received 20 September 2002

The problem of nonuniqueness for a singular Cauchy-Nicoletti boundary value problem
is studied. The general nonuniqueness theorem ensuring the existence of two different
solutions is given such that the estimating expressions are nonlinear, in general, and de-
pend on suitable Lyapunov functions. The applicability of results is illustrated by several
examples.

1. Introduction

The nonuniqueness of a regular or singular Cauchy problem for ordinary differential
equations is studied in several papers such as [3, 4, 5, 13, 14, 15, 16, 17]. Most of these
results can also be found in the monograph [1]. The uniqueness of solutions of Cauchy
initial value problem for ordinary differential equations with singularity is investigated
in [7, 8, 9, 12]. The topological structure of solution sets to a large class of boundary
value problems for ordinary differential equations is studied in [2]. First results on the
nonuniqueness for a singular Cauchy-Nicoletti boundary value problem are given in [10,
11, 12] by Kiguradze, where sufficient conditions for the nonuniqueness are written in the
form of one-sided inequalities for the components in the right-hand side f (t,x1, . . . ,xn)
of the corresponding equation. An expression for the estimation of the jth component
f j(t,x1, . . . ,xn) of f depends on t and xj and is linear in |xj|.

In [6], we studied the nonuniqueness for a singular Cauchy problem. Our criteria in-
volve vector Lyapunov functions and the estimations need not be linear. The present pa-
per deals with the nonuniqueness of the singular Cauchy-Nicoletti problem and extends
the results of [6] to this more general problem.

Supposing −∞ ≤ a < A ≤ ∞, b > 0, we will use the following notations throughout
the paper: Rk and R+ denote k-dimensional real Euclidean space and the interval [0,∞),
respectively. | · | is used for the notation of Hölder’s 1-norm (the sum of the absolute val-
ues of components). x = (x1, . . . ,xn) denotes a variable vector from Rn with components
x1, . . . ,xn, while x0 = (x01, . . . ,x0n) stands for a fixed vector from Rn with components
x01, . . . ,x0n. N is equal to the set {1, . . . ,n}. l denotes a fixed number from the set {1, . . . ,n}.

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 337–348
2000 Mathematics Subject Classification: 34B15
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i1, i2, . . . , il are fixed integers such that 1 ≤ i1 < i2 < ··· < il ≤ n. I is set to be equal to
{i1, . . . , il}. Prx denotes a projection of x such that Prx = (xi1 , . . . ,xil), while Pr*x denotes
a complementary projection to Prx. Clearly, Pr*x = (xj1 , . . . ,xjn−l), where 1 ≤ j1 < ··· <
jn−l ≤ n, {i1, . . . , il}∩{ j1, . . . , jn−l} =∅. Rk

α,β;b(x0) and R̃k
a,A are used for the notation of the

set {(t,x) ∈ Rk+1 : α < t < β,|x− x0| ≤ b} and the set {(t,x) ∈ Rk+1 : a < t < A, x ∈ Rk},
respectively. The symbol R̂n

a,A will be used for the set {(t,x) ∈ Rn+1 : a ≤ t ≤ A, x ∈ Rn}.
∆(α,β) denotes the interval (min(α,β),max(α,β)).

The notation C[Γ ,Ω] is used for the notation of the class of all continuous mappings
Γ → Ω. AC[[a,A],Rk] and ÃC[[a,A],Rk] denote the class of all absolutely continuous
mappings [a,A] → Rk and the class of all mappings from C[[a,A],Rk] which are abso-
lutely continuous on any interval [α,β], where a < α < β < A, respectively. The class of
all Lebesgue-integrable mappings [a,A] → R+ is denoted by L[[a,A],R+]. �τ[R̂n

a,A,R+k]

stands for the class of all functions V(t,x) : R̂n
a,A → R+k with the following property:

V(t,·) is uniformly continuous, and if a < α < β < A, τ �∈ [α,β], then V(t,x(t)) is
absolutely continuous on [α,β] for any absolutely continuous function x : [α,β] → Rn.
Kσ1,...,σp[R̂

k
a,A,Rm] denotes the class of all mappings R̂k

a,A → Rm which satisfy Carathéodory

conditions on Rk
α,β;ρ(0) for any α,β,a ≤ α < β ≤ A, σj �∈ [α,β]( j = 1, . . . , p), ρ ∈ (0,∞),

σ1, . . . ,σp being numbers from [a,A]. N0(a,A;τ1, . . . ,τn) is used for the notation of the
class {Λ = (λi j(t))ni, j=1 : λi j ∈ L[[a,A],R+]} such that the system of differential inequali-
ties |x′

i (t)| ≤
∑n

j=1 λi j(t)|xj(t)|, t ∈ [a,A], i ∈ N , possesses no nontrivial solution x(t) =
(x1(t), . . . ,xn(t)) ∈ AC[[a,A],Rn] satisfying xi(τi) = 0 (i= 1, . . . ,n).

The fundamental role in the proof of our main theorem will be played by the following
theorem by Kiguradze, which is adapted from [12] (see also [10]) in a simplified form.

Kiguradze Theorem . Let a≤τi≤A, x̂0i∈R for i= 1, . . . ,n. Suppose that f ∈Kσ1,...,σp[R̂
n
a,A,

Rn]. Assume that the components fi of f satisfy

fi(t,x)sgn
[(
t− τi

)(
xi − x̂0i

)]≤ n∑
j=1

λi j(t)
∣∣xj∣∣+µi(t) (i= 1, . . . ,n) (1.1)

for (t,x) = (t,x1, . . . ,xn) ∈ R̃n
a,A, where x̂0i = 0 if τi ∈ {σ1, . . . ,σp}. Suppose that Λ(t) =

(λi j(t))ni, j=1 ∈N0(a,A;τ1, . . . ,τn), µi ∈ L[[a,A],R+]. Then the Cauchy-Nicoletti problem

x′ = f (t,x), xi
(
τi
)= 0 (i= 1, . . . ,n) (1.2)

has at least one solution x(t) = (x1(t), . . . ,xn(t)) ∈AC[[a,A],Rn].

2. Results

Consider a Cauchy-Nicoletti boundary value problem

x′ = f (t,x), xi
(
ti
)= x0i (i= 1, . . . ,n), (2.1)

where f (t,x) = ( f1(t,x1, . . . ,xn), . . . , fn(t,x1, . . . ,xn)), f ∈ Kσ1,...,σp[R̂
n
a,A,Rn], x0i ∈ R, and

ti ∈ [a,A] (i∈N).
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Theorem 2.1. Suppose that there are numbers ci ∈ R (i ∈ N), Bi ∈ [a,A] \ {ti,σ1, . . . ,σp}
(i∈ I), a matrix function Λ= (λi j)ni, j=1 ∈N0(a,A;τ1, . . . ,τn) and functions µi∈L[[a,A],R+]
(i∈N) such that ci = x0i for i∈N \ I and

fi(t,x)
[

sgn
(
t− τi

)(
xi − ci

)]≤ n∑
j=1

λi j(t)
∣∣xj∣∣+µi(t) (i∈N) (2.2)

holds for (t,x) = (t,x1, . . . ,xn) ∈ R̃
n
a,A, where τi = ti or τi = Bi whenever i ∈ N \ I or i ∈ I ,

respectively.
Assume that

(i) there exist vector functions gi = (gi1, . . . ,giki) ∈ Ka,A,ti,Bi[R̂
ki
a,A,Rki] (i ∈ I) such that

sgn(t− ti)gi j(t,u1, . . . ,uj−1,·,uj , . . . ,uki) is nondecreasing for j = 1, . . . ,ki and there
is a solution ϕi(t) = (ϕi1(t), . . . ,ϕiki(t)) of

u′
i = gi

(
t,u1, . . . ,uki

)
(2.3)

satisfying

ϕi(t) > 0 for t ∈ ∆
(
ti,Bi

)
, lim

t→ti
ϕi(t) = 0, liminf

t→Bi

ϕi(t) > 0 (2.4)

for i∈ I ;
(ii) Vi(t,x) = (Vi1(t,x), . . . ,Viki(t,x)) ∈ �ti[R̂

n
a,A,R+ki] (i∈ I) are such that there exists

y0 ∈ Rl with the property

sup
{
Vij

(
Bi, y

)
: y ∈ R

n,Pr y = y0
}
< liminf

t→Bi

ϕi j(t)
(
j = 1, . . . ,ki

)
(2.5)∣∣Vi(t,x)

∣∣≥Ψi
(∣∣xi − zi(t)

∣∣) for t ∈ ∆
(
ti,Bi

)
, (2.6)

where Ψi ∈ C[R+,R+], zi ∈ C[(a,A),R] are such that

Ψi(0) = 0, Ψi(u) > 0 for u > 0, lim
t→ti

zi(t) = x0i (2.7)

for i∈ I ;
(iii) there exist positive functions εik ∈ C[(a,A),R+] (i∈ I ;k = 1, . . . ,ki) such that

sgn
(
Bi − ti

)
V ′
i j

(
t,x(t)

)
≥ sgn

(
Bi − ti

)
gi j
(
t,ϕi1(t), . . . ,ϕi, j−1(t),Vij

(
t,x(t)

)
,ϕi, j+1(t), . . . ,ϕiki(t)

) (2.8)

holds for i ∈ I , j = 1, . . . ,ki, and for any solution x(t) of (2.1) a.e. on any interval
(αi1,αi2) ⊆ ∆(ti,Bi) for which

Vik
(
t,x(t)

)
< ϕik(t) + εik(t) on

(
αi1,αi2

) (
k = 1, . . . ,ki

)
,

Vij
(
t,x(t)

)
> ϕij(t) on

(
αi1,αi2

)
.

