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and M. Beklioğlu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Lp convergence with rates of smooth Picard singular operators,
George A. Anastassiou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Boundary estimates for blow-up solutions of elliptic equations with
exponential growth, C. Anedda, A. Buttu, and G. Porru . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Backward stochastic Volterra integral equations in Hilbert spaces,
Vo Anh and Jiongmin Yong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Second-order differential gradient methods for solving two-person games with
coupled variables, Anatoly Antipin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

On the eigenvalue of infinite matrices with nonnegative off-diagonal elements,
N. Apreutesei and V. Volpert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

On structure of fractional spaces generated by the positive operators with
the nonlocal boundary conditions, Allaberen Ashyralyev and Nergiz Yaz . . . . . . . . . . . . 91

Well-posedness of the nonlocal boundary value problem for elliptic equations,
Allaberen Ashyralyev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

On the stability of the difference schemes for hyperbolic equations,
Allaberen Ashyralyev and Mehmet Emir Koksal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

An existence result for a class of singular problems with critical exponents,
R. B. Assunção, P. C. Carrião, and O. H. Miyagaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



vi Contents
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Hyperbolic partial differential inequalities are developed and applied to derive monotone
iterative techniques for nonlinear hyperbolic partial differential equations in a unified
setting. Results are illustrated by examples.
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1. Introduction

The nonlinear telegraph equation

uxy = f (x, y,u), u= u(x, y) (1.1)

is the two-dimensional analogue of the ordinary differential equation

u′ = f (t,u), u= u(t). (1.2)

The close relationship between the two, which can be traced in almost the entire theory,
however, breaks down while dealing with the monotonicity theorems. It is therefore not
surprising that (1.1), in contrast to (1.2), admits extremal (maximal and minimal) solu-
tions only if f is monotonic in the last variable. Indeed, a counter example in [10] shows
that the continuity of f alone is not sufficient to assert the existence of extremal solutions
of (1.1).

In this paper, we consider the nonlinear hyperbolic initial-boundary value problem
(IBVP for short) in a general setting

uxy = f
(
x, y,u,ux,uy

)
+ g
(
x, y,u,ux,uy

)
. (1.3)

After considering some preliminaries in Section 2, we develop in Section 3 a monotone
iterative technique [3–5, 9] which yields monotone sequences converging uniformly to
the extremal solutions or to the unique solution of (1.3). The results are illustrated by
examples.

Hindawi Publishing Corporation
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2 Monotone methods for nonlinear hyperbolic problems

2. Preliminaries

For a,b ∈R, a > 0, b > 0, let I , J , and R denote the intervals [0,a], [0,b], and the rectan-
gle [0,a]× [0,b], respectively. By z ∈ C2[R,R], we mean that z is a continuous function
on R, and its partial derivatives zx, zy , and zxy exist and are continuous on R. For z ∈
C2[R,R], the triple (z,zx,zy) is denoted by 〈z〉. For a sufficiently smooth function f =
f (x, y,u,v,w)∈ C[R×R3,R], fi, for 3≤ i≤ 5, respectively, denote the first-order partial
derivatives of f with respect to u, v, and w. Under this notation, f4(x, y,〈z〉) means the
partial derivative ∂ f (x, y,z,zx,zy)/∂zx. The triple ( f3, f4, f5) is denoted by { f }. The ex-
pression f3z+ f4zx + f5zy denotes the usual inner product { f } · 〈z〉. For v,w ∈ C2[R,R],
the inequality 〈v〉 ≤ 〈w〉 means that v(x, y)≤ w(x, y), vx(x, y)≤ wx(x, y), and vy(x, y)≤
wy(x, y) for (x, y) ∈ R. For v0,w0 ∈ C2[R,R], such that 〈v0〉 ≤ 〈w0〉 on R, the closed set
Ω is defined by

Ω= {(x, y,〈z〉) :
〈
v0〉≤ 〈z〉 ≤ 〈w0〉 on R

}
. (2.1)

Under these notations, consider the initial-boundary value problem

uxy = f
(
x, y,〈u〉)+ g

(
x, y,〈u〉), (x, y)∈ R;

u(x,0)= σ(x) for x ∈ I ,
u(0, y)= τ(y) for y ∈ J ,

σ(0)= u0 = τ(0),

(2.2)

where f ,g ∈ C[R×R3,R], σ ∈ C1[I ,R], and τ ∈ C1[J ,R].
In the development of the monotone iterative technique, there are four different ways

of employing the lower-upper solutions which we define below.

Definition 2.1. Relative to the IBVP (2.2), the functions v,w ∈ C2[Ω,R], 〈v〉 ≤ 〈w〉 on R,
are said to be

(a) natural upper-lower solutions if

vxy ≤ f
(
x, y,〈v〉)+ g

(
x, y,〈v〉) for (x, y)∈ R,

vx(x,0)≤ σ ′(x) for x ∈ I ,
vy(0, y)≤ τ′(y) for y ∈ J ,

v(0,0)≤ u0;

wxy ≥ f
(
x, y,〈w〉)+ g

(
x, y,〈w〉) for (x, y)∈ R,

wx(x,0)≥ σ ′(x) for x ∈ I ,
wy(0, y)≥ τ′(y) for y ∈ J ,

w(0,0)≥ u0,

(2.3)
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(b) coupled lower-upper solutions of Type I if

vxy ≤ f
(
x, y,〈v〉)+ g

(
x, y,〈w〉) for (x, y)∈ R,

vx(x,0)≤ σ ′(x) for x ∈ I ,
vy(0, y)≤ τ′(y) for y ∈ J ,

v(0,0)≤ u0;

wxy ≥ f
(
x, y,〈w〉)+ g

(
x, y,〈v〉) for (x, y)∈ R,

wx(x,0)≥ σ ′(x) for x ∈ I ,
wy(0, y)≥ τ′(y) for y ∈ J ,

w(0,0)≥ u0,

(2.4)

(c) coupled lower-upper solutions of Type II if

vxy ≤ f
(
x, y,〈w〉)+ g

(
x, y,〈v〉) for (x, y)∈ R,

vx(x,0)≤ σ ′(x) for x ∈ I ,
vy(0, y)≤ τ′(y) for y ∈ J ,

v(0,0)≤ u0;

wxy ≥ f
(
x, y,〈v〉)+ g

(
x, y,〈w〉) for (x, y)∈ R,

wx(x,0)≥ σ ′(x) for x ∈ I ,
wy(0, y)≥ τ′(y) for y ∈ J ,

w(0,0)≥ u0,

(2.5)

(d) coupled lower-upper solutions of Type III if

vxy ≤ f
(
x, y,〈w〉)+ g

(
x, y,〈w〉) for (x, y)∈ R,

vx(x,0)≤ σ ′(x) for x ∈ I ,
vy(0, y)≤ τ′(y) for y ∈ J ,

v(0,0)≤ u0;

wxy ≥ f
(
x, y,〈v〉)+ g

(
x, y,〈v〉) for (x, y)∈ R,

wx(x,0)≥ σ ′(x) for x ∈ I ,
wy(0, y)≥ τ′(y) for y ∈ J ,

w(0,0)≥ u0.

(2.6)

It is apt to note that when f is nondecreasing and g is nonincreasing in the last three
variables, inequalities in (a) and (d) in the above definition imply those in (c).
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It is well known [8] that there are no general comparison results (max-min principles)
for hyperbolic equations, unlike in the case of elliptic or parabolic equations. We need the
following comparison result. For an interesting proof of this using the Laplace invariants
[1] and Piconne canonical form [2], see [7].

Theorem 2.2. Suppose that uxy(x, y) + [M] · 〈u〉 ≥ 0 in R, and that the Laplace invariant
M2M3−M1 ≥ 0, where [M]= (M1,M2,M3) denotes the triple of constants. If

(i) u(x,0)≥ 0, and ux(x,0) +M3u(x,0)≥ 0 for x ∈ I ;
(ii) u(0, y)≥ 0, and uy(0, y) +M2u(0, y)≥ 0 for y ∈ J ,

then u(x, y), ux(x, y) +M3u(x, y), and uy(x, y) +M2u(x, y) are all nonnegative everywhere
in R. In addition, if M2 ≤ 0 and M3 ≤ 0, then 〈u〉 ≥ 〈0〉 everywhere in R.

The following comparison principle, which establishes the nonnegativity of u only
under mild conditions, is a consequence of Theorem 2.2.

Corollary 2.3. Suppose that uxy(x, y) + [M] · 〈u〉 ≥ 0 in R, and that the Laplace invariant
M2M3−M1 ≥ 0. If

u(x,0)≥ 0 for x ∈ I , u(0, y)≥ 0 for y ∈ J , u(0,0)= 0, (2.7)

then u(x, y)≥ 0 for all (x, y)∈ R.

If the Laplace invariant is equal to zero, we obtain the following comparison principle,
which is a mild but useful extension of [5, Lemma 4.2], the first such result that appeared
in the literature. See also [4, 6] for other related results.

Corollary 2.4. Suppose that uxy(x, y) + [M] · 〈u〉 ≥ 0 in R, the Laplace invariant
M2M3−M1 = 0, and M2 ≤ 0, M3 ≤ 0. If

u(0,0)= 0, ux(x,0)≥ 0 for x ∈ I , uy(0, y)≥ 0 for y ∈ J , (2.8)

then 〈u〉 ≥ 〈0〉 everywhere in R.

We provide three examples to illustrate the sharpness of the above comparison princi-
ples. The first shows that the nonnegativity of the Laplace invariants may not be dispensed
with in Theorem 2.2 and the two corollaries that follow it; the second shows that the con-
dition u(0,0)= 0 is essential in Corollary 2.3 even if the Laplace invariant is nonnegative;
and the third shows that the “expected” comparison results do not hold for the gradient
terms ux and uy .

Example 2.5. In the square [0,1]× [0,1], the function u(x, y) = sin(π(x + y)) satisfies
the inequality uxy + [M] · 〈u〉 ≥ 0 with [M]= (π2,1,−1). Also, u(x,0)≥ 0 for x ∈ [0,1],
u(0, y) ≥ 0 for y ∈ [0,1], and u(0,0) = 0. However, u is not nonnegative everywhere in
the square. Notice that the Laplace invariant is equal to −π2− 1.

Example 2.6. In the rectangle [0,π/2]× [0,π/4], the function u(x, y)= cos(x+ y) satisfies
the inequality uxy + [M] · 〈u〉 ≥ 0 with [M]= (1,−1,−1), and the Laplace invariant equal
to 0. Also, we have u(x,0)≥ 0 for x ∈ (0,π/2], and u(0, y)≥ 0 for y ∈ (0,π/4]. However,
u is not nonnegative everywhere in the rectangle. Note that u(0,0)= 1.
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Example 2.7. In the rectangle [0,π/4]× [0,π/2], the function u(x, y) = 1− cos(x + y)
satisfies the inequality uxy + [M] · 〈u〉 ≥ 0 with [M]= (2,1,3), and the Laplace invariant
equal to 1. Also, we have u(x,0)≥ 0 for x ∈ (0,1], u(0, y)≥ 0 for y ∈ (0,1] and u(0,0)= 0.
But u is not nonnegative everywhere in the rectangle. However, since ux(x,0) +
M3u(x,0)≥ 0 for x ∈ [0,π/4], and uy(0, y) +M2u(0, y)≥ 0 for y ∈ [0,π/2], we do have,
as required by Theorem 2.2, ux(x, y) +M3u(x, y)≥ 0 and uy(x, y) +M2u(x, y)≥ 0 every-
where in the rectangle.

3. Main results

We begin by proving the following fundamental result on hyperbolic partial differential
inequalities in a general set up, which includes earlier known results [3–5].

Theorem 3.1. Let v,w ∈ C2[R,R], and H(x, y,z, p,q,z, p,q) ∈ C[D ×R6,R] be nonde-
creasing in z, p, q and nonincreasing in z, p, q. Suppose that any one of the following condi-
tions holds.

(H1) vxy ≤ H(x, y,〈v〉,〈v〉), wxy ≥ H(x, y,〈w〉,〈w〉); H(x, y,z1, p1,q1,z1, p1,q1) −
H(x, y,z2, p2,q2,z2, p2,q2) ≤ L[(z1 − z2) + (p1 − p2) + (q1 − q2) + (z1 − z2) +
(p1− p2) + (q1− q2)], whenever z1 ≥ z2, p1 ≥ p2, q1 ≥ q2, z1 ≥ z2, p1 ≥ p2, q1 ≥
q2, for some L > 0.

(H2) vxy ≤H(x, y,〈v〉,〈w〉), wxy ≥H(x, y,〈w〉,〈v〉); H(x, y,z1, p1,q1,z, p,q)−H(x, y,
z2, p2,q2,z, p,q)≤ L[(z1− z2) + (p1− p2) + (q1− q2)], whenever z1 ≥ z2, p1 ≥ p2,
q1 ≥ q2, and H(x, y,z, p,q,z1, p1,q1)−H(x, y,z, p,q,z2, p2,q2) ≥ −L[(z1 − z2) +
(p1− p2) + (q1− q2)], whenever z1 ≥ z2, p1 ≥ p2, q1 ≥ q2, for some L > 0.

(H3) vxy ≤H(x, y,〈w〉,〈v〉), wxy ≥H(x, y,〈v〉,〈w〉); H(x, y,z, p,q,z1, p1,q1)−H(x, y,
z, p,q,z2, p2,q2)≤ L[(z1− z2) + (p1− p2) + (q1− q2)], whenever z1 ≥ z2, p1 ≥ p2,
q1 ≥ q2, and H(x, y,z1, p1,q1,z, p,q)−H(x, y,z2, p2,q2,z, p,q) ≥ −L[(z1 − z2) +
(p1− p2) + (q1− q2)], whenever z1 ≥ z2, p1 ≥ p2, q1 ≥ q2, for some L > 0.

(H4) vxy ≤ H(x, y,〈w〉,〈w〉), wxy ≥ H(x, y,〈v〉,〈v〉); H(x, y,z1, p1,q1,z1, p1,q1) −
H(x, y,z2, p2,q2,z2, p2,q2) ≥ −L[(z1 − z2) + (p1 − p2) + (q1 − q2) + (z1 − z2) +
(p1− p2) + (q1− q2)], whenever z1 ≥ z2, p1 ≥ p2, q1 ≥ q2, z1 ≥ z2, p1 ≥ p2, q1 ≥
q2, for some L > 0.

If v(0,0)≤w(0,0),vx(x,0)≤wx(x,0), and vy(0, y)≤wy(0, y) for x ∈ I and y ∈ J , then

〈v〉 ≤ 〈w〉 everywhere in R. (3.1)

Proof. The conclusion relative to (H1) is known [3, 5]. We will prove the result relative
to (H2). Conclusions relative to (H3) and (H4) can be proved using similar arguments.
For λ > 2L+

√
4L2 + 2L, and sufficiently small ε > 0, set v(x, y) = v(x, y)− εeλ(x+y), and

w(x, y)=w(x, y) + εeλ(x+y). Then, 〈v〉 < 〈v〉, 〈w〉 > 〈w〉, and we have

vxy = vxy − λ2εeλ(x+y)

≤H(x, y,〈v〉,〈w〉)− λ2εeλ(x+y)

≤H(x, y,〈v〉,〈w〉)− εeλ(x+y)[λ2− 2Lλ−L]
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≤H(x, y,〈v〉,〈w〉)− εeλ(x+y)[λ2− 4Lλ− 2L
]

<H
(
x, y,〈v〉,〈w〉).

(3.2)

We assert that 〈v〉 < 〈w〉 everywhere in R. To this end, it suffices to prove that

(
vx,vy

)
<
(
wx,wy

)
in R. (3.3)

Suppose (3.3) is false. Let t0 be the greatest lower bound of numbers t > x+ y such that
(3.3) holds for x + y < t0. Then, there is a point (x0, y0) ∈ R, with x0 + y0 = t0, and (say)
vx(x0, y0) = wx(x0, y0). Clearly, y0 > 0 since vx(x0,0) < wx(x0,0). Also, since (v(x0, y0),
vy(x0, y0))≤ (w(x0, y0),wy(x0, y0)), using the monotonicity ofH , we obtain the following
contradiction:

vx
(
x0, y0

)≤ vx
(
x0,0

)
+
∫ y0

0
H
(
x0,s,

〈
v
(
x0,s

)〉
,
〈
w
(
x0,s

)〉)
ds

< wx
(
x0,0

)
+
∫ y0

0
H
(
x0,s,

〈
w
(
x0,s

)〉
,
〈
v
(
x0,s

)〉)
ds

≤wx
(
x0, y0

)
.

(3.4)

A similar contradiction can be arrived at if we assume vy(x0, y0) = wy(x0, y0). The in-
equalities in (3.3) are therefore established. Letting ε→ 0, the desired conclusion in (3.1)
is obtained, and the proof is complete. �

It is apt to note that the one-sided Lipschitz conditions in Theorem 3.1, which assure
uniqueness of solutions, are required in the proof for nonstrict inequalities only. In the
absence of such a uniqueness condition, conclusion (3.1) may not be true, as can be seen
from the following.

Example 3.2. Consider uxy = f (u)=√u, u≥ 0, (x, y)∈ [0,1]× [0,1]; u(x,0)≡ u(0, y)≡
0. Then, v0(x, y)= x2y2/16, w0(x, y)≡ 0 satisfy v0

xy = f (〈v0〉), w0
xy = f (〈w0〉), v0(x,0)=

u(x,0)=w0(x,0). However, (3.1) is false.

As noted earlier, it is sufficient to employ coupled lower-upper solutions of Types I
and II in the monotone iterative technique when f and g are, respectively, monotoni-
cally nondecreasing and nonincreasing in the last three variables. Coupled lower-upper
solutions of Type I have been effectively employed in [4] to construct two monotone se-
quences converging uniformly to the coupled minimal and maximal solutions of (2.2).
In our Theorem 3.4 below, we employ coupled lower-upper solutions of Type II with a
different outcome. Interestingly enough, their existence is always guaranteed, as the fol-
lowing lemma shows.

Lemma 3.3. Assume that f ,g ∈ C[R×R3,R], f is nondecreasing and g is nonincreasing in
the last three variables. Then, there exist coupled lower-upper solutions v0, w0 of Type II for
(2.2) such that 〈v0〉 ≤ 〈w0〉 on R.
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Proof. Let v0(x, y) = −M(x + y) + z(x, y), w0(x, y) =M(x + y) + z(x, y), where M is a
constant and z(x, y) is the (unique) solution of zxy = f (x, y,〈0〉) + g(x, y,〈0〉), with the
same initial-boundary conditions as in (2.2). SelectM > 0 sufficiently large so that 〈v0〉 ≤
〈0〉 ≤ 〈w0〉 on R. Then, by the monotonicity of f and g in the last three variables, it is
easy to see that v0, w0 form a pair of coupled lower-upper solutions of Type II for (2.2)
on R. �

Theorem 3.4. Under the conditions of Lemma 3.3, the iterates {vn(x, y)}, {wn(x, y)} satisfy

〈
v0〉≤ 〈v2〉≤ ··· ≤ 〈v2n〉≤ 〈u〉 ≤ 〈v2n−1〉≤ ··· ≤ 〈v3〉≤ 〈v1〉 in Ω, (3.5)

〈
w1〉≤ 〈w3〉≤ ··· ≤ 〈w2n−1〉≤ 〈u〉 ≤ 〈w2n〉≤ ··· ≤ 〈w2〉≤ 〈w0〉 in Ω, (3.6)

provided v0 ≤ v2, w2 ≤w0 in Ω, where u is any solution of (2.2) with v0 ≤ u≤w0 in Ω. The
iteration schemes are given by

vnxy = f
(
x, y,

〈
wn−1〉)+ g

(
x, y,

〈
vn−1〉), (x, y)∈ R;

vnx (x,0)= σ ′(x), x ∈ I ; vny(0, y)= τ′(y), y ∈ J ; vn(0,0)= u0,

wn
xy = f

(
x, y,

〈
vn−1〉)+ g

(
x, y,

〈
wn−1〉), (x, y)∈ R;

wn
x (x,0)= σ ′(x), x ∈ I ; wn

y(0, y)= τ′(y), y ∈ J ; wn(0,0)= u0.

(3.7)

Moreover, the monotone sequences {v2n}, {v2n−1}, {w2n}, {w2n−1} ∈ C2[Ω,R] converge
uniformly to ρ, r, ρ∗, r∗ in C2[Ω,R], respectively, and satisfy

rxy = f
(
x, y,

〈
ρ∗
〉)

+ g
(
x, y,〈ρ〉),

ρxy = f
(
x, y,

〈
r∗
〉)

+ g
(
x, y,〈r〉),

r∗xy = f
(
x, y,〈ρ〉)+ g

(
x, y,

〈
ρ∗
〉)

,

ρ∗xy = f
(
x, y,〈r〉)+ g

(
x, y,

〈
r∗
〉)

(3.8)

in Ω. Also, 〈ρ〉 ≤ 〈u〉 ≤ 〈r〉, and 〈r∗〉 ≤ 〈u〉 ≤ 〈ρ∗〉 in Ω.

Proof. We shall only indicate the proof of inequalities (3.5). The proof of (3.6) is similar.
Setting p = v1 − v0, we see that pxy = v1

xy − v0
xy ≥ f (x, y,〈w0〉) + g(x, y,〈v0〉) −

f (x, y,〈w0〉) − g(x, y,〈v0〉) = 0, px(x,0) ≥ 0, py(0, y) ≥ 0, and p(0,0) ≥ 0. Therefore,
Theorem 2.2 yields 〈v0〉 ≤ 〈v1〉 on R. Using similar arguments, we can successively show
that 〈u〉 ≤ 〈v1〉, 〈v2〉 ≤ 〈u〉, 〈v3〉 ≤ 〈v1〉, and 〈u〉 ≤ 〈v3〉 on R. Consequently, we have
〈v0〉 ≤ 〈v2〉 ≤ 〈u〉 ≤ 〈v3〉 ≤ 〈v1〉 on R. Inequalities in (3.5) now follow by induction. The
remaining conclusions in the theorem can be proved by using standard arguments [3],
completing the proof. �
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The following corollary is a consequence of Theorem 3.1.

Corollary 3.5. In addition to conditions of Theorem 3.4, if f and g also satisfy the one-
sided Lipschitz conditions in (H3) of Theorem 3.1, then 〈ρ〉 ≡ 〈r〉 ≡ 〈ρ∗〉 ≡ 〈r∗〉 ≡ 〈u〉.
Proof. Since 〈ρ〉 ≤ 〈r〉, and 〈r∗〉 ≤ 〈ρ∗〉 in Ω by Theorem 3.4, it is enough to prove that

〈ρ〉 ≥ 〈r〉, 〈
r∗
〉≥ 〈ρ∗〉 in Ω. (3.9)

To this end, set v = r − ρ, w = ρ∗ − r∗, so that we have v ≥ 0 and w ≥ 0 on Ω. Then,
utilizing Theorem 3.1 (H3) and the monotone character of f and g, it follows that vxy ≤
[L] · (〈v〉+ 〈w〉), wxy ≤ [L] · (〈v〉+ 〈w〉), and pxy ≤ 2[L] · 〈p〉, where [L]= (L,L,L) and
p = v +w. Also, px(x,0)= 0, x ∈ I , py(0, y)= 0, x ∈ J , and p(0,0)= 0. By Theorem 3.1,
we have 〈p〉 ≤ 〈0〉, which implies 〈v〉 ≤ 〈0〉 and 〈w〉 ≤ 〈0〉. This completes the proof. �

Example 3.6. For (x, y)∈ R= [0,1]× [0,1], consider

uxy = g
(
x, y,〈u〉),

u(x,0)≡ 0, u(0, y)≡ 0,
(3.10)

where

g
(
x, y,〈u〉)=

⎧
⎨

⎩

exp(−2u) if u≥ 0,

1 if u < 0.
(3.11)

It is easy to see that the functions v0 ≡ 0 and w0(x, y)= xy form a pair of coupled lower-
upper solutions of Type II for (3.10). For n = 1,2,3, . . ., define the iterates vn to be the
(unique) solutions of

vnxy = g
(
x, y,

〈
vn−1〉), vn(x,0)≡ 0, vn(0, y)≡ 0. (3.12)

It is not hard to see that 〈v0〉 ≤ 〈v2〉 on R. Also, g is monotonically nonincreasing in the
last three variables and satisfies the Lipschitz condition of (H3) in Theorem 3.1. There-
fore, by Theorem 3.4 and Corollary 3.5, the sequences {v2n} and {v2n−1} both converge
to the unique solution u of (3.10). We note in passing that the solution u of (3.10) is
u(x, y)= ln(xy + 1).

References

[1] S. Agmon, L. Nirenberg, and M. H. Protter, A maximum principle for a class of hyperbolic equa-
tions and applications to equations of mixed elliptic-hyperbolic type, Communications on Pure
and Applied Mathematics 6 (1953), 455–470.

[2] T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of
hyperbolic type, Memoirs on Differential Equations and Mathematical Physics 1 (1994), 144.

[3] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear
Differential Equations, Monographs, Advanced Texts and Surveys in Pure and Applied Mathe-
matics, vol. 27, Pitman, Massachusetts, 1985.



J. O. Adeyeye et al. 9
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ON THE INTEGRAL MANIFOLDS OF THE DIFFERENTIAL
EQUATION WITH PIECEWISE CONSTANT ARGUMENT
OF GENERALIZED TYPE

MARAT AKHMET

We introduce a general type of differential equations with piecewise constant argument
(EPCAG). The existence of global integral manifolds of the quasilinear EPCAG estab-
lished when the associated linear homogeneous system has an exponential dichotomy. A
new technique of investigation of equations with piecewise argument, based on an inte-
gral representation formula, is proposed. An appropriate illustrating example is given.

Copyright © 2006 Marat Akhmet. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let Z, N, and R be the sets of all integers, natural, and real numbers, respectively. Denote
by ‖ · ‖ the Euclidean norm in Rn, n∈N.

In this paper, we are concerned with the quasilinear system

y′ =A(t)y + f
(
t, y(t), y

(
β(t)

))
, (1.1)

where y ∈Rn, t ∈R, β(t)= θi if θi ≤ t < θi+1, i= Z, is an identification function, θi, i∈ Z,
is a strictly ordered sequence of real numbers, |θi| → ∞ as |i| → ∞, and there exists a
number θ > 0 such that θi+1 − θi ≤ θ, i ∈ Z. The theory of differential equations with
piecewise constant argument (EPCA) of the type

dx(t)
dt

= f
(
t,x(t),x

(
[t]
))

, (1.2)

where [·] signifies the greatest integer function, was initiated in [3] and developed by
many authors [1, 2, 6, 7, 9–12]. The novel idea of this paper is that system (1.1) is a
general case (EPCAG) of equation (1.2). Indeed, if we take θi = i, i∈ Z, then (1.1) takes
the form of (1.2).

The existing method of investigation of EPCA, as proposed by its founders, is based
on the reduction of EPCA to discrete equations. We propose another approach to the
problem. In fact, this approach consists of the construction of the equivalent integral

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 11–20



12 Integral manifolds

equation. Consequently, for every result of our paper, we prove a corresponding equiva-
lence lemma. Thus, while investigating EPCAG, we need not impose any conditions on
the reduced discrete equations, and hence, we require more easily verifiable conditions,
similar to those for ordinary differential equations.

In what follows, we use the uniform norm ‖T‖ = sup{‖Tx‖‖x‖ = 1} for matrices.
The following assumptions will be needed throughout the paper.

(C1) A(t) is a continuous n×n matrix and supR‖A(t)‖ = μ <∞.
(C2) f (t,x,z) is continuous in the first argument, f (t,0,0)= 0, t ∈ R, and f is Lips-

chitzian such that ‖ f (t, y1,w1)− f (t, y2,w2)‖ ≤ l(‖y1− y2‖+‖w1−w2‖).
(C3) There exist a projection P and positive constants K and σ such that

∥
∥X(t)PX−1(s)

∥
∥≤ K exp

(− σ(t− s)), t ≥ s,
∥
∥X(t)(I −P)X−1(s)

∥
∥≤ K exp

(
σ(s− t)), t ≤ s,

(1.3)

whereX(t) is a fundamental matrix of the associated linear homogeneous system.

2. The solutions of the EPCAG

The problem of the definition of solutions for functional differential equations in general,
and for differential equations with deviating argument in particular, is one of the most
difficult and important problems. EPCAG is not an exception in that sense. An especially
complex task is to formulate initial value problem (IVP) for these equations. In [3, 10],
the problem was reduced to the case when the initial moment is an integer, and global
solutions have been considered. The approach is reasonable since it is a consequence of
the method of reduction to the discrete equations.

We combine the approach of EPCA [3, 7, 10, 11] with a more careful analysis of the
initial data. The analysis of the general problem of IVP for EPCAG is the subject of dis-
cussion for another paper.

In our paper, it is assumed that all solutions are continuous functions.
Solutions which start at points θi, i∈ Z, and exist to the right.

Definition 2.1. A solution y(t)= y(t,θi, y0), y(θi)= y0, i∈ Z, of (1.1) on [θi,∞) is a con-
tinuous function such that

(i) the derivative y′(t) exists at each point t ∈ [θi,∞), with the possible exception of
the points θj , j ≥ i, where one-sided derivatives exist;

(ii) equation (1.1) is satisfied by y(t) at each interval [θj ,θj+1), j ≥ i.
Definition 2.1 is a version of [10, Definition 1.1] adapted to our general case.

Theorem 2.2. Suppose conditions (C1)–(C3) are fulfilled. Then for every y0 ∈Rn and i∈
Z, there exists a unique solution y(t) of (1.1) in the sense of Definition 2.1.

Proof. If θi ≤ t ≤ θi+1, then y(t) coincides with a solution of the following IVP:

dξ

dt
= A(t)ξ + f

(
t,ξ, y0

)
,

ξ
(
θi
)= y0.

(2.1)
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Equation (2.1) is an ordinary differential equation, where function f (t,ξ, y0) is Lips-
chitzian in ξ, and consequently y(t) exists and is unique on [θi,θi+1].

Assume, now, that y(t) is defined uniquely on an interval [θi,θk], k ≥ i+ 1. Then for
[θk,θk+1], it is a solution of the IVP

dξ

dt
= A(t)ξ + f

(
t,ξ, y

(
θk
))

,

ξ
(
θk
)= y

(
θk
)
.

(2.2)

It is obvious that y(t) exists and is unique on the interval.
By induction, we can conclude that for every y0 ∈Rn and i∈ Z, there exists a unique

solution y(t) of (1.1) on [θi,∞), satisfying y(θi)= y0. The theorem is proved. �

The existence and the uniqueness of solutions on R.
It can be easily shown that there exist constantsm,M, 0 <m <M, such that ‖X(t,s)‖ ≤

M, ‖X(t,s)‖ ≥m, if |t− s| ≤ θ.
From now on, we make the following assumptions:
(C4) 2Mlθ < 1;
(C5) Mlθ[1 +M(1 + lθ)exp(Mlθ)] <m.

Theorem 2.3. Assume that conditions (C1)–(C5) are fulfilled. Then for every y0 ∈ Rn,
t0 ∈R, θi < t0 ≤ θi+1, i∈ Z, there exists a unique solution ȳ(t)= y(t,θi, ȳ0) of (1.1) in sense
of Definition 2.1 such that ȳ(t0)= y0.

Proof

Existence. Consider a solution ξ(t)= y(t, t0, y0) of the equation

dy

dt
=A(t)y + f (t, y,η) (2.3)

on [θi, t0].
We have that

ξ(t)= X(t, t0
)
y0 +

∫ t

t0
X(t,s) f

(
s,ξ(s),η

)
ds, (2.4)

and should prove that there exists a vector η ∈ Rn such that the solution ξ(t) of (2.4)
satisfies ξ(θi)= η.

Take ξ0(t)= X(t, t0)y0 and construct

ξm+1(t)= X(t, t0
)
y0 +

∫ t

t0
X(t,s) f

(
s,ξm(s),ξm

(
θi
))
ds, m≥ 0. (2.5)

One can easily check that

max
[θi,t0]

∥
∥ξm+1(t)− ξm(t)

∥
∥

0 ≤ [2Mlθ]mM
∥
∥y0
∥
∥. (2.6)

It is obvious that the limit of the sequence ξm(t) is request ξ(t) with η = ξ(θi). The
existence is proved.



14 Integral manifolds

Uniqueness. It is sufficient to check that for each t ∈ (θi,θi+1], and y2, y1 ∈ Rn, y2 	= y1,
the condition y(t,θi, y1)	= y(t,θi, y2) is valid.

Denote by y1(t) = y(t,θi, y1), y2(t) = y(t,θi, y2), y1 	= y2, solutions of (1.1). Assume,
on the contrary, that there exists t∗ ∈ (θi,θi+1] such that y1(t∗)= y2(t∗). Then

X
(
t∗,θi

)(
y2− y1

)=
∫ t∗

θi
X(t∗,s)

[
f
(
s, y1(s), y1

)− f
(
s, y2(s), y2

)]
ds. (2.7)

We have that

∥
∥X
(
t∗,θi

)(
y2− y1

)∥
∥≥m∥∥y2− y1

∥
∥. (2.8)

Moreover, for t ∈ (θi,θi+1], the following inequality is valid:

∥
∥y1(t)− y2(t)

∥
∥≤M∥∥y2− y1

∥
∥+

∫ t

θi
Ml
[∥
∥y1(s)− y2(s)

∥
∥+

∥
∥y2− y1

∥
∥
]
ds. (2.9)

Hence, using Gronwall-Bellman inequality, we can write that

∥
∥y1(t)− y2(t)

∥
∥≤M(1 + lθ)exp(Mlθ)

∥
∥y2− y1

∥
∥. (2.10)

Consequently,

∥
∥
∥
∥
∥

∫ t∗

θi
X(t∗,s)

[
f
(
s, y1(s), y1

)− f
(
s, y2(s), y2

)]
ds

∥
∥
∥
∥
∥

≤ lMθ
[
1 +M(1 + lθ)exp(Mlθ)

]∥
∥y2− y1

∥
∥.

(2.11)

Finally, one can see that (C5), (2.8), and (2.11) contradict (2.7). The theorem is proved.
�

Example 2.4. Consider the following EPCAG:

x′(t)= 3x(t)− x(t)x
(
β(t)

)
, (2.12)

where β(t) = θi if θi ≤ t < θi+1, i ∈ Z, θ2 j−1 = j − 1/5, θ2 j = j + 1/5, j ∈ Z. The distance
θi+1− θi, i∈ Z, is equal either to θ = 3/5 or to θ̄ = 2/5.

Let us find conditions when a solution x(t) of (2.12) can be continued to the left from
t = θi+1. If t ∈ [θi,θi+1] for a fixed i∈ Z, then x(t) satisfies the following equation:

x′(t)= 3x(t)− x(t)x
(
θi
)
. (2.13)

Hence,

x(t)= x(θi
)

e(3−x(θi))(t−θi) . (2.14)

From the last equality, it is implied that every nontrivial solution of (2.12) is either pos-
itive or negative. That is why, without loss of generality, we consider only positive solu-
tions. For a fixed H > 0, denote GH = {x : 0 < x < H}.
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If x1,x2, y1, y2 ∈ GH , then |x1y1− x2y2| ≤H(|x1− x2|+ |y1− y2|). Moreover, we have
that

m= min
|t−s|≤θ

e2(t−s) = e−9/5, M = max
|t−s|≤θ

e2(t−s) = e9/5 . (2.15)

Hence, condition (C4) for continuation of solutions of (2.12) to the left in GH has the
form

H <
5
6

e−9/5 . (2.16)

Let us consider another way to define values x(θi) such that the solution x(t) can be
continued to the left from t = θi+1.

Using (2.14), we find that

x
(
θi+1

)= x(θi
)

e(3−x(θi))(θi+1−θi) . (2.17)

Consider (2.17) as an equation with respect to x = x(θi). Introduce the functions F1(x)=
xe(3−x)θ̄ and F2(x)= xe(3−x)θ . The critical values of x for the functions are x(1)

max = θ̄−1 =
5/2 < 3 and x(2)

max = θ−1 = 5/3 < 3, respectively, and maximal values of these functions are

F(1)
max = F1

(
x(1)

max

)= 5
2

e1/5, F(2)
max = F2

(
x(2)

max

)= 5
3

e4/5 . (2.18)

Denote Fmax =min(F(1)
max,F(2)

max).
If x(θi+1)≤ Fmax, then the solution can be continued to t = θi.
Comparing (2.16) and (2.18), we see that H < Fmax. That is, the evaluation of H by

(C4) is reliable for equation (2.12).

We will use the following definition, which is a version of a definition from [7], adapted
for our general case.

Definition 2.5. A function y(t) is a solution of (1.1) on R if
(i) y(t) is continuous on R;

(ii) the derivative y′(t) exists at each point t ∈ R with the possible exception of the
points θi, i∈ Z, where one-sided derivatives exist;

(iii) equation (1.1) is satisfied on each interval [θi,θi+1), i∈ Z.

Theorem 2.6. Suppose that conditions (C1)–(C5) are fulfilled. Then for every (t0, y0) ∈
R×Rn, there exists a unique solution y(t) = y(t, t0, y0) of (1.1) in sense of Definition 2.5
such that y(t0)= y0.

Proof. Assume that θi < t0 ≤ θi+1 for a fixed i∈ Z. By Theorem 2.2, there exists a unique
solution y(t,θi, yi) of (1.1) with some vector yi ∈ Rn such that y(t0,θi, yi) = y0. Apply-
ing the theorem again, we can find a unique solution y(t,θi−1, yi−1) of (1.1) such that
y(θi,θi−1, yi−1) = yi, and hence, y(t0,θi−1, yi−1) = y0. We can complete the proof using
induction. The theorem is proved. �
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The last theorem is of major importance for our paper. It arranges the correspondence
between points (t0, y0)∈R×Rn and all solutions of (1.1), and there is not a solution of
the equation out of the correspondence. Using the assertion, we can say that definition
of the IVP for the EPCAG is similar to the problem for an ordinary differential equation,
although the EPCAG is an equation with delay argument. In the rest of the paper, we will
use the correspondence to prove main theorems.

Using Gram-Schmidt orthogonalization of the columns of X(t) [4], one can obtain
that by the transformation y = U(t)z, where U(t) is a Lyapunov matrix, (1.1) can be
reduced to the following system:

du

dt
= B+(t)u+ g+

(
t,z(t),z

(
β(t)

))
,

dv

dt
= B−(t)v+ g−

(
t,z(t),z

(
β(t)

))
,

(2.19)

where

z = (u,v), u∈Rk, v ∈Rn−k, diag
{
B+(t),B−(t)

}=U−1(t)A(t)U(t),
(
g+
(
t,z(t),z

(
β(t)

))
,g−
(
t,z(t),z

(
β(t)

)))= f
((
t,U(t)z(t)

)
,U
(
β(t)

)
z
(
β(t)

))
.

(2.20)

One can check that the Lipschitz condition is valid,
∥
∥g+
(
t,z1,w1

)− g+
(
t,z2,w2

)∥
∥+

∥
∥g−

(
t,z1,w1

)− g−
(
t,z2,w2

)∥
∥

≤ L(∥∥z1− z2
∥
∥+

∥
∥w1−w2

∥
∥
) (2.21)

for all t ∈R, z1,z2 ∈Rk, w1,w2 ∈R(n−k), and L= 2supR‖U(t)‖l.
The normed fundamental matrices U(t,s), V(t,s) of the systems

du

dt
= B+(t)u,

dv

dt
= B−(t)v, (2.22)

respectively, satisfy the following inequalities:
∥
∥U(t,s)

∥
∥≤ K exp

(− σ(t− s)), t ≥ s, ∥
∥V(t,s)

∥
∥≤ K exp

(
σ(s− t)), t ≤ s. (2.23)

3. The integral surfaces

The following two lemmas are of major importance for our paper.

Lemma 3.1. Fix N ∈R, N > 0, α∈ (0,σ), and assume that conditions (C1)–(C3) are valid.
A function z(t)= (u,v), ‖z(t)‖ ≤N exp(−α(t− t0)), t ≥ t0, where t0 is a real fixed number,
is a solution of (2.19) on R if and only if it is a solution on R of the following system of
integral equations:

u(t)=U(t, t0
)
u
(
t0
)

+
∫ t

t0
U(t,s)g+

(
s,z(s),z

(
β(s)

))
ds,

v(t)=−
∫∞

t
V(t,s)g−

(
s,z(s),z

(
β(s)

))
ds.

(3.1)
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Proof

Necessity. Assume that z(t) = (u,v), ‖z(t)‖ ≤ N exp(−α(t− t0)), t ≥ t0, is a solution of
(2.19). Denote

φ(t)=U(t, t0
)
u
(
t0
)

+
∫ t

t0
U(t,s)g+

(
s,z(s),z

(
β(s)

))
ds,

ψ(t)=−
∫∞

t
V(t,s)g−

(
s,z(s),z

(
β(s)

))
ds.

(3.2)

By straightforward evaluation, we can see that the integrals converge and are bounded
if t ∈ [t0,∞).

Assume that t 	= θi, i∈ Z. Then,

φ′(t)= B+(t)φ(t) + g+
(
t,z(t),z

(
β(t)

))
,

ψ′(t)= B−(t)ψ(t) + g−
(
t,z(t),z

(
β(t)

))
,

u′(t)= B+(t)u(t) + g+
(
t,z(t),z

(
β(t)

))
,

v′(t)= B−(t)v(t) + g−
(
t,z(t),z

(
β(t)

))
.

(3.3)

Hence,

[
φ(t)−u(t)

]′ = B+(t)
[
φ(t)−u(t)

]
,

[
ψ(t)− v(t)

]′ = B−(t)
[
ψ(t)− v(t)

]
.

(3.4)

Calculating the limit values at θj ∈ Z, we can find that

φ′
(
θj ± 0

)= B+
(
θj ± 0

)
φ(θj ± 0) + g+

(
θj ± 0,z

(
θj ± 0

)
,z
(
β
(
θj ± 0

)))
,

u′
(
θj ± 0

)= B+
(
θj ± 0

)
u
(
θj ± 0

)
+ g+

(
θj ± 0,z

(
θj ± 0

)
,z
(
β
(
θj ± 0

)))
,

ψ′
(
θj ± 0

)= B+
(
θj ± 0

)
ψ
(
θj ± 0

)
+ g−

(
θj ± 0,z

(
θj ± 0

)
,z
(
β
(
θj ± 0

)))
,

v′
(
θj ± 0

)= B+
(
θj ± 0

)
v
(
θj ± 0

)
+ g−

(
θj ± 0,z

(
θj ± 0

)
,z
(
β
(
θj ± 0

)))
.

(3.5)

Consequently,

[
φ(t)−u(t)

]′∣∣
t=θj+0 =

[
φ(t)−u(t)

]′∣∣
t=θj−0,

[
ψ(t)− v(t)

]′∣∣
t=θj+0 =

[
ψ(t)− v(t)

]′∣∣
t=θj−0.

(3.6)

Thus, (φ(t)− u(t),ψ(t)− v(t)) is a continuously differentiable function on R satisfying
(2.22) with the initial condition φ(t0)− u(t0) = 0. Assume that ψ(t0)− v(t0) 	= 0. Then
ψ(t)− v(t) is unbounded on [t0,∞). This contradiction proves that φ(t)− u(t) = 0 and
ψ(t)− v(t)= 0 on R.
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Sufficiency. Suppose that z(t) is a solution of (3.1). Fix i ∈ Z and consider the interval
[θi,θi+1). If t ∈ (θi,θi+1), then differentiating one can see that z(t) satisfies (2.19). More-
over, considering t→ θi+, and taking into account that z(β(t)) is a right-continuous func-
tion, we find that z(t) satisfies (2.19) on [θi,θi+1). The lemma is proved. �

Similarly to the last lemma, one can prove that the following assertion is valid.

Lemma 3.2. Fix N ∈R, N > 0, α∈ (0,σ), and assume that conditions (C1)–(C3) are valid.
A function z(t) = (u,v), ‖z(t)‖ ≤ N exp(α(t− t0)), t ≤ t0, where t0 is a real fixed number,
is a solution of (2.19) on R if and only if it is a solution of the following system of integral
equations:

u(t)=
∫ t

−∞
U(t,s)g+

(
s,z(s),z

(
β(s)

))
ds,

v(t)=V(t, t0
)
v
(
t0
)

+
∫ t

t0
V(t,s)g−

(
s,z(s),z

(
β(s)

))
ds.

(3.7)

The proof of the next theorems is very similar to that of the classic assertions about
integral manifolds [5, 8], and can be done by using previous assertions. We will prove the
first of them.

Theorem 3.3. Suppose that conditions (C1)–(C5) are satisfied. Then for arbitrary ε > 0,
α ∈ (0,σ), and a sufficiently small Lipschitz constant L, there exists a continuous function
F(t,u) satisfying

F(t,0)= 0,
∥
∥F
(
t,u1

)−F(t,u2
)∥
∥≤ 2K2L

(
1 + exp(σθ)

)

σ +α

∥
∥u1−u2

∥
∥, (3.8)

for all t, u1, u2, such that v0 = F(t0,u0) determines a solution z(t) of (2.19) on R and

∥
∥z(t)

∥
∥≤ (K + ε)

∥
∥u0

∥
∥exp

(−α(t− t0
))

, t ≥ t0. (3.9)

Proof. Let us consider system (3.1) and apply the method of successive approximations
to it. Denote z0 = (0,0)T , zm = (um,vm)T , m∈N, where for m≥ 0,

um+1(t)=U(t, t0
)
u
(
t0
)

+
∫ t

t0
U(t,s)g+

(
s,zm(s),zm

(
β(s)

))
ds,

vm+1(t)=−
∫∞

t
V(t,s)g−

(
s,zm(s),zm

(
β(s)

))
ds.

(3.10)

One can show by induction that

∥
∥zm(t,c)

∥
∥≤ (K + ε)‖c‖exp

(−α(t− t0
))

, t ≥ t0, (3.11)

provided that

K(K + ε)
2σ

σ2−α2

(
1 + exp(σθ)

)
L < ε. (3.12)



Marat Akhmet 19

One can find that if 4σKL(1 + exp(σθ)) < σ2−α2, then

∥
∥zm(t,c)− zm−1(t,c)

∥
∥≤ K‖c‖

(
2KL

(
1 + exp(σθ)

)

σ −α
)m−1

exp
(−α(t− t0

))
. (3.13)

The last inequality and the assumption

L <
σ −α

2K
(
1 + exp(σθ)

) (3.14)

imply that the sequence zm converges uniformly for all c and t ≥ t0. Define the limit func-
tion z(t, t0,c)= (u(t, t0,c),v(t, t0,c)). It can be easily seen that this function is a solution of
(3.1). By Lemma 3.1, z(t, t0,c) is also a solution of (2.19). Taking t = t0 in (3.1), we have
that

u
(
t0, t0,c

)= c, v
(
t0, t0,c

)=−
∫∞

t0
V(t,s)g−

(
s,z
(
s, t0,c

)
, z
(
β(s), t0,c

))
ds. (3.15)

Denote F(t0,c)= v(t0, t0,c). One can see that it satisfies all the conditions which should
be verified. The theorem is proved. �

Theorem 3.4. For every fixed (t0,u(t0)), system (3.1) admits only one solution bounded on
[t0,∞).

Let us denote by S+ the set of all points from the (t,z)-space such that v = F(t,u).

Theorem 3.5. If (t0,z0)	∈ S+, then the solution z(t, t0,z0) of (2.19) is unbounded on [t0,∞).

It is not difficult to see that applying Lemma 3.2, one can formulate and prove for the
case (−∞, t0] the theorems concerning the surface S− similar to the assertions for S+.

On the basis of Theorems 3.3–3.5 and their analogues for t→−∞, one can conclude
that there exist two integral surfaces Σ+, Σ− of equation (1.1) such that every solution
which starts at Σ+ tends to zero as t→∞, and every solution which starts at Σ− tends to
zero as t→−∞. If a solution starts outside of Σ+, then it is unbounded on [t0,∞), and if
a solution starts outside of Σ−, then it is unbounded on (−∞, t0].

Remark 3.6. The extended version of the paper has been submitted to Nonlinear Analysis:
Theory, Methods, and Applications.
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IMPULSIVE CONTROL OF THE POPULATION DYNAMICS

M. U. AKHMET, D. ARUĞASLAN, AND M. BEKLIOĞLU

We investigate the dynamics of the Lotka-Volterra system with variable time of impulses.
Sufficient conditions are obtained for the existence of focus in the noncritical case. The
focus-center problem in the critical case and the Hopf bifurcation are considered.

Copyright © 2006 M. U. Akhmet et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The Lotka-Volterra system describes the interaction of two species in an ecosystem, a prey
and a predator. Since there are two species, this system involves two equations,

dx

dt
= x′ = ax− bxy,

dy

dt
= y′ = −cy +dxy,

(1.1)

where x and y denote the prey and predator population densities, respectively, a (the
growth rate of prey), b (the rate at which predators consume prey), c (the death rate of
predator), and d (the rate at which predators increase by consuming prey) are positive
constants. This system has only one positive equilibrium that is (c/d,a/b) as a center.
However, having the equilibrium as a center, this system is ecologically undesirable. In
other words, the hypothesis of (1.1) does not seem to be in accordance with the observa-
tions [8].

The system (1.1) describes populations whose members can respond immediately to
any change in the environment. But, in real populations, both prey and predator require
reaction time lags. By introducing a time lag into system (1.1), instead of a center, the
point of equilibrium may be either a stable focus or a stable node. Moreover, this point
may be an unstable focus surrounded by a stable limit cycle [10].

The Lotka-Volterra population growth model does not assume human activities at all.
We introduce human intervention by impulsive perturbation. In general, the appearence

Hindawi Publishing Corporation
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of the discontinuities can be explained by the fact that a development of a biological
system may have sudden changes. It is natural that the obtained systems can be written
in the form of impulsive differential equations [5, 9]. In this paper, our idea is to perturb
system (1.1) by impulses at nonfixed moments of time. These impulses, in particular,
may include man-made controls which are introduced when the state of species satisfies
certain criteria. That is, we consider introducing or removing some members from the
population as impulsive control. The approach of impulsive control was also proposed
by Liu in [7, 6] and in the paper [3].

We mainly use the results which were obtained in [1, 2]. One can verify that our sytems
satisfy the properties of discontinuous dynamical systems described in [1], that is, the
continuation of solutions on R, group property, continuous dependence of solutions on
initial data, and differentiability of solutions in initial data.

In Section 2, we formulate two problems: Problem (D) and Problem (U). In the next
section, we investigate these problems. Lastly, the Hopf bifurcation for two systems which
are associated with Problems (D) and (U) is considered in Section 4.

2. Formulation of the problems

In order to be more convenient, we first translate the equilibrium (c/d,a/b) to the origin
by the linear transformation

⎡

⎢
⎢
⎣

x− c

d

y− a

b

⎤

⎥
⎥
⎦=

⎡

⎢
⎣

2 0

0
2d
√
ac

bc

⎤

⎥
⎦

[
x1

x2

]

. (2.1)

This transformation takes system (1.1) into the form

x′1 =−
√
acx2− 2d

√
ac

c
x1x2,

x′2 =
√
acx1 + 2dx1x2.

(2.2)

We have new variables x1 and x2 possibly with negative values. But, the positiveness
of the issue variables x and y in a neighborhood of the equilibrium (c/d,a/b) is certainly
saved.

Clearly, systems (1.1) and (2.2) are qualitatively equivalent. Since (c/d,a/b) is a center
of (1.1), the origin is a center of (2.2).

In what follows, we will consider how an impulsive perturbation may change the be-
haviour of the system (2.2) around the origin.

We introduce impulses into the system (2.2) with a more careful assumption that they
are considered as impulsive control and we are sure that the more adequate explanation
of the discontinuous population dynamics is a deal of future and is a deal of a closer col-
laboration of mathematicians and biologists. For that reason, we consider the impulsive
control as the ability to instantly introduce or remove some members from the environ-
ment. It is acceptable and easily realizable as an ecological project. From this point of
view, we formulate two problems to investigate.
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Problem (D). Our objective is to bioregulate the Lotka-Volterra system by impulsive per-
turbation. Ecologically, it seems reasonable to control only the predator density. On the
basis of this idea, we consider the impulsive action by means of removing some members
of predators from the system. For example, if we have fish as predator (and daphnia as
prey) in a lake, the decrease in its density can be expressed by harvesting for commercial
fishery. This type of dynamics can be modelled as follows:

x′1 =−
√
acx2− 2d

√
ac

c
x1x2,

x′2 =
√
acx1 + 2dx1x2,

(
x1,x2

)
/∈ Γ1,

Δx1|(x1,x2)∈Γ1 = 0,

Δx2|(x1,x2)∈Γ1 = κx2,

(2.3)

where κ < 0 and Γ1 is a half straight line in the second quadrant defined by the equation
x2 = −

√
3x1 for x1 < 0. When the solution meets the set Γ1 at the time t1, there exists a

vertical jump Δx2|t1 = κx2(t1) := x2(t1+)− x2(t1) going down.
We define determining the behaviour of solutions of system (2.3) around the origin

as Problem (D). Furthermore, in Section 4, we will introduce a system with a small pa-
rameter μ associated with (2.3) and the Hopf bifurcation for that system is considered as
Problem (DH).

Remark 2.1. Writing (2.3) in x, y coordinates, we obtain the following system:

x′ = ax− bxy,

y′ = −cy +dxy, (x, y) /∈ Γ̃1,

Δx|(x,y)∈Γ̃1
= 0,

Δy|(x,y)∈Γ̃1
= κ

(

y− a

b

)

,

(2.4)

where Γ̃1 is a half-line defined by the equation y− a/b =−(
√

3d
√
ac/bc)(x− c/d) with x <

c/d. So, we see that the corresponding impulsive control is only applied to the predator
density.

Problem (U). Similar to Problem (D), we can formulate Problem (U) for the system

x′1 =−
√
acx2− 2d

√
ac

c
x1x2,

x′2 =
√
acx1 + 2dx1x2,

(
x1,x2

)
/∈ Γ2,

Δx1|(x1,x2)∈Γ2 = 0,

Δx2|(x1,x2)∈Γ2 = κx2,

(2.5)

where κ < 0 and Γ2: x2 =−
√

3x1, x1 > 0 is a straight line in the fourth quadrant. In this sys-
tem, we control the predator density by introducing new members into the environment
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and thus we have a vertical jump going up. For the Hopf bifurcation, we will define Prob-
lem (UH) in a manner similar to the Problem (DH).

3. Existence of foci and centers

3.1. Investigation of Problem (D). Let x1 = r cosφ, x2 = r sinφ. In system (2.3), we have
discontinuity when (x1,x2)∈ Γ1. In polar coordinates r and φ, we have a jump when the
angle is equal to 2π/3 + 2πn, n∈ Z. Using polar transformation, we can write (2.3) in the
following form:

dr

dφ
= P(r,φ), φ �= 2π

3
(mod 2π),

Δr|φ=(2π/3)(mod 2π) = λr,
Δφ|φ=(2π/3)(mod 2π) = θ(κ),

(3.1)

where P(r,φ) = (−(2d/c)cosφ + (2d/
√
ac)sinφ)cosφ sinφr2/(1 + ((2d/

√
ac)cosφ +

(2d/c)sinφ)cosφ sinφr), λ = (1/2)
√

1 + 3(1 + κ)2 − 1, θ(κ) = tan−1(−√3κ/(4 + 3κ)), and
φ is ranged over the time-scale ∪∞i=−∞(2πi + 2π/3 + θ(κ),2π(i + 1) + 2π/3]. Clearly, the
function P is 2π-periodic in φ and P = o(r). Since (3.1) is a 2π-periodic system, we will
consider it only for φ∈ [0,2π] \ (2π/3,2π/3 + θ(κ)], that is, the system

dr

dφ
= P(r,φ), φ�= 2π

3
,

Δr|φ=2π/3 = λr,
Δφ|φ=2π/3 = θ(κ).

(3.2)

System (3.2) is a time-scale differential equation. In order to obtain an impulsive dif-
ferential equation, we use the ψ-substitution method which is defined in [2]. The devel-
opment of this method is given in [4]. Then one can obtain that the solution r(φ,r0) of
(3.2) starting at the point (0,r0) has the form

r
(
φ,r0

)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r0 +
∫ φ

o
Pdu if 0≤ φ ≤ 2π

3
,

(1 + λ)

(

r0 +
∫ 2π/3

0
Pdu

)

+
∫ φ

2π/3+θ(κ)
Pdu if

2π
3

+ θ(κ) < φ≤ 2π.

(3.3)

Now, let us construct the Poincaré return map r(2π,r0):

r
(
2π,r0

)= (1 + λ)r0 + (1 + λ)
∫ 2π/3

0
Pdu+

∫ 2π

2π/3+θ(κ)
Pdu. (3.4)

From (3.4), we conclude that the origin of (2.3) is a stable focus if 1 + λ =
(1/2)

√
1 + 3(1 + κ)2 < 1 and it is an unstable focus if 1 + λ > 1. Then for the noncritical

case, the following theorem is valid.
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Theorem 3.1. If
(a) −2 < κ < 0, then the origin is a stable focus;
(b) κ <−2, then the origin is an unstable focus of system (2.3).

However, if 1 + λ= 1, (i.e., if κ =−2), then we have the critical case and the origin is
either a focus or a center. In what follows, we solve this problem of distinguishing between
the focus and the center.

We can easily see that the angle θ(κ) is equal to 2π/3 for κ=−2.
The solution r(φ,r0) of (3.2), r(0,r0)= r0, for sufficiently small r, has the expansion [4]

r
(
φ,r0

)=
∞∑

j=0

r j(φ)r
j
0 , (3.5)

with φ ∈ [0,2π] \ (2π/3,4π/3], ro(φ) = 0, and r1(φ) = 1. Then, we have r(2π,r0) =
∑∞

j=1 ajr
j
0 , where aj = r j(2π) and a1 = 1. The function P also has the following expan-

sion [4]:

P(r,φ)=
∞∑

j=2

Pj(φ)r j , (3.6)

where

P2(φ)=
(

− 2d
c

cosφ+
2d√
ac

sinφ
)

cosφ sinφ,

P3(φ)=
(

cos2φ− sin2φ

c
√
ac

+
cosφ sinφ

c2
− cosφ sinφ

ac

)

4d2 cos2φ sin2φ.

(3.7)

From the differential part of (3.2) and the expansion (3.6), one can find that

dr2(φ)
dφ

= P2(φ) := P̃2(φ),

dr3(φ)
dφ

= 2P2(φ)r2(φ) +P3(φ) := P̃3(φ),

(3.8)

and similarly we define drj(φ)/dφ := P̃ j(φ) for j = 4,5, . . . .
From the second equation of (3.2), we obtain that r j(4π/3)−r j(2π/3)=0 for j=2,3, . . . .
Hence, the coefficients r j(φ), j = 2,3, . . . , with r j(0)= 0 are solutions of the system

dr

dφ
= P̃ j(φ), φ�= 2π

3
,

Δr|φ=2π/3 = 0,

Δφ|φ=2π/3 = 2π
3
.

(3.9)
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As aj = r j(2π), we can now evaluate aj ’s in the expansion of r(2π,r0):

aj =
∫ 2π/3

0
P̃ j(φ)dφ+

∫ 2π

4π/3
P̃ j(φ)dφ (3.10)

for j = 2,3, . . . .
For the critical case, the sign of the first nonzero element of the sequence aj determines

what type of a singular point the origin is. The origin is a stable (unstable) focus if the
first nonzero element is negative (positive). If all aj = 0, j = 2,3, . . . , then the origin is a
center [2]. That is why we first need a2 to solve this focus-center problem:

a2 =
∫ 2π/3

0
P2(φ)dφ+

∫ 2π

4π/3
P2(φ)dφ = d

√
3

2
√
ac
. (3.11)

Since a2 is positive, we have the following theorem.

Theorem 3.2. If κ=−2, then the origin of system (2.3) is an unstable focus.

3.2. Investigation of Problem (U). Introducing polar coordinates, the system (2.5) can
be written as follows:

dr

dφ
= P(r,φ), φ�= 5π

3
,

Δr|φ=5π/3 = λr,
Δφ|φ=5π/3 = θ(κ),

(3.12)

where P, λ, and θ(κ) are the same as for system (3.2). For a solution r(φ,r0), r(0,r0)= r0

of (3.12), the Poincaré return map is given by

r
(
2π,r0

)= (1 + λ)r0 + (1 + λ)
∫ 5π/3

0
Pdu+

∫ 2π

ϕ(κ)
Pdu (3.13)

where 5π/3 + θ(κ)≡ ϕ(κ)(mod 2π).
Clearly, the noncritical case, that is, 1 + λ < 1 or 1 + λ > 1, is treated similarly as in the

investigation of Problem (D). But, the critical case, 1 + λ = 1, gives us a different result
since the first element a2 of the sequence aj is negative:

a2 =
∫ 5π/3

0
P2(φ)dφ+

∫ 2π

π/3
P2(φ)dφ =− d

√
3

2
√
ac
. (3.14)

Combining the results for noncritical and critical cases, we obtain the following asser-
tion.

Theorem 3.3. If
(a) −2≤ κ < 0, then the origin is a stable focus;

(b) κ <−2, then the origin is an unstable focus of (2.5).
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4. Hopf bifurcation

Since the origin is a center, and not a focus, it is not possible to apply Hopf bifurca-
tion theorem for system (2.2) which is the transformed Lotka-Volterra population growth
model into x1, x2 coordinates [8]. But, with the impulsive control, one can obtain the ori-
gin as a stable or an unstable focus, and hence Hopf bifurcation can be investigated.

4.1. Problem (DH). We introduce the following discontinuous dynamical system:

x′1 = μx1−
√
acx2− 2d

√
ac

c
x1x2,

x′2 =
√
acx1 +μx2 + 2dx1x2,

(
x1,x2

)
/∈ Γ1(μ),

Δx1|(x1,x2)∈Γ1(μ) = 0,

Δx2|(x1,x2)∈Γ1(μ) = κx2,

(4.1)

where Γ1(μ) is not a linear set and it is defined by the equation x2 = −
√

3x1 + μx1x2 for
x1 < 0. System (2.3) is associated with (4.1). In other words, (4.1) for μ= 0 is the system
(2.3) described in Section 2. In this system, μ appears to be an internal control parameter
of the populations.

We will also need the following system:

x′1 = μx1−
√
acx2,

x′2 =
√
acx1 +μx2,

(
x1,x2

)
/∈ Γ1,

Δx1|(x1,x2)∈Γ1 = 0,

Δx2|(x1,x2)∈Γ1 = κx2.

(4.2)

Using polar coordinates, (4.1) and (4.2) can be written as follows:

dr

dφ
= μ√

ac
r +P(r,φ,μ), (r,φ) /∈ Γ1(μ),

Δr|(r,φ)∈Γ1(μ) = λr,
Δφ|(r,φ)∈Γ1(μ) = θ(κ),

(4.3)

dr

dφ
= μ√

ac
r, φ�= 2π

3
,

Δr|φ=2π/3 = λr,
Δφ|φ=2π/3 = θ(κ),

(4.4)

respectively.
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Now, the solution r(φ,r0,μ), r(0,r0,μ)= r0 of (4.4) given by

r
(
φ,r0,μ

)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp

(
μ√
ac
φ

)

r0 if 0≤ φ≤ 2π
3

,

(1 + λ)exp

(
μ√
ac

(
φ− θ(κ)

)
)

r0 if
2π
3

+ θ(κ) < φ ≤ 2π,

(4.5)

implies that r(2π,r0,μ)= (1 + λ)exp((μ/
√
ac)(2π− θ(κ)))r0.

Denote

q(μ)= (1 + λ)exp
(

μ√
ac

(
2π− θ(κ)

)
)

. (4.6)

Then we get r(2π,r0,μ)= q(μ)r0. q(0)= 1 and q′(0)�= 0 are the necessary conditions
[2] for the existence of periodical processes in system (4.3). It is easy to see that if λ = 0
(i.e., κ=−2), then q(0)= 1 and q′(0)= 4π/3

√
ac �= 0.

Applying the technique which is used in the paper [2], we can prove the following
theorem.

Theorem 4.1. If κ = −2, then for sufficiently small r0, there exists a function μ = δ(r0)
such that the solution r(φ,r0,δ(r0)) of (4.3) is periodic with period T = 4π/3

√
ac+ o(|μ|).

Moreover, the closed trajectory is an unstable limit cycle.

4.2. Problem (UH). We consider the system

x′1 = μx1−
√
acx2− 2d

√
ac

c
x1x2,

x′2 =
√
acx1 +μx2 + 2dx1x2,

(
x1,x2

)
/∈ Γ2(μ),

Δx1|(x1,x2)∈Γ2(μ) = 0,

Δx2|(x1,x2)∈Γ2(μ) = κx2,

(4.7)

where Γ2(μ) is a curve given by x2 = −
√

3x1 + μx1x2 with x1 > 0. Clearly, system (2.5) is
associated with (4.7). This system, in polar coordinates, is as follows:

dr

dφ
= μ√

ac
r +P(r,φ,μ), (r,φ) /∈ Γ2(μ),

Δr|(r,φ)∈Γ2(μ) = λr,
Δφ|(r,φ)∈Γ2(μ) = θ(κ).

(4.8)

Using the similar discussions made in Problem (DH) and using the paper [2], we can
conclude the following result.

Theorem 4.2. If κ = −2, then for sufficiently small r0, there exists a function μ = δ(r0)
such that the solution r(φ,r0,δ(r0)) of (4.8) is periodic with period T = 4π/3

√
ac+ o(|μ|).

Moreover, the closed trajectory is a stable limit cycle.
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5. Conclusion

Under the assumption that the coefficients a, b, c, and d of the Lotka-Volterra system are
positive, we may conclude that the complex behaviour of solutions entirely depends on
the values of the coefficient κ which appears in the impulsive part of systems (2.3), (2.5),
(4.1), and (4.7). That is, the problem of controllability of the Lotka-Volterra system by the
proposed impulsive control is constructive.
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Lp CONVERGENCE WITH RATES OF SMOOTH
PICARD SINGULAR OPERATORS

GEORGE A. ANASTASSIOU

We continue with the study of smooth Picard singular integral operators on the line re-
garding their convergence to the unit operator with rates in the Lp norm, p ≥ 1. The
related established inequalities involve the higher-order Lp modulus of smoothness of
the engaged function or its higher-order derivative.

Copyright © 2006 George A. Anastassiou. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The rate of convergence of singular integrals has been studied in [3–7, 9–11] and these
articles motivate this work. Here we study the Lp, p ≥ 1, convergence of smooth Picard
singular integral operators over R to the unit operator with rates over smooth functions
in Lp(R). These operators were introduced and studied in [5] with respect to ‖ · ‖∞. We
establish related Jackson-type inequalities involving the higher Lp modulus of smooth-
ness of the engaged function or its higher-order derivative. The discussed operators are
not in general positive. Other motivation derives from [1, 2].

2. Results

Next we deal with the smooth Picard singular integral operators Pr,ξ( f ;x) defined as follows.
For r ∈N and n∈ Z+, we set

αj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−1)r− j
(
r

j

)

j−n, j = 1, . . . ,r,

1−
r∑

j=1

(−1)r− j
(
r

j

)

j−n, j = 0,
(2.1)

that is
∑r

j=0αj = 1.

Hindawi Publishing Corporation
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32 Lp convergence with rates of smooth Picard singular operators

Let f ∈ Lp(R)∩Cn(R), 1≤ p <∞, we define for x ∈R, ξ > 0 the Lebesgue integral

Pr,ξ( f ;x)= 1
2ξ

∫∞

−∞

( r∑

j=0

αj f (x+ jt)

)

e−|t|/ξdt. (2.2)

Pr,ξ operators are not positive operators, see [5].
We notice by (1/2ξ)

∫∞
−∞ e−|t|/ξdt = 1, that Pr,ξ(c,x)= c, c constant, and

Pr,ξ( f ;x)− f (x)= 1
2ξ

( r∑

j=0

αj

∫∞

−∞

(
f (x+ jt)− f (x)

)
e−|t|/ξdt

)

. (2.3)

We use also that

∫∞

−∞
tke−|t|/ξdt =

⎧
⎨

⎩

0, k odd,

2k!ξk+1, k even.
(2.4)

We need the rth Lp-modulus of smoothness

ωr
(
f (n),h

)
p := sup

|t|≤h

∥
∥Δrt f

(n)(x)
∥
∥
p,x, h > 0, (2.5)

where

Δrt f
(n)(x) :=

r∑

j=0

(−1)r− j
(
r

j

)

f (n)(x+ jt), (2.6)

see [8, page 44]. Here we have ωr( f (n),h)p <∞, h > 0.
We need to introduce

δk :=
r∑

j=1

αj j
k, k = 1, . . . ,n∈N, (2.7)

and denote by �·	 the integral part. Call

τ(w,x) :=
r∑

j=0

αj j
n f (n)(x+ jw)− δn f (n)(x). (2.8)

Notice also that

−
r∑

j=1

(−1)r− j
(
r

j

)

= (−1)r
(
r

0

)

. (2.9)

According to [3, page 306] and [1], we get

τ(w,x)= Δrw f
(n)(x). (2.10)
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Thus

∥
∥τ(w,x)

∥
∥
p,x ≤ ωr

(
f (n),|w|)p, w ∈R. (2.11)

Using Taylor’s formula, one has

r∑

j=0

αj
[
f (x+ jt)− f (x)

]=
n∑

k=1

f (k)(x)
k!

δkt
k + �n(0, t,x), (2.12)

where

�n(0, t,x) :=
∫ t

0

(t−w)n−1

(n− 1)!
τ(w,x)dw, n∈N. (2.13)

Using the above terminology, we obtain

Δ(x) := Pr,ξ( f ;x)− f (x)−
�n/2	∑

m=1

f (2m)(x)δ2mξ
2m =�∗

n (x), (2.14)

where

�∗
n (x) := 1

2ξ

∫∞

−∞
�n(0, t,x)e−|t|/ξdt, n∈N. (2.15)

In Δ(x), see (2.14), the sum collapses when n= 1.
We present our first result.

Theorem 2.1. Let p,q > 1 such that 1/p+ 1/q = 1, n∈N, and the rest as above. Then

∥
∥Δ(x)

∥
∥
p ≤

21/qτ1/pξn

(r p+ 1)1/p
(
q2(n− 1) + q

)1/q
(n− 1)!

wr
(
f (n),ξ

)
p, (2.16)

where

τ :=
⎡

⎣
∫∞

0
(1 +u)r p+1unp−1e−(p/2)udu−

(
2
p

)np

Γ(np)

⎤

⎦ <∞. (2.17)

Hence, as ξ → 0, ‖Δ(x)‖p → 0.

Proof. We observe that

∣
∣Δ(x)

∣
∣p = 1

(2ξ)p

∣
∣
∣
∣

∫∞

−∞
�n(0, t,x)e−|t|/ξdt

∣
∣
∣
∣

p

≤ 1
(2ξ)p

(∫∞

−∞

(∫ |t|

0

(|t|−w)n−1

(n− 1)!

∣
∣τ(w,x)

∣
∣dw

)

e−|t|/ξdt

)p

.

(2.18)
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Hence we have

I :=
∫∞

−∞

∣
∣Δ(x)

∣
∣pdx ≤ 1

(2ξ)p

(∫∞

−∞

(∫∞

−∞
γ(t,x)e−|t|/ξdt

)p
dx

)

, (2.19)

where

γ(t,x) :=
∫ |t|

0

(|t|−w)n−1

(n− 1)!

∣
∣τ(w,x)

∣
∣dw ≥ 0. (2.20)

Therefore by using Hölder’s inequality, suitably we obtain

R.H.S. (2.19)≤ 2p−2ξ−1

qp−1

(∫∞

−∞

(∫∞

−∞
γp(t,x)e−|pt|/2ξdt

)

dx
)

. (2.21)

Again by Hölder’s inequality, we have

γp(t,x)≤
(∫ |t|

0

∣
∣τ(w,x)

∣
∣pdw

)

(
(n− 1)!

)p
|t|np−1

(
q(n− 1) + 1

)p/q . (2.22)

Consequently, we have

R.H.S. (2.21)

≤ 2p−2ξ−1

qp−1

(∫∞

−∞

(∫∞

−∞

(∫ |t|
0

∣
∣τ(w,x)

∣
∣pdw

)|t|np−1

(
(n− 1)!

)p(
q(n− 1) + 1

)p/q × e−|pt|/2ξdt
)

dx

)

=: (∗),

(2.23)

calling

c1 := 2p−2

ξqp−1
(
(n− 1)!

)p(
q(n− 1) + 1

)p/q , (2.24)

and

(∗)= c1

(∫∞

−∞

((∫∞

−∞

(∫ |t|

0

∣
∣τ(w,x)

∣
∣pdw

)

|t|np−1e−|pt|/2ξ
)

dx

)

dt

)

= c1

(∫∞

−∞

((∫ |t|

0

(∫∞

−∞

∣
∣Δrw f

(n)(x)
∣
∣pdx

)

dw

)

|t|np−1e−|pt|/2ξ
)

dt

)

≤ c1

(∫∞

−∞

((∫ |t|

0
ωr
(
f (n),w

)p
pdw

)

|t|np−1e−|pt|/2ξ
)

dt

)

.

(2.25)
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So far we have proved

I ≤ c1

(∫∞

−∞

((∫ |t|

0
ωr
(
f (n),w

)p
pdw

)

|t|np−1e−|pt|/2ξ
)

dt

)

. (2.26)

By [8, page 45], we have

R.H.S. (2.26)≤ c1

(
ωr
(
f (n),ξ

)
p

)p

×
(∫∞

−∞

((∫ |t|

0

(

1 +
w

ξ

)r p
dw

)

· |t|np−1e−|pt|/2ξ
)

dt

)

=: (∗∗).
(2.27)

But we see that

(∗∗)=
(

ξc1

r p+ 1

)
(
ωr
(
f (n),ξ

)
p

)p
�, (2.28)

where

�= 2
∫∞

0

((

1 +
t

ξ

)r p+1

− 1

)

tnp−1e−pt/2ξdt. (2.29)

Here we find

�= 2ξnp

⎡

⎣
∫∞

0
(1 +u)r p+1unp−1e−(p/2)udu−

(
2
p

)np

Γ(np)

⎤

⎦ . (2.30)

Thus by (2.17) and (2.30), we obtain

�= 2ξnpτ. (2.31)

Using (2.28) and (2.31), we get

(∗∗)=
(

ξc1

r p+ 1

)(
ωr
(
f (n),ξ

)
p

)p
2ξnpτ

= 2p/qτξnp

(r p+ 1)
(
q2(n− 1) + q

)p/q(
(n− 1)!

)p

(
ωr
(
f (n),ξ

)
p

)p
.

(2.32)

This means that we have established that

I ≤
2p/qτξnpωr

(
f (n),ξ

)p
p

(r p+ 1)
(
q2(n− 1) + q

)p/q(
(n− 1)!

)p . (2.33)

That finishes the proof of the theorem. �
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The counterpart of Theorem 2.1 follows, case of p = 1.

Theorem 2.2. Let f ∈ L1(R)∩Cn(R), n∈N. Then

∥
∥Δ(x)

∥
∥

1 ≤ r!
⎛

⎝
r+1∑

k=1

⎛

⎝

(∏k
j=1(n− 1 + j)

)

k!(r + 1− k)!

⎞

⎠

⎞

⎠ξnωr
(
f (n),ξ

)
1. (2.34)

Hence, as ξ → 0, ‖Δ(x)‖1→ 0.

Proof. It follows that

∣
∣Δ(x)

∣
∣= 1

2ξ

∣
∣
∣
∣

∫∞

−∞
�n(0, t,x)e−|t|/ξdt

∣
∣
∣
∣

≤ 1
2ξ

∫∞

−∞

(∫ |t|

0

(|t|−w)n−1

(n− 1)!

∣
∣τ(w,x)

∣
∣dw

)

e−|t|/ξdt.

(2.35)

Thus

∥
∥Δ(x)

∥
∥

1 =
∫∞

−∞

∣
∣Δ(x)

∣
∣dx

≤ 1
2ξ

∫∞

−∞

(∫∞

−∞

(∫ |t|

0

(|t|−w)n−1

(n− 1)!

∣
∣τ(w,x)

∣
∣dw

)

e−|t|/ξdt

)

dx =: (∗).

(2.36)

But we see that

∫ |t|

0

(|t|−w)n−1

(n− 1)!

∣
∣τ(w,x)

∣
∣dw ≤ |t|n−1

(n− 1)!

∫ |t|

0

∣
∣τ(w,x)

∣
∣dw. (2.37)

Therefore it holds that

(∗)≤ 1
2ξ

∫∞

−∞

(∫∞

−∞

(
|t|n−1

(n− 1)!

∫ |t|

0

∣
∣τ(w,x)

∣
∣dw

)

e−|t|/ξdt

)

dx

= 1
2ξ(n− 1)!

