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11.1. Introduction

Image processing has evolved over a period of some forty years, and it has now
attained a fair measure of maturity. It has spawned a good many branches, such as
image enhancement, image restoration, image matching, image compression, and
image recognition, not to mention the closely allied subjects of image analysis,
computer vision, and automated visual inspection—together with some appar-
ently less related subjects such as virtual reality.

In many ways, image processing is a narrow subject, its basic definition be-
ing the study of how one image may be converted into another: traditionally,
this means suppression of noise and artefacts, enhancement to improve clarity,
or “deconvolution” to eliminate mathematically modeled distortions. Effectively,
this definition means applying a transform to convert an image, pixel by pixel, into
an improved image of the same sort (though here we should not exclude chang-
ing the resolution to match the immediate purpose for which the images will be
used). This definition of image processing is motivated by the need to present hu-
man operators with improved images, which will be easier for them to examine:
for example, doctors may require X-radiographs to be enhanced and to have lower
levels of noise so that diagnosis will be made easier.

However, a separate motivation for image processing is to improve or adapt
images so that the computer will itself be able to analyze them more easily and
effectively. Image processing can then be considered as a preprocessing stage on
the way to analysis and recognition. A further aspect is that image processing can
be used to present a completely transformed image exhibiting edge signal instead
of image intensity, or to present a corner- or other feature-enhanced image, which
(to go one stage further) need only to be thresholded to indicate points that will
be of immediate relevance for matching, recognition, 3D disparity measurement,
and so on.

There are also higher level possibilities, such as transforming an image to a
different viewpoint in 3D, taking several images, and reconstructing whole scenes,
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or in some way, automatically removing undesired objects from photographs (a
recent case in point is automatically removing the effects of blooming in digital
cameras by deconvolution using inverses of rather complex blooming functions
[1]).

In this chapter, we largely ignore this last set of complexities, and indeed all
complexities arising from 3D aspects of the real world. Instead we concentrate on
fairly general image processing aspects pertaining to preprocessing and the needs
of subsequent image analysis; and we develop this topic to cover color process-
ing as well as standard gray-scale processing. Color has recently been increasing
in importance, with the advent of digital television, digitally generated films, and
ubiquitous digital cameras—which have also become very much the sine qua non
of the latest generation of mobile phones. In addition, we must not forget the
huge increase in the use of surveillance—not just from earth-circling satellites, but
from cameras above motorways and in urban environments including supermar-
kets, shops, and railway stations. Indeed, the digital camera and the webcam have
fallen in cost so far that price has become almost negligible relative to the cost of
computers and computer software, and, furthermore, it is actually becoming diffi-
cult to find cameras that present black and white rather than color images. Added
to this, color is almost always preferred by humans (whether acting as amateurs or
as professional operators), and it clearly gives far more information that may be
crucial for matching and recognition tasks. Note also that the arrival of color in a
convenient form and at competitive prices is very recent relative to the time span
of the whole subject area, and to a certain extent we have been caught unprepared
for its being provided so conveniently without behest.

It used to be possible to argue in many cases that color was a waste of re-
sources. For example, in a simple inspection application, a gray-scale image could
be thresholded to give a binary image that provided all the shape information
needed to inspect metal flanges or other flat objects, and to check that all holes,
corners, and other features were intact. That was a time when color seemed to add
little, and indeed, one of the few inspection applications where color seemed to be
crucial was in the inspection of fruit for ripeness and freedom from bruises [2].

On the other hand, we have now moved into the era of surveillance and crime
prevention and detection, and it has become necessary to use full-color images
to ascertain exactly what is going on in an outdoor environment: coincidentally,
the September 11 scenario happened at a time when it was becoming increasingly
possible to detect criminal and terrorist activity from surveillance cameras. This
chapter will pay special attention to the color question, and will examine the extent
to which color image processing has progressed in comparison with its gray-scale
counterpart.

The aspects of color processing that will be covered in this chapter include
how to manage the considerable additional information it brings; the concept of
color bleeding—how color bleeding arises and how to cope with it; the contrast
between linear and nonlinear filtering; the mode filter—its value and its imple-
mentation; the role of modern switched noise suppression filters; filters with ad-
justable parameters; image distortions produced by grayscale and color filters; and
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a general review of recent color work. Further extensions and clarifications will ap-
pear in the immediately following chapter, which covers nonlinear edge detection
in color images.

11.2. The color problem

Gray-scale images reflect a systematic change away from binary images, partly in
respect of logic values giving way to intensity values, but also in respect of 1-bit
arithmetic precision giving way to 8-bit (or even 12-bit) precision. In the latter
case, we are merely moving along a scale of precision that can proceed as far as
necessary, and the change is monotonic in nature. However, the change from gray-
scale to color is distinctly different: three separate channels (or more in the case
of multispectral, e.g., satellite, data) are involved, so the data characteristics have
undergone a quantum leap rather than a monotonic change. Furthermore, it is
not always obvious how to handle and combine the information from the different
independent channels. If the images arose in a fixed application, a single channel
could perhaps be produced by a simple linear weighting and addition operation
applied to the three intensities, so, for example, apples could be graded on a single
green-red scale. More complicated nonlinear functions could employ a lookup
table to convert from color to gray-scale for the same basic purpose. However, the
problem is that in a good many applications, the color is necessary, and the means
of processing it to produce optimal meaningful results are likely to be complex and
nontrivial. One standard approach [3] is to apply principal components analysis
(PCA) to find the main information-carrying channels, and move from there to
more systematic informed processing of the data. In fact, these aspects will not
be broached in this chapter, as our aim here is to concentrate on the basic image
processing: but the fact that there will be three independent channels rather than
a single one will form a vibrant theme in the analysis.