(2.9)

Then the Cauchy-Nicoletti boundary value problem (2.1) has at least two different
solutions on [a,A], either of which satisfies Vi(t,x(t)) ≤ ϕi(t) for t ∈ ∆(ti,Bi) and
i∈ I .
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Proof. Without loss of generality, it can be assumed that I = {1, . . . , l},

Prx = (
x1, . . . ,xl

)
, Pr*x = (

xl+1, . . . ,xn
)
. (2.10)

For any i∈ I and j ∈ {1, . . . ,ki}, denote

Li j = liminf
t→Bi

ϕi j(t), Si j = sup
{
Vij

(
Bi, y

)
: y ∈ R

n,Pr y = y0
}
. (2.11)

According to (2.5) and to the uniform continuity of Vij(Bi,·), we have a relation

Vij
(
Bi, y∗

)≤Vij
(
Bi, y

)
+Vij

(
Bi, y∗

)−Vij
(
Bi, y

)
≤ 1

2

(
Li j + Si j

)
+

1
4

(
Li j − Si j

)= 3
4
Li j +

1
4
Si j < Li j

(2.12)

for y ∈ Rn, Pr y = y0, and for y∗ ∈ Rn sufficiently close to y. Hence it can be supposed
without loss of generality that y0 �= Prx0.

Further, the uniform continuity of Vij(Bi,·) implies that the inequality

sup
{
Vij

(
Bi, y

)
: y ∈ R

n,Pr y = y0 − λ
(
y0 −Prx0

)}
< liminf

t→Bi

ϕi j(t)
(
i∈ I ; j = 1, . . . ,ki

)
(2.13)

holds provided that λ > 0 is sufficiently small. Therefore, we can choose x̃1, x̃2 ∈ Rl, x̃1 �=
x̃2, such that

max
k=1,2

[
sup

{
Vij

(
Bi, y

)
: y ∈ R

n,Pr y = x̃k
}]

< liminf
t→Bi

ϕi j(t)
(
i= 1, . . . , l; j = 1, . . . ,ki

)
.

(2.14)
Choose ξ̃ ∈ {x̃1, x̃2} arbitrary. Put ξ = x0 − (ξ̃,Pr*x0), X = x− x0 + ξ, and f ∗(t,X) =

f (t,x0 +X − ξ) for (t,X) = (t,X1, . . . ,Xn) ∈ R̂n
a,A.

Clearly f ∗ ∈ Kσ1,...,σp[R̂
n
a,A,Rn]. By using (2.2), we obtain

f ∗i (t,X)sgn
[(
t− τi

)(
Xi + ξ̃i − ci

)]≤ l∑
j=1

λi j(t)
∣∣Xj + ξ̃ j

∣∣+
n∑

j=l+1

λi j(t)
∣∣Xj + x0 j

∣∣+µi(t)

≤
n∑
j=1

λi j(t)
∣∣Xj

∣∣+ µ̃i(t)

(2.15)

for (t,X) ∈ R̃n
a,A, i= 1, . . . , l, and

f ∗i (t,X)sgn
[(
t− τi

)
Xi
]≤ l∑

j=1

λi j(t)
∣∣Xj + ξ̃ j

∣∣+
n∑

j=l+1

λi j(t)
∣∣Xj + x0 j

∣∣+µi(t)

≤
n∑
j=1

λi j(t)
∣∣Xj

∣∣+ µ̃i(t)

(2.16)
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for (t,X) ∈ R̃n
a,A, i= l+ 1, . . . ,n, where

µ̃i(t) =
l∑

j=1

λi j(t)
∣∣ξ̃ j∣∣+

n∑
j=l+1

λi j(t)
∣∣x0 j

∣∣+µi(t) (2.17)

for i= 1,2, . . . ,n. As µ̃i ∈ L[[a,A],R+] holds, Kiguradze theorem implies that the bound-
ary value problem

X ′ = f ∗(t,X), Xi
(
τi
)= 0 (i= 1, . . . ,n) (2.18)

has at least one solution X(t) ∈AC[[a,A],Rn]. Hence x(t) = X(t) + x0 − ξ is a solution of

x′ = f (t,x), xi
(
τi
)= ξ̃i (i= 1, . . . , l),

xi
(
τi
)= x0i (i= l+ 1, . . . ,n).

(2.19)

Now we will prove that limt→ti xi(t) = x0i for i= 1, . . . , l. Putmi(t) =Vi(t,x(t)),mij(t) =
Vij(t,x(t)) for i= 1, . . . , l and j = 1, . . . ,ki. In view of (2.14), the inequality

mi(t) < ϕi(t) (2.20)

holds for t ∈ (a,A) sufficiently close to Bi. Suppose for definiteness that ti < Bi, that is,
∆(ti,Bi) = (ti,Bi) for some i ∈ {1, . . . , l}. We will show that mi(t) ≤ ϕi(t) for t ∈ (ti,Bi).
Assume on the contrary that there is a τ ∈ (ti,Bi) such that mi(τ) ≤ ϕi(τ) is not true.
Since x(t) is continuous and (2.20) holds for t ∈ (a,A) sufficiently close to Bi, there exist
j ∈ {1, . . . ,ki} and an interval Ji = (τi1,τi2) such that τ < τi1 < τi2 < Bi,

mij
(
τi2
)= ϕij

(
τi2
)
,

ϕij(s) <mij(s) < ϕij(s) + εi j(s) for s∈ Ji,

mik(s) < ϕik(s) + εik(s) for s∈ Ji, k = 1, . . . ,ki.

(2.21)

Using (2.8), we get

m′
i j(s) ≥ gi j

(
s,ϕi1(s), . . . ,ϕi, j−1(s),mij(s),ϕi, j+1(s), . . . ,ϕiki(s)

)
(2.22)

a.e. on Ji. As gi j(t,u1, . . . ,uj−1,·,uj+1, . . . ,un(s)) is nondecreasing, we have

m′
i j(s) ≥ gi j(s,ϕi1(s), . . . ,ϕiki(s)) = ϕ′

i j(s) (2.23)

a.e. on Ji. Therefore, the function mij(t) −ϕij(t) is nondecreasing on Ji, which is a con-
tradiction to mij(τi2) = ϕij(τi2). Thus

0 ≤mi(t) ≤ ϕi(t) for t ∈ (
ti,Bi

)
. (2.24)

Now the condition limt→ti+ϕi(t) = 0 implies limt→ti+mi(t) = 0. With respect to the con-
tinuity of xi(t) on [a,A], we have xi(ti) = limt→ti xi(t) = x0i. The inequality (2.24) implies
Vi(t,x(t)) ≤ ϕi(t) for t ∈ ∆(ti,Bi). �
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Corollary 2.2. Let ci ∈ R (i ∈ N), Bi ∈ [a,A] \ {ti,σ1, . . . ,σp} (i ∈ I), a matrix function
Λ = (λi j)ni, j=1 ∈ N0(a,A;τ1, . . . ,τn), and functions µi ∈ L[[a,A],R+] (i ∈ N) be such that
ci = x0i for i ∈ N \ I and condition (2.2) is fulfilled, where τi = ti or τi = Bi whenever i ∈
N \ I or i∈ I , respectively.

Assume that

(i) there exist functions gi ∈ Ka,A,ti,Bi[R̂
1
a,A,R] (i ∈ I) such that sgn(t − ti)gi(t,·) are

nondecreasing and there are solutions ϕi(t) of

u′
i = gi

(
t,ui

)
(2.25)

satisfying (2.4);
(ii) there are zi ∈ ÃC[[a,A],R] and ε = (εi1 , . . . ,εil) ∈ C[(a,A),R+l] such that zi(ti) =

x0i (i∈ I) and the estimation

sgn(Bi − ti)sgn
(
xi − zi(t)

)(
fi(t,x)− z′i (t)

)≥ sgn
(
Bi − ti

)
gi
(
t,
∣∣xi − zi(t)

∣∣)(i∈ I)
(2.26)

is fulfilled on Ω̂= {(t,x) : ϕi(t) < |xi − zi(t)| < ϕi(t) + εi(t), t ∈ ∆(ti,Bi)} for almost
all t ∈ ∆(ti,Bi). Then the Cauchy-Nicoletti boundary value problem (2.1) has at least
two different solutions on [a,A], either of which satisfies |xi(t) − zi(t)| ≤ ϕi(t) for
t ∈ ∆(ti,Bi) and i∈ I .