(∫∞

−∞

((∫ |t|

0

(∫∞

−∞

∣
∣τ(w,x)

∣
∣dx

)

dw

)

|t|n−1e−|t|/ξ
)

dt

)

≤ 1
2ξ(n− 1)!

(∫∞

−∞

((∫ |t|

0
ωr
(
f (n),w

)
1dw

)

|t|n−1e−|t|/ξ
)

dt

)

.

(2.38)

That is we get

∥
∥Δ(x)

∥
∥

1 ≤
1

2ξ(n− 1)!

(∫∞

−∞

((∫ |t|

0
ωr
(
f (n),w

)
1dw

)

|t|n−1e−|t|/ξ
)

dt

)

. (2.39)
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Consequently, we have

∥
∥Δ(x)

∥
∥

1 ≤
1

2ξ(n− 1)!
ωr
(
f (n),ξ

)
1

(∫∞

−∞

((∫ |t|

0

(

1 +
w

ξ

)r
dw

)

|t|n−1e−|t|/ξ
)

dt

)

= ωr
(
f (n),ξ

)
1ξ

n

(n− 1)!(r + 1)

(∫∞

0

(
(1 + t)r+1− 1

)
tn−1e−tdt

)

.

(2.40)

We have gotten so far

∥
∥Δ(x)

∥
∥

1 ≤
ωr
(
f (n),ξ

)
1ξ

n · λ
(n− 1)!(r + 1)

, (2.41)

where

λ :=
∫∞

0

(
(1 + t)r+1− 1

)
tn−1e−tdt. (2.42)

One easily finds that

λ=
r+1∑

k=0

(
r + 1

k

)

(n+ k− 1)!− (n− 1)!. (2.43)

But then one observes that

λ

(n− 1)!
=

r+1∑

k=1

(
r + 1

k

)
(n+ k− 1)!

(n− 1)!
. (2.44)

We have proved (2.34). �

The case n= 0 is met next.

Proposition 2.3. Let p,q > 1 such that 1/p+ 1/q = 1 and the rest as above. Then

∥
∥Pr,ξ( f )− f

∥
∥
p ≤

(
2
q

)1/q

θ1/pωr( f ,ξ)p, (2.45)

where

θ :=
∫∞

0
(1 + x)r pe−(p/2)xdx <∞. (2.46)

Hence, as ξ → 0, Prξ → unit operator I in the Lp norm, p > 1.
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Proof. With some work, we notice that, see also [5],

Pr,ξ( f ;x)− f (x)= 1
2ξ

(∫∞

−∞

((
Δrt f

)
(x)
)
e−|t|/ξdt

)

. (2.47)

And then

∣
∣Pr,ξ( f ;x)− f (x)

∣
∣≤ 1

2ξ

∫∞

−∞

∣
∣Δrt f (x)

∣
∣e−|t|/ξdt. (2.48)

We next estimate

∫∞

−∞

∣
∣Pr,ξ( f ;x)− f (x)

∣
∣pdx

≤ 1
2pξ p

(∫∞

−∞

(∫∞

−∞

∣
∣Δrt f (x)

∣
∣pe−|pt|/2ξdt

)(∫∞

−∞
e−|qt|/2ξdt

)p/q
dx

)

= 1
2pξ p

(
4ξ
q

)p/q(∫∞

−∞

(∫∞

−∞

∣
∣Δrt f (x)

∣
∣pdx

)

e−|pt|/2ξdt
)

≤ 1
2pξ p

(
4ξ
q

)p/q(∫∞

−∞
ωr
(
f ,|t|)ppe−|pt|/2ξdt

)

≤ 1
2p−1ξ p

(
4ξ
q

)p/q

ωr( f ,ξ)
p
p

(∫∞

0

(

1 +
t

ξ

)r p
e−pt/2ξdt

)

=
(

2
q

)p/q

ωr( f ,ξ)
p
p

(∫∞

0
(1 + x)r pe−(p/2)xdx

)

.

(2.49)

Clearly we have established (2.45). �

We also give the following.

Proposition 2.4. It holds that

∥
∥Pr,ξ f − f

∥
∥

1 ≤ �er!	ωr( f ,ξ)1. (2.50)

Hence, as ξ → 0, Pr,ξ → I in the L1 norm.

Proof. We do have again

∣
∣Pr,ξ( f ;x)− f (x)

∣
∣≤ 1

2ξ

∫∞

−∞

∣
∣Δrt f (x)

∣
∣e−|t|/ξdt. (2.51)
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We estimate

∫∞

−∞

∣
∣Pr,ξ( f ;x)− f (x)

∣
∣dx ≤ 1

2ξ

∫∞

−∞

(∫∞

−∞

∣
∣Δrt f (x)

∣
∣e−|t|/ξdt

)

dx

≤ 1
2ξ

∫∞

−∞
ωr
(
f ,|t|)1e

−|t|/ξdt ≤ ωr( f ,ξ)1

ξ

∫∞

0

(

1 +
t

ξ

)r
e−t/ξdt

= ωr( f ,ξ)1

∫∞

0
(1 + x)re−xdx = ωr( f ,ξ)1

( r∑

k=0

(
r

k

)

k!

)

= ωr( f ,ξ)1

(

r!
r∑

k=0

1
k!

)

= ωr( f ,ξ)1�er!	.

(2.52)

We have proved (2.50). �

Next we consider f ∈ Cn(R)∩Lp(R), n= 0 or n≥ 2 even, 1≤ p <∞, and the similar
smooth singular operator of symmetric convolution type

Pξ( f ;x)= 1
2ξ

∫∞

−∞
f (x+ y)e−|y|/ξdy ∀x ∈R, ξ > 0. (2.53)

That is

Pξ( f ;x)= 1
2ξ

∫∞

0

(
f (x+ y) + f (x− y)

)
e−y/ξdy (2.53)∗

for all x ∈R, ξ > 0. Notice that P1,ξ = Pξ . Let the central second-order difference

(
Δ̃2
y f
)
(x) := f (x+ y) + f (x− y)− 2 f (x). (2.54)

Notice that (Δ̃2−y f )(x)= (Δ̃2
y f )(x). When n≥ 2 even using Taylor’s formula with Cauchy

remainder we eventually find

(
Δ̃2
y f
)
(x)= 2

n/2∑

ρ=1

f (2ρ)(x)
(2ρ)!

y2ρ + �1(x), (2.55)

where

�1(x) :=
∫ y

0

(
Δ̃2
t f

(n))(x)
(y− t)n−1

(n− 1)!
dt. (2.56)

Notice that

Pξ( f ;x)− f (x)= 1
2ξ

∫∞

0

(
Δ̃2
y f (x)

)
e−y/ξdy. (2.57)
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Furthermore by (2.4), (2.55), and (2.57) we easily see that

K(x) :=Pξ( f ;x)− f (x)−
n/2∑

ρ=1

f (2ρ)(x)ξ2ρ

= 1
2ξ

∫∞

0

(∫ y

0

(
Δ̃2
t f

(n))(x)
(y− t)n−1

(n− 1)!
dt

)

e−y/ξdy.

(2.58)

Therefore we have

∣
∣K(x)

∣
∣≤ 1

2ξ

∫∞

0

(∫ y

0

∣
∣Δ̃2

t f
(n)(x)

∣
∣ (y− t)n−1

(n− 1)!
dt

)

e−y/ξdy. (2.59)

Here we estimate in Lp norm, p ≥ 1, the error functionK(x). Notice that we have ω2( f (n),
h)p <∞, h > 0, n= 0, or n≥ 2 even. Operators Pξ are positive operators.

The related main Lp result here comes next.

Theorem 2.5. Let p,q > 1 such that 1/p+ 1/q = 1, n≥ 2 even, and the rest as above. Then

∥
∥K(x)

∥
∥
p ≤

(
τ̃1/p

(4p+ 2)1/p
(
q2(n− 1) + q

)1/q
(n− 1)!

)

ξnω2
(
f (n),ξ

)
p, (2.60)

where

τ̃ :=
⎛

⎝
∫∞

0
(1 + x)2p+1xnp−1e−(p/2)xdx−

(
2
p

)np

Γ(np)

⎞

⎠ <∞. (2.61)

Hence, as ξ → 0, ‖K(x)‖p → 0.

Proof. We observe that

∣
∣K(x)

∣
∣p ≤ 1

2pξ p

(∫∞

0

(∫ y

0

∣
∣Δ̃2

t f
(n)(x)

∣
∣ (y− t)n−1

(n− 1)!
dt

)

e−y/ξdy

)p

. (2.62)

Call

γ̃(y,x) :=
∫ y

0

∣
∣Δ̃2

t f
(n)(x)

∣
∣ (y− t)n−1

(n− 1)!
dt ≥ 0, (2.63)

then we have

∣
∣K(x)

∣
∣p ≤ 1

2pξ p

(∫∞

0
γ̃(y,x)e−y/ξdy

)p
. (2.64)
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And hence

Λ :=
∫∞

−∞

∣
∣K(x)

∣
∣pdx ≤ 1

2pξ p

∫∞

−∞

(∫∞

0
γ̃(y,x)e−y/ξdy

)p
dx (by Hölder’s inequality)

≤ 1
2pξ p

(∫∞

−∞

(∫∞

0

(
γ̃(y,x)

)p
e−py/2ξdy

)(∫∞

0
e−qy/2ξdy

)p/q
dx

)

= 1
2ξqp/q

(∫∞

−∞

(∫∞

0

(
γ̃(y,x)

)p
e−py/2ξdy

)

dx
)

=: (∗).

(2.65)

By applying again Hölder’s inequality, we see that

γ̃(y,x)≤
(∫ y

0

∣
∣Δ̃2

t f
(n)(x)

∣
∣pdt

)1/p

(n− 1)!
y(n−1+1/q)

(
q(n− 1) + 1

)1/q . (2.66)

Therefore it holds that

(∗)≤ 1
(
q(n−1) +1

)p/q(
(n−1)!

)p
2ξqp/q

(∫∞

0

((∫∞

−∞

(∫ y

0

∣
∣Δ̃2

t f
(n)(x)

∣
∣pdt

)

· ypn−1e−py/2ξ
)

dx
)

dy
)

=: (∗∗).

(2.67)

We call

c2 := 1

2ξqp/q
(
(n− 1)!

)p(
q(n− 1) + 1

)p/q . (2.68)

And hence

(∗∗)= c2

(∫∞

0

((∫∞

−∞

(∫ y

0

∣
∣Δ̃2

t f
(n)(x)

∣
∣pdt

)

dx
)

ypn−1e−py/2ξ
)

dy
)

= c2

(∫∞

0

((∫ y

0

(∫∞

−∞

∣
∣Δ̃2

t f
(n)(x)

∣
∣pdx

)

dt
)

ypn−1e−py/2ξ
)

dy
)

= c2

(∫∞

0

((∫ y

0

(∫∞

−∞

∣
∣Δ2

t f
(n)(x− t)∣∣pdx

)

dt
)

ypn−1e−py/2ξ
)

dy
)

≤ c2

(∫∞

0

((∫ y

0
ω2
(
f (n), t

)p
pdt
)

ypn−1e−py/2ξ
)

dy
)

≤ c2ω2
(
f (n),ξ

)p
p

(∫∞

0

((∫ y

0

(

1 +
t

ξ

)2p

dt

)

ypn−1e−py/2ξ
)

dy

)

.

(2.69)
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That is so far we proved that

Λ≤ c2ω2
(
f (n),ξ

)p
p

(∫∞

0

((∫ y

0

(

1 +
t

ξ

)2p

dt

)

ypn−1e−py/2ξ
)

dy

)

. (2.70)

But

R.H.S. (2.70)= c2ξ

(2p+ 1)
ω2
(
f (n),ξ

)p
p

(∫∞

0

((

1 +
y

ξ

)2p+1

− 1

)

ypn−1e−py/2ξdy

)

. (2.71)

Call

M :=
∫∞

0

((

1 +
y

ξ

)2p+1

− 1

)

ypn−1e−py/2ξdy. (2.72)

Thus

M = ξ pn
⎛

⎝
∫∞

0
(1 + x)2p+1xpn−1e−(p/2)xdx−

(
2
p

)np

Γ(np)

⎞

⎠ . (2.73)

That is we get

M = ξ pnτ̃. (2.74)

Therefore it holds that

Λ≤
τ̃ξ pnω2

(
f (n),ξ

)p
p

2(2p+ 1)
(
(n− 1)!

)p(
q2(n− 1) + q

)p/q . (2.75)

We have established (2.60). �

The counterpart of Theorem 2.5 follows, p = 1 case.

Theorem 2.6. Let f ∈ L1(R)∩Cn(R), n≥ 2 even. Then

∥
∥K(x)

∥
∥

1 ≤ n
(

(n+ 1)(n+ 2)
6

+
(n+ 1)

2
+

1
2

)

ξnω2
(
f (n),ξ

)
1. (2.76)

Hence, as ξ → 0, ‖K(x)‖1→ 0.

Proof. Notice that

Δ̃2
t f

(n)(x)= Δ2
t f

(n)(x− t), (2.77)

all x, t ∈R. Also it holds that

∫∞

−∞

∣
∣Δ2

t f
(n)(x− t)∣∣dx =

∫∞

−∞

∣
∣Δ2

t f
(n)(w)

∣
∣dw ≤ ω2

(
f (n), t

)
1, all t ∈R+. (2.78)
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Here we obtain

∥
∥K(x)

∥
∥

1 =
∫∞

−∞
|K(x)|dx (2.59)≤ 1

2ξ

∫∞

−∞

(∫∞

0

(∫ y

0

∣
∣Δ̃2

t f
(n)(x)

∣
∣ (y− t)n−1

(n− 1)!
dt

)

e−y/ξdy

)

dx

≤ 1
2ξ

∫∞

−∞

(∫∞

0

(
yn−1

(n− 1)!

(∫ y

0

∣
∣Δ̃2

t f
(n)(x)

∣
∣dt

)

e−y/ξ
)

dy
)

dx

= 1
2ξ

(∫∞

0

((∫∞

−∞

(∫ y

0

∣
∣Δ̃2

t f
(n)(x)

∣
∣dt

)

dx
)

yn−1

(n− 1)!
e−y/ξ

)

dy
)

(2.77)= 1
2ξ

(∫∞

0

((∫ y

0

(∫∞

−∞

∣
∣Δ2

t f
(n)(x− t)∣∣dx

)

dt
)

yn−1

(n− 1)!
e−y/ξ

)

dy
)

(2.78)≤ 1
2ξ

(∫∞

0

((∫ y

0
ω2
(
f (n), t

)
1dt
)

yn−1

(n− 1)!
e−y/ξ

)

dy
)

≤ ω2
(
f (n),ξ

)
1

2ξ

(∫∞

0

((∫ y

0

(

1 +
t

ξ

)2

dt

)
yn−1

(n− 1)!
e−y/ξ

)

dy

)

= ξnω2
(
f (n),ξ

)
1

6(n− 1)!

(∫∞

0

(
(1 + x)3− 1

)
xn−1e−xdx

)

= n
(

(n+ 1)(n+ 2)
6

+
(n+ 1)

2
+

1
2

)

ξnω2
(
f (n),ξ

)
1.

(2.79)

We have proved (2.76). �

The related case here of n= 0 comes next.

Proposition 2.7. Let p,q > 1 such that 1/p+ 1/q = 1 and the rest as above. Then

∥
∥Pξ( f )− f

∥
∥
p ≤

ρ1/p

21/pq1/q ω2( f ,ξ)p, (2.80)

where

ρ :=
∫∞

0
(1 + x)2pe−(p/2)xdx <∞. (2.81)

Hence, as ξ → 0, Pξ → I in the Lp norm, p > 1.

Proof. From (2.57), we get

∣
∣Pξ( f ;x)− f (x)

∣
∣p ≤ 1

2pξ p

(∫∞

0

∣
∣Δ̃2

y f (x)
∣
∣e−y/ξdy

)p
. (2.82)
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We then estimate
∫∞

−∞

∣
∣Pξ( f ;x)− f (x)

∣
∣pdx

≤ 1
2pξ p

(∫∞

−∞

(∫∞

0

∣
∣Δ̃2

y f (x)
∣
∣pe−py/2ξdy

)(∫∞

0
e−qy/2ξdy

)p/q
dx

)

= 1
2ξqp/q

(∫∞

0

(∫∞

−∞

∣
∣Δ2

y f (x− y)
∣
∣pdx

)

e−py/2ξdy

)

= 1
2ξqp/q

(∫∞

0

(∫∞

−∞

∣
∣Δ2

y f (x)
∣
∣pdx

)

e−py/2ξdy

)

≤ 1
2ξqp/q

(∫∞

0
ω2( f , y)

p
pe−py/2ξdy

)

≤ ω2( f ,ξ)
p
p

2qp/q

(∫∞

0
(1 + x)2pe−(p/2)xdx

)

.

(2.83)

The proof of (2.80) is now evident. �

Also we give the following.

Proposition 2.8. It holds that

∥
∥Pξ f − f

∥
∥

1 ≤
5
2
ω2( f ,ξ)1. (2.84)

Hence, as ξ → 0, Pξ → I in the L1 norm.

Proof. From (2.57), we have

∣
∣Pξ( f ;x)− f (x)

∣
∣≤ 1

2ξ

∫∞

0

∣
∣Δ̃2

y f (x)
∣
∣e−y/ξdy. (2.85)

Hence we get

∫∞

−∞

∣
∣Pξ( f ;x)− f (x)

∣
∣dx ≤ 1

2ξ

∫∞

0

(∫∞

−∞

∣
∣Δ2

y f (x− y)
∣
∣dx

)

e−y/ξdy

= 1
2ξ

∫∞

0

(∫∞

−∞

∣
∣Δ2

y f (x)
∣
∣dx

)

e−y/ξdy

≤ 1
2ξ

∫∞

0
ω2( f , y)1e

−y/ξdy

≤ ω2( f ,ξ)1

2

∫∞

0
(1 + x)2e−xdx = 5

2
ω2( f ,ξ)1.

(2.86)

We have established (2.84). �
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BOUNDARY ESTIMATES FOR BLOW-UP SOLUTIONS
OF ELLIPTIC EQUATIONS WITH EXPONENTIAL GROWTH

C. ANEDDA, A. BUTTU, AND G. PORRU

We investigate blow-up solutions of the equation Δu = eu + g(u) in a bounded smooth
domain Ω. If g(t) satisfies a suitable growth condition (compared with the growth of et)
as t goes to infinity, we find second-order asymptotic estimates of the solution u(x) in
terms of the distance of x from the boundary ∂Ω.

Copyright © 2006 C. Anedda et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let Ω⊂ RN be a bounded smooth domain. It is known since 1916 [10] that the problem

Δu= eu in Ω, u(x)−→∞ as x −→ ∂Ω, (1.1)

has a classical solution called a boundary blow-up (explosive, large) solution. Moreover,
if δ = δ(x) denotes the distance from x to ∂Ω, we have [10]

u(x)− log
2

δ2(x)
−→ 0 as x −→ ∂Ω. (1.2)

Recently, Bandle [3] has improved the previous estimate, finding the expansion

u(x)= log
2

δ2(x)
+ (N − 1)K(x)δ(x) + o

(
δ(x)

)
, (1.3)

whereK(x) denotes the mean curvature of ∂Ω at the point x nearest to x, and o(δ) has the
usual meaning. Boundary estimates for more general nonlinearities have been discussed
in several papers, see [4–6, 8, 12, 14–17].

In Section 2 of the present paper we investigate the problem

Δu= eu + g(u) in Ω, u(x)−→∞ as x −→ ∂Ω, (1.4)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 47–55



48 Boundary estimates

where g(t) is a smooth function which satisfies |g(t)| ≤ Aeθt. Here A and θ are constants
with A > 0 and 0 < θ < 1.

If 0 < θ < 1/2, we prove the asymptotic boundary estimate

u(x)= log
2

δ2(x)
+ (N − 1)K(x)δ(x) +O(1)

(
δ(x)

)2(1−θ)
, (1.5)

where K(x) is the mean curvature of the surface {x ∈Ω : δ(x)= constant} and O(1) is a
bounded quantity. Observe that 1 < 2(1− θ) < 2.

If θ ≥ 1/2, then we find the estimate

u(x)= log
2

δ2(x)
+O(1)

(
δ(x)

)2(1−θ)
. (1.6)

Now we have 0 < 2(1− θ)≤ 1.
The effect of the geometry of the domain in the boundary behaviour of blow-up solu-

tions for special elliptic equations has been observed in various papers, see for example,
[1, 7, 9, 11].

2. Main results

Let g(t) be a smooth function such that

0 < et + g(t), 0 < et + g′(t), ∀t ∈ R. (2.1)

In addition to (2.1) we assume the condition

∃θ ∈ (0,1) : g(t)=O(1)eθt, (2.2)

where O(1) is a bounded quantity, holds. Observe that, since 0 < θ, we have
∫ t
−∞(eτ +

g(τ))dτ <∞. Define Φ=Φ(s) such that

∫∞

Φ(s)

dt
√

2F(t)
= s, F(t)=

∫ t

−∞

(
eτ + g(τ)

)
dτ. (2.3)

We have Φ(s)→∞ as s→ 0.

Lemma 2.1. Let g(t) satisfy (2.1) and (2.2). If u(x) is a boundary blow-up solution of the
equation Δu= eu + g(u) in Ω, then

u(x)= log
2
δ2

+O(1)δ2(1−θ) +O(1)δ log
2
δ2

, (2.4)

where δ = δ(x) is the distance from x to ∂Ω, and O(1) denotes a bounded quantity.
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Proof. By (2.3) we find

Φ′(s)=−(2F(Φ)
)1/2

. (2.5)

Using condition (2.2) we obtain

F(t)=
∫ t

−∞
eτdτ +

∫ t

−∞
g(τ)dτ = et +O(1)eθt. (2.6)

Hence,

Φ′(s)=−√2
(
eΦ +O(1)eθΦ

)1/2
. (2.7)

Putting ρ(s)= e−Φ/2, we have

ρ′(s)=−e−Φ/2 Φ
′

2
. (2.8)

Insertion of (2.7) into the last equation yields

ρ′(s)= 1√
2

(
1 +O(1)e(θ−1)Φ)1/2

. (2.9)

It follows that

ρ′(0)= 1√
2

, ρ(s)=O(1)s, e(θ−1)Φ(s) =O(1)s2(1−θ). (2.10)

Hence, by (2.9) we find

ρ′(s)= 1√
2

(
1 +O(1)s2(1−θ)). (2.11)

Integration over (0,s) yields

ρ(s)= s√
2

(
1 +O(1)s2(1−θ)). (2.12)

Recalling that ρ(s)= e−Φ/2, we have

eΦ = ρ−2 = 2
s2
(
1 +O(1)s2(1−θ)), (2.13)

Φ(s)= log
2
s2

+O(1)s2(1−θ). (2.14)

By (2.14) and (2.7) we also find

Φ′(s)= s−1[− 2 +O(1)s2(1−θ)]. (2.15)
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Under our assumptions, the function et + g(t) is increasing for all t and the function
t−2F(t), with F(t)= ∫ t−∞(eτ + g(τ))dτ, is increasing for large t. Moreover, using (2.15) we
find

limsup
ϑ→1,δ→0

Φ′(ϑδ)
Φ′(δ)

<∞. (2.16)

Hence, we can use [7, Theorem 4(i)] to find

u(x)=Φ(δ) +O(1)δΦ(δ). (2.17)

Insertion of (2.14) with s= δ into the last equation proves the assertion of the lemma. �

Recall that δ = δ(x) denotes the distance of x from ∂Ω. If Ω is smooth, then also δ(x)
is smooth for x near to ∂Ω. We have [13]

N∑

i=1

δxiδxi = 1,
N∑

i=1

δxixi =−(N − 1)K =−H , (2.18)

where K is the mean curvature of the surface {x ∈Ω : δ(x)= constant}.
Theorem 2.2. Let Ω be a bounded smooth domain in RN , N ≥ 2, and let g(t) be a smooth
function which satisfies (2.1) and (2.2). If u(x) is a boundary blow-up solution of Δu =
eu + g(u) in Ω, then

u(x)= log
2
δ2

+Hδ +O(1)δ2(1−θ), (2.19)

where H is defined in (2.18) and O(1) is a bounded quantity.

Proof. We look for a supersolution of the form

w(x)= log
2
δ2

+Hδ +αδσ , (2.20)

where σ = 2(1− θ) and α is a positive constant to be determined. We have

wxi =−
2
δ
δxi +Hxiδ +Hδxi +ασδσ−1δxi . (2.21)

Recalling (2.18), we find

Δw = 2
δ2

+
2
δ
H + 2∇H ·∇δ +ΔHδ−H2 +ασ(σ − 1)δσ−2−ασHδσ−1. (2.22)

Denoting by Mi, i= 1,2, . . . , nonnegative constants independent of α, we find

Δw <
2
δ2

[

1 +Hδ +M1δ
2 +αδσ

(
σ(σ − 1)

2
+M2δ

)]

. (2.23)

On the other side, using Taylor’s expansion, we have

ew = 2
δ2
eHδ+αδσ >

2
δ2

(
1 +Hδ +αδσ

)
. (2.24)



C. Anedda et al. 51

We take α and δ0 so that, for {x ∈Ω : δ(x) < δ0},

Hδ +αδσ < 1. (2.25)

Then, by condition (2.2) we find g(w) = O(1)eθw ≥ −M3(2/δ2)θ . Note that in case of
g(t)≥ 0 we can take M3 = 0. Using this estimate and inequality (2.24), we find

ew + g(w) >
2
δ2

[

1 +Hδ +αδσ −M3

(
2
δ2

)θ−1
]

. (2.26)

By (2.23) and (2.26) we find that

Δw < ew + g(w) (2.27)

when

1 +Hδ +M1δ
2 +αδσ

(
σ(σ − 1)

2
+M2δ

)

< 1 +Hδ +αδσ −M3

(
2
δ2

)θ−1

. (2.28)

Rearranging, we get

M1δ
2 +M3

(
δ2

2

)1−θ
< αδσ

[
(1 + σ)(2− σ)

2
−M2δ

]

. (2.29)

Since σ = 2(1− θ), (2.29) yields

M1δ
2θ +M32θ−1 < α

[(
1 + 2(1− θ)

)
θ−M2δ

]
. (2.30)

Since 0 < θ < 1, we can take δ0 small and α large so that (2.30) and (2.25) hold for δ(x) <
δ0.

By Lemma 2.1 we have

u(x)−w(x)=O(1)δ2(1−θ) +O(1)δ log
2
δ2
−Hδ−αδ2(1−θ). (2.31)

It follows that, for α fixed, u(x)−w(x)→ 0 as x→ ∂Ω. We show now that we can choose
α and δ0 so that u(x) < w(x) for {x ∈Ω : δ(x) = δ0}. Let αδ2(1−θ)

0 = q, with α and δ0 as

above. Decrease δ0 and increase α so that αδ2(1−θ)
0 = q and

O(1)δ2(1−θ) +O(1)δ log
2
δ2
−Hδ− q < 0 (2.32)

for {x ∈ Ω : δ(x) = δ0}. By (2.27) and the comparison principle [13], it follows that
u(x)≤w(x) on {x ∈Ω : δ(x) < δ0}.

Now we look for a subsolution of the kind

v(x)= log
2
δ2

+Hδ−αδσ , (2.33)
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where, as in the previous case, σ = 2(1− θ) and α is a positive constant to be determined.
We find

Δv = 2
δ2

+
2
δ
H + 2∇H ·∇δ +ΔHδ−H2−ασ(σ − 1)δσ−2 +ασHδσ−1, (2.34)

Δv >
2
δ2

[

1 +Hδ−M4δ
2−αδσ

(
σ(σ − 1)

2
+M5δ

)]

. (2.35)

We take α and δ0 so that, for {x ∈Ω : δ(x) < δ0},

Hδ−αδσ < 1. (2.36)

Then, using Taylor’s expansion, we have

ev = 2
δ2
eHδ−αδ

σ
<

2
δ2

(
1 +Hδ−αδσ +M6

(
δ2 +

(
αδσ

)2
))
. (2.37)

Using condition (2.2) and (2.36) we find g(v) = O(1)eθv ≤M7(2/δ2)θ . Note that in case
of g(t)≤ 0 we can take M7 = 0. Using this estimate and inequality (2.37) we find

ev + g(v) <
2
δ2

[

1 +Hδ−αδσ +M6

(
δ2 +

(
αδσ

)2
)

+M7

(
2
δ2

)θ−1
]

. (2.38)

By (2.35) and (2.38) we find that

Δv > ev + g(v) (2.39)

when

Hδ−M4δ
2−αδσ

(
σ(σ − 1)

2
+M5δ

)

>Hδ−αδσ +M6δ
2 +M6

(
αδσ

)2
+M7

(
2
δ2

)θ−1

.

(2.40)

Rearranging, we find

(
M4 +M6

)
δ2 +M7

(
δ2

2

)1−θ
< αδσ

[
(1 + σ)(2− σ)

2
−M5δ−M6αδ

σ
]

. (2.41)

Since σ = 2(1− θ), (2.41) yields

(
M4 +M6

)
δ2θ +M72θ−1 < α

[(
1 + 2(1− θ)

)
θ−M5δ−M6αδ

2(1−θ)]. (2.42)

We can take δ0 small and α large so that (2.42) and (2.36) hold for δ(x) < δ0.
By using Lemma 2.1, we have

u(x)− v(x)=O(1)δ2(1−θ) +O(1)δ log
2
δ2
−Hδ +αδ2(1−θ). (2.43)
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It follows that, for α fixed, u(x)− v(x)→ 0 as x→ ∂Ω. Let αδ2(1−θ)
0 = q, with α and δ0 as

above. Decrease δ0 and increase α so that αδ2(1−θ)
0 = q and

O(1)δ2(1−θ) +O(1)δ log
2
δ2
−Hδ + q > 0 (2.44)

for {x ∈Ω : δ(x)= δ0}. By (2.39), it follows that v(x)≤ u(x) on {x ∈Ω : δ(x) < δ0}.
Therefore, near ∂Ω we have

log
2
δ2

+Hδ−αδ2(1−θ) ≤ u(x)≤ log
2
δ2

+Hδ +αδ2(1−θ). (2.45)

The theorem is proved. �

Corollary 2.3. Let Ω be a bounded smooth domain in RN ,N ≥ 2, and let g(t) be a smooth
function which satisfies (2.1) and the estimate g(t) = O(1)tp, where p is a real number. If
u(x) is a boundary blow-up solution of Δu= eu + g(u) in Ω, then

u(x)= log
2
δ2

+Hδ +O(1)δσ , (2.46)

where σ is any real number with σ < 2.

Proof. Given σ < 2, take θ = 1− σ/2. Since g(t) = O(1)tp, we have g(t) = O(1)eθt. The
result follows by Theorem 2.2. �

Remark 2.4. If θ < 1/2, the perturbation g(t) makes effects at the third level only. When
θ ≥ 1/2, 2(1− θ)≤ 1, and the statement of Theorem 2.2 can be written as

u(x)= log
2
δ2

+O(1)δ2(1−θ). (2.47)

Hence, in this case the perturbation g(t) produces its effects at the second level.

3. Conclusion

The results of the present paper are close to those of [2], where the problem

Δu= up + g(u) in Ω, u(x)−→∞ as x −→ ∂Ω, (3.1)

is discussed. Here p > 1 and g(t) is a function which satisfies |g(t)| ≤Mtq, q < p. The
following results follow from [2].

With p > 5, 0 < q < p, let

Δu= up +uq in Ω, u(x)−→∞ as x −→ ∂Ω. (3.2)

(i) If 0 < q < 1, then

u(x)= (apδ
)2/(1−p)[

1 +A1δ +A2δ
2 +O(1)δβ

]
, (3.3)
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where

ap = p− 1
√

2(1 + p)
, β = 2(p− q)

p− 1
,

A1 = H

p+ 3
, A2 = 9− p− 2p2

12(p+ 3)2
H2 +

p− 3
6(p+ 3)

∇H ·∇δ, H = (N − 1)K.

(3.4)

(ii) If 1≤ q < (p+ 1)/2, then

u(x)= (apδ
)2/(1−p)[

1 +A1δ +O(1)δβ
]
. (3.5)

(iii) If (p+ 1)/2≤ q < p, then

u(x)= (apδ
)2/(1−p)[

1 +O(1)δβ
]
. (3.6)

Two questions arise: what is the second-order effect in the asymptotic expansion of the
blow-up solution in case of more general nonlinearities? How is the geometry of the boundary
∂Ω involved? We have the following result relative to the problem

Δu= eu|u|β−1
in Ω, u(x)−→∞ as x −→ ∂Ω, (3.7)

with 0 < β = 1. We have found the following asymptotic expansion:

u(x)=Φ(δ) +β−1Hδ
(
Φ(δ)

)1−β
+O(1)δ

(
Φ(δ)

)1−2β
, (3.8)

where H = (N − 1)K and Φ(δ) is defined as

∫∞

Φ(δ)

(
2F(t)

)−1/2
dt = δ, F(t)=

∫ t

−∞
f (τ)dτ, f (τ)= eτ|τ|β−1

. (3.9)

The proof of the above result will appear in a forthcoming paper.
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BACKWARD STOCHASTIC VOLTERRA INTEGRAL
EQUATIONS IN HILBERT SPACES

VO ANH AND JIONGMIN YONG

We establish the well-posedness of backward stochastic Volterra integral equations in
Hilbert spaces.

Copyright © 2006 V. Anh and J. Yong. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Throughout this paper, we let H and H̄ be two separable Hilbert spaces, and let (Ω,�,F,
P) be a complete filtered probability space on which an H̄-valued standard Brownian
motion W(·) is defined with F≡ {�t}t≥0 being its natural filtration augmented by all the
P-null sets in �. Let A : �(A)⊆H →H be the generator of a C0-semigroup, denoted by
eAt, on the space H . Note that operator A could be a differential operator or a pseudo-
differential operator which generates a diffusion process. Consider the following forward
stochastic partial differential equation (FSPDE, for short):

dX(t)= [AX(t) + b
(
t,X(t)

)]
dt+ σ

(
t,X(t)

)
dW(t), t ∈ [0,T],

X(0)= X0,
(1.1)

where b : [0,T]×H →H and σ : [0,T]×H →�2(H̄ ;H) (the space of all Hilbert-Schmidt
operators from H̄ to H , endowed with Hilbert-Schmidt norm; see next section for de-
tails). The mild or integral form of the above equation reads [1]

X(t)= eAtX0 +
∫ t

0
eA(t−s)b

(
s,X(s)

)
ds+

∫ t

0
eA(t−s)σ

(
s,X(s)

)
dW(s), t ∈ [0,T]. (1.2)

Inspired by the above, we may more generally consider the following equation:

X(t)= ϕ(t) +
∫ t

0
b
(
t,s,X(s)

)
ds+

∫ t

0
σ
(
t,s,X(s)

)
dW(s), t ∈ [0,T], (1.3)

where b : [0,T]×[0,T]×H→H , and σ : [0,T]×[0,T]×H→�2(H̄ ,H). We call the above
a forward stochastic Volterra integral equation (FSIE, for short). The well-posedness

Hindawi Publishing Corporation
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of such an equation in a suitable space and a suitable sense can be established and lead to
many related problems. Among them, one can consider optimal control problems related
to the above equation. More precisely, instead of (1.3) we may consider the following
controlled FSIE:

X(t)= ϕ(t) +
∫ t

0
b
(
t,s,X(s),u(s)

)
ds+

∫ t

0
σ
(
t,s,X(s),u(s)

)
dW(s), t ∈ [0,T], (1.4)

where X(·) is the state and u(·) is the control. If we introduce the following cost func-
tional:

J
(
u(·))= E

[∫ T

0
f
(
t,X(t),u(t)

)
dt+h

(
X(T)

)
]

, (1.5)

for some maps f : [0,T]×H ×U ×Ω→ R and h : H ×Ω→ R, then one can pose an
optimal control problem: minimize (1.5) subject to the state equation (1.4). One expected
result related to this optimal control problem is the Pontryagin-type maximum principle
(as a necessary condition for optimal controls). In the statement of such a maximum
principle, one will have an adjoint equation associated with the linearized state equation.
This adjoint equation will be a terminal value problem for a stochastic integral equation.
Therefore, inspired by [7, 8] (see also [3]), one should study the following type integral
equation:

Y(t)= ψ(t)−
∫ T

t
g
(
t,s,Y(s),Z(t,s),Z(s, t)

)
ds−

∫ T

t
Z(t,s)dW(s), t ∈ [0,T], (1.6)

where g : [0,T]× [0,T]×H ×�2(H̄ ,H)×�2(H̄ ,H)×Ω→H is a given map, called the
generator, and ψ : [0,T]×Ω→H is a given free term. Equation (1.6) is called a backward
stochastic Volterra integral equation (BSIE, for short). An adapted solution to (1.6) is a pair
of processes (Y(·),Z(·,·)) for which t�→ Y(t) is F-adapted, and for almost all t ∈ [0,T],
s�→ Z(t,s) is F-adapted, such that (1.6) is satisfied in the usual Itô sense (see the next
section).

The purpose of this paper is to establish the well-posedness of BSIE (1.6) under proper
conditions. Our results extend those found in [7, 8]. For relevant results for stochastic
differential equations and stochastic integral equations, see [2, 4–6], and so forth.

2. Preliminaries

In what follows, for any Hilbert space K , we will denote its norm by | · | (or | · |K if K
needs to be emphasized). Since H̄ is a separable Hilbert space, we may let {ēi}i≥1 be an
orthonormal basis of H̄ . Then we define �2(H̄ ,H) to be the set of all linear bounded
operators B : H̄ →H such that

|B| =
(
∑

i≥1

∣
∣Bēi

∣
∣2
)1/2

<∞. (2.1)

Clearly, �2(H̄ ,H) is a Hilbert space with an obvious inner product induced by the above
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norm. Any B ∈�2(H̄ ,H) is called a Hilbert-Schmidt operator. Next, for any Hilbert space
K , we introduce the following spaces:

L2(Ω)= {ξ : Ω−→ K | ξ is �T-measurable, E|ξ|2 <∞},

L2((0,T)×Ω
)=

{

ϕ : (0,T)×Ω−→ K | ϕ(·) is �
(
[0,T]

)

⊗�T-measurable,E
∫ T

0

∣
∣ϕ(t)

∣
∣2
dt <∞

}

,

L2
�(0,T)= {ϕ(·)∈ L2((0,T)×Ω

) | ϕ(·) is F-adapted
}
.

(2.2)

In the above, we have suppressed the range space K in the notations. In case that the
range space K needs to be emphasized, we use the notations L2(Ω;K), L2((0,T)×Ω;K),
and so on.

The above are the spaces for the processes ψ(·) (see (1.6), which does not have to be
F-adapted) and Y(·) (which is required to be F-adapted). Now for the process Z(·,·),
we need to introduce the space L2(0,T ;L2

�(0,T)) ≡ L2(0,T ;L2
�(0,T ;�2(H̄ ,H))). By def-

inition, any Z : [0,T]× [0,T]×Ω → �2(H̄ ,H) belongs to this space if for almost all
t ∈ [0,T], s�→ Z(t,s) is F-adapted and

E
∫ T

0

∫ T

0

∣
∣Z(t,s)

∣
∣2
dsdt <∞. (2.3)

Next, we assume that W(·) is given by the following expansion:

W(t)=
∑

i≥1

Wi(t)ēi, t ≥ 0, (2.4)

where for each n≥ 1, (W1(·), . . . ,Wn(·)) is an n-dimensional standard Brownian motion.
Then for any process σ(·)∈ L2

�(0,T ;�2(H̄ ,H)), the Itô integral

∫ t

0
σ(s)dW(s)=

∑

i≥1

∫ t

0
σ(s)ēi dWi(s), t ∈ [0,T], (2.5)

is well defined, and

E
∣
∣
∣
∣

∫ t

0
σ(t)dW(s)

∣
∣
∣
∣

2

=
∫ T

0

∑

i≥1

E
∣
∣σ(t)ēi

∣
∣2
dt =

∫ T

0
E
∣
∣σ(t)

∣
∣2
dt <∞. (2.6)

3. Well-posedness of BSIEs

We denote

Δ= {(t,s)∈ [0,T]2 | 0≤ s≤ t ≤ T},

Δc = {(t,s)∈ [0,T]2 | 0≤ t ≤ s≤ T}.
(3.1)

Let us introduce the following definition (see [8]).
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Definition 3.1. A pair (Y(·),Z(·,·)) ∈ L2
�(0,T)× L2(0,T ;L2

�(0,T)) is called an adapted
M-solution of (1.6) if (1.6) is satisfied in the Itô sense and the following holds:

Y(t)= EY(t) +
∫ t

0
Z(t,s)dW(s), t ∈ [0,T]. (3.2)

In the above, “M” in “M-solution” stands for “martingale representation” (for Y(t)).
The following standing assumption will be used below.

(H1) Let g : Δc ×H ×�2(H̄ ,H)×�2(H̄ ,H)×Ω → H be �(Δc ×H ×�2(H̄ ,H)×
�2(H̄ ,H))⊗�T-measurable, such that

E
∫ T

0

(∫ T

t

∣
∣g(t,s,0,0,0)

∣
∣ds

)2

dt <∞. (3.3)

Moreover, for some deterministic functions Ly , Lz, Lζ : Δc →R satisfying

sup
t∈[0,T]

∫ T

t

[
Ly(t,s)2 +Lζ(t,s)2]ds <∞,

sup
t∈[0,T]

∫ T

t
Lz(t,s)2ds < 1,

(3.4)

it holds that

∣
∣g(t,s, y,z,ζ)− g(t,s, ȳ, z̄, ζ̄)

∣
∣≤ Ly(t,s)|y− ȳ|+Lz(t,s)|z− z̄|+Lζ(t,s)|ζ − ζ̄|,

∀(t,s)∈ Δc, y, ȳ ∈H , z, z̄,ζ , ζ̄ ∈�2(H̄ ,H), a.s.
(3.5)

Note that if Ly and Lζ are uniformly bounded, the first condition in (3.4) is automati-
cally true. The second condition in (3.4) is very crucial below.

Our main result of this section is the following well-posedness result for BSIE (1.6).

Theorem 3.2. Let (H1) hold. Then for any ψ(·) ∈ L2((0,T)×Ω), BSIE (1.6) admits a
unique adapted M-solution (Y(·),Z(·,·)) ∈ L2

�(0,T)× L2(0,T ;L2
�(0,T)). Moreover, the

following estimate holds:

E
∫ T

r

∣
∣Y(t)

∣
∣2
dt+E

∫ T

r

∫ T

r

∣
∣Z(t,s)

∣
∣2
dsdt

≤ CE
⎡

⎣
∫ T

r

∣
∣ψ(t)

∣
∣2
dt+

∫ T

r

(∫ T

t

∣
∣g(t,s,0,0,0)

∣
∣ds

)2

dt

⎤

⎦ , ∀r ∈ [0,T].

(3.6)

Let ḡ : Δc×H ×�2(H̄ ,H)×�2(H̄ ,H)×Ω→Rm also satisfy (H1). Let ψ̄(·)∈ L2((0,T)×
Ω) and (Ȳ(·), Z̄(·,·)) ∈ L2

�(0,T)× L2(0,T ;L2
�(0,T)) be the adapted M-solution of (1.6)
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with g replaced by ḡ, corresponding to ψ̄(·), then the following stability condition holds:

E
∫ T

r

∣
∣Y(t)− Ȳ(t)

∣
∣2
dt+E

∫ T

r

∫ T

r

∣
∣Z(t,s)− Z̄(t,s)

∣
∣2
dsdt

≤ CE
[∫ T

r

∣
∣ψ(t)− ψ̄(t)

∣
∣2
dt+

∫ T

r

(∫ T

r

∣
∣g
(
t,s,Y(s),Z(t,s),Z(s, t)

)

− ḡ
(
t,s,Y(s),Z(t,s),Z(s, t)

)∣
∣ds

)2

dt

⎤

⎦ ,

∀r ∈ [0,T].

(3.7)

Sketch of the proof. First of all, by (3.4), we can find a finite sequence 0 = T0 < T1 <
··· < Tk−1 < Tk = T and a δ ∈ (0,1) such that

sup
t∈[Ti−1,Ti]

∫ Ti

t

[
Lz(t,s)2 +Lζ(t,s)2]ds≤ 1− δ, 1≤ i≤ k. (3.8)

The proof is split into several steps.

Proof

Step 1. BSIE (1.6) is solvable on [Tk−1,T].
Let �2[Tk−1,T] be the (nontrivial closed) subspace of all (y(·),z(·,·)) ∈ L2

�(Tk−1,
T)×L2(Tk−1,T ;L2

�(0,T)) such that

y(t)= Ey(t) +
∫ t

0
z(t,s)dW(s), t ∈ [Tk−1,T

]
. (3.9)

Clearly, for any (y(·),z(·,·))∈�2[Tk−1,T], we have

E
∫ t

r

∣
∣z(t,s)

∣
∣2
ds≤ E

∫ t

0

∣
∣z(t,s)

∣
∣2
ds= E∣∣y(t)

∣
∣2−∣∣Ey(t)

∣
∣2 ≤ E∣∣y(t)

∣
∣2

,

(t,r)∈ Δ, t ∈ [Tk−1,T
]
.

(3.10)

Next, for any (y(·),z(·,·))∈�2[Tk−1,T], denote

ψ̃(t)= ψ(t) +
∫ T

t
g
(
t,s, y(s),z(t,s),z(s, t)

)
ds, t ∈ [Tk−1,T

]
. (3.11)

Then by (H1), using the Cauchy-Schwartz inequality, with some careful calculations, for
any t ∈ [Tk−1,T],

∣
∣ψ̃(t)

∣
∣2 ≤ C

⎡

⎣
∣
∣ψ(t)

∣
∣2

+

(∫ T

t
g0(t,s)ds

)2

+
∫ T

t

∣
∣y(s)

∣
∣2
ds

⎤

⎦

+
(
1− δ2)

[∫ T

t

∣
∣z(t,s)

∣
∣2
ds+

∫ T

t

∣
∣z(s, t)

∣
∣2
ds

]

.

(3.12)
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In the above, g0(t,s)= |g(t,s,0,0,0)|. Thus, for any r ∈ [Tk−1,T], noting (3.10), we obtain

E
∫ T

r

∣
∣ψ̃(t)

∣
∣2
dt ≤ CE

⎡

⎣
∫ T

r

∣
∣ψ(t)

∣
∣2
dt+

∫ T

r

(∫ T

t
g0(t,s)ds

)2

dt+
∫ T

r

∫ T

t

∣
∣y(s)

∣
∣2
dsdt

⎤

⎦

+
(
1− δ2)E

[∫ T

r

∣
∣y(t)

∣
∣2
dt+

∫ T

r

∫ T

t

∣
∣z(t,s)

∣
∣2
dsdt

]

,

(3.13)

which implies that ψ̃(·)∈ L2((Tk−1,T)×Ω). We now consider the following BSIE:

Y(t)= ψ̃(t)−
∫ T

t
Z(t,s)dW(s), t ∈ [Tk−1,T

]
. (3.14)

Using the martingale presentation theorem, together with some approximation argu-
ments, we obtain a unique adapted M-solution (Y(·),Z(·,·)) ∈�2[Tk−1,T] to (3.14),
that is,

Y(t)= ψ(t)−
∫ T

t
g
(
t,s, y(s),z(t,s),z(s, t)

)
ds−

∫ T

t
Z(t,s)dW(s), t ∈ [Tk−1,T

]
. (3.15)

Now, if (Y(·),Z(·,·)) ∈�2[Tk−1,T] is an adapted M-solution to (1.6), then by taking
(y(·),z(·,·)) to be (Y(·),Z(·,·)) in the above, we obtain that for any r ∈ [Tk−1,T],

E
∫ T

r

∣
∣Y(t)

∣
∣2
dt+E

∫ T

r

∫ T

t

∣
∣Z(t,s)

∣
∣2
dsdt

≤ CE
⎡

⎣
∫ T

r

∣
∣ψ(t)

∣
∣2
dt+

∫ T

r

(∫ T

t
g0(t,s)ds

)2

dt+
∫ T

r

∫ T

t

∣
∣Y(s)

∣
∣2
dsdt

⎤

⎦

+
(
1− δ2)E

[∫ T

r

∣
∣Y(t)

∣
∣2
dt+

∫ T

r

∫ T

t

∣
∣Z(t,s)

∣
∣2
dsdt

]

.

(3.16)

Hence, first absorbing the last term on the right-hand side into the left-hand side, then
using Gronwall’s inequality, we obtain that for all t ∈ [Tk−1,T],

E
∫ T

r

∣
∣Y(t)

∣
∣2
dt+E

∫ T

r

∫ T

t

∣
∣Z(t,s)

∣
∣2
dsdt

≤ CE
⎡

⎣
∫ T

r

∣
∣ψ(t)

∣
∣2
dt+

∫ T

r

(∫ T

t
g0(t,s)ds

)2

dt

⎤

⎦ .

(3.17)
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Further, by (3.2) and (3.10), we obtain that for all r ∈ [Tk−1,T],

E
∫ T

r

∣
∣Y(t)

∣
∣2
dt+E

∫ T

r

∫ T

r

∣
∣Z(t,s)

∣
∣2
dsdt

≤ CE
⎡

⎣
∫ T

r

∣
∣ψ(t)

∣
∣2
dt+

∫ T

r

(∫ T

t
g0(t,s)ds

)2

dt

⎤

⎦ .

(3.18)

This gives estimate (3.6) for any adapted M-solution (Y(·),Z(·,·)) of (1.6) on [Tk−1,T].
Now, let (y(·),z(·,·)),( ȳ(·)), z̄(·,·)) ∈�2[Tk−1,T], and let (Y(·),Z(·,·)) and (Ȳ(·),

Z̄(·,·)) be the corresponding adapted M-solutions of (3.15). Then

E
∣
∣Y(t)− Ȳ(t)

∣
∣2

+
∫ T

t
E
∣
∣Z(t,s)− Z̄(t,s)

∣
∣2
ds

≤ C
∫ T

t
E
∣
∣y(s)− ȳ(s)

∣
∣2
ds+

(
1− δ2)

∫ T

t
E
∣
∣z(t,s)− z̄(t,s)

∣
∣2
ds

+ (1− δ2)
∫ T

t
E
∣
∣z(s, t)− z̄(s, t)

∣
∣2
ds.

(3.19)

Similar to (3.10), we have

E
∫ t

r

∣
∣z(t,s)− z̄(t,s)

∣
∣2
ds≤ E∣∣y(t)− ȳ(t)

∣
∣2

, (t,r)∈ Δ. (3.20)

Consequently, for r ∈ [Tk−1,T), by some direct computations,

E
∫ T

r

∣
∣Y(t)− Ȳ(t)

∣
∣2
dt+

∫ T

r

∫ T

t
E
∣
∣Z(t,s)− Z̄(t,s)

∣
∣2
dsdt

≤ (1− δ2)
[∫ T

r
E
∣
∣y(t)− ȳ(t)

∣
∣2
dt+

∫ T

r

∫ T

t
E|z(t,s)− z̄(t,s)

∣
∣2
dsdt

]

+C
∫ T

r

[∫ T

t
E
∣
∣y(s)− ȳ(s)

∣
∣2
ds+

∫ T

t

∫ T

s
E
∣
∣z(s,τ)− z̄(s,τ)

∣
∣2
dτ ds

]

dt.

(3.21)

The above actually implies that adapted M-solution to BSIE (1.1) is unique on [Tk−1,T].
In fact, if (Y(·),Z(·,·)) and (Ȳ(·), Z̄(·,·)) are two adapted M-solutions to (1.6) on [Tk−1,
T], then the above leads to the following:

E
∫ T

r

∣
∣Y(t)− Ȳ(t)

∣
∣2
dt+

∫ T

r

∫ T

t
E
∣
∣Z(t,s)− Z̄(t,s)

∣
∣2
dsdt

≤ (1− δ2)
[∫ T

r
E
∣
∣Y(t)− Ȳ(t)

∣
∣2
dt+

∫ T

r

∫ T

t
E
∣
∣Z(t,s)− Z̄(t,s)

∣
∣2
dsdt

]

+C
∫ T

r

[∫ T

t
E
∣
∣Y(s)− Ȳ(s)

∣
∣2
ds+

∫ T

t

∫ T

s
E
∣
∣Z(s,τ)− Z̄(s,τ)

∣
∣2
dτ ds

]

dt.

(3.22)
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Thus, absorbing the first term on the right-hand side, then using Gronwall’s inequality,
we obtain

E
∫ T

r

∣
∣Y(t)− Ȳ(t)

∣
∣2
dt+

∫ T

r

∫ T

t
E
∣
∣Z(t,s)− Z̄(t,s)

∣
∣2
dsdt = 0, r ∈ [Tk−1,T

]
, (3.23)

proving the uniqueness.
To obtain the existence, we define the Picard iteration sequence as follows. Let

(
Y0(·),Z0(·,·))= (0,0)∈�2[Tk−1,T

]
, (3.24)

and inductively, we let (Yk+1(·),Zk+1(·,·)) ∈�2[Tk−1,T] be the unique M-solution of
the following BSIE:

Yk+1(t)= ψ(t)−
∫ T

t
g
(
t,s,Yk(s),Zk(t,s),Zk(s, t)

)
ds

−
∫ T

t
Zk+1(t,s)dW(s), t ∈ [0,T].

(3.25)

Then with some lengthy calculations and estimations, we can obtain

lim
k→∞

[∫ T

r
E
∣
∣Yk(s)−Y(s)

∣
∣2
ds+

∫ T

r

∫ T

t
E
∣
∣Zk(t,s)−Z(t,s)

∣
∣2
dsdt

]

= 0, (3.26)

for some (Y(·),Z(·,·)). Also, due to

Yk(t)= EYk(t) +
∫ t

0
Zk(t,s)dW(s), t ∈ [Tk−1,T

]
, a.s., (3.27)

we have

∫ T

Tk−1

∫ t

0
E
∣
∣Zk(t,s)−Z(t,s)

∣
∣2
dsdt ≤

∫ T

Tk−1

∣
∣Yk(t)−Y(t)

∣
∣2
dt −→ 0, k −→∞. (3.28)

Hence, we obtain an M-solution (Y(·),Z(·,·)) to BSIE (1.1) over [Tk−1,T].

Step 2. A stochastic Fredholm integral equation is solvable over [Tk−1,T].
For (t,s) ∈ [Tk−2,Tk−1]× [Tk−1,T], from Step 1, we know that the values Y(s) and

Z(s, t) are all already determined. Hence, we can define

gk−1(t,s,z)= g(t,s,Y(s),z,Z(s, t)
)
, (t,s,z)∈ [Tk−2,Tk−1]× [Tk−1,T

]×Rm×d. (3.29)

Now, consider the following stochastic Fredholm integral equation:

ψk−1(t)= ψ(t)−
∫ T

Tk−1

gk−1(t,s,Z(t,s)
)
ds

−
∫ T

Tk−1

Z(t,s)dW(s), t ∈ [Tk−2,Tk−1
]
.

(3.30)
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Making use of the second condition in (3.4) (which is crucial here), the above admits
a unique adapted solution (ψk−1(·),Z(·,·)) (with ψk−1(t) being �Tk−1 -adapted). This
uniquely determines the values Z(t,s) for (t,s)∈ [Tk−2,Tk−1]× [Tk−1,T].

Step 3. Complete the proof by induction.
By Steps 1 and 2, we see that the values Y(t) for t ∈ [Tk−1,T] and the values Z(t,s)

for (t,s) ∈ ([Tk−1,T]× [0,T])
⋃

([Tk−2,Tk−1]× [Tk−1,T]) have been determined. By the
definition of gk−1(t,s,z), we see that (ψk−1(·),Z(·,·)) satisfies

ψk−1(t)= ψ(t)−
∫ T

Tk−1

g
(
t,s,Y(s),Z(t,s),Z(s, t)

)
ds

−
∫ T

Tk−1

Z(t,s)dW(s), t ∈ [Tk−2,Tk−1
]
.

(3.31)

Now, we consider

Y(t)= ψk−1(t)−
∫ Tk−1

t
g
(
t,s,Y(s),Z(t,s),Z(s, t)

)
ds

−
∫ Tk−1

t
Z(t,s)dW(s), t ∈ [0,Tk−1

]
.

(3.32)

Since ψk−1(t) is �Tk−1 -adapted, (3.32) is a BSIE over [0,Tk−1]. Hence, by Step 1, we may
prove that (3.32) is solvable on [Tk−2,Tk−1]. This solvability determines the values Y(t)
for t ∈ [Tk−2,Tk−1] and the values Z(t,s) for (t,s)∈ [Tk−2,Tk−1]× [0,Tk−1], which is dis-
joint with the set ([Tk−1,T]× [0,T])

⋃
([Tk−2,Tk−1]× [Tk−1,T]). Therefore, we obtain

the values Y(t) for t ∈ [Tk−2,T] and the values Z(t,s) for (t,s) ∈ [Tk−2,T]× [0,T]. Fur-
ther, we note that for t ∈ [Tk−2,Tk−1],

Y(t)= ψk−1(t)−
∫ Tk−1

t
g
(
t,s,Y(s),Z(t,s),Z(s, t)

)
ds−

∫ Tk−1

t
Z(t,s)dW(s)

= ψ(t)−
∫ T

t
g
(
t,s,Y(s),Z(t,s),Z(s, t)

)
ds−

∫ T

t
Z(t,s)dW(s).

(3.33)

Hence, we obtain the solvability of BSIE (1.1) on [Tk−2,T]. Then we can use induction to
obtain the solvability of (1.6) over [0,T].

Finally, we can similarly prove the stability estimate. �
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SECOND-ORDER DIFFERENTIAL GRADIENT
METHODS FOR SOLVING TWO-PERSON
GAMES WITH COUPLED VARIABLES

ANATOLY ANTIPIN

A two-person nonzero-sum game is considered both the classical statement and the form
of a coupled-variables game. Second-order gradient method for solving coupled-variables
game is offered and justified. The convergent analysis is given.

Copyright © 2006 Anatoly Antipin. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Statement of introduction

Let us consider the problem of computing a fixed point of a two-person nonzero-sum
game: find x∗1 ∈ X1, x∗2 ∈ X2 such that

x∗1 ∈ Argmin
{
f1
(
z1,x∗2

)
+ϕ1

(
z1
) | z1 ∈ X1

}
,

x∗2 ∈ Argmin
{
f2
(
x∗1 ,z2

)
+ϕ2

(
z2
) | z2 ∈ X2

}
,

(1.1)

where X1 ∈ Rn1
1 , X2 ∈ Rn2

2 are convex closed sets in finite-dimensional Euclidean spaces
with various dimensionality in general. Objective functions f1(x1,x2) +ϕ1(x1), f2(x1,x2) +
ϕ2(x2) are defined on the product spaces Rn1

1 , Rn2
2 . If the functions f1(z1,x2) + ϕ(z1),

f2(x1,z2) +ϕ(z2) are continuous and convex in their own variables, that is, the first func-
tion is convex in z1 and second one is convex in z2 for any values of x1 and x2, where Xi,
i= 1,2, are convex compact sets, then there exists a solution x∗ = (x∗1 ,x∗2 ) of (1.1) [10].

Any solution of (1.1) or Nash equilibrium describes some compromise with a sum-
marized gain f1(x∗1 ,x∗2 ) + ϕ1(x∗1 ) + f2(x∗1 ,x∗2 ) + ϕ2(x∗2 ). If the sum f1(x1,x2) + ϕ1(x1) +
f2(x1,x2) + ϕ2(x2) ∀x1 ∈ X1, x2 ∈ X2 is equal to zero, then a problem is called as zero-
sum two-person game. Following conceptions accepted in decision making, we suppose
that functions ϕi(xi), i = 1,2, describe the preferences of every player in choosing their
alternatives over their own subsets Xi, i = 1,2. In turn, the functions fi(x1,x2), i = 1,2,
describe a dependence or an effect of one player on the other player, if one of them is
taking his choice.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 67–79
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Problem (1.1) always can be scalarized [11] and presented as problem of finding a fixed
point of an extreme mapping [2]. To this end, we introduce the normalized function

Φ(v,w) +ϕ(w)= f1
(
z1,x2

)
+ϕ1

(
z1
)

+ f2
(
x1,z2

)
+ϕ2

(
z2
)
, (1.2)

where w = (z1,z2), v = (x1,x2), v,w ∈Ω= X1×X2. In the terms of new macrovariables,
the problem (1.1) can be presented in the form

v∗ ∈ Argmin
{
Φ
(
v∗,w

)
+ϕ(w) |w ∈Ω

}
. (1.3)

It is easy to make sure that both problems (1.1) and (1.3) are equivalent.
Note that the scalarized game (1.3) can be reformulated in the equivalent form of

operator equation

v∗ = πΩ
(
v∗ −α(∇2Φ

(
v∗,v∗

)
+∇ϕ(v∗))), (1.4)

where∇2Φ(v,w),∇ϕ(w) are the gradients inw for any v,πΩ(···) is a projection operator
of some vector onto Ω, α > 0 is a parameter like the step length.

The discrepancy, that is, the difference between the left- and right-hand sides of (1.4),
which vanishes at the point v∗ and does not vanish at an arbitrary point v, is a transfor-
mation of the space Rn ×Rn into itself. This transformation generates a vector field [1],
whose fixed point is v∗. Consider the problem of drawing a trajectory such that linear
combination of velocity and acceleration on this trajectory coincides with the field vector
at each point. Formally, the problem is described by the system of differential equation

μ
d2v

dt2
+β

dv

dt
+ v = πΩ

{
v−α(∇2Φ(v,v) +∇ϕ(v)

)}
. (1.5)

Here μ > 0 and β > 0 are parameters. If μ= 0 and β = 1, then we have [2, 7, 8]. Other cases
can be seen in [1, 9].

To ensure the convergence of the trajectory for differential system (1.5) to a fixed point
of problem (1.3), we introduce an additive feedback control. The choice of various feed-
back types results in various controlled differential systems [4]. In the present paper, we
consider the process (1.5) with control in the form of prediction [2]. In this case, the
differential second-order controlled gradient system for solving (1.3) takes the form

μ
d2v

dt2
+β

dv

dt
+ v = πΩ

{
v−α(∇2Φ(v̄, v̄) +∇ϕ(v̄)

)}
, (1.6)

where the feedback control is as follows:

v̄ = πΩ
(
v−α(∇2Φ(v,v) +∇ϕ(v)

))
, v

(
t0
)= v0, v̇

(
t0
)= v̇0. (1.7)

To justify the convergence of the process (1.6)-(1.7), we need to use the property of
positive semidefiniteness introduced by [3]

Φ(w,w)−Φ(w,v)−Φ(v,w) +Φ(v,v)≥ 0 ∀v,w ∈Ω×Ω. (1.8)
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This condition can be considered as nonlinear generalization of conception for positive
semidefiniteness for matrices. If a function has a bilinear structure Φ(v,w) = 〈Φv,w〉
where Φ is a square matrix, then (1.8) takes the form 〈Φ(v −w),v −w〉 ≥ 0, ∀v,w ∈
Ω×Ω.

The condition of positive semidefiniteness of (1.8) is sufficient to guarantee the mono-
tonicity of gradient restriction ∇2Φ(v,w)|v=w, if the function Φ(v,w) is convex in w for
any v. Indeed, using the system of inequalities

〈∇ f (x), y− x〉≤ f (y)− f (x)≤ 〈 f (y), y− x〉 ∀x, y ∈ X , (1.9)

we get the property of monotonicity [5] for gradient restriction from (1.8)

〈∇2Φ(w,w)−∇2Φ(v,v),w− v〉≥ 0 ∀v,w ∈Ω. (1.10)

Additionally, it is supposed that the gradient restriction satisfy the Lipschitz condition

∣
∣∇2Φ(v+h,v+h) +∇ϕ(v+h)−∇2Φ(v,v)−∇ϕ(v)

∣
∣≤ C|h| ∀v,w ∈Ω×Ω.

(1.11)

Using the introduced property, one can prove the following theorem [4].

Theorem 1.1. Suppose that a solution set of scalarized game problem (1.3) is nonempty,
function Φ(v,w) is positive semidefinite and convex in w for any v, the Lipschitz condition
(1.11) holds,Ω⊆ Rn is convex closed set. Then, the trajectory v(t) generated by method (1.6)-
(1.7) with the parameters 0 < α < 1/(

√
2C), 0 < μ < β2/2 converges monotonically under the

norm to one of the equilibrium solutions, that is, v(t)→ v∗ as t→∞.

2. Second-order discrepancy-controlled gradient process with coupled variables

Consider the extension of (1.1) as the game with coupled variables

x∗1 ∈ Argmin
{
f1
(
z1,x∗2

)
+ϕ1

(
z1
) | g(z1,x∗2

)≤ 0, z1 ∈ X1
}

,

x∗2 ∈ Argmin
{
f2
(
x∗1 ,z2

)
+ϕ2

(
z2
) | g(x∗1 ,z2

)≤ 0, z2 ∈ X2
}

,
(2.1)

where constrained function g(x1,x2) is convex in x1 for any fixed x2 and convex in x2 for
any fixed x1 but not convex in both variables jointly generally speaking. Each of the play-
ers in this problem has the same functional constraint but with respect to own variables.
The level of independence behaviour of players in this situation is not high since variables
of players are coupled both in the objective functions and in the constraints. Therefore,
it is natural to consider the problem in scalarized form, that is, as the equilibrium pro-
gramming problem in space of macrovariables v,w ∈Ω×Ω. To this end, we enter two
normalized functions of the kind

Φ(v,w) +ϕ(w)= f1
(
z1,x2

)
+ϕ1

(
z1
)

+ f2
(
x1,z2

)
+ϕ2

(
z2
)
,

G(v,w)= g(z1,x2
)

+ g
(
x1,z2

)
,

(2.2)
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wherew = (z1,z2), v = (x1,x2), v,w ∈Ω= X1×X2 ∈ Rn1
1 ×Rn2

2 . In terms of new variables,
problem (2.1) can be presented as follows:

v∗ ∈ Argmin
{
Φ
(
v∗,w

)
+ϕ(w) |G(v∗,w

)≤ 0, w ∈Ω
}

, (2.3)

or that is the same as

Φ
(
v∗,v∗

)
+ϕ

(
v∗
)≤Φ

(
v∗,w

)
+ϕ(w), G

(
v∗,w

)≤ 0 ∀w ∈Ω. (2.4)

Easy to be convinced of equivalence of problems (2.1) and (2.3) [7].
To solve the game (2.1), it is enough to solve the equilibrium problem (2.3). With this

purpose, we introduce the Lagrange function for problem

�(v,w,λ)=Φ(v,w) +ϕ(w) +
〈
λ,G(v,w)

〉
, (2.5)

where v ∈ Ω, w ∈ Ω, λ ≥ 0. Assuming that this function has gotten a saddle point v∗,
λ∗ in the state of equilibrium v = v∗ for problem (2.3), then we can write the system of
inequalities

�
(
v∗,v∗,λ

)≤�
(
v∗,v∗,λ∗

)≤�
(
v∗,w,λ∗

) ∀w ∈Ω, λ≥ 0. (2.6)

This system of inequalities can be rewritten in the equivalent forms as follows: variational
inequalities

〈∇2Φ
(
v∗,v∗

)
+∇ϕ(v∗)+∇2G

T
(
v∗,v∗

)
λ∗,w− v∗〉≥ 0 ∀w ∈Ω,

−〈G(v∗,v∗
)
,λ− λ∗〉≥ 0 ∀λ≥ 0,

(2.7)

where ∇2Φ(v,w) = (∂/∂w)Φ(v,w), ∇ϕ(w), are gradients in w for any v for functions
Φ(v,w), ϕ(w), respectively, ∇2G(v,w) is a matrix, where ∇2Gi(v,w), i= 1,2, . . . ,n1 + n2,
is vector-row of gradient forGi(v,w) inw,∇2GT(·,·) is a transposed matrix and operator
equations

v∗ = πΩ
(
v∗ −α(∇2Φ

(
v∗,v∗

)
+∇ϕ(v∗)+∇2G

T
(
v∗,v∗

)
λ∗
))

,

λ∗ = π+

(

λ∗ +
(
α

2

)

G
(
v∗,v∗

)
)

,
(2.8)

where πΩ(···), π+(···), are projection operators of some vector onto Ω and the positive
orthant Rn+, respectively, α > 0 is a parameter like step length.

Before passing to discuss the solution methods of the system of equations (2.8), we
consider properties of function G(v,w) in more details. First of all, we mark properties
of symmetry for this function. Indeed, from G(v,w) = g(z1,x2) + g(x1,z2) = g(x1,z2) +
g(z1,x2)=G(w,v), it follows that

G(v,w)=G(w,v) ∀v ∈Ω, w ∈Ω. (2.9)
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Differentiating this identity in w, we receive

∇2G(v,w)=∇1G(w,v) ∀v ∈Ω, w ∈Ω, (2.10)

where∇1G(·,·),∇2G(·,·) are partial gradients (derivatives) in first and second variables.
Using the assertion obtained, it is very easy to prove [5] the key property of symmetri-

cal function G(v,w), namely, private in w gradient restriction of function G(v,w) on the
diagonal of square Ω×Ω is equal to a half of gradient of restricted function G(v,w) onto
this diagonal of square

2∇2G(v,w)
∣
∣
v=w =∇G(v,v) ∀v ∈Ω. (2.11)

We suppose also that functions Φ(v,w),G(v,w) are subject to property of positive
semidefiniteness (1.8). Using statements (1.8)–(1.10), we transform the first variational
inequality from (2.7). To this end, we consider separately third term in this inequality.
Taking into account the key property of symmetric (2.11) and convexity of vector func-
tion G(v,v) componently (1.9), we have

〈∇2G
T
(
v∗,v∗

)
λ∗,w− v∗〉= 1

2

〈
λ∗,∇G(v∗,v∗

)(
w− v∗)〉

≤ 1
2

〈
λ∗,G(w,w)−G(v∗,v∗

)〉≥ 0.

(2.12)

In view of an obtained evaluation, we rewrite the first inequality from (2.7) as

〈∇2Φ
(
v∗,v∗

)
+∇ϕ(v∗),w− v∗〉+

(
1
2

)
〈
λ∗,G(w,w)−G(v∗,v∗

)〉≥ 0 (2.13)

for all w ∈Ω. According to (1.10), the operator ∇2Φ(v,v) +ϕ(v) is monotone, then we
get from (2.13) that

〈∇2Φ(w,w) +∇ϕ(w),w− v∗〉+
(

1
2

)
〈
λ∗,G(w,w)−G(v∗,v∗

)〉≥ 0 (2.14)

for all w ∈Ω. These estimates are underlying in the convergence analysis of controlled
gradient methods for computing of equilibrium solutions [6].

Repeating the reasoning (1.5)–(1.7) in new situation, we obtain the system of differ-
ential equations

μ
d2λ

dt2
+β

dλ

dt
+ λ= π+

(

λ+
(
α

2

)

G(v̄, v̄)
)

,

μ
d2v

dt2
+β

dv

dt
+ v = πΩ

(
v−α∇2�(v̄, v̄, λ̄)

)
,

(2.15)

where the feedbacks are as follows:

λ̄= π+

(

λ+
(
α

2

)

G(v,v)
)

,

v̄ = πΩ
(
v−α∇2�(v,v, λ̄)

)
.

(2.16)
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The value of parameter α in (2.15) is chosen from certain interval

0 < ε ≤ α < α0, ε > 0, (2.17)

and∇2�(v̄, v̄, λ̄)=∇2Φ(v̄, v̄) +∇ϕ(v̄) +∇2GT(v̄, v̄)λ̄,∇2�(v,v, λ̄)=∇2Φ(v,v) +∇ϕ(v) +
∇2GT(v,v)λ̄.

The iterative analog of this process has the kind [4]

λ̄n = π+

(

λn +
(
α

2

)

G
(
vn,vn

)
)

,

v̄n = πΩ
(
vn−α∇2�

(
vn,vn, λ̄n

))
,

λn+1 = π+

(

λn +
(
α

2

)

G
(
v̄n, v̄n

)
)

+β
(
λn− λn−1),

vn+1 = πΩ
(
vn−α∇2�

(
v̄n, v̄n, λ̄n

))
+β
(
vn− vn−1).

(2.18)

The particular cases of (2.15), (2.17) for solving the game problem (1.3) have the
forms, respectively, (1.6), (1.7).

For the justification of correctness of selecting out parameter α, we receive evaluations
of deviations for vectors μλ̈+βλ̇+ λ and λ̄, μv̈+βv̇+ v and v̄ in (2.15)

∣
∣μλ̈+βλ̇+ λ− λ̄∣∣≤

(
α

2

)
∣
∣G(v̄, v̄)−G(v,v)

∣
∣≤

(
α

2

)

C3|v− v̄|, (2.19)

|μv̈+βv̇+ v− v̄| ≤ α∣∣∇2�(v̄, v̄, λ̄)−∇2�(v,v, λ̄)
∣
∣

≤ (∣∣∇2Φ(v̄, v̄) +∇ϕ(v̄)−∇2Φ(v,v)−∇ϕ(v)
∣
∣

+
∣
∣∇2G

T(v̄, v̄)−∇2G
T(v,v)

∣
∣|λ̄|)≤ α(C1 +C2|λ̄|

)|v̄− v|
≤ α(C1 +C2C

)|v̄− v|,

(2.20)

where
(∣
∣∇2Φ(v,v) +∇ϕ(v)−∇2Φ(v̄, v̄)−∇ϕ(v̄)

∣
∣
)≤ C1|v̄− v|,

∣
∣∇2G

T(v,v)−∇2G
T(v̄, v̄)

∣
∣≤ C2|v̄− v|,

∣
∣G(v,v)−G(v̄, v̄)

∣
∣≤ C3|v− v̄|, |λ̄| ≤ C.

(2.21)

We rewrite process (2.15) in the form of variational inequalities
〈

μλ̈+βλ̇−
(
α

2

)

G(v̄, v̄), y−μλ̈−βλ̇− λ
�

≥ 0,

〈
μv̈+βv̇+α∇2�(v̄, v̄, λ̄),z−μv̈−βv̇− v〉≥ 0,

(2.22)

〈

λ̄− λ−
(
α

2

)

G(v,v), y− λ̄
�

≥ 0,

〈
v̄− v+α∇2�(v,v, λ̄),z− v̄〉≥ 0,

(2.23)

for all z ∈Ω, y ≥ 0.
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3. Proof of convergence

We show that the process (2.15)-(2.17) converges monotonically under the norm to one
of equilibrium solutions.

Theorem 3.1. Suppose that a solution set of scalarized game problem (2.3) is nonempty,
functions Φ(v,w), G(v,w) are positive semidefinite and convex in w for any v, the Lipschitz
conditions hold in (2.21), dual trajectory |λ̄(t)| ≤ C is bounded for all t ≥ t0, Ω ⊆ Rn is
convex closed set. Then, the trajectories v(t), λ(t) generated by method (2.15)-(2.17) with
the parameters

0 < ε ≤ α < 1
√

2
(
C1 +C2C

)2
+ (1/4)C2

3

, 0 < μ <
β2

2
, ε > 0, (3.1)

converge monotonically under the norm to one of the equilibrium solutions, that is, v(t),
λ(t)→ v∗, λ∗ ∈Ω∗ ×Rn+ as t→∞.

Proof. By putting z = v∗ in (2.22), we get

−|μv̈+βv̇|2 +
〈
μv̈+βv̇,v∗ − v〉+α

〈∇2�(v̄, v̄, λ̄),v∗ − v̄〉

+α
〈∇2�(v̄, v̄, λ̄), v̄−μv̈−βv̇− v〉≥ 0.

(3.2)

Using the condition (2.11) and the convexity condition (1.9), we transform the third
term occurring in (3.2)

〈∇2�(v̄, v̄, λ̄),v∗ − v̄〉

= 〈∇2Φ(v̄, v̄) +∇ϕ(v̄) +∇2G
T(v̄, v̄)λ̄,v∗ − v̄〉

= 〈∇2Φ(v̄, v̄) +∇ϕ(v̄),v∗ − v̄〉+
(

1
2

)
〈
λ̄,∇G(v̄, v̄)

(
v∗ − v̄)〉

≤ 〈∇2Φ(v̄, v̄) +∇ϕ(v̄),v∗ − v̄〉+
(

1
2

)
〈
λ̄,G

(
v∗,v∗

)−G(v̄, v̄)
〉
.

(3.3)

Using (2.20), we estimate the fourth term

〈∇2�(v̄, v̄, λ̄), v̄−μv̈−βv̇− v〉

= 〈∇2�(v̄, v̄, λ̄)−∇2�(v,v, λ̄), v̄−μv̈−βv̇− v〉

+
〈∇2�(v,v, λ̄), v̄−μv̈−βv̇− v〉

≤ α(C1 +C2C
)2|v̄− v|2 +

〈∇2�(v,v, λ̄), v̄−μv̈−βv̇− v〉.