11.3. Linear versus nonlinear processing

Image processing is commonly carried out in small neighborhoods or “windows,”
and in the past, 3 X 3 pixels was the most commonly used, though windows as
large as 21 x 21 pixels are not uncommon now that computers have become more
powerful. Linear processing is simple, useful, and straightforward to analyze and
understand mathematically. When a linear operation is applied uniformly across
the whole image, the mathematical process is actually a convolution—a very well
understood process, and one that is exceptionally powerful. Convolution forms the
basis of correlation-type template matching, and this provides maximum sensitiv-
ity for detection of features via the (spatial) matched filtering process, which came
into prominence in the development of radar [4]. Thus it is no surprise that convo-
lution forms the basis of most types of edge detector,' and has also been employed
for corner detection, line segment detection, and sometimes detection of whole

IThis also applies in the case of color; see the account given in the following chapter.
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objects. The overall procedure is to use convolutions to produce an image whose
pixels present the local signal for the feature in question, and then to apply non-
maximum suppression and/or thresholding—or more sophisticated methods—to
perform the actual feature detection. For example, the Sobel edge detector and the
Plessey corner detector apply convolutions that differentiate the image locally in
the x and y directions, giving g, and g, differential gradient images, from which
the following formulae lead to edge and corner signal values [5, 6]:
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the latter being deduced from the rotationally invariant determinant and trace of
the locally defined matrix:
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Several other corner detectors employ second-order local derivatives, gxx, gxy»
gyy—again derived by convolution masks—and these are applied within more
complex formulae to estimate the local corner signal [5].

Lastly, we note that mean and Gaussian image smoothing filters also apply
convolution operators, typified by the following 3 x 3 convolution masks:

) 1 1 1 1 2 1
) 1 1 1}, 6 2 4 2. (11.3)
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Opverall, considering that, even in a 3 X 3 window, the general convolution op-
erator has nine adjustable parameters, its high range of utility and power is unde-
niable. Nevertheless, its power is limited. First, two convolutions applied one after
another remain a convolution, not a more powerful operator (though an #n x n and
an m X m convolutions applied in sequence will be equivalent to a larger p X p con-
volution, where p = n+m — 1), that is, it is still linear. Second, several of the linear
processes mentioned above are normally followed by a highly nonlinear operation
such as thresholding to actually detect the features. Third, the image smoothing
operators are well known to have the disadvantage of smoothing the signal as well
as any noise, so it is generally impossible to use them for this purpose. (However,
Gaussian smoothing can be used for the special purpose of progressively cutting
down image detail to create a hierarchical image structure or data pyramid, lead-
ing on to scale-space representations of images—though we will not pursue this
possibility further here.)

These considerations show that in general we cannot do without nonlinear
processing of the image. In fact, a more important question is not whether linear
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processing is powerful enough to be used on its own but whether nonlinear pro-
cessing is powerful enough to be applied in this way. However, even this question
is misguided. Why constrain image processing in any such way? In fact, we should
use a method that is appropriate for the particular type of data and the particu-
lar task to be carried out. Again, in image smoothing, it is well known that mean
filtering is optimal for images that are corrupted by Gaussian noise, while median
filtering is optimal for suppressing impulse noise. (Mathematically, median filter-
ing is optimal for double exponential noise, which has wide wings matching well
the incidence of outliers [5, 7].)

11.4. Color filtering

The remarks in the previous section were restricted to gray-scale processing. How-
ever, it is now necessary to enquire how color processing differs from gray-scale
processing. We start by taking the well-known example of the median filter. In
fact, this provides an immediate problem, as the median is only applicable to a
single channel (such as gray-scale) whose entities are placed in numerical order
and the median element in the ordered set is selected as the output value. In the
multichannel case, there is no intrinsic ordering, and the median is hence unde-
fined. Much work has been carried out to allow a suitable ordering to be applied in
the multichannel (vectorial signal) case, but the problem has no universal solution,
and again, any solutions that are found will tend to be of limited applicability: as
remarked in the previous section (in the case of linear and nonlinear processing),
the particular choice must depend on the data and the task.

In spite of these remarks, we can deal with the median filter problem by an al-
ternative approach that does not require an ordering procedure [7]. We merely ap-
ply an alternative formulation—that the generalized median is the result of form-
ing the following minimum sum of distances in color space:*

M= miinZ |dij’ (i# j), (11.4)
i

where

3 1/2
dij = [Z (Lik _Ij)k)z} , (11.5)
k=1

I;, I; being RGB vectors, and Ik, Ijx (k = 1,...,3) being the color components.
Thus the generalized median vector is the one that has the smallest total distance
to all the other vectors. Clearly, an outlier would have a rather large total distance

2A more precise statement is that I; = arg(min; >’ i Idij|), the value of i for which the minimum
occurs being used to point back to the appropriate input vector. (It may be helpful to note that the
mathematical expression arg min; is intended to be read “the sample vector giving the minimum value
of...7)
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to all the other vectors, and this total distance would become smaller as the chosen
vector became more central: so this is an intuitively correct solution. More partic-
ularly, in one dimension, the formulation gives an identical result to that for the
standard median: there will be equal numbers of points on either side of the cho-
sen value. The only problem in the 1D case arises when there is an even number of
points. This particular formulation asserts that the proper answer is the midpoint
between the two central points, whereas that was only a convenient convention in
the normal median case (it was inconvenient to say that there were two medians or
alternatively none, so workers chose to say that the true median was the midpoint:
but the new formulation forces us to make the median the midpoint).

Finally, the generalized median is one of the original vectors, and this corre-
sponds to the median being one of the original data points in the 1D case. From
now on, we follow normal practice in calling the generalized median, defined in
this way, the vector median (though we will sometimes revert to calling it the me-
dian when it is understood that we are dealing with a particular 3D manifold).

Before proceeding further, it is worth noting that the generalized mean in
color space is readily defined using the same color space metric (e.g., the Euclidean
distance) as for the median. There is no necessity for the result to be one of the
initial data points, and indeed very little likelihood that the mean would be the
same as one of the initial points, either in 1D or in the multichannel case.