Proof. Without loss of generality, it can be supposed that I = {1, . . . , l} and Prx = (x1, . . . ,
xl). Put ki = 1 and Vi(t,x(t)) =Vi1(t,x) = |xi − zi(t)| for i= 1, . . . , l. Then

sgn
(
Bi − ti

)
V ′
i1

(
t,x(t)

)≥ sgn
(
Bi − ti

)(
fi
(
t,x(t)

)− z′i (t)
)

sgn
(
xi(t)− zi(t)

)
≥ sgn

(
Bi − ti

)
gi
(
t,
∣∣xi(t)− zi(t)

∣∣)
= sgn

(
Bi − ti

)
gi
(
t,Vi1

(
t,x(t)

)) (2.27)

holds for any solution x(t) of (2.1) a. e. on any interval (αi1,αi2) ⊆ ∆(ti,Bi) for which
ϕi(t)<Vi(t,x(t))<ϕi(t) + εi(t) on (αi1,αi2). The assumptions of Theorem 2.1 are satisfied.

�

Example 2.3. Let f1, . . . , fn ∈ K0[R̂n
0,1,R] be such that

f1
(
t,x1, . . . ,xn

)
sgnx1 ≥ δ(t)

∣∣x1
∣∣γ,

− f j
(
t,x1, . . . ,xn

)
sgnxj ≤

j∑
k=1

λjk(t)
∣∣xk∣∣+µj(t) ( j = 2, . . . ,n)

(2.28)

for (t,x1, . . . ,xn) ∈ R̃n
0,1, where γ ∈ (0,1) and δ,λjk,µj ∈ L[[0,1],R+], δ being a positive

function. Consider the boundary value problem

x′
1 = f1

(
t,x1, . . . ,xn

)
, x1(0) = 0,

x′
2 = f2

(
t,x1, . . . ,xn

)
, x2(1) = 0,

...

x′
n = fn

(
t,x1, . . . ,xn

)
, xn(1) = 0.

(2.29)
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Put t1 = 0, t2 = t3 = ··· = tn = 1,

g1(t,u) =
δ(t)uγ for u≥ 0,

0 for u < 0,
(2.30)

λ1k(t) ≡ 0 (k = 1, . . . ,n), λjk(t) ≡ 0 ( j = 2, . . . ,n;k = j + 1, . . . ,n), and µ1(t) ≡ 0. Let B1 = 1.
Then τ1 = τ2 = ··· = τn = 1,

f1
(
t,x1, . . . ,xn

)
sgn

[(
t−B1

)
x1
]≤ 0,

f j
(
t,x1, . . . ,xn

)
sgn

[
(t− 1)xj

]≤ n∑
k=1

λjk(t)
∣∣xk∣∣+µj(t) ( j = 2, . . . ,n),

(2.31)

and the equation u′
1 = g1(t,u) has a positive solution

ϕ1(t) =
[

(1− γ)
∫ t

0
δ(s)ds

]1/(1−γ)

(2.32)

in (0,1] such that limt→0ϕ1(t) = 0. The assumptions of Corollary 2.2 are fulfilled with
I = {1}, c1 = 0, and z(t) = z1(t) ≡ 0. Therefore, the considered boundary value problem
has at least two different solutions on [a,A]. Moreover, the first component x1(t) of these
solutions satisfies |x1(t)| ≤ ϕ1(t) for t ∈ (0,1].

Corollary 2.4. Suppose that −∞ < a < A <∞, c ∈ R, λ∈ L[[a,A],R+], and µ∈ L[[a,A],
R+]. Let B ∈ [a,A] \ {tn,σ1, . . . ,σp} be such that

f̃
(
t,x1, . . . ,xn

)
sgn

[
(t−B)

(
xn − c

)]≤ λ(t)
∣∣xn∣∣+µ(t) (2.33)

for (t,x) ∈ R̃n
a,A. Assume that

(i) there exists a function q ∈ Ka,A,tn,B[R̂1
a,A,R] such that sgn(t− tn)q(t,·) is nondecreas-

ing and there is a solution ϕ(t) of

u′ = q(t,u) (2.34)

satisfying

ϕ(t) > 0 for t ∈ ∆
(
tn,B

)
, lim

t→tn
ϕ(t) = 0, liminf

t→B
ϕ(t) > 0; (2.35)

(ii) there are z ∈ ÃC[[a,A],R] and ε ∈ C[(a,A),R+] such that z(tn) = x0n and

sgn
(
B− tn

)
sgn

(
xn − z(t)

)(
f̃
(
t,x1, . . . ,xn

)− z′(t)
)≥ sgn

(
B− tn

)
q
(
t,
∣∣xn − z(t)

∣∣)
(2.36)
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holds on Ω̂= {(t,x1, . . . ,xn) : ϕ(t) < |xn − z(t)| < ϕ(t) + ε(t), t ∈ ∆(tn,B)} for almost
all t ∈ ∆(tn,B). Then the boundary value problem

v(n) = f̃
(
t,v,v′, . . . ,v(n−1)),

v
(
t1
)= x01, v′

(
t2
)= x02, . . . , v(n−1)(tn)= x0n

(2.37)

has at least two different solutions on [a,A].

Proof. Put I = {n}, k1 = 1, Prx = xn, cn = c, gn(t,u) = q(t,u), ϕn(t) = ϕ(t), ci = x0i for
i= 1, . . . ,n− 1, µi(t) = 0 for i= 1, . . . ,n− 1, µn(t) = µ(t), Bn = B, and

λi j(t) =


1 for 1 ≤ i= j− 1 ≤ n− 1,

λ(t) for i= j = n,

0 otherwise.

(2.38)

Considering the system

x′
1 = x2,

x′
2 = x3,

...

x′
n−1 = xn,

x′
n = f̃

(
t,x1,x2, . . . ,xn

)
,

x1
(
t1
)= x01,

x2
(
t2
)= x02,

...

xn−1
(
tn−1

)= x0n−1,

xn
(
tn
)= x0n,

(2.39)

and applying Corollary 2.2, we get

fn
(
t,x1, . . . ,xn

)
sgn

[(
t−Bn

)(
xn − cn

)]≤ n∑
j=1

λnj(t)
∣∣xj∣∣+µn(t),

fi
(
t,x1, . . . ,xn

)
sgn

[(
t− ti

)(
xi − ci

)]≤ ∣∣xi+1
∣∣≤ λi,i+1

∣∣xi+1
∣∣

=
n∑
j=1

λi j(t)
∣∣xj∣∣+µi(t)

(2.40)

for i= 1, . . . ,n− 1. The result follows from Corollary 2.2. �

Example 2.5. Let γ ∈ (0,1). Consider the boundary value problem

v′′ = p1(t,v)
∣∣v′∣∣γ sgnv′ + p2

(
t,v,v′

)
, v(0) = 0, v′(1) = 0, (2.41)

where p1 ∈ K1[R̂1
0,1,R] and p2 ∈ K1[R̂2

0,1,R] are such that

x2p2
(
t,x1,x2

)≤ 0 for
(
t,x1,x2

)∈ (0,1)×R
2,

p1
(
t,x1

)≤−δ(t) for
(
t,x1

)∈ (0,1)×R,
(2.42)

δ ∈ L[[0,1],R] being a positive function. Since

−p1
(
t,x1

)∣∣x2
∣∣γ − p2

(
t,x1,x2

)
sgnx2 ≥ δ(t)

∣∣x2
∣∣γ, (2.43)



Josef Kalas 345

the assumptions of Corollary 2.4 are fulfilled with n= 2, a= 0, A= 1, t1 = 0, t2 = 1, c = 0,
B = 0, z(t) ≡ 0, λ(t) ≡ 0, µ(t) ≡ 0, and

q(t,u) =
−δ(t)uγ for u≥ 0,

0 for u < 0,
ϕ(t) =

[
(1− γ)

∫ 1

t
δ(s)ds

]1/1−γ
. (2.44)

Therefore, problem (2.41) has at least two different solutions on [0,1].

Corollary 2.6. Let the assumptions of Corollary 2.2 be fulfilled with the exception that the
conditions (i), (ii) are replaced by (i′), (ii′):

(i′) there exist functions hi,qi ∈ Ka,A,ti,Bi[R̂
1
a,A,R] (i ∈ I) such that functions sgn(t −

ti)hi(t,·) and sgn(t− ti)qi(t,·) are nondecreasing for i ∈ I and there are solutions
ϕi(t), ψi(t) of u′

i = hi(t,ui) and v′i = qi(t,vi), respectively, satisfying

ϕi(t) > 0 for t ∈ ∆
(
ti,Bi

)
, lim

t→ti
ϕ(t) = 0, liminf

t→Bi

ϕ(t) > 0,

ψi(t) > 0 for t ∈ ∆
(
ti,Bi

)
, lim

t→ti
ψ(t) = 0, liminf

t→Bi

ψ(t) > 0
(2.45)

for t ∈ I ;
(ii′) there are zi ∈ ÃC[[a,A],R] and ε = (εi1 , . . . ,εil) ∈ C[(a,A),R+l] such that zi(ti) =

x0i and the inequalities

sgn
(
Bj − t j

)[(
f j(t,x)− z′j(t)

)−hj
(
t,
(
xj − zj(t)

)
+

)]≥ 0 ( j ∈ I)

sgn
(
Bj − t j

)[− (
f j(t,x)− z′j(t)

)− qj
(
t,
(
xj − zj(t)

)
−
)]≥ 0 ( j ∈ I)

(2.46)

are fulfilled on Ω̂= {(t,x) : ϕj(t) < xj − zj(t) < ϕj(t) + εj(t), t ∈ ∆(t j ,Bj)} and ˆ̂Ω=
{(t,x) : ψj(t) < zj(t) − xj < ψj(t) + εj(t), t ∈ ∆(t j ,Bj)}, respectively, for almost all
t ∈ ∆(t j ,Bj). Then the Cauchy-Nicoletti boundary value problem (2.1) has at least
two different solutions on [a,A].