(3.4)
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Using the obtained estimations, we present (3.2) as

−|μv̈+βv̇|2 +
〈
μv̈+βv̇,v∗ − v〉

+α
〈∇2Φ(v̄, v̄) +∇ϕ(v̄),v∗ − v̄〉+

(
α

2

)
〈
λ̄,G

(
v∗,v∗

)−G(v̄, v̄)
〉

+α2(C1 +C2C
)2|v̄− v|2 +α

〈∇2�(v,v, λ̄), v̄−μv̈−βv̇− v〉.

(3.5)

We put z = v+βv̇+μv̈ at (2.23), then

〈
v̄− v+α∇2�(v,v, λ̄),v+βv̇+μv̈− v̄〉≥ 0. (3.6)

Add inequality obtained to (3.5),

−|μv̈+βv̇|2 +
〈
μv̈+βv̇,v∗ − v〉

+α
〈∇2Φ(v̄, v̄) +∇ϕ(v̄),v∗ − v̄〉+

(
α

2

)
〈
λ̄,G

(
v∗,v∗

)−G(v̄, v̄)
〉

+α2(C1 +C2C
)2|v̄− v|2 + 〈v̄− v,v+βv̇+μv̈− v̄〉 ≥ 0.

(3.7)

Putting w = v̄ at (2.14), we add the inequality obtained to (3.7), and we have

−|μv̈+βv̇|2 +
〈
μv̈+βv̇,v∗ − v〉+

(
α

2

)
〈
λ̄− λ∗,G

(
v∗,v∗

)−G(v̄, v̄)
〉

+α2(C1 +C2C
)2|v̄− v|2 + 〈v̄− v,v+βv̇+μv̈− v̄〉 ≥ 0.

(3.8)

Let us perform a similar sequence of manipulation for the first inequalities (2.22),
(2.23). Setting y = λ+βλ̇+μλ̈ in (2.23), then

〈λ̄− λ,λ+βλ̇+μλ̈− λ̄〉+
(
α

2

)
〈
G(v̄, v̄)−G(v,v),λ+βλ̇+μλ̈− λ̄〉

−
(
α

2

)
〈
G(v̄, v̄),λ+βλ̇+μλ̈− λ̄〉≥ 0.

(3.9)

We estimate the second term of the inequality with the help of (2.19), (2.21) and add it to
the inequality obtained from the first inequality (2.22) by the substitution y = λ∗, then

〈λ̄− λ,λ+βλ̇+μλ̈− λ̄〉+
((

α

2

)

C3

)2

|v− v̄|2

+
〈
μλ̈+βλ̇,λ∗ −μλ̈−βλ̇− λ〉−

(
α

2

)
〈
G(v̄, v̄),λ∗ − λ̄〉≥ 0.

(3.10)
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Taking into account the relations 〈λ̄,G(v∗,v∗)〉 ≤ 0 and 〈λ̄∗,G(v∗,v∗)〉 = 0, we rewrite
the last inequality in the form

〈λ̄− λ,λ+βλ̇+μλ̈− λ̄〉+
((

α

2

)

C3

)2

|v− v̄|2

−|μλ̈+βλ̇|2 +
〈
μλ̈+βλ̇,λ∗ − λ〉

−
(
α

2

)
〈
λ̄− λ∗,G

(
v∗,v∗

)−G(v̄, v̄)
〉≥ 0.

(3.11)

Next, we add inequalities (3.8) and (3.11),

−|μv̈+βv̇|2−|μλ̈+βλ̇|2 +
〈
μv̈+βv̇,v∗ − v〉

+
〈
μλ̈+βλ̇,λ∗ − λ〉+α2

(
(
C1 +C2C

)2
+
(

1
4

)

C2
3

)

|v̄− v|2

+ 〈v̄− v,v+βv̇+μv̈− v̄〉+ 〈λ̄− λ,λ+βλ̇+μλ̈− λ̄〉 ≥ 0.

(3.12)

We denote s= (v,λ)T , ṡ= (v̇, λ̇)T , s̄= (v̄, λ̄)T , s∗= (v∗,λ∗)T , and s̈= (v̈, λ̈)T , and rewrite
the last inequality as

−|μs̈+βṡ|2 +
〈
μs̈+βṡ,s∗ − s〉

+α2
(
(
C1 +C2C

)2
+
(

1
4

)

C2
3

)

|v̄− v|2 + 〈s̄− s,s+βṡ+μs̈− s̄〉 ≥ 0.
(3.13)

By virtue of the identity

∣
∣x1− x2

∣
∣2 = ∣∣x1− x3

∣
∣2

+ 2
〈
x1− x3,x3− x2

〉
+
∣
∣x3− x2

∣
∣2

, (3.14)

we have the expansion

2〈s+βṡ+μs̈− s̄, s̄− s〉 = |βṡ+μs̈|2−|s̄− s|2−|s+βṡ+μs̈− s̄|2, (3.15)

which allows us to represent inequality (3.13) in the form

−|μs̈+βṡ|2− 2
〈
μs̈+βṡ,s− s∗〉−

(

1− 2α2
(
(
C1 +C2C

)2
+
(

1
4

)

C2
3

))

|v− v̄|2

+ |λ− λ̄|2−|s+βṡ+μs̈− s̄|2 ≥ 0.

(3.16)

Next, using the identity

d

dt

〈
μṡ+β

(
s− s∗),s− s∗〉= 〈μs̈+βṡ,s− s∗〉+

〈
μṡ+β

(
s− s∗), ṡ〉, (3.17)

we rewrite (3.16) as

|μs̈+βṡ|2− 2
〈
μṡ+β

(
s− s∗), ṡ〉+ 2

d

dt

〈
μṡ+β

(
s− s∗),s− s∗〉

+d1|s− s̄|2 + |s+βṡ+μs̈− s̄|2 ≤ 0,
(3.18)
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where d1 = 1− 2α2((C1 +C2C)2 + (1/4)C2
3) > 0 by the assumption of the theorem, and

consequently we have

0 < ε ≤ α < 1
√

2
(
C1 +C2C

)2
+ (1/4)C2

3

, ε > 0. (3.19)

Let us consider the first and third terms at (3.18) separately,

|μs̈+βṡ|2 = μ2|s̈|2 +μβ
d

dt
|ṡ|2 +β2|ṡ|2,

d

dt

〈
μṡ+β

(
s− s∗),s− s∗〉= μ

2
d2

dt2
∣
∣s− s∗∣∣2

+β
d

dt

∣
∣s− s∗∣∣2

.

(3.20)

Taking into account the resultant expansions, we rewrite inequality (3.18) as

μ
d2

dt2
∣
∣s− s∗∣∣2

+β
d

dt

∣
∣s− s∗∣∣2

+μβ
d

dt
|ṡ|2 +μ2|s̈|2

+
(
β2− 2μ

)|ṡ|2 +d1|s− s̄|2 + |s+βṡ+μs̈− s̄|2 ≤ 0,
(3.21)

where d2 = β2− 2μ > 0 by the theorem conditions.
Integrating inequality (3.21) from t0 to t, we obtain

μ
d

dt
|s− s∗|2 +β

∣
∣s− s∗∣∣2

+μβ|ṡ|2 +μ2
∫ t

t0
|s̈|2dτ +d2

∫ t

t0
|ṡ|2dτ

+d1

∫ t

t0
|s− s̄|2dτ +

∫ t

t0
|s̄− s−βṡ−μs̈|2dτ ≤ C.

(3.22)

Let us show that the trajectory s(t) is bounded. By virtue of the assumptions of the theo-
rem, the last five terms are nonnegative; therefore, from (3.22) we obtain

μ
d

dt

∣
∣s− s∗∣∣2

+β
∣
∣s− s∗∣∣2 ≤ C. (3.23)

Hence

μexp

(

−
(
β

μ

)

t

)
d

dt

(

exp

((
β

μ

)

t

)
∣
∣s− s∗∣∣2

)

≤ C. (3.24)

Let us integrate the resultant inequality:

exp

((
β

μ

)

t

)
∣
∣s− s∗∣∣2 ≤ C1 exp

((
β

μ

)

t

)

+C2, (3.25)

whence

∣
∣s− s∗∣∣2 ≤ C1 +C2 exp

(

−
(
β

μ

)

t

)

≤ C0. (3.26)

The boundedness of the trajectory s(t) for all t ≥ t0 is thereby justified.
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Let us show that the first term occurring in (3.23) is bounded below. First, we show
that |ṡ(t)|2 is bounded for all t ≥ t0. Obviously, integrating inequality (3.21), we obtain

2〈s− s∗, ṡ〉+β|ṡ|2 ≤ C. (3.27)

Extracting a complete square, we have

∣
∣
∣
∣
∣
∣

⎛

⎝ 1
√
β

⎞

⎠
(
s− s∗)+

√
βṡ

∣
∣
∣
∣
∣
∣

2

−
(

1
β

)
∣
∣s− s∗∣∣2 ≤ C. (3.28)

Since |s− s∗|2 ≤ C0, it follows from the last inequality that |ṡ|2 ≤ C1.
Now we can estimate the first term in (3.18). By virtue of the obvious estimate 0 ≤

|s− s∗ + ṡ|2 = |s− s∗|2 + 2〈s− s∗, ṡ〉+ |ṡ|2, we have 〈s− s∗, ṡ〉 ≥ −(1/2)(C0 +C1).
Taking into account the above estimates, we can represent inequality (3.22) as

μ2
∫ t

t0
|s̈|2dτ +d2

∫ t

t0
|ṡ|2dτ +d1

∫ t

t0
|s− s̄|2dτ

+
∫ t

t0
|s̄− s−βṡ−μs̈|2dτ ≤ C+

(
μ

2

)
(
C0 +C1

)
(3.29)

Hence, the integrals

∫ t

t0
|s̈|2dτ <∞,

∫ t

t0
|ṡ|2dτ <∞,

∫ t

t0
|s− s̄|2dτ <∞,

∫ t

t0
|s̄− s−βṡ−μs̈|2dτ <∞

(3.30)

are convergent as t→∞.
Let us prove the convergence of the trajectory s(t) to the equilibrium solution of the

problem. Supposing that there exists an ε > 0 such that |s̈(t)| ≥ ε, |ṡ(t)| ≥ ε, |s− s̄|2 ≥ ε
for all t ≥ t0, we arrive at a contradiction with the convergence of the integrals.

Consequently, there exists a subsequence ti→∞ of time instants such that |s̈(ti)| → 0,
|ṡ(ti)| → 0, |s(ti)− s̄(ti)| → 0. Since s(t) is bounded, it follows that we choose once more
a subsequence of time instant (denote by ti again) such that |s(ti)| → s′, |s(ti)− s̄(ti)| → 0,
|ṡ(ti)| → 0, |s̈(ti)| → 0.

Let us consider equations (2.15), (2.17) for all time instants ti →∞, passing to the
limit, we write out the limit relation

v′ = πΩ
(
v′ −α(∇2Φ(v′,v′) +∇ϕ(v′) +∇2G

T(v′,v′)λ′
))

,

λ′ = π+

(

λ′ +
(
α

2

)

G(v′,v′)
)

.
(3.31)

The system of equations coincides with (2.8); consequently, we have s′ = (v′,λ′) = s∗ =
(v∗,λ∗)∈Ω∗. Therefore, any limit point of the trajectory s(t)= (v(t),λ(t)) is a solution
of problem (2.1). Let us show that trajectory s(t) has only one limit point.
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Of i indices of the above-defined subsequence, we chose i0 such that |s(ti0 )− s′| ≤ ε,
|ṡ(ti0 )| ≤ ε, where ε > 0 is an arbitrarily small number. Then we omit positive terms in
(3.21) and integrate the resultant inequality from ti0 to t:

μ
d

dt

∣
∣s(t)− s′∣∣2

+β
∣
∣s(t)− s′∣∣2

+μβ
∣
∣ṡ(t)

∣
∣2

≤ μ d
dt

∣
∣s
(
ti0
)− s′∣∣2

+β
∣
∣s
(
ti0
)− s′∣∣2

+μβ
∣
∣ṡ
(
ti0
)∣
∣2
.

(3.32)

Taking into account the identity (d/dt)|s(t)− s′|2 = 2〈s(t)− s′, v̇〉, we estimate the right-
hand side of the last inequality as

μ
d

dt

∣
∣s(t)− s′∣∣2

+β
∣
∣s(t)− s′∣∣2

+μβ|ṡ|2 ≤ 2με2 +βε2 +μβε2 ≤ Cε2. (3.33)

In particular, from the resultant estimate and (3.32), we have

μ
d

dt

∣
∣s(t)− s′∣∣2

+β
∣
∣s(t)− s′∣∣2 ≤ Cε2, (3.34)

which is an exact analog of (3.23). Repeating once more the arguments used below (3.23),
we obtain the estimate

|s− s′|2 ≤ C1ε
2, (3.35)

for all t ≤ ti0 . Therefore, starting with some time ti0 , the entire trajectory s(t) lies in the
ball with center s′ and radiusC1ε2. The last assertion means that the trajectory s(t) cannot
have other limit points, since ε > 0 is arbitrary. We have thereby proved the convergence of
the trajectory s(t) to the solution of the problem, that is, s(t)= (v(t),λ(t))→ s∗ = (v∗,λ∗)
as t→∞ for any initial condition s0, ṡ0. �
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[11] H. Nikaidô and K. Isoda, Note on non-cooperative convex games, Pacific Journal of Mathematics
5 (1955), 807–815.

Anatoly Antipin: Computing Center of Russian Academy of Sciences, 40 Vavilov Street,
119991 Moscow, Russia
E-mail address: antipin@ccas.ru

mailto:antipin@ccas.ru




ON THE EIGENVALUE OF INFINITE MATRICES
WITH NONNEGATIVE OFF-DIAGONAL ELEMENTS

N. APREUTESEI AND V. VOLPERT

The paper is devoted to infinite-dimensional difference operators. Some spectral prop-
erties of such operators are studied. Under some assumptions on the essential spectrum,
it is shown that a real eigenvalue with a positive eigenvector is simple and that the real
parts of all other eigenvalues are less than for this one. It is a generalization of the Perron-
Frobenius theorem for infinite matrices.

Copyright © 2006 N. Apreutesei and V. Volpert. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the Banach spaces E of infinite sequences u= (. . . ,u−1,u0,u1, . . .) with the norm

∥
∥u
∥
∥= sup

j

∣
∣uj
∣
∣ (1.1)

and the operator L acting in E,

(Lu) j = aj−muj−m + ···+ a
j
0uj + ···+ a

j
muj+m, j = 0,±1,±2, . . . , (1.2)

where m is a positive integer and a
j
k ∈R, −m≤ k ≤m are given coefficients. We assume

that there exist the limits

a±k = lim
j→±∞

a
j
k, k = 0,±1, . . . ,±m. (1.3)

Consider the limiting operators L±,

(
L±u

)
j = a±−muj−m + ···+ a±0 uj + ···+ a±muj+m, j = 0,±1,±2, . . . . (1.4)
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Let

a±−m �= 0, a±m �= 0, (1.5)

and suppose that the equations

L±u− λu= 0 (1.6)

do not have nonzero bounded solutions for any real λ≥ 0. We will call it Condition NS(λ).
Recall that a linear operator L : E→ E is normally solvable if its image ImL is closed. If L

is normally solvable with a finite-dimensional kernel and the codimension of its image is
also finite, then L is called Fredholm operator. Denoting by α(L) and β(L) the dimension
of kerL and the codimension of ImL, respectively, we can define the index κ(L) of the
operator L as κ(L)= α(L)−β(L).

In [1], the following result is proved (Theorem 4.10).

Theorem 1.1. If Condition NS(λ) is satisfied, then L is a Fredholm operator with the zero
index.

Consider the polynomials

P±λ (σ)= a±mσ2m + ···+ a±1 σ
m+1 +

(
a±0 − λ

)
σm + a±−1σ

m−1 + ···+ a±−m. (1.7)

Lemma 2.1 in [2] for L− λI leads to the following conclusion.

Theorem 1.2. Condition NS(λ) is satisfied if and only if the polynomials P±λ (σ) do not have
roots σ with |σ| = 1.

As a consequence, we can obtain the following corollary.

Corollary 1.3. If Condition NS(λ) is satisfied, then

a±−m + ···+ a±m < 0, (1.8)

that is, L±q < 0, where q is a sequence with all elements equal 1.

Proof. Suppose that the assertion of the corollary does not hold. Then P±0 (1)≥ 0. On the
other hand, for λ sufficiently large, P±λ (1) < 0. Therefore for some λ, P±λ (1)= 0. We obtain
a contradiction with Theorem 1.2, so the conclusion is proved. �

We recall that the formally adjoint operator L∗ is defined by the equality

(Lu,v)= (u,L∗v
)
. (1.9)

If we consider L as an infinite matrix, then L∗ is the adjoint matrix. Let α(L∗) be the
dimension of kerL∗ and let f = { f j}∞j=−∞ ∈ E be fixed. The below solvability conditions
are established in [2].
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Theorem 1.4. The equation Lu= f is solvable if and only if

∞∑

j=−∞
f jv

l
j = 0, l = 1, . . . ,α

(
L∗
)
, (1.10)

where vl = {vlj}∞j=−∞ are linearly independent solutions of the equation L∗v = 0.

In what follows, we say that u is positive (nonnegative) if all elements of this sequence
are positive (nonnegative).

From now on, we suppose that

a
j
k > 0, k =±1,±2, . . . ,±m, j = 0,±1,±2, . . . , (1.11)

and that there exists a positive solution w of the equation

Lu= 0. (1.12)

This means that L has a zero eigenvalue. The goal of this paper is to show that it is
simple and all other eigenvalues lie in the left half-plane. Moreover, the adjoint operator
L∗ has a positive solution, which is unique up to a constant factor. It is a generalization
of the Perron-Frobenius theorem for infinite matrices. The method of the proof follows
the method developed for elliptic problems, in unbounded domains [3, 4]. Similarly to
elliptic problems, it is assumed that the essential spectrum lies to the left of the eigenvalue
with a positive eigenvector.

We note that the operator L can be considered as infinite-dimensional (2m+ 1)-diago-
nal matrix with positive elements in all nonzero diagonals except for the main diagonal
where the signs of the elements are not prescribed.

In Section 2, we present some auxiliary results. The main result is proved in Section 3.

2. Auxiliary results

Suppose that conditions (1.3), (1.5), (1.11) are satisfied. In order to prove our main result,
we first present some auxiliary results. We begin with the positiveness of the solution of
equation Lu= f for f ≤ 0. We will use the notations

U−(N)= (uN−m, . . . ,uN−1
)
, U+(N)= (uN+1, . . . ,uN+m

)
. (2.1)

Lemma 2.1. Let Lu= f , where f ≤ 0, u≥ 0, u �≡ 0. Then u > 0.

Proof. Suppose that uj = 0 for some j. Since u �≡ 0, there exists i such that ui = 0, and
either ui+1 �= 0 or ui−1 �= 0. The equation (Lu)i = fi gives a contradiction in signs. The
lemma is proved. �

Lemma 2.2. If the initial condition u0 of the problem

du

dt
= Lu, u(0)= u0 (2.2)

is nonnegative, then the solution u(t) is also nonnegative for all t ∈ (0,∞).
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Proof. Consider the approximate problem

dui
dt
= (Lu)i, −N ≤ i≤N , t ≥ 0,

U−(−N)= 0, U+(N)= 0, t ≥ 0,

u(0)= u0,

(2.3)

where the unknown function is u= (u−N ,u−N+1, . . .u0, . . . ,uN−1,uN ).
Since u0 ≥ 0 and Lu has nonnegative off-diagonal coefficients, it follows that the solu-

tion uN = (uN−N ,uN−N+1, . . .uN0 , . . . ,uNN−1,uNN ) of the above problem is nonnegative.
If we compare the solution uN at the interval [−N ,N] and the solution uN+1 at the

interval [−N − 1,N + 1], we find uN+1 ≥ uN . Indeed, the difference uN+1 − uN verifies a
problem similar to the above one, but with a nonnegative initial condition and with zero
boundary conditions. The solution of this problem is nonnegative, that is, uN+1 ≥ uN . So
the sequence is monotonically increasing with respect toN . The sequence is also bounded
with respect toN : ||uN (t)|| ≤M, for allN and t ∈ [0,T], where T is any positive number,
M > 0 depends on u0 and on the coefficients aik of L, which are bounded. Being bounded
and monotone, it follows that uN is convergent as N →∞ in C([0,T];E), say uN → u. By
the equations, we have also uN → u in C1([0,T];E). Then u verifies the problem (2.2) and
u≥ 0 (because uN ≥ 0), as claimed. �

Corollary 2.3 (comparison theorem). Let u1(t) and u2(t) be solutions of the equation

du

dt
= Lu, (2.4)

with the initial conditions u1(0) and u2(0), respectively. If u1(0)≤ u2(0), then u1(t)≤ u2(t)
for t ≥ 0.

Lemma 2.4. If the initial condition u0 of the problem

du

dt
= L+u, u(0)= u0 (2.5)

is constant (independent of j), then the solution u(t) is also constant. For any bounded initial
condition, the solution of problem (2.5) converges to the trivial solution u= 0.

The proof of this lemma follows from Corollaries 1.3 and 2.3.

Lemma 2.5. If u is a solution of the problem

Lu= f , j ≥N , U−(N)≥ 0, (2.6)

where f ≤ 0, uj → 0 as j →∞, and N is sufficiently large, then uj ≥ 0 for j ≥N .

Proof. By virtue of Corollary 1.3, there exists a constant ε > 0 such that L+q <−ε. Let us
take N large enough such that

∣
∣
∣
((
L−L+)q

)
j

∣
∣
∣≤ ε

2
, j ≥N. (2.7)
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Suppose that uj < 0 for some j > N . By the assumption uj → 0 as j →∞, we can choose
τ > 0 such that vj = uj + τqj ≥ 0 for all j ≥N , and there exists i > N such that vi = 0. Since
V−(N) > 0 and vj > 0 for all j sufficiently large, there exists k > N such that vk = 0 and
either vk+1 �= 0 or vk−1 �= 0 (i.e., vk+1 > 0 or vk−1 > 0).

We have

Lv = Lu+ τL+q+ τ
(
L−L+)q = f + τL+q+ τ

(
L−L+)q. (2.8)

In view of (2.7), L+q < −ε and f ≤ 0, the right-hand side of this equality is less than or
equal to 0 for j ≥N . As in the proof of Lemma 2.1, we obtain a contradiction in signs in
the equation corresponding to k. The lemma is proved. �

Remark 2.6. The assertion of the lemma remains true if we replace (2.6) by

Lu≤ αu, j ≥N , U−(N)≥ 0, (2.9)

for some positive α. Indeed, one obtains Lv ≤ αu+ τL+q + τ(L− L+)q instead of (2.8),
where (Lv)k > 0 and αuk + τL+qk + τ(L− L+)qk < αuk − ετ/2 =−τ(α+ ε/2) < 0, because
vk = 0.

3. The main result

In this section, we present the main result of this work and study some spectral properties
of infinite-dimensional matrices with nonnegative off-diagonal elements.

Theorem 3.1. Let (1.12) have a positive bounded solution w. Then, the following hold.
(i) The equation

Lu= λu (3.1)

does not have nonzero bounded solutions for Reλ≥ 0, λ �= 0.
(ii) Each solution of (1.12) has the form u= kw, where k is a constant.

(iii) The equation

L∗u= 0 (3.2)

has a positive solution unique up to a constant factor.

Proof. (1) In order to prove the first assertion, we analyze two cases.

Case 1. We consider first the case where in (3.1) λ = α+ iβ, α ≥ 0, β �= 0. Suppose by
contradiction that there exists a bounded nonzero solution u= u1 + iu2 of this equation.
Then Lu1 = αu1−βu2 and Lu2 = βu1 +αu2. Consider the equation

dv

dt
= Lv−αv, v(0)= u1. (3.3)

Its solution is

v(t)= u1 cosβt−u2 sinβt. (3.4)
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For the sequence u= {uj} = {u1
j + iu2

j}, we denote û= {|uj|}. Let us take the value of
N as in Lemma 2.5 and choose τ > 0 such that

û j ≤ τwj ,
∣
∣ j
∣
∣≤N , (3.5)

where at least for one j0 with | j0| ≤N , we have the equality

û j0 = τwj0 . (3.6)

For j ≥N , consider the problem

dy

dt
= Ly−αy,

yN−k(t)= ûN−k, k = 1, . . . ,m, y∞(t)= 0,
(3.7)

y(0)= û, (3.8)

and the corresponding stationary problem

Lȳ−αȳ = 0, ȳN−k = ûN−k, k = 1, . . . ,m, ȳ∞ = 0. (3.9)

The operator corresponding to problem (3.9) satisfies the Fredholm property (see [2]).
The corresponding homogeneous problem has only the zero solution. (For L+ instead of
L, it follows from the explicit form of the solution, see [1]; for N big enough, L and L+

are close.) Therefore, problem (3.9) is uniquely solvable.
We show that the solution y(t) of problem (3.7)-(3.8) converges to ȳ as t→∞. For this,

we consider the solution y∗(t) of problem (3.7) with the initial condition y∗(0) = ρq,
where ρ is such that

ρqj ≥ û j , j ≥N. (3.10)

By Corollary 1.3, we have L±q < 0. Since L+ is close to L for j ≥N , with N large enough,
it follows that (Lq) j < 0, j ≥N . Then y∗(t) monotonically decreases in t for each j ≥ N
fixed. From the positiveness and the decreasing monotonicity of y∗, we deduce that y∗(t)
converges as t →∞ to some x = limt→∞ y∗(t) ≥ 0. It satisfies the equation Lx− αx = 0.
Taking the limit also in the boundary conditions, one obtains that xN+k = ûN+k, for k =
1, . . . ,m and x∞ = 0, so x is a solution of problem (3.9). By the uniqueness, we get x = y,
that is, there exists the limit limt→∞ y∗(t)= ȳ.

On the other hand, let y∗ be the solution of (3.7) with the initial condition y∗(0)= 0.
It can be shown that y∗ increases in time and it has an upper bound. As above, we can
deduce that y∗ converges to ȳ. Therefore,

lim
t→∞ y∗(t)= lim

t→∞ y
∗(t)= ȳ. (3.11)

By virtue of the comparison theorem applicable in this case (because 0 ≤ û j ≤ ρqj , j ≥
N), we have

y∗(t)≤ y(t)≤ y∗(t), j ≥N. (3.12)
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Hence

lim
t→∞ yj(t)= ȳ j , j ≥N. (3.13)

One can easily verify that

vj(t)≤ û j ∀ j ∈ Z. (3.14)

Then it follows from the comparison theorem that

vj(t)≤ yj(t), j ≥N , t ≥ 0. (3.15)

From this, we have

vj(t)= vj
(

t+
2πn
β

)

≤ yj

(

t+
2πn
β

)

. (3.16)

Passing to the limit as n→∞, we obtain

vj(t)≤ ȳ j , j ≥N , t ≥ 0. (3.17)

Observe that L(τw − y) ≤ α(τw − y), j ≥ N , and τwN − yN ≥ 0. We can apply
Remark 2.6 to τw− ȳ. Therefore,

ȳ j ≤ τwj , j ≥N. (3.18)

Hence,

vj(t)≤ τwj (3.19)

for j ≥ N , t ≥ 0. The similar estimate can be obtained for j ≤ −N . Together with (3.5),
these prove (3.19) for all j ∈ Z.

The sequence z(t)= τw− v(t) is a solution of the equation

dz

dt
= Lz−αz+ατw. (3.20)

Since z(t) ≥ 0 (via (3.19) for all j ∈ Z), z is not identically zero, and is periodic in t, it
follows that zj(t) > 0 for all j and t ≥ 0. Indeed, suppose that for some t = t1 and j = j1,
zj1 (t1) = 0. Consider first the case where α > 0. Since (dzj1 /dt)(t1) ≤ 0 and wj1 > 0, we
obtain a contradiction in signs in the equation for zj1 . If α= 0, then the equation becomes

dz

dt
= Lz. (3.21)

Assuming that z(t) is not strictly positive, we easily obtain that it is identically zero for
all j. We have (dzj1 /dt)(t1) ≤ 0 and (Lz) j1 (t1) ≥ 0. Then (Lz) j1 (t1) = 0, so all zj(t1) = 0.
Since zj1 verifies dzj1 /dt = (Lz) j1 , zj1 (t1)= 0, by the uniqueness we find zj1 (t)= 0, t ≥ t1.
Combining this with zj(t1)= 0, (∀) j ∈ Z, we get zj(t)= 0, (∀) j ∈ Z, (∀)t ∈ (0,∞).
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Thus in both cases, zj(t) is positive for all j and t. We take t ≥ 0 such that

e−iβt = uj0∣
∣uj0

∣
∣ , (3.22)

with j0 from (3.6), that is, cosβt = u1
j0 /|uj0| and sinβt = −u2

j0 /|uj0|. Then, vj0 (t) =
u1
j0 cosβt−u2

j0 sin βt = |uj0|, hence with the aid of (3.6) we obtain the contradiction

zj0 (t)= τwj0 −
∣
∣uj0

∣
∣= 0. (3.23)

The first assertion of the theorem is proved for nonreal λ.

Case 2. Assume now that λ≥ 0 is real and that u is a nonzero bounded solution of (3.1).
We suppose that at least one of the elements of the sequence {uj} is negative. Otherwise,
we could change the sign of u. We consider the sequence v = u+ τw, where τ > 0 is chosen
such that v ≥ 0 for | j| ≤N , but vj0 = 0 for some j0, | j0| ≤N . We have

Lv = λv− λτw, (3.24)

and therefore vj ≥ 0 for all j by virtue of Lemma 2.5. Indeed, for | j| ≤N , the inequality
holds because of the way we have chosen τ. For j ≥N , one applies Lemma 2.5 for (3.24)
written in the form (L− λI)v = −λτw, j ≥ N , with vN ≥ 0. If j ≤ −N , the reasoning is
similar.

If λ > 0, then the equation for vj0 leads to a contradiction in signs. Thus, (3.1) cannot
have different-from-zero solutions for real positive λ.

(2) If λ= 0, then we define v = u+ τw as in Case 2 above. Here u is the solution of (3.1)
with λ= 0, that is, Lu= 0. Using the above reasoning for λ≥ 0, we have vj ≥ 0, (∀) j ∈ Z,
but it is not strictly positive (at least vj0 = 0). In addition, v satisfies the equation Lv = 0.
It follows from Lemma 2.1 that v ≡ 0. This implies that uj =−τwj , (∀) j ∈ Z.

(3) The limiting operators L± are operators with constant coefficients. The corre-
sponding matrices are (2m + 1)-diagonal matrices with constant elements along each
diagonal. The matrices associated to the limiting operators L+∗, L−∗ of L∗ are the trans-
posed matrices, which are composed by the same diagonals reflected symmetrically with
respect to the main diagonal. Therefore, the polynomials (P∗λ )±(σ) for the operator L∗

will be the same as for the operator L. By virtue of Theorem 1.2, the operator L∗ satisfies
the Fredholm property and it has the zero index.

We note first of all that (3.2) has a nonzero bounded solution v. Indeed, if such solution
does not exist, then by virtue of the solvability conditions, the equation

Lu= f (3.25)

is solvable for any f . This implies that ImL = E, and hence codim(ImL) = 0. Since the
index of L is zero, it follows that dim(kerL) = 0. But by part two of the theorem, we
get dim(kerL)= 1. This contradiction shows that a nonzero bounded solution v of (3.2)
exists and it is exponentially decreasing at infinity (see [2, Theorem 3.2]).
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We recall next (see Theorem 1.4) that (3.25) is solvable if and only if

( f ,v)= 0. (3.26)

Case 1. If v ≥ 0, then from Lemma 2.1 for equation L∗v = 0, it follows that v is strictly
positive, as claimed.

Case 2. If we assume that a nonnegative solution of (3.2) does not exist, then it has an
alternating sign. Then we can find a bounded sequence f < 0 such that (3.26) is satisfied.

Let u be the corresponding solution of (3.25). There exists a τ (not necessarily pos-
itive), such that ũ = u+ τw ≥ 0 for | j| ≤ N , but not strictly positive. Since Lũ = f and
f < 0, ũN ≥ 0, and ũ j → 0 as j →∞, by virtue of Lemma 2.5, one finds ũ≥ 0 for all j. But
for those j where ũ vanish, this leads to a contradiction in signs in the equation. Therefore
ũ > 0. The theorem is proved. �
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ON STRUCTURE OF FRACTIONAL SPACES GENERATED
BY THE POSITIVE OPERATORS WITH THE NONLOCAL
BOUNDARY CONDITIONS

ALLABEREN ASHYRALYEV AND NERGIZ YAZ

In the present paper, a structure of fractional spaces Eα = Eα(C[0,1],Ax) generated by the
differential operator Ax defined by the formula Axu=−a(x)(d2u/dx2) + δu with domain
�(Ax) = {u ∈ C(2)[0,1] : u(0) = u(μ), u′(0) = u′(1), 1/2 ≤ μ ≤ 1} is investigated. Here
a(x) is a smooth function defined on the segment [0,1] and a(x)≥ a > 0, δ > 0. It is es-
tablished that for any 0 < α < 1/2, the norms in the spaces Eα(C[0,1],Ax) andC2α[0,1] are
equivalent. The positivity of the differential operatorAx in C2α[0,1](0≤ α < 1/2) is estab-
lished. In applications, the coercive inequalities for the solution of the nonlocal boundary
value problem for two-dimensional elliptic equation are obtained.

Copyright © 2006 A. Ashyralyev and N. Yaz. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let us consider a differential operator Ax defined by the formula

Axu=−a(x)
d2u

dx2
+ δu, (1.1)

with domainD(Ax)= {u∈ C(2)[0,1] : u(0)= u(μ), u′(0)= u′(1),1/2≤ μ≤ 1}. Here a(x)
is a smooth function defined on the segment [0,1] and a(x)≥ a > 0, δ > 0.

For positive operator A in Banach space E, we will define the fractional spaces Eα =
Eα(E,A)(0 < α < 1) consisting of those v ∈ E for which the norm (see [9])

‖v‖Eα = sup
λ>0

λα
∥
∥A(λ+A)−1v

∥
∥
E +‖v‖E (1.2)

is finite.
We introduce the Banach space Cβ[0,1](0 < β < 1) of all continuous functions ϕ(x)

defined on [0,1] and satisfying a Hölder condition for which the following norms are

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 91–101



92 Fractional spaces generated by the positive operators

finite:

‖ϕ‖Cβ[0,1] = ‖ϕ‖C[0,1] + sup
0≤x<x+τ≤1

∣
∣ϕ(x+ τ)−ϕ(x)

∣
∣

τβ
, (1.3)

where C[0,1] is the space of all continuous functions ϕ(x) defined on [0,1] with the usual
norm

‖ϕ‖C[0,1] = max
0≤x≤1

∣
∣ϕ(x)

∣
∣. (1.4)

In the present paper, we will investigate the resolvent of the operator −Ax, that is, in
solving the equation

Axu+ λu= f (1.5)

or

−a(x)
d2u(x)
dx2

+ δu(x) + λu(x)= f (x),

u(0)= u(μ), u′(0)= u′(1),
1
2
≤ μ≤ 1.

(1.6)

The positivity of the differential operator Ax in C[0,1] is established. A structure of frac-
tional spaces Eα(C[0,1],Ax) is investigated. It is established that for any 0 < α < 1/2, the
norms in the spaces Eα(C[0,1],Ax) and C2α[0,1] are equivalent. This result permits us to
prove the positivity of Ax in C2α[0,1](0 < α < 1/2). In applications, the coercive inequal-
ities for the solution of nonlocal boundary value problem for two-dimensional elliptic
equation are obtained.

Theory and applications of positive operators in Banach spaces have been studied ex-
tensively by many researchers (see [1–3, 5–9, 11–24], and the references therein).

2. Green’s function and positivity of Ax in C[0,1]

In this section, we will study the positivity inC[0,1] of the operatorAx defined by formula
(1.1).

First, we will consider the operator Ax for a(x)≡ 1.

Lemma 2.1. Let λ≥ 0. Then the equation

Axu+ λu= f (2.1)

is uniquely solvable, and the following formula holds:

u(x)= (Ax + λ
)−1

f (x)=
∫ 1

0
J(x,s;λ+ δ) f (s)ds, (2.2)
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where

J(x,s;λ+ δ)= T
{(
e−
√
δ+λx − e−

√
δ+λ(2−x)

)

× T̃
{

T
(
e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1√
δ + λ

(
e−
√
δ+λs− e−

√
δ+λ(1−s)

)

−
(

1 + e−
√
δ+λ
)−1(

e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1

2
√
δ + λ

×
(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
+
(

1− e−
√
δ+λ
) 1

2
√
δ + λ

×
(
e−
√
δ+λ|μ−s| − e−

√
δ+λ(μ+s)

)}

+
(
e−
√
δ+λ(1−x)− e−

√
δ+λ(1+x)

)

× T̃
{(

1−T
(
e−
√
δ+λμ− e−

√
δ+λ(2−μ)

)) 1√
δ + λ

(
e−
√
δ+λs− e−

√
δ+λ(1−s)

)

−
(

1 + e−
√
δ+λ
)−1(

e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1

2
√
δ + λ

×
(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
−
(

1− e−
√
δ+λ
) 1

2
√
δ + λ

×
(
e−
√
δ+λ|μ−s| − e−

√
δ+λ(μ+s)

)}

−
(
e−
√
δ+λ(1−x)− e−

√
δ+λ(1+x)

)

× 1

2
√
δ + λ

(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)}

+
1

2
√
δ + λ

(
e−
√
δ+λ(x−s)− e−

√
δ+λ(x+s)

)

(2.3)

for 0≤ s≤ x ≤ 1, and

J(x,s;λ+ δ)= T
{(
e−
√
δ+λx − e−

√
δ+λ(2−x)

)

× T̃
{

T
(
e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1√
δ + λ

(
e−
√
δ+λs− e−

√
δ+λ(1−s)

)

−
(

1 + e−
√
δ+λ
)−1(

e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1

2
√
δ + λ

×
(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
+
(

1− e−
√
δ+λ
) 1

2
√
δ + λ

×
(
e−
√
δ+λ|μ−s| − e−

√
δ+λ(μ+s)

)}

+
(
e−
√
δ+λ(1−x)− e−

√
δ+λ(1+x)

)
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× T̃
{(

1−T
(
e−
√
δ+λμ− e−

√
δ+λ(2−μ)

)) 1√
δ + λ

(
e−
√
δ+λs− e−

√
δ+λ(1−s)

)

−
(

1 + e−
√
δ+λ
)−1(

e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1

2
√
δ + λ

×
(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
−
(

1− e−
√
δ+λ
) 1

2
√
δ + λ

×
(
e−
√
δ+λ|μ−s| − e−

√
δ+λ(μ+s)

)}

−
(
e−
√
δ+λ(1−x)− e−

√
δ+λ(1+x)

)

× 1

2
√
δ + λ

(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)}

+
1

2
√
δ + λ

(
e−
√
δ+λ(s−x)− e−

√
δ+λ(x+s)

)

(2.4)

for 0≤ x ≤ s≤ 1. Here

T =
(

1− e−2
√
δ+λ
)−1

, T̃ =
(

1− e−
√
δ+λ + e−

√
δ+λ(1−μ)− e−

√
δ+λμ

)−1
. (2.5)

Proof. We see that the problem (2.1) can be obviously rewritten as the equivalent nonlo-
cal boundary value problem for second-order linear differential equations

−d
2u

dx2
+ (δ + λ)u= f (x), 0 < x < 1, u(0)= αu(μ), u′(0)= u′(1). (2.6)

We have the following formula:

u(x)= T
{(
e−
√
δ+λx − e−

√
δ+λ(2−x)

)
ϕ+

(
e−
√
δ+λ(1−x)− e−

√
δ+λ(1+x)

)
ψ

−
(
e−
√
δ+λ(1−x)− e−

√
δ+λ(1+x)

) 1

2
√
δ + λ

×
∫ 1

0

(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
f (s)ds

}

+
1

2
√
δ + λ

×
∫ 1

0

(
e−
√
δ+λ|x−s| − e−

√
δ+λ(x+s)

)
f (s)ds

(2.7)

for the solution of the boundary value problem

−d
2u

dx2
+ (δ + λ)u= f (x), 0 < x < 1, u(0)= ϕ, u(1)= ψ, (2.8)
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for second-order linear differential equations. Applying formula (2.7) and nonlocal
boundary conditions u(0)= u(μ), u′(0)= u′(1), we get

ϕ= T
{(
e−
√
δ+λμ− e−

√
δ+λ(2−μ)

)
ϕ+

(
e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

)
ψ

−
(
e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1
2
√
δ + λ

∫ 1

0

(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
f (s)ds

}

+
1

2
√
δ + λ

∫ 1

0

(
e−
√
δ+λ|μ−s| − e−

√
δ+λ(μ+s)

)
f (s)ds,

T
{√

δ + λ
(
− 1− e−

√
δ+λ2

)
ϕ+

√
δ + λ2e−

√
δ+λψ

− e−
√
δ+λ
∫ 1

0

(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
f (s)ds

}

+
1
2

∫ 1

0
e−
√
δ+λs f (s)ds+

1
2

∫ 1

0
e−
√
δ+λs f (s)ds

= T
{√

δ + λ(−2)e−
√
δ+λϕ+

√
δ + λ

(
1 + e−

√
δ+λ2

)
ψ

−
(

1 + e−
√
δ+λ2

)1
2

∫ 1

0

(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
f (s)ds

}

+
1
2

∫ 1

0
e−
√
δ+λ(1+s) f (s)ds− 1

2

∫ 1

0
e−
√
δ+λ(1−s) f (s)ds.

(2.9)

Solving the last system of equations, we obtain

ϕ= T̃
{

T
(
e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1√
δ + λ

∫ 1

0

(
e−
√
δ+λs− e−

√
δ+λ(1−s)

)
f (s)ds

−
(

1 + e−
√
δ+λ
)−1(

e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1

2
√
δ + λ

×
∫ 1

0

(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
f (s)ds+

(
1− e−

√
δ+λ
) 1

2
√
δ + λ

×
∫ 1

0

(
e−
√
δ+λ|μ−s| − e−

√
δ+λ(μ+s)

)
f (s)ds

}

,

(2.10)

ψ = T̃
{(

1−T
(
e−
√
δ+λμ− e−

√
δ+λ(2−μ)

)) 1√
δ + λ

∫ 1

0

(
e−
√
δ+λs− e−

√
δ+λ(1−s)

)
f (s)ds

−
(

1 + e−
√
δ+λ
)−1

α
(
e−
√
δ+λ(1−μ)− e−

√
δ+λ(1+μ)

) 1

2
√
δ + λ

×
∫ 1

0

(
e−
√
δ+λ(1−s)− e−

√
δ+λ(1+s)

)
f (s)ds−

(
1− e−

√
δ+λ
) 1

2
√
δ + λ

×
∫ 1

0

(
e−
√
δ+λ|μ−s| − e−

√
δ+λ(μ+s)

)
f (s)ds

}

.

(2.11)

Finally, applying formulas (2.7), (2.10), and (2.11), we obtain (2.2). Lemma 2.1 is proved.
�
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The function J(x,s;λ + δ) is called Green’s function of the resolvent equation (2.1).
Notice that

J(x,s;λ+ δ)= J(s,x;λ+ δ)≥ 0,
∫ 1

0
J(x,s;λ+ δ)ds= 1

λ+ δ
, 0≤ x ≤ 1.

(2.12)

Thus, we obtain the formula for the resolvent (λI +Ax)−1 in the case λ≥ 0. In the same
way, we can obtain a formula as (2.2) for the resolvent (λI +Ax)−1 in the case of complex
λ. But we need to obtain that 1± e−

√
δ+λ and 1− e−

√
δ+λ + e−

√
δ+λ(1−μ) − e−

√
δ+λμ are not

equal to zero. Applying (2.2), we can establish the positivity of Ax in the case a(x)≡ 1 in
C[0,1] as follows.

Theorem 2.2. For all λ, λ ∈ Rϕ = {λ : |argλ| ≤ ϕ, ϕ < π/2}, the resolvent (λI +Ax)−1

defined by the formula (2.2) is subject to the bound

∥
∥
(
λI +Ax

)−1∥∥
C[0,1]→C[0,1] ≤M(ϕ,δ)

(
1 + |λ|)−1

, (2.13)

where M(ϕ,δ) does not depend on λ.
Second, we will investigate the positivity of Ax in C[0,1]. In the sequel, we will need the

Nirenberg’s inequality

‖v′‖C[0,1] ≤ K
[
α
∥
∥v′′‖C[0,1] +α−1‖v‖C[0,1]

]
, (2.14)

where K is a constant, α > 0 is a small number.
If ak = a= const, then using the substitution λ+ δ = aλ1, we can obtain the estimate

∥
∥
∥
(
λI +Ax

)−1
∥
∥
∥
C[0,1]→C[0,1]

≤M(ϕ,δ)
(
1 + |λ|)−1

(2.15)

or

‖u‖C[0,1] ≤M(δ,ϕ)
1

1 + |λ|‖ f ‖C[0,1] (2.16)

and the coercive estimate

‖u′′‖C[0,1] ≤M(ϕ,δ)‖ f ‖C[0,1] (2.17)

for the solutions of problem (1.5) with constant coefficients. Here M(ϕ,δ) does not depend
on λ.

Now, let a(x) be a continuous function on [0,1]=Ω. Similarly to [1], using the method
of frozen coefficients and the coercive estimate (2.17) for the solutions of the differential
equation with constant coefficients, we obtain the following theorem.
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Theorem 2.3. For all λ ∈ Rϕ and |λ| ≥ K0 > 0, the resolvent (λI +Ax)−1 is subject to the
bound

∥
∥
(
λI +Ax

)−1∥∥
C[0,1]→C[0,1] ≤M(ϕ,δ)

(
1 + |λ|)−1

, (2.18)

where M(ϕ,δ) does not depend on λ.

Proof. Given ε > 0, there exists a system {Qj}, j = 1, . . . ,r, of intervals and two half-
intervals (containing 0 and 1, resp.) that covers the segment [0,1] and such that |a(x1)−
a(x2)| < ε, x1,x2 ∈Qj because of the compactness of [0,1]. For this system, we construct
a partition of unity, that is, a system of smooth nonnegative functions ξj(x)(i= 1, . . . ,r)
with suppξj(x)⊂Qj , ξj(0)= ξj(1)= ξj(μ), ξ′j(0)= ξ′j(1)= 0, and ξ1(x) + ···+ ξr(x)= 1
in Ω̄= [0,1].

It is clear that for positivity of Ax in C[0,1], it suffices to establish the estimate

‖u‖C[0,1] ≤M(δ,ϕ)
1

1 + |λ|‖ f ‖C[0,1] (2.19)

for the solutions of (2.1).
Using w(x)= ξj(x)u(x), we obtain w(0)=w(μ) + ζ , w′(0)=w′(1) +η, where

ζ = ξj(0)u(0)− ξj(μ)u(μ)= (ξj(0)− ξj(μ)
)
u(0)= 0,

η = ξ′j(0)u(0) + ξj(0)u′(0)− ξ′j(1)u(1)− ξj(1)u′(1)= (ξj(0)− ξj(1)
)
u′(0)= 0,

(δ + λ)w(x)− a(x)w′′(x)= ξj(x) f (x)− a(x)
(
2ξ′j(x)u′(x) + ξ′′j (x)u(x)

)
.

(2.20)

Then we have the following nonlocal boundary value problem:

(δ + λ)w(x)− ajw′′(x)= F j(x), 0 < x < 1,

w(0)=w(μ), w′(0)=w′(1),
(2.21)

where aj = a(x j) and

F j(x)= ξj(x) f (x)− a(x)
(
2ξ′j(x)u′(x) + ξ′′j (x)u(x)

)− (aj − a(x)
)
w′′(x). (2.22)

Since (2.21) is an equation with constant coefficients, we have the estimates

(
1 + |λ|)‖w‖C[0,1] ≤ K(ϕ,δ)

∥
∥F j

∥
∥
C[0,1], λ∈ Rϕ, (2.23)

‖w′′‖C[0,1] ≤M(ϕ,δ)
∥
∥F j‖C[0,1]. (2.24)

Using the definition of Qj and the continuity of a(x), as well as the smoothness of ξi(x),
we obtain

∥
∥F j

∥
∥
C[0,1] ≤M(ϕ,δ)

[‖ f ‖C[0,1] +‖u‖C[0,1] +‖u′‖C[0,1]
]

+ ε‖w′′‖C[0,1]. (2.25)
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Assume that 0 < ε < 1/M(ϕ,δ), then from the last estimate, it follows that

‖w′′‖C[0,1] ≤ M(ϕ,δ)
1− εM(ϕ,δ)

[‖ f ‖C[0,1] +‖u′‖C[0,1] +‖u‖C[0,1]
]
,

∥
∥F j

∥
∥
C[0,1] ≤

M(ϕ,δ)
1− εM(ϕ,δ)

[‖ f ‖C[0,1] +‖u′‖C[0,1] +‖u‖C[0,1]
]
.

(2.26)

From this and estimate (2.23), it follows that

(
1 + |λ|)‖w‖C[0,1]

≤ K(ϕ,δ)
M(ϕ,δ)

1− εM(ϕ,δ)

[‖ f ‖C[0,1] +‖u′‖C[0,1] +‖u‖C[0,1]
]
.

(2.27)

Using the triangle inequality, we obtain

‖u′′‖C[0,1] ≤ K1(ϕ,δ)
[‖ f ‖C[0,1] +‖u′‖C[0,1] +‖u‖C[0,1]

]
, (2.28)

(
1 + |λ|)‖u‖C[0,1] ≤M1(ϕ,δ)

[‖ f ‖C[0,1] +‖u′‖C[0,1] +‖u‖C[0,1]
]
. (2.29)

Now using the inequality (2.14), we can write

F = ‖ f ‖C[0,1] +‖u‖C[0,1] +‖u′‖C[0,1]

≤M2(ϕ,δ)
[‖ f ‖C[0,1] +α−1‖u‖C[0,1] +α‖u′′‖C[0,1]

]
.

(2.30)

Hence for small α from the last inequality and the inequality (2.28), it follows that

F ≤M3(ϕ,δ)
[
α−1‖u‖C[0,1] +‖ f ‖C[0,1]

]
. (2.31)

Therefore from (2.29), it follows that

(
1 + |λ|)‖u‖C[0,1] ≤M3(ϕ,δ)

[
α−1‖u‖C[0,1] +‖ f ‖C[0,1]

]
. (2.32)

Hence for all λ,

|λ| > M3(ϕ,δ)
α

= K0, (2.33)

we have the estimate (2.19). Theorem 2.3 is proved. �
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3. The structure of fractional spaces and positivity of Ax in Cα[0,1]

The operator Ax commutes with its resolvent (λ+Ax)−1. Then using the definition of the
norm in the space Eα(C[0,1],Ax), we obtain

∥
∥
(
λ+Ax

)−1∥∥
Eα(C[0,1],Ax)→Eα(C[0,1],Ax) ≤

∥
∥
(
λ+Ax

)−1∥∥
C[0,1]→C[0,1]. (3.1)

Therefore, by Theorem 2.3 we have the positivity of the operator Ax in fractional spaces
Eα(C[0,1],Ax). Furthermore, we have the following theorem.

Theorem 3.1. For 0 < α < 1/2, the norms of the spaces Eα(C[0,1],Ax) and C2α [0,1] are
equivalent.

The proof of this theorem follows the scheme of the proof of the theorem in [7] and it is
based on the formulas

Ax
(
λ+Ax

)−1
f (x)= δ

λ+ δ
f (x)−

(
1

λ+ δ
− (λ+Ax

)−1
)

f (x)

= δ

λ+ δ
f (x) +

∫ 1

0
J(x,s;λ+ δ)

(
f (x)− f (s)

)
ds,

f (x)=
∫ 1

0

∫∞

0
J(x,s;λ+ t+ δ)Ax

(
λ+ t+Ax

)−1
f (s)dtds

(3.2)

for the positive operator Ax and on the estimates for Green’s function of the resolvent equa-
tion (2.1).

The results of Theorems 2.3 and 3.1 permit us to obtain the positivity of the operator
Ax in C2α [0,1].

Theorem 3.2. For all λ ∈ Rϕ, |λ| ≥ K0 > 0, and 0 < α < 1/2, the resolvent (λ +Ax)−1 is
subject to the bound

∥
∥
(
λ+Ax

)−1∥∥
C2α[0,1]→C2α[0,1] ≤

M(ϕ,δ)
α(1− 2α)

(
1 + |λ|)−1

, (3.3)

where M(ϕ,δ) does not depend on λ and α.

4. Applications

We consider the nonlocal boundary value problem for two-dimensional elliptic equation

−∂
2u

∂y2
− a(x)

∂2u

∂x2
+ δu= f (y,x), 0 < y < T , 0 < x < 1,

u(0,x)= ϕ(x), u(T ,x)= ψ(x), 0≤ x ≤ 1,

u(y,0)= u(y,μ),
1
2
≤ μ≤ 1, ux(y,0)= ux(y,1), 0≤ y ≤ T ,

(4.1)

where a(x), ϕ(x), ψ(x), and f (y,x) are sufficiently given smooth functions and a(x) ≥
a > 0, δ > 0, is a sufficiently large number.
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Theorem 4.1. For the solution of the boundary value problem (4.1), the following coercive
inequalities are valid:

‖u‖
C

2+β,γ
0T (Cν[0,1])

+‖u‖
C
β,γ
0T (C2+ν[0,1])

≤ M(ν)
(β− γ)(1−β)

‖ f ‖
C
β,γ
0T (Cν[0,1])

+M(ν)
(‖ϕ‖C2+ν[0,1] +‖ψ‖C2+ν[0,1]

)
, 0≤ γ < β < 1, 0≤ ν≤ 1,

‖u‖
C

2+β,γ
0T (C2(α−β)[0,1])

+‖u‖
C
β,γ
0T (C2+2(α−β)[0,1])

≤M(α,β)
[‖ f ‖

C
β,γ
0T (C2(α−β)[0,1])

+‖ϕ‖C2+2(α−β)[0,1] +‖ψ‖C2+2(α−β)[0,1]
]
,

0≤ γ ≤ β ≤ α, 0 < α−β < 1
2
.

(4.2)

Here M(ν) and M(α,β) are independent of γ, f (y,x), ϕ(x), ψ(x).

The proof of Theorem 4.1 is based on Theorem 3.1 on the structure of the fractional
spaces Eα(C[0,1],Ax) and Theorem 3.2 on the positivity of the operator Ax in Cν(Rn),
and the theorems on coercivity inequalities for the solution of the abstract boundary
value problem for differential equation

−v′′(t) +Av(t)= f (t), (0≤ t ≤ T)v(0)= v0, v(T)= vT , (4.3)

in an arbitrary Banach space E with the linear positive operator A in C
β,γ
0T (E)(0 ≤ γ ≤

β, 0 < β < 1) and C
β,γ
0T (Eα−γ) (0 ≤ γ ≤ β ≤ α, 0 < α < 1) (see [4, 10]). Here C

β,γ
0T (E), (0 ≤

γ ≤ β, 0 < β < 1), denotes the Banach space obtained by completion of the set of smooth
E-valued functions ϕ(t) on [0,T] in the norm

‖ϕ‖
C
β,γ
0T (E)

= ‖ϕ‖C(E) + sup
0≤t<t+τ≤T

∥
∥ϕ(t+ τ)−ϕ(t)

∥
∥
E

τβ
(T − t)γ(t+ τ)γ. (4.4)
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WELL-POSEDNESS OF THE NONLOCAL BOUNDARY
VALUE PROBLEM FOR ELLIPTIC EQUATIONS

ALLABEREN ASHYRALYEV

In the present paper, the well-posedness of the nonlocal boundary value problem for
elliptic difference equation is investigated. The almost coercive inequality and coercive
inequalities for the solution of this problem are obtained.

Copyright © 2006 Allaberen Ashyralyev. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction. The nonlocal boundary value problem

The role played by coercive inequalities in the study of local boundary value problems
for elliptic and parabolic differential equations is well known (see, e.g., [20, 21, 29]). We
consider the nonlocal boundary value problem

−v′′(t) +Av(t)= f (t) (0≤ t ≤ 1),

v(0)= v(1), v′(0)= v′(1)
(1.1)

in an arbitrary Banach space with positive operator A. It is known (see, e.g., [2, 14, 17–
19, 23]) that various nonlocal boundary value problems for the elliptic equations can be
reduced to the boundary value problem (1.1).

A function v(t) is called a solution of the problem (1.1) if the following conditions are
satisfied:

(i) v(t) is twice continuously differentiable function on the segment [0,1];
(ii) the element v(t) belongs to D(A) for all t ∈ [0,1], and the function Av(t) is con-

tinuous on the segment [0,1];
(iii) v(t) satisfies the equation and boundary conditions (1.1).

A solution of problem (1.1) defined in this manner will from now on be referred to
as a solution of problem (1.1) in the space C(E)= C([0,1],E). Here C(E) stands for the
Banach space of all continuous functions ϕ(t) defined on [0,1] with values in E equipped
with the norm

‖ϕ‖C(E) = max
0≤t≤1

∥
∥ϕ(t)

∥
∥
E. (1.2)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 103–116



104 Well-posedness of elliptic equations

The well-posedness in C(E) of the boundary value problem (1.1) means that coercive
inequality

‖v′′‖C(E) +‖Av‖C(E) ≤M‖ f ‖C(E) (1.3)

is true for its solution v(t)∈ C(E) with some M, not depending on f (t)∈ C(E).
It is known that from the coercive inequality (1.3) the positivity of the operator A in

the Banach space E follows under the assumption that the operator Iλ+A has bounded
in E inverse (Iλ+A)−1 for any λ≥ 0, and estimate

∥
∥(λI +A)−1

∥
∥
E→E ≤

M

1 + λ
(1.4)

holds for some 1≤M <∞. It turns out that this positivity property of the operator A in
E is necessary condition of well-posedness of the boundary value problem (1.1) in C(E).
Is the positivity of the operator A in E a sufficient condition for the well-posedness of
the nonlocal boundary value problem (1.1)? The problem (1.1) is not well posed for the
general positive operators. The corresponding counterexample is given in [8].

It is known (see, e.g., [25]) that the operator A1/2 has better spectral properties than
the positive operator A. In particular, the operator λI +A1/2 has a bounded inverse for
any complex number λ with Reλ≥ 0, and the estimate

∥
∥
∥
(
λI +A1/2)−1

∥
∥
∥
E→E ≤M

(|λ|+ 1
)−1

(1.5)

is true for some M ≥ 1. This means that B = A1/2 is a strongly positive operator in a
Banach space E. Therefore, the operator −B is a generator of an analytic semigroup
exp{−tB} (t ≥ 0) with exponentially decreasing norm, when t → +∞, that is, the esti-
mates

∥
∥exp(−tB)

∥
∥
E→E,

∥
∥tB exp(−tB)

∥
∥
E→E ≤M(B)e−α(B)t (t > 0) (1.6)

hold for some M(B) ∈ [1,+∞), a(B) ∈ (0,+∞). From that it follows that the operator
I − e−B has the bounded inverse (I − e−B)−1 and the following estimate holds:

∥
∥
∥
(
I − e−B)−1

∥
∥
∥
E→E ≤M(B)

(
1− e−α(B))−1

. (1.7)

Sufficient condition for the well-posedness of the boundary value problem (1.1) can
be established if one considers this problem in certain spaces F(E) of smooth E-valued
functions on [0,T].

A function v(t) is said to be a solution of problem (1.1) in F(E) if it is a solution of this
problem in C(E) and the functions v′′(t) and Av(t) belong to F(E).

As in the case of the space C(E), we say that the problem (1.1) is well posed in F(E), if
the following coercive inequality:

‖v′′‖F(E) +‖Av‖F(E) ≤M‖ f ‖F(E) (1.8)

is true for its solution v(t)∈ F(E) with some M, not depending on f (t)∈ F(E).
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First, we set F(E) equal to C
β,γ
01 (E) (0≤ γ ≤ β, 0 < β < 1) the Banach space obtained by

completion of the set of smooth E-valued functions ϕ(t) on [0,1] in the norm

‖ϕ‖
C
β,γ
01 (E)

= max
0≤t≤1

∥
∥ϕ(t)

∥
∥
E + sup

0≤t<t+τ≤1

(t+ τ)γ(1− t)γ∥∥ϕ(t+ τ)−ϕ(t)
∥
∥
E

τβ
. (1.9)

Note that the Banach space Eα = Eα(B,E), 0 < α < 1, consists of those v ∈ E for which
the following norm:

‖v‖Eα = sup
λ>0

λ1−α∥∥B exp(−λB)v
∥
∥
E (1.10)

is finite.

Theorem 1.1 [8]. Let A be the positive operator in a Banach space E. Suppose f (0)−
f (1)∈ Eβ−γ and f (t)∈ Cβ,γ

01 (E) (0≤ γ ≤ β, 0 < β < 1). Then for the solution v(t) inC
β,γ
01 (E)

of the boundary value problem (1.1), the stability inequalities

‖v′′‖C(Eβ−γ) ≤M
[∥
∥ f (0)− f (1)

∥
∥
Eβ−γ +β−1(1−β)−1‖ f ‖

C
β,γ
01 (E)

]
(1.11)

hold, where M does not depend on β, γ, and f (t).

Theorem 1.2 [8]. Let A be the positive operator in a Banach space E. Suppose f (0)−
f (1)∈ Eβ,γ

0 and f (t)∈ Cβ,γ
01 (E) (0≤ γ ≤ β, 0 < β < 1). Then for the solution v(t) in C

β,γ
01 (E)

of the boundary value problem (1.1), the coercive inequalities

‖v′′‖
C
β,γ
01 (E)

+‖Av‖
C
β,γ
01 (E)

≤M
[∣
∣ f (0)− f (1)

∣
∣β,γ

0 +β−1(1−β)−1‖ f ‖
C
β,γ
01 (E)

]
(1.12)

hold, where M does not depend on β, γ, and f (t). Here, |w|β,γ
0 denotes norm of the Banach

space E
β,γ
0 consisting of those w ∈ E for which the norm

|w|β,γ
0 = max

0≤z≤1

∥
∥e−zBw

∥
∥
E + sup

0≤z<z+τ≤1
τ−β(z+ τ)γ(1− z)γ

∥
∥
(
e−(z+τ)B − e−zB)w∥∥E (1.13)

is finite.

Note that the parameter γ can be chosen freely in [0,β), which increases the number
of function spaces in which problem (1.1) is well posed. In particular, it is important that
the problem (1.1) is well posed in the Holder space without a weight (γ = 0).

Second, let us study now the boundary value problem (1.1) in the spaces C
β,γ
01 (Eα−β)

(0 ≤ γ ≤ β ≤ α, 0 < α < 1). To these there correspond the spaces of traces E
β,γ
α−β, which

consist of elements w ∈ E for which the norm

|w|β,γ
α−β = max

0≤z≤1

∥
∥e−zBw

∥
∥
Eα−β

+ sup
0≤z<z+τ≤1

τ−β(z+ τ)γ(1− z)γ
∥
∥
(
e−(z+τ)B − e−zB)w∥∥Eα−β

(1.14)

is finite.
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Theorem 1.3 [8]. Let A be the positive operator in a Banach space E and f (0)− f (1) ∈
Eα−γ and f (t) ∈ C

β,γ
01 (Eα−β) (0 ≤ γ ≤ β ≤ α, 0 < α < 1). Then for the solution v(t) in

C
β,γ
01 (Eα−β) of the boundary value problem (1.1), the coercive inequality

‖v′′‖C(Eα−γ) ≤Mα−1(1−α)−1
[∥
∥ f (0)− f (1)

∥
∥
Eα−γ +‖ f ‖

C
β,γ
01 (Eα−β)

]
(1.15)

holds, where M does not depend on α, β, γ, and f (t).

Theorem 1.4 [8]. Let A be the positive operator in a Banach space E, f (0)− f (1)∈ Eβ,γ
α−β

and f (t)∈ Cβ,γ
01 (Eα−β) (0≤ γ ≤ β ≤ α, 0 < α < 1). Then for the solution v(t) in C

β,γ
01 (Eα−β)

of the boundary value problem (1.1), the coercive inequality

‖v′′‖
C
β,γ
01 (Eα−β)

+‖Av‖
C
β,γ
01 (Eα−β)

≤M
[∣
∣ f (0)− f (1)

∣
∣β,γ
α−β +α−1(1−α)−1‖ f ‖

C
β,γ
01 (Eα−β)

] (1.16)

holds, where M does not depend on α, β, γ, and f (t).

Note that the spaces of smooth functions C
β,γ
01 (Eα−β), in which coercive solvability has

been established, depend on the parameters α, β, and γ. However, the constants in the co-
ercive inequalities depend only on α. Hence, we can choose the parameters β and γ freely,
which increases the number of function spaces in which problem (1.1) is well posed. In
particular, Theorem 1.4 implies the well-posedness Theorem 1.2 in C(Eα).

Third, let us study now the boundary value problem in the spaces Lp(E)= Lp([0,1],E)
(1 ≤ p <∞) of all strongly measurable E-valued functions v(t) on [0,1] for which the
norm

‖v‖Lp(E) =
(∫ 1

0
‖v(t)‖pEdt

)1/p

(1.17)

is finite.
A function v(t) is said to be a solution of the problem (1.1) in Lp(E) if it is abso-

lutely continuous, the functions v′′(t) and Av(t) belong to Lp(E), (1.1) is satisfied for
almost every t, and v(0)= v(1), v′(0)= v′(1). From this definition, it follows that a nec-
essary condition for the solvability of problem (1.1) in Lp(E) is that f (t)∈ Lp(E). It will
be shown that in certain cases that this condition is also sufficient for the solvability of
problem (1.1).

From the unique solvability of (1.1), it follows that the operator v(t; f (t)) is bounded
in Lp(E) and one has coercive inequality

‖v′′‖Lp(E) +‖Av‖Lp(E) ≤MC‖ f ‖Lp(E), (1.18)

where MC (1≤MC < +∞) does not depend on f (t). From that, we can obtain the posi-
tivity of A under the stronger assumption that the operator A−1 is compact in E.
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Theorem 1.5 [9]. Let A be the positive operator in a Banach space E. Suppose the problem

−v′′(t) +Av(t)= f (t) (0≤ t ≤ 1),

v(0)= v0, v(1)= v1
(1.19)

is well posed in Lp0 (E) for some p0, 1 < p0 <∞. Then problem (1.1) is well posed in Lp(E)
for any p, 1 < p <∞, and the coercivity inequality holds:

‖v′′‖Lp(E) +‖Av‖Lp(E) +‖v‖C(E1−1/p,p) ≤ M
(
p0
)
p2

p− 1
‖ f ‖Lp(E), (1.20)

where M(p0) does not depend on p and f (t).
Here, the Banach space E1−1/p,p = E1−1/p,p(E,A1/2) (0 < α < 1) consists of those v ∈ E for

which the norm

‖v‖E1−1/p,p =
(∫ 1

0

∥
∥A1/2 exp

{− zA1/2}v
∥
∥p
E dz

)1/p

, 1≤ p <∞, (1.21)

is finite.

Theorem 1.6 [9]. Let 1≤ p ≤∞ and 0 < α < 1. Suppose that A is the positive operator in
a Banach space E. Then problem (1.1) is well posed in Lp(Eα,p) and the coercivity inequality
holds:

‖v′′‖Lp(Eα,p) +‖Av‖Lp(Eα,p) ≤ M

α(1−α)
‖ f ‖Lp(Eα,p), (1.22)

where M does not depend on α, p, and f (t).

From Theorems 1.5 and 1.6, we have Theorem 1.7.

Theorem 1.7. Let 1 < p, q <∞, and 0 < α < 1. Suppose that A is the positive operator in a
Banach space E. Then problem (1.1) is well posed in Lp(Eα,q) and the coercivity inequality
holds:

‖v′′‖Lp(Eα,q) +‖Av‖Lp(Eα,q) ≤ M(q)
α(1−α)

‖ f ‖Lp(Eα,q), (1.23)

where M(q) does not depend on α, p, and f (t).
Here, the Banach space Eα,q = Eα,q(E,A1/2) (0 < α < 1, 1 < q <∞) consists of those v ∈ E

for which the norm

‖v‖Eα,q =
(∫∞

0
λ1−α∥∥A1/2 exp

{− λA1/2}v
∥
∥q
E

dλ

λ

)1/q

(1.24)

is finite.
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Methods of the solutions of the elliptic differential equations have been studied ex-
tensively by many researches (see [1, 3–8, 11, 13–18, 22–24, 26–28], and the references
therein).

In the present paper, we study the well-posedness of the nonlocal boundary value
problem for elliptic difference equation generated by problem (1.1). The almost coer-
cive inequality and coercive inequalities for the solution of this problem are established.
In applications, the almost coercive inequality and coercive inequalities for the solution
of the difference schemes are obtained.

2. Well-posedness of the nonlocal problem for difference equations of elliptic type

Let us associate to the boundary value problem (1.1) the corresponding difference prob-
lem

− 1
τ2

[
uk+1− 2uk +uk−1

]
+Auk = ϕk, 1≤ k ≤N − 1,

u0 = uN , −u2 + 4u1− 3u0 = uN−2− 4uN−1 + 3uN , Nτ = 1.
(2.1)

It is known (see [26]) that for a positive operator A it follows that B = (1/2)(τA +√
4A+ τ2A2) is strongly positive and R= (I + τB)−1 which is defined on the whole space

E is a bounded operator. Furthermore, we have that

∥
∥Rk

∥
∥
E→E ≤M(1 + δτ)−k, kτ

∥
∥BRk

∥
∥
E→E ≤M, k ≥ 1, δ > 0, (2.2)

∥
∥Bβ

(
Rk+r −Rk)∥∥E→E ≤M

(rτ)α

(kτ)α+β , 1≤ k < k+ r ≤N , 0≤ α, β ≤ 1. (2.3)

From (2.2), it follows that

∥
∥
∥
(
I −RN)−1

∥
∥
∥
E→E ≤M,

∥
∥
∥
(
I − (2I − τB)(2I + 3τB)−1RN−2)−1

∥
∥
∥
E→E ≤M. (2.4)

For any ϕk, 1 ≤ k ≤ N − 1, the solution of the problem (2.1) exists and the following
formula holds:

uk =
N−1∑

j=1

G(k, j)ϕjτ, 0≤ k ≤N , (2.5)

where

G(k,1)=G(k,N − 1)= C(RN−3 + 1
)
(4R− 1)(2B)−1(I −DRN−2)−1

(2.6)

for k = 0 and k =N ;

G(k, j)=−C(R2− 4R+ 1
)(
Rj−2 +RN− j−2)(2B)−1(I −DRN−2)−1

(2.7)
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for 2≤ j ≤N − 2 and k = 0, k =N ;

G(k,1)= CC1(2B)−1{Rk−1(2(R+ 3) +R2(R− 3)
)

+RN−k(4−R)(1 +R)

+RN+k−3(1− 4R)(1 +R)

+R2N−k−3(3R− 1− 2R2(3R+ 1)
)}

× (1−RN)−1(
I −DRN−2)−1

,

G(k,N − 1)=−CC1(2B)−1{Rk(R− 4)(R+ 1) +RN−k−1(− 2(R+ 3) +R2(3−R)
)

+RN+k−3(1− 3R+ 2R2(3R+ 1)
)

+R2N−k−3(4R− 1)(R+ 1)
}

× (1−RN)−1(
I −DRN−2)−1

,

G(k, j)= CC1(2B)−1{(R− 1)3(Rj+k−2 +R2N−2− j−k)

+
(− 1 + 3R+R2(3−R)

)(
RN−k+ j−2 +RN+k− j−2)

+ 2(1− 3R)
(
R2N−2+ j−k +R2N−2− j+k)

+ 2R| j−k|
(
RN − 1

)(
R− 3 +RN−2(−1 + 3R)

)}

× (1−RN)−1(
I −DRN−2)−1

(2.8)

for 2≤ j ≤N − 2 and 1≤ k ≤N − 1. Here

C = (I + τB)(2I + 3τB)−1, C1 = (I + τB)(2I + τB)−1,

D = (2I − τB)(2I + 3τB)−1,
(2.9)

where I is the unit operator.
Let Fτ(E) be the linear space of mesh functions ϕτ = {ϕk}N−1

1 with values in the Banach

space E. Next on Fτ(E), we introduce the Banach spaces Cτ(E)= C([0,1]τ ,E), C
β,γ
τ (E)=

Cβ,γ([0,1]τ ,E) (0≤ γ ≤ β < 1), and Lp,τ(E)= Lp([0,1]τ ,E), 1≤ p <∞, with the norms

∥
∥ϕτ

∥
∥
Cτ (E) = max

1≤k≤N
∥
∥ϕk

∥
∥
E,

∥
∥ϕ

τ∥∥
C
β,γ
τ (E)

= ∥∥ϕτ∥∥Cτ (E) + sup
1≤k<k+r≤N−1

∥
∥ϕk+r −ϕk

∥
∥
E

(
(k+ r)τ

)γ
(1− kτ)γ

(rτ)β
,

∥
∥ϕ

τ∥∥
Lp,τ (E) =

(N−1∑

k=1

∥
∥ϕk

∥
∥p
Eτ

)1/p

.

(2.10)
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With the help of B = A1/2, we introduce the Banach space E′α,q = E′α,q(E,B) (0 < α < 1)
consisting of all v ∈ E for which the following norms are finite:

‖v‖E′α,q
=
(∫∞

0

[
zα
∥
∥B(z+B)−1v

∥
∥
E

]q dz

z

)1/q

, 1≤ q <∞,

‖v‖E′α = ‖v‖E′α,∞ = sup
λ>0

λα
∥
∥B(λ+B)−1v

∥
∥
E.

(2.11)

The nonlocal boundary value problem (2.1) is said to be coercively stable (well posed)
in Fτ(E) if we have the coercive inequality

∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Fτ (E)

≤M∥∥ϕτ∥∥Fτ (E), (2.12)

where M is independent not only of ϕτ but also of τ.
In [10], the coercive stability (well-posedness) of the difference problem (2.1) in the

spaces Cα,0
τ (E),Cτ(Eα) (0 < α < 1) and the almost coercive stability (with multiplier

min{ln(1/τ),1 + | ln‖B‖E→E|}) of the difference problem (2.1) in the spaces Cτ(E) were
established.

Now let us consider the difference problem (2.1) in the spaces Lp,τ(E), 1 ≤ p <∞, of
all grid functions. We have not been able to obtain the coercivity inequality

∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Lp,τ (E)

≤M∥∥ϕτ∥∥Lp,τ (E) (2.13)

in the arbitrary Banach space E and for the general positive operator A. Nevertheless, we
can establish the following almost coercivity inequality.

Theorem 2.1. The solutions of the difference problem (2.1) in Lp,τ(E) obey the almost coer-
cive inequality

∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Lp,τ (E)

≤M1 min
{

ln
1
τ

,1 +
∣
∣ ln‖B‖E→E

∣
∣
}
∥
∥ϕτ

∥
∥
Lp,τ (E),

(2.14)

where M1 does not depend on ϕτ , p, and τ.

Proof. By [12],

∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Lp,τ (E)

≤M
[
∥
∥u0

∥
∥
E′1−(1/p)(D(B),B)

∥
∥+

∥
∥uN

∥
∥
E′1−(1/p)(D(B),B)

+ min
{

ln
1
τ

,1 +
∣
∣ ln‖B‖E→E

∣
∣
}
∥
∥ϕτ

∥
∥
Lp,τ (E)

]

(2.15)
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for the solutions of the boundary value problem

− 1
τ2

[
uk+1− 2uk +uk−1

]
+Auk = ϕk, 1≤ k ≤N − 1,

u0 = ϕ, uN = ψ, Nτ = 1.
(2.16)

Here the Banach space E′1−(1/p) = E′1−(1/p)(E,B) consists of those v ∈ E for which the norm

‖v‖E′1−(1/p)
= sup

0<τ≤τ0

(N−1

k=1

∥
∥BRkv

∥
∥p
E

q
τ
)1/p

+‖v‖E (2.17)

is finite.
Using the estimates (2.2), (2.3), (2.4), and the formula (2.5), we obtain

∥
∥u0

∥
∥
E′1−(1/p)(D(B),B) ≤M1 min

{

ln
1
τ

,1 +
∣
∣ ln‖B‖E→E

∣
∣
}
∥
∥ϕτ

∥
∥
Lp,τ (E) (2.18)

for the solutions of the boundary value problem (2.1). Hence, from the last two estimates,
(2.14) follows. Theorem 2.1 is proved. �

Finally, let us give the following results about well-posedness of the difference problem
(2.1) in the spaces Lp,τ(E), 1≤ p <∞.

Theorem 2.2. Suppose that the difference problem (2.16) is well posed in Lp0,τ(E) for some
p0, 1 < p0 <∞. Then problem (2.1) is well posed in Lp,τ(E) for all p, 1 < p <∞, and the
following coercivity inequality holds:

∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Lp,τ (E)

≤M(p0
) p2

p− 1

∥
∥ϕτ

∥
∥

Lp,τ (E)

, (2.19)

where M(p0) does not depend on ϕτ , p, and τ.