So far, there has been no indication whether or not it is desirable for the out-
put signal to be identical, in any dimensionality, to one of the input signals. It
seemed that in the median case, it had to be identical, whereas in the mean case
it was most unlikely to be identical. Yet in the latter case, restricting the result to
one of the input values would significantly limit the accuracy of the final result.
Indeed, Davies [8] has shown that this situation also applies for the single channel
median filter. We will consider the situation in more detail below.

11.5. Color bleeding

As has already been remarked, one of the advantages of median filtering is its ca-
pability for eliminating outliers. However, when an outlier occurs near an edge,
the effect can be to pull the edge closer to the outlier as well as eliminating the
outlier. This is seen from the 1D examples shown in Figure 11.1, for all of which a
3-element median has been applied to the data.

This behavior could be serious in the case of multichannel data. For example,
in a 3-color RGB image, if we applied the median separately to the three channels
and an outlier occurred in just one of them, the result would be that the outlier
would be eliminated, but the edge would be shifted in one channel, and this would
result in an erroneous change of color at that location [7] (Figure 11.2). The effect
might sometimes be more serious than the improvement resulting from elimina-
tion of the outlier—though “seriousness” may be at least partly a human subjective
response governed by the prominence of any new color that is introduced.

There is also the opportunity for erroneous colors to arise in other situations.
While edges tend to demarcate pairs of regions in an image, there will be places
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(a) (b)
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FiGure 11.1. Application of a 1D median filter. Here a 3-element median filter is applied to four 1D
signals: (a) an isolated noise point, (b) a single edge, (c) a noise point far from an edge, (d) a noise
point near an edge. In (d), notice how the edge has been shifted left by one pixel.

FiGurke 11.2. Effect of scalar component-wise filtering. This figure shows the effect of mode filtering
on a brightly colored image with the filter applied to each color channel independently. Color bleeding
is most noticeable as isolated pink pixels and a number of green pixels around the yellow sweets. (Re-
produced from D. Charles and E. R. Davies, “Mode filters and their effectiveness for processing color
images,” Imaging Science Journal © 2004 RPS.)

where three regions come together, and at these points there will often be three to-
tally different colors, each of which can be regarded as an outlier to the other two.?
Depending on the particular geometry existing at the joining regions, and the lo-
cal variabilities of the channel intensities, substantial “bleeding” of one region into
another can occur. The problem is exacerbated by the numbers of different colors
that can result when different intensities of each color channel are brought in.

31t is important to remember that outliers may arise not only as a result of noise but also in the
form of background clutter.
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(a) (b)

FiGUre 11.3. Geometry of three color data points in 2D. In (a), the minimum total distance point
(MTDP) lies near the centroid of the triangle. In (b), the MTDP is the uppermost data point.

The value of the vector median approach now becomes particularly apparent:
the output pixel vector is severely restricted by the fact that it must be the same
as that of a particular pixel in the window. Thus no new color combination is
generated, and the output pixel vector will in the case of a 3 X3 window be identical
to that of one of the nine pixels [7]. In larger windows, the restriction will not be
so marked. However, in a p X p window, the maximum number of available colors
will be p?, compared with (p?)® = p® when the input to any color channel may be
combined with the input of any other two color channels in 3D color space.

It should next be questioned whether any disadvantage can result from ap-
plication of the vector median procedure. Here we consider just one problem. We
illustrate the problem by reference to a 2D color space containing three data points
(the case of two data points is essentially a 1D problem). Let us find the minimum
total distance point (MTDP) given by (11.4) for several sets of 2D vector data.
Figure 11.3 suggests that the MTDP will, in most cases, occur in the space between
the data points. Exceptions arise when the points are arranged in a rather squat
triangle. In fact, for nonsquat triangles, the MTDP will lie near the centroid of
the space, where the lines joining the MTDP to the three data points are at angles
of 120° to each other. (An intuitive proof of this result involves first considering
the points at the corners of an equilateral triangle, and then noticing that mov-
ing them, arbitrary distances from the MTDP in the same directions would not
produce any movement of the MTDP.)

For four data points in 2D, there are again two possibilities [9]: one is that the
MTDP is at the space near the centroid of the points; the other is that the MTDP
is situated at one of the points. In the first of these cases, the actual MTDP is on
the crossing of the diagonals of the quadrilateral formed from the four data points
(Figure 11.4): to prove this, we merely note that moving in any direction from the
crossing point changes one or other diagonal, or both, to two sides of a triangle,
which must have greater total length. The second case corresponds to a concave
quadrilateral (i.e., one point lies inside the triangle formed from the other three
points): to prove that the central point C has smaller total distance to the other
points, first move to a point T a short distance in the direction of the point P
(Figure 11.5); this will not change the sum of the distances to C and to P, but will
increase the distances to the other two points Q and R; the MTDP is at C.
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(a) (b)

FIGURE 11.4. Geometry of four color data points in 2D. Case where (a) none and (b) one of the points
lie within the triangle formed from the other three points. In (a), the MTDP is at the crossing of the
diagonals, whereas in (b), it is at the central data point.

R

FiGURE 11.5. Geometry for proving the position of the MTDP for four color data points in 2D. In this
case, the MTDP for data points P, Q, R, C cannot be at T, because this would extend the distances from
Q and R, but not the sum of the distances from P and C.

Coupled with the 1D case, these two examples show that there is something
like 50% probability that the MTDP will lie in free space, and not at one of the
initial data points—and this situation does not seem likely to be different in a
3D color space, or in higher dimensional spaces [9]. Thus the basic mathematical
equivalent of the median ordering formulation, (11.4), would appear to state that
for minimum error, we must always use the MTDP: it does not insist that the
median be taken to be the data point that is closest to the MTDP. Contrariwise,
restricting the output multichannel median to one of the input vector samples
seems likely to introduce substantial error.