Proof. Without loss of generality, it can again be assumed that I = {1, . . . , l} and Prx =
(x1, . . . ,xl). Put ki=2, gi1(t,u) = hi(t,u), gi2(t,v) = qi(t,v), ϕi1(t) = ϕi(t), ϕi2(t) = ψi(t),
Vi1(t,x) = (xi − zi(t))+, Vi2(t,x) = (xi − zi(t))−, and Vi(t,x) = (Vi1(t,x),Vi2(t,x)) for i ∈
I . Then we have

sgn
(
Bi − ti

)
V ′
i1

(
t,x(t)

)≥ sgn
(
Bi − ti

)(
fi
(
t,x(t)

)− z′i (t)
)

≥ sgn
(
Bi − ti

)
gi1
(
t,Vi1

(
t,x(t)

))
,

sgn
(
Bi − ti

)
V ′
i2

(
t,x(t)

)≥−sgn
(
Bi − ti

)(
fi
(
t,x(t)

)− z′i (t)
)

≥ sgn
(
Bi − ti

)
gi2
(
t,Vi2

(
t,x(t)

))
(2.47)

for any solution x = x(t) of (2.1) a.e. on any interval (αi1,αi2) ⊆ ∆(ti,Bi) for which

Vi1
(
t,x(t)

)
< ϕi(t) + εi(t), Vi2

(
t,x(t)

)
< ψi(t) + εi(t) (2.48)



346 Nonuniqueness for a singular Cauchy-Nicoletti problem

on (αi1,αi2), i= 1, . . . , l, and

Vi1
(
t,x(t)

)
> ϕi(t) or Vi2

(
t,x(t)

)
> ψi(t) (2.49)

on (αi1,αi2), respectively. The statement follows from Theorem 2.1. �

Corollary 2.7. Let the assumptions of Corollary 2.4 be fulfilled with the exception that
conditions (i), (ii) are replaced by the following:

(i′) there exist functions h∈ Ka,A,tn,B[R̂1
a,A,R] and q ∈ Ka,A,tn,B[R̂1

a,A,R] such that sgn(t−
tn)h(t,·) and sgn(t− tn)q(t,·) are nondecreasing and there are solutions ϕ(t), ψ(t)
of u′ = h(t,u) and v′ = q(t,v), respectively, satisfying

ϕ(t) > 0, ψ(t) > 0 for t ∈ ∆(tn,B), lim
t→tn

ϕ(t) = lim
t→tn

ψ(t) = 0,

liminf
t→B

ϕ(t) > 0, liminf
t→B

ψ(t) > 0;
(2.50)

(ii′) there are z ∈ ÃC[[a,A],R] and ε ∈ C[(a,A),R+] such that z(tn) = x0n and

sgn
(
B− tn

)[
f̃
(
t,x1, . . . ,xn

)− z′(t)−h
(
t,
(
xn − z(t)

)
+

)]≥ 0,

sgn
(
B− tn

)[− f̃
(
t,x1, . . . ,xn

)
+ z′(t)− q

(
t,
(
xn − z(t)

)
−
)]≥ 0

(2.51)

hold on Ω̂ = {(t,x1, . . . ,xn) : ϕ(t) < xn − z(t) < ϕ(t) + ε(t), t ∈ ∆(tn,B)} and ˆ̂Ω =
{(t,x1, . . . ,xn) : ψ(t) < z(t) − xn < ψ(t) + ε(t), t ∈ ∆(tn,B)}, respectively, for almost
all t ∈ ∆(tn,B). Then the Cauchy-Nicoletti boundary value problem (2.37) has at
least two different solutions on [a,A].

Proof. Corollary 2.7 follows from Corollary 2.6 in the same way as Corollary 2.4 follows
from Corollary 2.2. �

Example 2.8. Let p1 ∈ K1[R̂2
0,1,R] and p2 ∈ K1[R̂2

0,1,R] be such that

p1
(
t,x1,x2

)≤−δ1(t)ϑ1
(
x2
)

for
(
t,x1,x2

)∈ (0,1)×R× (0,∞),

p1
(
t,x1,x2

)≥ δ2(t)ϑ2
(∣∣x2

∣∣) for
(
t,x1,x2

)∈ (0,1)×R× (−∞,0),

x2p2
(
t,x1,x2

)≤ 0 for
(
t,x1,x2

)∈ (0,1)×R
2,

(2.52)

where δ1, δ2 are positive functions such that δj ∈ L[[0,1],R] and ϑj ∈ C[[0,∞),R+] ( j =
1,2) are nondecreasing and positive on (0,∞) and satisfying ϑ1(0)=ϑ2(0)=0,

∫ 1
0 δ1(s)ds <∫∞

0 1/ϑ1(s)ds <∞, and
∫ 1

0 δ2(s)ds <
∫∞

0 1/ϑ2(s)ds <∞.
Consider the boundary value problem

w′′ = p1
(
t,w,w′)+ p2

(
t,w,w′), w(0) = 0, w′(1) = 0. (2.53)
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It holds that

− [
p1
(
t,x1,x2

)
+ p2

(
t,x1,x2

)
+ δ1(t)ϑ1

(
x2
)]≥ 0

for
(
t,x1,x2

)∈ (0,1)×R× (0,∞),

− [− p1
(
t,x1,x2

)− p2
(
t,x1,x2

)
+ δ2(t)ϑ2

(− x2
)]≥ 0

for
(
t,x1,x2

)∈ (0,1)×R× (−∞,0).

(2.54)

The problems

u′ = −δ1(t)ϑ1(u), u(1) = 0,

v′ = −δ2(t)ϑ2(v), v(1) = 0
(2.55)

have positive solutions on [0,1) and condition (2.54) implies[
p1
(
t,x1,x2

)
+ p2

(
t,x1,x2

)]
sgnx2 ≤ 0. (2.56)

Therefore, the assumptions of Corollary 2.7 are fulfilled with a= 0, A= 1, c = 0, z(t) ≡ 0,
B = 0, t1 = 0, t2 = 1, λ(t) ≡ 0, µ(t) ≡ 0, and

h(t,u) =
−δ1(t)ϑ1(u) for (t,u) ∈ (0,1)× (0,∞),

0 for (t,u) ∈ (0,1)× (−∞,0],

q(t,v) =
−δ2(t)ϑ2(v) for (t,v) ∈ (0,1)× (0,∞),

0 for (t,v) ∈ (0,1)× (−∞,0].

(2.57)

Hence problem (2.53) has at least two solutions on [0,1].

Acknowledgment

The research was supported by the Council of Czech Government (J 07/98: 143100001).

References

[1] R. P. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary
Differential Equations, Series in Real Analysis, vol. 6, World Scientific Publishing, New Jer-
sey, 1993.

[2] J. Andres, Ordinary differential equations in the lack of uniqueness, Atti Sem. Mat. Fis. Univ.
Modena 49 (2001), no. 1, 247–267.

[3] J. Kalas, Nonuniqueness for the solutions of ordinary differential equations, Czechoslovak Math.
J. 29 (1979), no. 1, 105–112.

[4] , General nonuniqueness theorem for ordinary differential equations, Dynam. Contin.
Discrete Impuls. Systems 3 (1997), no. 1, 97–111.

[5] , Nonuniqueness results for ordinary differential equations, Czechoslovak Math. J. 48
(1998), no. 2, 373–384.

[6] , Nonuniqueness theorem for a singular Cauchy problem, Georgian Math. J. 7 (2000),
no. 2, 317–327.

[7] I. T. Kiguradze, The comparison lemma and the question of uniqueness for solutions of the Cauchy
problem for ordinary differential equations, Soobšč. Akad. Nauk Gruzin. SSR 39 (1965), 513–
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ACCURATE SOLUTION ESTIMATES FOR NONLINEAR
NONAUTONOMOUS VECTOR DIFFERENCE EQUATIONS
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The paper deals with the vector discrete dynamical system xk+1 = Akxk + fk(xk). The well-
known result by Perron states that this system is asymptotically stable if Ak ≡ A = const
is stable and fk(x) ≡ f̃ (x) = o(‖x‖). Perron’s result gives no information about the size of
the region of asymptotic stability and norms of solutions. In this paper, accurate estimates
for the norms of solutions are derived. They give us stability conditions for (1.1) and
bounds for the region of attraction of the stationary solution. Our approach is based on
the “freezing” method for difference equations and on recent estimates for the powers
of a constant matrix. We also discuss applications of our main result to partial reaction-
diffusion difference equations.

1. Introduction and notation

Let Cn be the set of n-complex vectors endowed with the Euclidean norm ‖ · ‖. Consider
in Cn the equation

xk+1 = Akxk + fk
(
xk
)

(k = 0,1,2, . . .), (1.1)

whereAk (k = 0,1,2, . . .) are n×n-complex matrices and fk : Cn → Cn are given functions.
A well-known result of Perron which dates back to 1929 (see [11, page 270], [8, Theorem
9.14], and [6]) states that (1.1) is asymptotically stable if Ak ≡A= const is stable (i.e., the
spectral radius rs(A) of A is less than 1) and fk(x) = f̃ (x) = o(‖x‖). Clearly, this result is
purely local. It gives no information about the size of the region of asymptotic stability
and norms of solutions.