Proof. By [12],

∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Lp,τ (E)

≤M
[
∥
∥u0

∥
∥
E′1−(1/p)(D(B),B)

∥
∥+

∥
∥uN

∥
∥
E′1−(1/p)(D(B),B)

]

+M
(
p0
) p2

p− 1

∥
∥ϕτ

∥
∥

Lp,τ (E)

(2.20)

for the solutions of the boundary value problem (2.16). Using the estimates (2.2), (2.3),
(2.4), and the formula (2.5), we obtain

∥
∥u0

∥
∥
E′1−(1/p)(D(B),B) ≤M1

p2

p− 1

∥
∥ϕτ

∥
∥

Lp,τ (E)

(2.21)

for the solutions of the boundary value problem (2.1). Hence, from the last two estimates,
(2.19) follows. Theorem 2.2 is proved. �
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Theorem 2.3. Let 1 ≤ p ≤∞ and 0 < α < 1. The difference problem (2.1) is well posed in
Lp,τ(E′α,p) and the following coercivity inequality holds:

∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Lp,τ (E′α,p)

≤M 1
α(1−α)

∥
∥ϕτ

∥
∥

Lp,τ (E′α,p)
, (2.22)

where M does not depend on ϕτ , p, α, and τ.

Proof. By [6],
∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Lp,τ (E′α,p)

≤M
[∥
∥Au0

∥
∥
E′α,p

+
∥
∥AuN

∥
∥
E′α,p

]
+

1
α(1−α)

∥
∥ϕτ

∥
∥
Lp,τ (E′α,p)

(2.23)

for the solutions of the boundary value problem (2.16). Using the estimates (2.2), (2.3),
(2.4), and the formula (2.5), we obtain

∥
∥Au0

∥
∥
E′α,p
≤M1

1
α(1−α)

∥
∥ϕτ

∥
∥
Lp,τ (E) (2.24)

for the solutions of the boundary value problem (2.1). Hence, from the last two estimates,
(2.22) follows. Theorem 2.3 is proved. �

From Theorems 2.2 and 2.3, we have Theorem 2.4.

Theorem 2.4. Let 1 < p, q <∞, and 0 < α < 1. The difference problem (2.1) is well posed in
Lp,τ(E′α,q) and the following coercivity inequality holds:

∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Lp,τ (E′α,q)

≤M(q)
p2

p− 1
1

α(1−α)

∥
∥ϕτ

∥
∥

Lp,τ (E′α,q)

, (2.25)

where M(q) does not depend on ϕτ , p, α, and τ.

Note that by passing to the limit for τ → 0, one can recover Theorems 1.5–1.7.
Now we consider the applications of Theorems 2.1–2.4. We consider the boundary

value problem on the range {0≤ y ≤ 1, x ∈�n} for elliptic equation

−∂
2u

∂y2
+
∑

|r|=2m

ar(x)
∂|τ|u

∂xr1
1 ···∂xrnn

+ δu(y,x)= f (y,x),

f (0,x)= f (1,x), 0 < y < 1, x,r ∈�n, |r| = r1 + ···+ rn,

u(0,x)= u(1,x), uy(0,x)= uy(1,x), x ∈�n,

(2.26)

where ar(x) and f (y,x) are given sufficiently smooth functions and δ > 0 is the suffi-
ciently large number.

We will assume that the symbol

Bx(ξ)=
∑

|r|=2m

ar(x)
(
iξ1
)r1 ···(iξn

)rn , ξ = (ξ1, . . . ,ξn
)∈ Rn, (2.27)
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of the differential operator of the form

Bx =
∑

|r|=2m

ar(x)
∂|r|

∂xr1
1 ···∂xrnn

(2.28)

acting on functions defined on the space �n satisfies the inequalities

0 <M1|ξ|2m ≤ (−1)mBx(ξ)≤M2|ξ|2m <∞ (2.29)

for ξ 
= 0.
The discretization of problem (2.26) is carried out in two steps. In the first step, let us

give the difference operator Axh by the formula

Axhu
h
x =

∑

2m≤|r|≤S
bxr D

r
hu

h
x + δuhx. (2.30)

The coefficients are chosen in such a way that the operator Axh approximates in a specified
way the operator

∑

|r|=2m

ar(x)
∂|r|

∂xr1
1 ···∂xrnn

+ δ. (2.31)

We will assume that for |ξkh| ≤ π and the symbol A(ξh,h) of the operator Axh− δ satisfies
the inequalities

(−1)mAx(ξh,h)≥M1|ξ|2m,
∣
∣argAx(ξh,h)

∣
∣≤ φ < φ0 <

π

2
. (2.32)

With the help of Axh, we arrive at the boundary value problem

−d
2vh(y,x)
dy2

+Axhv
h(y,x)= ϕh(y,x), 0 < y < 1,

vh(0,x)= vh(1,x), vhy(0,x)= vhy(1,x), x ∈Rn
h,

(2.33)

for an infinite system of ordinary differential equations.
In the second step, we replace problem (2.33) by the difference scheme

− 1
τ2

[
uhk+1− 2uhk +uhk−1

]
+Axhu

h
k = ϕhk , 1≤ k ≤N − 1,

uh0 = uhN ,−uh2 + 4uh1 − 3uh0 = uhN−2− 4uhN−1 + 3uhN , Nτ = 1.
(2.34)

To formulate our result, we need to introduce the space Ch = C(Rnh) of all bounded grid
functions uh(x) defined on Rnh, equipped with the norm

∥
∥uh

∥
∥
Ch
= sup

xεRnh

∣
∣uh(x)

∣
∣. (2.35)
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Theorem 2.5. The solutions of the difference scheme (2.34) satisfy the following almost
coercive stability estimates:

∥
∥
∥
{
τ−2(uhk+1− 2uhk +uhk−1

)}N−1
1

∥
∥
∥
Lp,τ (Ch)

≤M ln
1

τ +h

∥
∥ϕτ,h

∥
∥
Lp,τ (Ch), 1≤ p ≤∞,

(2.36)

where M does not depend on ϕτ,h, p, h, and τ.

The proof of Theorem 2.5 is based on the abstract, Theorem 2.1, on the positivity of
the operator Axh in Ch, on the almost coercivity inequality for an elliptic operator Axh in
Ch [14], and on estimate

min
{

ln
1
τ

,1 +
∣
∣ ln

∥
∥Bxh

∥
∥
Ch→Ch

∣
∣
}

≤M ln
1

τ +h
. (2.37)

Next, to formulate our result, we need to introduce the space W
β
p,h =Wβ

p (Rnh), 0≤ β ≤ 1,

1≤ p <∞, of all bounded grid functions uh(x) defined on Rnh, equipped with the norm

∥
∥uh

∥
∥
W

β
p,h
=
[
∑

xεRnh

∑

yεRnh ,y
=0

∣
∣uh(x)−uh(x+ y)|p

|y|n+βp h2n +
∥
∥uh

∥
∥p
Lp,h

]1/p

. (2.38)

Here Lp,h = Lp(Rnh) denotes the Banach space of bounded grid functions uh(x) defined on
Rnh, equipped with the norm

∥
∥uh

∥
∥
Lp,h
=
[
∑

xεRnh

∣
∣uh(x)

∣
∣phn

]1/p

. (2.39)

Theorem 2.6. The solutions of the difference scheme (2.34) satisfy the following coercive
stability estimates:

∥
∥
∥
{
τ−2(uhk+1− 2uhk +uhk−1

)}N−1
1

∥
∥
∥
Lp,τ (Wmα

q,h )

≤M(α, p,q)
∥
∥ϕτ,h

∥
∥
Lp,τ (Wmα

q,h ), 1 < p,q <∞, 0 < α <
1
m

,

(2.40)

where M(α, p,q) does not depend on ϕτ,h, h, and τ.

The proof of Theorem 2.6 is based on the abstract, Theorem 2.4, and the positivity of
the operator Axh in Lp,h in [14], on the coercivity inequality for an elliptic operator Axh in

W
β
p,h in [13], and on the following theorem.

Theorem 2.7 [14]. For any 0 < β < 1/m, the norms in the spaces E′β,q(Lq,h, (Axh)1/2) and

W
mβ
q,h are equivalent uniformly in h.



Allaberen Ashyralyev 115

References

[1] R. P. Agarwal, M. Bohner, and V. B. Shakhmurov, Maximal regular boundary value problems in
Banach-valued weighted space, Boundary Value Problems 2005 (2005), no. 1, 9–42.

[2] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies,
no. 2, D. Van Nostrand, New Jersey, 1965.

[3] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. II, Communications on Pure
and Applied Mathematics 17 (1964), 35–92.

[4] A. Aibeche and A. Favini, Coerciveness estimate for Ventcel boundary value problem for a differen-
tial equation, Semigroup Forum 70 (2005), no. 2, 269–277.

[5] A. Ashyralyev, Coercive solvability of elliptic equations in spaces of smooth functions, Boundary
Value Problems for Nonclassical Equations in Mathematical Physics (Novosibirsk, 1989), Akad.
Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, 1989, pp. 82–86.

[6] , Method of positive operators of investigations of the high order of accuracy difference
schemes for parabolic and elliptic equations, Doctor Sciences thesis, Institute of Mathematics,
Academic Sciences, Kiev, 1992.

[7] , Well-posed solvability of the boundary value problem for difference equations of elliptic
type, Nonlinear Analysis. Theory, Methods & Applications 24 (1995), no. 2, 251–256.

[8] , On well-posedness of the nonlocal boundary value problems for elliptic equations, Numer-
ical Functional Analysis and Optimization 24 (2003), no. 1-2, 1–15.

[9] , Nonlocal boundary value problems for partial differential equations: well-posedness, AIP
Conference Proceedings Global Analysis and Applied Mathematics: International Workshop on
Global Analysis, vol. 729, 2004, pp. 325–331.

[10] A. Ashyralyev and N. Altay, A note on the well-posedness of the nonlocal boundary value problem
for elliptic difference equations, Applied Mathematics and Computation 175 (2006), 49–60.

[11] A. Ashyralyev and K. Amanov, On coercive estimates in Hölder norms, Izvestiya Akademii
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[15] Ph. Clément and S. Guerre-Delabrière, On the regularity of abstract Cauchy problems and bound-
ary value problems, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matem-
atiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 9 (1998), no. 4, 245–
266 (1999).

[16] L. M. Gershteyn and P. E. Sobolevskiı̆, Well-posedness of the a Banach space, Differentsial’nye
Uravneniya 10 (1974), no. 11, 2059–2061 (Russian).

[17] V. L. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Differential-Operator Equa-
tions, Naukova Dumka, Kiev, 1984.

[18] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics,
vol. 24, Pitman (Advanced Publishing Program), Massachusetts, 1985.

[19] S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow, 1966.
[20] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations

of Parabolic Type, “Nauka”, Moscow, 1967.
[21] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type,

Izdat. “Nauka”, Moscow, 1973.



116 Well-posedness of elliptic equations

[22] V. B. Shakhmurov, Coercive boundary value problems for regular degenerate differential-operator
equations, Journal of Mathematical Analysis and Applications 292 (2004), no. 2, 605–620.

[23] A. L. Skubachevskii, Elliptic Functional-Differential Equations and Applications, Operator The-
ory: Advances and Applications, vol. 91, Birkhäuser, Basel, 1997.
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ON THE STABILITY OF THE DIFFERENCE SCHEMES
FOR HYPERBOLIC EQUATIONS

ALLABEREN ASHYRALYEV AND MEHMET EMIR KOKSAL

The second order of accuracy unconditional stable difference schemes approximately
solving the initial value problem d2u(t)/(dt2) +A(t)u(t) = f (t) (0 ≤ t ≤ T), u(0) = ϕ,
u′(0)= ψ, for differential equation in a Hilbert space H with the selfadjoint positive def-
inite operators A(t) is considered. The stability estimates for the solution of these differ-
ence schemes and first- and second-order difference derivatives are presented. The nu-
merical analysis is given. The theoretical statements for the solution of these difference
schemes are supported by the results of numerical experiments.

Copyright © 2006 A. Ashyralyev and M. E. Koksal. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

It is known (see, e.g., [3, 4]) that various initial boundary value problems for the
hyperbolic equations can be reduced to the initial value problem

d2u(t)
dt2

+A(t)u(t)= f (t) (0≤ t ≤ T),

u(0)= ϕ, u′(0)= ψ,
(1.1)

for differential equation in a Hilbert space H . Here A(t) are the selfadjoint positive defi-
nite operators in H with a t-independent domain D =D(A(t)).

A large cycle of works on difference schemes for hyperbolic partial differential equa-
tions (see, e.g., [1, 5–7] and the references given therein) in which stability was established
under the assumption that the magnitudes of the grid steps τ and h with respect to the
time and space variables are connected. In abstract terms this means, in particular, that
the condition τ‖Aτ,h‖→ 0 when τ → 0 is satisfied.

Of great interest is the study of absolute stable difference schemes of a high order
of accuracy for hyperbolic partial differential equations, in which stability was estab-
lished without any assumptions to respect of the grid steps τ and h. Such type stability

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 117–130
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inequalities for the solutions of the first order of accuracy difference scheme

τ−2(uk+1− 2uk +uk−1
)

+Akuk+1 = fk,

Ak =A
(
tk
)
, fk = f

(
tk
)
, tk = kτ, 1≤ k ≤N − 1, Nτ = T ,

τ−1(u1−u0
)

+ iA1/2
1 u1 = iA1/2

0 u0 +ψ, u0 = ϕ,

(1.2)

for approximately solving problem (1.1) were established for the first time in [8].
We are interested in studying the high order of accuracy two-step difference schemes

for the approximate solutions of the problem (1.1) in a Hilbert space H with selfadjoint
positive definite operators A(t). In the paper [2] one new difference scheme of a second
order of accuracy for the approximately solving this initial value problem

τ−2(uk+1− 2uk +uk−1
)

+Ak+1/24−1(uk+1 +uk
)

+A1/2
k+1/2A

1/2
k−1/24−1(uk +uk−1

)

+ τ−1(A1/2
k−1/2−A1/2

k+1/2

)
A−1/2
k−1/2τ

−1(uk −uk−1
)

+ 2−1τ−1(A1/2
k+1−A1/2

k

)
A−1/2
k+1/2τ

−1(uk+1−uk
)

+A1/2
k+1/2A

−1/2
k−1/22−1τ−1(A1/2

k −A1/2
k−1

)
A−1/2
k−1/2τ

−1(uk −uk−1
)

= 2−1( fk−1/2 + fk+1/2
)

+
(
A1/2
k+1/2−A1/2

k−1/2

)
A−1/2
k−1/22−1 fk−1/2, 1≤ k ≤N − 1, u0 = u(0),

τ−1(u1−u0) +
τ

2
A1/22−1(u1 +u0

)
+
τ

2

(
A1/2

1/2

)′
A−1/2

1/2 τ−1(u1−u0
)= τ

2
f1/2 +A1/2

1/2A
−1/2
1/2 u′0

(1.3)

is presented. Let the operator-function Aρ(t)A−ρ(z), ρ ∈ [0,1], satisfy the condition

∥
∥
[
Aρ(t)−Aρ(s)

]
A−ρ(z)

∥
∥≤Mρ|t− s|, (1.4)

where Mρ is a positive constant independent of t, s, z for t,s,z ∈ [0,T]. Furthermore, let
the operator-function A1/2(p)A1/2(t)A−1(z) satisfy the condition

∥
∥A1/2(p)

[
A1/2(t)−A1/2(s)

]
A−1(z)

∥
∥≤M1/2|t− s|, (1.5)

where M1/2 is a positive constant independent of t, s, z, p for t,s,z, p ∈ [0,T]. Then the
following theorems on the stability of this difference scheme are established.

Theorem 1.1. Let u(0) ∈ D(A1/2(0)). Then for the solution of the difference scheme (1.3)
the stability estimate

∥
∥
∥
∥
∥

{
uk −uk−1

τ

}N−1

1

∥
∥
∥
∥
∥
Cτ

+
∥
∥uτ

∥
∥
Cτ
≤ C1

[
∥
∥A1/2(0)u0

∥
∥
H +

∥
∥u′0

∥
∥
H +

N−1∑

s=0

∥
∥ fs+1/2

∥
∥
Hτ

]

(1.6)

holds, where C1 does not depend on u0, u′0, fs+1/2 (0≤ s≤N − 1) and τ. Here Cτ is the norm
space of the mesh functions uτ = {uk}N−1

1 with the norm

∥
∥uτ

∥
∥
Cτ
= max

1≤k≤N−1

∥
∥uk

∥
∥
H. (1.7)
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Theorem 1.2. Let u(0)∈D(A(0)), u′(0)∈D(A1/2(0)). Then for the solution of the differ-
ence scheme (1.3) the stability estimate

∥
∥
∥
∥
∥

{

A1/2(0)
uk −uk−1

τ

}N−1

1

∥
∥
∥
∥
∥
Cτ

+
∥
∥Ak+1/24−1(uk+1 +uk

)
+A1/2

k+1/2A
1/2
k−1/24−1(uk +uk−1

)

+ τ−1(A1/2
k−1/2−A1/2

k+1/2

)
A−1/2
k−1/2τ

−1(uk −uk−1
)

+ 2−1τ−1(A1/2
k+1−A1/2

k

)
A−1/2
k+1/2τ

−1(uk+1−uk
)

+A1/2
k+1/2A

−1/2
k−1/22−1τ−1(A1/2

k −A1/2
k−1

)
A−1/2
k−1/2τ

−1(uk −uk−1
)∥
∥
H

+
∥
∥
∥
{
τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
∥
Cτ

≤ C2

[
∥
∥A(0)u0

∥
∥
H +

∥
∥A1/2(0)u′0

∥
∥
H + max

0≤s≤k
∥
∥ fs+1/2

∥
∥
H +

N−2∑

s=0

∥
∥ fs+1/2− fs−1/2

∥
∥
H

]

(1.8)

holds, where C2 does not depend on u0, u′0, fs+1/2 (0≤ s≤N − 1) and τ.

Furthermore, using the approach of the paper [2] the second new difference scheme of
a second order of accuracy for the approximately solving the initial value problem (1.1)

τ−2(uk+1− 2uk +uk−1
)

+
{
i

τ
A1/2
k+1/2

[

I − τ2

2
Ak+1/2 + τA−1/2

k+1/2

(
A1/2
k+1/2

)′

+
τ2

2
A−1
k+1/2

(
A1/2
k+1/2

)′(
A1/2
k+1

)′
][

iτA1/2
k+1/2 +i

τ2

2

(
A1/2
k+1

)′
]−1(

I− τ
2

2
Ak+1/2

)

− i

τ
A1/2
k+1/2

[

iτA1/2
k+1/2 + i

τ2

2

(
A1/2
k+1/2

)′
]

− 1
τ2

}

uk+1

+
{
i

τ
A1/2
k+1/2

[

I − τ2

2
Ak+1/2− τA−1/2

k+1/2

(
A1/2
k+1/2

)′
+
τ2

2
A−1
k+1/2

(
A1/2
k+1/2

)′(
A1/2
k+1

)′
]

×
[

iτAk+1/2 + i
τ2

2

(
A1/2
k+1

)′
]−1

− i

τ
A1/2
k+1/2

[

iτA1/2
k−1/2 + i

τ2

2

(
A1/2
k

)′
]−1

×
(

I− τ
2

2
Ak−1/2

)

+
2
τ2

}

uk+

{
i

τ
A1/2
k+1/2

[

iτA1/2
k−1/2 +i

τ2

2

(
A1/2
k

)′
]−1

− 1
τ2

}

uk−1

=
{

− iτ

2
A1/2
k+1/2

[

I − τ2

2
Ak+1/2 + τA−1/2

k+1/2

(
A1/2
k+1/2

)′
+
τ2

2
A−1
k+1/2

(
A1/2
k+1/2

)′(
A1/2
k+1

)′
]

×
[

iτA1/2
k+1/2 + i

τ2

2

(
A1/2
k+1

)′
]−1

+ I +
τ

2
A−1/2
k+1/2

(
A1/2
k+1/2

)′
}

fk+1/2

+
{
iτ

2
A1/2
k+1/2

[

iτA1/2
k−1/2 + i

τ2

2

(
A1/2
k

)′
]−1}

fk−1/2, 1≤ k ≤N − 1, u0 = u(0),
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{

I−
[
τ2

2
A1/2−τA−1/2

1/2

(
A1/2

1/2

)′− τ
2

2
A−1

1/2

(
A1/2

1/2

)′(
A1/2

1

)′
]}[

iA1/2
1/2 +i

τ

2

(
A1/2

1/2

)′
]−1

τ−1(u1−u0
)

+
[

− τ

2
A1/2− iτA1/2

1/2− i
τ2

2

(
A1/2

1/2

)′
]

u1 +
(
iA−1/2

0

)
u′0

=
{

− τ

2

{

I −
[
τ2

2
A1/2− τA−1/2

1/2

(
A1/2

1/2

)′ − τ2

2
A−1

1/2

(
A1/2

1/2

)′(
A1/2

1

)′
]}

×
[

iA1/2
1/2 + i

τ

2

(
A1/2

1/2

)′
]−1

− iτA−1/2
1/2 − i

τ2

2
A−1

1/2

(
A1/2

1/2

)′
}

f1/2

(1.9)

is presented. Applying this approach we can obtain the stability estimates for solutions of
the difference scheme (1.9).

2. Numerical analysis

We have not been able to obtain a sharp estimate for the constants figuring in the stability
inequality. Therefore we will give the following results of numerical experiments of the
initial boundary value problem

∂2u(t,x)

∂t2
− ∂2u(t,x)

∂x2
= 2exp(−t)cosx, 0 < t < 1, 0 < x < π,

u(0,x)= cosx, ut(0,x)=−cosx, 0≤ x ≤ π,

ux(t,0)= ux(t,π)= 0, 0≤ t ≤ 1,

(2.1)

for hyperbolic equation. The exact solution of this problem is

u(t,x)= exp(−t)cosx. (2.2)

First, applying the first order of accuracy difference scheme (1.2), we present the fol-
lowing first order of accuracy difference scheme for the approximate solutions of the
problem (2.1):

uk+1
n − 2ukn +uk−1

n

τ2
− uk+1

n+1− 2uk+1
n +uk+1

n−1

h2
= f

(
tk,xn

)
,

tk = kτ, xn = nh, 1≤ k ≤N − 1, 1≤ n≤M− 1,

u0
n = ϕ

(
xn
)
, 1≤ n≤M− 1,

u1
n−u0

n

τ
=−ϕ(xn

)
, 1≤ n≤M− 1, uk0 = uk1, ukM−1 = ukM , 0≤ k ≤N ,

f (t,x)= 2exp(−t)cosx, ϕ(x)= cos(x).

(2.3)
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We have (N + 1)× (N + 1) system of linear equations in (2.3) and we will write them
in the matrix form

AUn+1 +BUn +CUn−1 =Dϕn, 0≤ n≤M,

U0 =U1, UM−1 =UM ,
(2.4)

where

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 . . . 0 0 0

0 0 a 0 . . . 0 0 0

0 0 0 a . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . a 0 0

0 0 0 0 . . . 0 a 0

0 0 0 0 . . . 0 0 a

0 0 0 0 . . . 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 . . . 0 0 0

d c b 0 0 . . . 0 0 0

0 d c b 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . b 0 0

0 0 0 0 0 . . . c b 0

0 0 0 0 0 . . . d c b

e −e 0 0 0 . . . 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

C = A, D =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

Us =

⎡

⎢
⎢
⎢
⎢
⎣

U0
s

U1
s

. . .

UN
s

⎤

⎥
⎥
⎥
⎥
⎦

(N+1)×(1)

, where s= n± 1,n.

(2.5)

Here

a=− 1
h2

, b= 1
τ2

+
2
h2

, c =− 2
τ2

, d = 1
τ2

, e = 1
τ

,

ϕkn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos
(
xn
)
, k = 0,

f
(
tk,xn

)
, 1≤ k ≤N − 1,

cos
(
xn
)
, k =N ,

ϕn =

⎡

⎢
⎢
⎢
⎢
⎣

ϕ0
n

ϕ1
n

. . .

ϕNn

⎤

⎥
⎥
⎥
⎥
⎦

(N+1)×1

.

(2.6)
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So, we have the second-order difference equation with respect to n with matrix coeffi-
cients. To solve this difference equation we have applied a procedure of modified Gauss
elimination method for difference equation with respect to n with matrix coefficients.
Hence, we seek a solution of the matrix equation in the following form:

Un = αn+1Un+1 +βn+1, n=M− 1, . . . ,2,1,0, (2.7)

where αj ( j = 1, . . . ,M) are (N + 1)× (N + 1) square matrices and βj ( j = 1, . . . ,M) are
(N + 1)× 1 column matrices defined by

αn+1 =−
(
B+Cαn

)−1
A, βn+1 =

(
B+Cαn

)−1(
Dϕn−Cβn

)
, n= 1,2,3, . . . ,M− 1.

(2.8)

Here

α1 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

β1 =

⎡

⎢
⎢
⎢
⎢
⎣

0

0
. . .

0

⎤

⎥
⎥
⎥
⎥
⎦

(N+1)×1

,

uM =
(
I −αM

)−1
βM.

(2.9)

Second, applying the second order of accuracy difference scheme (1.3) and using sim-
ple formulas

2u(0)− 5u(τ) + 4u(2τ)−u(3τ)
τ2

−u′′(0)=O(τ2),

2u(1)− 5u(1− τ) + 4u(1− 2τ)−u(1− 3τ)
τ2

−u′′(1)=O(τ2),

(2.10)

we present the following second order of accuracy difference scheme for the approximate
solutions of the problem (2.1):

uk+1
n − 2ukn +uk−1

n

τ2
− ukn+1− 2ukn +ukn−1

2h2
− uk+1

n+1− 2uk+1
n +uk+1

n−1

4h2
− uk−1

n+1 − 2uk−1
n +uk−1

n−1

4h2

= f
(
tk,xn

)
, xn = nh, tk = kτ, 1≤ k ≤N − 1, 1≤ n≤M− 1,

u0
n = ϕ

(
xn
)
, xn = nh, 1≤ n≤M− 1,



A. Ashyralyev and M. E. Koksal 123

u1
n−u0

n

τ
= τ

2

(
u1
n+1− 2u1

n +u1
n−1

h2
+ f

(
0,xn

)
)

−ϕ(xn
)
, xn = nh, 1≤ n≤M− 1,

uk1−uk1
h

= λk
(
uk+1

1 − 2uk1 +uk−1
1

)
+ λkτ2 f

(
tk,h

)
, 1≤ k ≤N − 1,

u0
1−u0

0

h
= λ0

(
2u0

0− 5u1
0 + 4u2

0−u3
0

)
+ λ0τ

2 f (0,h),

uN1 −uN0
h

= λN
(
2uN0 − 5uN−1

0 + 4uN−2
0 −uN−3

0

)
+ λNτ2 f (1,h),

3ukM = 4ukM−1−ukM−2, 0≤ k ≤N ,

f (t,x)= 2exp(−t)cosx, λk = h

2g
(
tk
)
τ2

, 0≤ k ≤N.
(2.11)

We have again (N + 1)× (N + 1) system of linear equations and we will write them in
the matrix form

AUn+1 +BUn +CUn−1 =Dϕn, 1≤ n≤M− 1,

3UM = 4UM−1−UM−2, γ0U0 = θ1U1 +T1,
(2.12)

where

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 . . . 0 0 0 0
c b a 0 . . . 0 0 0 0
0 c b a . . . 0 0 0 0
0 0 c b . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . b a 0 0
0 0 0 0 . . . c b a 0
0 0 0 0 . . . 0 c b a
0 r 0 0 . . . 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . 0 0 0 0
f e d 0 . . . 0 0 0 0
0 f e d . . . 0 0 0 0
0 0 f e . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . f e d 0
0 0 0 0 . . . 0 f e d
g p 0 0 . . . 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

C = A, D =

⎡

⎢
⎢
⎢
⎣

1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

⎤

⎥
⎥
⎥
⎦

(N+1)×(N+1)

,
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γ0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + 2λ0 −5λ0 4λ0 −λ0 0 . . . 0 0 0 0
0 1 0 0 0 . . . 0 0 0 0
0 0 1 0 0 . . . 0 0 0 0
0 0 0 1 0 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 1 0 0 0
0 0 0 0 0 . . . 0 1 0 0
0 0 0 0 0 . . . 0 0 1 0
0 0 0 0 0 . . . −λN 4λN −5λN 1 + 2λN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

θ0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . 0 0 0
l s l 0 . . . 0 0 0
0 l s l . . . 0 0 0
0 0 l s . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . s l 0
0 0 0 0 . . . l s l
0 0 0 0 . . . 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

, where l = h2

2τ2
, s= h2

τ2
,

T1 =

⎡

⎢
⎢
⎢
⎣

F0
0

F1
1

···
FN0

⎤

⎥
⎥
⎥
⎦

(N+1)×(1)

, Us =

⎡

⎢
⎢
⎢
⎣

U0
s

U1
s

···
UN
s

⎤

⎥
⎥
⎥
⎦

(N+1)×(1)

, where s= n± 1,n,

F0
0 = τ2h2, FN0 =

3
4
τ2 exp(−1), Fk1 = τ2λk f

(
tk,h

)
, 1≤ k ≤N − 1.

(2.13)

Here

a=− 1
4h2

, b =− 1
2h2

, c =− 1
4h2

,

d = 1
τ2

+
1

2h2
, e =− 2

τ2
+

1
h2

, f = 1
τ2

+
1

2h2
,

r =− τ

2h2
, g =−1

τ
, p = 1

τ2
+
τ

h2
,

ϕkn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos
(
xn
)
, k = 0,

f
(
tk,xn

)
, 1≤ k ≤N − 1,

cos
(
xn
)
, k =N ,

ϕn =

⎡

⎢
⎢
⎢
⎣

ϕ0
n

ϕ1
n

···
ϕNn

⎤

⎥
⎥
⎥
⎦

(N+1)×1

.

(2.14)

So, we obtain the second-order difference equation (2.12) with respect to n with ma-
trix coefficients. To solve this difference equation we have applied the same modified



A. Ashyralyev and M. E. Koksal 125

Gauss elimination method for the difference equation (2.12) with respect to n with ma-
trix coefficients. Hence, we seek a solutionUn, n=M− 1, . . . ,2,1,0 of the matrix equation
(2.12), where αn+1, βn+1, n= 1, . . . ,M− 1, are obtained. Note that for obtaining αn+1, βn+1,
n= 1, . . . ,M− 1, we need to find α1 and β1. We can find them fromU0 = α1U1 +β1. Using
the formula γ0U0 = θ1U1 +T1, we obtain

U0 = inv
(
γ0
)
θ1U1 + inv

(
γ0
)
T1, (2.15)

where

α1 = inv
(
γ0
)
θ1,

β1 = inv
(
γ0
)
T1.

(2.16)

Now, we will find un, 0≤ n≤M, by the formula (2), but for this we need to find uM . We
can find uM from 3UM = 4UM−1 −UM−2 and uM−1 = αMuM + βM , uM−2=αM−1uM−1 +
βM−1. Namely,

uM =
[
3I − 4αM +αM−1αM

]−1[
4βM −αM−1βM −βM−1

]
. (2.17)

Third, applying the second order of accuracy difference scheme (1.9) and using simple
formulas

u
(
xn+2

)− 4u
(
xn+1

)
+ 6u

(
xn
)− 4u

(
xn−1

)
+u

(
xn−2

)

h4
−uıv(xn

)=O(h2),

10u(0)− 15u(h) + 6u(2h)−u(3h)
h3

−u′′′(0)=O(h2),

−10u(π) + 15u(π−h)− 6u(π− 2h) +u(π− 3h)
h3

−u′′′(π)=O(h2),

(2.18)

we present the following second order of accuracy difference scheme for the approximate
solutions of the problem (2.1):

uk+1
n − 2ukn +uk−1

n

τ2
− ukn+1− 2ukn +ukn−1

h2
+ τ2

(
uk+1
n+2− 4uk+1

n+1 + 6uk+1
n − 4uk+1

n−1 +uk+1
n−2

4h4

)

= f
(
tk,xn

)
, xn = nh, tk = kτ, 1≤ k ≤N − 1, 2≤ n≤M− 2,

u0
n = ϕ

(
xn
)
, xn = nh, 0≤ n≤M,

u1
n−u0

n

τ
= τ

2

(
u1
n+1− 2u1

n +u1
n−1

h2
+ f

(
0,xn

)
)

g −ϕ(xn
)
, xn = nh, 1≤ n≤M− 1,

3ukM = 4ukM−1−ukM−2, 10ukM = 15ukM−1− 6ukM−2 +ukM−3, 0≤ k ≤N ,

10uk0 = 15uk1− 6uk2 +uk3, 0≤ k ≤N.
(2.19)
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We have again (N + 1)× (N + 1) system of linear equations and we will write them in
the matrix form

AUn+2 +BUn+1 +CUn +DUn−1 +EUn−2 = Rϕn, 2≤ n≤M− 2,

10U0 = 15U1− 6U2 +U3, γ0U0 = θ1U1 +T1,

3UM = 4UM−1−UM−2, 10UM = 15UM−1− 6UM−2 +UM−3,

(2.20)

where

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 . . . 0 0 0 0

0 0 a 0 . . . 0 0 0 0

0 0 0 a . . . 0 0 0 0

0 0 0 0 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 a 0 0

0 0 0 0 . . . 0 0 a 0

0 0 0 0 . . . 0 0 0 a

0 0 0 0 . . . 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 . . . 0 0 0 0

0 c b 0 . . . 0 0 0 0

0 0 c b . . . 0 0 0 0

0 0 0 c . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . c b 0 0

0 0 0 0 . . . 0 c b 0

0 0 0 0 . . . 0 0 c b

0 l 0 0 . . . 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . 0 0 0 0

f e d 0 . . . 0 0 0 0

0 f e d . . . 0 0 0 0

0 0 f e . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . e d 0 0

0 0 0 0 . . . f e d 0

0 0 0 0 . . . 0 f e d

g p 0 0 . . . 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

D = B, E = A,
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R=

⎡

⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

Us =

⎡

⎢
⎢
⎢
⎢
⎣

U0
s

U1
s

···
UN
s

⎤

⎥
⎥
⎥
⎥
⎦

(N+1)×(1)

, where s= n± 2, n± 1,n.

(2.21)

Here

a= τ2

4h4
, b =−τ

2

h4
, c =− 1

h2
,

d = 6τ2

4h4
+

1
τ2

, e = 2
h2
− 2
τ2

, f = 1
τ2

,

l =− τ

2h2
, g =−1

τ
, p = 1

τ
+
τ

h2
,

ϕkn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos
(
xn
)
, k = 0,

f
(
tk,xn

)
, 1≤ k ≤N − 1,

(−1 + τ)cos
(
xn
)
, k =N ,

ϕn =

⎡

⎢
⎢
⎢
⎢
⎣

ϕ0
n

ϕ1
n

···
ϕNn

⎤

⎥
⎥
⎥
⎥
⎦

(N+1)×1

.

(2.22)

So, we have the fourth-order difference equation with respect to n with matrix coeffi-
cients. To solve this difference equation we have applied the modified Gauss elimination
method for difference equation with respect to n with matrix coefficients. Hence, we seek
a solution of the matrix equation in the following form:

Un = αn+1Un+1 +βn+1Un+2 + γn+1, n=M− 2, . . . ,2,1,0, (2.23)

where

αn+1 =−
(
C+Dαn +Eβn−1 +Eαn−1αn

)−1(
B+Dβn +Eαn−1βn

)
,

βn+1 =−
(
C+Dαn +Eβn−1 +Eαn−1αn

)−1
(A),

γn+1 =
(
C+Dαn +Eβn−1 +Eαn−1αn

)−1(
Rϕn−Dγn−Eαn−1γn−Eγn−1

)
,

(2.24)

where n= 2, . . . ,M− 2. Note that for obtaining αn+1,βn+1,γn+1, n= 1, . . . ,M− 1, we need
to find α1, β1, γ1 and α2, β2, γ2. We can find them fromU0 = α1U1 +β1. Using the formula
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γ0U0 = θ1U1 +T1, we obtain

U0 = inv
(
γ0
)
θ1U1 + inv

(
γ0
)
T1, (2.25)

where

α1 = inv
(
γ0
)
θ1, β1 = σ , γ1 = inv

(
γ0
)
T1. (2.26)

Using the formulas

10U0 = 15U1− 6U2 +U3, U0 = α1U1 +β1U2 + γ1, U1 = α2U2 +β2U3 + γ2, (2.27)

we obtain

α2 =
(
10α1− 15I

)−1(− 6I − 10β1
)
, β2 =

(
10α1− 15I

)−1
,

γ2 =
(
10α1− 15I

)−1(− 10γ1
)
.

(2.28)

Now, we will find un, 0≤ n≤M, by the formula (2.19), but for this we need to find uM
and uM−1. We can find uM and uM−1 from

3UM = 4UM−1−UM−2, 10UM = 15UM−1− 6UM−2 +UM−3,

UM−2 = αM−1UM−1 +βM−1UM + γM−1, UM−3 = αM−2UM−2 +βM−2UM−1 + γM−2.
(2.29)

Solving this system, we obtain

UM =
[(

4I −αM−1)−1(3I +βM−1
)− (

9I −βM−2− 4αM−2
)−1(

8I − 3αM−2
)]−1

× [− (
4I −αM−1

)−1
γM−1 +

(
9I −βM−2− 4αM−2

)−1
γM−2

]
,

UM−1 =
[(

3I +βM−1
)−1(− 4I +αM−1

)
+
(
8I − 3αM−2

)−1(
9I −βM−2− 4αM−2

)]−1

× [− (
3I +βM−1

)−1
γM−1 +

(
8I − 3αM−2

)−1
γM−2

]
.

(2.30)

Now, we will give the results of the numerical analysis. For their comparison, the errors
computed by

ENM = max
1≤k≤N−1, 1≤n≤M−1

∣
∣u

(
tk,xn

)−ukn
∣
∣ (2.31)

of the numerical solutions and the computer CPU times are recorded for different values
of N =M, where u(tk,xn) represents the exact solution and ukn represents the numerical
solution at (tk,xn). The results are shown in Table 2.1 for N =M = 20, 93, 200, and 300,
respectively. The simulation results are obtained by a PC Pentium (R) 4CPV, 3.00 6Hz,
2.99 6Hz, 512 Mb of RAM.
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Table 2.1. Comparison of the errors and CPU times (ENM�N CPU times(s)) of different difference
schemes for N =M = 20,93,200, and 300. A is the first order of accuracy difference scheme (2.3), B is
the second order of accuracy difference scheme (2), and C is the second order of accuracy difference
scheme (2.19).

Difference schemes \N=M 20 93 200 300

A 0.0143�0.27 0.0039�0.8 0.0019�14 0.0013�245

B 0.0013�0.23 0.0001�0.8 0.0000�11 0.0000�34

C 0.0039�0.26 0.0017�1.1 0.0005�13 0.0003�62

All recorded CPU times are on the arrange base with an error less than ∓15%, which
does not affect the conclusions stated below basically.

Comparison of the results in the table reveal the following factors:
(i) for N =M = 20, although the CPU times of all three difference schemes are

more or less equal, the second order of accuracy difference schemes produces
0.0143/0.0013 ∼= 11 times smaller error than the first order of accuracy differ-
ence scheme. For the second order of accuracy difference scheme generated by 5
points, this ratio reduces to 0.0143/0.0039∼= 3.6 times;

(ii) to have the same accuracy of computation (error = 0.0039) of the second order
of accuracy difference scheme generated by 5 points and N =M = 20, the first
order of accuracy difference scheme needs N =M = 93 intervals and 0.8/0.26∼=
3.07 times larger CPU time;

(iii) to have the same accuracy of computation (error= 0.0013) of the second order
of accuracy difference scheme generated by 3 points with N =M = 20, the first
order of accuracy difference scheme needsN =M = 300 intervals and 245/0.23∼=
1065 times larger CPU time;

(iv) all CPU times exceed ones after approximately N =M = 100;
(v) as it is observed from the last column of Table 2.1, CPU time for the first order of

accuracy difference scheme increases drastically for large values of N =M (i.e.,
for highly accurate numerical results) and is much larger than needed for the
second order of accuracy difference schemes.
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AN EXISTENCE RESULT FOR A CLASS OF SINGULAR
PROBLEMS WITH CRITICAL EXPONENTS

R. B. ASSUNÇÃO, P. C. CARRIÃO, AND O. H. MIYAGAKI

Combining some arguments used by Brézis and Nirenberg, and by Gazzola and Ruf, to-
gether with the generalized mountain pass theorem due to Rabinowitz, we prove a result
of existence of a nontrivial solution for a class of degenerate elliptic problems involving
the critical Hardy-Sobolev exponent in a bounded smooth domain containing the origin.

Copyright © 2006 R. B. Assunção et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we consider the following class of singular quasilinear elliptic problems in
a smooth bounded domain Ω⊂RN , with 0∈Ω, namely,

Lu= λ|x|−(a+1)p+c|u|p−2u+ |x|−bq|u|q−2u in Ω,

u= 0 on ∂Ω,
(P)

where Lu = −div[|x|−ap|∇u|p−2∇u], a, b, c, p are given numbers and q ≡ Np/[N −
p(a+ 1− b)] is the critical Hardy-Sobolev exponent.

Brézis and Nirenberg in [3] proved that problem (P) has a positive solution in the
case p = 2, a = b = 0, c = 2, q = 2∗ ≡ 2N/(N − 2), and 0 < λ < λ1, where λ1 is the first
eigenvalue of the Laplacian operator in a smooth bounded domain Ω⊂RN . After this pi-
oneering work, several authors treated generalizations of the problem (P), among which
we would like to cite Cappozi, Fortunato, and Palmieri [5], and Cerami, Fortunato, and
Struwe [7], who obtained nontrivial solutions for all positive λ. (See also Zhang [14].)
These results were extended by Gazzola and Ruf in [10], still in a semilinear problem.

On the other hand, Clément, de Figueiredo, and Mitidieri in [9] studied problem (P)
in a ball, getting a similar result as that obtained in [3] for all λ < λ1 where λ1 is the first
eigenvalue of the operator Lu in a radial form. See Xuan [13] for problem (P) in a general
domain Ω.

In 2003, Alves, Carrião, and Miyagaki [1], by combining some arguments used in [5,
10], showed that there exists a constant λ∗ > λ1 such that problem (P), in a ball, possesses
at least one nontrivial solution for all λ∈ (0,λ∗).

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 131–140
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We recall that by a Pohozaev-type identity, (see, e.g., [8]), problem (P) has no non-
trivial solution when λ≤ 0.

The main goal of this paper is to show that the techniques developed in [1] can be
generalized for a class of problems studied in [12] in order to show the existence of non-
trivial solution for problem (P) when 0 < λ < λ∗ for some λ∗ defined below and Ω is any
smooth domain containing the origin. Among the difficulties related to this problem, we
recall that the space involved is no longer a Hilbert space and that the critical Hardy-
Sobolev exponent is present in the equation, which brings us to the question of lack of
compactness of the embeddings of Sobolev spaces in the weighted Lbq spaces. To over-
come these difficulties we combine an inequality due to Caffarelli, Kohn, and Nirenberg
[4] with some techniques used in [3] in order to recover the compactness of Palais-Smale
sequences.

To state our result, we need to define the following numbers: 1 < p < N , 0≤ a < (N −
p)/p, a≤ b < a+ 1, μ≡ [N − p(a+ 1)]/(p− 1)≥ c > 0, and q ≡Np/[N − p(a+ 1− b)] >
p.

Let λ1 be the first eigenvalue of Lu and φ1 > 0 the corresponding eigenfunction. Define

λ∗ ≡ inf
{

1
p

∫

Ω
|x|−ap|∇u|p :

∫

Ω
|x|−(a+1)p+c|u|p = 1, u∈ E2

}

, (1.1)

where

E2 ≡
{

u∈D1,p
a (Ω) :

∫

Ω
|x|−(a+1)p+c

∣
∣φ1

∣
∣p−2

φ1u= 0
}

. (1.2)

We remark that adapting some arguments in [1] (see also [12]), we can prove that
λ∗ > λ1.

Hereafter
∫
Ω f denotes

∫
Ω f (x)dx.

Now we state our main result.

Theorem 1.1. Suppose that constants a, b, c, p, and q are in the previously defined inter-
vals. Then problem (P) has a nontrivial solution, provided that we have one of the following
conditions:

(1) η ≡ c−μ < 0 for all 0 < λ < λ∗;
(2) η = 0 for all 0 < λ < λ∗ with λ	= λ1.

2. Preliminary results

The main tool for the variational approach to these problems is the following weighted
Hardy-Sobolev inequality due to Caffarelli, Kohn, and Nirenberg [4] (see also [6]): for
1 < p < N and for all u∈ C∞0 (RN ), there is a positive constant Ca,b such that

[∫

RN
|x|−bq|u|q

]p/q
≤ Ca,b

∫

RN
|x|−ap|∇u|p. (2.1)
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We define the spaces D
1,p
a (Ω) as the completion of C∞0 (Ω) with respect to the norm given

by

‖u‖ ≡
[∫

Ω
|x|−ap|∇u|p

]1/p

. (2.2)

We also define

S(a,b)≡ inf
u∈D1,p

a (Ω)\{0}
Ea,b(u), SR(a,b)≡ inf

u∈D1,p
a,R(Ω)\{0}

Ea,b(u), (2.3)

where

Ea,b(u)≡

∫

Ω
|x|−ap|∇u|p

[∫

Ω
|x|−bq|u|q

]p/q ,

D
1,p
a,R(Ω)≡ {u∈D1,p

a (Ω) : u is radial
}
.

(2.4)

We recall (see [9]) that SR(a,b) is attained by the function

ûε = uεa,b(r)

= Cε(N−p(a+1))/p(p−1)[ε(p(a+1)−bq)/(p−1) + r(p(a+1)−bq)/(p−1)]−(N−p(a+1))/(p(a+1)−bq)
,

(2.5)

where r = |x| and

C = [μp−1(N − bq)
](N−p(a+1))/(p[p(a+1)−bq])

. (2.6)

Besides, S(a,b) is attained in the case p = 2 (see [11]) and in the case p 	= 2 (see [2]).

In the Sobolev space D
1,p
a (Ω), we define the energy functional Iλ :D

1,p
a (Ω)→R by

Iλ(u)≡ 1
p

∫

Ω
|x|−ap|∇u|p− 1

q

∫

Ω
|x|−bq|u|q− λ

p

∫

Ω
|x|−αp|u|p, (2.7)

where α≡ (a+ 1)− c/p. From the Caffarelli-Kohn-Nirenberg inequality, it follows that Iλ
is well defined in D

1,p
a (Ω); we also have Iλ ∈ C1(D

1,p
a (Ω),R) and

I′λ(u)v =
∫

Ω
|x|−ap|∇u|p−2∇u∇v−

∫

Ω
|x|−bq|u|q−2uv− λ

∫

Ω
|x|−αp|u|p−2uv. (2.8)

Furthermore, the critical points of Iλ are weak solutions of problem (P).
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3. Proof of the theorem

To prove Theorem 1.1 we use some arguments due to Brézis and Nirenberg [3] as well
as Capozzi, Fortunato, and Palmieri [5], Gazzola and Ruf [10], and Alves, Carrião, and
Miyagaki [1]. Specifically, we apply the following version of the Rabinowitz generalized
mountain pass theorem in Banach spaces.

Theorem 3.1. Let E be a real Banach space and let I : E→R be a differentiable functional
verifying the following conditions.

(1) I(−u)= I(u) for all u∈ E and I(0)= 0.
(2) There exists d > 0 such that I verifies the (PS)c condition for all 0 < c < d.
(3) There are real constants ρ > 0, e > 0 (with e < d) and a k-dimensional subspace

E1 ⊂ E with a topological complementar subspace E2 such that
(a) I(u)≥ 0 on (Bρ∩E2)\{0};
(b) I(u)≥ e on ∂Bρ∩E2.

(4) There is a constant r > 0 and an m-dimensional subspace E3 ⊂ E (with m> k) such
that I(u) < r, for all u∈ E3 with e < r < d.

Then I has at least m− k distinct pairs of nonzero critical points. In addition, if e = 0, then
I has at least m− k− 1 distinct pairs of nonzero critical points.

We are going to show that the energy functional Iλ verifies the geometric conditions
and the other hypotheses of Theorem 3.1. To do so, we will use the function

uε(r)≡ ψ(r)ûε(r), (3.1)

where r = |x| and ψ is a cutoff function such that ψ(r) = 1 for r ∈ [0,R0], ψ(r) = 0 for
r ∈ [2R0,+∞) and 0≤ ψ ≤ 1 and R0 is such that 0 < 2R0 < R <∞ with BR(0)⊂Ω.

Claim 1. There exist e > 0 and ρ > 0 such that I(u)≥ e for all u∈ E2 with ‖u‖ = ρ.
In fact, let u∈ E2; then

Iλ(u)≥ 1
p

(

1− λ

λ∗

)∫

Ω
|x|−ap|∇u|p− 1

q

∫

Ω
|x|−bq|u|q

≥ 1
p

(

1− λ

λ∗

)

‖u‖p− S(a,b)q/p

q
‖u‖q/p.

(3.2)

Since q > p and λ < λ∗, the claim follows.

Claim 2. The energy functional Iλ verifies the Palais-Smale condition (PS)c for all values
0 < c < (1/p− 1/q)SR(a,b)q/(q−p).

In other words, for all c in the specified interval, let {un} be a sequence in E verifying
the conditions, as n→∞,

Iλ
(
un
)−→ c, I′λ

(
un
)−→ 0; (3.3)

then {un} contains a strongly convergent subsequence in E.
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To prove the claim, let 0 < c < (1/p− 1/q)SR(a,b)q/(q−p). First we will show that the
sequence {un} is bounded in E. In fact,

C
[
1 +‖u‖]≥ Iλ

(
un
)− 1

p
I′λ
(
un
)
un

=
(

1
p
− 1
q

)∫

Ω
|x|−bq∣∣un

∣
∣q

≡
(

1
p
− 1
q

)

‖u‖qLbq ,

(3.4)

where Lbq(Ω) is the weighted space Lq(Ω) with the above-defined norm.

By (2.7) we have

∥
∥un

∥
∥p ≤ C+ λ

∥
∥un

∥
∥p
Lαp

+
p

q

∥
∥un

∥
∥q
Lbq
. (3.5)

Since c > 0, it follows by the Hölder inequality that

‖u‖Lαp ≤ ‖u‖Lbq . (3.6)

Following up, we have

‖u‖p ≤ C+ λ
∥
∥un

∥
∥p
Lbq

+
∥
∥un

∥
∥p
Lbq
≤ C+ λC1

(
1 +

∥
∥un

∥
∥
)p/q

+C2
(
1 +

∥
∥un

∥
∥
)
. (3.7)

This way, we have the boundedness of the sequence {un} in D
1,p
a (Ω).

Passing to a subsequence, still denoted in the same way, we have un ⇀ u weakly in

D
1,p
a (Ω); it is standard to prove that u∈D1,p

a (Ω) is a weak solution of problem (P).
Now we define wn ≡ un − u. Since I′λ(un)un = o(1) and I′λ(un) = 0, using the Brézis-

Lieb lemma, as n→∞, we have

o(1)= ∥∥wn

∥
∥p−∥∥wn

∥
∥q
Lbq

+ o(1),
∫

Ω
|x|−αp∣∣un−u

∣
∣p −→ 0.

(3.8)

The last limit follows from the compact immersion D
1,p
a (Ω)↩Lαr (Ω) where 1≤ r < N p/

(N − p) and α < (a+ 1)r +N(1− r/p)/r = a+ 1 if r = p. (See [12].)
Now we suppose that ‖wn‖p → l; then ‖wn‖qLbq → l. We also have

Iλ(u)= Iλ(u)− 1
p
I′λ(u)u=

(
1
p
− 1
q

)

‖u‖qLbq ≥ 0; (3.9)

passing to the limit, as n→∞, in

Iλ
(
wn
)= Iλ

(
un
)− Iλ(u) + o(1), (3.10)
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we have

d ≡ lim
n→∞Iλ

(
wn
)= c− I(u)≤ c, (3.11)

that is, d ≤ c.
On the other hand, by the definition of SR(a,b), we know that SR(a,b)q/(q−p) ≤ l.

Therefore,

d ≤ c <
(

1
p
− 1
q

)

SR(a,b)q/(q−p) ≤
(

1
p
− 1
q

)

l = d (3.12)

(the last equality follows from d = Iλ(wn)= (1/p− 1/q)‖wn‖qLbq = l) which is a contradic-

tion; hence, we have l = 0, that is, un→ u strongly in D
1,p
a (Ω) as n→∞.

Claim 3. sup{I(u)|u∈Wε}<(1/p− 1/q)S̃R(a,b)q/(q−p) where S̃R(a,b)≡ SR(a,b)N/p(a+1−b)

and

Wε ≡
{
u∈D1,p

a (Ω) : u≡ u− + tuε, u− ∈
〈
φ1
〉}
. (3.13)

To prove this claim, we begin by fixing some u∈D1,p
a (Ω). Then sup{Iλ(tu) : t > 0 and

u∈D1,p
a (Ω) fixed} is equal to

(
1
p
− 1
q

)⎡

⎣
‖u‖p− λ‖u‖pLαp

‖u‖pLbq

⎤

⎦

q/(q−p)

. (3.14)

Affirmative. sup{‖u‖p− λ‖u‖pLαp : ‖u‖pLbq = 1, u∈Wε} < SR(a,b) for ε small enough.

Due to the cutoff function, at this point of the proof we are working with problem (P)
in the radial form. This way the proof of the affirmative follows the ideas of [1, Claim
3.1]. For the sake of completeness we sketch it here.

We remark that

∥
∥uε

∥
∥p = S̃R(a,b) +O

(
εμ
)
. (3.15)

Moreover,

∥
∥uε

∥
∥q
Lbq
= S̃R(a,b) +O

(
εNμ/(N−p(a+1−b))

)
, (3.16)

∥
∥uε

∥
∥p
Lαp
≥ Cεc +

⎧
⎪⎨

⎪⎩

Cεc if η < 0,

C
(
εμ| logε|) if η = 0.

(3.17)

From (3.15), (3.16), (3.17), for ε small enough, we have

∥
∥uε

∥
∥p + λ

∥
∥uε

∥
∥p
Lαp

∥
∥uε

∥
∥p
Lαp

=
⎧
⎪⎨

⎪⎩

SR(a,b)− λCεc + εμ if η < 0,

SR(a,b)− λCεμ| logε|+O(εμ) if η = 0.
(3.18)
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In the case λ > λ1 and η ≤ 0, let u ≡ u− + tuε, with u− ∈ 〈φ1〉 and t > 0. Then t and
‖u−‖Lαp are bounded.

Indeed, by the embedding of the weighted spaces, we have

‖u−‖Lαp ≤ C‖u‖Lbq +C|t|p∥∥uε
∥
∥
Lbq
. (3.19)

Supposing that t is bounded, we obtain the boundedness of ‖u−‖Lαp . Now we prove that t
is bounded. First we use the inequalities

∣
∣
∣
∥
∥u− + tuε

∥
∥q
Lbq
−‖u−‖qLbq −

∥
∥tuε

∥
∥q
Lbq

∣
∣
∣

≤ C
{

|t|q∥∥uε
∥
∥q−1

Lbq−1
‖u−‖Lb2 +

1
4
‖u−‖qLbq +C|t|q∥∥uε

∥
∥q
Lbq

}

≤ C|t|qε(N[N−p(a+1)])/(N(p−1)+p(a+1−b)) +
1
2
‖u−‖qLbq ,

(3.20)

where we used the fact that the eigenspace generated by φ1 has dimension one and ‖u−‖Lb∞
is bounded (see [12]), and also we combined the Hölder and the Young inequalities.

Finally, from the last inequality above we get

1= ‖u‖Lbq ≤ |t|q
∥
∥uε

∥
∥q
Lbq
−C|t|qε(N[N−p(a+1)])/(N(p−1)+p(a+1−b)). (3.21)

For ε small enough, from (3.16) we conclude that t is bounded.
We take u∈Wε such that ‖u‖Lbq = 1. This way we have

‖u‖p− λ‖u‖pLαp ≤Λ+

∥
∥tuε

∥
∥p− λ∥∥tuε

∥
∥p
Lαp

∥
∥tuε

∥
∥p
Lbq

∥
∥tuε

∥
∥p
Lbq

, (3.22)

where

Λ=Λ(ε,c,u)≡ (λ1− λ
)‖u−‖pLαp +C‖u−‖Lαp εμ((p−1)/p)2

, (3.23)

satisfying

Λ≤ 0 or Λ≤ Cεμ((p−1)/p)2
. (3.24)

Following up,

‖u‖p− λ‖u‖pLαp
≤ Cεμ((p−1)/p)2

+
[
SR(a,b)− λCεc +O

(
εμ
)][

1 +Cε(N−p(a+1))/(N(p−1)+p(a+1−b))]p/q

< SR(a,b)
(3.25)

for ε small enough.
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For the case λ= λ1 and η < 0, let φ1 > 0 be the first eigenvalue of the operator Lu such

that
∫ R

0 |r|−αp+N−1|φ|p = 1. Denote by Pu the projection of u ∈ E onto the eigenspace
〈φ1〉; then

Pu=
[∫ R

0
r−αp+N−1φ1u

]

φ1. (3.26)

Also denote û ≡ u− Pu ∈ E2. It is easy to verify that ‖Puε‖Lbq , ‖Puε‖Lαp , and ‖Puε‖ are
O(εμ).

Then, for η < 0, (3.18) still holds after replacing uε by ûε, where

ûε ≡ uε−Puε. (3.27)

Let u∈ Ŵε such that ‖u‖Lbq = 1, where

Ŵε ≡
{
u∈ E : u= u− + tûε, u− ∈

〈
φ1
〉

, t ∈R}. (3.28)

Then, since u= û− +Pu− + tûε, we have

‖u‖p− λ1‖u‖pLαp ≤ ‖û−‖p− λ1‖û−‖pLαp +‖Pu−‖p− λ1‖Pu−‖pLαp
+
∥
∥tûε

∥
∥p− λ1

∥
∥tûε

∥
∥p
Lαp

+Cεμ((p−1)/p)2
;

(3.29)

thus the proof follows by arguing as in the previous case.

4. Final comments

By using the same approach of Gazzola and Ruf [10], our result still holds when the
function λ|x|−αp|u|p−2u is substituted by a function g verifying the following.

(G0) g : Ω×R→ R is a Carathéodory function, and for every ε > 0, there exists aε ∈
Lbq′(Ω) (where 1/q+ 1/q′ = 1) such that

∣
∣g(x,s)

∣
∣≤ aε(x) + ε|x|−bq|s|q−1 (4.1)

for a.e. x ∈R and for all s∈R.
(G1) G(x,s)≡ ∫ s0 g(x, t)≥ 0 for a.e. x ∈Ω and for all s∈R.
(G2) There exist δ0 > 0 and μ∈ (λ1,λ∗) such that

1
p
λ1|x|−αp|s|p ≤G(x,s)≤ μ

p
|x|−αp|s|p (4.2)

for a.e. x ∈Ω and |s| < δ0.
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(G3) There exists σ ∈ (0,1/q) such that

G(x,s)≥ λ1

p
|x|−αp|s|p−

(
1
q
− σ

)

|x|−bq|s|q (4.3)

for a.e. x ∈Ω and s∈R.
(G4) There exist 0∈Ω0 ⊂Ω such that

lim
s→∞

G(x,s)
|x|−αp|s|α1

= +∞, uniformly for x ∈Ω0, (4.4)

where α1 is given by

α1 ≡
(
N(p−N)

[
N − p(a+ 1)

]

k
− [p(a+ 1)− c−N]

)
p

N − p(a+ 1)
(4.5)

and k = p(a+ 1− b)[N − p(a+ 1)]−N(p−N)(p− 1).
We remark that when p = c = 2 and a = b = α = 0, α1 = 8N/(N2 − 4) is the Gazzola-

Ruf “magic number.”
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2003, pp. 225–238.

[2] R. B. Assunção, P. C. Carrião, and O. H. Miyagaki, Critical singular problems via concentration-
compactness lemma, to appear in Journal of Mathematical Analysis and Applications.
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TWO-WEIGHTED POINCARÉ-TYPE INTEGRAL
INEQUALITIES

GEJUN BAO

Some new two-weighted integral inequalities for differential forms are obtained, which
can be considered as generalizations of the classical Poincaré-type inequality.

Copyright © 2006 Gejun Bao. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Differential forms are important generalizations of distributions, and the classical
Poincaré-type inequality plays a fundamental role in the theory. Many interesting re-
sults and applications of differential forms on Poincaré-type inequality have recently been
found.

We always suppose thatΩ is a connected open subset ofRn throughout this paper. Balls
are denoted by B, and σB is the ball with the same center as B and with diam(σB)= σB.
The n-dimensional Lebesgue measure of a set E ⊆Rn is denoted by |E|. We callw a weight
if w ∈ L1

loc(Rn) and w > 0 a.e. We use D′(Ω,Λl) to denote the space of all differential
l-forms ω(x) =∑I ωI(x)dxI =

∑
ωi1···il(x)dxi1 ∧ ··· ∧ dxil , and we write Lp(Ω,Λl) for

the l-forms with ωI ∈ Lp(Ω,R) for all ordered l-tuples I . Thus Lp(Ω,Λl) is a Banach
space with norm

‖ω‖p,Ω =
(∫

Ω

∣
∣ω(x)

∣
∣pdx

)1/p

=
⎛

⎝
∫

Ω

(
∑

I

∣
∣ωI(x)

∣
∣2
)p/2

dx

⎞

⎠

1/p

. (1.1)

The following result appears in [2]. LetQ ⊂Rn be a cube or a ball. Then to each y ∈Q,
there corresponds a linear operator Ky : C∞(Q,Λl)→ C∞(Q,Λl−1) defined by

(
Kyω

)(
x;ξ1, . . . ,ξl

)=
∫ 1

0
tl−1ω

(
tx+ y− ty;x− y,ξ1, . . . ,ξl−1

)
dt. (1.2)

and the decomposition ω = d(Kyω) +Ky(dω).

Hindawi Publishing Corporation
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We define another linear operator TQ : C∞(Q,Λl)→ C∞(Q,Λl−1) by averaging Ky over
all points y in Q:

TQω =
∫

Q
ϕ(y)Kyωdy, (1.3)

where ϕ∈ C∞(Q) is normalized by
∫
Qϕ(y)dy = 1, we define the l-forms ωQ ∈D′(Q,Λl)

by

ωQ = |Q|−1
∫

Q
ω(y)dy, l = 0, ωQ = d

(
TQω

)
, l = 1, . . . ,n, (1.4)

for all ω ∈ Lp(Q,Λl), l <∞.

2. Preliminaries

Defintions 2.1 [1]. Let a pair of weights (w1(x),w2(x)) satisfy the Ar,λ-condition in a set
Ω⊂Rn. Write (w1(x),w2(x))∈Ar,λ(Ω), for some λ≥ 1 and 1 < r <∞, with 1/r + 1/r′ = 1
if

sup
B⊂Ω

(
1
|B|

∫

B

(
w1
)λ

dx

)1/λr(
1
|B|

∫

B

(
1
w2

)λr′/r
dx

)1/λr′

<∞ (2.1)

for all B ⊂Rn.

Defintions 2.2 [4]. Let the weight w(x) ∈ L1
loc(Rn) satisfy the Aλr -condition, and write

w ∈Aλr if w(x) > 0 a.e., and

sup

(
1
|B|

∫

B
wdx

)(
1
|B|

∫

B

(
1
w

)1/(r−1)

dx

)λ(r−1)

<∞. (2.2)

Lemma 2.3. Let (w1,w2)∈Ar,λ(Ω) and p > r, then (w1,2 )∈Ap,λ(Ω).

Lemma 2.4. Let p > 1, u(x)≥ v(x)≥ 0 if

(
1
|I|
∫

I
updx

)1/p

≤ K 1
|I|
∫

I
vdx (2.3)

for all subintervals I of some interval I0, then

(
1
∣
∣I0
∣
∣

∫

I0
urdx

)1/r

≤ C(p,K ,r)

(
1
∣
∣I0
∣
∣

∫

I0
vdx

)

(2.4)

for p ≤ r < p+η, where η = η(p,K) > 0.
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Lemma 2.5. Let (w1,w2)∈ Ar,1(Ω) and w2 ≤ w1 a.e., then there are β > 1 and C > 0 such
that

∥
∥w1

∥
∥
β,B ≤ C|B|(1−β)/β

∥
∥w2

∥
∥

1,B (2.5)

for any cube or any ball B ⊂Rn.
The following version of the Poincaré inequality appears in [3].

Lemma 2.6. Let u ∈ D′(Q,Λl) and du ∈ Lp(Q,Λl+1). Then u− uQ is in W1
p(Q,Λl) with

1 < p <∞ and

∥
∥u−uQ

∥
∥
p,Q ≤ C(n, p)|Q|1/n‖du‖p,Q (2.6)

for Q is a cube or a ball in Rn, l = 0,1, . . . ,n.
Tadeusz Iwaniec and Adam Lutoborski prove the following local Poincaré-type inequality

in [2].

Lemma 2.7. Let u ∈ D′(Q,Λl) and du ∈ Lp(Q,Λl+1). Then u− uQ is in Lnp/(n−p)(Q,Λl)
and

(∫

Q

∣
∣u−uQ

∣
∣np/(n−p)

dx
)(n−p)/np

≤ Cp(n)
(∫

Q
|du|pdx

)1/p

(2.7)

for Q a cube or a ball in Rn, l = 0,1, . . . ,n and 1 < p < n.

3. Local two-weighted integral inequalities

We now give the following version of the local two-weighted Poincaré-type inequality for
differential forms.

Theorem 3.1. Let u ∈ D′(B,Λl) and du ∈ Lp(B,Λl+1), l = 0,1, . . . ,n. Assume that 1 < s <
p <∞, then there exists a constant β > 1, such that if w2 ≤ w1 a.e., with (w1,w2) ∈ Ar,1,

w2 ∈ As/pp/k, for some r > 1 and k with sβ/(β− 1)≤ k < p, then

(
1
|B|

∫

B

∣
∣u−uB

∣
∣sw1dx

)1/s

≤ C|B|1/n
(

1
|B|

∫

B
|du|pw2 dx

)1/p

(3.1)

for all balls B ⊂Rn, here C is a constant independent of u and du.

Proof. Since (w1,w2) ∈ Ar,1(Ω) for some r > 1 and w2 ≤ w1, by Lemma 2.5, there exist
constants β > 1 and C1 > 0, such that

∥
∥w1

∥
∥
β,B ≤ C1|B|(1−β)/β

∥
∥w2

∥
∥

1,B (3.2)



144 Two-weighted Poincaré-type integral inequalities

for any cube or any ball B ⊂ Rn. Choose t = sβ/(β− 1), then 1 < s < t and β = t/(t− s),
since 1/s= 1/t+ (t− s)/st, by Hölder’s inequality, (3.2), and Lemma 2.6, we have

∥
∥u−uB

∥
∥
s,B,w1

=
(∫

B

(∣
∣u−uB

∣
∣w1/s

1

)s
dx
)1/s

≤
(∫

B

∣
∣u−uB

∣
∣tdx

)1/t(∫

B

(
w1/s

1

)st/(t−s)
dx
)(t−s)/st

≤ C2|B|(1−β)/βs
∥
∥w2

∥
∥1/s

1,B

∥
∥u−uB

∥
∥
t,B

≤ C3|B|1/n|B|(1−β)/βs
∥
∥w2

∥
∥1/s

1,B‖du‖t,B.

(3.3)

Now t = sβ/(β− 1) < p and 1/t = 1/p+ (p− t)/pt. By Hölder’inequality again, we obtain

‖du‖t,B =
(∫

B
|du|tdx

)1/t

=
(∫

B

(|du|w1/p
2 w

−1/p
2

)t
dx
)1/t

≤
(∫

B

(|du|w1/p
2

)p
dx
)1/p(∫

B

(
w
−1/p
2

)pt/(p−t)
dx
)(p−t)/pt

=
∥
∥
∥
∥

1
w2

∥
∥
∥
∥

1/p

t/(p−t),B

(∫

B
|du|pw2 dx

)1/p

.

(3.4)

Note t = sβ/(β− 1) ≤ k, then p/k ≤ p/t. By [4, Theorem 2.4], we find that w2 ∈ As/pp/k ⊂
A
s/p
p/t. Therefore we have

∥
∥w2

∥
∥1/s

1,B

∥
∥
∥
∥

1
w2

∥
∥
∥
∥

1/p

t/(p−t),B

=
(∫

B
w2 dx

)1/s
(∫

B

(
1
w2

)t/(p−t)
dx

)(p−t)/pt

=
⎛

⎝

(∫

B
w2 dx

)(∫

B

(
1
w2

)t/(p−t)
dx

)s(p−t)/pt⎞

⎠

1/s

= (|B|1+s(p−t)/pt)1/s

·
⎛

⎝

(
1
|B|

∫

B
w2 dx

)(
1
|B|

∫

B

(
1
w2

)1/(p/t−1)

dx

)(s/p)(p/t−1)
⎞

⎠

1/s

≤ C4|B|1/s+1/t−1/p.

(3.5)
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Substituting (3.4) and the above inequality into (3.3) implies

∥
∥u−uB

∥
∥
s,B,w1

≤ C5|B|1/n+1/s−1/p
(∫

B
|du|pdx

)1/p

, (3.6)

that is,

(
1
|B|

∫

B

∣
∣u−uB

∣
∣sw1(x)dx

)1/s

≤ C|B|1/n
(

1
|B|

∫

B
|du|pw2 dx

)1/p

. (3.7)

Now we can prove the other version of the local two-weighted Poincaré-type inequality
for differential forms. �

Theorem 3.2. Let u ∈ D′(B,Λl) and du ∈ Lp(B,Λl+1), l = 0,1, . . . ,n. Then there exists a
constant β > 1 such that if w2 ≤ w1 a.e. with (w1,w2) ∈ Ar,1 and 2 ∈ As/nn/s, where s = n/β
and r > 1, then

(
1
|B|

∫

B

∣
∣u−uB

∣
∣sw1 dx

)1/s

≤ C|B|1/n
(

1
|B|

∫

B
|du|nw2 dx

)1/n

(3.8)

for all balls B ⊂Rn. Here C is a constant independent of u and du.

Theorem 3.3. Let u ∈ D′(B,Λl) and du ∈ Lp(B,Λl+1), l = 0,1, . . . ,n. If 1 < s < n and
(w1,w2) ∈ An/s,1, then there exists a constant C, which is independent of u and du, such
that

(
1
|B|

∫

B

∣
∣u−uB

∣
∣sws/n

1 dx
)1/s

≤ C|B|1/n
(

1
|B|

∫

B
|du|nw2 dx

)1/n

(3.9)

for any ball or any cube B ⊂Rn.

4. Global two-weighted integral inequality

Now we give the following global two-weighted Poincaré-type inequality in Ls(μ)-aver-
aging domains.

Theorem 4.1. Let u ∈ D′(Ω,Λl) and du ∈ Lp(Ω,Λl+1), l = 0,1, . . . ,n. Assume that s > 1
and p >max(s,n). Then there exists a constant β > 1, such that if (w1,w2)∈Ar,1 with w2 ≤
w1 a.e., w2 ∈As/pp/k, where r > 1, sβ/(β− 1)≤ k < p, and w2 ≥ η > 0, then

(
1

μ1(Ω)

∫

Ω

∣
∣u−uB0

∣
∣sw1 dx

)1/s

≤ Cμ2(Ω)1/n

(
1

μ2(Ω)

∫

Ω
|du|pw2 dx

)1/p

. (4.1)

for any Ls(μ)-averaging domain Ω and some ball B0 with 2B0 ⊂Ω. Here the measure μi is
defined by dμi =wi(x)dx, i= 1,2, and C is a constant independent of u and du.
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Proof. Note μ1(B)≥ μ2(B)= ∫B w2 dx ≥ ∫B ηdx = η|B|.
Then

|B| ≤ C1μ2(B)≤ C1μ1(B), (4.2)

where C1 = 1/η, since p > n, then 1/n− 1/p > 0, and from (4.2) we have

μ1(B)−1/s|B|1/s+1/n−1/p ≤ μ2(B)−1/s|B|1/s+1/n−1/p

= C2μ2(B)1/n−1/p ≤ C2μ2(Ω)1/n−1/p.
(4.3)

By Theorem 3.1, the definition of Ls(μ)-averaging domain, and (4.3), we have

(
1

μ1(Ω)

∫

Ω

∣
∣u−uB0

∣
∣sdμ1

)1/s

≤
(

1
μ1
(
B0
)

∫

Ω

∣
∣u−uB0

∣
∣sdμ1

)1/s

≤ C3 sup
2B⊂Ω

(
1

μ1(B)

∫

B

∣
∣u−uB

∣
∣sdμ1

)1/s

= C3 sup
2B⊂Ω

⎛

⎝

(
|B|
μ1(B)

)1/s(
1
|B|

∫

B

∣
∣u−uB

∣
∣sdμ1

)1/s
⎞

⎠

≤ C3 sup
2B⊂Ω

⎛

⎝

(
|B|
μ1(B)

)1/s

C4|B|1/n
(

1
|B|

∫

B
|du|pw2 dx

)1/p
⎞

⎠

≤ C5 sup
2B⊂Ω

(

μ1(B)−1/s|B|1/s+1/n−1/p
(∫

B
|du|pw2 dx

)1/p
)

≤ C5 sup
2B⊂Ω

(

C2μ2(Ω)1/n−1/p
(∫

B
|du|pw2 dx

)1/p
)

≤ C6 sup
2B⊂Ω

(

μ2(Ω)1/n−1/p
(∫

Ω
|du|pw2 dx

)1/p
)

= C6μ2(Ω)1/n−1/p
(∫

Ω
|du|pw2 dx

)1/p

= C6μ2(Ω)1/n
(

1
μ2(Ω)

∫

Ω
|du|pw2 dx

)1/p

.

(4.4)

Hence we obtain
(

1
μ1(Ω)

∫

Ω

∣
∣u−uB0

∣
∣sdμ1

)1/s

≤ Cμ2(Ω)1/n

(
1

μ2(Ω)

∫

Ω
|du|pw2 dx

)1/p

. (4.5)

This completes the proof of Theorem 4.1. �
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Defintions 4.2. Call Ω, a proper subdomain of Rn, δ-John domain, δ > 0, if there exists
a point x0 ∈Ω which can be joined with any other point x ∈Ω by a continuous curve
γ ⊂Ω so that

d(ξ,∂Ω)≥ δ|x− ξ| (4.6)

for each ξ ∈ γ. Here d(ξ,∂Ω) is the Euclidean distance between ξ and ∂Ω.
As we know that a δ-John domain has the following properties in [3].

Lemma 4.3. Let Ω⊂Rn be a δ-John domain, then there exists a covering V of Ω consisting
of open cubes such that

(1)
∑

Q∈V χσQ(x)≤NχΩ(x), σ > 1 and x ∈Rn;
(2) there is a distinguished cubeQ0 ∈V (called the central cube) which can be connected

with every Q ∈ V by a chain of cubes Q0,Q1, . . . ,Qk =Q from V such that for each
i= 0,1, . . . ,k− 1,

Q ⊂NQi. (4.7)

Now we prove the following two-weighted global result in a δ-John domain.

Theorem 4.4. Let u ∈ D′(Ω,Λl) and du ∈ Lp(Ω,Λl+1), l = 0,1, . . . ,n. If 1 < s < n and
(w1,w2)∈ An/s,1, then there exists a constant C independent of u and du such that

(
1
|Ω|

∫

Ω

∣
∣u−uQ

∣
∣sws/n

1 dx
)1/s

≤ C
(∫

Ω
|du|nw2 dx

)1/n

(4.8)

for any δ-John domain Ω ⊂ Rn. Here Q is any cube in the covering V of Ω appearing in
Lemma 4.3.

Proof. We can write (3.9) as

∫

Q

∣
∣u−uQ

∣
∣sws/n

1 dx ≤ C1|Q|
(∫

Q
|du|nw2 dx

)s/n
, (4.9)

where Q ⊂Rn is any cube. Suppose σ > 1, by (4.9) and Lemma 4.3, we have
∫

Ω

∣
∣u−uQ

∣
∣sws/n

1 dx ≤
∑

Q∈V

∫

Q

∣
∣u−uQ

∣
∣sws/n

1 dx

≤ C1

∑

Q∈V
|Q|

(∫

Q
|du|nw2 dx

)s/n

≤ C1|Ω|
∑

Q∈V

(∫

σQ
|du|nw2 dx

)s/n

≤ C1|Ω|N
(∫

Ω
|du|nw2 dx

)s/n

= C2|Ω|
(∫

Ω
|du|nw2 dx

)s/n
.