Understanding the situation is not trivial. One view is that if a purely numeric
solution is needed, the MTDP must give the correct solution. On the other hand, if
a true color interpretation or color recognition process is to ensue, then the vector
median solution must be used, as misinterpretation of the color would constitute
a major error. Another factor is that if the noise is Gaussian, the MTDP will be
better (in the sense of being numerically more accurate), whereas if the noise is
impulse noise, the vector median will be better (in the sense of not being open to
misinterpretation). In any case, it should always be borne in mind that using the
vector median procedure may not represent the most accurate solution, and that
the decision about whether to use it must be task dependent.
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FIGURE 11.6. Action of the mode filter. Here the mode filter is applied to a 1D edge intensity profile.
The filter outputs the majority value of the intensities within each window and thus pushes this inten-
sity towards the edge boundary from each side. The result is a profile more like that indicated by the
gray line.

11.6. The mode filter

As indicated above, median filters are widely used for suppressing noise in images,
and are particularly important in view of the fact that they do not at the same time
blur the image signals. In fact, there are many other types of image filter. One other
type of filter based on a commonly known statistic is the mode filter. This takes
the main mode of the local intensity distribution (in the case of gray-scale images)
and uses it to provide the output value for each pixel. There is much sense in using
this particular statistic, as its value ought to represent the most probable intensity
in the local intensity distribution. However, the result is not exactly what might
a priori have been expected—for the mode filter enhances the image rather than
merely eliminating noise (though it does achieve a considerable degree of noise
reduction, as the mode is generally well away from the extremes of the distribution
and thus it is good at eliminating outliers). The enhancement property is achieved
since the filter ignores minor modes and therefore gives a majority view in the
vicinity of edge points: just inside an edge it gives the inside view, ignoring the
outside view, and just outside an edge it gives the outside view, ignoring the inside
view. The result is that it pushes the local majority intensity inwards from both
sides of the edge—thereby giving a much more crisp boundary to the edge [10]
(Figure 11.6).

Unfortunately, there are distinct problems in estimating the mode, not merely
because of noise, but also because the local intensity distribution is sparse; as a
result, while the highest point is technically the mode, it is not necessarily the
underlying mode, which is the one that needs to be used as the filter output. To
overcome this problem, Algorithm 11.1 was devised (see also Figure 11.7) [10].

The rationale of this algorithm is the following: if we knew the position of the
underlying mode U, and located the nearer end E of the distribution, and then
moved from E to U and an equal distance further on, this would be a reasonable
position to truncate the distribution. Next, noting that the median of the distri-
bution is normally on the far side of the underlying mode relative to E, using the
median as an estimator of U is safe in the sense that it will never truncate more
than the ideal proportion of distribution (Figure 11.7). While iterating the proce-
dure can in principle give a better estimate of U, it has been found that this is not
necessary in practice. Indeed, the mode filter has been found to produce very good
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(1) Find the median M of the distribution.

(2) Find the end E of the distribution that is nearer to M.

(3) Measure the distance d from E to M.

(4) Move a further distance d from M, to point T.

(5) Truncate the distribution from T to the other end F of the distribution.
(6) Find the median U of the remaining portion of the distribution.

(7) Use the median value U as an estimator of the underlying mode.

ArcorrteM 11.1. Mode filter algorithm for gray-scale images.

I Mode
F Median
Mean

IE M /T{/\IF

ok— 4 d—) [

FiGure 11.7. Method of truncating the local distribution. The diagram shows the ordering of the three
means for a bimodal distribution. It also shows how the intensity histogram is truncated at a specified
distance from the median. The rationale for this procedure is indicated by the idealized situation that
would exist if the position of the mode was known initially. (Reproduced from D. Charles and E. R.
Davies, “Mode filters and their effectiveness for processing color images,” Imaging Science Journal ©
2004 RPS.)

results with a minimum of algorithmic complexity and to be reasonably resistant
to the effects of sparsity of the local intensity distribution [10]. One final aspect
that is of interest here: in stage 7 of the algorithm, the median can be replaced
by the mean with little effect on performance, and without introducing blurring.
This is because blurring is normally introduced by a mean filter as a result of mix-
ing together the intensities from parts of the window inside and outside the edge,
but here this is prevented as the smaller of these parts has been eliminated by trun-
cating the distribution.

11.6.1. The situation in color images

When applying the mode filter to color images, all the basic components of the
algorithm can be replicated without problem. Specifically, the median can be re-
placed by the vector median, and the truncation can be carried out without diffi-
culty. Nevertheless, determining exactly where to perform the truncation involves
slight difficulties and the gray-scale algorithm has to be adapted carefully.

The first requirement is to find the vector median of the sample points in the
3D color space. Then we need to consider where the closest part on the bound-
ary of the distribution might be. However, this is difficult to do robustly, as it is
necessary to distinguish the closest points on the boundary from those internal to
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FiGure 11.8. Method of truncating the local distribution in 2D, extendible to 3D color spaces. The
circles are samples, the shaded circle is the vector median M of the input distribution, and the black
circle U is the vector median of the truncated distribution. The dot D is not a sample: it is the location
in color space found by moving from sample F to sample M and then the same vector distance d further
on. (Reproduced from D. Charles and E. R. Davies, “Properties of the mode filter when applied to color
images,” IEE Conference Publication, © 2003 IEE.)

(1) Find the vector median M of the distribution.

(2) Find the end F of the distribution that is furthest from M.

(3) Find the position D that is (relative to M) diametrically opposite the end F.
(4) Find the point E that is closest to D.

(5) Construct a sphere S centered at M and passing through E.

(6) Truncate the parts of the distribution lying outside S.

(7) Find the vector median U of the remaining portion of the distribution.

(8) Use the vector median U as an estimator of the underlying mode.