In this paper, we derive accurate estimates for the norms of solutions. Our approach is
based on the “freezing” method for difference equations and on recent estimates for the
powers of a constant matrix. Note that the “freezing” method for difference equations was
developed in [5]. It is based on the relevant ideas for differential equations (cf. [2, 3, 7]).

Firstly, we consider the linear difference equation

xk+1 =Akxk (k = 0,1,2, . . .). (1.2)

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 349–357
2000 Mathematics Subject Classification: 39A10
URL: http://dx.doi.org/10.1155/9775945143

http://dx.doi.org/10.1155/9775945143
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As it is well known, the fundamental matrix X(k) of (1.2) can be expressed as

X(m) = AmAm−1 ···A0. (1.3)

But such a representation does not yield much information about the asymptotic value
of solutions, except in the case of constant coefficients Ak = A (k = 0,1,2, . . .), when
X(k) = Ak and the Jordan canonical form of A determines the asymptotic behavior of the
solutions. To prove the stability of (1.2) is equivalent to proving the boundedness of the
sequence {‖X(m)‖}∞1 . This problem is easy to solve under the condition supk ‖Ak‖ ≤ 1.
But it is rather restrictive. The “freezing” method allows us to avoid this condition in the
case ∥∥Ak −Aj

∥∥≤ qk− j
(
qk = q−k = const ≥ 0, q0 = 0; j,k = 0,1,2, . . .

)
. (1.4)

For example, if Ak = sin(ck)B (c = const > 0), where B is a constant matrix, then condi-
tion (1.4) holds with qk = 2‖B‖|sin(ck/2)|, since

sinα− sinβ = 2sin
(
α−β

2

)
cos

(
α+β

2

)
(1.5)

for real α, β.
For an n×n-matrix A, denote

g(A) =
[
N2(A)− n∑

j=1

∣∣λj(A)
∣∣2
]1/2

, (1.6)

where N(A) is the Frobenius (Hilbert-Schmidt) norm of a matrix A : N2(A) =
Trace(AA∗), and λ1(A),λ2(A), . . . ,λn(A) are the eigenvalues of A including their multi-
plicities. The relations

g(A) ≤ [
N2(A)−∣∣Trace

(
A2)∣∣]1/2

,

g(A) ≤
√

1
2
N
(
A∗ −A

) (1.7)

are true [3, Section 2.1]. Here A∗ is the adjoint matrix. If A is a normal matrix: A∗A =
AA∗, then g(A) = 0. If A= (ai j) is a triangular matrix such that ai j = 0 for 1 ≤ j ≤ i≤ n,
then

g2(A) =
∑

1≤i≤ j≤n

∣∣ai j∣∣2
. (1.8)

For a natural number n > 1, introduce the numbers

γn,p =
√√√√ C

p
n−1

(n− 1)p
(1.9)
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for p = 1,2, . . . ,n− 1 and γn,0 = 1. Here and below,

C
k
m = m!

(m− k)!k!
(k = 0,1,2, . . . ,m; m= 1,2, . . .) (1.10)

are the binomial coefficients. Evidently, for n > 2,

γ2
n,p =

(n− 2)(n− 3)···(n− p)
(n− 1)p−1p!

≤ 1
p!
. (1.11)

Due to [4, Theorem 1.2.1], for any n×n-matrix A, the inequality

∥∥Am
∥∥≤

m1∑
k=0

m!rm−k
s (A)gk(A)γn,k

(m− k)!k!

=
m1∑
k=0

C
k
mr

m−k
s (A)gk(A)γn,k

(
m1 = min{n− 1,m}) (1.12)

holds for every integer m, where rs(A) is the spectral radius of A.

2. Preliminary facts

Firstly, we recall a boundedness result for (1.2) which is proven in [5, Lemma 1.1], namely,
we recall the following lemma.

Lemma 2.1. Under condition (1.4), let

ζ0 ≡
∞∑
k=1

qk sup
l=1,2,...

∥∥Ak
l

∥∥ < 1. (2.1)

Then, every solution {xk} of (1.2) satisfies the inequality

sup
k=1,2,...

∥∥xk∥∥≤ β0
∥∥x0

∥∥(1− ζ0
)−1

, (2.2)

where

β0 = sup
k,l=0,1,2,...

∥∥Ak
l

∥∥. (2.3)

As a consequence, it is possible to establish the next corollaries.

Corollary 2.2. Let the conditions∥∥Ak −Ak+1
∥∥≤ q̃

(
k = 1,2, . . . ; q̃ = const > 0

)
, (2.4)

θ0 ≡
∞∑
k=1

sup
l=1,2,...

∥∥Ak
l

∥∥k < q̃−1 (2.5)

hold. Then, every solution {xk} of (1.2) satisfies the inequality∥∥xk∥∥≤ β0
∥∥x0

∥∥(1− q̃θ0
)−1

(k = 1,2, . . .). (2.6)
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Indeed, under condition (2.4), we have∥∥Ak −Aj

∥∥≤ q̃|k− j| ( j,k = 0,1,2, . . .). (2.7)

So ζ0 ≤ q̃θ0. Now, the required result follows from Lemma 2.1.

Corollary 2.3. Let condition (2.4) hold. In addition, for a constant v > 0, let

θ(v) ≡
∞∑
k=1

v−k−1 sup
l=1,2,...

∥∥Ak
l

∥∥k < q̃−1. (2.8)

Then, every solution {xk} of (1.2) satisfies the inequality∥∥xk∥∥≤ vkm(v)
∥∥x0

∥∥(1− q̃θ(v)
)−1

(k = 1,2, . . .), (2.9)

where

m(v) ≡ sup
l,k=0,1,2,...

v−k
∥∥Ak

l

∥∥. (2.10)

Indeed, due to condition (2.8), m(v) <∞. Putting xk = vkzk in (1.2) , we get

zk+1 = v−1Akzk. (2.11)

Corollary 2.2 and condition (2.8) imply

sup
k=1,2,...

∥∥zk∥∥≤m(v)
∥∥z0

∥∥(1− q̃θ(v)
)−1

(k = 1,2, . . .). (2.12)

Hence, the required estimate follows. Recall also the following result from [5].

Theorem 2.4. Under condition (1.4), let

ρ0 ≡ sup
l=1,2,...

rs
(
Al
)
< 1, v0 ≡ sup

l=0,1,2,...
g
(
Al
)
<∞, (2.13)

ξ ≡
∞∑

m=1

n−1∑
k=0

C
k
mρ

m−k
0 vk0γn,kqm < 1. (2.14)

Then, every solution {xk} of (1.2) is bounded. Moreover,

sup
k=1,2,...

∥∥xk∥∥≤M0
∥∥x0

∥∥(1− ξ)−1, (2.15)

where

M0 =
n−1∑
k=0

vk0γn,k
(
ψk + k

)k
ρ
ψk

0 (2.16)

with ψk = max{0,−k(1 + logρ0)/logρ0}.
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3. The main result

The previous estimates give us a possibility to investigate (1.1) as a nonlinear perturbation
of (1.2). For a positive r ≤∞, denote the ball

Br =
{
x ∈ C

n : ‖x‖ ≤ r
}

(3.1)

and assume that there are constants µ,ν ≥ 0, such that∥∥ fk(x)
∥∥≤ ν‖x‖+µ

(
x ∈ Br ; k = 0,1,2, . . .

)
. (3.2)

Recall that the quantities ρ0, v0, and M0 are defined by (2.13) and (2.16). Let

ψ(A) ≡
∞∑
k=0

n−1∑
j=0

C
j
kρ

k− j
0 v

j
0γn, j . (3.3)

Now we are in a position to formulate the main result of the paper.

Theorem 3.1. Under the conditions (1.4), (2.13), and (3.2), let

S( f ;A) ≡
∞∑
k=0

n−1∑
j=0

C
j
kρ

k− j
0 v

j
0γn, j

(
qk + ν

)
< 1. (3.4)

Then, any solution {xk}∞=0 of (1.1) satisfies the inequality

sup
k=1,2,...

∥∥xk∥∥≤ M0
∥∥x0

∥∥+µψ(A)
1− S( f ;A)

, (3.5)

provided that

M0
∥∥x0

∥∥+µψ(A)
1− S( f ;A)

≤ r. (3.6)

The proof of this theorem is given afterwards.
Recall that

β0 = sup
k,l=0,1,...

∥∥Ak
l

∥∥ (3.7)

and let

θ1 ≡
∞∑
k=0

sup
l=0,1,...

∥∥Ak
l

∥∥. (3.8)

Lemma 3.2. Under conditions (1.4) and (3.2), let

S0 ≡
∞∑
k=0

(
qk + ν

)
sup

l=0,1,2,...