(4.10)
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Thus we have

(
1
|Ω|

∫

Ω

∣
∣u−uQ

∣
∣sws/n

1 dx
)1/s

≤ C
(∫

Ω
|du|nw2 dx

)1/n

. (4.11)

We have completed the proof of Theorem 4.4. �

Applying Theorem 3.2 and using the same method that used in the proof of Theorem
4.1, we can have the following global result.

Theorem 4.5. Let u ∈ D′(Ω,Λl) and du ∈ Lp(Ω,Λl+1), l = 0,1, . . . ,n. Then there exists a
constant β > 1, such that ifw2 ≤w1 a.e., (w1,w2)∈ Ar,1, andw2 ∈ As/nn/s, where s= n/β, r > 1
and w2 ≥ η > 0. Then

(
1

μ1(Ω)

∫

Ω

∣
∣u−uB0

∣
∣sw1dx

)1/s

≤ Cμ2(Ω)1/n

(
1

μ2(Ω)

∫

Ω
|du|nw2 dx

)1/n

(4.12)

for any Ls(μ)-averaging domain Ω and some ball B0 with 2B0 ⊂Ω. Here the measure μi is
defined by dμi =wi(x)dx, i= 1,2, and C is a constant independent of u and du.

Remark 4.6. Since Ls(μ)-averaging domains reduce to Ls-averaging domains, ifw1 =w2 =
1, then Theorems 4.1 and 4.5 also hold if Ω⊂Rn is an Ls-averaging domain.

Remark 4.7. From all of the above, we can find which has given a method of generaliza-
tion about one-weighted integral inequalities; it plays an important role in generalization
of the integral inequality.
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INVERSE SOURCE PROBLEM FOR THE WAVE EQUATION

MOURAD BELLASSOUED AND MASAHIRO YAMAMOTO

We prove a uniqueness and stability theorem for an inverse source problem for the wave
equation.

Copyright © 2006 M. Bellassoued and M. Yamamoto. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The main interest of this paper lies in an inverse problem of identifying an unknown
source term of a wave equation from the measurement on a lateral boundary. Physically
speaking, we are required to determine an external force from measurements of boundary
displacements.

There is a considerable amount of papers dealing with the uniqueness and stability
in an inverse problem of identifying unknown coefficients or source terms, see [10, 14],
and the references therein. However, the majority of results deal with Dirichlet or Neu-
mann measurements on a sufficiently large part of the boundary (or the whole bound-
ary). Moreover there are no available results for the case where the measurement is done
on an arbitrary part of the boundary.

We will address our inverse problem precisely. Let Ω be a bounded open domain with
sufficiently smooth boundary Γ = ∂Ω and let ν be the outward unit normal vector to
∂Ω, ∂νu=∇u · ν. We consider a Dirichlet mixed problem for a second-order hyperbolic
equation:

∂2
t u(x, t)−Δu(x, t)= f (x)Φ(x, t) in Ω× [0,T],

u(x,0)= ∂tu(x,0)= 0 in Ω,

u(x, t)= 0 in Γ× [0,T],

(1.1)

where f ∈W1,∞(Ω) andΦ∈�1(Ω× [0,T]). Although we can consider a general second-
order hyperbolic equation, we here discuss the wave equation with constant coefficients.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 149–158



150 Inverse source problem

Under the above assumption, there exists a unique solution u= u f to (1.1) such that

u f ∈�1([0,T];H1
0 (Ω)

)∩�2([0,T];L2(Ω)
)
, ∂νu f ∈H1(0,T ;L2(Γ)

)
. (1.2)

Let Γ1 ⊂ Γ be a given part of the boundary Γ= ∂Ω. A uniqueness question for our in-
verse problem is, can we conclude that f (x)= 0, x ∈Ω, under the observation ∂νu f (x, t)=
0, (x, t)∈ Σ1 = Γ1× (0,T)?

When Γ1 is the whole boundary Γ, a strong affirmation result is known for the unique-
ness in multidimensional inverse problems with a single observation, and Bukhgeim and
Klibanov [5] firstly proposed a useful methodology on the basis of Carleman estimates.
Further works discussing inverse problems by Carleman estimates include [4, 10, 14].

In the case where Γ1 is an arbitrary part of Γ, the condition for the unique identi-
fication has been an open problem. In recent years several related works (see [8, 11])
have appeared, but are mainly concerned with the uniqueness and stability in determin-
ing a source term or a coefficient of the zeroth-order term when the part Γ1 is given by
Γ1 = {x ∈ Γ, (x− x0) · ν(x)≥ 0}, which is related with the geometric optics condition for
the observability (see [1]).

In [7], Imanuvilov and Yamamoto give the uniqueness and the global Lipschitz stabil-
ity by the Neumann data on a sufficiently large part of the boundary Γ over a sufficiently
long time interval. See also [2, 3, 8, 9, 12, 13, 20] for inverse problems by Carleman esti-
mates.

Stability estimates are important in the theory of inverse problems of mathematical
physics. Those inverse problems are ill-posed in the classical sense [15], so that for stable
numerics, we need regularizing techniques. The stability results determine the choice of
regularization parameters and the rate at which solutions of regularized problems con-
verge to an exact solution.

In the present paper, we show that even if the geometrical condition is not fulfilled
(or the subboundary Γ1 is small), we have the uniqueness and a logarithmic stability
result in determining f , under the assumption that T is sufficiently large and f (x) = 0
in a neighborhood ω of the whole boundary Γ. The key ideas are an application of the
Carleman estimates proved in [3, 7] and an application of the Fourier-Bros-Iagolnitzer
(FBI) transformation used by Robbiano [17]. We use the idea of [17] to apply the Fourier-
Bross-Iagolnitzer transformation to change the problem near the boundary into another
problem where elliptic estimates can be applied. Throughout this paper, let us set

Λ(M,ω)= { f ∈W1,∞(Ω);‖ f ‖W1,∞(Ω) ≤M, f|ω = 0
}

(1.3)

for any fixed M > 0. The main result of this paper can be stated as follows.

Theorem 1.1. Let ω be a neighborhood of the boundary Γ= ∂Ω. Assume that |Φ(x,0)| ≥
ε0 > 0, x ∈Ω\ω. Then there exist T > 0 sufficiently large and a constant C > 0 such that

‖ f ‖L2(Ω) ≤ C
[

log

(

2 +
C

∥
∥∂νu f

∥
∥
H1(0,T ;L2(Γ1))

)]−1/2

(1.4)

for all f ∈Λ(M,ω). Here the constant C is dependent on Ω, ω, T , M, and independent of f .
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The remainder of the paper is organized as follows. In Section 2, we give some esti-
mates which are used for the proof of the main results. In Section 3, we prove Theorem
1.1.

2. Preliminary estimates

In this section, we derive several estimates. We will begin with a fundamental Carleman
estimate. We will use the following notations. Let ρ,ρ1,ρ2 > 0 such that

ω(8ρ)= {x ∈Ω, dist(x,Γ)≤ 8ρ
}⊂ ω,

ω
(
ρ1,ρ2

)= {x ∈Ω, ρ1 ≤ dist(x,Γ)≤ ρ2
}⊂ ω, ρ1 < ρ2 < 8ρ,

ωT(ρ)= ω(ρ)× [−T ,T], ωT
(
ρ1,ρ2

)= ω(ρ1,ρ2
)× [−T ,T].

(2.1)

2.1. Carleman estimate. Here we present the Carleman estimate for the wave equa-
tion. Although Carleman estimates for a second-order hyperbolic operator with constant
coefficients are classical, we would like to recall briefly. As for related Carleman estimates,
see [2, 3, 6, 7, 14, 18, 19].

In order to formulate our Carleman estimate, we introduce some notations. Without
loss of generality, we may assume that 0 /∈Ω. Define

ψ(x, t)= |x|2− γ|t|2, ∀x ∈Ω. (2.2)

Put T0 =
(
maxx∈Ω |x|2

)1/2. Let T > T0 and let us fix δ > 0 and γ ∈ (0,1) such that

γT2 >max
x∈Ω
|x|2 + δ. (2.3)

Therefore, by definition (2.2) of ψ(x, t) and (2.3) we have

ψ(x,0)= |x|2 > 0, ψ(x,−T)= ψ(x,T) <−δ, ∀x ∈Ω. (2.4)

We introduce the pseudoconvex function ϕ : Ω×R→ R by setting

ϕ(x, t)= eβψ(x,t), β > 0, (2.5)

where β is a large parameter.
Now we would like to consider the following second-order hyperbolic operator:

P(D)= ∂2
t −Δ. (2.6)

For α such that 0 < α < T we set

Qα =Ω× [−T +α,T −α]⊂Q,

Qα(ρ)=Ω(ρ)× [−T +α,T −α], Ω(ρ)=Ω\ω(ρ).
(2.7)

Finally we set∇v(t,x)= (∂tv,∇xv).
The following Carleman estimate holds.
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Proposition 2.1. Let T > T0. Then there exist a constant C > 0, which is independent of τ,
and a parameter τ∗ such that, for all τ ≥ τ∗, the following Carleman estimate holds:

Cτ
∫

Qα(3ρ)
e2τϕ(|∇v|2 + τ2|v|2)dxdt ≤

∫

Q
e2τϕ

∣
∣P(x)v

∣
∣2
dxdt

+ τ
∫

ωT (ρ,3ρ)
e2τϕ(|∇v|2 + τ2|v|2)dxdt

+ τ
∫

Q\Qα

e2τϕ (|∇v|2 + τ2|v|2)dxdt,

(2.8)

whenever v ∈H1(Q) and the right-hand side is finite.

Proof. Inequality (2.8) can be deduced from a more general theorem [3, Theorem 2].
For the sake of clarity and completeness of the exposition, we will give the proof. We
first apply the following standard Carleman estimate which was proved in [3, 19], and so
forth:

τ
∫

Qα

e2τϕ(|∇v|2 + τ2|v|2)dxdt ≤ C
∫

Q
e2τϕ

∣
∣P(D)v

∣
∣2
dxdt

+Cτ
∫

Γ×[−T ,T]
e2τϕ(|∇v|2 + τ2|v|2)dsdt

+ τ
∫

Q\Qα

e2τϕ(|∇v|2 + τ2|v|2)dxdt.

(2.9)

We introduce a cutoff function χ satisfying 0≤ χ ≤ 1, χ ∈ C∞(Rn), and

χ(x)= 0, x ∈ ω(ρ), χ(x)= 1, x ∈Ω(3ρ). (2.10)

Then we apply (2.9) to ṽ = χv and we obtain

τ
∫

Qα

e2τϕ(|∇ṽ|2 + τ2|ṽ|2)dxdt ≤ C
∫

Q
e2τϕ

∣
∣P(x)ṽ

∣
∣2
dxdt

+ τ
∫

Q\Qα

e2τϕ(|∇ṽ|2 + τ2|ṽ|2)dxdt.
(2.11)

Furthermore P(D)ṽ = χP(D)v+ [P,χ]v where [A,B] stands for the commutator of oper-
ators A and B. Since [P,χ] is a first-order operator and supported in ω(ρ,3ρ), we obtain
(2.8). �

2.2. Weak observation estimate

Proposition 2.2 (see [2]). Let f ∈ Λ(M,ω). Let u f be the solutions of (1.1). Then there
exists T > 0 sufficiently large such that the following estimate holds:

∥
∥∂tu f

∥
∥2
H1(ωT (ρ,3ρ)) ≤ C

[

log

(

2 +
C

∥
∥∂νu f

∥
∥
H1(0,T ;L2(Γ1))

)]−1

. (2.12)

Here the constant C is dependent on Ω, ω, T , M and independent of f .
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To prove Proposition 2.2, we use the idea of Robbiano [17] which is based on the
Fourier-Bros-Iagolnitzer transformation, and we refer also to the proof of [2, Proposition
2.2].

3. Proof of the main result

This section is devoted to the proof of Theorem 1.1. The idea of the proof is based on a
Carleman estimates method which was initiated by [5], but we apply an argument similar
to [8] which is a modification of [5].

3.1. Preliminaries. We need the following preliminaries, which are essentially known
and we will present them for completeness. Let F ∈ L2(Q) and let φ(x, t) satisfy

∂2
t φ(x, t)−Δφ(x, t)= F(x, t), (x, t)∈Q =Ω× [−T ,T], (3.1)

φ(x, t)= 0, (x, t)∈ Σ= Γ× [−T ,T], (3.2)

and φ ∈�([−T ,T];H1(Ω))∩�1([−T ,T];L2(Ω)). Then the following identity holds true
for each t1, t2 ∈ [−T ,T]:

∫

Ω

∣
∣∇φ(t1

)∣
∣2
dx−

∫

Ω

∣
∣∇φ(t2

)∣
∣2
dx =

∫ t2

t1

∫

Ω
F(x, t)∂tφ(x, t)dxdt. (3.3)

In fact, we multiply both sides of (3.1) by ∂tφ and integrate over [t1, t2]×Ω by the Green
formula, so that (3.3) follows.

Furthermore we need the following lemma, which is a simple consequence of (3.3).

Lemma 3.1. Let F ∈ L2(Q) and φ1 ∈ L2(Ω). Let φ be a given solution of

∂2
t φ−Δφ = F(x, t) in Q =Ω× [−T ,T],

φ(x,0)= 0, ∂tφ(x,0)= φ1 in Ω,

φ(x, t)= 0 on Σ= Γ× [−T ,T]

(3.4)

within the following class:

φ ∈�
(
[−T ,T];H1(Ω)

)∩�1([−T ,T];L2(Ω)
)
. (3.5)

Then the following estimate holds true:

∥
∥φ1

∥
∥2
L2(Ω(4ρ)) ≤ C

{

‖φ‖2
H1(Qα(3ρ)) +

∫

Qα(3ρ)

∣
∣F(x, t)∂tφ(x, t)

∣
∣dxdt

}

(3.6)

for some positive constant C > 0 which is independent of F and φ.

Proof. We introduce a cutoff function χ satisfying 0≤ χ ≤ 1, χ ∈ C∞(Rn), such that χ(x)=
0 for x ∈ ω(3ρ) and χ(x)= 1 for x ∈Ω(4ρ). We set

φ̃(x, t)= χ(x)φ(x, t)∈�
(
[−T ,T];H1(Ω)

)∩�1([−T ,T];L2(Ω)
)
. (3.7)
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By (3.4), the function φ̃ satisfies the equation

∂2
t φ̃−Δφ̃= χ(x)F(x, t)− [Δ,χ]φ in Q =Ω× [−T ,T],

φ̃(x,0)= 0, ∂tφ̃(x,0)= χ(x)φ1(x) in Ω,

φ̃(x, t)= 0 on Σ= Γ× [−T ,T].

(3.8)

Apply energy identity (3.3) with t1 = 0 and t2 = t, where −T + α < t < T − α to the solu-
tion φ̃ of (3.8) and we obtain

∫

Ω(4ρ)

∣
∣φ1(x)

∣
∣2
dx ≤ C

∫

Ω(3ρ)
|∇φ|2dx+C

∫

Qα(3ρ)
|∇φ|∣∣∂tφ

∣
∣dxdt

+
∫

Qα(3ρ)

∣
∣F(x, t)∂tφ

∣
∣dxdt,

(3.9)

where we have used the fact that [Δ,χ] is a first-order operator and supported in Ω(3ρ).
Integrating (3.9) over [−T +α,T −α], we obtain (3.6). �

Let u satisfy (1.1). Then by [16], we obtain

u∈
2⋂

j=0

� j
(
[0,T];H2− j(Ω)

)
, ‖u‖H2(Ω×(0,T)) ≤ C‖ f ‖L2(Ω). (3.10)

We extend the function u in Ω× [0,T] by the formula u(x, t) = u(x,−t) to all (x, t) ∈
Ω× [−T ,0]. By u(x,0)= ∂tu(x,0)= 0, we have

u∈
2⋂

j=0

� j
(
[−T ,T];H2− j(Ω)

)
, ‖u‖H2(Ω×(−T ,T)) ≤ C‖ f ‖L2(Ω). (3.11)

We extend Φt on [−T ,T] as an even function in t and denote the extension by the symbol
Φt. Then Φt ∈ L2(−T ,T ;L2(Ω)).

The above preparation now allows us to begin the proof of Theorem 1.1.

3.2. Proof of Theorem 1.1. We proceed to the proof of Theorem 1.1.
Let ϕ(x, t) be the function defined by (2.5). Then

ϕ(x, t)= eβψ(x,t) =: ρ(x)σ(t), (3.12)

where ρ(x)≥ 1 and σ(t)≤ 1 are defined by

ρ(x)= eβ|x|2 ≥ 1, ∀x ∈Ω, σ(t)= e−βγt2 ≤ 1, ∀t ∈ [−T ,T]. (3.13)

Let v = ∂tu, where u is the solution of (1.1). Then we have

∂2
t v−Δv = f (x)Φt(x, t) in Q =Ω× [−T ,T],

v(x,0)= 0, ∂tv(x,0)= f (x)Φ(x,0) in Ω,

v(x, t)= 0 on Σ= Γ× [0,T].

(3.14)
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We apply Proposition 2.1 to obtain the following estimate:

τ
∫

Qα(3ρ)
e2τϕ(|∇v|2 + τ2|v|2)dxdt ≤ C

∫

Q
e2τϕ

∣
∣ f (x)Φt(t,x)

∣
∣2
dxdt

+Cτ
∫

ωT (ρ,3ρ)
e2τϕ(|∇v|2 + τ2|v|2)dxdt

+Cτ
∫

Q\Qα

e2τϕ(|∇v|2 + τ2|v|2)dxdt,

(3.15)

provided τ > 0 is large enough.

Lemma 3.2. Let v be the solution of (3.14). Then there exist constants C > 0 and 0 < κ < 1
such that for all τ > 0 large enough, there exists a constant Cτ > 0 such that

τ
∫

Qα(3ρ)
e2τϕ(|∇v|2 + τ2|v|2)dxdt

≤ C
[∫

Q
e2τϕ

∣
∣ f (x)Φt(t,x)

∣
∣2
dxdt+ e2κτ‖ f ‖2

L2(Ω)

]

+Cτ‖v‖2
H1(ωT (ρ,3ρ)).

(3.16)

Proof. It follows from (3.11) and condition (2.4) that we can choose α > 0 sufficiently
small such that

τ
∫

Q\Qα

e2τϕ(|∇v|2 + τ2|v|2)dxdt ≤ Ce2κτ‖ f ‖2
L2(Ω), (3.17)

where κ < 1 and C > 0 are generic constants.
Substituting (3.17) into (3.15), we obtain

τ
∫

Qα(3ρ)
e2τϕ(|∇v|2 + τ2|v|2)dxdt ≤ C

∫

Q
e2τϕ

∣
∣ f (x)Φt(t,x)

∣
∣2
dxdt

+Ce2τκ‖ f ‖2
L2(Ω) +Cτ

∫

ωT (ρ,3ρ)
e2τϕ(|∇v|2 + τ2|v|2)dxdt.

(3.18)

This completes the proof of (3.16). �

Lemma 3.3. Let v be the solution of (3.14). Then there exists a constant C > 0 such that for
all τ > 0 large enough, there exists a constant Cτ > 0 such that

C
∥
∥eτρ f

∥
∥2
L2(Ω) ≤ τ

∫

Qα(3ρ)
e2τϕ(τ2|v|2 + |∇v|2)dxdt

+
∫

Q

∣
∣ f (x)Φt(x, t)

∣
∣2
e2τϕdxdt.

(3.19)

Proof. Let φ = eτϕv. By direct calculations and (3.14), we obtain

∂2
t φ−Δφ = f (x)Φt(x, t)eτϕ + eτϕK(x,D,τ)v in Q,

φ(x,0)= 0, ∂tφ(x,0)= f (x)Φ(x,0)eτρ(x) in Ω,

φ(x, t)= 0 on Σ,

(3.20)
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where

K(x,D,τ)v =
{
τ2
(∣
∣∂tϕ

∣
∣2−∣∣∇xϕ

∣
∣2
)

+ τP(D)ϕ
}
v

+ 2τ
{(
∂tϕ
)(
∂tv
)− (∇xϕ ·∇xv

)}
.

(3.21)

Next we apply (3.6) with φ = eτϕv and, by |Φ(x,0)| ≥ ε0, we obtain that

C
∥
∥eτρ f

∥
∥2
L2(Ω) ≤

∫

Qα(3ρ)
e2τϕ(τ2|v|2 + |∇v|2)dxdt

+
∫

Qα

e2τϕ
∣
∣ f (x)Φt(x, t)

∣
∣2
dxdt

+
∫

Qα(3ρ)
eτϕ
∣
∣K(x,D,τ)v

∣
∣
∣
∣∂tφ

∣
∣dxdt.

(3.22)

By (3.21) and the Schwarz inequality, we obtain
∫

Qα(3ρ)
eτϕ
∣
∣K(x,D,τ)v

∣
∣
∣
∣∂tφ

∣
∣dxdt ≤ Cτ

∫

Qα(3ρ)
e2τϕ(τ2|v|2 + |∇v|2)dxdt. (3.23)

Substituting (3.23) into the right-hand side of (3.22), we obtain (3.19). �

We will now complete the proof of Theorem 1.1. By substituting (3.16) into the right-
hand side of (3.19), we have

∥
∥eτρ f

∥
∥2
L2(Ω) ≤ C

{∫

Q
e2τϕ

∣
∣ f (x)Φt(x, t)

∣
∣2
dxdt+ e2τκ‖ f ‖2

L2(Ω)

}

+Cτ‖v‖2
H1(ωT (ρ,3ρ)).

(3.24)

Now we return to the first integral term on the right-hand side term of (3.24). We have
∫

Q
e2τϕ

∣
∣ f (x)Φt(x, t)

∣
∣2
dxdt

≤
∫

Ω
e2τρ(x)

∣
∣ f (x)

∣
∣2
(∫ T

0
e−2τ(ρ−ϕ)

∥
∥Φt(t,·)

∥
∥2
L∞(Ω)dt

)

dx.

(3.25)

On the other hand, by the Lebesgue theorem, we obtain

∫ T

0
e−2τ(ρ−ϕ)

∥
∥Φt(t,·)

∥
∥2
L∞(Ω)dt =

∫ T

0
e−2τρ(x)(1−σ(t))

∥
∥Φt(t,·)

∥
∥2
L∞(Ω)dt

≤
∫ T

0
e−2τ(1−σ(t))

∥
∥Φt(t,·)

∥
∥2
L∞dt = o(1)

(3.26)

as τ →∞. By (3.24) and (3.26), we obtain

∥
∥eτρ f

∥
∥2
L2(Ω) ≤ o(1)

∥
∥eτρ f

∥
∥2
L2(Ω) +Ce2τκ‖ f ‖2

L2(Ω)

+Cτ‖v‖2
H1(ωT (ρ,3ρ)).

(3.27)
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Here we note that the first term of the right-hand side of (3.27) can be absorbed into the
left-hand side if we take large τ > 0. On the other hand, since ρ(x)≥ 1 for all x ∈Ω and
κ < 1 for τ sufficiently large, we have

‖ f ‖2
L2(Ω) ≤ C

∥
∥∂tu

∥
∥2
H1(ωT (ρ,3ρ)). (3.28)

Hence, in terms of Proposition 2.2, the proof of Theorem 1.1 is complete.
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PRODUCT DIFFERENCE EQUATIONS APPROXIMATING
RATIONAL EQUATIONS

KENNETH S. BERENHAUT AND JOHN D. FOLEY

We introduce a family of recursive sequences, involving products which, for certain ini-
tial values, approximate some heavily studied rational equations. Some of the structure
of solutions which holds for the rational equation but not for the associated linearized
equation appear to be satisfied for the product approximation. Convergence of solutions
for one particular second-order member of the family is proved.

Copyright © 2006 K. S. Berenhaut and J. D. Foley. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Solutions to rational difference equations of the form

yn = A+
yn−k
yn−m

, (1.1)

for n ≥ 1, with k,m ∈ {1,2, . . .}, have been studied extensively in recent years (cf. [1–7],
and the references therein).

Setting zn = yn− (A+ 1), (1.1) can be rewritten in the form

zn = zn−k − zn−m
A+ 1 + zn−m

. (1.2)

We then have for |zn−m| < A+ 1,

zn = zn−k − zn−m
A+ 1

(

1− zn−m
A+ 1

+
(
zn−m
A+ 1

)2

−···
)

. (1.3)

A first-order approximation to the equation is the linearized equation (see [6])

zn = zn−k − zn−m
A+ 1

, (1.4)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 159–168
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while a second-order approximation is

zn = zn−k − zn−m
A+ 1

(

1− zn−m
A+ 1

)

. (1.5)

Dividing through by (A+ 1)2 in (1.5), and setting a = (A+ 1)−1 and un = a2zn, gives
the equation

un =
(
un−k −un−m

)(
a−un−m

)
. (1.6)

It seems reasonable to believe that when solutions do stabilize, these solutions could
tend to share more of the interesting periodicities and so forth of solutions of the ra-
tional equation. For some computational aspects and further discussion, see Section 3.
One particularly interesting conjecture, suggested by computations, is the following (see
Example 3.3 in Section 3).

Conjecture 1.1. If {ui} satisfies (1.6), with k = 2, m = a = 1, and (u−1,u0) ∈ (0,1)×
(0,1), then ui tends to the period-two solution . . . ,0,1,0,1, . . ..

In Section 2, we prove the following result for the case (k,m,a)= (1,2,1) which corre-
sponds to the rational equation

yn = yn−1

yn−2
, (1.7)

for which it is known that all solutions with positive initial values are periodic with period
six (cf. [6]).

Theorem 1.2. Suppose that {ui} satisfies (1.6), with k = a= 1 and m= 2, that is,

ui =
(
ui−1−ui−2

)(
1−ui−2

)
(1.8)

for i≥ 1. If

(
u−1,u0

)∈ (0,1)× (0,1), (1.9)

then ui converges to zero.

The rest of the paper proceeds as follows. In Section 2, we introduce some lemmas
concerning the structure of solutions to (1.8), and also we prove Theorem 1.2. Section 3
then concludes the paper with some discussion of further cases of (k,m,a).

2. Preliminary lemmas and results

In this section, we establish some properties of solutions to (1.8) which will be useful in
proving Theorem 1.2.

In what follows, we will make use of the following expressions, which are direct con-
sequences of (1.8).
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Lemma 2.1. If {ui} satisfies (1.8), then

ui−ui−1 =−ui−2
(
1 +ui−1−ui−2

)
, i≥ 1, (2.1)

ui =−ui−3
(
1−ui−2

)(
1 +ui−2−ui−3

)
, i≥ 2, (2.2)

ui = ui−6
(
1−ui−2

)(
1−ui−5

)(
1 +ui−5−ui−6

)(
1 +ui−2−ui−3

)
, i≥ 5. (2.3)

Proof. Equation (2.1) follows directly from (1.8). Equation (2.2) is a consequence of (1.8)
and (2.1), and (2.3) follows from repeated application of (2.2). �

Next, we have the following result on bounds and semicycle structure for solutions.

Lemma 2.2. If {ui} satisfies (1.8) and (1.9), then
(a) −0.5≤ ui ≤ 1 for i≥−1,
(b) −1≤ ui−ui−1 ≤ 1 for i≥ 0,
(c) if 0≤ u0 ≤ u1 ≤ 1, then the solution is of the form

u0 ≤ u1 ≥ u2 ≥ 0≥ u3 ≥ u4 ≤ u5 ≤ 0≤ u6 ≤ u7 . . . . (2.4)

Similarly, if 1≥ u0 ≥ u1 ≥ 0, then the solution is of the form

u0 ≥ u1 ≥ 0≥ u2 ≥ u3 ≤ u4 ≤ 0≤ u5 ≤ u6 ≥ u7 . . . . (2.5)

In particular, aside from possibly the first positive semicycle, all semicycles of {ui}
are of length three, with the extreme value in each semicycle occurring at the middle
term.

Proof. First, assume 1≥ u0 ≥ u1 ≥ 0. Then, by (1.8) and (2.1), u2 = (u1−u0)(1−u0)≤ 0,
and |u2−u1| = u0(1 +u1−u0)≤ u0 ≤ 1. In addition,

∣
∣u2

∣
∣= (u0−u1

)(
1−u0

)≤ u0
(
1−u0

)≤ 0.25. (2.6)

Hence, suppose the lemma holds for i < n with n ≥ 3. Now, note that (1.8) and (2.1)
together with (a) and (b) for i≤ n− 1 give the structure in (c) for i≤ n. To see this, note
that from (1.8) and (2.1),

sign
(
un
)= sign

(
un−1−un−2

)
,

sign
(
un−un−1

)=−sign
(
un−2

)
.

(2.7)

Thus, given the assumptions on the initial values and the properties of u2, we have
that the sign sequence of {ui}0≤i≤n, is (+ +−−− + + +−−− + + + ···) and that for
{ui−ui−1}1≤i≤n, the sign sequence is (−−−+ + +−−−+ + +−···), as required.

Now, set v = |un−3−un−2|, w = |un−2−un−1| and ε = |un−2|. To prove (a) and (b), we
consider six cases, depending upon the status of the values of un−1 and un−2 relative to
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zero. The structure implied by (c) for {ui}0≤i≤n, is used throughout.
(1) (1 ≥ un−1 ≥ un−2 ≥ 0). Here 0 ≤ un ≤ un−1 ≤ 1 and (a) and (b) are necessarily

satisfied.
(2) (−0.5 ≤ un−1 ≤ un−2 ≤ 0). Here −0.5 ≤ un−1 ≤ un ≤ 0 and (a) and (b) are satis-

fied.
(3) (1≥ un−3 ≥ un−2 ≥ 0≥ un−1). Then, we have 0≥ un−1 ≥ un and from (2.2),

∣
∣un

∣
∣= (ε+ v)(1− ε)(1− v)

= ε(1− ε)(1− v) + v(1− ε)(1− v)

≤ ε(1− ε) + v(1− v)≤ 0.5.

(2.8)

(4) (−0.5≤ un−3 ≤ un−2 ≤ 0≤ un−1 ≤ 1). Here un ≥ un−1 ≥ 0 and v + ε ≤ 0.5. From
(2.2), we then have

un = (v+ ε)(1 + ε)(1 + v)

= (v+ ε)
(
1 + (vε) + (v+ ε)

)

≤ (0.5)(1 + 0.25 + 0.5)≤ 1.

(2.9)

(5) (1≥ un−2 ≥ un−1 ≥ 0). Here un ≤ 0, and from (1.6),

∣
∣un

∣
∣=w(1−w− ε)≤w(1−w)≤ 0.5. (2.10)

In addition,

∣
∣un−un−1

∣
∣= ε(1−w)≤ 1. (2.11)

(6) (−0.5≤ un−2 ≤ un−1 ≤ 0). Here un ≥ 0, and

un =w(1 + ε)≤ (0.5)(1.5) < 1, (2.12)

un−un−1 = ε(1 +w)≤ 1. (2.13)

The proof for the case 0≤ u0 ≤ u1 ≤ 1 is similar, and will be omitted. �

Next, we show the following, which will be crucial for obtaining stability of solutions.

Theorem 2.3. Suppose n≥ 6. If 0≤ un−1 ≤ un and un > un+1 ≥ 0, that is, un is the extreme
value in a positive semicycle, then un ≤ un−6.

Proof. From (2.3), it suffices to show that

(
1−un−2

)(
1−un−5

)(
1 +un−5−un−6

)(
1 +un−2−un−3

)≤ 1 (2.14)

as each term on the left-hand side of (2.14) is nonnegative, by Lemma 2.2.
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Now, note that by Lemma 2.2, we have 1≥ un−6 ≥ un−5 ≥ 0≥ un−4 ≥ un−3 ≥−0.5 and
1≥ un ≥ un−1 ≥ 0≥ un−2 ≥ un−3 ≥−0.5. Since (1 + un−5)(1−un−5)(1 + un−5− un−6)(1 +
un−6 − un−5) = (1 − u2

n−5)(1 − (un−6 − un−5)2) ≤ 1, the problem of showing (2.14) is
reduced to proving that −un−2 ≤ un−5 and un−2−un−3 ≤ un−6−un−5.

Employing (2.2), we have

−un−2 = un−5
(
1−un−4

)(
1 +un−4−un−5

)

= un−5 +un−5
(−u2

n−4−un−5 +un−5un−4
)≤ un−5.

(2.15)

Similarly, we have −un−3 = un−6 + un−6(−u2
n−5 − un−6 + un−6un−5). This with (2.15)

gives

un−2−un−3 =
(
un−6−un−5

)
+
(
u2
n−5−u2

n−6

)

−un−5un−4
(
un−5−un−4

)

+un−5un−6
(
un−6−un−5

)
.

(2.16)

Setting Δ = (un−2 − un−3)− (un−6 − un−5), and noting that (by (1.8)) un−4 = (un−5 −
un−6)(1−un−6), equation (2.16) then gives

Δ= (un−5−un−6
)(
un−6

(
1−un−5

))

+un−5
(
1− (un−5−un−4

)(
1−un−6

))
.

(2.17)

Finally, noting that 1 ≥ un−6 ≥ un−5 ≥ 0 and 0 ≤ un−5 − un−4 ≤ 1 gives Δ ≤ 0, and the
result follows. �

We may now proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that n satisfies the requirements of Theorem 2.3. Then, we
have 0≥ un−2 ≥ un−3, and hence employing (2.2) gives

∣
∣un

∣
∣= ∣∣un−3

∣
∣
(
1−un−2

)(
1 +un−2−un−3

)≥ ∣∣un−3
∣
∣, (2.18)

that is, the modulus of the largest term in a positive semicycle is at least as large as that of
the extreme term in the preceding negative semicycle.

Thus, it suffices to show that un+t6 tends to zero as t tends to infinity. Since by Theorem
2.3, the sequence {un+t6} is nonnegative and monotonically decreasing, it has a limit D ≥
0. Assume that D > 0. Then,

lim
t→∞

un+(t+1)6

un+t6
= 1. (2.19)

However, as in the proof of Theorem 2.3, we have

un+(t+1)6

un+t6
≤ (1−u2

n+t6−1

)(
1− (un+t6−un+t6−1

)2
)

, (2.20)
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Figure 3.1. Behavior of the (a) rational, (b) linearized, and (c) product equations for A = ρ and
(u−2,u−1,u0)= (0.52,0.47,0.72).

and hence limt→∞un+t6−1 = 0 and limt→∞(un+t6−un+t6−1)= 0. Thus,

lim
t→∞un+t6 = 0. (2.21)

The limit in (2.21) contradicts the assumption that D > 0. Hence D = 0, and the theorem
is proved. �

We now turn to some preliminary computations regarding stability, periodicity, and
boundedness properties of solutions to (1.6).

3. Computations and discussion

In this section, we consider characteristics of solutions to (1.6) for some specific values of
k, m, and a= (A+ 1)−1.

Example 3.1 ((k,m)= (1,3)). It is conjectured that all solutions to the rational equation

zn = zn−1− zn−3

A+ 1 + zn−3
, (3.1)

with positive initial values, converge to zero if A >
√

2− 1
def= ρ (cf. [1]). It is currently

known that convergence holds for A > (
√

5− 1)/2 (see [1, 3]). Figure 3.1 shows a com-
parison of the behavior of the rational, linearized, and product equations for A= ρ, with
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Figure 3.2. Behavior of solutions for A= 0.3 < ρ and (u−2,u−1,u0)= (0.14,0.62,0.48).

random initial values in (0,1) (in particular (u−2,u−1,u0) = (0.52,0.47,0.72)). In Figure
3.2, we have a comparison of behavior of solutions for A = 0.3 < ρ and (u−2,u−1,u0) =
(0.14,0.62,0.48). Note that in Figure 3.1 the slow convergence for the solution to the ra-
tional equation appears to carry over in the product case, while in Figure 3.2, much of
the “interwoven” structure is captured.

While for (1.6) there is no need for restrictions on initial values, it seems natural to
ask for what values of (u−2,u−1,u0) will solutions remain bounded. Hence, we pose the
following question.

Question 3.2. For given (k,m,a), for what initial values does the solution to (1.6) remain
bounded?

Initial computations suggest that, even for small values of (k,m), the region of initial
values, leading to bounded solutions, can have quite interesting topological and geomet-
ric characteristics.

Example 3.3. As mentioned in Section 1, some interesting asymptotic periodicities ap-
pear to hold for some solutions to (1.6). Figure 3.3 displays behavior of solutions to the
equation

ui =
(
ui−2−ui−1

)(
1−ui−1

)
, (3.2)
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Figure 3.3. Behavior of solutions to the equation in (3.2), for random initial values in (0,1).

for random initial values in (0,1). Solutions appear to converge to the period-two solu-
tion

. . . ,0,1,0,1,0, . . . . (3.3)

In fact, despite the fact that 0,0,0, . . . and . . . ,2,2,0,2,2,0, . . . are solutions to (3.2), even
very slight variations in initial values from (2,2), (2,0), (0,0) or (0,2) still lead to quite
rapid convergence to the solution in (3.3). Figure 3.4 shows behavior of solutions to (3.2)
with initial values close to these values.

Finally, it could be interesting to consider the behavior of solutions to higher-order
truncations of (1.3). For instance, we have the following question.

Question 3.4. For what values of W ≥ 0, do all solutions of the equation

ui =
(
ui−1−ui−2

)
(

∑

0≤p≤W

(−ui−2
)p
)

(3.4)

for i≥ 1, with (u−1,u0)∈ (0,1)× (0,1), converge to the zero solution?
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Figure 3.4. Behavior of solutions to the equation in (3.2), for initial values (a) (2.001,2), (b) (1.999,0),
(c) (0,0.001), and (d) (0,1.999).
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ON EXPONENTIAL DICHOTOMY FOR LINEAR DIFFERENCE
EQUATIONS WITH BOUNDED AND UNBOUNDED DELAY

LEONID BEREZANSKY AND ELENA BRAVERMAN

We consider the exponential dichotomy for solutions of a linear delay difference equation
in a Banach space. If the delay is bounded, then the equivalence of the dichotomy in
the delay and nondelay cases is demonstrated, with further application of some recently
obtained results for nondelay difference equations. In the case, when the delay is not
bounded, but there is a certain memory decay in coefficients, the exponential dichotomy
of solutions is also proved.

Copyright © 2006 L. Berezansky and E. Braverman. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

For linear differential equations in a Banach space, the dichotomy result is well known
since obtained in 1948 by Krein [4]: if a solution of a linear ordinary differential equation
is bounded for any bounded right-hand side, then the equation is exponentially stable.
More generally, it can be formulated as follows: what type of stability can be deduced from
the fact that a solution belongs to space X for any right-hand side in space Y ? The latter
property was referred as “admissibility of a pair of spaces” and studied by Halanay [7],
Halanay and Wexler [8]. Theorems of this type for difference equations of the first order
were recently obtained by Aulbach and Van Minh [1] and Pituk [12] and for high order
(with a bounded delay) in [2, 3]. Here we consider equations with unbounded delay,
under some restrictions on memory decay. The present paper appeared due to fruitful
questions and discussions following the second author’s talk in Melbourne, Florida. We
are greatful to Professor Alexander Domoshnitsky and Professor Vladimir Rǎsvan for
their valuable questions and suggestions during the conference and to Professor Ravi P.
Agarwal who organized this wonderful and stimulating event.

2. Preliminaries

Let B be a Banach space, we will use | · | for the norm in this space and for the induced
norm in the space of bounded linear operators in B, while ‖ · ‖ will be used for the

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 169–178



170 Exponential dichotomy for difference equations

operator norm in some space of sequences (usually it will be indicated in which space the
operator is considered). I is an identity operator. We will introduce the following spaces
of sequences (everywhere below we assume x(n)∈ B or x(n) : B→ B is a linear bounded
operator): l∞ is a space of bounded sequences v = {x(n)} : ‖v‖l∞ = supn≥0 |x(n)| <∞; lp

is a space of sequences v = {x(n)} : ‖v‖plp =
∑∞

n=1 |x(n)|p <∞, 1≤ p <∞.
We consider the linear difference equation

x(n+ 1)=
n∑

k=0

A(n,k)x(k) + f (n), n≥ 0, (2.1)

where A(n,k) : B→ B are linear operators, f (n)∈ B.
In addition to (2.1), the equation with some prehistory

x(n+ 1)=
n∑

k=−d
A(n,k)x(k) + f (n), n≥ 0, (2.2)

and with the following initial conditions:

x(n)= ϕ(n), n≤ 0, (2.3)

will be considered, as well as the homogeneous difference equations

x(n+ 1)=
n∑

k=0

A(n,k)x(k), n≥ 0, (2.4)

x(n+ 1)=
n∑

k=−d
A(n,k)x(k), n≥ 0. (2.5)

We will also consider for any l ≥ 0 the following homogeneous equation:

x(n+ 1)=
n∑

k=l
A(n,k)x(k), n≥ l. (2.6)

Definition 2.1. The solution X(n, l) of (2.6), with X(l, l)= I (I is the identity operator), is
called the fundamental function of (2.1).

Assume X(n, l)= 0, n < l. Let us note that (2.1), (2.2), (2.4), (2.5) have the same fun-
damental function.

Definition 2.2. Equation (2.2) is said to be exponentially stable if there exist positive con-
stants N and λ, such that for any solution of the homogeneous equation (2.5), with the
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initial conditions (2.3), the following inequality holds:

∣
∣x(n)

∣
∣≤Ne−λn max

−d≤k≤0

∣
∣ϕ(k)

∣
∣, n≥ 0. (2.7)

Remark 2.3. The linear equation with several variable delays

x(n+ 1)=
m∑

k=1

A(n,k)x
(
hk(n)

)
+ f (n), hk(n)≤ n, n≥ 0, (2.8)

is an example of (2.2).

We will need the following result for (2.1).

Lemma 2.4 [5, 6]. Let X(n, l) be the fundamental function of (2.1). Then the solution of
(2.1) can be presented as

x(n)= X(n,0)x(0) +
n−1∑

k=0

X(n,k+ 1) f (k), n > 0. (2.9)

It is to be noted that the above result was obtained for matrices and (2.1) with a finite
delay (A(n,k) = 0, n− k > T), however, the proof can be immediately extended to the
case when the delay is not bounded and A, X are operators in a Banach space.

Lemma 2.5 [3]. The solution of (2.2), (2.3) can be presented as

x(n)= X(n,0)x(0) +
n−1∑

l=0

X(n, l+ 1) f (l)

+
n−1∑

l=0

X(n, l+ 1)
−1∑

k=−d
A(l,k)ϕ(k), n > 0.

(2.10)

3. Reduction of order

In this section, we will assume that the delay is bounded, that is, for some r > 0,

A(n,k)= 0, n− k > r. (3.1)

Under this condition, (2.2) has the form

x(n+ 1)=
r∑

k=0

Ã(n,k)x(n− k) + f (n), n≥ 0, (3.2)

where Ã(n,k)= A(n,n− k).
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Denote by Y(n), Y0, F(n), and D(n) the following vectors and the operator matrix,
respectively:

Y(n)=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1

y2
...

yr+1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x(n)

x(n− 1)
...

x(n− r)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Y0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ϕ(0)

ϕ(−1)
...

ϕ(−r)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, F(n)=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r f (n)

0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

D(n)=

⎡

⎢
⎢
⎢
⎢
⎣

Ã(n,0) Ã(n,1) ··· Ã(n,r− 1) Ã(n,r)

I 0 ··· 0 0
0 I ··· 0 0
0 0 ··· I 0

⎤

⎥
⎥
⎥
⎥
⎦
.

(3.3)

Then (2.2) with initial conditions (2.3) becomes

Y(n+ 1)=D(n)Y(n) +F(n), Y(0)= Y0. (3.4)

Let us introduce some norm in the r + 1-dimensional space (each component of which is
in the Banach space) Br+1, say,

|Y | = max
1≤k≤r+1

∣
∣yk

∣
∣, (3.5)

and the induced norm in the space of operator matrices D. Let us note the following.
(1) If there exists M > 0, such that supn≥0

∑n
k=max{n−r,0} |A(n,k)| ≤M, then in the in-

duced norm |D(n)| ≤M.
(2) {Y(n)} ∈ lp if and only if {x(n)} ∈ lp, where lp is over Br+1 and B, respectively.
(3) Exponential decay of |x(n)| is equivalent to the exponential decay of |Y(n)|.
Thus all results known for (3.4) can be applied to the delay equation with a bounded

delay. In particular, the following result is an immediate corollary of [12, Theorem 1] and
results in [1].

Theorem 3.1. Suppose 1 < p ≤∞, (3.1) holds and

sup
n≥0

n∑

k=max{n−r,0}

∣
∣A(n,k)

∣
∣≤M. (3.6)

Equation (2.1) is exponentially stable if and only if for any sequence { f (n)} ∈ lp the solution
{x(n)} of (2.1) with the zero initial condition is bounded: {x(n)} ∈ l∞.

A similar approach was used in [9–11]. However, the scheme is not applicable if we
have an unbounded delay.
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4. Equations with an unbounded delay

Definition 4.1. Let us define the following operator in l∞:

�
({
f (n)

}∞
n=0

)
= {z(n)

}∞
n=1 =

{n−1∑

l=0

X(n, l+ 1) f (l)

}∞

n=1

, (4.1)

where z(0)= 0. Call � the Cauchy operator.
For the zero initial conditions x(n) = 0, n ≤ 0, each one of (2.1) and (2.2) describes

the linear map �

{
g(n)

}∞
n=0 =�

({
x(n)

}∞
n=1

)
=
{

x(n+ 1)−
n∑

k=1

A(n,k)x(k)

}∞

n=1

. (4.2)

Lemma 4.2 [3]. Let �, � : l∞ → l∞ be linear bounded operators of type (4.2), let ��, ��

be the Cauchy operators of equations �({x(n)}) = { f (n)}, and �({x(n)}) = { f (n)}, re-
spectively. Suppose the Cauchy operator �� is a bounded operator which maps l∞ onto l∞

and ��� : l∞ → l∞ is invertible.
Then �� also maps l∞ onto l∞ and is bounded.

Lemma 4.3 [2]. Suppose for (2.1) the following condition holds.
(a1) There exists M0, such that supn≥0

∑n
k=−d |A(n,k)| ≤M0.

Then (4.2) is a bounded operator in l∞, with ‖�‖l∞→l∞ ≤ 1 +M0.

Let us recall that under (a1), if the delay is not bounded, the boundedness of solutions
for any bounded f does not necessarily imply exponential stability.

Example 4.4. Consider the equation with an unbounded delay

x(n+ 1)= 1
3
x(n) + x(0) + f (n). (4.3)

Then, for any right-hand side bounded by c (| f (n)| ≤ c), the solution is bounded by
1.5(|x(0)|+ c) : |x(1)| = |(4/3)x(0) + f (0)| ≤ |(4/3)x(0)|+ c ≤ 1.5(|x(0)|+ c) and assum-
ing |x(n)| < 1.5(|x(0)|+ c) we have

∣
∣x(n+ 1)

∣
∣=

∣
∣
∣
∣

1
3
x(n) + x(0) + f (n)

∣
∣
∣
∣≤

1
3
· 3

2

(∣
∣x(0)

∣
∣+ c

)
+
∣
∣x(0)

∣
∣+ c = 1.5

(∣
∣x(0)

∣
∣+ c

)
.

(4.4)

However, solutions of the homogeneous equation x(n+ 1)= (1/3)x(n) + x(0) do not de-
cay exponentially: for example, the solution with x(0)= 1 is increasing and tends to 1.5.

Let us introduce the restriction that the memory of the original operator decays expo-
nentially:

(a2) There exist M > 0, ζ > 0, such that |A(n,k)| ≤Me−ζ(n−k).
Below we present examples of (2.1) with an unbounded delay for which (a2) holds.
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Example 4.5. The equation x(n+ 1)=∑n
k=0 aλ

kx(n− k), 0 < λ < 1, satisfies (a2) withM =
|a|, ζ =− lnλ.

Example 4.6. The equation x(n+ 1)− x(n)= aexp{−βn}x([αn]), 0 < α < 1, β > 0, with a
“piecewise constant delay” also satisfies (a2). Here [t] is the maximal integer not exceed-
ing t, M =max{1,|a|}, ζ = β, since −βn≤−β(n− [αn]) for any n≥ 1.

Theorem 4.7. Suppose (a2) holds and for every bounded sequence { f (n)} ∈ l∞, the solution
{x(n)} of (2.1) with the zero initial condition is also bounded: {x(n)} ∈ l∞.

Then there exist N > 0, λ > 0, such that the fundamental function X of (2.1) satisfies the
exponential estimate

∣
∣X(n, l)

∣
∣≤Ne−λ(n−l). (4.5)

Proof. First, let us establish an exponential estimate for X(n,0). For some positive num-
ber λ, define y(n)= x(n)eλn, assume x(0)= y(0)= 0, and consider the operator

�
({
x(n)

})=
{

x(n+ 1)−
n∑

k=0

A(n,k)x(k)

}

. (4.6)

After substituting x(n)= y(n)e−λn, we have

�
({x(n)

})=
{

y(n+ 1)e−λ(n+1)−
n∑

k=0

A(n,k)y(k)e−λk
}

=
{

e−λ(n+1)

[

y(n+ 1)−
n∑

k=0

A(n,k)y(k)eλ(n+1−k)

]}

= {e−λ(n+1)�
({
y(n)

})}
+

{

e−λ(n+1)

[

−
n∑

k=0

A(n,k)y(k)
(
eλ(n+1−k)− 1

)
]}

.

(4.7)

Denote

�
({
y(n)

})=
{

−
n∑

k=0

A(n,k)y(k)
(
eλ(n+1−k)− 1

)
}

, � =� + �. (4.8)

Then

�
({
x(n)

})= {e−λ(n+1)�
({
y(n)

})}
. (4.9)

Let us introduce the space of sequences, with x(0)= 0,

l∞0 =
{{
x(n)

}∈ l∞, x(0)= 0
}
. (4.10)
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Lemma 4.3 implies that operator � is bounded and maps l∞0 onto l∞. Therefore, by the
Banach theorem, the Cauchy operator �� : l∞ → l∞0 , which is the inverse operator, is
bounded. Let ‖��‖l∞→l∞ = P.

Now let us demonstrate that for any ε > 0 there is such λ, 0 < λ < ζ/2, that ‖�‖l∞→l∞ < ε.
By the definition of �, we have

‖�‖l∞→l∞ ≤
n∑

k=0

∣
∣A(n,k)

∣
∣
[
eλ(n+1−k)− 1

]≤
n∑

k=0

Me−ζ(n−k)[eλ(n+1−k)− 1
]

=M
n∑

k=0

[
e−(ζ−λ)n+λe(ζ−λ)k − e−ζneζk

]

=M
[

e−(ζ−λ)n+λ e
(ζ−λ)(n+1)− 1
eζ−λ− 1

− e−ζn e
ζ(n+1)− 1
eζ − 1

]

=M
[
eζ − e−(ζ−λ)n+λ

eζ−λ− 1
− eζ − e−ζn

eζ − 1

]

≤M
[

1
eζ−λ− 1

− 1
eζ − 1

]
(
eζ − e−ζn)≤M

[
eζ

eζ−λ− 1
− eζ

eζ − 1

]

.

(4.11)

Since the right-hand side of the last inequality tends to zero as λ→ 0, then such ε exists.
Let us fix such a λ. Since � : l∞ → l∞ and � : l∞ → l∞ are continuous, so is � =� + �.

By Lemma 4.2, the Cauchy operator �� of the difference equation �({y(n)})= {g(n)}
maps l∞ onto l∞0 and is bounded.

Let Y(n, l) be a fundamental function of the equation �({y(n)})= {g(n)}, this equa-
tion can also be written as

y(n+ 1)=
n∑

k=0

A(n,k)y(k)eλ(n+1−k) + g(n). (4.12)

Then Y(n)= Y(n,0) is a solution of (4.12), with Y(0)= I and g(n)≡ 0.
Denote G(n)= e−μnI −Y(n,0), where μ is an arbitrary number satisfying μ > λ. Then

we get an equation �(G(n)) = F(n), G(0) = 0, {F(n)} ∈ l∞, it has a solution {G(n)} =
{(��F)(n)} which is in l∞. Thus {G(n)} ∈ l∞ and |G(n)| are uniformly bounded, there-
fore |Y(n,0)| = |e−μnI −G(n)| are also uniformly bounded, that is, for some N0 > 0 we
have |Y(k,0)| ≤N0 for any k.

The equality X(n,0)= e−λnY(n,0) implies

∣
∣X(n,0)

∣
∣≤N0e

−λn. (4.13)

After making a shift to the initial point k, k > 0, denoting

Y(n,k)= eλ(n−k)X(n,k) (4.14)
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and repeating this argument for an arbitrary positive integer k, one obtains

∣
∣X(n,k)

∣
∣≤Nke

−λk(n−k). (4.15)

Finally, we have to prove that Nk and λk can be chosen independently of k. To this end
we will show that the constants in the previous estimates can be chosen independently
of k. Indeed, let ‖��‖l∞→l∞ = P as above. Since l∞ contains sequences with k first van-
ishing terms (they form a subspace l∞(k)), ‖��‖l∞(k)→l∞(k) ≤ P for any positive integer k.
Further, if λ is chosen such that ‖�‖l∞→l∞ < 1/P, then ‖�‖l∞(k)→l∞(k) < 1/P and hence

r = ∥∥���
∥
∥

l∞(k)→l∞(k) ≤ ‖�‖
∥
∥��

∥
∥ <

1
P
P = 1, (4.16)

where λ and r < 1 do not depend on k. Since the norm of the operator is less than 1, then
the inverse (I + ���)−1 exists and its norm satisfies ‖(I + ���)−1‖l∞→l∞ ≤ 1/(1− r). We
recall � =� + �, �� =�−1, so ��� = I + ��� is invertible. Then by Lemma 4.2,

∥
∥��

∥
∥

l∞(k)→l∞(k) ≤
∥
∥��

∥
∥

l∞(k)→l∞(k)

∥
∥
∥
(
I + ���

)−1
∥
∥
∥

l∞(k)→l∞(k)
≤ P

1− r . (4.17)

For any fixed k, the fundamental function Y(n,k) of the equation �({yn})= 0 is a solu-
tion of this equation with the initial condition y0 = ··· = yk−1 = 0, yk = I .

Denote G(n,k)= I −Y(n,k). Then �({G(n,k)})= {F(n,k)}, where

F(n,k)=−
n∑

l=k
A(n, l)eλ(n+1−l), n≥ k. (4.18)

Here

∣
∣F(n,k)

∣
∣≤

n∑

l=k
e−ζ(n−l)eλ(n−l)eλ <

eλ

1− eλ−ζ = P1, (4.19)

so |{G(n,k)}| ≤ ‖��‖l∞(k)→l∞(k)|{F(n,k)}| ≤ P1P/(1− r)=N , where N does not depend
on k. Thus Y(n,k) is bounded for all n,k : |Y(n,k)| ≤N .X(n,k)= Y(n,k)e−λ(n−k) implies
|X(n,k)| ≤Ne−λ(n−k). �

Now let us demonstrate that the exponential estimate of the fundamental function
implies the exponential stability of the solution.

Theorem 4.8. Suppose (a2) holds. Equation (2.2) is exponentially stable if and only if for
every bounded sequence { f (n)} ∈ l∞ the solution {x(n)} of (2.1) with the zero initial con-
dition is also bounded.
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Proof. First, let us assume that for every bounded right-hand side the solution is bounded.
Then, by Theorem 4.7, the exponential estimate (4.5) is valid for the fundamental func-
tion. Without loss of generality, we may assume λ < ζ (otherwise, we can use a weaker
estimate (4.5) which is also valid). Since |X(n,k)| ≤Ne−λ(n−k), then by Lemma 2.5 (see
(2.10) and (a2)) the solution of (2.5), (2.3) satisfies

∣
∣x(n)

∣
∣≤ ∣∣X(n,0)

∣
∣
∣
∣x(0)

∣
∣+

n−1∑

l=0

∣
∣X(n, l+ 1)

∣
∣
−1∑

k=−d

∣
∣A(l,k)

∣
∣
∣
∣ϕ(k)

∣
∣

≤Ne−λn∣∣x(0)
∣
∣+

n−1∑

l=0

Ne−λ(n−l−1)
−1∑

k=−d
Me−ζ(l−k)

∣
∣ϕ(k)

∣
∣

≤Ne−λn∣∣x(0)
∣
∣+NM

n−1∑

l=0

e−λ(n−l−1)
−1∑

k=−d
e−ζl

∣
∣ϕ(k)

∣
∣

=Ne−λn∣∣x(0)
∣
∣+NM

( −1∑

k=−d

∣
∣ϕ(k)

∣
∣

)n−1∑

l=0

e−λ(n−l−1)−ζl

≤Ne−λn∣∣x(0)
∣
∣+NMd max

−d≤k≤−1

∣
∣ϕ(k)

∣
∣e−λneλ

∞∑

l=0

e−(ζ−λ)l

=Ne−λn∣∣x(0)
∣
∣+NMd max

−d≤k≤−1

∣
∣ϕ(k)

∣
∣e−λneλ

1
1− eλ−ζ

≤ Ce−λnmax
{
∣
∣x(0)

∣
∣, max
−d≤k≤−1

∣
∣ϕ(k)

∣
∣
}

,

(4.20)

where C can be chosen as C =N(1 +Mdeλ1/(1− eλ−ζ)).
If the solution is exponentially stable, then an exponential estimate is valid for the

fundamental function, thus the solution representation (2.10) immediately implies the
boundedness of a solution for any bounded right-hand side. �

5. Conclusion

We have demonstrated that in the sense of the exponential dichotomy, difference equa-
tions with a finite delay can be reduced to a first-order equation. Such reduction is impos-
sible for equations with an unbounded delay and exponentially decaying coefficients with
memory, but, as proved above, the exponential dichotomy result is still valid. However,
there are still some relevant problems.

(1) If coefficients do not decay with memory, there is no exponential dichotomy (see
Example 4.4), unlike the case of an exponential decay of coefficients with memory. What
is the minimal requirement to coefficients (type of decay) so that the exponential di-
chotomy of solutions is still valid?

(2) In order to deduce dichotomy results, we assume the solution with the zero initial
conditions is bounded (or belongs to a certain space) for any bounded (or belonging to
some space) right-hand side. Let us assume that for any bounded right-hand side there
are initial conditions, such that the solution is also bounded. Does this imply exponential
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decay of solutions of the homogeneous equation? For a scalar first-order equation, the
positive answer is obvious, but not that obvious for equations in Banach spaces.
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[9] U. Krause and M. Pituk, Boundedness and stability for higher order difference equations, Journal
of Difference Equations and Applications 10 (2004), no. 4, 343–356.

[10] E. Liz and J. B. Ferreiro, A note on the global stability of generalized difference equations, Applied
Mathematics Letters 15 (2002), no. 6, 655–659.

[11] E. Liz and M. Pituk, Asymptotic estimates and exponential stability for higher-order monotone
difference equations, Advances in Difference Equations 2005 (2005), no. 1, 41–55.

[12] M. Pituk, A criterion for the exponential stability of linear difference equations, Applied Mathe-
matics Letters 17 (2004), no. 7, 779–783.

Leonid Berezansky: Department of Mathematics, Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel
E-mail address: brznsky@cs.bgu.ac.il

Elena Braverman: Department of Mathematics & Statistics, University of Calgary,
2500 University Drive NW, Calgary, AB, Canada T2N 1N4
E-mail address: maelena@math.ucalgary.ca

mailto:brznsky@cs.bgu.ac.il
mailto:maelena@math.ucalgary.ca


QUASIDIFFUSION MODEL OF POPULATION COMMUNITY

F. BEREZOVSKAYA

By methods of qualitative theory of ODE and theory bifurcations we analyze the model
dynamics of the community consisting of “predator-prey” and “prey” systems affected
by prey intermigrations; we suppose that the Allee effect is incorporated in each prey
population. We show that the model community persists with parameter values for which
any “separate” population system can go to extinction. We investigate the dynamics of
coexistence, and in particular show that the model community can either exist in steady
state or with oscillations, or realize extinction depending on initial densities.

Copyright © 2006 F. Berezovskaya. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Dynamics of local model with the Allee effect

1.1. Two population models. The Allee effect [1, 10] means that the fertility of a pop-
ulation depends nonmonotonically on the population size and function of population
growth has maximum and minimum values. The simplest model describing this effect is

u′ = β f (u)= u(u− l)(1−u), (1.1)

where u is a normalized population density, l is a parameter satisfying 0 ≤ l ≤ 1. With
0 < l < 1, (1.1) has three equilibriums: u= 0, u= l, u= 1; the equilibria u= 0, u= 1 are
sinks, and the domains of their attractions are divided by the source u= l.

1.2. “Predator-prey” system. Let us suppose that f (u) gives the dynamics of prey pop-
ulation density u in the absence of a predator (of normalized density v) and predator
population is governed by the original second equation of the Volterra model. Then we
obtain the model ([4, 5], see also [6])

u′ = f (u)−uv, v′ = γv(u−m). (1.2)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 179–188
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Figure 1.1. Schematically presented: the parameter-phase portrait of model (1.2).

The biological meaning of the parameters in this system are defined as follows: l is the
ratio of the lower critical density of the prey population and the density determined by
the prey’s resources in the absence of a predator; γ is the coefficient of conversion of prey
biomass into predator biomass (in scaled variables u and v can be less or bigger than one);
m is natural to be regarded as a measure of predator adaptation to the prey.

The model has the nonnegative equilibria, O(0,0),O1(1,0),Ol(l,0), and also equilib-
rium A(m, (m− l)(1−m)) for 0 ≤ l ≤m ≤ 1. The main result of the analysis of system
(1.2) is the following.

Theorem 1.1. Let 0 ≤ l ≤ 1, m ≥ 0. For arbitrary fixed γ > 0 the bifurcation diagram of
system (1.2) is presented in Figure 1.1. The parameter space of the system for 0≤ l ≤ 1, m≥
0, is divided into 5 regions of qualitatively different phase portraits. Boundaries between
regions correspond to the bifurcations of codimension 1 and are of the form

(S1) m= 1 which corresponds to the appearance/disappearance of points A and O1;
(Sl) m= l which corresponds to the appearance/disappearance of points A and Ol;

(H1) m = (l + 1)/2 which corresponds to the change of stability of point A in the su-
percritical Andronov-Hopf bifurcation (with appearance/disappearance of a stable
limit cycle);

(L) m = m(l) which corresponds to the appearance/disappearance of the stable limit
cycle in a heteroclinic bifurcation where the separatrices connect points O1 and Ol;
this boundary of the nonlocal bifurcation was found numerically.

Biological interpretations of these results are the following. For any positive value of
parameter γ preys and predator can coexist with parameters m and l belonging to the do-
mains 2 and 3 of the parametric portrait in Figure 1.1 in a steady state (domain 2) or in
oscillations (domain 3); remark that population system persistence essentially depends
on initial densities, that is, for some initial densities populations get to extinction even



F. Berezovskaya 181

with mentioned parameter values. If parameters m and l belong to domain 1 (m > 1),
then predators become extinct for any of their initial densities, whereas preys can exist
with steady density u= l, or get to extinction with t→∞ depending on their initial den-
sity. At last, domains 4 and 5 correspond to extinction of both populations that happens
independently of initial data.

2. Community model

2.1. Description of the model. The model consists of the prey and predator-prey sub-
systems based on the “local” models (1.1) and (1.2); the model allows migration of the
preys from system 1 to system 2 if u1 > u2 and from system 2 to system 1 if u1 < u2. The
model is of the form

u1
′ = β f (u1

)
+α1

(
u2−u1

)
,

u2
′ = f

(
u2
)−u2v2 +α2

(
u1−u2

)
,

v2
′ = γv2

(
u2−m

)
,

f (u)= u(u− l)(1−u).

(2.1)

Here u1,u2,v2 are the respective normalized densities of populations of preys and preda-
tors in the systems 1 and 2; positive parameters γ,m and l1, l2 have the same sense as in
(1.1) and (1.2), and positive β is ratio of fertilities of prey populations 2 and 1, α1,α2 > 0
characterize the interconnection between population systems.

In this work we study the symmetric case l1 = l2 = l and α1 = α2 = α, β = 1. Then
model (2.1) takes the form

u1
′ = u1

(
u1− l

)(
1−u1

)
+α
(
u2−u1

)≡ F1
(
u1,u2,v2

)
,

u2
′ = u2

(
u2− l

)(
1−u2

)−u2v2 +α
(
u1−u2

)≡ F2
(
u1,u2,v2

)
,

v2
′ = γv2

(
u2−m

)≡ F3
(
u1,u2,v2

)
.

(2.2)

We consider (2.2) in the biologically relevant parameter domain M{α≥ 0, γ > 0, 0≤ l ≤
m≤ 1}.

2.2. Equilibria

2.2.1. Nullclines. We call equilibrium (x, y,z) “symmetric” if x = y, “trivial” if z = 0, and
“nontrivial” otherwise. System (2.2) has the nullclines

v2
′ = 0, v2 = 0, u2 =m, (2.3)

u2
′ = 0, f

(
u2
)−u2v2 +α

(
u1−u2

)= 0, (2.4)

u1
′ = 0, f

(
u1
)

+α
(
u2−u1

)= 0. (2.5)

For α = 0 as well as for u1 = u2 the model describes two independent subsystems
(1.1) and (1.2). For arbitrary positive α system (2.2) has trivial symmetric equilibria
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O00(0,0,0),O11(1,1,0),Oll(l, l,0); can have trivial equilibria C(x1,x2,0), where (x1,x2) are
roots of the system (2.4), (2.5) for v2 =0:

F1
(
u1,u2,0

)≡ f
(
u2
)

+α
(
u1−u2

)= 0,

F2
(
u1,u2,0

)≡ f
(
u1
)

+α
(
u2−u1

)= 0;
(2.6)

can have nontrivial equilibria B(X ,m,Z), where (X ,Z) are roots of the system (2.4), (2.5)
for u2 =m:

f (m)−mv+α
(
u1−m

)= 0, u1
(
u1− l

)(
1−u1

)
+α
(
m−u1

)= 0. (2.7)

2.2.2. Trivial equilibria. Besides the symmetric points of intersections (u1,u2) = (0,0),
(l, l),(1,1), the nullclines (2.6) can intersect up to three times more. The critical cases
of coalescing of points of intersections is defined by system (2.6) with the additional re-
quirement that

∣
∣
∣
∣
∣

∂
(
F1,F2

)

∂
(
u1,u2

)

∣
∣
∣
∣
∣
= f ′u

(
u1
)
f ′u
(
u2
)− ( f ′u

(
u1
)

+ f ′u
(
u2
))
α= 0. (2.8)

Systems (2.6), (2.8) define (in implicit form) the boundaries between these cases.

Proposition 2.1. System (2.2) has
(1) three pair of positive equilibria C1

i(u1
i,u2

i,0), C2
i(u2

i,u1
i,0), i= 1,2,3 if

α >

((
1− l+ l2)− ((2l− 1)(l− 2)(l+ 1)

)2/3
/2
)

9
, (2.9)

(2) one pair of positive equilibria C1
1(u1

1,u2
1,0), C2

1(u2
1,u1

1,0) if (l − l2)/2 < α <
((1− l+ l2)− ((2l− 1)(l− 2)(l+ 1))2/3/2)/9,

(3) no equilibria if α < (−l2/2 + l/2).
For any fixed m the curve SC12, α = ((1− l + l2)− ((2l − 1)(l − 2)(l + 1))2/3/2)/9, is the
parameter boundary between cases (1) and (2) and curve SC23, α = (−l2 + l)/2, is the pa-
rameter boundary between cases (2) and (3).

2.2.3. Nontrivial equilibria. Consider now system (2.7). It defines from one up to three
of real roots (u1

i,v2
i = ( f (m) + α(u1

i −m))/m). Three roots exist for small α, they can
be ordered such that u1

1 → 0, u1
2 → l, and u1

3 → 1 at α→ 0. Denote by Bi(u1
i,m,v2

i)
respective nontrivial equilibriums.

The root u1 is two-multiple if it satisfies system (2.7) as well as

fu
(
u1
)−α= 0, fuu

(
u1
)�= 0. (2.10)
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u1 is three-multiple if it satisfies (2.7), (2.10) as well as equation

fuu
(
u1; l

)= 0, fuuu
(
u1; l

)�= 0. (2.11)

Excluding u1 from systems (2.7), (2.10) we get the surface SB in the (γ,α,m, l)-parameter
space:

SB :D = 0, where D ≡ (27αm− 9(α+ l)(1 + l) + 2(1 + l)3)2

+ 4
(
3α− 1 + l− l2)3

, α <
1− l+ l2

3
.

(2.12)

System (2.2) has three equilibria, Bi(u1
i,m,v2

i), i= 1,2,3, inside the domain bounded
by SB12 and SB23 and only one, B(u1,m,v2), outside this domain. (u1,v2)-coordinates of
B are

u1 = (1 + l) + 21/3V/Z−Z/21/3

3
, (2.13)

where V = −1 + l− l2 + 3α > 0, Z =W +
√

(4V 3 +W2)1/3, W = (1 + l)(2− l)(2l− 1) +
9α(1 + l− 3m), and v2 = ( f (m; l) +α(u1−m))/m.

The following proposition summarizes the previous results and gives the asymptotic
values (explicitly to O(α2)) of coordinates of the points Bi.

Proposition 2.2. (1) In the four-parameter space M there exists the subdomain M f ; its
boundary SB defined by (2.12) corresponds to the fold bifurcation in (2.2). The boundary
SB consists of two branches, SB12 along which equilibrium pair B1,B2 coalesces and SB23

along which equilibrium pairs B2,B3 coalesces. At the branch SB12 the system has equi-
libria B1,2(u1

1,2 = ((l + 1)−√(1− l + l2− 3α))/3,m,v2
1,2) and B3(u1

3 = ((l + 1) + 2
√

(1−
l + l2 − 3α))/3,m,v2

3); at the branch SB23 the system has equilibria B2,3(u1
2,3 = ((l + 1) +√

(1− l+ l2− 3α))/3,m,v2
2,3) and B1(u1

1 = ((l+ 1) + 2
√

(1− l+ l2− 3α))/3,m,v2
1), where

v = ( f (m; l) + α(u−m))/m. The cusp line α = (1− l + l2)/3, m = (l + 1)3/(27α) belong-
ing to the fold surface corresponds to the three-multiple equilibrium B123(u∗,m,v∗), where
u∗ = (l+ 1)/3, v∗ = ( f (m) +α(u∗ −m))/m.

(2) System (2.2) has only one equilibrium B(u1,m,v2) outside M f (i.e., for α > (1− l +
l2)/3) and three equilibria Bi(u1

i,m,v2
i) inside Mf (i.e., for α < (1− l + l2)/3). (u1

i,v2
i)

coordinates of Bi explicitly to O(α2) are of the form

u1
1 = mα

l
, v2

1 = (m− l)(1−m)−α, (2.14)

u1
2 = l− (m− l)α

l(1− l) , v2
2 = (m− l)(1−m)− (m− l)α

m
, (2.15)

u1
3 = 1− (1−m)α

(1− l) , v2
3 = (m− l)(1−m) +

(1−m)α
m

. (2.16)
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3. Topological and asymptotical characteristics of equilibria

3.1. Linear analysis. The Jacobian of system (2.2), J(u1,u2,v2)=∂(F1,F2,F2)/∂(u1,u2,v2),
where F = (F1,F2,F3) has the form

J(u1,u2,v2)=

⎛

⎜
⎜
⎜
⎜
⎝

df
(
u1
)

du
−α α 0

α
df
(
u2
)

du
− v2−α −u2

0 γv2 −γ(m−u2
)

⎞

⎟
⎟
⎟
⎟
⎠
. (3.1)

Setting A ≡ df (u1)/du− α, E ≡ df (u2)/du− v2 − α, H ≡ −γ(m− u2), F ≡ −u2, G ≡
γv2 we can write the characteristic polynomial of matrix (3.1) in the form:

Λ(λ)≡ λ3− (A+E)λ2 +
(
AE−GF −α2)λ+GFA= 0. (3.2)

Proposition 3.1. (1) Eigenvalues of the system (2.2) in the symmetric trivial equilibria are

λ1
(
O00

)=−γm, λ2
(
O00

)=−l, λ3
(
O00

)=−l− 2α;

λ1
(
Oll
)=−γ(m− l), λ2

(
Oll
)= l(1− l), λ3

(
Oll
)= l(1− l)− 2α;

λ1
(
O11

)=−γ(m− 1), λ2
(
O11

)=−(1− l), λ3
(
O11

)=−(1− l)− 2α.

(3.3)

(2) Eigenvalues of the equilibrium pointsC1
i(ui12,ui21,0), C2

i(ui21,ui12,0), where (ui12,ui21)
are real roots of the systems in (2.6), are

λ1
(
C1

i)=−γ(m−ui21
)
, λ1

(
C2

i)=−γ(m−ui12
)
, (3.4)

and for both cases, λ2,3 are roots of equations

λ2− (A+E)λ+
(
AE−α2)= 0, (3.5)

where A and E are taken with (u1,u2)= (u12,u21) for C1 and (u1,u2)= (u21,u12) for C2.

Corollary 3.2. Trivial equilibrium points of system (2.2) are saddles, nodes, or saddle-
nodes.

3.2. Analysis of nontrivial points. Let us study now the stability characteristics of the
equilibria. If A = 0, then λ1 = 0 is the root of the characteristic polynomial (3.2) in the
two-multiple equilibrium B∗ with respect to SB. Then, eigenvalues λ2(B∗), λ3(B∗) (cor-
rect to O(α2)) satisfy equation

λ2−
(
df (m)
du

− v2−α
)

λ+ γmv2 = 0. (3.6)

Remind, that B∗ ≡ B1,2 at the branch SB12 and B∗ ≡ B2,3 at the branch SB23. In the first
case the system also has equilibrium B3, in the second B1. The point B∗ disappears after
an intersecting SB. Point B “succeeds” to the eigenvalues of B3 if we cross SB12 and the
eigenvalues of B1 if we cross SB23. In both cases in point B, λ1 = 1 + l(l− 1)− 4α and
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Table 3.1. Coordinates and eigenvalues of equilibria Bi for (27αm− 9(α + l)(1 + l) + 2(1 + l)3)2 +
4(3α− 1 + l− l2)3 < 0, explicitly to O(α2), i= 1,2,3.

B1(u1
1,m,v2

1) B2(u1
2,m,v2

2) B3(u1
3,m,v2

3)

u1
1 =mα/l u1

2 = l− (m− l)α/(l(1− l)) u1
3 = 1− (1−m)α/(1− l)

v2
1 = (m− l)(1−m)−α v2

2 = (m− l)(1−m)− (m− l)α/m v2
3 = (m− l)(1−m)

+ (1−m)α/m

λ1
1 −γm(1−α/l) λ1

2 −γ(m− l)(1 +α/(l(1− l)) λ1
3 γ(1−m)(1−α/(1− l))

λ2,3
1 (Tr1±√δ1)/2, where λ2,3

2 (Tr2±√δ2)/2, where λ2,3
3 (Tr3±√δ3)/2, where

Tr1 (1 + l− 2m)m Tr2 (1 + l− 2m)m−αl/m Tr3 (1 + l− 2m)m−α/m

δ1
(Tr1)2− 4γm(m−
l)(1−m) + 4γmα

δ2
(Tr2)2− 4γm(m−
l)(1−m) + 4γ(m− l)α δ3

(Tr3)2− 4γm(m−
l)(1−m)− 4γ(1−m)α

λ2 + λ3 =m(2m− l− 1)− α(l + 1− 3m± 2
√

(1− l + l2 − 3α))/3m, where sign “+” is set
with respect to SB12, sign “−” is set with respect to SB23.

One can prove that if A �= 0, then the root of (3.2) is λ1 = A+O(α2) and two other
roots at least for small α satisfy the relations λ2λ3 = γmv2 +O(α2), λ1 + λ2 = df (m; l)/du−
v2 − α+O(α2), where u1,v2 are roots of system (2.7). Then, the following statement is
valid.

Proposition 3.3. λ1 = df (u1
i)/du− α, λ2,λ3 satisfying (3.6) are (explicitly to α2) eigen-

values of points Bi(u1
i,m,v2

i), where u1
i is a root of F1 and v2

i = ( f (m) +α(u1
i−m))/m.

Corollary 3.4. The necessary conditions for changing stability of points Bi are given (ex-
plicitly to α2) by the next system:

F1
(
u1,m,v2

)≡ u1
i
(
u1− l

)(
1−u1

i
)

+α
(
m−u1

i
)= 0,

df (m; l)
du

− v2−α≡m(1 + l− 2m)− 2u1
i

m
= 0.

(3.7)

Asymptotic coordinates and eigenvalues of equilibria B1
i (i = 1,2,3) are presented in

the Table 3.1.
Now we can define parameter surfaces where the point B changes stability in the Hopf

bifurcation: H : {(γ,α,m, l) ∈M, Reλ2(B) + Reλ3(B) = 0, λ2(B)λ3(B) > 0, the first Lya-
punov quantity L1 �= 0}.