ALGoriTHM 11.2. Mode filter algorithm for color images.

the distribution. In fact, it is easiest to start by determining the furthest part of the
boundary, that is, the position and direction of the furthest outlier F. Once these
have been located, we move to the median and then an equal vector distance d fur-
ther on, to D; next, we find the sample that is closest to D [11, 12] (Figure 11.8).
The resulting algorithm is shown in Algorithm 11.2: it is essentially the same as in
the gray-scale case. However, it is important to note that stage 8 now has to employ
the vector median rather than the mean or the MTDDP, as the final position selected
must be one of the original data points, so that color bleeding will be suppressed.
An interesting aspect of mode filters in color images is that in addition to their
enhancement properties (Figure 11.9), they turn out to have remarkable capabil-
ities for eliminating large amounts of impulse noise [12]. In fact, up to 70% of
randomly corrupted pixels containing random colors (each color channel having
70% of the intensities uniformly distributed over the entire range 0 to 255) were
largely eliminated with very little distortion of the final images (Figure 11.10). This
capability for elimination of high levels of noise was not matched by the median
filter in spite of the fact that the median filter ought to be more resistant to out-
liers, as theory and earlier work on gray-scale images had suggested. It is likely that
this degree of improvement resulted from using larger windows than used to be
customary with these relatively computation intensive filters, thereby allowing the
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(c)

FiGurke 11.9. Effect of the mode filter on a color image. (a) Original image. (b) Effect of vector median
filtering. (c) Effect of vector mode filtering. Both of the filters are applied in a 5 x 5 window. (Re-
produced from D. Charles and E. R. Davies, “Mode filters and their effectiveness for processing color
images,” Imaging Science Journal © 2004 RPS.)

mode filter to lock on to and make full use of the remaining 30% of unaffected pix-
els. Another factor is the considerable discriminating power available when color
is taken into account.

11.7. Modern “switched” noise suppression filters

In the past few years, several filters that are substantially better than the median
at eliminating noise have been devised (see, e.g., [13-16]), and some comment on
the mode filter’s noise performance vis-a-vis these new filters is appropriate.
Typically, these new filters obtain their improvements by analyzing the im-
age contents more carefully than the median does, and acting accordingly. Rather
than merely sorting the pixel intensity values and taking no account of where in
the window each intensity originated, the new filters adopt cleverer strategies. In
particular, they have several means of calculating the output intensity, and select
amongst (or “switch” between) these values according to deductions made about
the situation at and around each pixel. For instance, they retain the option of us-
ing the output of a standard median filter or leaving the pixel intensity unchanged
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Figure 11.10. Filtering in the presence of large amounts of impulse noise. (a) Lena image with 70%
random impulse noise. (b) Effect of vector median filtering. (c) Effect of vector mode filtering. Both of
the filters are applied in a 9 x 9 window. (Reproduced from D. Charles and E. R. Davies, “Mode filters
and their effectiveness for processing color images,” Imaging Science Journal © 2004 RPS.)

if it is judged not to be modified by impulse noise. In the case of the Eng and
Ma [13] noise adaptive soft-switching median (NASM) and “ideal” filters," selec-
tion of output values is also made on the basis of any local edges that are detected
in the image and whether more than one noise impulse is found at or near a given
pixel. These particular filters also consider the optimum size of the filter window,
larger windows being selected when the noise density is greater.

Tests made by Charles and Davies [12] confirmed that the two filters proposed
by Eng and Ma were very effective at suppressing high levels of impulse noise.
These tests employed gray-scale images, as the Eng and Ma filters only provided
this capability. In comparison with the median and mode filters, the peak signal-
to-noise ratios achieved for an impulse noise density of 70% were

(i) median 17dB,
(ii) mode  24dB,
(iii) NASM 28dB,
(iv) ideal 32 dB.

“The “ideal” filter is a simulated idealized filter in which the positions of the noise impulses are
taken to be known, and to this extent it does not provide a realistic comparison.
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Clearly, then, the mode filter is not as effective as the NASM filter at suppress-
ing high densities of impulse noise, though in this respect it is much better than
the median filter. What is interesting is how well the mode filter performs despite
its simplicity (the C++ code is only about 30 lines long) and lack of specific mech-
anisms for adapting to the local conditions.

As remarked above, the two switched types of filter outlined above were ap-
plied only to gray-scale images, and it is of interest here whether they could be
applied successfully to color images. The critical aspects of these filters include the
use of a median filter and switching its output on and off depending on local con-
ditions in the image. None of these aspects precludes their use with color images,
the only proviso being that a vector median filter needs to be used in place of a
median filter. Further developments in this area are therefore to be expected in the
near future.

11.8. Filters with adjustable parameters

Many image filters such as the median filter have no adjustable parameters other
than the crude one of deciding the size of window in which they are to be applied.
Hence there is virtually no scope for optimization to the conditions occurring in
different images—such as varying levels of noise. Thus there has been a trend to-
wards the inclusion of adjustable parameters within filter algorithms. As we will
see below, these parameters often take the form of weights.

The concept of weighted median filters is now well established in the litera-
ture, and a number of workers have given much attention to the development of
weighted filters for gray and color image noise removal and enhancement (Sun
and Neuvo [17]; Fotopoulos et al. [18]; Sangwine and Horne [19]; Marshall [20]).
In one definition (Sun and Neuvo [17]), the weighting is achieved by duplication

of samples inside the filter, such that with input sample set x = [x1,x5,...,x,] and
corresponding weights w = w1, wa, ..., w,], the output y of the filter is
y = median[w; Ox1, w20x2,. .., W Oxn ], (11.6)

where ¢ denotes weighting by using each x; data point w; times. In this case, the
w; are necessarily integral. In contrast, the minimum weighted distance function
defined by Fotopoulos et al. [18] (leading to the result x;) is

M=minw; > |dj| (i #j), (11.7)
j

where the weights w; need not be integral.

In an alternative approach, Charles and Davies [21] introduced a filter that in-
corporates a window distance weighting function. In particular, (11.4) is modified
by introducing a weighting function f(r;) dependent on the Euclidean distance r;
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between pixel i and the center of the window:

A4:mpfu02|@¢ (i # j), (11.8)
j

where

ri = [(xi - xo)z + (yi — )’0)2]1/2- (11.9)

Here xo and yy represent the location of the center pixel and f(r) is the weighting
function chosen according to the application.

The weighting functions f(r) are necessarily increasing functions which are
largest at large distances. This is useful for continuity reasons, so that the limita-
tions of the window support region do not have a too great effect on the properties
of the operation: indeed, if the function value went to infinity at the boundary of
the support region, increasing the size of the window would give no observable ef-
fect. (It is of course necessary to remember that the most relevant function values
are those for small r, as (11.8) takes the minimum value as the output.)