∥∥Ak
l

∥∥ < 1. (3.9)
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Then, every solution {xk} of (1.1) satisfies the inequality∥∥xk∥∥≤ [
β0
∥∥x0

∥∥+ θ1µ
](

1− S0
)−1

(k = 1,2, . . .), (3.10)

provided that [
β0
∥∥x0

∥∥+ θ1µ
](

1− S0
)−1 ≤ r. (3.11)

Proof. Rewrite (1.1) as

xk+1 −Alxk =
(
Ak −Al

)
xk + fk

(
xk
)

(3.12)

with a fixed integer l. The variation of parameters formula yields

xl+1 = Al+1
l x0 +

l∑
j=0

A
l− j
l

[(
Aj −Al

)
xj + f j

(
xj
)]
. (3.13)

There are two cases to consider: r = ∞ and r <∞. First, assume that (3.2) is valid with
r =∞, then, by (1.4),

∥∥xl+1
∥∥≤ β0

∥∥x0
∥∥+

l∑
j=0

∥∥Al− j
l

∥∥[ql− j

∥∥xj∥∥+ ν
∥∥xj∥∥+µ

]

≤ β0
∥∥x0

∥∥+
l∑

j=0

∥∥Al− j
l

∥∥(ql− j + ν
)∥∥xj∥∥+ θ1µ

≤ β0
∥∥x0

∥∥+ max
k=0,...,l

∥∥xk∥∥ l∑
k=0

∥∥Ak
l

∥∥(qk + ν
)

+µθ1

≤ β0
∥∥x0

∥∥+ max
k=1,...,l

∥∥xk∥∥
 ∞∑
k=0

(
qk + ν

)
sup

l=0,1,2,...

∥∥Ak
l

∥∥+µθ1.

(3.14)

Consequently,

max
k=1,2,...,l+1

∥∥xk∥∥≤ β0
∥∥x0

∥∥+ S0 max
k=0,1,...,l+1

∥∥xk∥∥+µθ1. (3.15)

But β0 ≥ 1. So

max
k=0,1,2,...,l+1

∥∥xk∥∥≤ β0
∥∥x0

∥∥+ S0 max
k=0,1,...,l+1

∥∥xk∥∥+µθ1. (3.16)

Hence,

sup
k=0,1,2,...

∥∥xk∥∥≤ β0
∥∥x0

∥∥+µθ1

1− S0
. (3.17)

Let now r <∞. Define the function

f̃k(x) =
 fk(x), ‖x‖ ≤ r,

0, ‖x‖ > r.
(3.18)
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Since ∥∥∥ f̃k(x)
∥∥∥≤ ν‖x‖+µ, k = 0,1, . . . ; x ∈ B∞, (3.19)

then the sequence {x̃k}∞=0 defined by

x̃0 = x0, x̃k+1 = Akx̃k + f̃k
(
x̃k
)
, k = 0,1, . . . , (3.20)

satisfies the inequality

sup
k=0,1,...

∥∥x̃k∥∥≤ β0
∥∥x0

∥∥+µθ1

1− S0
≤ r (3.21)

according to the above arguments and condition (3.11). But f and f̃k(x) coincide on Br .
So xk = x̃k for k = 0,1,2, . . . . Therefore, (3.10) is satisfied, thus concluding the proof. �

proof of Theorem 3.1. As it was proved in [5, Lemma 2.2], β0 ≤ M0. Moreover, due to
(1.12), we have θ1 ≤ ψ(A) and S0 ≤ S( f : A). Now the result is due to Lemma 3.2. �

Remarks 3.3. (a) Under (3.2) with µ= 0, fk(0) = 0 so that {0} is a solution of (1.1). Under
condition S( f ,A) < 1, Theorem 3.1 asserts that the trivial solution is stable, and that any
initial vector x0 ∈ Br , satisfying the condition

∥∥x0
∥∥≤

(
1− S( f ,A)

)
r

M0
, (3.22)

belongs to the region of attraction.
(b) If ν ≡ 0, then every solution of (1.1) with the initial vector x0 satisfying∥∥x0

∥∥M0 +µψ(A) ≤ (1− ξ)r (3.23)

is bounded.

4. Applications

In this section, we will illustrate our main results by considering a partial difference equa-
tion. We consider a simple three-level discrete reaction-diffusion equation of the form

u
( j+1)
i = aju

( j)
i−1 + bju

( j)
i + cju

( j)
i+1 + g

( j)
i + f j

(
u

( j)
i

)
, (4.1)

defined on Ω= {(i, j) : i= 0,1, . . . ,n+ 1; j = 0,1, . . .}, where {aj}, {bj}, and {cj} are real

sequences, g = {g( j)
i } is a complex function defined on Ω, and f j : C → C ( j = 0,1, . . .) are

given functions. Assume that the side conditions

u
( j)
0 = δj ∈ C, j = 0,1, . . . , (4.2)

u
( j)
n+1 = γj ∈ C, j = 0,1, . . . , (4.3)

u(0)
i = τj ∈ C, i= 1,2, . . . ,n, (4.4)
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are imposed, where τ = (τ1,τ2, . . . ,τn) ∈ Cn. A solution of problem (4.1), (4.2), (4.3), and

(4.4) is a discrete function u= {u( j)
i }(i, j)∈Ω which satisfies relations (4.1), (4.2), (4.3), and

(4.4). The existence and uniqueness of solutions to that problem is obvious, provided that
f j is one-one valued. With the notation

u( j) =
(
u

( j)
1 ,u

( j)
2 , . . . ,u

( j)
n

)
, (4.5)

the sequence {u( j)}∞j=0 satisfies the vector equation

u( j+1) = Aju
( j) +Gj +Fj

(
u( j)

)
, j = 0,1, . . . , (4.6)

and the initial condition

u(0) = τ, (4.7)

where

Aj =



bj c j 0 ··· ··· 0
aj bj c j 0 ··· 0
0 aj bj c j ··· 0
...

...
...

...
...

...
0 ··· ··· 0 aj bj

 , j = 0,1,2, . . . ,

Gj =
(
g

( j)
1 , . . . ,g

( j)
n

)
+
(
ajδj ,0, . . . ,0,cjγj

)
,

Fj(x) = (
f j(x1

)
, . . . , f j

(
xn
))

, x = (
x1,x2, . . . ,xn

)
.

(4.8)

Thus, we can write problem (4.1), (4.2), (4.3), and (4.4) as (1.1) with

f j(x) = Fj(x) +Gj. (4.9)

Assume that there are nonnegative constants µ1 and ν such that∥∥Fj(x)
∥∥≤ ν‖x‖+µ1 (x ∈ Br ; j = 1,2, . . .). (4.10)

In addition,

µ2 ≡
∞∑
j=0

∥∥Gj

∥∥ <∞. (4.11)

So condition (3.2) holds with µ0 = µ1 + µ2. As a direct consequence of Theorem 3.1, we
get the following theorem.

Theorem 4.1. Let conditions (1.4), (4.2), (4.10), and (4.11) hold with µ = µ1 + µ2 and

x0 = τ. Then, the unique solution xj = {u( j)
i }(i, j)∈Ω of problem (4.1), (4.2), (4.3), and (4.4)

satisfies inequality (3.5).
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Remarks 4.2. Comparing Theorem 4.1 with [10, Theorems 1 and 2], we point out that
the hypotheses of Theorem 4.1 can be checked more easily. In this paper, we have used
a different approach. Our results do not overlap with those from [9, 10]. Other related
works can be found in [1, pages 237–245].
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GENERALIZATIONS OF THE BERNOULLI
AND APPELL POLYNOMIALS

GABRIELLA BRETTI, PIERPAOLO NATALINI, AND PAOLO E. RICCI

Received 19 July 2002

We first introduce a generalization of the Bernoulli polynomials, and consequently of
the Bernoulli numbers, starting from suitable generating functions related to a class of
Mittag-Leffler functions. Furthermore, multidimensional extensions of the Bernoulli and
Appell polynomials are derived generalizing the relevant generating functions, and us-
ing the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials. The main properties
of these polynomial sets are shown. In particular, the differential equations can be con-
structed by means of the factorization method.

1. Introduction

A recent paper [7] deals with generalized forms of Bernoulli polynomials, used in order
to derive explicit summation formulas, generalizing well-known classical results. Fur-
thermore, the Appell polynomials were applied for the construction of quadrature rules
involving Appell instead of Bernoulli polynomials [4, 6]. In our opinion, the technique
introduced in [7] using the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials in
order to extend to several variables many classical univariable formulas could be exploited
in order to find further generalizations of the above results, permitting the construction
of new summation formulas and multidimensional quadrature rules.

A preliminary analysis of the main properties of generalized Bernoulli or Appell poly-
nomials is included in this paper.

2. Recalling Bernoulli and Appell polynomials

The Bernoulli polynomials Bn(x) can be defined by means of the generating function

G(x, t) := text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π. (2.1)

By putting x = 0, we obtain the Bernoulli numbers Bn := Bn(0) and the relevant generat-
ing function

Copyright © 2004 Hindawi Publishing Corporation
International Conference on Differential, Difference Equations and Their Applications, pp. 359–369
2000 Mathematics Subject Classification: 33C99, 34A35
URL: http://dx.doi.org/10.1155/9775945143
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t

et − 1
=

∞∑
n=0

Bn
tn

n!
. (2.2)

It is well known that

Bn(0) = Bn(1) = Bn, n �= 1,

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k,

B′
n(x) = nBn−1(x).

(2.3)

The Bernoulli numbers enter into many mathematical formulas, such as

(i) the Taylor expansion in a neighborhood of the origin of the circular and hyper-
bolic tangent and cotangent functions,

(ii) the sums of powers of natural numbers,
(iii) the remainder term of the Euler-MacLaurin quadrature rule.