For (γ,α,m, l) ∈M f we have three surfaces Hi whose asymptotic (on α) presentation
is

H1

{

γ,α,m, l :m= (1 + l)
2

for α < (m− l)(1−m), L1
1 �= 0

}

,

H2

{

γ,α,m, l : α= m2(1 + l− 2m)
l

for α <m(1−m), L1
2 �= 0

}

,

H3{γ,α,m, l : α=m2(1 + l− 2m) for any α > 0, L1
3 �= 0

}
,

(3.8)
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where L1
i (i= 1,2,3) are the first Lyapunov quantities taken in the Hi. Note that H1 has

to coincide with the Hopf surface H(B) in M after crossing SB23, as well as H3 coincides
with H(B) after crossing SB12.

To compute the first Lyapunov quantity and justify our analysis for a reasonable α,
we used the packages LOCBIF [7] and TRAX [9]. The results of the computations have
confirmed the asymptotical analysis presented above, so that we can formulate the next
statement.

Proposition 3.5. The first Lyapunov quantity
(i) is negative: L1

1 < 0, for positive γ,α,m, l belonging to H1,
(ii) is positive: L1

1 > 0, for positive γ,α,m, l belonging to H2,
(iii) vanishes: L1

3 = 0, at the set h of positive γ,α,m, l belonging to H3, that is, for any
fixed (γ, l) ∈ h there exists point (αL,mL) on H3 such that L1

3 > 0 along curve H3

for (α,m) above (αL,mL) and L1
3 < 0 for (α,m) below (αL,mL).

Corollary 3.6. With parameters belonging to domain M, there exists the boundary surface
C of multiple limit cycles at the phase space of system (2.2) corresponding to the nonlocal
bifurcation of appearance/disappearance of two cycles. Parameter surfaces C and H3 have
common set h∩ (αL,mL) whose points correspond to bifurcation codimension 2 [2, 8] in
system (2.2).

Parameter surfaces Hi and SB, generally, can have a common set. If this set exists, it
contains points corresponding to bifurcations of codimension 2, as per Bogdanov-Takens
[5], and codimension “1 + 1” (or higher codimension, see [3, 8]) in the system. Our com-
puter investigations revealed such points. From the existence of the Bogdanov-Takens
bifurcation we have the following.

Proposition 3.7. With parameters belonging to M, there exist at least three surfaces LB1,
LB2, LB3 corresponding to homoclinic loops in system (2.2) formed by the separatrices of
points B1, B2, B3, respectively.

4. Discussion of bifurcation portrait of system (2.2)

Combining the previous results proves the next statement.

Theorem 4.1. (1) In the parameter domain M, system (2.2) has the following nonnegative
equilibria:

(a) trivial symmetric locally asymptotically stable nodes O00(0,0,0), O11(1,1,0), and
saddle Oll(l, l,0);

(b) from zero up to three pairs of trivial equilibria: C1
i(ui12,ui21,0), C2

i(ui21,ui12,0)
where (ui12,ui21) are roots of the system in (2.6) whose conditions of existence are
given in Proposition 2.1. Any equilibrium C1

i,C2
i is saddle, node, or saddle-node, if

it exists;
(c) from one nontrivial equilibrium B(u1,m,v2), where (u1,v2) are given in (2.12),

up to three nontrivial equilibria Bi(u1
i,m,v2

i), where (u1
i,v2

i) are roots of system
(2.7) whose conditions of existence and asymptotic (on α) expansions (2.14)–(2.16)
are given in Proposition 2.2. For small enough α, each point possesses a manifold
containing a spiral.



F. Berezovskaya 187

v2

a1 = 0.18

a1 = 0.1

a1 = 0.05 a1 = 0.01
a1 = 0

1
u1

v2

a1 = 0.18

a1 = 0.1
a1 = 0.05

a1 = 0.01
a1 = 0

+
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Figure 4.1. (u1,v2)- and (u2,v2)-cuts of phase portraits of system (2.2) for γ = 1, m= 0.4, l = 0.1.

(2) Parameter portrait of system (2.2)
(a) contains the boundaries corresponding to the codimension 1 bifurcations: saddle-

node (fold) SB12 ∩ SB23, three Hopf bifurcations H1, H2, H3, multiple limit cycle
bifurcation C, and homoclinic bifurcation LB1, LB2, LB3 inside M f ;

(b) contains the boundaries corresponding to the Hopf bifurcation H, multiple limit
cycle bifurcation C, and homoclinic bifurcation LB outside M f .

The following corollary of Theorem 4.1 supported by computations can be formu-
lated.

Corollary 4.2. For any parameter values (γ,m, l) belonging to the interiors of domains 2,3,
and 4 (see Figure 1.1) there exists such a positive value of the parameter α that system (2.2)
with parameters (γ,m, l,α) has at least one nontrivial stable mode: equilibrium or periodic
oscillations (see Figure 4.1).

Let us proceed with the biological interpretation of the obtained result. Firstly, for the
suitable migrations between preys, the predator can control numbers of both prey popu-
lations in a stable stationary equilibrium or in an oscillatory regime. Secondly, existence
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of migrations between preys stabilizes the community originating a coexistence of popu-
lations with parameter values for which any “separate” population system is doomed to
die out for all initial values.
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ECONOMIC CONTROL OF EPILEPSY IN
A GIVEN TIME PERIOD

D. K. BHATTACHARYA AND S. K. DAS

The paper discusses an economically viable way of control of epilepsy in a given span
of time under a given budget of expenditure for populations of three consecutive gener-
ations. First it considers a discrete mathematical model to express populations of three
consecutive generations involving diseased and susceptible ones. The given time is di-
vided into finite number of equal intervals called cohorts. In each cohort a continuous
dynamics explains the change in the population for each generation. As a result, the study
practically reduces to that of a continuous-discrete mathematical model for each gener-
ation. Next an objective function is formed for each generation and for the given span
of time. This measures the net indirect profit of curing the individuals less than the cost
involved in the process of identifying and treating them individually for the given period
of time. Finally the method of optimal control is used to maximize the total net profit.

Copyright © 2006 D. K. Bhattacharya and S. K. Das. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

In many countries, especially which are underdeveloped, there arises a question of eradi-
cating or minimizing the growth of diseases in a prescribed time period with least possible
expenditure involved. In this connection, we made a recent survey on three generations
of people who were either epileptic or susceptible to epilepsy [3]. The survey reported
different types of prevalence of the disease in the different categories of people, differing
in age and social status. From these data, prevalence of the disease in the community of
diseased and susceptible populations of three generations was calculated. This was purely
based on the statistical inferences on the data.

Now the following allied questions may be raised.
(1) As the disease is mostly a vertically transmitted one, can the dynamics of the

three generations be expressed in the form of a discrete dynamical system and
can the “prevalence” be calculated in terms of the birth rates of the diseased and
susceptible ones?

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 189–199
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(2) Is it possible to express the dynamics of the population, when the treatment con-
tinues successively during different equal intervals of the total span of time, in
the form of a continuous-discrete mathematical model and calculate the con-
centration of the diseased population at the end of the given span of time?

(3) Can the “prevalence” of disease before and after the treatment be compared? Can
a definite conclusion be made from the two results out of the given parameters
of the model?

(4) How can the mathematical theory of control be applied so as to maximize the
net profit coming out of the process?

The present paper attempts to answer all the questions in the affirmative. It develops a
continuous-discrete mathematical model for control of epilepsy. It is not out of context
to mention that although the use of discrete or continuous-discrete models is completely
new for vertically transmitted diseases like epilepsy, but the use of similar models in eco-
nomics and fishery is well known. To help in properly appreciating the analysis of this
paper, the following references may be cited. Samuelson [10, 11] considers economic im-
plications of discrete-time models. General references on discrete models are given by
Maynard Smith [6], May [5], Nicholson and Belly [8]. A standard stock recruitment re-
lation F between the recruit Rk and the parent stock Pk at the kth stage is known from
Ricker curve [8]. Maynard Smith [7] and Oster [9] studied the dynamic behavior of stock
recruitment relation F. Some other standard models of stock recruitment relationships
based on hypothesis concerning life history of various fish species are also known [2].
So far as continuous-discrete mathematical models are concerned, there are two types of
models. The first type of models is the model for which the allied control problem may
be solved without applying the general discrete optimal control technique and that the
choice of control sequence normally involves most rapid or bang-bang approach to equi-
librium. Such problems are termed as “separable” by Spence and Starrett and as “myopic”
by Heyman and Sobel [4]. Other type of problem is called nonseparable (nonmyopic),
where the corresponding control problem can be solved only by the general discrete op-
timal control technique, and in this case the choice of control sequence involves asymp-
totic approaches to the equilibrium. Our present problem is of separable myopic type,
and hence optimization is done by using the “most rapid” approach path.

2. Some of the experimental data and analysis on the prevalence of epilepsy [3]

We first highlight, in brief, some of the recent experimental work and analysis on the dis-
ease epilepsy. This helps in the motivation of the corresponding mathematical modeling
of the occurrence of the disease epilepsy and its mathematical control.

2.1. Persons with epilepsy. A total 597 persons were found to have seizure disorders. Af-
ter evaluation by the neurologist, 292 persons (162 men and 130 women) were diagnosed
with active epilepsy yielding a crude prevalence rate of 557.5 and an age-adjusted preva-
lence rate (US 2000) 516.77 per 100 000 populations (Table 2.1). Among the others, 28
had inactive epilepsy, 40 had single seizure, and 207 had febrile convulsion. The highest
age-specific prevalence rate of 811 per 100 000 populations was observed between 10–19
years age group. Age and sex-specific prevalence shows the highest prevalence of epilepsy
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Table 2.1. Age and sex distribution of our sample population.

Age range
Population
of men (%)

Population of
women (%)

Total Cumulative (%)
Indian population
(2001) (%)

0–4 1690–6.12 1467–5.93 3157–6.03 3157–6.03 10.77

5–9 1985–7.19 1859–7.51 3844–7.34 7001–13.37 12.51

10–14 25060–9.07 2349–9.49 4855–9.27 11856–22.64 12.17

15–19 2717–9.83 2406–9.72 5123–9.78 16979–2.42 9.77

20–24 2711–9.81 2304–9.31 5015–9.57 21994–41.99 8.75

25–29 2471–8.94 2319–9.37 4790–9.15 26784–51.14 8.13

30–34 2231–8.08 2078–8.40 4309–8.23 31093–59.36 7.24

35–39 2259–8.18 2126–8.59 4385–8.37 35478–67.74 6.88

40–44 1965–7.11 1689–6.82 3654–6.98 39132–74.71 5.43

45–49 2042–7.39 1601–6.47 3643–6.96 42775–81.67 4.62

50–54 1248–4.52 1042–4.21 2290–4.37 45065–86.04 3.57

55–59 1029–3.72 853–3.45 1882–3.59 46947–89.63 2.7

60–64 920–3.33 891–3.60 1811–3.46 48758–93.09 2.68

65–69 662–2.40 664–2.68 1326–2.53 50084–95.62 1.93

70–74 579–2.10 538–2.17 1117–2.13 51201–97.75 1.43

75–79 302–1.09 236–0.95 538–1.03 51709–98.78 0.64

80≥ 309–1.12 329–1.33 638–1.22 52377–100.00 0.78

Total 27626 24751 52377

in the age range between 15 and 29, and males are predominant sufferers except in elderly
groups when women are predominantly affected.

2.2. Distribution of sample population. Table 2.1 shows age and sex distribution of
sample population.

2.3. Prevalence rates of neurological disease (epilepsy) in the study.

2.3.1. Observation. Prevalence rate of epilepsy is nonuniform amongst different age
groups. If we roughly assume that the three generations consist of people of ages over
60, of ages between 30–60, and of ages less than 30, respectively, then we find that the
prevalence rates in the three generations do not follow a definite pattern. It is the highest
for the third generation consisting of people of both sexes between the ages 15–29. We
cannot say definitely whether the prevalence rates decrease or increase from one genera-
tion to the next. But we may naturally expect that in any generation, the prevalence rate
of the persons should decline if proper medical treatments are offered to them. With this
in mind, we formulate a mathematical model that tallies with the realistic data and show
how it may be used for control of the disease in a given span of time.
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3. Discrete mathematical model of vertically transmitted diseases [1]

Let In and Sn denote, respectively, the concentration of diseased and susceptible pop-
ulations in the nth generation. Under normalization, the total carrying capacity of the
environment reduces to one. Hence, 1− Sn−1− In−1 represents the logistic control on the
oviposition. Let bI and bS be, respectively, the birth rates of infected and susceptible popu-
lations. They do not depend on n due to their periodicity. Let p and q = 1− p, 0≤ q ≤ 1,
be the portions of a diseased female that become, respectively, susceptible and infected
offspring in the next generation. If no maturation period is present, then there is no hor-
izontal transmission of the disease. It is purely a case of vertical transmission. In this case,
the discrete dynamics of the populations are given by

In(n)= (1− p)bIIn−1
[
1− In−1− Sn−1

]
, (3.1)

Sn(n)= [bSSn−1 + pbIIn−1
][

1− In−1− Sn−1
]
. (3.2)

The prevalence rate rn = In(n)/(In(n) + Sn(n)) has the following form:

rn = (1− p)bIIn−1

bIIn−1 + bSSn−1
. (3.3)

It is noted that in the case of epilepsy, horizontal transmission does not play a major role,
and so the above model may serve our purpose.

In our case, if I1 and S1 denote, respectively, the concentration of diseased and suscep-
tible classes in the first generation, then the next two generations give rise to populations
I2, S2 and I3, S3, which are related as

I2 = (1− p)bII1
[
1− I1− S1

]
,

S2 =
[
bSS1 + pbII1

][
bIS1 + pbII1

][
1− I1− S1

]
,

(3.4)

I3 = (1− p)bII2
[
1− I2− S2

]
,

S3 =
[
bSS2 + pbII2

][
bIS2 + pbII2

][
1− I2− S2

]
.

(3.5)

Expressions (3.4) and (3.5) describe the discrete dynamics for our model involving
three generations of diseased and susceptible populations I1, S1, I2, S2 and I3, S3, respec-
tively.

4. Relation between prevalence rates of consecutive generations

From (3.3), it is noted that prevalence rate of disease in the nth generation is given
by rn = In/(In + Sn) = qbIIn−1/(bIIn−1 + bSSn−1). So we have rn+1 = In+1/(In+1 + Sn+1) =
qbIIn/(bIIn + bSSn), and hence

rn
rn+1

=
(
bIIn + bSSn

In

)(
In−1

bIIn−1 + bSSn−1

)

= bI + bS
(
Sn/In

)

bI + bS
(
Sn−1/In−1

) < 1 (4.1)
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if Sn/In < Sn−1/In−1. So we see that rn < rn+1 if Sn/In < Sn−1/In−1. Naturally, the changes in
the prevalence rates in the successive generations depend on the ratio of the susceptible
and the diseased ones. It cannot be said definitely whether the prevalence rate decreases
or increases from generation to generation. This relates to our observations in the realistic
data.

We now affirm from the following mathematical model that the prevalence rate of
epilepsy actually decreases when diseased ones are properly treated.

5. Formation of continuous-discrete mathematical model for treatment of epilepsy

We first consider diseased populations of three consecutive generations related as above
separately. In the first generation, let I1(0)= I10 and S1(0)= S10 be the initial values of I1
and S1, respectively, when treatment starts. Let E10(t) be the total effort exerted in diag-
nosing and treating I1(t) at time t. E10(t) is quantified in terms of total team of workers
engaged in the survey work and the total number of medical persons involved in the
treatment process, and also in terms of total amount of medicine and medical appliances
used in the process. Let the rate of improvement of the affected persons (indicating de-
cay in their growth) be proportional to the αth power of E10(t) and βth power of I1(t),
0 < α < 1, 0 < β < 1 (the growth equation is of general type, Cobb-Douglass one. Special
type occurs when α= 1, β = 1). Then the continuous dynamics of this process is given by

dI1
dt
=−δEα10(t)I

β
1 (t), (5.1)

δ is the constant of proportionality.
Let tε be the time for which the process continues and U10 be the net improvement at

the end of the time tε. Then solving (5.1), we have

(
U10

)1−β = δ(1−β)Eα10tε. (5.2)

Hence R10 = I10−U10 is the total diseased concentration at the end of time tε in the first
cohort of the first generation. Let us assume that the given span of time is divided into
m number of cohorts of equal duration P (cohort time). Now R10 decays with its own
dynamics for the rest of the time P− tε of the first cohort. This dynamics is expressed as

dθ

dt
= θ1x(t), x(0)= R10, (5.3)

θ1 is the natural death rate of I1(t). The solution is given by

x(t)= R10e
θ1(t). (5.4)

So the value of x(t) at the end of the time period P becomes I11 = R10e−θ1(P−tε). We write
I11 = F(R10), where F(R10) = R10e−θ1(P−tε). In fact, I11 is the concentration of the dis-
eased one at the end of the first cohort (equivalently at the starting of the second cohort).
Now at this stage, second phase of treatment starts and continues for time tε. There is
no necessity that the same tε is to be taken. But it is better to use the same tε to avoid
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complications of calculations. Now the most important point to be noted is that same
effort is not needed for the dynamics of the next cohort time P, as some improvement
to the diseased population has already been made. In fact, the effort is now of the form
E11(t), where E11(t) < E10(t). So replacing E10 by E11 and writing equation similar to (5.3),
we get the net improvement U11 at the next phase for time tε as

(
U11

)1−β = δ(1−β)Eα11tε. (5.5)

So R11 = I11−U11 is the total diseased concentration at the end of second improvement.
As usual, R11 runs out of its own dynamics according to (5.4) for the time period P− tε
and the whole process continues. In this way, we get R1m−1, the diseased population at the
end of the improvement in the mth cohort. Finally, the population at the end of the mth
cohort is found to be I1m = F(R1m−1)= R1m−1e−θ1(P−tε).

The whole process cited above explains the continuous-discrete dynamics for the given
span of time. Had there been no updating at the start of each cohort, the whole process
would have been governed by a discrete dynamics. The updating at regular intervals of
time has made the process governed by a continuous-discrete dynamics.

6. Formation of the objective function for the continuous-discrete model

As our program is to update the diseased population in an economically viable way, so
at the end of each kth cohort, when the concentration is I1k, the updating U1k is to be so
adjusted that the total profit out of improvement in the diseased population less than the
corresponding cost incurred is maximum. If c is the cost per unit effort, then the total
cost for the first updating is

∫ tε
0 cE10(t)dt. We first express this cost in terms of cost per

person treated, which is taken as C. We note that cE10(t) amount of cost was needed for

δEα10I
β
1 . So

C1(t)= cE10

δEα10I
β
1

= c

δEα−1
10 I

β
1

. (6.1)

Assuming solution of (5.1) also gives t as a function of I1, we write dt =−(1/δEα10I
β
1 )dI1.

So finally, we have cE1(t)dt = −C(I1)dI1. Hence the total cost of first updating can be
expressed as

∫ tε

0
cE10(t)dt =−

∫ I10−U10

I10

C
(
I1
)
dI1 =

∫ I10

I10−U10

C
(
I1
)
dt =

∫ I10

R10

C
(
I1
)
dt. (6.2)

Also p being the projected price out of improvement U01 to the diseased population,
the total projected price during this time period comes to be pU01 = −

∫

I
I01−U01
01

pdI1 =
∫ I10

R10
pdI1.

Also p being the projected price out of improvement U01 to the diseased population,

the total projected price during this time period comes to be pU01 = −
∫ I01−U01

I01
pdI1 =

∫ I10

R10
pdI1. So the net profit for this period is equal to

∫ I01

R01
(p−C(I1))dI1. We denote it by



D. K. Bhattacharya and S. K. Das 195

π(I10,U10) and call it the total profit of improvement in the first cohort. Thus, the total
profit for the whole process is found to be

m−1∑

k=0

π
(
I1k,U1k

)=
m−1∑

k=0

∫ I1k

R1k

(
p−C(I1

))
dI1

=
m−1∑

k=0

∫ X1k

R1k

(
p−C(I1

))
dI1 +

m−1∑

k=0

∫ I1k

X1k

(
p−C(I1

))
dI1,

(6.3)

where R1k < X1k < I1k and X1k is that amount of diseased concentration of the kth co-
hort, for which the projected profit equals the corresponding cost. Such a concentration
is called a bionomic equilibrium point. k = 0,1,2, . . . ,m− 1. X1k are different for each
cohort, but they have definitely fixed values. If we now write

∫ I1k
X1k

(p−C(I1))dI1, then

m−1∑

k=0

π
(
I1k,U1k

)=
m−1∑

k=0

[−φ(R1k
)

+φ
(
I1k
)]

=−
m−1∑

k=0

φ
(
R1k
)

+φ
(
I10
)

+
m−1∑

k=1

φ
(
I1k
)

=−
m−1∑

k=0

φ
(
R1k
)

+φ
(
I10
)

+
m−1∑

k=1

φ
(
F
(
R1k−1

))

=−
m−1∑

k=0

φ
(
R1k
)

+φ
(
I10
)

+
m−1∑

k=0

φ
(
F
(
R1k−1

))

=−
m−1∑

k=0

φ
(
R1k
)

+φ
(
I10
)

+
m−2∑

k=0

φ
(
F
(
R1k
))

=−
m−2∑

k=0

φ
(
R1k
)−φ(R1m−1

)
+φ
(
I10
)

+
m−2∑

k=0

φ
(
F
(
R1k
))

=
m−2∑

k=0

W
(
R1k
)

+φ
(
I10
)−φ(R1m−1

)
, W

(
R1k
)= φ(F(R1k

))−φ(R1k
)
.

(6.4)

The objective function is given by

m−1∑

k=0

π
(
I1k,U1k

)=
m−2∑

k=0

W
(
R1k
)

+φ
(
I10
)−φ(R1m−1

)
, (6.5)

where W(R1k)= φ(F(R1k))−φ(R1k).
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7. Optimal criteria for the continuous-discrete model

We first divide the allotted expenditure for three generations of diseased persons, keep-
ing in mind that more money is needed as we pass on from one generation to the next
generation successively, because of the increasing number of diseased ones in the succes-
sive generations. Anyway, we first stick to the first generation. We see that φ(I10) depends
only on I10 and depends only on φ(R1m−1), where I10 is given and R1m−1 is the last im-
proved result due to improvement U1m−1. Now U1m−1 being the last improvement, it can
be chosen according to the total amount of money left for expenditure. Naturally, R1m−1

does not depend on the choice of the other R1k, k = 0,1, . . . ,m− 2. So if the problem is
to maximize the total profit of the whole process for the first generation, then practically
the maximum value of the profit depends on the choice of R1k, k = 0,2, . . . ,m− 2. Thus
the optimal criteria reduces to the following. Find out the optimal sequence {R∗1k}, and
hence {U∗1k}, k = 1,2, . . . ,m− 2, such that

m−1∑

k=0

π
(
I1k,U1k

)=
m−2∑

k=0

W
(
R1k
)

+φ
(
I10
)−φ(R1m−1

)
, (7.1)

where W(R1k)= φ(F(R1k))−φ(R1k).

8. Solution of the problem of control of epilepsy

Theorem 8.1. Let the dynamic model for control of epilepsy be given by equations (5.1)–
(5.5). Let the objective function and the objective criteria be given by (5.5) and (6.5),
respectively. Let A1k = c/δEα−1

1k . Then the profit given by
∑m−1

k=0 π(I1k,U1k) is maximum if
∑m−2

k=0 [φ(F(R1k))−φ(R1k)] is maximum, the condition for which {R1k} should be chosen as
{R∗1k}, k = 0,1, . . . ,m− 2, where in each cohort, R∗1k is related to A∗1k as

R∗1k =
[
A∗1k
(
1− e−θ(1+β)(P−tε)

)

p
(
1− e−θ(P−tε)

)

]

, (8.1)

where A∗1k = c/δ(E∗1k)α−1.

Proof. If W(R1k)= φ(F(R1k))−φ(R1k) is maximum at R1k = R∗1k, then we should have

W ′(R∗1k
)= [p−C(F(R∗1k

))]
F′
(
R∗1k
)− [p−C(R∗1k

)]= 0. (8.2)

Again, we have

C
(
I1k
)= cE1k

δ
(
E1k
)α
xβ
= c

δ
(
E1k
)α−1

xβ
= A1kx

−β, A1k = c

δ
(
E1k
)α−1 . (8.3)

So from (8.2), we get

F′
(
R∗1k
)= p−C(R∗1k

)

p−C(F(R∗1k
)) = p−A∗1k

(
R∗1k
)−β

p−A∗1k
(
F
(
R∗1k
))−β . (8.4)
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Now, F1k = R1ke−θ(P−tε)⇒ F′(R1k)= e−θ(P−tε), so we have

p−A∗1k
(
R∗1k
)−β

p−A∗1k
(
F
(
R∗1k
))−β = e−θ(P−tε). (8.5)

This gives (p−A∗1k(R∗1k)−β)/(p−A∗1k(F(R∗1k))−βe−θβ(P−tε))= e−θ(P−tε).
So finally, R∗1k is expressed in terms of A∗1k as

R∗1k =
[
A∗1k
(
1− e−θ(1+β)(P−tε)

)

p
(
1− e−θ(P−tε)

)

]

, (8.6)

where A∗1k = c/δ(E∗1k)α−1. �

Remark 8.2. Equation (7.1) determines R∗1k in terms of A∗1k. Again U∗1k = [δ(1 −
β)(E∗1k)αtε]1−β is also expressed in terms ofA∗1k, asA∗1k = c/δ(E∗1k)α−1. Now we explain that
A∗1k can be calculated from the relation R∗1k = I1k −U∗1k. Let us start with R∗10 = I10−U∗10,
where I10 is known. Naturally, this determines A∗10, as both R∗10 and U∗10 are expressed
in terms of A∗10. This known value of A∗10 determines both U∗10 and R∗10. Now R∗10 being
known, I11 = F(R∗10) is also known. So proceeding as above, it may be shown that fi-
nally {U∗1k} and {R∗1k} can be determined, where k = 0,1, . . . ,m− 2. This explains that the
control strategy as stated above is very nicely workable from the practical point of view,
provided the parameters of the model can be determined suitably.

9. Optimal control strategy for all the generations

Depending on the money year marked for the three generations, the control strategy
for the three generations is carried out separately and the results of updating may be
summarized as follows.

Theorem 9.1. Let I1k,U1k,R1k,E1k,A1k,θ1 for the first generation be replaced by Isk,Usk,Rsk,
Esk,Ask,θs; s= 2,3 (i.e., for the second and third generations, resp.), where θ1>θ2>θ3; E1k <
E2k <E3k. Then the net profit

3∑

l=1

m−1∑

k=0

π
(
Ilk,Ulk

)=
3∑

l=1

m−2∑

k=0

W
(
Rlk
)

+
3∑

l=1

φ
(
Il0
)−

3∑

l=1

φ
(
Rlm−1

)
, (9.1)

where W(R1k)= φ(F(R1k))−φ(R1k) is maximum if R∗lk are expressed in terms of A∗1k as

R∗lk =
[
A∗lk
(
1− e−θ(1+β)(P−tε)

)

p
(
1− e−θ(P−tε)

)

]

, (9.2)

where A∗lk = c/δ(E∗lk)α−1, l = 1,2,3.
This determines finally the successive improvements in the diseased populations of the

three generations, which are given by U∗lk , l = 1,2,3; k = 0,1,2, . . . ,m− 2.
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10. Relation between prevalence rates of consecutive generations and effect
on the prevalence rate of the same generation due to measures of control

We have already seen that the changes in the prevalence rates in the successive generations
depend on the ratio of the susceptible and the diseased ones. It is expected that it should
decrease if measures are taken to control the disease, but nothing could be concluded
definitely. Now, we show that due to proper treatment of the diseased ones, the prevalence
rate of the disease decreases definitely in any generation.

We note that the prevalence rate of the nth generation depends on the concentra-
tion of diseased and susceptible populations of (n− 1)th generation. Let us assume that
uIn−1, 0 < u < 1, is the net improvement in the diseased population during the given
time of treatment. Then, the new prevalence rate rN of the nth generation is given by
rN = qb1(1−u)In−1/((1−u)In−1 + bSSn−1). We like to show that rN < rn. In fact, we have

rN − rn = qb1(1−u)In−1

(1−u)In−1 + bSSn−1
− qbIIn−1

bIIn−1 + bSSn−1

= (qb1In−1
)
[

(1−u)
bI(1−u)In−1 + bSSn−1

− 1
bIIn−1 + bSSs−1

]

=
(−ubSSn−1

)(
qb1In−1

)

(1−u)bIIn−1In−1 + bSSn−1
[
bIIn−1 + bSSn−1

] < 0.

(10.1)

Thus rN < rn for any nth stage.

11. Conclusion

(1) Experimentally, it is observed that the prevalence ratio is universally almost 6 : 1000.
This fixed value occurs because it is calculated from the whole populations of different
generations exposed during the period of observations. Had it been calculated for pop-
ulation of each generation exposed separately, the ratio might not be the same. Actually,
this has been observed mathematically in (9.2).

(2) It is observed mathematically in (10.1) that by treating epileptic persons of a gener-
ation, not only the number of diseased persons but also the prevalence rate of the disease,
which is a ratio, can also be reduced.

(3) It is shown mathematically that the whole program of treatment can be so carried
out that under a given time and under a given budget, it runs in an economically viable
way. This is really needed in the budget of any nation to minimize the virulence of a
disease. Our model suits the case of vertically transmitted diseases only.
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FIXED-SIGN EIGENFUNCTIONS OF TWO-POINT RIGHT
FOCAL BOUNDARY VALUE PROBLEMS ON MEASURE CHAIN

K. L. BOEY AND PATRICIA J. Y. WONG

We consider the boundary value problem (−1)n−1yΔ
n
(t)= λ(−1)p+1F(t, y(σn−1(t))), t ∈

[a,b]∩T, yΔ
i
(a)= 0, 0≤ i≤ p− 1, yΔ

i
(σ(b))= 0, p ≤ i≤ n− 1, where λ > 0, n≥ 2, 1≤

p ≤ n− 1 is fixed, and T is a measure chain. The values of λ are characterized so that this
problem has a fixed-sign solution. In addition, explicit intervals of λ are established.

Copyright © 2006 K. L. Boey and P. J. Y. Wong. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Throughout, for any c, d (> c), the interval [c,d] is defined as [c,d]= {t ∈ T | c ≤ t ≤ d}.
We also use the notation R[c,d] to denote the real interval {t ∈R | c ≤ t ≤ d}. Analogous
notations for open and half-open intervals will also be used.

In this paper, we present results governing the existence of fixed-sign solutions to the
differential equation on measure chains of the form

(−1)n−1yΔ
n
(t)= λ(−1)p+1F

(
t, y
(
σn−1(t)

))
, t ∈ [a,b], (1.1)

subject to the two-point right focal boundary conditions:

yΔ
i
(a)= 0, 0≤ i≤ p− 1, yΔ

i
(σ(b))= 0, p ≤ i≤ n− 1, (1.2)

where λ > 0, p,n are fixed integers satisfying n≥ 2, 1≤ p ≤ n− 1, a,b ∈ T with a < σ(b)
and ρ(σ(b))= b and F : [a,b]×R→R is continuous.

A solution y of (1.1), (1.2) will be sought in C[a,σn(b)], the space of continuous
functions {y : [a,σn(b)] → R}. We say that y is a fixed-sign solution if μy(t) ≥ 0 for
t ∈ [a,σn(b)], where μ ∈ {−1,1} is fixed. Note that positive solution (the usual consid-
eration in the literature) is a special case of fixed-sign solution. If, for a particular λ,
the boundary value problem (1.1), (1.2) has a fixed-sign solution y, then λ is called an

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 201–210



202 Fixed-sign eigenfunctions of boundary value problems

eigenvalue and y a corresponding eigenfunction of (1.1), (1.2). We let

E = {λ > 0 | (1.1), (1.2) has a fixed-sign solution
}

(1.3)

be the set of eigenvalues of the boundary value problem (1.1), (1.2).
The paper is outlined as follows. In Section 2, we will state Krasnosel’skiı̆ fixed point

theorem, and also present some properties of certain Green’s function which are needed
later. In Section 3, we show that the set of eigenvalues E is an interval and establish condi-
tions under which E is a bounded or unbounded interval. The final section is concerned
with the derivation of explicit eigenvalue intervals. Our approach and results in this work
not only unifies the analysis for the real and the discrete cases in [3, 4], but also leads to
new results which, when reduced to R and Z, are also new in the literature.

2. Preliminaries

First, we state a fixed point theorem that is due to Krasnosel’skiı̆ [2].

Theorem 2.1 [2]. Let B = (B,‖ · ‖) be a Banach space, and let C (⊂ B) be a cone. Assume
Ω1 and Ω2 are open bounded subsets of B with 0∈Ω1, Ω1 ⊂Ω2, and let

S : C∩ (Ω2 \Ω1
)−→ C (2.1)

be a continuous and completely continuous operator such that, either
(a) ‖Sy‖ ≤ ‖y‖, y ∈ C∩ ∂Ω1, and ‖Sy‖ ≥ ‖y‖, y ∈ C∩ ∂Ω2, or
(b) ‖Sy‖ ≥ ‖y‖, y ∈ C∩ ∂Ω1, and ‖Sy‖ ≤ ‖y‖, y ∈ C∩ ∂Ω2.

Then, S has a fixed point in C∩ (Ω2 \Ω1).

To obtain a solution for (1.1), (1.2), we require a mapping whose kernel G(t,s) is the
Green’s function of the boundary value problem (1.2):

(−1)n−1yΔ
n
(t)= 0, t ∈ [a,b]. (2.2)

Lemma 2.2 [1]. For (t,s)∈ [a,σn(b)]× [a,b],

0≤ (−1)p+1G(t,s)≤ (−1)p+1G
(
σn(b),s

)
. (2.3)

Throughout this paper, for a fixed number δ ∈R(0,1/2), we let

c =min
{
t ∈ T | t ≥ a+ δ

(
σn(b)− a)},

d =max
{
t ∈ T | t ≤ σn(b)− δ(σn(b)− a)},

(2.4)

and assume the existence of c and d such that a < c < ρn−1(d) < σ(b).

Lemma 2.3 [1]. For (t,s)∈ [c,d]× [a,b],

(−1)p+1G(t,s)≥ k(−1)p+1G
(
σn(b),s

)
, (2.5)

where 0 < k < 1 is a constant given by k = inf s∈[a,b]G(c,s)/G(σn(b),s).
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3. Characterization of eigenvalues

In this section, we provide conditions under which the set of eigenvalues E contains/is
an interval. We list conditions that are needed later as follows. In these conditions, μ ∈
{1,−1} is fixed, f , u, v are continuous functions such that u,v : [a,b]→ R[0,∞) and
f :R[0,∞)μ→R[0,∞) where

R[0,∞)μ =
⎧
⎨

⎩

R[0,∞), μ= 1,

R(−∞,0], μ=−1.
(3.1)

(A1) If |x| ≤ |y|, then f (x)≤ f (y).
(A2) For μy ≥ 0 and t ∈ [a,b], μF(t, y) is nonnegative.
(A3) For t ∈ [a,b] and μy ≥ 0,

u(t) f
(
y
(
σn−1(t)

))≤ μF(t, y(σn−1(t)
))≤ v(t) f

(
y
(
σn−1(t)

))
. (3.2)

(A4) u(t) is nonnegative and it is not identically zero on any nondegenerate subin-
terval of [a,b], and there exists a number η ∈ R(0,1] such that u(t) ≥ ηv(t) for
t ∈ [a,b].

(A5) If |x| ≤ |y|, then μF(t,x)≤ μF(t, y).

(A6)
∫ σ(b)
a (−1)p+1G(σn(b),s)v(s)Δs <∞.

Further, we define the constant

θ = kη, (3.3)

where k is given in Lemma 2.3. It is clear that 0 < θ < 1.
We let the Banach space B = C[a,σn(b)] be equipped with the norm

‖y‖ = sup
t∈[a,σn(b)]

∣
∣y(t)

∣
∣. (3.4)

Let δ ∈R(0,1/2) be fixed, and define

C =
{
y ∈ B | μy(t)≥ 0, t ∈ [a,σn(b)

]
; min
t∈[c,d]

μy(t)≥ θ‖y‖
}
. (3.5)

We note that C is a cone in B. Let the operator S : C→ B be defined by

Sy(t)= λ
∫ σ(b)

a
(−1)p+1G(t,s)F

(
s, y
(
σn−1(s)

))
Δs, t ∈ [a,σn(b)

]
. (3.6)

If (A2) and (A3) hold, then we have, for μy ≥ 0 and t ∈ [a,σn(b)],

λ
∫ σ(b)

a
(−1)p+1G(t,s)u(s) f

(
y
(
σn−1(s)

))
Δs

≤ μSy(t)≤ λ
∫ σ(b)

a
(−1)p+1G(t,s)v(s) f

(
y
(
σn−1(s)

))
Δs.

(3.7)

To obtain a fixed-sign solution of (1.1), (1.2), we seek a fixed point of S in the cone C.
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Lemma 3.1 [1]. The operator S : C→ B is continuous and completely continuous.

Lemma 3.2. Let (A2)–(A4) hold. Then, the operator S maps C into C.

Proof. The proof of the result is similar to that in [1]. �

Theorem 3.3. Let (A2)–(A4) and (A6) hold. Then, there exists a constant r > 0 such that
the real interval R(0,r]⊆ E.

Proof. Let L > 0 be given and C(L)= {y ∈ C | ‖y‖ ≤ L}. Define

r = L

supx∈R[−L,L] f (x)

[∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs

]−1

. (3.8)

Let λ ∈ R(0,r] and y ∈ C(L). By Lemma 3.2, S maps C into C. Next, by using (3.7),
Lemma 2.2, and (3.8), we get, for t ∈ [a,σn(b)],

∣
∣Sy(t)

∣
∣= μSy(t)≤ λ

∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s) f

(
y
(
σn−1(s)

))
Δs

≤ r
(

sup
x∈R[−L,L]

f (x)

)∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs= L.

(3.9)

Thus, ‖Sy‖ ≤ L. We have shown that S(C(L))⊆ C(L). From Lemma 3.1, S is continuous
and completely continuous. By Schauder fixed point theorem, S has a fixed point in C(L).
It is clear that this fixed point is a fixed-sign solution of (1.1), (1.2) and hence λ is an
eigenvalue of (1.1), (1.2). Since λ∈R(0,r] is arbitrary, it follows that R(0,r]⊆ E. �

The next result uses the monotonicity and compactness of the operator S on the cone
C.

Theorem 3.4. Let (A2) and (A5) hold. If λ0 ∈ E, then, for each 0 < λ < λ0, λ∈ E.

Proof. Let y0 be the eigenfunction corresponding to the eigenvalue λ0. Then

y0(t)= λ0

∫ σ(b)

a
(−1)p+1G(t,s)F

(
s, y0

(
σn−1(s)

))
Δs, t ∈ [a,σn(b)

]
. (3.10)

For y ∈ K , where K = {y ∈ B | 0≤ μy(t)≤ μy0(t), t ∈ [a,σn(b)]}, λ∈ R(0,λ0), and t ∈
[a,σn(b)], we have

∣
∣Sy(t)

∣
∣= μSy(t)= μλ

∫ σ(b)

a
(−1)p+1G(t,s)F

(
s, y(σn−1(s)

))
Δs

≤ μλ0

∫ σ(b)

a
(−1)p+1G(t,s)F

(
s, y0(σn−1(s)

))
Δs= μy0(t).

(3.11)

Hence, S maps K into K . Moreover, since S is continuous and completely continuous,
Schauder fixed point theorem guarantees that S has a fixed point in K , which is a fixed-
sign solution of (1.1), (1.2). Thus λ is an eigenvalue of (1.1), (1.2). �

As a result, we arrive at the following corollary.



K. L. Boey and P. J. Y. Wong 205

Corollary 3.5. Let (A2) and (A5) hold. If E is nonempty, then E is an interval.

We now establish conditions under which E is a bounded or unbounded interval. We
will prove the following results.

Theorem 3.6. Let (A1)–(A3) and (A6) hold. Let λ be an eigenvalue of (1.1), (1.2) and let
y ∈ C be a corresponding eigenfunction. Further, let ‖y‖ = q. Then

λ≥ q

f (q)

[∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs

]−1

, (3.12)

λ≤ q

f (θq)

[∫ ρn−1(d)

a
k(−1)p+1G

(
σn(b),s

)
u(s)Δs

]−1

. (3.13)

Proof. Let t0 ∈ [a,σn(b)] be such that q = ‖y‖ = μy(t0). Applying Lemma 2.2, (3.7), and
(A1), we find

q = μy(t0
)= μ(Sy)

(
t0
)≤ λ f (q)

∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs, (3.14)

which is (3.12).
Next, using μy(s)≥ θ‖y‖ = θq for s∈ [c,d], we have

μy
(
σn−1(s)

)≥ θq, s∈ [c,ρn−1(d)
]
. (3.15)

In view of (3.7), Lemma 2.3, and (A1), it follows that

q ≥ μy(c)≥ λ
∫ ρn−1(d)

c
(−1)p+1G(c,s)u(s) f

(
y
(
σn−1(s)

))
Δs

≥ λ
∫ ρn−1(d)

c
k(−1)p+1G

(
σn(b),s

)
u(s) f (θq)Δs,

(3.16)

which is (3.13). �

Theorem 3.7. Let (A1)–(A6) hold. Define

FB =
{

f :R[0,∞)μ −→R[0,∞)
∣
∣
∣
∣
|u|
f (u)

is bounded for u∈R[0,∞)μ

}

,

F0 =
{

f :R[0,∞)μ −→R[0,∞)
∣
∣
∣
∣ lim
|u|→∞

|u|
f (u)

= 0
}

,

F∞ =
{

f :R[0,∞)μ −→R[0,∞)
∣
∣
∣
∣ lim
|u|→∞

|u|
f (u)

=∞
}

.

(3.17)

(a) If f ∈ FB, then E =R(0,r) or R(0,r] for some r ∈R(0,∞).
(b) If f ∈ F0, then E =R(0,r] for some r ∈R(0,∞).
(c) If f ∈ F∞, then E =R(0,∞).
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Proof. (a) This is immediate from (3.13) and Corollary 3.5.
(b) Here, we have F0 ⊆ FB. By Theorem 3.7(a), E = R(0,r) or R(0,r] for some r ∈

R(0,∞). In particular, r = supE.
Let {λn}∞n=1 be a monotonically increasing sequence in E, with limn→∞ λn = r, and

let {yn}∞n=1 in K̃ = {y ∈ B | μy(t) ≥ 0, t ∈ [a,σn(b)]} be a corresponding sequence of
eigenfunctions. We write qn = ‖yn‖. Then, (3.13) together with f ∈ F0 implies that no
subsequence of {qn} can diverge. Thus, there exists L > 0 such that qn ≤ L for all n. So
‖yn‖ ≤ L for every n and {yn}∞n=1 is uniformly bounded. Hence there exists a subsequence
of {yn}∞n=1 relabeled as the original sequence such that it converges to y(∈ K̃) uniformly.
Thus,

yn(t)= λn
∫ σ(b)

a
(−1)p+1G(t,s)F

(
s, yn

(
σn−1(s)

))
Δs, t ∈ [a,σn(b)

]
. (3.18)

Letting n→∞ in the above inequality gives

y(t)= r
∫ σ(b)

a
(−1)p+1G(t,s)F

(
s, y
(
σn−1(s)

))
Δs, t ∈ [a,σn(b)

]
. (3.19)

This shows that r is an eigenvalue with corresponding eigenfunction y. So r = supE ∈ E
and hence E =R(0,r].

(c) Let λ > 0 be fixed. Choose ε > 0 such that

λ
∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs≤ 1

ε
. (3.20)

Since f ∈ F∞, there exists M =M(ε) > 0 such that for |u| ≥M,

f (u) < ε|u|. (3.21)

Let y ∈ C(M) = {y ∈ C | ‖y‖ ≤M}. By Lemma 3.2, we have Sy ∈ C. We use (3.7),
Lemma 2.2, (A1), (3.21), and (3.20) to get, for t ∈ [a,σn(b)],

∣
∣Sy(t)

∣
∣= μSy(t)≤ λ

∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
f (M)v(s)Δs

≤ λεM
∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs≤M.

(3.22)

Thus, ‖Sy‖ ≤M and so S(C(M))⊆ C(M). Since S is continuous and completely continu-
ous, Schauder fixed point theorem guarantees that S has a fixed point in C(M). This fixed
point is a fixed-sign solution of (1.1), (1.2) and hence λ is an eigenvalue of (1.1), (1.2).
Since λ > 0 is arbitrary, therefore, E =R(0,∞). �
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Example 3.8. Let m∈R+ and T=mZ. Consider the boundary value problem

yΔ
3
(t)= λ(9y + 2)r

(
9σ2(t)

{
3σ(b)

[
σ(b)− t]+ tσ(t)

}
+ 2
)r , t ∈ [0,b],

y(0)= yΔ
(
σ(b)

)= yΔ
2(
σ(b)

)= 0,

(3.23)

where λ > 0, r ≥ 0, and b ∈ T.
In this example, n = 3 and p = 1. Fix μ = 1. We take f (y) = (9y + 2)r and choose

u(t)= v(t)= [(9σ2(t){3σ(b)[σ(b)− t] + tσ(t)}+ 2)r]−1. Then, conditions (A1)–(A6) are
satisfied, and we have y/ f (y)= y/(9y + 2)r .

Case 1 (0≤ r < 1). Since f ∈ F∞, by Theorem 3.7(c), the set E =R(0,∞). Note that when
λ= 6, the boundary value problem has a fixed-sign solution given by y(t)= t{3σ(b)[σ3(b)
− t] + ρ(t)ρ2(t)}. It is easy to obtain yΔ(t)= 3σ(b)(σ2(b)− 2t) + 3tρ(t) and yΔ

2
(t)= 6(t−

σ(b)).

Case 2 (r = 1). Since f ∈ FB, by Theorem 3.7(a), the set E = R(0,c) or R(0,c] for some
real value c. From Case 1 and Theorem 3.4, E contains R(0,6].

Case 3 (r > 1). Since f ∈ F0, by Theorem 3.7(b), the set E =R(0,c] for some real c. From
Case 1 and Theorem 3.4, R(0,6]⊆ E.

4. Intervals of eigenvalues

In this section, we will employ Krasnosel’skiı̆ fixed point theorem [2] to derive explicit
eigenvalue intervals. We introduce the notations

f
0
= liminf

|x|→0

f (x)
|x| , f 0 = limsup

|x|→0

f (x)
|x| ,

f ∞ = liminf
|x|→∞

f (x)
|x| , f ∞ = limsup

|x|→∞

f (x)
|x| .

(4.1)

Theorem 4.1. Let (A2)–(A4) and (A6) hold. Then, for each λ satisfying

L < λ < R, (4.2)

where L = [θ f ∞
∫ ρn−1(d)
c (−1)p+1G(σn(b),s)u(s)Δs]−1 and R = [ f 0

∫ σ(b)
a (−1)p+1G(σn(b),

s)v(s)Δs]−1, the boundary value problem (1.1), (1.2) has a fixed-sign solution.

Proof. Let L < λ < R and let ε > 0 be such that

[

θ
(
f ∞ − ε

)
∫ ρn−1(d)

c
(−1)p+1G

(
σn(b),s

)
u(s)Δs

]−1

≤ λ≤
[
(
f 0 + ε

)
∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs

]−1

.

(4.3)
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Next, we choose w > 0 so that

f (x)≤ ( f 0 + ε
)|x|, 0 < |x| ≤w. (4.4)

Let y ∈ C be such that ‖y‖ = w. Then applying (3.7), Lemma 2.2, (4.4), and (4.3), we
find that, for t ∈ [a,σn(b)],

∣
∣Sy(t)

∣
∣≤ λ

∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)

(
f 0 + ε

)∣
∣y
(
σn−1(s)

)∣
∣Δs

≤ λ( f 0 + ε
)‖y‖

∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs≤ ‖y‖.

(4.5)

Hence,

‖Sy‖ ≤ ‖y‖. (4.6)

If we set Ω1 = {y ∈ B | ‖y‖ < w}, then (4.6) holds for y ∈ C∩ ∂Ω1.
Further, we let T1 > w > 0 be such that

f (x)≥
(
f ∞ − ε

)
|x|, |x| ≥ T1. (4.7)

Let y ∈ C be such that ‖y‖ = T1/θ. Then, for t ∈ [c,d],

∣
∣y(t)

∣
∣= μy(t)≥ θ‖y‖ ≥ θ · T1

θ
= T1, (4.8)

which, by (4.7), leads to

f
(
y
(
σn−1(t)

))≥
(
f ∞ − ε

)∣
∣y
(
σn−1(t)

)∣
∣, t ∈ [c,ρn−1(d)

]
. (4.9)

Using (3.7), (4.9), and (4.3),
∣
∣Sy

(
σn(b)

)∣
∣= μ(Sy)

(
σn(b)

)

≥ λ
∫ ρn−1(d)

c
(−1)p+1G

(
σn(b),s

)
u(s)

(
f ∞ − ε

)∣
∣y
(
σn−1(s)

)∣
∣Δs

≥ λ
(
f ∞ − ε

)
θ‖y‖

∫ ρn−1(d)

c
(−1)p+1G

(
σn(b),s

)
u(s)Δs≥ ‖y‖.

(4.10)

Therefore,

‖Sy‖ ≥ ‖y‖. (4.11)

If we set Ω2 = {y ∈ B | ‖y‖ < T1/θ}, then (4.11) holds for y ∈ C∩ ∂Ω2.
With (4.6) and (4.11), it follows from Theorem 2.1 that S has a fixed point y ∈ C∩

(Ω2 \Ω1) such that w ≤ ‖y‖ ≤ T1/θ. It is obvious that y is a fixed-sign solution of (1.1),
(1.2). �

The following result is immediate from Theorem 4.1.
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Corollary 4.2. Let (A2)–(A4) and (A6) hold. Then,

R(L,R)⊆ E, (4.12)

where L and R are defined in Theorem 4.1.

Theorem 4.3. Let (A2)–(A4) and (A6) hold. Then, for each λ satisfying

L′ < λ < R′, (4.13)

where L′ = [θ f
0

∫ ρn−1(d)
c (−1)p+1G(σn(b),s)u(s)Δs]−1 and R′ = [ f ∞

∫ σ(b)
a (−1)p+1G(σn(b),

s)v(s)Δs]−1, the boundary value problem (1.1), (1.2) has a fixed-sign solution.

Proof. Let L′ < λ < R′. We let ε > 0 be such that

[

θ
(
f

0
− ε

)∫ ρn−1(d)

c
(−1)p+1G

(
σn(b),s

)
u(s)Δs

]−1

≤ λ≤
[
(
f ∞ + ε

)
∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs

]−1

.

(4.14)

Let w > 0 be such that

f (x)≥ ( f
0
− ε)|x|, 0 < |x| ≤w. (4.15)

Let y ∈ C be such that ‖y‖ = w. Applying (3.7), (4.15), and (4.14), using the same argu-
ment as in proving (4.11) in Theorem 4.1, we have

‖Sy‖ ≥ ‖y‖. (4.16)

If we set Ω1 = {y ∈ B | ‖y‖ < w}, then ‖Sy‖ ≥ ‖y‖ holds for y ∈ C∩ ∂Ω1.
Next, we choose T2 > 0 such that

f (x)≤ ( f ∞ + ε
)|x|, |x| ≥ T2. (4.17)

We will consider two cases, f is bounded and f is unbounded.

Case 1. Suppose f is bounded, that is, there exists M∗ > 0 such that

f (x)≤M∗, x ∈R. (4.18)

We define T3 =max{2w,λM∗ ∫ σ(b)
a (−1)p+1G(σn(b),s)v(s)Δs} and let y ∈ C be such that

‖y‖ = T3. From Lemma 2.2, (3.7), and (4.18), for t ∈ [a,σn(b)],

∣
∣Sy(t)

∣
∣= μ(Sy)(t)≤ λM∗

∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs≤ T3 = ‖y‖. (4.19)

Therefore, ‖Sy‖ ≤ ‖y‖.
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Case 2. Suppose f is unbounded. Then there exists T3 >max{2w,T2} such that

f (x)≤ f
(
T3
)
, 0 < |x| ≤ T3. (4.20)

Let y ∈ C be such that ‖y‖ = T3. Applying Lemma 2.2, (4.20), (4.17), and (4.14), we find,
for t ∈ [a,σn(b)],

∣
∣Sy(t)

∣
∣= μ(Sy)(t)≤ λ

∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s) f

(
T3
)
Δs

≤ λ
∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)

(
f ∞ + ε

)
T3Δs

= λ( f ∞ + ε
)‖y‖

∫ σ(b)

a
(−1)p+1G

(
σn(b),s

)
v(s)Δs≤ ‖y‖.

(4.21)

Once again, we have ‖Sy‖ ≤ ‖y‖.

In both cases, if we set Ω2 = {y ∈ B | ‖y‖ < T3}, then ‖Sy‖ ≤ ‖y‖ holds for y ∈ C∩
∂Ω2.

It now follows from Theorem 2.1 that S has a fixed point y ∈ C∩ (Ω2 \Ω1) such that
w ≤ ‖y‖ ≤ T3, and y is a fixed-sign solution of (1.1), (1.2). �

From the preceding theorem, we obtain the following corollary.

Corollary 4.4. Let (A2)–(A4) and (A6) hold. Then,

R(L′,R′)⊆ E, (4.22)

where L′ and R′ are defined in Theorem 4.3.

Remark 4.5. If f is superlinear (i.e., f 0 = 0 and f ∞ =∞) or sublinear (i.e., f
0
=∞ and

f ∞ = 0), we conclude from Corollaries 4.2 and 4.4, respectively, that E = R(0,∞). Thus
the boundary value problem (1.1), (1.2) has a fixed-sign solution for any positive λ.
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LOWER BOUND FOR THE EIGENVALUES
OF QUASILINEAR HILL’S EQUATION

G. BOGNÁR

We consider the eigenvalues of the one-dimensional p-Laplacian with potential Q(t) of
the form y′′|y′|p−2 + [λ+Q(t)]y|y|p−2 = 0, p > 1, with periodic or antiperiodic bound-
ary conditions. The purpose of this paper is to give a lower bound on λ depending only
on properties of Q(t) in order to get eigenvalues slightly larger than the pth power of
certain integers.

Copyright © 2006 G. Bognár. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider the quasilinear differential equation of the form

y′′|y′|p−2 +
[
λ+Q(t)

]
y|y|p−2 = 0, p > 1, (1.1)

where p > 1, λ is a parameter, and Q(t) is a real periodic function of t with period T .
In [3], Elbert established the existence and uniqueness of solutions to the initial value
problem for this equation.

If λ= 1 and Q(t)≡ 0, then the solution of

y′′|y′|p−2 + y|y|p−2 = 0 (1.2)

with the initial conditions y(0)= 0, y′(0)= 1, is called the generalized sine function:

y = Sp(t), t ∈ (−∞,+∞) (1.3)

introduced by Elbert in [3]. For t ∈ [0, π̂/2], where π̂/2 = (π/p)/ sin(π/p), function Sp
satisfies

t =
∫ Sp

0

dy
p
√

1− yp
. (1.4)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 211–219



212 Eigenvalues of quasilinear Hill’s equation

We extend Sp to all R (and still denote this extension by Sp) in the following form:

Sp(t)= Sp(π̂− t) for t ∈
[
π̂

2
, π̂
]

,

Sp(t)=−Sp(−t) for t ∈ [−π̂,0],

Sp(t)= Sp(t+ 2π̂) for t ∈R.

(1.5)

From (1.2) we have that

∣
∣Sp(t)

∣
∣p +

∣
∣S′p(t)

∣
∣p = 1 ∀t ∈R. (1.6)

If p = 2, then

S2(x)= sinx, π̂ = π, (1.7)

and (1.6) is equivalent to sin2 t + cos2 t = 1. Moreover differential equation (1.1) has the
form

y′′ +
[
λ+Q(t)

]
y = 0, (1.8)

called Hill’s equation. Different approaches to the investigation of (1.8) have been devel-
oped in [2, 4, 6].

Let us assume that Q(t) is periodic function with period π̂. First we consider the peri-
odic solutions of the periodic problem (1.1) with conditions

y(π̂,λ)= y(0,λ), y′(π̂,λ)= y′(0,λ), (1.9)

and then the solutions of the antiperiodic problem (1.1) with conditions

y(π̂, λ̃)=−y(0, λ̃), y′(π̂, λ̃)=−y′(0, λ̃). (1.10)

The values λ and λ̃ are called eigenvalues corresponding to the periodic or antiperiodic
problem. To both problems there exist two monotonically increasing infinite sequences
of real numbers:

λ0,λ1,λ2, . . . ,λk, . . . , λ̃1, λ̃2, . . . , λ̃k, . . . , (1.11)

such that (1.1) with (1.9) has the solution of period π̂ if λ = λk, k = 0,1,2, . . . , and the
solution of period 2π̂ if λ̃= λ̃k, k = 1,2,3, . . . . Values λ, called eigenvalues, satisfy the in-
equalities

λ0 ≤ λ1 ≤ λ2 ≤ ··· ≤ λk ≤ ··· (1.12)
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accumulating at∞, and the eigenvalues λ̃ of the antiperiodic problem satisfy

λ̃1 ≤ λ̃2 ≤ ··· ≤ λ̃k ≤ ··· (1.13)

accumulating at∞ [7].
If we assume that Q(t) is periodic with period π̂, has mean value 0, and its second de-

rivative exists and continuous, then the asymptotic form of the large characteristic values

was obtained in [1]. The asymptotic formula implies that for values λk and λ̃k corre-
sponding to solution (1.1) with conditions (1.9) and (1.10), respectively, for large values
of k,

p+1
√
λ2k−1− 2k =O

(
1
kν

)

,

p+1
√
λ2k − 2k =O

(
1
kν

)

,

p+1
√

λ̃2k−1− (2k− 1)=O
(

1
kν

)

,

p+1
√

λ̃2k − (2k− 1)=O
(

1
kν

)

,

(1.14)

where

ν=
⎧
⎨

⎩

2p− 1 if 1 < p < 2,

p+ 1 if p ≥ 2.
(1.15)

The question arises that how large is the “large” eigenvalue has to be. The purpose of

this paper is to show that for “large” λ and λ̃, the eigenvalues concerning the periodic
and antiperiodic conditions are slightly larger than the pth power of certain integers. We
intend to generalize the method and results obtained by Hochstadt for Hill’s equation
[5].

It was showed in [6, Theorem 6.4] if p = 2, then for the π periodic solutions of (1.8)

λ0 +
∞∑

k=1

(
λ2k−1 + λ2k − 8k2)= 0, (1.16)

and for the 2π periodic solutions

∞∑

k=1

(
λ̃2k−1 + λ̃2k − 2(2k− 1)2)= 0. (1.17)

Therefore for some λ and λ̃, the eigenvalues are slightly smaller than the squares of inte-
gers.
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2. Results

We may write the solution of (1.1) and its derivative such as

y(t,λ)= A(t)Sp
(
ϕ(t)

)
,

y′(t,λ)= p
√
λ+Q(t)A(t,λ)S′p

(
ϕ(t,λ)

)
,

(2.1)

where the functions A(t) and ϕ(t) are determined by their initial values and the system
of differential equations,

ϕ′(t,λ)= p
√
λ+Q(t) +

1
p

Q′(t)
λ+Q(t)

G
(
ϕ(t,λ)

)
, (2.2)

A′(t,λ)
A(t,λ)

=− 1
p

Q′(t)
λ+Q(t)

∣
∣Sp

(
ϕ(t,λ)

)∣
∣p, (2.3)

where G(ϕ)= Sp(ϕ(t,λ))|S′p(ϕ(t,λ))|p−2S′p(ϕ(t,λ)).
The differential equations (2.2) and (2.3) together with (1.1) imply (2.1), and vice

versa.
We consider the eigenvalues λ with respect to the periodic boundary conditions (1.9)

with period π̂, and the eigenvalues λ̃ to the antiperiodic boundary condition (1.10).
In the first case, we have from (2.1) that

A(π̂,λ)=A(0), ϕ(π̂,λ)−ϕ(0,λ)= 2kπ̂, (2.4)

where k is a nonnegative integer. In the second case, we derive from (1.10) that

A(π̂, λ̃)=A(0, λ̃), ϕ(π̂, λ̃)−ϕ(0, λ̃)= (2k− 1)π̂, (2.5)

where k is a positive integer.

Proposition 2.1. For G(τ)= Sp(τ)|S′p(τ)|p−2S′p(τ), the estimation

∣
∣G′(τ)

∣
∣≤max

(
1,|1− p|) (2.6)

is valid.

Proof. By differentiation, we obtain

G′(τ)= ∣∣S′p(τ)
∣
∣p + (p− 1)Sp(τ)

∣
∣S′p(τ)

∣
∣p−2

S′′p (τ). (2.7)

Applying (1.6) with (1.2), we get that

G′(τ)= 1− p∣∣Sp(τ)
∣
∣p (2.8)

from which (2.6) can be obtained. �
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Lemma 2.2. Let M be a uniform bound for |Q|, |Q′|, and let λ >M + (1 +M/p2)p, then

|ϕ′|min > β(λ−M)1/p, (2.9)

where β = [1− (p/(p+ 1))p+1].

Proof. We get an estimate on ϕ′ from (2.2):

|ϕ′|min > (λ−M)1/p− 1
p

M

λ−M. (2.10)

Since
(

1 +
M

p2

)p

≥
(
p+ 1
p

)p(
M

p

)p/(p+1)

(2.11)

for any p > 1 and M > 0, with equality only if M = p, with the assumption on λ and
(2.11), we have

λ >M +

(

1 +
M

p2

)p

≥M +

(
p+ 1
p

)p(
M

p

)p/(p+1)

(2.12)

from which inequality (2.9) follows. �

Next we can obtain an upper bound for |ϕ′|.
Lemma 2.3. Let M be a uniform bound for |Q|, |Q′|, and let λ >M + (1 +M/p2)p, then for
function ϕ′ inequality

|ϕ′| < (λ−M)1/p +
M

p
(2.13)

is satisfied.

Proof. From (2.12) it follows that λ−M > 1, and from (2.2) we obtain the estimate (2.13)
on |ϕ′|. �

Lemma 2.4. Let M be a uniform bound for |Q|, |Q′|, |Q′′|, and let λ > M + (1 +M/p2)p,
then

|ϕ′′| < (λ−M)−1/p+1

[

(2 + ρ)
M

p
+ (p+ ρ)

M2

p2

]

, (2.14)

where ρ =max(1,|1− p|).

Proof. From (2.2) we get

ϕ′′ = 1
p

Q′(t)
(
λ+Q(t)

)−1/p+1 +
1
p

Q′′(t)
λ+Q(t)

G(ϕ)

− 1
p

Q′2(t)
(
λ+Q(t)

)2G(ϕ) +
1
p

Q′(t)
λ+Q(t)

G′(ϕ)ϕ′.
(2.15)
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Hence with |G′(ϕ)| ≤ ρ,

|ϕ′′| < 1
p

M

(λ−M)−1/p+1 +
1
p

M

λ−M

+
1
p

M2

(λ−M)2
+

1
p

M

λ−Mρ

[

(λ−M)1/p +
M

p

] (2.16)

which gives the estimate (2.14). �

Theorem 2.5. Let Q(t) be periodic with period π̂ and let M be a uniform bound for |Q|,
|Q′|, |Q′′|, |Q′′′|. Then the eigenvalues λ and λ̃ belonging to the problem (1.1)–(1.9) and
(1.1)–(1.10) when p 	= 3 satisfy the inequalities

p+1
√
λ2k−1 > 2k, p+1

√
λ2k > 2k,

p+1
√

λ̃2k−1 > (2k− 1),
p+1
√

λ̃2k > (2k− 1),

(2.17)

provided that they are greater than constant Λ defined by

Λ=max

⎛

⎝M +

(

1 +
M

p2

)p

,M +

(
2p
p− 1

· C1 +C2M +C3M2

M

)p/(3−p)
⎞

⎠ , (2.18)

where C1 = C1(p), C2 = C2(p), C3 = C3(p).

Proof. From (2.2) with (1.9) or (1.10) we can write

∫ π̂

0

p
√
λ+Q(τ)dτ +

1
p

∫ π̂

0

Q′(τ)
λ+Q(τ)

G(ϕ)dτ = lπ̂, (2.19)

where l = 2k concerning the periodic case (1.9) and l = 2k− 1 concerning the antiperi-
odic case (1.10). Integrating by parts, the second integral has the form

1
p

∫ π̂

0

Q′(τ)
λ+Q(τ)

G(ϕ)dτ = 1
p

[
1
ϕ′

Q′(t)
λ+Q(t)

F
(
ϕ(t)

)
]π̂

0

− 1
p

∫ π̂

0
F
(
ϕ(τ)

) d

dτ

(
1
ϕ′

Q′(τ)
λ+Q(τ)

)

dτ,

(2.20)

where F(ϕ(t))= ∫ t0 ϕ′(τ)G(ϕ(τ))dτ.
Since −1≤G(ϕ)≤ 1, then |F(ϕ(t))| ≤ μ for t ∈ [a,b].
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On the right side of (2.20), the first term vanishes as Q is a periodic function with
period π̂, and we can write the integral (2.20) in the form

1
p

∫ π̂

0

Q′(τ)
λ+Q(τ)

G(ϕ)dτ = 1
p

∫ π̂

0
F
(
ϕ(τ)

)ϕ′′

ϕ′2
Q′

λ+Q(τ)
dτ

+
1
p

∫ π̂

0
F
(
ϕ(τ)

) 1
ϕ′

Q′2
(
λ+Q(τ)

)2 dτ

− 1
p

∫ π̂

0
F
(
ϕ(τ)

) 1
ϕ′

Q′′

λ+Q(τ)
dτ

= I1 + I2 + I3.

(2.21)

By (2.13) and (2.14), we get the estimates on integrals I1 and I2:

∣
∣I1
∣
∣ <

μ

p
(
1− (1/pβ)

)2

[

(2 + ρ)
M2

p
+ (p+ ρ)

M3

p2

]
π̂

(λ−M)2+1/p ,

∣
∣I2
∣
∣ <

μ

p
(
1− (1/pβ)

)M2 π̂

(λ−M)2+1/p .

(2.22)

Using notation H(ϕ(t))= ∫ π̂0 ϕ′(τ)F(ϕ(τ))dτ and applying an integration by parts for I3,
we find

I3 =− 1
p

[

H
(
ϕ(t)

) 1
ϕ′2

Q′′(t)
λ+Q(t)

]π̂

0
+

1
p

∫ π̂

0
H
(
ϕ(τ)

) d

dτ

(
1
ϕ′2

Q′′(τ)
λ+Q(τ)

)

dτ

=− 2
p

∫ π̂

0
H
(
ϕ(τ)

)ϕ′′

ϕ′3
Q′′(τ)
λ+Q(τ)

dτ +
1
p

∫ π̂

0
H
(
ϕ(τ)

) 1
ϕ′2

Q′′′(τ)
λ+Q(τ)

dτ

− 1
p

∫ π̂

0
H
(
ϕ(τ)

) 1
ϕ′2

Q′(τ)Q′′(τ)
(
λ+Q(τ)

)2 dτ = I4 + I5 + I6.

(2.23)

The integrated term vanishes and for the three integrals we have the following estimates
with |H(ϕ(t))| ≤ ν for t ∈ [a,b]:

∣
∣I4
∣
∣ <

2ν

pβ3

[

(2 + ρ)
M2

p
+ (p+ ρ)

M3

p2

]
π̂

(λ−M)2+2/p ,

∣
∣I5
∣
∣ <

ν

pβ2
M

π̂

(λ−M)1+2/p ,

∣
∣I6
∣
∣ <

ν

pβ2
M2 π̂

(λ−M)2+2/p .

(2.24)

From the estimates above, we obtain

1
p

∫ π̂

0

Q′(τ)
λ+Q(τ)

G(ϕ)dτ <
[
C1M +C2M

2 +C3M
3] π̂

(λ−M)1+2/p , (2.25)
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where

C1 = ν

pβ2
,

C2 = (2ν +μ)(2 + ρ) + p(ν +μ)−μ/β
p2β2

,

C3 = p+ ρ
p3β3

(2ν +μβ)

(2.26)

are obtained from the estimates on I1, I2, . . . , I6.
For the integral

∫ π̂
0

p
√
λ+Q(τ)dτ in (2.19), we use the Taylor series with the remainder

∫ π̂

0

p
√
λ+Q(τ)dτ = p

√
λπ̂ +

1
p

1
p
√
λp−1

∫ π̂

0
Q(τ)dτ

− p− 1
2p2

1
p
√
λ2p−1

∫ π̂

0

Q2(τ)
(
λ+Q(τ)

)(2p−1)/p dτ,

(2.27)

where |Q(t)| ≤M.
Since Q(t) has zero-mean value

∫ π̂
0 Q(τ)dτ = 0, then from (2.19) we get

p
√
λ= l+ p− 1

2π̂ p2

∫ π̂

0

Q2(τ)
(
λ+Q(τ)

)(2p−1)/p dτ −
1
pπ̂

∫ π̂

0

Q′(τ)
λ+Q(τ)

G
(
ϕ(τ)

)
dτ. (2.28)

The necessary condition for p
√
λ > l is that

p− 1
2π̂ p2

∫ π̂

0

Q2(τ)
(
λ+Q(τ)

)(2p−1)/p dτ >
1
pπ̂

∫ π̂

0

Q′(τ)
λ+Q(τ)

G
(
ϕ(τ)

)
dτ (2.29)

which is satisfied if

p− 1
2p

M2

(λ−M)(2p−1)/p >
C1M +C2M2 +C3M3

(λ−M)1+2/p (2.30)

for p 	= 3 and

λ >M +

(
2p
p− 1

· C1 +C2M +C3M2

M

)p/(3−p)

. (2.31)

If p = 3, then (2p− 1)/p = 1 + 2/p = 5/3, and we do not get from (2.30) a bound for λ.
�

We note that the bound obtained for [4, Hill’s equation (1.5)] is better than our bound
since in the linear case we are able to use trigonometric formulas but if p 	= 2, then these
formulas do not exist.
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MULTIPLE POSITIVE SOLUTIONS OF SUPERLINEAR
ELLIPTIC PROBLEMS WITH SIGN-CHANGING WEIGHT

DENIS BONHEURE, JOSÉ MARIA GOMES, AND PATRICK HABETS

We prove the existence of multibump solutions to a superlinear elliptic problem where
a sign-changing weight is affected by a large parameter μ. Our method relies in varia-
tional arguments. A special care is paid to the localization of the deformation along lines
of steepest descent of an energy functional constrained to a C1,1-manifold in the space
H1

0 (Ω).

Copyright © 2006 Denis Bonheure et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider positive solutions of the boundary value problem

Δu+
(
a+(x)−μa−(x)

)|u|γu= 0, x ∈Ω,

u(x)= 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain of class �1, a+ and a− are continuous functions
which are positive on nonoverlapping domains, and μ is a large parameter. Positive solu-
tions u are defined to be such that u(x) > 0 for almost every x ∈Ω.

For the ODE equivalent of (1.1) and for large values of μ, complete results were worked
out in [2, 3] concerning, respectively, the cases of the weight a+(t) being positive in two or
three nonoverlapping intervals. In the present note, we summarize the results obtained in
[1]. By using a variational approach, we extend the results obtained in [2, 3] to the PDE
problem (1.1).

Note first that finding positive solutions of problem (1.1) is equivalent to finding non-
trivial solutions of

Δu+
(
a+(x)−μa−(x)

)
u
γ+1
+ = 0, x ∈Ω,

u(x)= 0, x ∈ ∂Ω,
(1.2)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 221–229



222 Multibump positive solutions to an elliptic problem

where u+ =max{u,0}, since nontrivial solutions of (1.2) are positive. In the sequel, we
also write u− =max{−u,0}.

We suppose that the following assumption holds.
(H) γ > 0, γ+ 2 < 2∗ = 2N/(N − 2) if N ≥ 3, a+, a− : Ω→R are continuous functions,

and there exist n disjoint domains ωi ⊂Ω, with i= 1, . . . ,n, which are of class �1 and such
that

(a) for all x ∈Ω+ :=⋃n
i=1ωi, a−(x)= 0, a+(x) > 0,

(b) for all x ∈Ω− :=Ω\Ω+, a−(x) > 0, a+(x)= 0.
Solutions of (1.1) can be obtained as critical points of the energy functional under a
convenient constraint. Namely, we define the constraint functional Vμ :H1

0 (Ω)→R by

Vμ(u) :=
∫

Ω

(
a+(x)−μa−(x)

)u
γ+2
+ (x)
γ+ 2

dx. (1.3)

From the continuous imbedding of H1
0 (Ω) into Lγ+2(Ω), it can be seen that Vμ(u) is of

class �1,1. Next, we define the manifold

Vμ := {u∈H1
0 (Ω) |Vμ(u)= 1

}
(1.4)

and the energy functional J :H1
0 (Ω)→R, u�→ J(u), where

J(u) := 1
2

∫

Ω

∣
∣∇u(x)

∣
∣2
dx. (1.5)

We consider then the critical points of J under the constraint u∈Vμ. It is a standard fact
that such critical points satisfy the Euler-Lagrange equation

∇J(u)= λ∇Vμ(u) (1.6)

for some Lagrange multiplier λ∈R. It then follows that u solves the problem

Δu+ λ
(
a+(x)−μa−(x)

)
u
γ+1
+ = 0, x ∈Ω,

u(x)= 0, x ∈ ∂Ω.
(1.7)

Standard arguments show that λ > 0. Hence, any critical point of J on Vμ is such that
the rescaled function v = λ1/γu is a positive solution of (1.1). Our purpose is to prove the
existence of multiple solutions for large values of the parameter μ. These solutions can be
distinguished by their contribution of volume on some prescribed family of ωi’s.

We can then state our main theorem.

Theorem 1.1. Let assumption (H) be satisfied. Then, for μ > 0 large enough, there exist
at least 2n− 1 positive solutions of (1.1). Moreover, for each set ω = ωi1 ∪···∪ωip , one of
those solutions defines a family of positive solutions of (1.1) with limit support in ω.
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2. Preliminary results

2.1. Setting of a variational framework. The following lemmas set the background of
our variational approach. We refer the reader to [1] for the complete proofs of the results.

Lemma 2.1. The set Vμ defined from (1.4) is a nonempty, weakly closed, and an arc-
connected manifold in H1

0 (Ω). Further, the function Qμ defined on domQμ = {u∈H1
0 (Ω) |

Vμ(u) > 0} by

(
Qμu

)
(x) := [Vμ(u)

]−1/(γ+2)
u(x). (2.1)

is a continuous projector on Vμ.

Lemma 2.2. If u1, u2 are different critical points of J in Vμ, then there exist λ1,λ2 > 0 such

that v1 = λ1/γ
1 u1 and v2 = λ1/γ

2 u2 are two distinct positive solutions of (1.1).

Lemma 2.3. The functional J has a nonnegative minimum ûi on each of the disjoint mani-
folds

V̂i := {u∈Vμ | suppu⊂ ωi
}

, i= 1, . . . ,n. (2.2)

Remark 2.4. Note that the sets V̂i and the functions ûi are independent of μ since they
only involve functions u so that suppu⊂ ωi.

We consider the gradient of J constrained to Vμ:

∇μJ(u) :=∇J(u)−
〈∇J(u),∇Vμ(u)

〉

∥
∥∇Vμ(u)

∥
∥2 ∇Vμ(u). (2.3)

Lemma 2.5. Let J and Vμ be defined from (1.5) and (1.3). The gradient of J constrained to
Vμ satisfies Palais-Smale condition.

2.2. Decomposition of H1
0 (Ω). We introduce the following orthogonal decomposition

ofH1
0 (Ω). LetH := {u∈H1

0 (Ω) | suppu⊂Ω+} be the space of the multibumps functions
and H̃ := (H)⊥ its orthogonal complement. Given u∈H1

0 (Ω), we define then u∈H from
the following lemma.

Lemma 2.6. Let u∈H1
0 (Ω). Then the problem

∫

Ω+

∇u(x)∇ϕ(x)dx =
∫

Ω+

∇u(x)∇ϕ(x)dx, ∀ϕ∈H1
0

(
Ω+
)
, (2.4)

has a unique solution u∈H . Further, the function

R :H1
0 (Ω)−→H ⊂H1

0 (Ω), u�−→ Ru= u (2.5)

is a continuous projector for the weak topologies, that is,

un
H1

0⇀ u=⇒ Run
H1

0⇀ Ru. (2.6)
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Also,

J(Ru)≤ J(u). (2.7)

At last, the function ũ := u−u is in H̃ and satisfies
∫

Ω+

∇ũ(x)∇ϕ(x)dx = 0, ∀ϕ∈H1
0

(
Ω+
)
. (2.8)

Lemma 2.7. Let r > 0 and ε > 0 be given. Then, for all μ > 0 large enough and u∈Bμ,r ,

V̂(u)≥ 1− ε. (2.9)

2.3. The nonlinear simplex S. Let ûi be the local minimizers of J in V̂i defined by
Lemma 2.3 and consider the nonlinear simplex

S :=
{

u=
n∑

i=1

s
1/(γ+2)
i ûi |

(
s1, . . . ,sn

)∈ Δ

}

⊂Vμ, (2.10)

where

Δ :=
{
(
s1, . . . ,sn

)∈Rn
+ |

n∑

i=1

si = 1

}

. (2.11)

We can evaluate J along functions of S and introduce

f (s) := J
( n∑

i=1

s
1/(γ+2)
i ûi

)

=
n∑

i=1

s
2/(γ+2)
i J

(
ûi
)
, s∈ Δ. (2.12)

Note that the set S will be a key ingredient in the minimax characterization of the multi-
bumps solutions as the geometry of f on Δ is a good model of the geometry of J on Vμ

for large μ. The following lemmas study this geometry.