The value of this approach is that one or two crucial carefully selected param-
eters can be employed instead of a plethora of arbitrary weights. In fact, in [21],
only a single parameter « reflecting the radial extent of the function was used:

r
fn=1+_. (11.10)

Clearly, the weighting function and the amount of weighting applied will vary
with the type of application and desired results, but even in its basic form, this type
of weighted median filter moves continuously from the detail-preserving proper-
ties of a small operator to the greater noise-averaging properties of a large operator
by adjustment of the single parameter a.

Figure 11.11 shows the shape of the normalized mean-square error (NMSE)
optimization curve when applying the distance-weighted filter for a range of pa-
rameter values. (In such cases, tests are made by adding known amounts of noise
and then measuring how much of the noise is eliminated by the algorithm.) Note
that the horizontal asymptote shows the situation when a standard vector me-
dian filter is employed—that is, this is a limiting, suboptimal case of the distance-
weighted filter.

11.9. Distortions produced by median and other filters

The previous sections of this chapter have discussed image processing and filtering,
and have gone to some trouble to consider how color modifies the algorithms and
to assess their effectiveness. At this point it is useful to consider the extent to which
they may produce distortions in the images as a by-product of their desired action,
whether this be noise elimination or some other effect such as enhancement.
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Figure 11.11. Shape of the normalized mean-square error (NMSE) optimization curve when applying
the distance weighted filter for a range of parameter values. The horizontal gray line shows the NMSE
for the standard vector median filtered image.

FiGure 11.12. Geometry for calculation of contour shifts using the median filter. The area A is shown
shaded. The origin on the median contour (which bisects the area of the circular window C) is not at
the center of C. (Reproduced from E. R. Davies, “Image distortions produced by mean, median, and
mode filters,” IEE Proceedings-Vision Image and Signal Processing, © 1999 IEE.)

In fact, median and other filters produce distinct edge shifts, but only for
curved edges. For straight edges, symmetry dictates that there will be no shifts
(any straight edge will be shifted laterally by the same amount in both directions).
To discuss the situation for curved edges, consider first the case of binary images—
or, equivalently, gray-scale images containing step edges. Here the median contour
in a window will be the one with equal areas (equal numbers of pixels) on either
side of the contour. The same applies when mean or mode images are being pro-
duced. Interestingly, the same result applies again in the case of the median filter
when the edge profiles present linear rather than step variations. We will return
later to certain other possibilities.

Fortunately, it is quite simple to see what happens when a circular boundary
divides the region in a circular window into equal areas [22]. Examining Figure
11.12, we can see that the circular boundary cannot pass through the center of the
window, so when its intensity is placed at the output of the filter, it will appear at
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FiGure 11.13. Geometry for the calculation of contour shifts using the mode filter. (Reproduced from
E. R. Davies, “Image distortions produced by mean, median, and mode filters,” IEE Proceedings-Vision
Image and Signal Processing, © 1999 IEE.)

the center position in the output image—that is, there will be a distinct shift in-
wards. We can find an approximate value for the shift by taking a circular contour,
centered at (b, 0) and passing through the origin (Figure 11.12)

(x —b)* +y* = b (11.11)
After simplifying and approximating to large b, we find

X~ (11.12)

The part of the area in the positive quadrant lying to the left of the contour is
o ((xgve L[ _i[yj]a_is_l 3
A~Lxdy—2bjoydy—2b 3 0_6ba = oKk (11.13)

where a is the radius of the circular window; the result is an approximation which
is only valid if the curvature x(= 1/b) is small and applies because A is actually
bounded by the curved boundary of the window rather than a horizontal line dis-
tant a from the x-axis. For a median contour, A must be equal to aD. Hence

1
D= gicaz. (11.14)

This proves the result for a median filter for all shapes of edge profile, and for
the mean and mode filters when there is a step edge profile. Moving on to the mean
filter when there is a linear edge profile, we find that we have a similar calculation
to perform with similar approximations, except that in this case we have to find the
mean intensity in the window using a polar coordinate representation, and then
deduce for what contour the mean intensity would arise. This leads to the formula

D= ém? (11.15)

For details of the calculation, the reader is referred to [23, 24].
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TaBLE 11.1. Summary of shifts predicted on continuum model. (Reproduced from E. R. Davies, “Im-
age distortions produced by mean, median, and mode filters,” IEE Proceedings-Vision Image and Signal
Processing, © 1999 IEE.)

Edge type Mean Median Mode
1 1
Step A ka? A Kka? A Kxa?
. 1 1 1
Intermediate ~ —Ka? ~ka? ~ka?
7 6 2
. 1 1
Linear s xa? A xa? 3 xa?

In the case of the mode filter when there is a step edge profile, the situation
turns out to be far simpler and no integration is required [24, 25]. This is because
the contour with the mode intensity must be the longest one, and is therefore
the one which spans the longest diameter of the window (Figure 11.13). Thus we
merely have to ask how far this contour is from the center of the window. The
answer is given by setting x = D and y = ain (11.11) and (11.12), leading to the
formula

D= %mf. (11.16)

All the above results are summarized in Table 11.1. Table 11.1 also includes a
set of estimates of shifts for intermediate intensity patterns—namely those whose
profiles lie between a linear edge and a step edge. Note, however, that a full expla-
nation of the variations in the shifts for the mode filter is quite complex [24].

11.9.1. Using a discrete model to explain median shifts

The explanation of edge shifts given above was completely analog in nature, as it
effectively dealt with spatial densities of pixels in various parts of the filter window.
While it leads to good estimates of the shifts for large windows, it is inaccurate
for small windows and thus a new discrete model had to be developed to make
accurate predictions of the shifts [22, 26].