The Bernoulli polynomials, first studied by Euler, are employed in the integral repre-
sentation of differentiable periodic functions, since they are employed for approximating
such functions in terms of polynomials. They are also used for representing the remainder
term of the composite Euler-MacLaurin quadrature rule (see [22]).

The Appell polynomials [2] are defined by the generating function

GA(x, t) = A(t)ext =
∞∑
n=0

Rn(x)
n!

tn, (2.4)

where

A(t) =
∞∑
k=0


k

k!
tk, A(0) �= 0, (2.5)

is an analytic function at t = 0, and 
k := Rk(0).
It is easy to see that for any A(t), the derivatives of Rn(x) satisfy

R′
n(x) = nRn−1(x), (2.6)

and furthermore,

(i) if A(t) = t/(et − 1), then Rn(x) = Bn(x),
(ii) if A(t) = 2/(et + 1), then Rn(x) = En(x), the Euler polynomials,

(iii) if A(t) = α1 ···αmtm[(eα1t − 1)···(eαmt − 1)]−1, then the Rn(x) are the Bernoulli
polynomials of order m (see [11]),

(iv) if A(t) = 2m[(eα1t + 1)···(eαmt + 1)]−1, then the Rn(x) are the Euler polynomials
of order m (see [11]),

(v) if A(t) = eξ0+ξ1t+···+ξd+1td+1
, ξd+1 �= 0, then the Rn(x) are the generalized Gould-

Hopper polynomials (see [10]), including the Hermite polynomials when d = 1
and classical 2-orthogonal polynomials when d = 2.
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3. Generalizations of the Bernoulli polynomials

Some generalized forms of the Bernoulli polynomials and numbers already appeared in
literature:

(i) the generalized Bernoulli polynomials Bα
n(x) defined by the generating function

tαext(
et − 1

)α =
∞∑
n=0

Bα
n(x)

tn

n!
, |t| < 2π, (3.1)

by means of which Tricomi and Erdélyi [23] gave an asymptotic expansion of the
ratio of gamma functions;

(ii) the polynomials of Nath [19], defined by the generating function

(ht)α(1 +wt)x/w[
(1 +wt)h/w − 1

]α =
∞∑
n=0

Bα
n;h,w(x)

tn

n!
, |t| <

∣∣∣∣ 1
w

∣∣∣∣; (3.2)

(iii) the polynomials of Frappier [12], defined by the generating function

(iz)αe(x−1/2)z

22αΓ(α+ 1)Jα(iz/2)
=

∞∑
n=0

Bn,α(x)
zn

n!
, |z| < 2

∣∣ j1∣∣, (3.3)

where Jα is the Bessel function of the first kind of order α and j1 = j1(α) is the
first zero of Jα.

4. A new class of generalized Bernoulli polynomials: B[m−1]
n (x), m≥ 1

In this section, we introduce a countable set of polynomials B[m−1]
n (x) generalizing the

Bernoulli ones (which can be recovered assuming that m = 1), introduced by Natalini
and Bernardini [18].

To this end, we consider a class of Appell polynomials, defined by using a generating
function linked to the so-called Mittag-Leffler function,

E1,m+1(t) := tm

et −∑m−1
h=0

(
th/h!

) (4.1)

considered in the general form by Agarwal [1].

The generalized Bernoulli polynomials B[m−1]
n (x), m≥ 1, are defined by the generating

function

G[m−1](x, t) := tmext

et −∑m−1
h=0

(
th/h!

) =
∞∑
n=0

B[m−1]
n (x)

tn

n!
. (4.2)
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For m = 1, we obtain, from the above equation, the generating function G(0)(x, t) =
text/(et − 1) of the classical Bernoulli polynomials B(0)

n (x).
Since G[m−1](x, t) = A(t)ext, the generalized Bernoulli polynomial belong to the class

of Appell polynomials.
It is possible to define the generalized Bernoulli numbers assuming that

B[m−1]
n = B[m−1]

n (0). (4.3)

The following properties are proved in the above-mentioned paper [18].
(i) Explicit forms:

xn =
n∑

h=0

(
n

h

)
h!

(h+m)!
B[m−1]
n−h (x). (4.4)

Inverting this equation, it is possible to find explicit expressions for the polynomials

B[m−1]
n (x). The first ones are given by

B[m−1]
0 (x) =m!,

B[m−1]
1 (x) =m!

(
x− 1

m+ 1

)
,

B[m−1]
2 (x) =m!

(
x2 − 2

m+ 1
x+

2
(m+ 1)2(m+ 2)

)
,

(4.5)

and, consequently, the first generalized Bernoulli numbers are

B[m−1]
0 =m!, B[m−1]

1 =− m!
m+ 1

,

B[m−1]
2 = 2m!

(m+ 1)2(m+ 2)
.

(4.6)

(ii) Recurrence relation for the B[m−1]
n polynomials:

B[m−1]
n (x) =

(
x− 1

m+ 1

)
B[m−1]
n−1 (x)− 1

n(m− 1)!

n−2∑
k=0

(
n

k

)
B[m−1]
n−k B[m−1]

k (x). (4.7)

This relation, starting from n = 1, and taking into account the initial value B[m−1]
0 (x) =

m!, allows a recursive computation for this class of generalized Bernoulli polynomials.

(iii) Differential equation for the B[m−1]
n polynomials:

B[m−1]
n

n!
y(n) +

B[m−1]
n−1

(n− 1)!
y(n−1) + ···+

B[m−1]
2

2!
y′′

+ (m− 1)!
(

1
m+ 1

− x
)
y′ +n(m− 1)!y = 0.

(4.8)
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This is an equation of order n so that all the considered families of polynomials can be
viewed as solutions of differential operators of infinite order.

Remark 4.1. Note that the generating function could be written in the form

G[m−1](x, t) := tmext

et −∑m−1
h=0

(
th/h!

) =m!
∞∑
n=0

B̃[m−1]
n (x)

tn

n!
(4.9)

so that, putting

B[m−1]
n (x) =m!B̃[m−1]

n (x), (4.10)

we obtain the explicit form of the generalized Bernoulli polynomial B̃[m−1]
n from the pre-

ceding one simply by dividing by m!, and so decreasing the relevant numerical values.

5. 2D extensions of the Bernoulli and Appell polynomials

The Hermite-Kampé de Fériet [3] (or Gould-Hopper) polynomials [13, 21] have been
used recently in order to construct addition formulas for different classes of generalized
Gegenbauer polynomials [9].

They are defined by the generating function

ext+yt j =
∞∑
n=0

H
( j)
n (x, y)

tn

n!
(5.1)

or by the explicit form

H
( j)
n (x, y) = n!

[n/ j]∑
s=0

xn− js ys

(n− js)!s!
, (5.2)

where j ≥ 2 is an integer. The case when j = 1 is not considered since the corresponding
2D polynomials are simply expressed by the Newton binomial formula.

It is worth recalling that the polynomials H
( j)
n (x, y) are a natural solution of the gen-

eralized heat equation

∂

∂y
F(x, y) = ∂j

∂x j F(x, y), F(x,0) = xn. (5.3)

The case when j = 2 is then particularly important (see Widder [24]); it was recently
used in order to define 2D extensions of the Bernoulli and Euler polynomials [7].

Further generalizations including the H
( j)
n (x, y) polynomials as a particular case are

given by

ex1t+x2t2+···+xr tr =
∞∑
n=0

Hn
(
x1,x2, . . . ,xr

) tn
n!
. (5.4)
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Note that the generating function of the last equation can be written in the form

ex1t+x2t2+···+xr tr =
∞∑
k=0

(
x1t+ x2t2 + ···+ xrtr

)k
k!

=
∞∑
k=0

1
k!

∑
k1+k2+···+kr=k

k!
k1!k2!···kr !x

k1
1 xk2

2 ···xkrr tk1+2k2+···+rkr

=
∞∑
n=0

 ∑
πk(n|r)

n!
xk1

1 xk2
2 ···xkrr

k1!k2!···kr !

 tn

n!
,

(5.5)

where k := k1 + k2 + ··· + kr , n := k1 + 2k2 + ··· + rkr , and the sum runs over all the re-
stricted partitions πk(n|r) (containing at most r sizes) of the integer n, with k denoting
the number of parts of the partition and ki the number of parts of size i. Note that, using
the ordinary notation for the partitions of n, that is, n= k1 + 2k2 + ···+nkn, we have to
assume kr+1 = kr+2 = ··· = kn = 0.

Consequently, the explicit form of the multidimensional Hermite-Kampé de Fériet
polynomials

Hn
(
x1,x2, . . . ,xr) =

∑
πk(n|r)

n!
xk1

1 xk2
2 ···xkrr

k1!k2!···kr ! (5.6)

follows.
Furthermore, they satisfy for every n the isobaric property (of weight n)

Hn
(
tx1, t2x2, . . . , trxr

)= tnHn
(
x1,x2, . . . ,xr

)
, (5.7)

and consequently, they are solutions of the first-order partial differential equation

x1
∂Hn

∂x1
+ 2x2

∂Hn

∂x2
+ ···+ rxr

∂Hn

∂xr
= nHn. (5.8)

The multivariate Hermite-Kampé de Fériet polynomials appear as an interesting tool
for introducing and studying multidimensional generalizations of the Appell polynomials
too, including the Bernoulli and Euler ones, starting from the corresponding generating
functions. A first approach in this direction was given in [8].