Lemma 2.8. The function f : Δ→R defined from (2.12) is such that the apexes (1,0, . . . ,0),
. . . , (0, . . . ,0,1) of Δ are strict local minima of f .

Lemma 2.9. Let E := {i1, . . . , ik}, 2 ≤ k ≤ n, let Δk := {s = (s1, . . . ,sk) ∈ Rk
+ |
∑k

j=1 s j = 1},
and let ûi be the local minimizers in V̂i defined by Lemma 2.3. Then the function fE : Δk →R
defined from

fE(s) :=
k∑

j=1

s
2/(γ+2)
j J

(
ûi j
)

(2.13)

has a unique global maximum cE at some point s∗ = (s∗1 , . . . ,s∗k ) ∈ Δk such that s∗j > 0 for

all j = 1, . . . ,k. Further, if F
⊂
�=E, then cF < cE.

2.4. Projection on S. The following lemmas define a continuous projector on the non-
linear simplex S that increases the energy as little as we wish.
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Lemma 2.10. The mapping Rμ :H1
0 (Ω)→H1

0 (Ω), defined by

Rμu :=Qμ
(
(u)+

)
, (2.14)

is continuous. Further if r > 0 and δ > 0 are given, then for μ > 0 large enough and u∈Bμ,r ,

J
(
Rμu

)≤ J(u) + δ. (2.15)

For the next lemma, it is convenient to define the local constraints

V̂i(u) :=
∫

ωi
a+(x)

u
γ+2
+ (x)
γ+ 2

dx. (2.16)

These are such that if v ∈Vμ and suppv ⊂Ω+, then

Vμ(v)= V̂(u)=
n∑

i=1

V̂i(v)= 1. (2.17)

Lemma 2.11. The mapping Pμ :H1
0 (Ω)→S⊂H1

0 (Ω), defined by

Pμu :=
n∑

i=1

[
V̂i
(
Rμu

)]1/(γ+2)
ûi, (2.18)

where ûi are the local minimizers in V̂i, is continuous. Further if r > 0 and δ > 0 are given,
then for μ > 0 large enough and u∈Bμ,r ,

J
(
Pμu

)≤ J(u) + δ. (2.19)

3. Multibumps solutions

We prove in this section that for any p with 1 < p < n, we can find C
p
n families of positive

p-bumps solutions of (1.1). For that purpose, we introduce the following notations.
Let us fix p of the functions ûi defined by Lemma 2.3. To simplify the notations, we as-

sume that these functions are numbered in such a way that they correspond to û1, . . . , ûp.
We denote by E = {1, . . . , p} the set of corresponding indices. Define then the correspond-
ing nonlinear simplex SE constructed on the function û1, . . . , ûp,

SE :=
{

u=
p∑

j=1

s
1/(γ+2)
j û j |

(
s1, . . . ,sp

)∈ Δp

}

, (3.1)

where Δp is defined in Lemma 2.9. It follows from this lemma that J has a unique global
maximum on SE at some interior point w = (s∗1 )1/(γ+2)û1 + ···+ (s∗p )1/(γ+2)ûp.
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In the next lemma, we identify disconnected regions where the gradient of J con-
strained to Vμ is bounded away from zero. As in Lemma 2.9, we write cE = J(w), where

w =∑p
j=1(s∗j )1/(γ+2)û j is the maximizer of J on the corresponding nonlinear simplex SE,

and we define for ρ∈]0,1/4[,

Eμ(ρ) := {u∈Vμ | J(u)≤ cE, ∀i= 1, . . . , p, si = V̂i
(
Rμu

)≥ ρ,
∣
∣si− s∗i

∣
∣≥ ρ}. (3.2)

Lemma 3.1. There exists θ > 0 such that for any μ > 0 large enough and all u ∈ Eμ(ρ),
‖∇μJ(u)‖ ≥ θ, where

∇μJ(u)=∇J(u)−
〈∇J(u),∇Vμ(u)

〉

∥
∥∇Vμ(u)

∥
∥2 ∇Vμ(u). (3.3)

Proof. Let us assume by contradiction that there exist (μj) j ⊂R and (uj) j ⊂ Eμj (ρ) such
that

lim
j→∞

μj =∞, lim
j→∞

∥
∥∇μj J

(
uj
)∥
∥= 0. (3.4)

As the sequence (uj) j is bounded in H1
0 (Ω), going to a subsequence if necessary, we can

assume that there exists u∈H1
0 (Ω) such that

uj
H1

0⇀ u, uj
L2+γ−→ u. (3.5)

We introduce now the manifold

V̂ := {u∈H1
0 (Ω) | suppu⊂Ω+, V̂(u)= 1

}
, (3.6)

which is such that V̂⊂Vμ for any μ > 0. We denote the tangent space to V̂ at u by

Tu(V̂) :=
{

v ∈H1
0 (Ω) | suppv ⊂Ω+,

∫

Ω
a+u

γ+1
+ vdx = 0

}

. (3.7)

Claim 3.2 〈∇J(u),v〉 = 0 for all v ∈ Tu(V̂). Let v ∈ Tu(V̂). We first observe that we can
choose λj such that v− λjuj ∈ Tuj (Vμj ), where

Tuj
(
Vμj

)
:=
{

v ∈H1
0 (Ω) |

∫

Ω

(
a+−μja−

)(
uj
)γ+1

+ vdx = 0
}

(3.8)

is the tangent space to Vμj at uj . Indeed, as v is supported in Ω+, we just need to take

λj = 1
γ+ 2

∫

Ω
a+
(
uj
)γ+1

+ vdx. (3.9)
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We then notice that since (uj)+
L2+γ→ u+ and v ∈ Tu(V̂), we have

∫

Ω
a+
(
uj
)γ+1

+ vdx −→
∫

Ω
a+u

γ+1
+ vdx = 0. (3.10)

Hence, we deduce that λj → 0. Computing

〈∇J(u),v
〉=

∫

Ω
∇u∇vdx

=
∫

Ω

(∇u−∇uj
)∇vdx+

∫

Ω
∇uj∇

(
v− λjuj

)
dx+ λj

∫

Ω

∣
∣∇uj

∣
∣2
dx

(3.11)

and using the fact that

uj
H1

⇀ u, v− λjuj ∈ Tuj
(
Vμj

)
, ∇μj J

(
uj
)−→ 0, λj −→ 0, (3.12)

the claim follows.

Claim 3.3 u∈H so that u= u. We write uj = uj + ũ j and u= u+ ũ, where uj ,u∈H and

ũ j , ũ∈ H̃ . We first deduce from Lemma 2.6 that

uj
H1

0⇀ u, ũ j
H1

0⇀ ũ (3.13)

so that

uj
L2+γ−→ u, ũ j

L2+γ−→ ũ. (3.14)

The arguments of Claims 3.2 and 3.3 in the proof of Lemma 2.6 then imply that ũ+ = 0.
Let us prove that ũ− = 0 a.e. in Ω−. Since

lim
j→∞

∥
∥∇μj J

(
uj
)∥
∥= 0 (3.15)

and (uj)− ∈ Tuj (Vμj ), we deduce that

∫

Ω

∣
∣∇(uj

)
−
∣
∣2
dx = 〈∇μj J

(
uj
)
,
(
uj
)
−
〉−→ 0. (3.16)

This means that (uj)− → 0 in H1
0 (Ω), and therefore u− = 0. This in turn implies that

ũ−(x)= 0 for a.e. x ∈Ω−. It follows that u is supported in Ω+ which means that u∈H .

Define wi := χiu, where χi is the characteristic function of the set ωi, and let F := {i=
1, . . . ,n |wi �= 0}. Observe thatwi �= 0 for all i= 1, . . . , p. Indeed, this follows from the con-
vergence of uj in L2+γ(Ω) and the definition of Eμ(ρ). Changing the order of the indices
of the subdomains ωi’s for i > p if necessary, we may assume without loss of generality
that F = {1,2, . . . ,m} for some p ≤m≤ n. Next, we introduce the function

φ(s) :=
m∑

i=1

s
1/(γ+2)
i Qμwi ∈ V̂, (3.17)
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where s ∈ Δm and Δm is defined in Lemma 2.9. Observe that Qμwi is independent of μ
since the wi’s are, respectively, supported in ωi. We also define s to be such that φ(s) =
Qμu, that is, si = V̂(wi)/V̂(u), and we write

g(s) := J(φ(s)
)=

m∑

i=1

s
2/(γ+2)
i J

(
Qμwi

)
. (3.18)

Claim 3.4 For all i∈ E = {1, . . . , p}, si ≥ ρ and |si− s∗i | ≥ ρ. This follows from the conver-
gence of uj in L2+γ(Ω).

Claim 3.5 V̂(u)≥ 1.

Claim 3.6 g(s)= J(Qμu)≤ cE. Using the convexity of J and the weak convergence of the
sequence (uj) j , we can write

cE ≥ lim
j→∞

J
(
uj
)≥ J(u). (3.19)

It then follows from Claim 3.5 that

J(u)= V̂ 2/(γ+2)(u)J
(
Qμu

)≥ J(Qμu
)
. (3.20)

Claim 3.7 g(s) <maxs∈Δm g(s). In case m> p, we have

g(s)≥
m∑

i=1

s
2/(γ+2)
i J

(
ûi
)= fF(s) (3.21)

and therefore we infer from Lemma 2.9 that

max
s∈Δm

g(s)≥ cF > cE = c ≥ g(s). (3.22)

On the other hand, if m= p and for some i0 ∈ E, J(Qμwi0 )�= J(ûi0 ), we have

g(s)≥
p∑

i=1

s
2/(γ+2)
i J

(
ûi
)

+ s
2/(γ+2)
i0

(
J
(
Qμwi0

)− J(ûi0
))

= fE(s) + s
2/(γ+2)
i0

(
J
(
Qμwi0

)− J(ûi0
))

,

(3.23)

where fE is defined in Lemma 2.9 and

max
s∈Δm

g(s)≥ c+
(
s∗i0
)2/(γ+2)(

J
(
Qμwi0

)− J(ûi0
))
> c ≥ g(s). (3.24)

At last, ifm= p and for all i= 1, . . . ,m, J(Qμwi)= J(ûi), then g(s)= fE(s) so that the claim
follows from Claim 3.4 and Lemma 3.1 as |si− s∗i | ≥ ρ.
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Conclusion 3.8. As φ(s) ∈ V̂, we deduce φ′(s) ∈ Tφ(s)(V̂), and it follows from Claim 3.2
that

g′(s)= 〈∇J(φ(s)
)
,φ′(s)

〉= 〈∇J(Qμu
)
,φ′(s)

〉= 0. (3.25)

Since the only stationary point of g is its maximum, this contradicts Claim 3.7. �

The previous result is the basic tool to prove the existence of C
p
n families of positive

p-bumps solutions of (1.1) for any p with 2≤ p ≤ n− 1.

Theorem 3.9. Let assumption (H) be satisfied. Let ω = ωi1 ∪···∪ωip with 2≤ p ≤ n− 1.
Then, for μ sufficiently large, there exists a family of positive p-bumps solutions of (1.1) with
limit support in ω.

General idea of the proof. We consider a deformation along the lines of steepest descent
of J constrained to the manifold. An intersection property allows us to estimate the inf-
max level of the deformations of subsimplex consisting of nonlinear combinations of p
local minima. The previous lemma, together with Palais-Smale condition, implies the
existence of a critical point lying in Eμ(ρ) (see [1] for all the details).
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POSITIVE SOLUTIONS OF SECOND-ORDER
BOUNDARY VALUE PROBLEMS

ABDELKADER BOUCHERIF

This paper is devoted to the study of the existence of positive solutions of two-point
boundary value problems of the form u′′(t) + f (t,u(t))= h(t), 0 < t < 1, u(0)= u(1)= 0.
Our approach is based on the notion of points of sign-variations of a continuous function
on an interval.

Copyright © 2006 Abdelkader Boucherif. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We are interested in the investigation of the existence of positive solutions of the following
two-point boundary value problems:

u′′(t) + f
(
t,u(t)

)= h(t), 0 < t < 1, (1.1)

u(0)= u(1)= 0. (1.2)

Problems of this type arise naturally in the description of physical phenomena, where
only positive solutions, that is, solutions u satisfying u(t) > 0 for all t ∈ (0,1), are mean-
ingful. It is well known that Krasnoselskii’s fixed point theorem in a cone has been instru-
mental in proving existence of positive solutions of problems (1.1), (1.2) when h(t) = 0
for all t ∈ [0,1]. Most of the previous works have assumed the following: f : [0,1]×
[0,+∞) → [0,+∞) is continuous and satisfies liminfu→0+min0≤t≤1 f (t,u)/u = +∞ and
limsupu→+∞max0≤t≤1 f (t,u)/u= 0, (sublinear case) or limsupu→0+max0≤t≤1 f (t,u)/u= 0
and liminfu→+∞min0≤t≤1 f (t,u)/u= +∞ (superlinear case). See, for instance, [1, 6, 8–10]
and the references therein. The above conditions have been relaxed in [11, 12], where
the author removes the condition f nonnegative, and considers the behavior of f with
respect to π2. Notice that π2 is the first eigenvalue of the operator u→−u′′, subject to
the boundary condition (1.2). The arguments in [11, 12] are based on the fixed point
index theory in cones. When the nonlinear term depends also on the first derivative of u,
we refer the interested reader to [2], where the authors consider, also, the problem of the
existence of multiple solutions.

Hindawi Publishing Corporation
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232 Positive solutions of second-order boundary value problems

In this paper, we will adopt a totally different approach. We do not require the nonneg-
ativity of the nonlinearity f , and our arguments are based on the simple notion of points
of sign-variations of solutions of nonhomogeneous boundary value problems. Also, the
sign of the Green’s function of the corresponding linear homogeneous problem plays no
role in our study.

Let I denote the real interval [0,1], and consider the following linear problem:

u′′(t) + q(t)u(t)= g(t), 0 < t < 1. (1.3)

Let u : I → R be a continuous function, and let t0 ∈ I . We say that t0 is a point of
sign-variations of u if

(i) u(t0)= 0,
(ii) for every small ε > 0, we have u(t0− ε)u(t0 + ε) < 0.

Assuming q(t) ≤ π2 and q(t)�= π2 on a subset of I of positive measure, it was shown
in [3] that if the forcing term g(·) has n points of sign-variations in I , then the solution
u of problems (1.2), (1.3) has at most n points of sign-variations in I . The obvious con-
sequence of this result is that if g(·) has a constant sign on I , then the solution of (1.2),
(1.3) has also a constant sign on I . This result was extended later to solutions of nonlinear
problems in [4].

Remark 1.1. The condition q(t)≤ π2 and q(t)�= π2 on a subset of I of positive measure
is known in the literature as a nonresonance condition.

2. Topological transversality theory

In this section, we recall the most important notions and results related to the topological
transversality theory due to Granas (see [7] for the details of the theory).

Let X be a Banach space, � a convex subset of X , and U an open set in �.
(i) g : X → X is compact if g(X) is compact.

(ii) H : [0,1]×X → X is a compact homotopy if H is a homotopy and, for all λ ∈
[0,1], H(λ,·) : X → X is compact.

(iii) g :U →� is called admissible if g is compact and has no fixed points on Γ= ∂U .
�Γ(U ,�) will denote the class of all admissible maps from U to �.

(iv) A compact homotopyH is admissible if, for each λ∈ [0,1],H(λ,·) is admissible.
(v) Two mappings g and h in �Γ(U ,�) are homotopic if there is an admissible ho-

motopy H : [0,1]×U →� such that H(0,·)= g and H(1,·)= h.
(vi) g ∈�Γ(U ,�) is called inessential if there is a fixed point free compact map h :

U →� such that g |Γ= h |Γ. Otherwise, g is called essential.

Lemma 2.1. Let q be an arbitrary point in U and let g ∈�Γ(U ,�) be the constant map
g(x)≡ q. Then g is essential.

Lemma 2.2. g ∈�Γ(U ,�) is inessential if and only if g is homotopic to a fixed point free
compact map.

Theorem 2.3. Let g and h in �Γ(U ,�) be homotopic maps. Then g is essential if and only
if h is essential.



Abdelkader Boucherif 233

3. Main results

Elementary arguments from calculus show that positive solutions of (1.1), (1.2) satisfy
u′(0) > 0, u′(1) < 0.

Let C1
0(I ,R) denote the set of all functions u : I → R that are continuously differen-

tiable, with u(0)= u(1)= 0.

Lemma 3.1. Let u∈ C1
0(I ,R) satisfy u′(0) > 0, u′(1) < 0. Then the number of points of sign-

variations of u in I is even or zero.

Proof. (i) If u does not vanish in (0,1), then the number of points of sign-variations of u
is zero.

(ii) Suppose u has n points of sign-variations, which we label t1, t2, . . . , tn in (0,1) such
that 0 < t1 < t2 < ··· < tn < 1. Then we have

u
(
t j
)= 0, u

(
t j − ε

)
u
(
t j + ε

)
< 0, j = 1,2, . . . ,n,

u
(
t1− ε

)
> 0, u

(
t2 + ε

)
> 0, . . . ,u

(
tn + ε

)
> 0,

u
(
t1 + ε

)
< 0, u

(
t2− ε

)
< 0, . . . ,u

(
tn− ε

)
< 0.

(3.1)

It follows that

u′(0)u
(
t1− ε

)
> 0, u

(
t j + ε

)
u
(
t j+1− ε

)
> 0, j = 1,2, . . . ,n− 1,

u
(
tn + ε

)
u′(1) < 0.

(3.2)

This implies that u′(0)u′(1) and
∏n

j=1u(t j − ε)u(t j + ε) have opposite sign. Since
u′(0)u′(1) < 0 and sign[

∏n
j=1u(t j − ε)u(t j + ε)] = (−1)n, it follows that (−1)n = 1. This

shows that n is even. This completes the proof of the lemma. �

Remark 3.2. The result is also true if we assume u′(0) < 0 and u′(1) > 0.

Lemma 3.3. Assume f : I ×R→R is continuous and satisfies the condition:
(H1) for all u∈R f (t,u)u≤ π2u2 and f (t,u)u�= π2u2 on a subset of I of positive mea-

sure.
Then for all u∈ C1

0(I ,R) we have
∫ 1

0 [u′(t)2− f (t,u(t))u(t)]dt > 0.

Proof. It is clear that
∫ 1

0 [u′(t)2− f (t,u(t))u(t)]dt >
∫ 1

0 [u′(t)2−π2u(t)2]dt. A classical re-
sult in the theory of calculus of variations (see, for instance, [5]) shows that

∫ 1
0 [u′(t)2−

π2u(t)2]dt ≥ 0. The proof of the lemma is complete. �

We will assume throughout the remainder of the paper that h : I → R is continuous
and does not vanish in I .

Lemma 3.4. Assume (H1) is satisfied. Let u be a solution of (1.1), (1.2) with two consecutive
points, 0≤ t1 < t2 ≤ 1, of sign-variations. Then u and h cannot have the same sign on [t1, t2].
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Proof. First, notice that u(t)�= 0 for all t ∈ (t1, t2). Multiply both sides of (1.1) by u(t) and
integrate the resulting equation from t1 to t2. Taking into account (1.2), we get

−
∫ t2

t1
u′(t)2dt+

∫ t2

t1
f
(
t,u(t)

)
u(t)dt =

∫ t2

t1
h(t)u(t)dt. (3.3)

Hence

∫ t2

t1
h(t)u(t)dt =−

∫ t2

t1

[
u′(t)2− f

(
t,u(t)

)
u(t)

]
dt < 0 (by Lemma 3.3). (3.4)

Therefore u and h cannot have the same sign on [t1, t2], and this completes the proof.
�

An obvious consequence of this result is the following.

Lemma 3.5. If (H1) is satisfied, a necessary condition for (1.1), (1.2) to have positive solu-
tions is that h(t) < 0 for all t ∈ I .

We now provide a sufficient condition on the nonlinearity f in order to obtain a priori
bounds on solutions of (1.1), (1.2).

Theorem 3.6. Assume f : I ×R→R is continuous and satisfies the condition:
(H2) there exists R > 0, such that for all t ∈ I , sgnu[ f (t,u)−h(t)] < 0 whenever |u| > R.
Then all possible solutions of (1.1), (1.2) satisfy |u(t)| ≤ R for all t ∈ I .

Proof. Suppose, on the contrary, that there is a τ ∈ I such that |u(τ)| > R. Then, we have
either u(τ) > R or u(τ) < −R. We consider the first case. It follows from the continuity
of u that there exists τ0 such that u(τ0)=max{u(t); t ∈ I}. Hence u′(τ0)= 0, u′′(τ0)≤ 0.
Also, our assumption implies that u(τ0) > R. The differential equation (1.1) yields

0≤−u′′(τ0
)= f

(
τ0,u

(
τ0
))−h(τ0

)
< 0. (3.5)

We obtain a contradiction.
Thus u(t)≤ R for all t ∈ I .
Similarly, we can show that u(t)≥−R for all t ∈ I .
Therefore, we have −R≤ u(t)≤ R for all t ∈ I . �

Theorem 3.7. If the conditions (H1) and (H2) are satisfied, then problems (1.1), (1.2) have
at least one solution.

Proof. For λ∈ [0,1], consider the one-parameter family of problems

−u′′(t)= λ[ f (t,u(t)
)−h(t)

]
, 0 < t < 1, u(0)= u(1)= 0. (3.6)

Notice that for λ= 0, (3.6) has only the trivial solution, while for λ= 1, (3.6) is exactly
our original problem.
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Theorem 3.6 shows that all possible solutions of (3.6) are a priori bounded, indepen-
dent of λ. It is easily seen that (3.6) is equivalent to

u(t)= λ
∫ 1

0
G(t,s)

[
f
(
s,u(s)

)−h(s)
]
ds, (2.λ)

where G(t,s) is the Green’s function corresponding to (3.6) for λ= 0.
Consider Ω := {u ∈ C0(I ;R);‖u‖0 < R+ 1}, where R is the constant from (H2). This

is an open, bounded, and convex subset of C0(I ;R). Define an operator H : [0,1]×Ω→
C2

0(I ;R) by

H(λ,u)(t) := λ
∫ 1

0
G(t,s)

[
f
(
s,u(s)

)−h(s)
]
ds (3.λ)

This defines a compact homotopy without fixed points on ∂Ω. Hence it is an admissi-
ble homotopy between the essential mapH(0,·)= 0 and the mapH(1,·). The topological
transversality theorem of Granas implies thatH(1,·) is essential; that is, it has at least one
fixed point, and this fixed point of H(1,·) is a solution of problems (1.1), (1.2). �

Theorem 3.8. If (H1) and (H2) are satisfied, then a necessary and sufficient conditon for
(1.1), (1.2) to have positive solutions is that h(t) < 0 for all t ∈ I .
Proof. Theorem 3.7 shows that (1.1), (1.2) has at least one solution u0. Lemma 3.4 shows
that u0 and h cannot have the same sign on [0,1]. Hence u0(t) > 0 in (0,1) if and only if
h(t) < 0 for all t ∈ I . �

Acknowledgment

The author is grateful to KFUPM for its constant support.

References

[1] R. P. Agarwal, D. O’Regan, and P. J. Y. Wong, Positive Solutions of Differential, Difference and
Integral Equations, Kluwer Academic, Dordrecht, 1999.

[2] Z. Bai and W. Ge, Existence of three positive solutions for some second-order boundary value prob-
lems, Computers & Mathematics with Applications 48 (2004), no. 5-6, 699–707.

[3] R. Bellman, On variation-diminishing properties of Green’s functions, Bollettino dell’Unione
Matematica Italiana (3) 16 (1961), 164–166.

[4] A. Boucherif and B. A. Slimani, On the sign-variations of solutions of nonlinear two-point bound-
ary value problems, Nonlinear Analysis 22 (1994), no. 12, 1567–1577.

[5] R. Courant and D. Hilbert, Methods of Mathematical Physics, John Wiley & Sons, New York,
1962.

[6] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations,
Proceedings of the American Mathematical Society 120 (1994), no. 3, 743–748.

[7] A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer,
New York, 2003.

[8] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Notes and Reports in
Mathematics in Science and Engineering, vol. 5, Academic Press, Massachusetts, 1988.

[9] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, Journal of Math-
ematical Analysis and Applications 208 (1997), no. 1, 252–259.



236 Positive solutions of second-order boundary value problems

[10] M. A. Krasnosel’skiı̆, Positive Solutions of Operator Equations, P. Noordhoff, Groningen, 1964.
[11] Y. Li, Positive solutions of second-order boundary value problems with sign-changing nonlinear

terms, Journal of Mathematical Analysis and Applications 282 (2003), no. 1, 232–240.
[12] , On the existence and nonexistence of positive solutions for nonlinear Sturm-Liouville

boundary value problems, Journal of Mathematical Analysis and Applications 304 (2005), no. 1,
74–86.

Abdelkader Boucherif: Department of Mathematical Sciences, King Fahd University of Petroleum
and Minerals, P. O. Box 5046, Dhahran 31261, Saudi Arabia
E-mail address: aboucher@kfupm.edu.sa

mailto:aboucher@kfupm.edu.sa


SPECTRAL STABILITY OF ELLIPTIC SELFADJOINT
DIFFERENTIAL OPERATORS WITH DIRICHLET
AND NEUMANN BOUNDARY CONDITIONS

VICTOR I. BURENKOV AND PIER DOMENICO LAMBERTI

We present a general spectral stability theorem for nonnegative selfadjoint operators with
compact resolvents, which is based on the notion of a transition operator, and some appli-
cations to the study of the dependence of the eigenvalues of uniformly elliptic operators
upon domain perturbation.

Copyright © 2006 V. I. Burenkov and P. D. Lamberti. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Let Ω be a nonempty open set inRN . Let H be a nonnegative selfadjoint operator defined
on a dense subspace of L2(Ω) (briefly, a nonnegative selfadjoint operator on L2(Ω)) with
compact resolvent. It is well known that the spectrum of H is discrete and its eigenvalues
λn[H], arranged in nondecreasing order and repeated according to multiplicity, can be
represented by means of the min-max principle. Namely,

λn[H]= inf
L⊂Dom(H1/2)

dimL=n
sup
u∈L
u�∼0

(
H1/2u,H1/2u

)
L2(Ω)

(u,u)L2(Ω)
(1.1)

for all n∈N, where H1/2 denotes the square root of H . (For basic definitions and results,
we refer to Davies [7].)

Here we study the variation of λn[H] upon variation of H , on the understanding
that Ω may vary as well. Namely, given two nonnegative selfadjoint operators H1, H2

on L2(Ω1), L2(Ω2), respectively, we aim at finding estimates of the type

λn
[
H2
]≤ λn

[
H1
]

+ cnδ
(
H1,H2

)
, (1.2)

where δ(H1,H2) is a prescribed measure of vicinity ofH1 andH2, and cn ≥ 0. To do so, we
present a general spectral stability result which, roughly speaking, claims that the validity
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238 Spectral stability of differential operators

of inequality (1.2) for all n ∈ N is equivalent to the existence of a “transition operator
from H1 to H2.”

Then we present some applications to selfadjoint uniformly elliptic operators of the
type

Hu= (−1)m
∑

|α|=|β|=m

∂m

∂xα

(

Aαβ(x)
∂mu

∂xβ

)

, x ∈Ω, (1.3)

with homogeneous Dirichlet or Neumann boundary conditions. We assume that the co-
efficients Aαβ are fixed, hence the eigenvalues of H depend only on Ω, that is, λn[H] =
λn[Ω]. Under the sole assumption that Ω belongs to a fixed family of open sets with con-
tinuous boundary, we prove that for any order m ≥ 1, the eigenvalues λn[Ω] are stable
under perturbations of Ω in such a class.

Moreover, form= 1, we give sufficient conditions on the coefficients and the open sets
in order to guarantee that the estimate

∣
∣λn
[
Ω1
]− λn

[
Ω2
]∣
∣≤ cn

∣
∣Ω1 �Ω2

∣
∣γ (1.4)

holds for some γ > 0. Here Ω1 � Ω2 denotes the symmetric difference of Ω1 and Ω2. It
turns out that the exponent γ depends on summability and differentiability properties of
eigenfunctions. For open sets of class C1,1, γ = 1 (which is the sharp exponent).

Some of the results in this paper have been presented without proof in [3] and proved
in [4].

We mention that the case of Robin boundary conditions for the Laplace operator has
been recently investigated by Burenkov and Lanza de Cristoforis [5].

2. A general spectral stability theorem

Let Ω be a nonempty open set in RN . Let H be a nonnegative selfadjoint operator on
L2(Ω) with compact resolvent. By ϕn[H], n∈N, we denote an orthonormal sequence of
eigenfunctions corresponding to the eigenvalues λn[H]. We denote by Ln[H] the linear
space generated by ϕ1[H], . . . , ϕn[H] and we set �[H]=⋃∞n=1Ln[H].

We start with recalling the notion of a transition operator introduced in [3, 4].

Definition 2.1. Let �1 and �2 be two nonempty families of nonempty open sets in RN ,
for all Ω1 ∈�1, Ω2 ∈�2, let H1 ≡H1[Ω1] and H2 ≡H2[Ω2] be nonnegative selfadjoint
linear operators on L2(Ω1), L2(Ω2), respectively, with compact resolvents, and let �1 =
{H1[Ω1] : Ω1 ∈�1}, �2 = {H2[Ω2] : Ω2 ∈�2}.

Moreover, let δ : �1 ×�2 → [0,∞) (a measure of vicinity of H1 ∈�1 and H2 ∈�2),
0≤ amn,bmn <∞, 0 < δ′mn, δ′′mn ≤∞, for all m,n∈N.

Given H1 ∈�1 and H2 ∈�2, we say that a linear operator T12 : �(H1)→Dom(H1/2
2 )

is a transition operator from H1 to H2 with the measure of vicinity δ and parameters amn,
bmn, δ′mn, and δ′′mn (briefly, a transition operator fromH1 toH2), if the following conditions
are satisfied:

(i) (T12ϕn[H1],T12ϕn[H1])L2(Ω2) ≥ 1− annδ(H1,H2), n∈N, if δ(H1,H2) < δ′nn;
(ii) |(T12ϕm[H1],T12ϕn[H1])L2(Ω2)| ≤ amnδ(H1,H2), m,n ∈ N, m �= n, if δ(H1,H2) <

δ′mn;
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(iii) (H1/2
2 T12ϕn[H1],H1/2

2 T12ϕn[H1])L2(Ω2) ≤ λn[H1] + bnnδ(H1,H2), n ∈ N, if δ(H1,
H2) < δ′′nn;

(iv) |(H1/2
2 T12ϕm[H1],H1/2

2 T12ϕn[H1])L2(Ω2)|≤bmnδ(H1,H2),m,n∈N, m�= n, if δ(H1,
H2) < δ′′mn.

Then we have the following spectral stability theorem proved in [4].

Theorem 2.2. Let �1, �2, �1, �2, and δ : �1×�2→ [0,∞) be as in Definition 2.1. Then
the following statements are equivalent:

(s1) for each H1 ∈�1 and for each n ∈ N there exist cn = cn(H1) ∈ [0,∞[ and εn =
εn(H1)∈]0,∞] such that inequality (1.2) holds for all H2 ∈�2 satisfying δ(H1,H2) < εn;

(s2) for eachH1 ∈�1 and for eachm,n∈N there exist amn = amn(H1), bmn = bmn(H1)∈
[0,∞[, δ′mn = δ′mn(H1), δ′′mn = δ′′mn(H1) ∈]0,∞] such that for each H2 ∈�2 there exists a
transition operator T12 from H1 to H2 with the measure of vicinity δ and the parameters
amn, bmn, δ′mn, δ′′mn.

Moreover, if statement (s2) holds, then inequality (1.2) holds for all H1 ∈�1 and H2 ∈
�2 satisfying δ(H1,H2) < εn with

cn = 2
(
anλn

[
H1
]

+ bn
)
, εn =min

{
δ′n,δ′′n ,

(
2an
)−1
}

, (2.1)

where

an =
( n∑

k,l=1

a2
kl

)1/2

, bn =
( n∑

k,l=1

b2
kl

)1/2

,

δ′n =min
k,l≤n

δ′kl, δ′′n =min
k,l≤n

δ′′kl .

(2.2)

3. On a class of uniformly elliptic operators

Let Ω be an open set inRN . For all m∈N, we denote by Wm,2(Ω) the Sobolev space of all
those functions in L2(Ω) whose weak derivatives of order m are in L2(Ω), endowed with
the norm

‖u‖Wm,2(Ω) = ‖u‖L2(Ω) +
∑

|α|=m

∥
∥
∥
∥
∂mu

∂xα

∥
∥
∥
∥
L2(Ω)

. (3.1)

As usual |α| = α1 + ··· + αN for all α = (α1, . . . ,αN ) ∈ NN
0 . We denote by Wm,2

0 (Ω) the
closure inWm,2(Ω) of the space of all infinitely continuously differentiable functions with
compact support in Ω.

For all |α| = |β| =m, let Aαβ be bounded measurable real-valued functions on Ω sat-
isfying Aαβ =Aβα and the uniform ellipticity condition

∑

|α|=|β|=m
Aαβ(x)ξαξβ ≥ θ|ξ|2, (3.2)

for all x ∈Ω and ξ = (ξα)|α|=m, where |ξ| denotes the Euclidean modulus of ξ and θ > 0
is independent of x and ξ.
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Let V(Ω) be a closed subspace ofWm,2(Ω) containingWm,2
0 (Ω). Then we consider the

following eigenvalue problem:

∫

Ω

∑

|α|=|β|=m
Aαβ

∂mu

∂xα
∂mv

∂xβ
dx = λ

∫

Ω
uvdx, (3.3)

for all functions v ∈ V(Ω), in the unknowns u∈ V(Ω), u�∼ 0 on Ω (the eigenfunctions)
and λ∈ C (the eigenvalues).

Clearly, problem (3.3) is the weak formulation of an eigenvalue problem for the op-
erator H in (1.3) subject to suitable homogeneous boundary conditions. (The choice of
V(Ω) corresponds to the choice of the boundary conditions.) We recall the following
well-known result (cf. Davies [7, Theorem 4.4.2]).

Theorem 3.1. Let m∈N and let Ω be an open set in RN such that the embedding V(Ω)⊂
L2(Ω) is compact. Let θ > 0 and, for all (α,β)∈NN

0 ×NN
0 such that |α| = |β| =m, letAαβ be

bounded measurable real-valued functions defined on Ω, satisfying Aαβ = Aβα and condition
(3.2).

Then there exists a nonnegative selfadjoint linear operator HV on L2(Ω) with compact
resolvent such that Dom(H1/2

V )=V(Ω) and

(
H1/2
V u,H1/2

V v
)
L2(Ω) =

∫

Ω

∑

|α|=|β|=m
Aαβ

∂mu

∂xα
∂mv̄

∂xβ
dx (3.4)

for all (u,v)∈ V(Ω)×V(Ω). Moreover, the eigenvalues defined by equation (3.3) coincide
with the eigenvalues λn[HV ] of HV .

As usual, we speak about Dirichlet boundary conditions when V(Ω)=Wm,2
0 (Ω) and

Neumann boundary conditions when V(Ω)=Wm,2(Ω).
In the sequel we consider bounded open sets in RN with continuous boundaries. For

all E ⊂ RN and ρ > 0, we set Eρ = {x ∈ E : dist(x,∂E) > ρ}; then we recall the following
definition.

Definition 3.2. Let ρ > 0, s,s′ ∈ N, s′ ≤ s, and let {Vj}sj=1 be a family of bounded open
cuboids and let {r j}sj=1 be a family of rotations. We say that a bounded open set Ω in RN

has a continuous boundary with the parameters ρ, s, s′, {Vj}sj=1, {r j}sj=1 if
(i) Ω⊂⋃s

j=1(Vj)ρ and (Vj)ρ∩Ω�=∅ for all j = 1, . . . ,s;
(ii) Vj ∩ ∂Ω�=∅ for all j = 1, . . . ,s′, and Vj ∩ ∂Ω=∅ for all s′ < j ≤ s;

(iii) there exist real numbers ajl, bjl with ajl < bjl for all j = 1, . . . ,s, l = 1, . . . ,N such
that

r j
(
Vj
)= {x ∈RN : ajl < xl < bjl, l = 1, . . . ,N

}
, (3.5)

for all j = 1, . . . ,s, and

r j
(
Ω∩Vj

)= {x ∈RN : ajN < xN < gj(x̄), x̄ ∈Wj
}

, (3.6)
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for all j = 1, . . . ,s′, where x = (x̄,xN ), x̄ = (x1, . . . ,xN−1), Wj = {x̄ ∈ RN−1 : ajl <
xl < bjl, l = 1, . . . ,N − 1} and gj is a continuous function on Wj ; moreover,

ajN + ρ ≤ gj(x̄)≤ bjN − ρ, (3.7)

for all j = 1, . . . ,s′, x̄ ∈Wj .
We also say that a bounded open set Ω in RN has a continuous boundary if Ω has a

continuous boundary with the parameters ρ, s, s′, {Vj}sj=1, {r j}sj=1 for some parameters
ρ, s, s′, {Vj}sj=1, {r j}sj=1.

We recall that for any open set Ω in RN of finite measure the embedding Wm,2
0 (Ω)⊂

L2(Ω) is compact. Moreover, if Ω has a continuous boundary, then the embedding
Wm,2(Ω)⊂ L2(Ω) is also compact (cf. Burenkov [1, Theorem 8, page 169]).

4. Spectral stability for Dirichlet and Neumann boundary conditions

In case of Dirichlet or Neumann boundary conditions and for fixed coefficients Aαβ, the
eigenvalues λn[HV ] of (3.3) depend only on Ω; in this case we simply write H[Ω], λn[Ω],
ϕn[Ω], �[Ω] instead of HV , λn[HV ], ϕn[HV ], �[HV ], respectively.

It is well known that if Ω1 and Ω2 are open sets of finite measure and Ω2 ⊂Ω1, then in
the case of Dirichlet boundary conditions for all n∈N

λn
[
Ω1
]≤ λn

[
Ω2
]
. (4.1)

The following semicontinuity result in [3, 4] is a kind of a replacement of this property
for the case of Neumann boundary conditions.

Theorem 4.1. Let m ∈N, θ > 0 and let Ω1 be a fixed nonempty open set in RN such that
the embedding Wm,2(Ω1) ⊂ L2(Ω1) is compact. Assume that the coefficients Aαβ are as in
Theorem 3.1.

Then for all n ∈ N and for all ε > 0 there exists σ > 0 such that for all nonempty open
sets Ω2 ⊂Ω1 such that the embedding Wm,2(Ω2) ⊂ L2(Ω2) is compact and |Ω1 \Ω2| < σ ,
we have, in case of Neumann boundary conditions,

λn
[
Ω2
]≤ λn

[
Ω1
]

+ ε. (4.2)

Remark 4.2. If there are no further assumptions on Ω1 and Ω2, then no kind of inequal-
ities reverse to (4.1) and (4.2) can hold. In the case of Neumann boundary conditions,
there exist bounded open sets Ω1 and Ω2,k ⊂Ω1, k ∈N, such that

lim
k→∞

inf
(Ω1)ε⊂Ω2,k

ε = 0, (4.3)

hence

lim
k→∞

∣
∣Ω1 \Ω2,k

∣
∣= 0, (4.4)
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λ2[Ω1] > 0 and limk→∞ λ2[Ω2,k] = 0 (Courant and Hilbert [6, page 420]). In the case of
Dirichlet boundary conditions, there exist bounded open sets Ω1 and Ω2,k ⊂Ω1, k ∈N,
satisfying (4.4) and such that limk→∞ λn[Ω2,k]=∞ for all n∈N.

However, if Ω1 and Ω2 have continuous boundaries and there is some control over
the parameters describing Ω1 and Ω2, it is possible to prove stability of eigenvalues for all
m,n∈N.

Given an open set Ω1 inRN with continuous boundary, we first consider perturbations
Ω2 of Ω1 satisfying the condition

(
Ω1
)
ε ⊂Ω2 ⊂

(
Ω1
)ε

, (4.5)

for ε > 0 sufficiently small, where (Ω1)ε = {x ∈RN : d(x,Ω1) < ε}.
Letω : [0,∞[→ [0,∞[ be a continuous increasing function such thatω(0)= 0 and such

that

inf
0≤a≤1
0<b≤1

ω(a+ b)−ω(a)
b

> 0. (4.6)

We say that a bounded open set having a continuous boundary with the parameters ρ, s,
s′, {Vj}sj=1, {r j}sj=1 is of class Cω(M,ρ,s,s′,{Vj}sj=1,{r j}sj=1) where M > 0 if all the func-
tions gj in Definition 3.2 satisfy the condition

∣
∣gj(x̄)− gj( ȳ)

∣
∣≤Mω

(|x̄− ȳ|) (4.7)

for all x̄, ȳ ∈Wj .
Then we have the following uniform continuity result.

Theorem 4.3. Let ρ, s, s′,{Vj}sj=1, {r j}sj=1 be as in Definition 3.2. Let M > 0 and ω be a
continuous increasing function of [0,∞[ to itself satisfying ω(0)= 0 and condition (4.6). Let
m ∈ N, θ > 0 and, for all (α,β) ∈ NN

0 ×NN
0 such that |α| = |β| =m, let Aαβ be Lipschitz

continuous real-valued functions defined on
⋃s

j=1Vj satisfying Aαβ = Aβα and condition
(3.2) for all x ∈⋃s

j=1Vj .
Then there exists a continuous increasing function f of [0,∞[ to itself such that f (0)= 0

and for all n∈N there exist cn,εn > 0, such that, for both Dirichlet and Neumann boundary
conditions,

∣
∣λn
[
Ω1
]− λn

[
Ω2
]∣
∣≤ cn f (ε), (4.8)

for all ε ∈ [0,εn[ and all open sets Ω1, Ω2 in RN of class Cω(M,ρ,s,s′, {Vj}sj=1, {r j}sj=1),
satisfying (4.5).

In what follows, we focus our attention on second-order operators; thus in the sequel
we consider only the case m= 1.

Let 0 < γ ≤ 1 and ω(a) = aγ for all a ≥ 0. In this case, if Ω is of class Cω(M,ρ,s,s′,
{Vj}sj=1,{r j}sj=1), then Ω has a Hölder continuous boundary and we say that Ω is of class
C0,γ(M,ρ,s,s′,{Vj}sj=1,{r j}sj=1).
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Theorem 4.4. Let ρ, s, s′, {Vj}sj=1, {r j}sj=1 be as in Definition 3.2, M > 0 and 0 < γ ≤ 1.
Assume that the coefficients Aαβ are as in Theorem 4.3.

Then for all n∈N there exist cn,εn > 0 such that for both Dirichlet and Neumann bound-
ary conditions,

∣
∣λn
[
Ω1
]− λn

[
Ω2
]∣
∣≤ cnεγ, (4.9)

for all ε ∈ [0,εn[ and all open sets Ω1, Ω2 in RN of class C0,γ(M,ρ,s,s′,{Vj}sj=1,{r j}sj=1)
satisfying (4.5).

For Neumann boundary conditions and Ω2 ⊂Ω1 this result was proved in Burenkov
and Davies [2]. For related results in case of Dirichlet boundary conditions see Davies [8]
and Pang [9].

Under stronger assumptions on Ω1 and Ω2 it is possible to obtain a better estimate of
|λn[Ω1]− λn[Ω2]| via the measure of the difference of Ω1 and Ω2 if Ω2 ⊂Ω1.

Theorem 4.5. Let θ > 0, 2 < p ≤∞ and let Ω1 be a fixed nonempty open set in RN such
that the embedding W1,2(Ω1)⊂ L2(Ω1) is compact. Assume that the coefficients Aαβ are as
in Theorem 3.1.

Assume that, for Neumann boundary conditions,

ϕn
[
Ω1
]∈ Lp(Ω1

)
, (4.10)

for all n∈N. Then for all n∈N there exist cn,εn > 0 such that

λn
[
Ω2
]≤ λn

[
Ω1
]

+ cn
∣
∣Ω1 \Ω2

∣
∣1−(2/p)

, (4.11)

for all nonempty open sets Ω2 ⊂Ω1 such that the embedding W1,2(Ω2)⊂ L2(Ω2) is compact
and |Ω1 \Ω2| < εn.

This theorem is proved in [4].

Theorem 4.6. Let ρ, s, s′, {Vj}sj=1, {r j}sj=1 be as in Definition 3.2, andM,θ > 0, 2 < p ≤∞.
Let Ω1 be an open set in RN of class C0,1(M,ρ,s,s′,{Vj}sj=1,{r j}sj=1).

Assume that the coefficients Aαβ are as in Theorem 3.1 and that, for Dirichlet boundary
conditions,

ϕn
[
Ω1
]∈W1,p(Ω1

)
, (4.12)

for all n∈N.
Then for all n∈N there exist cn,εn > 0 such that

λn
[
Ω1
]≤ λn

[
Ω2
]≤ λn

[
Ω1
]

+ cn
∣
∣Ω1 \Ω2

∣
∣1−(2/p)

, (4.13)

for all open sets Ω2 ⊂Ω1 of class C0,1(M,ρ,s,s′,{Vj}sj=1,{r j}sj=1) satisfying |Ω1 \Ω2| < εn.

We observe that the exponent 1− 2/p depends only on summability and differentia-
bility properties of the eigenfunctions in Ω1.
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Example 4.7. Let 0 < γ ≤ 1. We say that a bounded open set in RN having continuous
boundary with parameters ρ, s, s′, {Vj}sj=1, {r j}sj=1 is of class C1,γ(M,ρ,s,s′,{Vj}sj=1,
{r j}sj=1) if all the functions gj in Definition 3.2 are differentiable and satisfy the condi-
tion

∣
∣
∣
∣
∂gj
∂xi

(x̄)
∣
∣
∣
∣≤M,

∣
∣
∣
∣
∂gj
∂xi

(x̄)− ∂gj
∂xi

( ȳ)
∣
∣
∣
∣≤M|x̄− ȳ|γ, (4.14)

for all x̄, ȳ ∈Wj , i= 1, . . . ,N − 1.
If Ω1 is of class C1,γ(M,ρ,s,s′,{Vj}sj=1,{r j}sj=1) and the coefficients Aαβ are of class

C0,γ(Ω̄1) for some 0 < γ ≤ 1, then one can choose p =∞ in (4.12), hence the sharp expo-
nent 1− 2/p = 1 in (4.13).

Under still stronger assumptions on Ω1 and Ω2 we can deal with perturbations Ω2 of
Ω1 not necessarily contained in Ω1.

Theorem 4.8. Let ρ, s, s′, {Vj}sj=1, {r j}sj=1 be as in Definition 3.2, and M,θ > 0, 2 < p ≤
∞. Assume that the coefficients Aαβ are bounded measurable functions defined on

⋃s
j=1Vj

satisfying Aαβ = Aβα and condition (3.2) for all x ∈⋃s
j=1Vj .

Moreover, assume that � is a nonempty family of open sets of class C0,1(M,ρ,s,s′,
{Vj}sj=1,{r j}sj=1) such that for Dirichlet or Neumann boundary conditions

sup
Ω∈�

∥
∥ϕn[Ω]

∥
∥
W1,p(Ω) <∞ (4.15)

for all n∈N.
Then for all n∈N there exist cn,εn > 0 such that

∣
∣λn
[
Ω1
]− λn

[
Ω2
]∣
∣≤ cn

∣
∣Ω1 �Ω2

∣
∣1−(2/p)

(4.16)

for all Ω1,Ω2 ∈� satisfying |Ω1 �Ω2| < εn.

Theorem 4.9. Let ρ, s, s′, {Vj}sj=1, {r j}sj=1 be as in Definition 3.2, and M,θ > 0. Assume
that the coefficients Aαβ are as in Theorem 4.3.

Then for all n∈N there exist cn,εn > 0 such that, for both Dirichlet and Neumann bound-
ary conditions,

∣
∣λn

[
Ω1
]− λn

[
Ω2
]∣
∣≤ cn

∣
∣Ω1 �Ω2

∣
∣, (4.17)

for all open sets Ω1, Ω2 in RN of class C1,1(M,ρ,s,s′,{Vj}sj=1,{r j}sj=1) satisfying |Ω1 �
Ω2| < εn.

For Neumann boundary conditions Theorems 4.8 and 4.9 are proved in [4].
The proofs of all above results are based on Theorem 2.2. Given two open sets Ω1,

Ω2 in RN , the idea is to find suitable transition operators from the operator H[Ω1]
to the operator H[Ω2] and vice versa. The choice of the measure of vicinity depends
on the problem: for instance, in Theorems 4.5 and 4.6 we use the measure of vicinity
δ(H[Ω1],H[Ω2])= |Ω1 \Ω2|1−2/p, while in Theorem 4.9 δ(H[Ω1],H[Ω2])= |Ω1 �Ω2|.
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The proof of Theorem 4.3 is more complicated and requires several technical steps in-
volving different measures of vicinity which we do not report here.

We find it interesting to describe the main idea used to prove Theorem 4.6. Given
two open sets Ω1, Ω2 of class C0,1(M,ρ,s,s′,{Vj}sj=1,{r j}sj=1) such that Ω2 ⊂ Ω1, it is
possible to construct a linear operator T12 of L1

loc(Ω1) to L1
loc(Ω2) such that the following

conditions are satisfied:
(i) for all 1 ≤ p ≤ ∞, T12 is bounded from Lp(Ω1) to Lp(Ω2), from W1,p(Ω1) to

W1,p(Ω2), and from W
1,p
0 (Ω1) to W

1,p
0 (Ω2);

(ii) there exists c > 0 depending only on N , M, ρ, s, s′, {Vj}sj=1, {r j}sj=1, and there
exists an open set Ω3 ⊂ Ω2 such that |Ω2 \Ω3| ≤ c|Ω1 \Ω2|, and T12[u](x) =
u(x), for all u∈ L1

loc(Ω1) and for almost all x ∈Ω3.
Then we set �1 ≡ {Ω1}, �2 ≡ {Ω2 ⊂Ω1 : Ω2 is of class C0,1(M,ρ,s,s′,{Vj}sj=1,{r j}sj=1)},
�1 ≡ {H[Ω1]}, �2 ≡ {H[Ω2] : Ω2 ∈�2}, and δ(H[Ω1], H[Ω2]) ≡ |Ω1 \Ω2|1−2/p. We
recall that for Dirichlet boundary conditions and second-order operators Dom(H1/2[Ω])
=W1,2

0 (Ω), hence T12 maps �[Ω1] to Dom(H1/2[Ω2]). Finally, by assumption (4.12),
it is possible to prove that T12 satisfies conditions (i)–(iv) in Definition 2.1 for some pa-
rameters amn, bmn, δ′mn, δ′′mn not depending on Ω2. Thus T12 is a transition operator from
H[Ω1] to H[Ω2] with the measure of vicinity δ and by Theorem 2.2 and (4.1) it follows
that there exist cn,εn > 0 such that inequality (4.13) holds if |Ω1 \Ω2| < εn.

References

[1] V. I. Burenkov, Sobolev Spaces on Domains, Teubner Texts in Mathematics, vol. 137, B. G. Teub-
ner, Stuttgart, 1998.

[2] V. I. Burenkov and E. B. Davies, Spectral stability of the Neumann Laplacian, Journal of Differen-
tial Equations 186 (2002), no. 2, 485–508.

[3] V. I. Burenkov and P. D. Lamberti, Spectral stability of nonnegative selfadjoint operators,
Rossiı̆skaya Akademiya Nauk. Doklady Akademii Nauk 403 (2005), no. 2, 159–164 (Russian),
English translation in Doklady Mathematics 72 (2005), 507–511.

[4] , Spectral stability of general nonnegative selfadjoint operators with applications to
Neumann-type operators, preprint, 2005.

[5] V. I. Burenkov and M. Lanza de Cristoforis, Spectral stability of the Robin Laplacian, preprint,
2005.

[6] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience, New York,
1953.

[7] E. B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Math-
ematics, vol. 42, Cambridge University Press, Cambridge, 1995.

[8] , Sharp boundary estimates for elliptic operators, Mathematical Proceedings of the Cam-
bridge Philosophical Society 129 (2000), no. 1, 165–178.

[9] M. M. H. Pang, Approximation of ground state eigenvalues and eigenfunctions of Dirichlet Lapla-
cians, The Bulletin of the London Mathematical Society 29 (1997), no. 6, 720–730.

Victor I. Burenkov: Cardiff School of Mathematics, Cardiff University, Cardiff, CF24 4AG, UK
E-mail address: burenkov@cardiff.ac.uk

Pier Domenico Lamberti: Dipartimento di Matematica Pura ed Applicata, Università degli Studi di
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MAXIMUM PRINCIPLES FOR THIRD-ORDER INITIAL
AND TERMINAL VALUE PROBLEMS

ALBERTO CABADA

This paper is devoted to the study of positive solutions of third-order linear problems. We
give an abstract formula to obtain the expression of the solutions of the nth-order initial
value problems. We apply this expression to third-order equations and obtain maximum
principles in different spaces. We translate the given results for terminal problems.

Copyright © 2006 Alberto Cabada. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The study of maximum principles is a very well-known tool to deduce the existence of
solutions of nonlinear problems. This kind of results are related with the constant sign
of solutions of initial or boundary value problems. Such constant sign property is funda-
mental to ensure the monotonicity of suitable operators (the solutions of the considered
equations coincide with their fixed points), such monotonicity character, even in the case
of discontinuity [11, 15], remains as a sufficient condition to warrant the existence of
fixed points of the treated operator.

One of the most common applications, where such comparison results are used, is
the method of upper and lower solutions coupled with iterative methods. In general, the
applicability of this kind of technique depends strongly on the sign of Green’s function
representations for the solutions of certain linear problems associated to the considered
initial or boundary value problem. One can find classical results of this theory in the
monographs [3, 16], more recent results can be found in [12–14]. Periodic problems for
second-, third-, and higher-order ordinary differential equations have been studied in
[4–6, 9], impulsive equations have been considered in [7, 8], difference equations can be
found in [1, 2, 10]. Multiplicity [17] or stability results [12] are deduced from comparison
principles.

In this paper we are interested in the study of third-order initial value problems. We
only present the range of the values for which the considered operators satisfy maximum
principles in suitable spaces. The applications can be deduced as a direct consequence of
the previously mentioned works.

Hindawi Publishing Corporation
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248 Maximum principles for third-order initial and terminal problems

In Section 2 of the present paper, we find an integral representation for the solutions
of the following nth-order linear differential equation.

Lnu(t)≡ u(n)(t) +
n−1∑

i=0

aiu
(i)(t)= σ(t) for a.e. t ∈ I ,

u(i)(a)= λi, i= 0, . . . ,n− 1,

(1.1)

where I = [a,b], σ ∈ L1(I), and ai, λi ∈R, i= 0, . . . ,n− 1.
We are looking for solutions on the space

Wn,1(I)≡ {u∈ Cn−1(I), u(n−1) is absolutely continuous in I
}
. (1.2)

Section 3 is devoted to the study of the parameters of different third-order operators
for which they are inverse positive on adequate spaces.

In Section 4, we obtain comparison results for third-order terminal value problems.

2. Expression of the solutions of nth-order initial value problems

In this section we obtain the expression of the unique solution of problem (1.1) as a
function of the unique solution of the following problem:

z(n)(t) +
n−1∑

i=0

aiz
(i)(t)= 0 for a.e. t ∈ I ,

z(i)(a)= 0, i= 0, . . . ,n− 2,

z(n−1)(a)= 1.

(2.1)

This formula improves the one obtained in [7] for the particular case of a1 = ··· =
an−1 = 0. The result is the following.

Lemma 2.1. Let r be the unique solution of problem (2.1). Then the unique solution of
problem (1.1) is given by the following expression:

u(t)=
∫ t

a
r(a+ t− s)σ(s)ds+

n−1∑

i=0

ri(t)λi, (2.2)

where

ri(t)= r(n−1−i)(t) +
n−1∑

j=i+1

ajr
( j−i−1)(t), t ∈ I , i= 0, . . . ,n− 1. (2.3)

Proof. Let

v(t)=
∫ t

a
r(a+ t− s)σ(s)ds. (2.4)
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From the definition of r, we obtain

v(i)(t)=
∫ t

a
r(i)(a+ t− s)σ(s)ds (2.5)

for i= 0,1, . . . ,n− 1, and

v(n)(t)=
∫ t

a
r(n)(a+ t− s)σ(s)ds+ σ(t). (2.6)

In consequence,

v(i)(a)= 0, ∀i= 0,1, . . . ,n− 1 (2.7)

and, for a.e. t ∈ I ,

v(n)(t) +
n−1∑

i=0

aiv
(i)(t)

=
∫ t

a

[

r(n)(a+ t− s) +
n−1∑

i=0

air
(i)(a+ t− s)

]

σ(s)ds+ σ(t)= σ(t).

(2.8)

On the other hand, it is clear that

r′(n)(t) +
n−1∑

i=0

air
′(i)(t)= 0,

r(n)(a)=−an−1.

(2.9)

Thus, the function rn−2 ≡ r′ + an−1r is the unique solution of the problem

z(n)(t) +
n−1∑

i=0

aiz
(i)(t)= 0,

z(i)(a)= 0, i= 0, . . . ,n− 1, i �= n− 2,

z(n−2)(a)= 1.

(2.10)

Analogously, we can prove that for all j ∈ {0,1, . . . ,n− 1}, function rn−1− j is the unique
solution of

z(n)(t) +
n−1∑

i=0

aiz
(i)(t)= 0,

z(i)(a)= 0, i= 0, . . . ,n− 1, i �= n− 1− j,

z(n−1− j)(a)= 1.

(2.11)
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Hence, the function

u(t)= v(t) +
n−1∑

i=0

ri(t)λi (2.12)

is the unique solution of the problem (1.1). �

3. Maximum principles for third-order initial value problems

In this section we study some particular cases of third-order linear operators, obtaining
the values for which they satisfy maximum principles in suitable spaces.

First we define the concept of inverse positive operator as follows.

Definition 3.1. The nth-order linear operator Ln defined in a real Banach space Ω, that
contains the set C[a,b], is inverse positive on Ω if and only if Lu≥ 0 in [a,b] implies u≥ 0
in [a,b], for all u∈Ω.

Consider now the set

Ωn
a,b =

{
u∈Wn,1[a,b], u(i)(a)≥ 0, i= 0, . . . ,n− 1

}
. (3.1)

Following the arguments of [7, Lemmas 2.1 and 3.1 and Corollary 2.1], we can prove
the following results.

Lemma 3.2. The operator Ln is inverse positive on Ωn
a,b if and only if the operator

u(n) +
∑n−1

i=0 ((b− a)/(d− c))n−iaiu(i) is inverse positive on Ωn
c,d.

Lemma 3.3. Assume that Ln is inverse positive on Ωn
a,b and 0 < d − c ≤ b− a. Then the

operator Ln is inverse positive on Ωn
c,d.

Lemma 3.4. If the operator Ln is inverse positive onΩn
a,b, then the operator u(n) +

∑n−1
i=0 μaiu

(i)

is inverse positive on Ωn
a,b for all μ∈ (0,1].

Define the following sets and operators:

Ω0 =
{
u∈W3,1[a,b], u(a)≥ 0, u′(a)≥ 0, u′′(a)≥ 0

}
,

Ω1 =
{
u∈W3,1[a,b], u(a)= 0, u′(a)≥ 0, u′′(a)≥ 0

}
,

Ω2 =
{
u∈W3,1[a,b], u(a)= 0, u′(a)= 0, u′′(a)≥ 0

}
,

Ω3 =
{
u∈W3,1[a,b], u(a)≥ 0, u′(a)= 0, u′′(a)≥ 0

}
,

L1
3u≡ u′′′ +Mu,

L2
3u≡ u′′′ +Mu′,

L3
3u≡ u′′′ +Mu′′.

(3.2)

One can verify that Lemmas 3.2, 3.3, and 3.4 remain valid for spaces Ω1, Ω2, and Ω3.
Moreover, as a consequence of Lemma 3.4, it is not difficult to deduce the following result.
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Corollary 3.5. The range of values for which operators L1
3, L2

3, and L3
3 are inverse positive

on Ωi for some i= 0,1,2,3 is an interval.

The following result is a direct consequence of Definition 3.1 and the expression (2.2).

Lemma 3.6. The following properties hold.
(1) Operator L3 is inverse positive on Ω0 if and only if r0,r1,r ≥ 0 on [a,b].
(2) Operator L3 is inverse positive on Ω1 if and only if r1,r ≥ 0 on [a,b].
(3) Operator L3 is inverse positive on Ω2 if and only if r ≥ 0 on [a,b].
(4) Operator L3 is inverse positive on Ω3 if and only if r0,r ≥ 0 on [a,b].

In the next result we obtain maximum principles for operator L1
3.

Lemma 3.7. The following properties hold.
(1) L1

3 is inverse positive on Ω0 and Ω3 if and only if

M ∈
(

−∞,
(
m0

b− a
)3
]

, (3.3)

where m0 ≈ 1.84981 is the smallest positive solution of the equation

e−3m/2 =−2cos
(√

3m
2

)

. (3.4)

(2) L1
3 is inverse positive on Ω1 if and only if

M ∈
(

−∞,
(
m1

b− a
)3
]

, (3.5)

where m1 ≈ 3.01674 is the smallest positive solution of the equation

e−3m/2 = cos
(√

3m
2

)

+
√

3sin
(√

3m
2

)

. (3.6)

(3) L1
3 is inverse positive on Ω2 if and only if

M ∈
(

−∞,
(
m2

b− a
)3
]

, (3.7)

where m0 ≈ 3.33334 is the smallest positive solution of the equation

e−3m/2 = cos
(√

3m
2

)

−√3sin
(√

3m
2

)

. (3.8)
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Proof. One can verify that, in this case, function r is given by the following expression in
[0,1]:

r(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−mt/2
(
e3mt/2−√3sin(

√
3mt/2)− cos(

√
3mt/2)

)

3m2
if M =−m3 < 0,

t2

2
if M = 0,

emt/2
(
e−3mt/2 +

√
3sin(

√
3mt/2)− cos(

√
3mt/2)

)

3m2
if M =m3 > 0.

(3.9)

Moreover r1 ≡ r′ and r0 = r′′.
The proof is a direct consequence of Lemma 3.6 and Corollary 3.5. �

Remark 3.8. In [7, Lemma 2.4] it is proved case 1 in Ω0 for M ∈ (0,(m0/(b− a))3].

Now, we give comparison results for operator L2
3.

Lemma 3.9. The following properties are fulfilled.
(1) L2

3 is inverse positive on Ω0 and Ω1 if and only if

M ∈
(

−∞,
π2

(b− a)3

]

. (3.10)

(2) L2
3 is inverse positive on Ω2 and Ω3 for all M ∈R.

Proof. Now, function r is given by the following expression in [0,1]:

r(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

emt + e−mt − 2
2m2

if M =−m2 < 0,

t2

2
if M = 0,

1− cosmt
m2

if M =m2 > 0.

(3.11)

Moreover r1 ≡ r′ and r0 = r′′ +Mr ≡ 1.
The proof follows from Lemma 3.6 and Corollary 3.5. �

Now, we study operator L3
3.

Lemma 3.10. The operator L3
3 is inverse positive on Ωi, i= 0,1,2,3 for all M ∈R.

Proof. The proof follows from the fact that, in [0,1], r(t)= e−Mt and r1 ≡ r0 ≡ 0. �
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4. Maximum principles for third-order terminal value problems

In this section we obtain the values for which operators L1
3, L2

3, and L3
3 satisfy maximum

principles in the following sets:

Λ0 =
{
u∈W3,1[a,b], u(a)≥ 0, u′(a)≤ 0, u′′(a)≥ 0

}
,

Λ1 =
{
u∈W3,1[a,b], u(a)= 0, u′(a)≤ 0, u′′(a)≥ 0

}
,

Λ2 =Ω2,

Λ3 =Ω3.

(4.1)

First, we present the following result. The proof follows by direct computation.

Lemma 4.1. u is a solution of (1.1) if and only if v(t) ≡ u(b + a− t) is a solution of the
equation

v(n)(t) +
n−1∑

i=0

(−1)iaiv(i)(t)= σ(b+ a− t) for a.e. t ∈ I ,

v(i)(a)= (−1)iλi, i= 0, . . . ,n− 1.

(4.2)

So, by using Lemma 4.1, we attain the following results.

Lemma 4.2. The following properties are satisfied.
(1) L1

3 is inverse positive on Λ0 and Λ3 if and only if

M ∈
(

−∞,
(
m0

b− a
)3
]

, (4.3)

with m0 given in Lemma 3.7.
(2) L1

3 is inverse positive on Λ1 if and only if

M ∈
(

−∞,
(
m1

b− a
)3
]

, (4.4)

with m1 given in Lemma 3.7.
(3) L1

3 is inverse positive on Λ2 if and only if

M ∈
(

−∞,
(
m2

b− a
)3
]

, (4.5)

with m2 given in Lemma 3.7.
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Lemma 4.3. The following properties hold.
(1) L2

3 is inverse positive on Λ0 and Λ1 if and only if

M ∈
[

− π2

(b− a)3
,∞
)

. (4.6)

(2) L2
3 is inverse positive on Λ2 and Λ3 for all M ∈R.

Lemma 4.4. The operator L3
3 is inverse positive on Λi, i= 0,1,2,3 for all M ∈R.
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HO CHARACTERISTIC EQUATIONS SURPASS
CONTRADICTIONS OF MODERN MATHEMATICS

L. A. V. CARVALHO

In these notes, we further explain the use of higher-order characteristic equations to de-
tect exponentially oscillatory solutions of difference equations. The method is illustrated
for continuous-time linear difference equations with two integral delays, although it can
be straightly extended to many other types of evolution equations. An advantage is that
it avoids the use of some disputed concepts of modern mathematics.

Copyright © 2006 L. A. V. Carvalho. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Modern mathematics adopts the classical scheme for detecting the existence of exponen-
tial or periodic solutions of real linear evolution equations, for instance, of the scalar
difference equation

x(t)= Ax(t− 1) +Bx(t− 2), t ≥ 0, (1.1)

where A,B ∈R. The scheme relies on the analysis of the nonzero roots of its characteristic
equation

λ2−Aλ−B = 0. (1.2)

These roots λ are usually called eigenvalues or characteristic values of (1.1). It was shown in
[6] that this kind of analysis is far from being complete. Indeed, as the natural initial value
problem of (1.1) is of functional nature, an initial map ψ : [−2,0)→ R such that x(t) =
ψ(t) for t ∈ [−2,0) must be given in advance. Then, the unique solution through it exists
and is denoted by x(·,ψ). Its shift chunk xt is defined by xt(s)= x(t+ s), s∈ [−2,0). These
chunks must belong to a certain function space � such that ψ ∈�⇒ xt(·,ψ)∈�, t ≥ 0,
the phase space. Several spaces, Lp([−2,0),R), p ≥ 1, BV([−2,0),R), [10], and so forth,
are phase spaces for (1.1). The space �([−2,0),R) of the continuous maps from [−2,0)
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258 Higher-order characteristic equations

into R equipped with the uniform metric topology is not a phase space. But, its dense
subspace

�=
{
ψ ∈�

(
[−2,0),R

)
: lim
s→0−

ψ(θ)= Aψ(−1) +Bψ(−2)
}

(1.3)

is a phase space [9]. The functional concept of uniqueness allows distinct solutions to
intercept several times and even coincide inside intervals of length less than 2. This feature
indicates that solutions of difference equations are more susceptive to oscillate. Let us
restrict attention to the case of (1.1).

2. Periodic and oscillatory solutions

We say a real function x(t) is oscillatory when there are a constant c ∈ R and sequences
{tn}∞1 , {t′n}∞1 , tn, t′n→∞ such that (x(t′n)− c)(x(tn− c)) < 0. Moreover, a map x :R→R is
T-periodic, T �= 0, when x(t+T)= x(t) for all t. T is a period of x. Usually, the period T of
a map is its least positive period. In particular, a nonconstant periodic map is oscillatory
since it repeats the value x(to) at tn = to +nT . Solutions of (1.1) of the form x(t)= λtv(t),
with λ∈R and v(t) being an oscillatory map will be referred to as an exponential oscilla-
tory solution. If, besides, v is T-periodic, x(t)= λtv(t) will be called as (T ,λ)-exponential
oscillatory function. In particular a (T ,1)-exponential oscillatory map is just a T-periodic
map. Periodic solutions of (1.1) are defined as such for all t.

3. Classical characteristic equation

Classically, the exponential solutions of (1.1) are determined by its eigenvalues. When
these eigenvalues are complex conjugate, the corresponding real solutions are exponen-
tial oscillatory. As (1.2) has two roots, λ1, λ2, this scheme (see [8–13] furnishes that
(1) if A2 + 4B > 0, these roots are real and distinct, and there are two families of expo-
nential solutions, c1λ

t
1 and c2λ

t
2 with c1, c2 arbitrary in R; (2) if, say, 0 < λ1 < 1, then

c1λt → 0 as t →∞; if λ1 > 1, then c1λt →∞ as t →∞; if −1 < λ < 0, then c1λt oscillates
and |c1λ

t
1| → 0, exponentially as t→∞. This latter property can be seen as follows. Since

λ1 = |λ1|(cosπ + isinπ) with 0 < |λ1| < 1, we have λt1 = |λ1|t(cosπt + isinπt). The linear
combinations of the real solutions |λ1|t cosπt and |λ1|t sinπt make up a family of oscil-
latory solutions such that their modules decay to zero as t→∞; (3) a similar argument
shows that if λ1 < −1, then the corresponding solutions are oscillatory and their mod-
ules grow without bound as t→∞. (4) if A2 + 4B = 0, then λ1 = λ2 = A/2 is real and we
obtain the families of solutions c1(A/2)t and c2t(A/2)t, where c1, c2 are arbitrary real con-
stants. When c2 = 0, we have the usual exponential solutions which behave as described
above, depending on the sign of A and its magnitude. When c2 �= 0, the corresponding
solution is oscillatory if A < 0 but it is not classified as an exponentially oscillatory so-
lution, according to our definition. If −1 < A/2 < 0 (or A/2 < −1), the solution decays
to zero in modulus (or grows without bound) as t→∞; (5) if A > 0, the corresponding
solutions is not oscillatory, but decays to zero or grows to infinity as t →∞ according
to whether A/2 < 1 or A/2 > 1, respectively; (6) if A2 + 4B < 0, then λ1 is complex and
λ2 = λ̄1. Two complex exponential solutions are x(t) = cλt1, x̄(t) = c̄λ̄t1, c arbitrary in �.
In this case, λ1 = |λ1|(cosθ + isinθ), where θ = arg(λ1)=√−A2− 4B �= 0. Let c = a+ ib.
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Then, x(t) = |λ1|t[acosθt− b sinθt + i(asinθt + bcosθt)] so that the two real solutions
stemming from x(t) are its real and imaginary parts, namely, |λ1|t(acosθt − b sinθt)
and |λ1|t(asinθt + bcosθt). These two solutions are (2π/θ,|λ1|)-exponentially oscilla-
tory. The above are the types of exponential and exponentially oscillatory solutions of
(1.1) that can be detected via (1.2).

Equation (1.2) is obtained when we look for exponential maps x(t)= λtc as solutions
of (1.1). This procedure uses the fact that a constant c is the closed formula of a periodic
map of any period. It has no minimum period. One moment of reflection shows that if
one has at hand the closed formula for a generic map v(t) of a given period T , then the
formula x(t) = λtc can be used with c replaced by v(t), in order to obtain a refinement
of (1.2). This is the basic idea in this work. Firstly, observe that (1.2) may be obtained
if, instead of a constant map c, we use a nonconstant 1-periodic map. In fact, if we try a
solution of the form x(t)= λta(t), where a is a nontrivial 1-periodic map, we see that we
must have λta(t)= Aa(t− 1)λ(t−1) +Ba(t− 2)λ(t−2); then, since a(t)= a(t− 1)= a(t− 2)
is not zero everywhere, we promptly get (1.2) by cancelling out λta(t). Moreover, if a
is continuous, then x(t) is continuous (xt ∈� for all t ∈ R). This result means that we
can take any 1-periodic map a(t) in place of the arbitrary constant c in order to obtain a
solution x(t) = λta(t), as long as λ satisfies (1.2). The oscillatory property of x depends
on our choice of a, and the (nonzero) eigenvalue λ.

4. Extended characteristic equations

We now refine the notion of characteristic equation by means of the following result (see
[1–7, 13]) introduced in [6]. It is based on the following lemma.

Lemma 4.1. If v is an m-periodic scalar map, m is a positive integer, then v satisfies

v(t)=
[m/2]∑

j=0

[

aj(t)cos
2 jπ
m

t+ bj(t)sin
2 jπ
m

t
]

, (4.1)

where aj = aj(t) and bj = bj(t) are 1-periodic maps, with bm/2(t)≡ 0 if m is even.

In other words, any map v of period m must be a linear combination of m-periodic
sines and cosines with 1-periodic coefficients. So, the expressions for v(t− k), k ∈ Z, can
be obtained using trigonometric identities:

v(t− 1)= ao− aq cosπt+
q−1∑

j=1

[
(
cjaj − s jbj

)
cos

2 jπ
m

t+
(
s jaj + cjbj

)
sin

2 jπ
m

t
]

, (4.2)

where cj = cos(2 jπ/m), s j = sin(2 jπ/m), j = 1, . . . ,q− 1, and, if m= 2q+ 1, then

v(t− 1)= ao +
q∑

j=1

[
(
cjaj − s jbj

)
cos

2 jπ
m

t+
(
s jaj + cjbj

)
sin

2 jπ
m

t
]

, (4.3)
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and so on (see also Section 6). The equation obtained from (1.1) upon substitution of
λtv(t) for x(t), where v is an n-periodic map, is its nth-order characteristic equation. Thus,
when v is 1-periodic, it is a first-order characteristic equation, when v is 2-periodic, it is a
second-order characteristic equation, and so forth. A root λ of an extended characteristic
equation is called an extended eigenvalue. The first-order characteristic equation is just
the classical one (1.2), but yielding now new oscillatory solutions of (1.1), of the form
λtv(t). The second-order characteristic equation of (1.1) is obtained when we try a so-
lution v(t)= λt[a+ bcosπt] with a= a(t) and b = b(t) being 1-periodic maps, not both
being identically zero. We get

λ[a+ bcosπt]=A[a− bcosπt] +Bλ−1[a+ bcosπt], (4.4)

so that we must have

a
(
λ2−Aλ−B)= 0, (4.5)

b
(
λ2 +Aλ−B)cosπt = 0, (4.6)

and these two equations are the second-order characteristic equation of (1.1). They are
simultaneous with respect to the unknown λ. So, they cannot be solved for this unknown
when a �= 0 and b �= 0 unless A = 0. In this case, the solution is λ = √B and the general

(λ,2)-exponential solution is x(t)=√Bt(a+ bcosπt), where a, b are arbitrary 1-periodic
functions. Equation (4.6) is the first-order characteristic equation described in the pre-
vious section when a �= 0 and b = 0. Equation (5.1) forces the λ’s to yield the (λ,2)-
exponential solution for b �= 0. Thus, if we have A �= 0, then we must have a = 0 and
(λ,2)-exponential solution of (1.1) given by the eigenvalues λ1, λ2 of λ2 +Aλ−B = 0. If
they are real and distinct, there are two families λtkbcosπt, k = 1, 2 of (λk,2)-exponential
periodic solutions. The choice of the 1-periodic map b �= 0 is arbitrary, subject only to
our choice of phase space. We leave, for reasons of space, the analysis of these solutions’
behavior in various subcases: λ ∈ R, λ ∈�,b(t) continuous, and so forth. It is apparent
that depending on A and B, the use of complex eigenvalues may spoil the (integer) value
of T of the found (λ,T)-exponential oscillatory solution.

5. Discrete versus continuous

The discrete version of (1.1),

x(n)=Ax(n− 1) +Bx(n− 2), (5.1)

is obtained, of course, when we pick t ∈ Z. Equation (5.1) has fewer oscillatory solu-
tions than (1.1), since to each solution of the discrete equation there correspond infinitely
many oscillatory solutions of the continuous-time equation that agree with the discrete
solution at t ∈ Z. The oscillation takes place within intervals of length one, integers ex-
cluded. The classical characteristic equation of (5.1) is also (1.2). But while an exponen-
tial solution of (5.1) is x(n)= λnc, where c is an arbitrary constant, the similar solution of
(1.1) is of the form x(t) = λta(t), where a(t) is an arbitrary 1-periodic map in �. Thus,
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the solution of (1.1) may be oscillatory without its discrete version being so. In partic-
ular, consider the following corollary of an important theorem due to Györi and Ladas
(see [8]).