To produce a discrete model, we need to recognize explicitly the positions of
the pixels within an n X n window. We approximate by assuming that the intensity
of any pixel is the mean intensity over the whole pixel and is represented by a
sample positioned at the center of the pixel. We start by examining the case of a
3 x 3 window, and proceed by taking the underlying analog intensity variation to
have contours of curvature «.

First, zero shift occurs for ¥ = 0. Next, if k is even minutely greater than zero,
the center pixel will not necessarily be the median pixel. Consider the case when
the circular median intensity contour passes close to the center of the window at a
small angle 0 to the positive x-axis (Figures 11.14 and 11.15(a)). In that case, the
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[l
\ .

FIGURE 11.14. Geometry for the calculation of median shifts on the discrete model. (Reproduced from
E. R. Davies, “Image distortions produced by mean, median, and mode filters,” IEE Proceedings-Vision
Image and Signal Processing, © 1999 IEE.)

filter will produce a definite shift, whose value is

1 1
Dy ~ Ekaé—aoﬂz EK—Q, (11.17)
where gy is the interpixel separation, which is taken as unity in this chapter. (The
factor 1/2 in the first term arises following (11.12) when y is replaced by ay.) If 6
is close to 45°, the shift will have the value

Dy = Sx(v2a0)’ = (VIao)$ = x ~ V29, (11.18)

where

¢:%—9 (11.19)

and the relevant pixel separation is v/2a, rather than ao (see Figure 11.15(c)).

As indicated above, (11.17) and (11.18) are approximate. However, the above
derivations and solutions provide a useful insight into the situation. In particular,
(11.17) and (11.18) show that at the ends of the range 0 < 6 < 7/4, Dy varies in
proportion to Af. The next problem is understanding what happens when Dy falls
to zero at intermediate values of 6. In fact, Dy remains at zero in this range, the rea-
son being that the median contour reverts to passing through the central pixel in
the window (Figure 11.15(b)). The resulting approximately piecewise-linear vari-
ation in Dy is far from what would be expected on the continuum model. To make
a realistic comparison, we must average over all 0. In that case we obtain the result

, (187 (/2 = 0)d + [ (x — v2g)dg |

(1t/4)
AT e o
= L4242 0.61x>
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FiGure 11.15. Geometry for the calculation of median shifts at low . These three diagrams show the
positions of the median pixels and the ranges of orientations of circular intensity contours for which
they apply: (a) for low 6, (b) for intermediate 6, and (c) for high 6. (Reproduced from E. R. Davies,
“Image distortions produced by mean, median, and mode filters,” IEE Proceedings-Vision Image and
Signal Processing, © 1999 IEE.)

This shows that D follows a square law rather than a linear law at low values
of x, unlike the situation for the continuum model. However, for increasing values
of «, the variation reverts ever more closely to a linear model: this occurs when &
reaches such high values that the range of values of 6 for which Dg = 0 falls to
Zero.

11.9.2. The situation for color images

Interestingly, the continuum and discrete shift models given above apply without
change for color images. It is clear that they apply for the individual color channels.
However, why should they apply when the colors are considered together? The
reason is that the models are rather special in considering single idealized circular
edges, with no complicating factors arising from other edge fragments (such as
might arise from shadows or image clutter) or from noise. The models were very
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carefully set up to consider what happened to the underlying signal. Other work
had already been carried out on the effects of noise and how noise can introduce
edge shifts (as has already been considered in Section 11.5) [27, 28]. Thus the idea
of the two types of the model was to provide a framework on which noise aspects
could be considered properly.

As a check on the two models and the theories of edge shifts they gave rise
to, careful experimental measurements were made by Charles and Davies [12] for
median filters: no detectable difference between the color and gray-scale shifts was
found. Exactly the same situation occurred for color and gray-scale mode filters
(though at certain curvature values the mode shifts suddenly rose sharply relative
to the median shifts—a result for which a reasonable explanation was found [12]).

Opverall, intrinsic shifts have been found to occur for binary, gray-scale, and
color images when median, mean, and mode filters are applied. It has been found
possible to explain these shifts using continuum models and, to a limited extent,
(but where this is possible, more accurately) using discrete models.” As the shifts
are intrinsic rather than being due to noise, they are unavoidable, and in practical
applications, they can be dealt with in the following ways:

(1) by avoiding the use of filters wherever possible;

(2) by applying special types of filter such as the hybrid median filter [29]
or the neural network (trained) filter [30];

(3) by correcting for the shifts using the models outlined in this section.

11.10. Review of other color work

In the preceding sections, color arose in a natural way as the simultaneous rep-
resentation and use of three color channels—normally RGB—and no interaction
between them was envisaged. However, it was noted that the results of processing
using obvious types of filter could appear unnatural to the human eye. It is also
the case that image analysis needs to make best use of the image colors if objects
such as faces and trees are to be segmented or recognized easily. Indeed, one does
not have to look far in the literature of color vision (human or machine) before
questions emerge about the most appropriate color spaces.

If color filtering was solely an abstract process, it would make little difference
which of many orthogonal rotations were made in a color space from the original
RGB axes. However, human perceptual problems, and the complex task of ma-
chine recognition, place a substantial gloss on this question. But the situation is far
more complex than this. Spaces such as HSI (hue, saturation, intensity) reexpress
the relevant variables nonlinearly, in such a way that hue is an angle and saturation
is the argument of the hue, to which varying degrees of whiteness are added. Thus
hue is periodic; furthermore, its value is meaningless when S = 0, a situation that

SNote that the mathematical analysis of discrete models is not trivial, and so far has only been
achieved for median filters. Hence continuum models have by no means been superseded: this is why
both types of model have been examined in the present chapter.
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arises both when I = 0 and when I = 255;° this reflects the “double-cone” struc-
ture of color space (the vertices of the cones lie at (0,0, 0) and (255, 255, 255)).