In the following, we recall some results of Bretti and Ricci [5], presenting some prop-
erties of the generalized 2D Appell polynomials, but considering first the case of the 2D
Bernoulli polynomials, in order to introduce the subject in a more friendly way. The rele-
vant extensions to the multidimensional Bernoulli and Appell case can be derived almost
straightforwardly, but the relevant equations are rather involved.

We will show that for every integer j ≥ 2, it is possible to define a class of 2D Bernoulli

polynomials denoted by B
( j)
n (x, y) generalizing the classical Bernoulli polynomials.
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Furthermore, the bivariate Appell polynomials R
( j)
n (x, y) are introduced by means of

the generating function

A(t)ext+yt j =
∞∑
n=0

R
( j)
n (x, y)

tn

n!
. (5.9)

Exploiting the factorization method (see [14, 16]), we show how to derive the differen-
tial equations satisfied by these 2D polynomials. The differential equation for the classical
Appell polynomials was first obtained by Sheffer [20], and was recently recovered in [15].

Remark 5.1. It is worth noting that recently Professor Ismail [17], avoiding the use of
the factorization method, was able to prove that the differential equation of infinite order
satisfied by the Appell polynomials is nothing special since it can be stated for a general
polynomial family.

Further generalizations are given by the multiindex polynomials defined by means of
the generating functions

A(t,τ)ext
l+yτ j =

∞∑
n,m=0

R
(l, j)
n,m (x, y)

tn

n!
τm

m!
(5.10)

or, more generally,

A
(
t1, . . . , tr

)
ex1t

j1
1 +···+xr t

jr
r =

∞∑
n1,...,nr=0

R
( j1,..., jr )
n1,...,nr

(
x1, . . . ,xr

) tn1
1

n1!
··· t

nr
r

nr !
, (5.11)

which belong to the set of multidimensional special functions recently introduced by
Dattoli and his group.

6. The 2D Bernoulli polynomials B
( j)
n (x, y)

Starting from the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials H
( j)
n (x, y),

we define the 2D Bernoulli polynomials B
( j)
n (x, y) by means of the generating function

G( j)(x, y; t) := t

et − 1
ext+yt j =

∞∑
n=0

B
( j)
n (x, y)

tn

n!
. (6.1)

It is worth noting that the polynomial H
( j)
n (x, y), being isobaric of weight n, cannot

contain the variable y, for every n= 0,1, . . . , j− 1.

The following results for the B
( j)
n (x, y) polynomials can be derived.

(i) Explicit forms of the polynomials B
( j)
n in terms of the Hermite-Kampé de Fériet

polynomials H
( j)
n and vice versa:

B
( j)
n (x, y) =

n∑
h=0

(
n

h

)
Bn−hH

( j)
n (x, y) = n!

n∑
h=0

Bn−h
(n−h)!

[h/ j]∑
r=0

xh− jr yr

(h− jr)!r!
, (6.2)
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where Bk denote the Bernoulli numbers;

H
( j)
n (x, y) =

n∑
h=0

(
n

h

)
1

n−h+ 1
B

( j)
h (x, y). (6.3)

(ii) Recurrence relation:

B
( j)
0 (x, y) = 1,

B
( j)
n (x, y) =−1

n

n−2∑
k=0

(
n

k

)
Bn−kB

( j)
k (x, y)

+
(
x− 1

2

)
B

( j)
n−1(x, y) + j y

(n− 1)!
(n− j)!

B
( j)
n− j(x, y).

(6.4)

(iii) Shift operators:

L−
n := 1

n
Dx, L+

n :=
(
x− 1

2

)
−

n−1∑
k=0

Bn−k+1

(n− k+ 1)!
Dn−k

x + j yD
j−1
x ,

�−
n := 1

n
D

−( j−1)
x Dy ,

�+
n :=

(
x− 1

2

)
+ j yD

−( j−1)2

x D
j−1
y −

n−1∑
k=0

Bn−k+1

(n− k+ 1)!
D

−( j−1)(n−k)
x Dn−k

y .

(6.5)

(iv) Differential or integrodifferential equations:[
Bn

n!
Dn

x + ···+
Bj+1

( j + 1)!
D

j+1
x +

(
Bj

j!
− j y

)
D

j
x

+
Bj−1

( j− 1)!
D

j−1
x + ···+

(
1
2
− x

)
Dx +n

]
B

( j)
n (x, y) = 0,

(6.6)

[(
x− 1

2

)
Dy + jD

−( j−1)2

x D
j−1
y + j yD

−( j−1)2

x D
j
y

−
n−1∑
k=1

Bn−k+1

(n− k+ 1)!
D

−( j−1)(n−k)
x Dn−k+1

y − (n+ 1)D
( j−1)
x

]
B

( j)
n (x, y) = 0,

(6.7)

[(
x− 1

2

)
D

( j−1)(n−1)
x Dy + ( j− 1)(n− 1)D

( j−1)(n−1)−1
x Dy

+ jD
( j−1)(n− j)
x

(
D

j−1
y + yD

j
y
)− n−1∑

k=1

Bn−k+1

(n− k+ 1)!
D

( j−1)(k−1)
x Dn−k+1

y

− (n+ 1)D
( j−1)n
x

]
B

( j)
n (x, y) = 0, n≥ j.

(6.8)

Note that the last equation can easily be derived by differentiating ( j− 1)(n− 1) times
with respect to x both sides of the preceding one, and does not contain antiderivatives for
n≥ j.
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7. The 2D Appell polynomials R
( j)
n (x, y)

For any j ≥ 2, the 2D Appell polynomials R
( j)
n (x, y) are defined by means of the generating

function

G
( j)
A (x, y; t) := A(t)ext+yt j =

∞∑
n=0

R
( j)
n (x, y)

tn

n!
. (7.1)

Even in this general case, the polynomial R
( j)
n (x, y) is isobaric of weight n so that it does

not contain the variable y, for every n= 0,1, . . . , j− 1.

(i) Explicit forms of the polynomials R
( j)
n in terms of the Hermite-Kampé de Fériet

polynomials H
( j)
n and vice versa:

R
( j)
n (x, y) =

n∑
h=0

(
n

h

)

n−hH

( j)
n (x, y)

= n!
n∑

h=0


n−h
(n−h)!

[h/ j]∑
r=0

xh− jr yr

(h− jr)!r!
,

(7.2)

where the 
k are the Appell numbers appearing in the definition (2.5);

H
( j)
n (x, y) =

n∑
k=0

(
n

k

)
Qn−kR

( j)
k (x, y), (7.3)

where the Qk are the coefficients of the Taylor expansion in a neighborhood of the origin
of the reciprocal function 1/A(t).

(ii) Recurrence relation: it is useful to introduce the coefficients of the Taylor expansion

A′(t)
A(t)

=
∞∑
n=0

αn
tn

n!
. (7.4)

The following linear homogeneous recurrence relation for the generalized Appell poly-

nomials R
( j)
n (x, y) holds:

R
( j)
0 (x, y) = 1,

R
( j)
n (x, y) = (

x+α0
)
R

( j)
n−1(x, y) +

(
n− 1
j− 1

)
j yR

( j)
n− j(x, y)

+
n−2∑
k=0

(
n− 1
k

)
αn−k−1R

( j)
k (x, y).

(7.5)
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(iii) Shift operators:

L−
n := 1

n
Dx, L+

n := (
x+α0

)
+

j

( j− 1)!
yD

j−1
x +

n−1∑
k=0

αn−k
(n− k)!

Dn−k
x ,

�−
n := 1

n
D

−( j−1)
x Dy ,

�+
n := (

x+α0
)

+
j

( j− 1)!
yD

−( j−1)2

x D
j−1
y +

n−1∑
k=0

αn−k
(n− k)!

D
−( j−1)(n−k)
x Dn−k

y .

(7.6)

(iv) Differential or integrodifferential equations:

[
αn−1

(n− 1)!
Dn

x + ···+
αj

j!
D

j+1
x +

(
αj−1 + j y

( j− 1)!

)
D

j
x

+
αj−2

( j− 2)!
D

j−1
x + ···+

(
x+α0

)
Dx −n

]
R

( j)
n (x, y) = 0,

(7.7)

[(
x+α0

)
Dy +

j

( j− 1)!
D

−( j−1)2

x
(
yD

j
y +D

j−1
y

)
+

n−1∑
k=1

αn−k
(n− k)!

D
−( j−1)(n−k)
x Dn−k+1

y − (n+ 1)D
j−1
x

]
R

( j)
n (x, y) = 0,

(7.8)

[(
x+α0

)
D

( j−1)(n−1)
x Dy + ( j− 1)(n− 1)D

( j−1)(n−1)−1
x Dy

+
j

( j− 1)!
D

( j−1)(n− j)
x

(
yD

j
y +D

j−1
y

)
+

n−1∑
k=1

αn−k
(n− k)!

D
( j−1)(k−1)
x Dn−k+1

y

− (n+ 1)D
n( j−1)
x

]
R

( j)
n (x, y) = 0, n≥ j.

(7.9)
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