The motivation for the HSI representation is supposedly that of theoretical
relevance, but the factors just mentioned make it difficult to work with. As a result,
many workers have searched for more appropriate representations within their
own spheres of relevance. Normalized RGB (or rgb) is a useful representation, and
is also useful as a paradigm for comparison:

_ R
"TR+G+B)
G
g:m) (11.21)
I
(R+G+B)

It will be impossible here to do justice to the plethora of color spaces that
have been developed. Instead it will be useful to outline a few choices workers have
recently made in different areas of application. For further examples and insights
into color spaces, see Chapter 12.

11.10.1. Recognizing human skin tones

When finding human skin regions, Chen and Grecos [31] found that skin-tone
color pixels are most compact (and therefore most easily segmented) in normal-
ized RGB space, and recalled previous work showing that normalized RG color
space performs almost as well as RGB space. Working with this space, they cut
down computation and also avoided a color affine transformation. Hsu et al. [32]
tackled the same problem, stating that normalized RG space is not the best choice
for face detection, and adopting Y C,C, space since it is “perceptually uniform”
and also gives compact skin clusters in color space.

11.10.2. Extraction of multicolored objects

Bucha et al. [33], working on extraction of multicolored cartographic objects,
stated that it is difficult to design color image processing algorithms in RGB space
because of the high correlation between channels, and asserted that HSI allows
more robust measures of the differences between two colors to be made; they then
reiterated the difficulties with HSI mentioned earlier. They therefore combined
RGB and HSI to obtain more reliable distance measures, following earlier work
by Gevers and Smeulders [34]. The latter presented several new color models and
gave theoretical justification for choice of color spaces depending on whether the

®When S = 0, a similar situation arises, especially if noise is present.
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illumination is controlled, whether highlights are present, and whether the objects
to be recognized are multicolored.

11.10.3. Mathematical morphology in color spaces

Hanbury and Serra [35] approach the problem of mathematical morphology in
color spaces. In fact, color morphology suffers from exactly the same problems as
median (and other) filtering, in that an ordering of the pixels within the window
is needed, and in color images it is a priori undefined. Thus an ordering has to
be imposed. Lexicographic ordering (applying a dictionary type of ordering, such
as ordering by R, then by G and then by B—effectively ordering by the value of
256%R + 256G + B) is an obvious one, but is arbitrary: in fact, any such ordering
may be appropriate in some situations but poor in others. The chapter aimed to
find a theoretically more suitable ordering: specifically, it examined how the HLS
space could best be adapted for the purpose (a priori, hue should be taken first,
then saturation and finally luminance). They found that because HLS space has a
double-cone shape, it is far better to weight hue by saturation, and only then to
prioritize using hue, saturation, and luminance (note that hue had to be applied
on its own to avoid introducing false colors). Another aspect of this work was the
need to choose an origin of hue, as this permitted ordering on the hue unit circle—
hue being a periodic function. However, this imparted a degree of arbitrariness to
the methodology, which would make it less general but at the same time more
adaptable to different recognition tasks. Discussions of some alternative schemes
are given by Hanbury and Serra [36].

J. Liand Y. Li [37] took a rather different approach to ordering in color space
by concentrating on principal component analysis (PCA) to provide a suitable
ordering procedure. As a result, the method is able to preserve colors in the same
way as the vector median filter.

11.10.4. Effect of varying illumination and shadows

All the cases listed so far provide fixed color spaces with perhaps one or two param-
eters that are adjusted to optimize for any given application. The approach made
by Finlayson et al. [38, 39] looks instead at achieving color constancy—that is, re-
sistance to natural variations in illumination on objects. In this work, two images
of a scene are taken, in one of which a color filter is placed in front of the camera.
This gives additional information which allows the color to be normalized. Specif-
ically, the additional information is of such a type that it can be used to cancel out
misleading information that arises as the background illumination changes. The
work is founded on rigorous theory and is practically impressive; for details, the
reader is referred to [38, 39]. In related work, Finlayson et al. have found how to
eliminate shadows from color images [40]: only a single image is needed once the
camera has been calibrated. Both of these sets of work can be called “filtering,”
though they are some way away from conventional filtering as described in the
literature as, to some degree, they embody global understanding of image content.
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11.11. Summary

This chapter has presented a short survey of image processing, color filtering,
and their inter-relationship. There is clearly much more to be said on this topic,
given its marked overlap with image analysis and recognition. One point that
has emerged strongly is that image processing does not happen in a vacuum: it
is needed as an aid both for human interaction and for computer interpreta-
tion. In either, case divergences and preferences exist. What humans regard as
divisive color bleeding may be largely irrelevant to a computer recognition al-
gorithm, though in the latter case it could introduce inaccuracies of measure-
ment.

At first, color bleeding appeared to be an accidental occurrence in image fil-
tering. However, its incidence is deeper, and it applies equally to mathematical
morphology, which is a widely used, rather generalized approach to the process-
ing and analysis of images. Intrinsic to bleeding is the need to order image data
points, and in a multichannel context, this is fraught with difficulty. Some ap-
proaches to multichannel ordering, such as lexicographic ordering, are obviously
arbitrary, and there is no reason why they would work well in practice (except
with restricted data sets and algorithm settings). More systematic approaches aim
to identify relevant color representations, but these will often be applicable only
to restricted types of data. Methods based on PCA have more right to be called
general, but (as in many other applications of PCA) they may still be suboptimal
and at this stage they do not appear to be fully proven experimentally in the color
context.

Color is a complex topic: while it is perceptually simple for humans, it is dif-
ficult to program and equally difficult to be sure of optimality. In fact, the com-
puter vision community has not had anything like as much experience with color
as with gray-scale images, but with the advent of very cheap color cameras, this
situation seems certain to change quite quickly. Nevertheless, the multichannel
ordering problem is a hard one, and much more work is required before the the-
oretical backcloth is fully prepared for guaranteeing optimal algorithms. The fol-
lowing chapter confirms that the problems recounted in the present chapter are
not parochial, but are manifest for a good many aspects of color processing. For
further reading, a number of useful articles on color image processing appear in
[41]: in particular, the article by Lukac et al. on vector filtering contains valuable
additional topics such as vector directional filters which could not be covered ad-
equately in the present chapter [42].
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