Theorem 5.1. The discrete k-delay scalar equation x(n)=∑k
i=1 aix(n− i) has no oscillatory

solution if all roots of its characteristic equation are distinct and positive.

6. Characteristic equation of mth-order

The procedure depicted so far may be used in equations with integral delays. It can be
applied even to the case of nonlinear equations. In this case, of course, one obtains a
nonlinear “extended characteristic equation.” The counterparts of the extended charac-
teristic equations in linear multidimensional cases with several delays were studied in [5],
the extended characteristic roots being restricted to be real. The vector case of Lemma 4.1
in the more general situation of rational periods was studied in [12]. Applications of
Lemma 4.1 to nonlinear problems may be seen, for instance, in [1, 7, 9]. For the sake
of completeness, we furnish here the mth-order characteristic equation for the k-delay
version of (1.1) (see [6]),

x(t)=
k∑

i=1

Aix(t− i). (6.1)

If we try a solution x(t) = λtv(t), λ �= 0, to (6.1) with v being m-periodic, we get the
following set of independent equations, the mth-order characteristic equation:

(

λk −
k∑

i=1

λk−iAi

)

a0 = 0,

(

1 +
k∑

i=1

(−1)iAi

)

aq = 0,

(

1−
k∑

i=2

λk−iciAi

)

a1 +

( k∑

i=1

λk−isiAi

)

b1 = 0,

−
( k∑

i=1

λk−isiAi

)

a1 +

(

1−
k∑

i=1

λk−iciAi

)

b1 = 0,

(

1−
k∑

i=2

λk−ic2iAi

)

a2 +

( k∑

i=1

λk−is2iAi

)

b2 = 0,

−
( k∑

i=1

λk−is2iAi

)

a2 +

(

1−
k∑

i=1

λk−ic2iAi

)

b2 = 0,

...
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(

1−
k∑

i=2

λk−ic([(m−1)/2])iAi

)

a[(m−1)/2] +

( k∑

i=1

λk−is([(m−1)/2])iAi

)

b[(m−1)/2] = 0,

−
( k∑

i=1

λk−1s([(m−1)/2])iAi

)

a[(m−1)/2] +

(

1−
k∑

i=0

λk−ic([(m−1)/2])iAi

)

b[(m−1)/2] = 0.

(6.2)

7. Related inconsistencies in multidimensional mathematics

The fact that the classical characteristic equation is not capable of detecting all oscillatory
solutions of linear autonomous difference arose in 1754, when d’Alembert missused for
the first time the idea of transformation of coordinates (in R2) suggested by the recently
discovered (1750) Cramer’s rule that yields the solution of the (simultaneous) system

x = aξ + bη,

y = cξ +dη,

(

or

[
x

y

]

=
[
a b

c d

][
ξ

η

])

, (7.1)

when ad− bc �= 0. D’Alembert assumed it to be a valid transformation of the variables x,
y to the (new) variables ξ, η in order to change the wave equation utt = uxx to a simpler
equation vξη = 0. He chose a = b = c = −d = 1. Despite strong opposition from promi-
nent mathematicians, d’Alembert’s idea was adopted by some, including Euler, and was
later telescoped to the foundations of modern mathematics. The development of the con-
cept (definition) of a transformation of coordinates in the following decades promoted
the idea that n linear independent variables correspond to n independent coordinate axes
(dimensions). This idea is mathematically false. In fact, taking n = 2 and (7.1) as a pat-
tern, we see that the original lines corresponding the axes Ox, Oy and Oξ, Oη are on a
plane. Yet, the equation of Ox in the system of coordinates xy is simply y = 0, while Oy’s
equation is simply x = 0. Note that x = 0 and y = 0 in (7.1) means that aξ + bη = 0 and
cξ + dη = 0, which denotes just one point in that plane, the common origin (0,0). Thus,
the two lines are transformed into one point via d’Alembert’s transformation of coordi-
nates, a contradiction. To fix this, we must use correct algebraic equations for these axes,
say, aξ1 + bη1 = 0 and cξ2 + dη2 = 0, where ξ1, ξ2, η1, η2 are independent variables. Thus,
the equations hold in R4. We may concede them to be hosted in R3 instead if we assume
(without loss of generality) that, say, ξ1 = ξ2 = ξ, in which case we can write aξ + bη1 = 0
and cξ + dη2 = 0 for the axes x = 0 and y = 0 in terms of the system of coordinates ξη.
Using modern mathematics’ procedure of attaching independent axes to independent
variables, we see that the transformation takes the form, according to linear algebra,

x = aξ + bη1,

y = cξ +dη2,

⎛

⎜
⎝or

[
x
y

]

=
[
a b 0
c 0 d

]
⎡

⎢
⎣

ξ
η1

η2

⎤

⎥
⎦

⎞

⎟
⎠ , (7.2)

representing thus a transformation fromR3 ontoR2. Consequently, the lines (axes) x = 0,
y = 0, ξ = 0, and η = 0 are not in the same plane, as assumed in modern mathematics.
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In other words, Cramer’s system alone cannot produce the transformation of coordinates
alleged by modern mathematicians. Moreover if besides ad− bc �= 0 we also assume that
abcd �= 0, then (7.2) cannot be reduced to (7.1) unless we take b = 0 or d = 0, an absurd
equivalent to 1 = 0, the ultimate irrationality in mathematics. Since this irrationality is
in fact assumed in all theories that followed d’Alembert’s idea, we may expect several
contradictions in modern mathematics concepts.

We present below two major contradictions of this kind.

7.1. Rotations. In order to show that modern mathematics’ concept of rotation is both
arithmetically and geometrically inconsistent, it is enough to show by an example how
this happens. A rotation Tθ is of the form (7.1) with a= d = cosθ and −c = b = sinθ, for
some −2π ≤ θ ≤ 2π. Let us take, for example, θ = π/4, so that a= b =−c = d = cosθ =
sinθ =√2/2, obtaining

ξ =
√

2
2

(x+ y), η =
√

2
2

(−x+ y). (7.3)

Then, we have ξη = 1/2(y2 − x2). According to modern mathematics, 1/2(y2 − x2) = k
represents a rectangular hyperbola in the (x, y) system whenever k is a constant, while
ξη = k is the equation of the same curve in terms of the coordinates (ξ,η). A rectangular
hyperbola has its transversal axis coinciding with one of the coordinate axis, depending
on the sign of k. Already, the hyperbola ξη = k is not rectangular. This shows that this
rotation will not rotate the curves along with the coordinate axes. It will simply change
the coordinates of the plane’s points. In (7.3), the axes Ox and Oy “rotate” 45◦ counter-
clockwise. Their new coordinates correspond to those of the axes Oξ and Oη, and Oξ is
on the position of the diagonal y = x of (x, y) while Oη is on the position of y =−x. This
explains the switch from the equation 1/2(y2− x2)= k to ξη = k of the nonrotated curve.
Thus, the concept of rotation has to explain the following data (1) the fact of Oξ’s equa-
tion is η = 0 in its own system; (2) the fact that Oξ is the image under (7.3) of Ox, whose
equation is y = 0. These data require that we should obtain η = 0 from (7.3) by making
y = 0 there. Computations give y = 0⇒ ξ = √2/2x = −η. Of course this cannot be the
axis η = 0 unless ab = 0 or ξ = η = x = y = 0, the common origin of the two systems.
Since we assume that ab �= 0, it follows that (x,0) must be “rotated” onto the origin, an
absurd that makesR= {0}. What is wrong in modern mathematics concept of a rotation?
It is the assumption that (7.1) furnishes the axes Oξ and Oη on the same plane of Ox and
Oy. Actually, they are not!

An alternative proof follows. We know from modern mathematics’ advanced calcu-
lus that z = x2 + y2 satisfies dz = zxdx + zydy = 2xdx + 2ydy. Thus, if y is made con-
stant, then dy = 0 and this formula yields dz/dx = zx = 2x. Similarly, if x is made con-
stant, we must have dz/dy = zy = 2y. Therefore, the ratio zx/zy = x/y = dy/dx must hold
at any point (x, y) such that y �= 0. This ratio is equivalent to the differential equation
ydy = xdx, which has solutions y2 − x2 = k, for some k constant. Now, a rotation (7.1)
has a= d, c =−b, a2 + b2 = 1, and implies that z = x2 + y2 = ξ2 + η2 (circle preservation
property), so that, we also must have zξ/zη = dη/dξ = ξ/η. This furnishes square hyper-
bolas η2− ξ2 = h. Consequently, as (ξ,η)= Tθ(x, y), it follows that any rotation “rotates”
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square hyperbolas, against its own interpretation. In fact, modern mathematics states that
y2 − x2 = k is transformed into (−bξ + aη)2 − (aξ + bη)2 = (b2 − a2)ξ2 − (b2 − a2)η2 =
k + 4abξη, which is not a square hyperbola, unless ab = 0 and the inconsistency follows
from the assumption that abcd = a2b2 �= 0.

7.2. Complex logarithm. To see the second conflict, let us recall [11, pages 119–120] that
John Bernoulli, a former professor of Euler, had raised to Leibniz the argument that the
inclusion of negative numbers in arithmetics would force the following formal property
of the logarithm extension to these numbers: (−a)2 = a2 ⇒ ln(a)2 = ln(−a)2 ⇒ 2ln(a)=
2ln(−a)⇒ ln(a) = ln(−a). Nevertheless, this property is obviously contradictory since
it implies that eln(a) = eln(−a) and a = −a. This question remained unanswered till after
Bernoulli’s death. Euler found an extension of the concept of logarithm to complex num-
bers claimed to be capable of avoiding Bernoulli’s remark. He achieved this in 1751. Let us
denote by ln the usual real logarithm and Ln Euler’s extension to the complex numbers.
Using his own formula

eiφ = ei(φ+2kπ) = cos(φ+ 2kπ) + isin(φ+ 2kπ), k ∈ Z, (7.4)

and the corresponding polar expression z = reiφ for a generic complex number, where
r = |z| and φ is the argument of z, he defined Ln [14, pages 99–100] as the multivalued
function

Ln(z)= ln(r) + i(φ+ 2kπ), k ∈ Z (7.5)

for all z �= 0, with the argument φ of z measured in radians. Ln(z) is thus a set of com-
plex values. Its argument is the set {φ + 2kπ, k ∈ Z}. We readily see that Ln(x) = lnx
for the real x > 0 as it has argument {2kπ, k ∈ Z}. Consequently, Ln(a) �= Ln(−a) for
the real a > 0 because the argument of −a is {(2k + 1)π, k ∈ Z}, promptly avoiding
Bernoulli’s contradiction. Consequently, Ln cannot satisfy Ln(a)2 = 2Ln(a) for a < 0,
which means that Ln(zc) = cLn(z) is not always valid for z, c complex, z �= 0. On the
other hand, z = eLn(z), z �= 0, is clearly valid. Already, zc = ecLn(z) for all z, c complex,
z �= 0, is assumed valid by definition [14, page 100]. Consequently, it is immediate that
Ln(zc) = Ln(ecLn(z)) = cLn(z) holds for all z, c complex, z �= 0. Hence, Ln(zc) = cLn(z)
holds for such z, c and Ln’s theory is contradictory and should be promptly abandoned.

Observe now that the higher-order characteristic equation discussed here precludes
complex number theory as a necessary tool to detect exponential oscillatory and periodic
solutions of (1.1). On the contrary, we have seen in Section 4 that depending on the values
ofA and B, the use of complex eigenvalues may corrupt the integral period of the searched
map v.
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ON CHEBYSHEV FUNCTIONAL BOUNDS

P. CERONE

Numerous developments in bounding the Chebyshev functional are examined in the cur-
rent paper. The results have wide applicability in numerical quadrature, integral trans-
forms, probability problems, and the bounding of special functions. A review is presented
focusing in particular on the contributions of the author in this area. Some examples are
given demonstrating the diverse applications.

Copyright © 2006 P. Cerone. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.

1. Introduction and review of some recent results

The weighted Chebyshev functional is defined by

T( f ,g; p) :=�( f g; p)−�( f ; p)�(g; p), (1.1)

where the weighted integral mean is given by

P ·�( f ; p)=
∫ b

a
p(x) f (x)dx, (1.2)

with 0 < P = ∫ ba p(x)dx <∞ and f ,g : [a,b]→ R are two measurable functions and the
integrals in (1.1) are assumed to exist. We note that

T( f ,g;1)≡ T( f ,g), �( f ;1)≡�( f ), (1.3)

where T( f ,g) is simply known as the Chebyshev functional.
The Chebyshev functional (1.1) has a long history and an extensive repertoire of ap-

plications in many fields including numerical quadrature, transform theory, probability
and statistical problems, and special functions. Its basic appeal stems from a desire to ap-
proximate, for example, information in the form of a particular measure of the product
of functions in terms of the products of the individual function measures. This inherently
involves an error which may be bounded. Such problems appear in obtaining perturbed
quadrature rules via Peano kernel arguments and the reader is referred to [16] for many
applications.

Hindawi Publishing Corporation
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The current section gives the background and a review of, in particular, the author’s
involvement in the quest to bound the Chebyshev functional and its variants.

Section 2 demonstrates the application of the Chebyshev functional by reference to
some examples.

It is worthwhile noting that a number of identities relating to the Chebyshev functional
already exist. The reader is referred to [18, Chapters IX and X]. Korkine’s identity is well
known, see [18], and is given by

T( f ,g)= 1
2(b− a)2

∫ b

a

∫ b

a

(
f (x)− f (y)

)(
g(x)− g(y)

)
dxdy. (1.4)

It is identity (1.4) that is often used to prove an inequality due to Grüss for functions
bounded above and below, [18].

For φf ≤ f (x)≤Φ f , x ∈ [a,b], then the Grüss inequality is given by

∣
∣T( f ,g)

∣
∣≤ 1

4

(
Φ f −φf

)(
Φg −φg

)
. (1.5)

If we let S( f ) be an operator defined by

S( f )(x) := f (x)−�( f ), (1.6)

which shifts a function by its integral mean, then the following identity:

T( f ,g)= T(S( f ),g
)= T( f ,S(g)

)= T(S( f ),S(g)
)

(1.7)

holds, and so, since �(S( f ))=�(S(g))= 0,

T( f ,g)=�
(
S( f )g

)=�
(
f S(g)

)=�
(
S( f )S(g)

)
. (1.8)

For the last term in (1.7) or (1.8) only one of the functions needs to be shifted by its
integral mean. If the other function was to be shifted by any other quantity, the identities
would still hold. A weighted version of (1.8) related to

T( f ,g)=�
(
( f (x)− γ)S(g)

)
(1.9)

for γ arbitrary was given by Sonin [21] (see [18, page 246]).
The interested reader is also referred to Dragomir [15] and Fink [17] for extensive

treatments of the Grüss and related inequalities.
The work of Andrica and Badea [4] obtains results from a positive linear functional

perspective, while Pečarić et al. [19] attack the problem in terms of isotonic linear func-
tionals, while Anastassiou [3] investigates multivariate Grüss type inequalities.

Identity (1.4) may also be used to prove the Chebyshev inequality which states that
for f (·) and g(·) synchronous, namely, ( f (x)− f (y))(g(x)− g(y)) ≥ 0, a.e. x, y ∈ [a,b],
then

T( f ,g)≥ 0. (1.10)
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There are many identities involving the Chebyshev functional (1.1). Recently, Cerone [6]
obtained, for f ,g : [a,b]→Rwhere f is of bounded variation and g continuous on [a,b],
the identity

T( f ,g)= 1
(b− a)2

∫ b

a
ψ(t)df (t), (1.11)

where

ψ(t)= (t− a)G(t,b)− (b− t)G(a, t) with G(c,d)=
∫ d

c
g(x)dx. (1.12)

Theorem 1.1 [6]. Let f ,g : [a,b]→R, where f is of bounded variation and g is continuous
on [a,b]. Then

(b− a)2
∣
∣T( f ,g)

∣
∣≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
t∈[a,b]

∣
∣ψ(t)

∣
∣

b∨

a

( f ),

L
∫ b

a

∣
∣ψ(t)

∣
∣dt, for f L-Lipschitzian,

∫ b

a

∣
∣ψ(t)

∣
∣df (t), for f monotonic nondecreasing,

(1.13)

where
∨b
a( f ) is the total variation of f on [a,b].

In [14], bounds were obtained for the approximations of moments and moment gen-
erating functions, although the work in [6] places less stringent assumptions on the be-
haviour of the probability density function.

In a subsequent paper to [6], Cerone and Dragomir [13] obtained a refinement of the
classical Chebyshev inequality (1.10).

Theorem 1.2. Let f : [a,b]→ R be a monotonic nondecreasing function on [a,b] and g :
[a,b]→R a continuous function on [a,b] so that ϕ(t)≥ 0 for each t ∈ (a,b). Then one has
the inequality

T( f ,g)≥ 1
(b− a)2

∣
∣
∣
∣

∫ b

a

[
(t− a)

∣
∣G(t,b)

∣
∣− (b− t)∣∣G(a, t)

∣
∣
]
df (t)

∣
∣
∣
∣≥ 0, (1.14)

where

ϕ(t)= G(t,b)
b− t −

G(a, t)
t− a (1.15)

and G(c,d) is as defined in (1.12).

Bounds were also found for |T( f ,g)| in terms of the Lebesgue norms ‖φ‖p, p ≥ 1,
effectively utilising (1.13) and noting that ψ(t)= (t− a)(b− t)ϕ(t).
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It should be mentioned here that the author in [7] demonstrated relationships between
the Chebyshev functionalT(f ,g;a,b), the generalised trapezoidal functionalGT(f ;a,x,b),
and the Ostrowski functional Θ( f ;a,x,b) defined by

T( f ,g;a,b) :=M( f g;a,b)−M( f ;a,b)M(g;a,b),

GT( f ;a,x,b) :=
(
x− a
b− a

)

f (a) +
(
b− x
b− a

)

f (b)−M( f ;a,b),
(1.16)

and Θ( f ;a,x,b) := f (x)−M( f ;a,b) where the integral mean is defined by

M( f ;a,b) := 1
b− a

∫ b

a
f (x)dx. (1.17)

This was made possible through the fact that bothGT( f ;a,x,b) andΘ( f ;a,x,b) satisfy
identities like (1.11) involving appropriate Peano kernels, namely,

GT( f ;a,x,b)=
∫ b

a
q(x, t)df (t), q(x, t)= t− x

b− a ; x, t ∈ [a,b],

Θ( f ;a,x,b)=
∫ b

a
p(x, t)df (t), (b− a)p(x, t)=

⎧
⎨

⎩

t− a, t ∈ [a,x],

t− b, t ∈ (x,b],

(1.18)

respectively.
The reader is referred to [16] and the references therein for applications of these func-

tionals to numerical quadrature. For other Grüss type inequalities, see the books [18, 20].
Recently, Cerone and Dragomir [11] pointed out generalisations of the above results

for integrals defined on two different intervals [a,b] and [c,d].
Define the functional (generalised Chebyshev functional)

T( f ,g;a,b,c,d) :=M( f g;a,b) +M( f g;c,d)

−M( f ;a,b)M(g;c,d)−M( f ;c,d)M(g;a,b),
(1.19)

then Cerone and Dragomir [11] proved a number of results relating to (1.19) utilising
the following generalisation of the classical identity due to Korkine, namely,

T( f ,g;a,b,c,d)= 1
(b− a)(d− c)

∫ b

a

∫ d

c

(
f (x)− f (y)

)(
g(x)− g(y)

)
dydx. (1.20)

In [13], the authors procured bounds for the generalised Chebyshev functional (1.19)
in terms of the integral means and bounds of f and g over the two intervals.

Results were procured in [5] for f and g of Hölder type involving the generalised
Chebyshev functional (1.19) with (1.17).
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Another generalised Chebyshev functional involving the mean of the product of two
functions, and the product of the means of each of the functions, where one is over a
different interval was examined in [11]. Namely,

�( f ,g;a,b,c,d) :=M( f g;a,b)−M( f ;a,b)M(g;c,d), (1.21)

which may be demonstrated to satisfy the Korkine-like identity:

�( f ,g;a,b,c,d)= 1
(b− a)(d− c)

∫ b

a

∫ d

c
f (x)

(
g(x)− g(y)

)
dydx. (1.22)

It may be noticed from (1.21) and (1.1) that 2�( f ,g;a,b;a,b)= T( f ,g;a,b).
It may further be noticed that (1.13) is related to (1.19) by the identity

T( f ,g;a,b,c,d)=�( f ,g;a,b,c,d) + �(g, f ;c,d,a,b). (1.23)

Cerone [9] analysed the Chebyshev functional defined on a measurable space setting
(Ω,�,μ) consisting of a set Ω, a σ-algebra � of parts of Ω, and a countably additive and
positive measure μ on � with values in R∪{∞}.

For a μ-measurable function w : Ω→ R, with w(x)≥ 0 for μ, a.e. x ∈Ω, consider the
Lebesgue space Lw(Ω,�,μ) := { f : Ω→ R, f is μ-measurable and

∫
Ωw(x)| f (x)|dμ(x) <

∞}. Assume
∫
Ωw(x)dμ(x) > 0.

If f ,g : Ω→ R are μ-measurable functions and f ,g, f g ∈ Lw(Ω,�,μ), then we may
consider the Chebyshev functional

Tw( f ,g)= Tw( f ,g;Ω)

:= 1
∫
Ωw(x)dμ(x)

∫

Ω
w(x) f (x)g(x)dμ(x)

− 1
∫
Ωw(x)dμ(x)

∫

Ω
w(x) f (x)dμ(x)

1
∫
Ωw(x)dμ(x)

∫

Ω
w(x)g(x)dμ(x).

(1.24)

Grüss-like bounds were obtained from (1.24) in [9, 12] together with generalisations.

2. Applications of the Chebyshev functional bounds

There are a number of results that provide bounds for integrals of products of functions.
There have been some developments in the recent past with which the current author
has been involved. These have been put to fruitful use in a variety of areas of applied
mathematics including quadrature rules, in the approximation of integral transforms, as
well as in applied probability problems (see [6, 13, 16]).

It is the intention that in the current section the techniques will be utilised to obtain
useful bounds for special functions.

The functional T( f ,g; p) from (1.1)-(1.2) is known to satisfy a number of identities,
in particular, those attributed to Sonin, namely,

P ·T( f ,g; p)=
∫ b

a
p(t)

[
f (t)− γ][g(t)−�(g; p)

]
dt, for γ ∈R a constant. (2.1)
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Also, an identity attributed to Korkine, namely,

P2 ·T( f ,g; p)= 1
2

∫ b

a

∫ b

a
p(x)p(y)

(
f (x)− f (y)

)(
g(x)− g(y)

)
dxdy (2.2)

may also easily be shown to hold.
Here we will utilize the following results bounding the Chebyshev functional to de-

termine bounds on the Zeta function. (See [8] for more general applications to special
functions.)

From (2.1) we note that

P ·∣∣T( f ,g; p)
∣
∣=

∣
∣
∣
∣

∫ b

a
p(x)

(
f (x)− γ)(g(x)−�(g; p)

)
dx
∣
∣
∣
∣ (2.3)

to give

P ·∣∣T( f ,g; p)
∣
∣≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
γ∈R

∥
∥ f (·)− γ∥∥

∫ b

a
p(x)

∣
∣g(x)−�(g; p)

∣
∣dx,

(∫ b

a
p(x)

(
f (x)−�( f ; p)

)2
dx

)1/2

×
(∫ b

a
p(x)

(
g(x)−�(g; p)

)2
dx

)1/2

,

(2.4)

where

∫ b

a
p(x)

(
h(x)−�(h; p)

)2
dx =

∫ b

a
p(x)h2(x)dx−P ·�2(h; p) (2.5)

and it may be easily shown by direct calculation that

P · inf
γ∈R

[∫ b

a
p(x)

(
f (x)− γ)2

dx
]

=
∫ b

a
p(x)

(
f (x)−�( f ; p)

)2
dx. (2.6)

2.1. Bounding the beta function. The incomplete beta function is defined by

B(x, y;z)=
∫ z

0
tx−1(1− t)y−1dt, 0 < z ≤ 1. (2.7)

We will restrict our attention to x > 1 and y > 1.
The following pleasing result is valid.

Theorem 2.1. For x > 1 and y > 1,

0≤ 1
xy
−B(x, y)≤ x− 1

x
√

2x− 1
· y− 1
y
√

2y− 1
≤ 0.090169437 . . . , (2.8)

where the upper bound is obtained at x = y = (3 +
√

5)/2= 2.618033988 . . . .
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Proof. We have from (2.1)–(2.5)

(b− a)
∣
∣T( f ,g)

∣
∣≤

(∫ b

a
f 2(t)dt−�2( f )

)1/2(∫ b

a
g2(t)dt−�2(g)

)1/2

, (2.9)

that is, taking f (t)= tx−1, g(t)= (1− t)y−1, then

0≤ 1
xy
−B(x, y)≤

(∫ 1

0
t2x−2dt− 1

x2

)1/2(∫ 1

0
(1− t)2y−2dt− 1

y2

)1/2

. (2.10)

Now,

∫ 1

0
t2x−2dt = 1

2x− 1
,

∫ 1

0
(1− t)2y−2dt = 1

2y− 1
(2.11)

and so from (2.10) we have the first inequality in (2.8).
Now, consider

C(x)= x− 1
x
√

2x− 1
. (2.12)

The maximum occurs when x = x∗ = (3 +
√

5)/2 to give C(x∗) = 0.3002831 . . . . Hence,
because of the symmetry we have the upper bound as stated in (2.8). �

Remark 2.2. In a recent paper, Alzer [1] shows that

0≤ 1
xy
−B(x, y)≤ bA =max

x≥1

(
1
x2
− Γ2(x)
Γ(2x)

)

= 0.08731 . . . , (2.13)

where 0 and bA are shown to be the best constants. This uniform bound is only smaller for
a small area around ((3 +

√
5)/2,(3 +

√
5)/2) while the first upper bound in (2.8) provides

a better bound over a much larger region of the x− y plane (see Figure 2.1).

2.2. Zeta bounds via Chebyshev. The Zeta function

ζ(x) :=
∞∑

n=1

1
nx
= 1

Γ(x)

∫∞

0

tx−1

et − 1
dt, x > 1, (2.14)

was originally introduced in 1737 by the Swiss mathematician Leonhard Euler (1707–
1783) for real x who proved the identity

ζ(x) :=
∏

p

(

1− 1
px

)−1

, x > 1, (2.15)

where p runs through all primes.
Using (2.3)–(2.6), the following theorem was proved in [10].
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Figure 2.1. Three-dimensional plot of C(x)C(y) and bA, where C(x) is defined in (2.12) and bA =
0.08731 . . . from (2.13).

Theorem 2.3. For α > 1 and m= �α, the zeta function satisfies the inequality

∣
∣Γ(α+ 1)ζ(α+ 1)− 2α−mΓ(m+ 1)ζ(m+ 1)ζ(α−m+ 1)

∣
∣

≤ 2(α−m+1/2) ·E · [Γ(2α− 2m+ 1)−Γ2(α−m+ 1)
]1/2

,
(2.16)

where

E2 = 22mΓ(2m+ 1)
[
λ(2m)− λ(2m+ 1)

]− 1
2
Γ2(m+ 1)ζ2(m+ 1), (2.17)

with λ(x)=∑∞n=0 (1/(2n+ 1)x).

The following corollary provides upper bounds for the zeta function at odd integers.

Corollary 2.4. The inequality

Γ(2m+ 1)
[
2 · (22m− 1

)
ζ(2m)− (22m+1− 1

)
ζ(2m+ 1)

]−Γ2(m+ 1)ζ2(m+ 1) > 0 (2.18)

holds for m= 1,2, . . . .

Remark 2.5. In (2.18), if m is odd, then 2m and m+ 1 are even so that an expression in
the form

α(m)ζ(2m)−β(m)ζ(2m+ 1)− γ(m)ζ2(m+ 1) > 0 (2.19)

results, where

α(m)= 2
(
22m− 1

)
Γ(2m+ 1), β(m)= (22m+1− 1

)
Γ(2m+ 1),

γ(m)= Γ2(m+ 1).
(2.20)
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Thus for m odd we have

ζ(2m+ 1) <
α(m)ζ(2m)− γ(m)ζ2(m+ 1)

β(m)
, (2.21)

that is, for m= 2k− 1, we have from (2.21)

ζ(4k− 1) <
α(2k− 1)ζ(4k− 2)− γ(2k− 1)ζ2(2k)

β(2k− 1)
(2.22)

giving for k = 1,2,3, ζ(3) < (π2/7)(1 − π2/72) = 1.21667148, ζ(7) < (2π6/1905)(1 −
π2/2160) = 1.00887130, ζ(11) < (62π10/5803245)(1− π2/492150) = 1.00050356, which
may be compared with the numerical values ζ(3) = 1.202056903, ζ(7) = 1.008349277,
and ζ(11)= 1.000494189.

If m is even, then for m= 2k we have from (2.21)

ζ(4k+ 1) <
α(2k)ζ(4k)− γ(2k)ζ2(2k+ 1)

β(2k)
, k = 1,2, . . . . (2.23)

We notice that in (2.23), or equivalently (2.19) with m= 2k, there are two zeta functions
with odd arguments. There are a number of possibilities for resolving this, but firstly it
should be noticed that ζ(x) is monotonically decreasing for x > 1 so that ζ(x1) > ζ(x2) for
1 < x1 < x2.

For b(x)= 1/(2x − 1), Cerone [10] obtained the following two results.

Theorem 2.6. The Zeta function satisfies the bounds

L(x)≤ ζ(x+ 1)≤U(x) (2.24)

with

L(x)= (1− b(x)
)
ζ(x) +

(

ln2− 1
2

)

b(x), U(x)= (1− b(x)
)
ζ(x) +

b(x)
2

(2.25)

and the coefficients of b(x) are the best possible (see also Alzer [2]).

Corollary 2.7. The Zeta function satisfies the bounds

L2(x)≤ ζ(x+ 1)≤U2(x), (2.26)

where

L2(x)= ζ(x+ 2)− b(x+ 1)/2
1− b(x+ 1)

, U2(x)= ζ(x+ 2)− (ln2− 1/2)b(x+ 1)
1− b(x+ 1)

. (2.27)
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Firstly, we may use a lower bound as given by (2.24) or (2.27). But from [10, Table 1],
it seems that L2(x) > L(x) for positive integer x and so we have from (2.23)

ζL(4k+ 1) <
α(2k)ζ(2k)− γ(2k)L2

2(2k)
β(2k)

, (2.28)

where we have used the fact that L2(x) < ζ(x+ 1) and L2(x) is given by (2.27).
Secondly, since the even argument ζ(2k+ 2) < ζ(2k+ 1), then from (2.23) we have

ζE(4k+ 1) <
α(2k)ζ(4k)− γ(2k)ζ2(2k+ 2)

β(2k)
. (2.29)

Finally, we have that ζ(m+ 1) > ζ(2m+ 1) so that (2.19) gives, with m= 2k on solving the
resulting quadratic equation,

ζQ(4k+ 1) <
−β(2k) +

√
β2(2k) + 4γ(2k)α(2k)ζ(4k)

2γ(2k)
. (2.30)

For k = 1 we have from (2.28)–(2.30) that ζL(5) < π4/93− (1/186)(7π4/540− 1/12)2 =
1.039931461, ζE(5)< (π4/93)(1−π4/16200)=1.041111605, ζQ(5)<−93+

√
8649 + 2π4=

1.04157688; and for k= 2, ζL(9)< (17/160965)π8−(1/35770)((31/28350)π6−1/60)2 =
1.002082506, ζE(9)<(17/160965)π8(1− (π4/337650))= 1.0020834954, ζQ(9)<−17885 +
(1/3)

√
2878859025 + 34π8 = 1.00208436.

These are to be compared with the numerical values ζ(5) = 1.036927755 and ζ(9) =
1.002008393.

Numerical experimentation using Maple seems to indicate that the upper bounds for
ζL(4k+ 1), ζE(4k+ 1), and ζQ(4k+ 1) are increasing.

We note that the above upper bounds for the Zeta function at odd integer values are
tighter than those resulting from (2.25) and (2.27).
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ASYMPTOTIC STABILITY IN DISCRETE MODELS
FOR ITEROPAROUS SPECIES

DAVID M. CHAN

Species either reproduce multiple times in their lifetime or they reproduce only once
in their lifetime. The former are called iteroparous species and the latter are called semel-
parous species. In this paper we examine a general model for a single species with multiple
age or stage classes. This model assumes there are limited resources for the species and so
it assumes competition for these resources between the age classes. Sufficient conditions
for extinction are given, as well as conditions for having a positive stable equilibrium.

Copyright © 2006 David M. Chan. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Plant and animal species reproduce at least once in their lifetime. Some species can repro-
duce multiple times as they age such as humans, carabid beatles, and oak trees. Species
that reproduce multiple times are called iteroparous species.

Other species, on the other hand, only reproduce once. These include salmon, wheat,
and the cecropia moth. These species that only reproduce once are called semelparouos
species. In general, iteroparous species are more common than semelparous species.

Many species can be divided into one or more age classes or stage classes. In a struc-
tured population with multiple age classes, iteroparous species may have more than one
particular age class that can reproduce. We consider a model for a single species with
multiple age classes where the next age class, the nth age class or stage class, is denoted by
xn and is determined by the previous m age classes. Thus,

xn = f
(
xn−1,xn−2, . . . ,xn−m

)
. (1.1)

So under this structure, xn is the youngest age class and xn−m is the oldest. Note that at
each iteration, each age class “ages” to the next older age class.

We consider f to be of the Kolmorgorov-type form where we take the current pop-
ulation of each reproductive age class and multiply it by a growth function. The growth
function that will be considered in this paper is a decreasing exponential that will depend

Hindawi Publishing Corporation
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on the population of each age class. Similiar models using a decreasing exponential have
been studied; see May [8], Hofbauer et al. [7], Chan and Franke [2, 3], and Franke and
Yakubu [4, 5].

For an iteroparous species, (1.1) becomes

xn =
(
a1xn−1 + a2xn−2 + ···+ amxn−m

)
e−(b1x

k
n−1+b2x

k
n−2+···+bkxkn−m), (1.2)

where the ai’s represent proportionality coefficients that depend on the fucudity of age
class i, bi’s are a measure of the consumption of the available resources by age class i, and
k is some positive number. We assume each bi > 0 in order to model the competition of
resources.

A special case of (1.2) can be used for semelparous species,

xn = axn− j e−(b1x
k
n−1+b2x

k
n−2+···+bkxkn−m), (1.3)

where the xn− j age class is the only age class that contributes to the xn age class. Here we
assume that 1≤ j ≤m, so all but one of the ai = 0 from (1.2).

In the following paper, we apply results from Sedaghat [9], Hautus and Bolis [6], and
Sedaghat et al. [1]. Sufficient conditions for extinction of both types of species will be
given. We also give conditions for having a positive stable equilibrium.

2. Background

First we define some basic notation. LetR+ = [0,∞), the set of nonnegative real numbers,
andRn

+ is the cartesian product of nR+. For this model, f :Rm
+ →R+. We will use the max

norm for a distance function on Rn, so ‖(x1,x2, . . . ,xn)‖ =maxi{xi}.
In proving the extinction results, we use the following theorem.

Theorem 2.1 (Sedaghat [9]). Let x̄ ∈R be a fixed point of xn = f (xn−1, . . . ,xn−m) and for
fixed α∈ (0,1), define the closed set:

Aα =
{
X ∈Rm :

∣
∣ f (X)− x̄∣∣≤ α‖X − X̄‖}. (2.1)

Then X̄ is exponentially stable relative to the largest invariant subset of Aα.

We use this result to show that the origin is attracting. This then implies that the
species is going to extinct.

For the persistence results, we use the following two theorems. Each gives sufficient
conditions for a fixed point to be attractive on some interval. They both utilize the diago-
nal operator g(u)= f (u, . . . ,u) to analyze the equation. The first theorem examines when
the g function is nondecreasing near the fixed point.

Theorem 2.2 (Hautus and Bolis [6]). In (1.1), assume that f ∈ C(Im,I) is nondecreasing
in each coordinate, where I is a nontrivial interval in R. If the function g(u) = f (u, . . . ,u)
has a fixed point x∗ ∈ I and

g(u) > u if u < x∗, g(u) < u if u > x∗, u∈ I , (2.2)

then x∗ attracts all solutions of (1.1) with initial values in I .
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The other result involves the following theorem that examines when g is decreasing at
the fixed point.

Theorem 2.3 (Sedaghat et al. [1]). Assume there exist −∞≤ r0 < s0 ≤∞ such that
(H1) f (u1,u2, . . . ,um) is nonincreasing in each u1,u2, . . . ,um ∈ I0 = (r0,s0], if s0 <∞, and

I0 = (r0,s0) otherwise;
(H2) g(u)= f (u,u, . . . ,u) is continuous and decreasing for u∈ I0;
(H3) there is r ∈ [r0,s0) such that r < g(r) ≤ s0. If r0 = −∞ or limt→r+

0
g(t) =∞, then

r ∈ (r0,s0) is assumed.
(H4) There is s∈ [r,x∗) such that g2(u) > u for all u∈ (s,x∗).

If the preceding hypotheses hold, then x∗ is stable and attracts all solutions of (1.1) with
initial values in (s,g(s)).

3. Extinction results

For the iteroparous species model, we have the following.

Theorem 3.1. For system (1.2), if 0 < a1 + a2 + ···+ am < 1, then the species will go extinct.

Proof. Let 0 < a1 + a2 + ···+ am < 1. Let (xn−1,xn−2, . . . ,xn−m)∈Rn−m
+ . Note that

xn =
(
a1xn−1 + a2xn−2 + ···+ amxn−m

) · e−(b1xn−1+b2xn−2+···+bmxn−m)

≤ a1xn−1 + a2xn−2 + ···+ amxn−m

<
(
a1 + a2 + ···+ am

)‖x‖.
(3.1)

So using the max norm obtains | f (xn−1, . . . ,xn−m)| < a‖(xn−1, . . . ,xn−m)‖. Thus by
Theorem 2.1, the origin is globally asymptotically stable, since Aα in this case is Rm

+ . �

Consider the situation when 0 < a < 1 in system (1.3). In this situation, the fecudity
of the single reproductive age class of the species is not strong enough to perpetuate the
species.

Theorem 3.2. For system (1.3), if 0 < a < 1, then the species will go extinct.

Proof. For the single species model with a single reproductive age class, we have

xn = xn− j f
(
xn−1,xn−2, . . . ,xn−m

)

= axn− j e−(b1xn−1+b2xn−2+···+bkxn−m).
(3.2)

Assuming 0 < a < 1, we have

∣
∣ f
(
xn−1, . . . ,xn−m

)∣
∣= ∣∣a · e−(b1xn−1+···+bkxn−m)

∣
∣≤ a. (3.3)

This implies that | f (xn−1, . . . ,xn−m)| < a‖(xn−1, . . . ,xn−m)‖. By [9, Theorem 2.1], we have
the origin in globally asymptotically stable. �

Again for this result the set Aα = Rm
+ . So both are global results since only positive

populations are considered.
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4. Persistence results

The following results give sufficient conditions for an interior stable fixed point to be
attracting on some interval. Theorem 2.2 is only applicable to iteroparous species. For
convenience, let amin =mini{ai}, amax =maxi{ai}, and bmax =maxi{bi}.
Theorem 4.1. In system (1.2), if ai > 0 for 1≤ i≤m and

ln
(∑m

i=1 ai
)

∑m
i=1 bi

<
amin

bmaxamaxkm
, (4.1)

then x∗ = k
√

ln(
∑m

i=1 ai)/
∑m

i=1 bi attracts all the solutions with initial conditions in the inter-

val I = (0, k
√
amin/bmaxamaxkm).

Proof. Consider the following equation:

xn =
(
a1xn−1 + a2xn−2 + ···+ amxn−m

)
e−(b1x

k
n−1+b2x

k
n−2+···+bkxkn−m). (4.2)

Note that

δ f

δui
= e−(b1x

k
n−1+b2x

k
n−2+···+bkxkn−m)

[

ai− bik
( m∑

j=1

ajuj

)

uk−1
i

]

. (4.3)

In order for δ f /δui > 0 for each ui, we need

ai− bik
( m∑

j=1

ajuj

)

uk−1
i > 0. (4.4)

This implies that ai must be strictly positive for all i. Note that

ai− bik
( m∑

j=1

ajuj

)

uk−1
i > amin− bmaxk

( m∑

j=1

amaxuj

)

uk−1
i . (4.5)

Letting ui = u gives that u < k
√
amin/bmaxamaxkm. So let I = [0, k

√
amin/bmaxamaxkm] if

(u1,u2, . . . ,um)∈ Im, then f is increasing in each coordinate.

The fixed point for f is u∗ = k
√

ln(
∑m

i=1 ai)/
∑m

i=1 bi. So in order for u∗ ∈ I ,

ln
(∑m

i=1 ai
)

∑m
i=1 bi

<
amin

bmaxamaxkm
, (4.6)

which is true by assumption.
Now consider g(u)−u. Since g(u)= (

∑m
i=1 ai)ue

−(
∑m
i=1 bi)u

k
, this gives

g(u)−u=
( m∑

i=1

ai

)

ue−(
∑m
i=1 bi)u

k −u

= u
[( m∑

i=1

ai

)

e−(
∑m
i=1 bi)u

k − 1

]

.

(4.7)
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Note if u < u∗ = k
√

ln(
∑m

i=1 ai)/
∑m

i=1 bi, then

g(u)−u > u
[( m∑

i=1

ai

)

e−(
∑m
i=1 bi)( k

√
ln(
∑m
i=1 ai)/

∑m
i=1 bi)

k − 1

]

= 0. (4.8)

Thus g(u) > u. Similarly if u > u∗ = k
√

ln(
∑m

i=1 ai)/
∑m

i=1 bi, then

g(u)−u < u
[( m∑

i=1

ai

)

e−(
∑m
i=1 bi)( k

√
ln(
∑m
i=1 ai)/

∑m
i=1 bi)

k − 1

]

= 0. (4.9)

Thus g(u) < u. Therefore u∗ attracts all solutions with initial values in I . �

Note that Theorem 2.2 is not applicable to system (1.3). This is due to the fact that
in all but one coordinate, the equation is decreasing. This is also why it is assumed that
ai > 0 for all i in the above theorem. For this next result, we utilize Theorem 2.3.

Theorem 4.2. For system (1.2), let a = a1 + a2 + ··· + am, b = b1 + b2 + ··· + bm, μ =
maxi{ k

√
ai/bika}, and ebμ

k
< a < e2/k, then x∗ = k

√
ln(a)/b is stable and attracts all solutions

with initial conditions in the interval (μ,g(μ)).

Proof. For (H1), we show that f (u1,u2, . . . ,um) is nonincreasing for u1,u2, . . . ,um ∈ (μ,∞).
Note that

δ f

δui
= e−

∑m
i=1 biu

k
i

[

ai− bik
( m∑

j=1

ajuj

)

uk−1
i

]

. (4.10)

So δ f /δui ≤ 0 if

ai− bik
( m∑

j=1

ajuj

)

uk−1
i ≤ 0. (4.11)

For (H1), we need a single interval for each coordinate, so letting ui = u, the left-hand
side of (4.11) becomes

ai− bikuk−1
i

( m∑

j=1

aju

)

= ai− bikuka. (4.12)

Now observe

ai− bikuka≤ 0,

ai ≤ bikuka,

k

√
ai
bika

≤ u.
(4.13)

And since μ=maxi{ k
√
ai/bika}, if ui > μ, δ f /δui ≤ 0. So f is nondecreasing for u1,u2, . . . ,

um ∈ (μ,∞).
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For (H2), we want to show that g(u)= f (u,u, . . . ,u)= aue−buk is continuous and de-
creasing for u∈ (μ,∞). Since g is a product of continuous functions, it is also continuous.

Differentiating g gives

g′(u)= ae−buk[1− kbuk]. (4.14)

So g is decreasing if

1− kbuk < 0,

1 < kbuk,

k

√
1
kb

< u.

(4.15)

Now note that k
√

1/kb ≤ μ. So g is nonincreasing on (μ,∞) as well.
For (H3), we show for u ∈ (μ, k

√
ln(a)/b) that g(u) > u. This implies that there is a

u∗ ∈ (μ,∞) with g(u∗) > u∗. Note that if μ < k
√

ln(a)/b, then a > ebμ
k
, which is true by

assumption. Let μ < u < k
√

ln(a)/b. Note that

g(u)−u= aue−buk −u= u[ae−buk − 1
]
. (4.16)

Since u < k
√

ln(a)/b,

ae−bu
k − 1 > ae−b( k

√
ln(a)/b)k − 1= 0. (4.17)

Thus g(u)−u > 0, which implies that g(u) > u.
For (H4), we want to show for u∈ (μ, k

√
ln(a)/b) that g2(u) > u. Let μ < u < k

√
ln(a)/b.

This gives

g2(u)= a(aue(−buk))e−b(aue−(buk )k )

= a2ue−bu
k−(bakuke(−kbuk ))

= a2ue−bu
k[1+ake(−kbuk )].

(4.18)

So this gives

g2(u)−u= a2ue−bu
k[1+ake(−kbuk )]−u

= u[a2e−bu
k[1+ake(−kbuk )]− 1

]
.

(4.19)

Let u= k
√
x/b. Substituting this into (4.19) and simplifying gives

g2
(

k

√
x

b

)

− k

√
x

b
= k

√
x

b

[
a2e(−b( k√x/b)k[1+ake(−kb( k

√
x/b)k )])− 1

]

= k

√
x

b

[
a2e(−x[1+ake−kx])− 1

]
.

(4.20)
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Consider h(x)= a2e(−x[1+ake−kx])− 1. Differentiating h gives

h′(x)= a2e(−x[1+ake−kx]) · [akxke−kx − 1− ake−kx]. (4.21)

Let p(x)= akxke−kx − 1− ake−kx. Differentiating p obtains

p′(x)= akke−kx − akk2xe−kx + akke−kx

= akke−kx[2− kx].
(4.22)

Thus for x < 2/k, we have p′(x) > 0. This implies that p is increasing for x < 2/k. Since

p
(

2
k

)

= ak
(

2
k

)

ke−k(2/k)− 1− ake−k(2/k)

= 2ake−2− 1− ake−2

= ake−2− 1,

(4.23)

by assumption a < e2/k, so p(x) < 0 for x < 2/k. This then implies that h′(x) < 0 and so h
is decreasing for x < 2/k.

Since a < e2/k and u < k
√

ln(a)/b, we have that x < ln(a) < 2/k. Observe that h(ln(a))=
0. This gives that g2(u)−u > 0 for u < k

√
ln(a)/b, which implies g2(u) > u. This completes

the proof. �

A similar result for semelparous species is below. The proof of the following theorem
is similar to the previous proof and is omitted. The main difference here is that the result
depends on the reproductive age class, xn− j .

Theorem 4.3. For system (1.3) where xn− j is the only reproductive age class, if eb/(bjk) <
a < e2/k, then x∗ = k

√
ln(a)/b is stable and attracts all solutions with initial conditions in the

interval ( k
√

1/bjk,g( k
√

1/bjk)).

5. Summary

This paper deals with a general model for a single species with multiple age or stage
classes. This model assumes there is a limited amount of resources available to the species.
This limitation restricts the reproduction of the species.

There are two basic types of species: iteroparous and semelparous. Iteroparous species
can reproduce multiple times in their lifetime, whereas semelparous species only repro-
duce once.

In general, this model can produce very complicated and chaotic dynamics in some
parameter ranges. We have given sufficient conditions under which the species will go ex-
tinct. These are global results for both iteroparous and semelparous species. We also have
given sufficient conditions for stable equilibriums. These results are valid on particular
intervals, though it is believed that more global results do exist.
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MATHEMATICAL ANALYSIS OF FLY FISHING ROD
STATIC AND DYNAMIC RESPONSE

DER-CHEN CHANG, GANG WANG, AND NORMAN M. WERELEY

We develop two mathematical models to study the fly fishing rod static and dynamic
response. Due to the flexible characteristics of fly fishing rod, the geometric nonlinear
models must be used to account for the large static and dynamic fly rod deformations.
A static nonlinear beam model is used to calculate the fly rod displacement under a tip
force and the solution can be represented as elliptic integrals. A nonlinear finite element
model is applied to analyze static and dynamic responses of fly rods.

Copyright © 2006 Der-Chen Chang et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The literature of fishing is the richest among all sports and its history dates back to 2000
B.C. The literature of fishing is restrict among any other sports. Even for a subset of fly
fishing, much literature is available. However, a significant fraction of fly fishing literature
is devoted to its history, rod makers, casting techniques, and so forth. There is a lack of
literature about the technology of fly rods in terms of technical rod analysis, rod design,
and rod performance evaluation.

In this paper, we will use two different approaches to discuss mathematics for a fly rod
based on its geometry and material properties. The first mathematical model is based on
the nonlinear equation of a fly rod under a static tip force. The fly rod responses can be
solved using an elliptic integrals. The second mathematical model is based on the finite
element method, in which a nonlinear finite element model was developed to account for
both static and dynamic responses of a fly rod. Typically, a fly rod is considered a long
slender tapered beam. The variation of fly rod properties along its length will add com-
plexities to our problem. In this paper, we focus on the presentation of two mathematical
models and demonstrate the solution approach. We will continue the follow-up study to
provide simplified and accurate solution/formulas for fly rod design and analysis. The
paper is based on lectures given by the first author during the International Conference
on Differential and Difference Equations which was held at the Florida Institute of Tech-
nology, August 1 to 6, 2005. The first author takes great pleasure in expressing his thank

Hindawi Publishing Corporation
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L

L− δ δ

θ

ω

P

Figure 2.1. Uniform cantilever beam under tip point force.

to Professor Ravi Agarwal for organizing this activity and for the warm hospitality that
he received while his visit to Melbourne, Florida.

2. Nonlinear model of fly fishing rod

It was Leonard Euler who first published a result concerning the large deflection of flex-
ible rods in 1744, and it was continued in the Appendix of his book Des Curvis Elastics.
He stated that for a rod in bending, the slope of the deflection curve cannot be neglected
in the expression of the curve unless the deflections are small. Later, this theory was fur-
ther developed by Jacob Bernoulli, Johann Bernoulli, and L. Euler. The derivation of a
mathematical model of a fly rod is based on their fundamental work, which states that
the bending moment M is proportional to the change in the curvature produced by the
action of the load (see Bisshopp and Drucker [4], also Fertis [6]). Of course, one has to
assume that bending does not alter the length of the rod. Now let us consider a long, thin
cantilevel leaf spring. Denote L the length of the rod, δ the horizontal component of the
displacement of the loaded end of the rod, ω the corresponding vertical displacement, P
the concentrated vertical load at the free end, B the flexural stiffness (see Figure 2.1). It is
known that

B = EI , (2.1)

where E is the modulus of elasticity and I is the cross-sectional moment of inertia. If x is
the horizontal coordinate measured from the fixed end of the rod, then the product of B
and the curvature of the rod equal the bending moment M:

B
dθ

ds
= P(L− x− δ)=M⇐⇒ d2θ

ds2
=−P

B

dx

ds
=− P

EI
cosθ, (2.2)

where s is the arc length and θ is the slope angle. It follows that

1
2

(
dθ

ds

)2

=− P

EI
sinθ +C. (2.3)

The constant C can be determined by observing that the curvature at the loaded end is
zero. If θ0 is the corresponding slope, then

dθ

ds
=
√

2P
EI

√
sinθ0− sinθ. (2.4)
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Since the rod is inextensible, the value of θ0 can be calculated implicitly as follows:
√

2PL2

EI
=
√

2P
EI

∫ L

0
ds=

∫ θ0

0

dψ
√

sinθ0− sinθ
. (2.5)

Let

1 + sinθ = 2k2 sin2ψ = (1 + sinθ0
)

sin2ψ. (2.6)

Denote

sinψ1 = 1√
2k

, γ2 = 2PL2

EI
. (2.7)

Then

γ =
∫ π/2

ψ1

dψ
√

1− 2k2 sin2ψ

=
∫ π/2

0

dψ
√

1− 2k2 sin2ψ
−
∫ ψ1

0

dψ
√

1− 2k2 sin2ψ

= K(
√

2k)− sn−1 (sinψ1,
√

2k
)

= K(
√

2k)−F(ψ1,
√

2k
)
,

(2.8)

where

K(k)= π

2

[

1 +
(

1
2

)2

k2 +
(

1 · 3
2 · 4

)2

k4 +
(

1 · 3 · 5
2 · 4 · 6

)2

k6 + ···
]

(2.9)

is the complete elliptic integral of the first kind and F(ψ,k) is the Legendre’s form of the
integral sn−1. Next, one needs to represent the deflection ω in terms of γ and an elliptic
integral. Since

dy

dθ

dθ

ds
= dy

ds
= sinθ, (2.10)

then we have

dy

dθ

2P
EI

√
sinθ0− sinθ = sinθ. (2.11)

It follows that

ω =
∫ y

0
dy = EI

2P

∫ θ0

0

sinθdθ
√

sinθ0− sinθ
. (2.12)

Plugging (2.6) into the above equation, one has

ω

L
= 1√

2γ

∫ θ0

0

sinθdθ
√

sinθ0− sinθ
= 1
γ

∫ π/2

ψ1

(2k2 sin2ψ − 1)dψ
√

1− k2 sin2ψ
. (2.13)
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It is known that (see Lawden [7])

∫ π/2

0

sin2ψdψ
√

1− k2 sin2ψ
= 1
k2

(K −E), (2.14)

where

E = π

2

[

1−
(

1
2

)2

k2− 1
3

(
1 · 3
2 · 4

)2

k4− 1
5

(
1 · 3 · 5
2 · 4 · 6

)2

k6 + ···
]

(2.15)

is the complete integral of the second kind. Hence,

∫ π/2

0

2k2 sin2ψdψ
√

1− k2 sin2ψ
= π

2

[

k2 +
3
2

(
1
2

)2

k4 +
5
3

(
1 · 3
2 · 4

)2

k6 +
7
4

(
1 · 3 · 5
2 · 4 · 6

)2

k8 + ···
]

.

(2.16)

Now we need to look at the term

∫ ψ1

0

sin2ψdψ
√

1− k2 sin2ψ
. (2.17)

After changing variables, this elliptic integral can be expressed as a Jacobi’s epsilon func-
tion E(u,k) defined by

E
(
ψ1,k

)=
∫ ψ1

0
dn2udu=

∫ snψ1

0

√
1− k2 sn2 v

1− sn2 v
cnv dnvdv. (2.18)

Therefore,

ω

L
= 1
γ

[
2K − 2E−E(ψ1,k

)
+K(

√
2k)−F(ψ1,

√
2k
)]

= 1
γ

[
1− 2J −E(ψ1,k

)]
,

(2.19)

where

J = K −E = k2
∫ K

0
sn2udu. (2.20)

Now the horizontal displacement of the loaded end can be calculated with x = 0 and
θ = 0. It follows that

P(L− δ)= EI
(
dθ

ds

)∣
∣
∣
∣
θ=0
=
√

2PEI sinθ0 (2.21)

or

L− δ
L
=
√

2
γ

√
sinθ0. (2.22)
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Then from (2.6), one has sinθ0 = 2k2 − 1. We have presented a detailed mathematical
solution of beam responses under a tip force. However, in the above solution, a uniform
beam with constant flexural stiffness was assumed. Normally it is not valid for a fly fishing
rod because it has a tapered shape and the flexural stiffness varies along the rod length.
In order to utilize the above elliptic integral solution, we could smear the tapered rod
properties and represent it using an equivalent uniform rod. Also, we can account for the
flexural stiffness variation and conduct similar elliptic integrals. We will continue such
study in a future paper. The goal is to provide a simple engineering solution to fly rod
design and analysis. We need to extract and create such simple solution based on the
results from elliptic integrals.

3. Finite element method

The key idea is to express the nonlinear strain of deformed configuration in terms of
unknown displacements, which are defined with respect to the initial coordinates (see
Wang and Wereley [11]). The Newton-Raphson method must be used to iteratively solve
for the displacement in the nonlinear finite element model. In the finite strain beam the-
ory, we included the shearing deformation, which leads to the Timosenko beam the-
ory and rotation angle is an independent variable and not equal the slope of transverse
displacement. By doing this, we obtain a simple kinematic relationship between strain
and displacements. As discussed in Reissner [9], the nonlinear beam axial strain, ε, shear
strain, γ, and bending curvature, κ, can be expressed in terms of axial displacement, u(x),
transverse displacement, w(x), and rotational displacement, θ, as follows for a straight
beam (see also Antman [1]):

ε =
(

1 +
du

dx

)

cosθ +
dw

dx
sinθ− 1,

γ = du

dx
cosθ−

(

1 +
du

dx

)

sinθ,

κ= dθ

dx
.

(3.1)

The next step is to apply the finite element techniques to discretize the beam system.
Figure 3.1 shows the two-node geometrically nonlinear finite element based on the finite
strain beam theory.

This has been called a geometrically nonlinear Timosenko beam element. The element
is not aligned to the x axis for general consideration, which has an initial angel φ0. The
nodal degrees of freedom were defined in the fixed frame except that the rotation angles
θ1 and θ2 were calculated with respect to the initial element orientation. All displacements
were linearly interpolated within an element using nodal degrees of freedom

u(x)=N1(x)U1 +N2(x)U2,

w(x)=N1(x)W1 +N2(x)W2,

θ(x)=N1(x)θ1 +N2(x)θ2,

(3.2)
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Z, w(x)

θ2

θ1

φ0

φ0

φ0

ψ

L

L0

(x2, y2)

(x1, y1)

W2

W1

U2

U1

X

Z (X2, Y2)

(X1, Y1) X, u(x)

Figure 3.1. Two-node nonlinear finite element based on finite strain beam theory.

where the interpolation functions, N1(x) and N2(x), were defined as

N1(x)= 1− x

L
, N2(x)= x

L
. (3.3)

Let us first study the geometric relationships as shown in Figure 2.1. Given the node coor-
dinates at node 1 (X1,Y1), and node 2 (X2,Y2), the initial reference angle φ0 is determined
by

cosφ0 = X2−X1

L0
, sinφ0 = Y2−Y1

L0
, (3.4)

where

L0 =
√(
X2−X1

)2
+
(
Y2−Y1

)2
. (3.5)

The angle φ0 +ψ can be expressed by

cos
(
φ0 +ψ

)= x2− x1

L
, sin

(
φ0 +ψ

)= y2− y1

L
, (3.6)

where

x1 = X1 +U1, x2 = X2 +U2, y1 = Y1 +W1,

y2 = Y2 +W2, L=
√(
x2− x1

)2
+
(
y2− y1

)2
.

(3.7)

Solving for ψ, one has

cosψ =
(
X2−X1

)(
x2− x1

)
+
(
Y2−Y1

)(
y2− y1

)

LL0
,

sinψ =
(
X2−X1

)(
x2− x1

)− (Y2−Y1
)(
y2− y1

)

LL0
.

(3.8)
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In order to derive the basic stiffness matrices, we need to study the strain and displace-
ment variational relationship

δ��= Bδ��, (3.9)

where δ is a variation operator and �� is the strain vector. Here �� is the nodal displace-
ment vector:

�=
[
ε γ κ

]T
, � =

[
U1 W1 θ1 U2 W2 θ2

]T
. (3.10)

The matrix B is calculated by taking partial derivatives of strain vector with respect to
nodal displacements which can be written as follows:

⎡

⎢
⎢
⎣

cos
(
ωN ′1

)
sin
(
ωN ′1

)
N1γ cos

(
ωN ′2

)
sin
(
ωN ′2

)
N2γ

−sin
(
ωN ′1

)
cos

(
ωN ′1

) −(1 + ε)N1 −sin
(
ωN ′2

)
cos

(
ωN ′2

) −(1 + ε)N2

0 0 N ′1 0 0 N ′2

⎤

⎥
⎥
⎦ ,

(3.11)

where ω = θ +φ0, ε, and γ are evaluated by

ε = Lcosψ cosθ +Lsinψ sinθ
L0

− 1,

γ = Lsinψ cosθ−Lcosψ sinθ
L0

.

(3.12)

Here ε and γ are defined in (3.1). Finally, the beam element potential energy based on the
finite strain beam theory is

U = 1
2

∫ L0

0

{

EA(x̃)ε2 +GA(x̃)γ2 +EI(x̃)
(
dθ

dx̃

)2
}

dx̃

= 1
2

∫ L0

0
�T�dx̃,

(3.13)

where G is the shear modulus and �= [EA(x̃)ε GA(x̃)γ EI(x̃)θ′]T is the stress resul-
tant vector. For isotropic materials, it can be expressed in terms of Young’s modulus, E,
and material constant Poisson ratio, ν:

G= E

2(1 + ν)
. (3.14)

The internal nodal force vector can be obtained by taking the first variation of potential
energy. Hence,

δU =
∫ L0

0
�TBdx̃× δ� (3.15)
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and the nodal internal force vector is

f =
∫ L0

0
BT�Tdx̃. (3.16)

It follows that f is a 6× 1 vector. The tangent stiffness matrix can be defined by taking
the first variation of internal force vector. Therefore,

δ f =
∫ L0

0

(
BTδ�T + δBT�T

)
dx̃ = (�m + �g

)
δ� =�δ�. (3.17)

The tangent stiffness matrix � is the sum of material stiffness �m and geometric stiffness
�g . It is known that the material stiffness matrix is

�m =
∫ L0

0
BT

⎡

⎢
⎢
⎣

EA(x̃) 0 0

0 GA(x̃) 0

0 0 EI(x̃)

⎤

⎥
⎥
⎦B

Tdx̃. (3.18)

In order to calculate the geometric stiffness matrix �g , the important step is to calculate
the variation of the matrix B with respect to nodal displacement. From (3.11), we know
that the matrix B is a function of ε, γ, and θ. Then B is also a matrix-valued function
of nodal displacement. The variation of B with respect to nodal displacements can be
calculated by

δB = ∂B

∂qj
δqj = Bjδqj , j = 1, . . . ,6. (3.19)

After some calculation, the geometric stiffness matrix �g can be written as follows:

�g =
∫ L0

0

(
EA(x̃)εBu +GA(x̃)γBw

)
dx̃, (3.20)

where Bu and Bw are 6× 6 matrices, and they are assembled using the matrices defined in
(3.19) where

Bu =
[
B1(1,·)T B2(1,·)T B3(1,·)T B4(1,·)T B5(1,·)T B6(1,·)T

]
,

Bw =
[
B1(2,·)T B2(2,·)T B3(2,·)T B4(2,·)T B5(2,·)T B6(2,·)T

]
.

(3.21)

In order to take flexibility of a fly rod during a cast into account, we must include the
inertia terms in our nonlinear finite element model. The kinetic energy of a fly rod is

T = 1
2

∫ L0

0

[

ρA(x̃)
(
∂u

∂t

)2

+ ρA(x̃)
(
∂w

∂t

)2

+ ρI(x̃)
(
∂θ

∂t

)2
]

dx̃, (3.22)
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where ρ is the density of the fly rod material. Using the same interpolation functions for
axial displacement, u(x̃), transverse displacement, w(x̃), and rotation angular displace-
ment, θ(x̃), we finally obtain the element mass matrix M which is a 6× 6 matrix with
components

M11 =M22 =
∫ L0

0
ρA(x̃)N2

1dx̃,

M33 =
∫ L0

0
ρI(x̃)N2

1dx̃,

M44 =M55 =
∫ L0

0
ρA(x̃)N2

2dx̃,

M66 =
∫ L0

0
ρI(x̃)N2

2dx̃,

M14 =M41 =M25 =M52 =
∫ L0

0
ρA(x̃)N1N2dx̃,

M36 =M63 =
∫ L0

0
ρI(x̃)N1N2dx̃,

(3.23)

and the rest components are zero. Next, we need to solve the nonlinear dynamic response
by using nonlinear finite element approach. The Newton-Raphson equilibrium iteration
loop can be used to achieve this goal (see Simo and Vu-Quoc [10] and Newmark [8]).
The algorithm of this approach used in our work is listed as follows.

Step 1. Initialize i, i= 0.

Step 2. Predictor

Ui
t+Δt =Ut, Üi

t+Δt =
−1
βΔt

U̇t +
2β− 1

2β
Üt,

U̇i
t+Δt = U̇t +Δt

[
(1− γ)Üt + γÜi

t+Δt

]
.

(3.24)

Step 3. Increment i, i= i+ 1.

Step 4. Calculate effective stiffness, Ki
eff , and residual force vector, Yi,

Ki
eff =

1
βΔt2

Mi−1 +
γ

βΔt
Di−1 +Ki−1

m +Ki−1
g ,

Yi = Riext−Mi−1Üi−1
t+Δt −Di−1U̇i−1

t+Δt −Fi−1
t+Δt .

(3.25)

Step 5. Solve for displacement increment, ΔUi = (Ki
eff )−1Yi.
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Table 3.1. Tip vertical displacement results for a tapered cantilevered beam under tip point force.

Taper parameter Exact NFEM Error

r ω [m] ω [m] [%]

1.0 18.594 18.586 −0.04

1.2 16.302 16.303 0.00

1.4 13.990 13.995 0.03

1.5 12.881 12.885 0.04

1.6 11.822 11.827 0.05

1.8 9.900 9.905 0.05

2.0 8.264 8.270 0.08

2.2 6.910 6.916 0.09

2.5 5.331 5.337 0.10

3.0 3.580 3.585 0.13

Step 6. Corrector

Ui
t+Δt =Ui−1

t+Δt +ΔUi, U̇i
t+Δt = U̇i−1

t+Δt +
γ

βΔt
ΔUi,

Üi
t+Δt = Üi−1

t+Δt +
1

βΔt2
ΔUi.

(3.26)

Step 7. If ‖Yi‖ > 1.0× 10−5, repeat iteration, go to Step 4. Otherwise, t = t+Δt and go to
Step 1.

The parameter values of β = 0.25 and γ = 0.5 were used in our calculation, and D ma-
trix is damping matrix for the fly rod system. We assume that D is the Rayleigh damping
matrix and it is expressed as D = ηM where η is a constant. In order to obtain the conver-
gent and accurate solution, the time step size should be as small as possible. Here we use
Δt ≤ 1.0× 10−3. The convergence of this process has been discussed by Belytschko-Huges
[3] and Argyris-Mlejnek [2]. Similar to the discussion in Chang-Wang-Wereley [5], one
can give a mathematical proof of the convergence of this algorithm. Our predictions of
tip displacements were compared to those obtained by Fertis [6], as shown in Table 3.1.
Here we just list the table of the numerical results for tip vertical displacement results.
The beam was 25.4 meters (1000 in) long, and bending stiffness, EI , was assumed to be
EI = 516.21 N −m2 (180× 103 kip- in2). The variations of beam moment of inertia and
cross-section areas were defined as

EI(x)= EI0
(

r +
1− r
L

x
)3

,

A(x)= A0

(

r +
1− r
L

x
)

,

(3.27)
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where r is a taper parameter, and cross-section area is assumed asA0 = 32.258 cm2 (5 in2),
where Poisson’s ratio is ν= 0. For a fixed tip loading, P = 4448.22N (1 kip), we calculated
tip deflection under different taper rates, or a taper parameter r varying from 1.0 to 3.0.
We will give a detailed discussion and comparison of elliptic integrals and finite element
solution for the fly rod in a forthcoming paper. A simplified engineering solution will be
developed based on the elliptic integral results.
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CONTINUOUS AND DISCRETE NONLINEAR INEQUALITIES
AND APPLICATIONS TO BOUNDARY VALUE PROBLEMS

WING-SUM CHEUNG

We give some new nonlinear integral and discrete inequalities of the Gronwall-Bellman-
Ou-Iang type in two variables. These on the one hand generalize and on the other hand
furnish a handy tool for the study of qualitative as well as quantitative properties of so-
lutions of differential and difference equations. We illustrate this by applying our new
results to certain boundary value problems.

Copyright © 2006 Wing-Sum Cheung. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In studying the boundedness behavior of the solutions of certain second-order differ-
ential equations, Ou-Iang established the following Gronwall-Bellman-type integral in-
equality which is now known as Ou-Iang’s inequality in the literature.

Theorem 1.1 (Ou-Iang [17]). If u and f are nonnegative functions on [0,∞) satisfying

u2(x)≤ k2 + 2
∫ x

0
f (s)u(s)ds (1.1)

for all x ∈ [0,∞), where k ≥ 0 is a constant, then

u(x)≤ k+
∫ x

0
f (s)ds, ∀x ∈ [0,∞). (1.2)

An important feature of Ou-Iang-type inequalities or more generally Gronwall-
Bellman-Ou-Iang-type inequalities [2, 10] is that they provide explicit bounds on the
unknown function in terms of known functions. This makes such inequalities especially
important in many practical situations. In fact, over the years, such inequalities and their
generalizations to various settings have proven to be very effective in the study of many
qualitative as well as quantitative properties of solutions of differential equations. These
include, among others, the global existence, boundedness, uniqueness, stability, and con-
tinuous dependence on initial data (see, e.g., [3–5, 7, 8, 11, 13–16, 18–22]). For example,

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 299–313



300 Nonlinear inequalities and applications to BVPs

in the process of establishing a connection between stability and the second law of ther-
modynamics, Dafermos established the following result.

Theorem 1.2 (Dafermos [9]). If u∈�∞[0,r] and f ∈�1[0,r] are nonnegative functions
satisfying

u2(x)≤M2u2(0) + 2
∫ x

0

[
N f (s)u(s) +Ku2(s)

]
ds (1.3)

for all x ∈ [0,r], where M, N , K are nonnegative constants, then

u(r)≤
[

Mu(0) +N
∫ r

0
f (s)ds

]

eKr . (1.4)

More recently, Pachpatte established the following further generalizations of Theorem
1.2.

Theorem 1.3 (Pachpatte [18]). If u, f , g are continuous nonnegative functions on [0,∞)
satisfying

u2(x)≤ k2 + 2
∫ x

0

[
f (s)u(s) + g(s)u2(s)

]
ds (1.5)

for all x ∈ [0,∞), where k ≥ 0 is a constant, then

u(x)≤
(

k+
∫ x

0
f (s)ds

)

exp
(∫ x

0
g(s)ds

)

, ∀x ∈ [0,∞). (1.6)

Theorem 1.4 (Pachpatte [18]). Suppose u, f , g are continuous nonnegative functions on
[0,∞) and w a continuous nondecreasing function on [0,∞) with w(r) > 0 for r > 0. If

u2(x)≤ k2 + 2
∫ x

0

(
f (s)u(s) + g(s)u(s)w

(
u(s)

))
ds (1.7)

for all x ∈ [0,∞), where k ≥ 0 is a constant, then

u(x)≤Ω−1
[

Ω
(

k+
∫ x

0
f (s)ds

)

+
∫ x

0
g(s)ds

]

(1.8)

for all x ∈ [0,x1], where Ω(r) := ∫ r1 (ds/w(s)), r > 0, and x1 ∈ [0,∞) is chosen in such a way
that Ω(k+

∫ x
0 f (s)ds) +

∫ x
0 g(s)ds∈Dom(Ω−1) for all x ∈ [0,x1].

On the other hand, Bainov-Simeonov and Lipovan observed the following Gronwall-
Bellman-type inequalities which are handy in the study of the global existence of solutions
to certain integral equations and functional differential equations.

Theorem 1.5 (Bainov-Simeonov [1]). Let I = [0,a], J = [0,b], where a,b ≤∞. Let c ≥ 0
be a constant, let ϕ∈ C([0,∞),[0,∞)) be nondecreasing with ϕ(r) > 0 for r > 0, and b ∈ C
(I × J , [0,∞)). If u∈ C(I × J , [0,∞)) satisfies

u(x, y)≤ c+
∫ x

0

∫ y

0
b(s, t)ϕ

(
u(s, t)

)
dtds (1.9)
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for all (x, y)∈ I × J , then

u(x, y)≤Φ−1
[

Φ(c) +
∫ x

0

∫ y

0
b(s, t)dtds

]

(1.10)

for all (x, y)∈ [0,x1]× [0, y1], where Φ(r) := ∫ r1 (ds/ϕ(s)), r > 0, and (x1, y1)∈ I × J is cho-
sen such that Φ(c) +

∫ x
0

∫ y
0 b(s, t)dtds∈Dom(Φ−1) for all (x, y)∈ [0,x1]× [0, y1].

Theorem 1.6 (Lipovan [12]). Suppose u, f are continuous nonnegative functions on
[x0,X), w a continuous nondecreasing function on [0,∞) with w(r) > 0 for r > 0, and
α : [x0,X)→ [x0,X) a continuous nondecreasing function with α(x)≤ x on [x0,X). If

u(x)≤ k+
∫ α(x)

α(x0)
f (s)w

(
u(s)

)
ds (1.11)

for all x ∈ [x0,X), where k ≥ 0 is a constant, then

u(x)≤Ω−1
[

Ω(k) +
∫ α(x)

α(x0)
f (s)ds

]

(1.12)

for all x ∈ [x0,x1), where Ω is defined as in Theorem 1.4, and x1 ∈ [x0,X) is chosen in such

a way that Ω(k) +
∫ α(x)
α(x0) f (s)ds∈Dom(Ω−1) for all x ∈ [x0,x1).

The purpose of this paper is to establish some new Gronwall-Bellman-Ou-Iang-type
inequalities with explicit bounds on unknown functions along the line of Theorems 1.1–
1.6. These results on the one hand generalize the inequalities given in Theorems 1.1–1.6
and on the other hand furnish a handy tool for the study of qualitative as well as quan-
titative properties of solutions of differential and integral equations. We illustrate this by
applying our new inequalities to study the boundedness, uniqueness, and continuous de-
pendence properties of the solutions of a boundary value problem. Finally, we also give
discrete analogs of these results and their applications to discrete boundary value prob-
lems.

2. Gronwall-Bellman-Ou-Iang-type inequalities

Throughout this paper, x0, y0 ∈R are two fixed numbers. Let R+ := [0,∞), I := [x0,X)⊂
R, J := [y0,Y) ⊂ R, and Δ := I × J ⊂ R2. Note that here we allow X or Y to be +∞. As
usual,Ci(U ,V) will denote the set of all i-times continuously differentiable functions ofU
into V , and C0(U ,V) := C(U ,V). Partial derivatives of a function z(x, y) are denoted by
zx, zy , zxy , and so forth. The identity function will be denoted as id and, so in particular,
idU is the identity function of U onto itself.

For any ϕ, ψ ∈ C(R+,R+) and any constant β > 0, define

Φβ(r) :=
∫ r

1

ds

ϕ
(
s(1/β)

) , Ψβ(r) :=
∫ r

1

ds

ψ
(
s(1/β)

) , r > 0,

Φβ(0) := lim
r→0+

Φβ(r), Ψβ(0) := lim
r→0+

Ψβ(r).
(2.1)

Note that we allow Φβ(0) and Ψβ(0) to be −∞ here.
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Theorem 2.1. Let c ≥ 0 and p > 0 be constants. Let b ∈ C(Δ,R+), γ ∈ C1(I ,I), δ ∈ C1(J , J),
and ϕ∈ C(R+,R+) be functions satisfying the following:

(i) γ, δ are nondecreasing and γ ≤ idI , δ ≤ idJ ;
(ii) ϕ is nondecreasing with ϕ(r) > 0 for r > 0.

If u∈ C(Δ,R+) satisfies

up(x, y)≤ c+
∫ γ(x)

γ(x0)

∫ δ(y)

δ(y0)
b(s, t)ϕ

(
u(s, t)

)
dtds (2.2)

for all (x, y)∈ Δ, then

u(x, y)≤ {Φ−1
p

[
Φp(c) +B(x, y)

]}1/p
(2.3)

for all (x, y)∈ [x0,x1]× [y0, y1], where

B(x, y) :=
∫ γ(x)

γ(x0)

∫ δ(y)

δ(y0)
b(s, t)dtds, (2.4)

and (x1, y1)∈ Δ is such that Φp(c) +B(x, y)∈Dom(Φ−1
p ) for all (x, y)∈ [x0,x1]× [y0, y1].

Remark 2.2. (i) In many cases the nondecreasng function ϕ satisfies
∫∞

1 (ds/ϕ(s1/p))=∞.
Examples of such functions are ϕ≡ 1, ϕ(s) = sp, ϕ(s) = sp/2, and so forth. In such cases,
Φp(∞)=∞ and so we may take x1 = X , y1 = Y . In particular, inequality (2.3) holds for
all (x, y)∈ Δ.

(ii) Theorem 2.1 reduces to Theorem 2.1 of Cheung [6] when p = 1, and reduces fur-
ther to Theorem 1.5 if we set γ(x)= x, δ(y)= y.

(iii) Theorem 2.1 is also a generalization of Theorem 1.6 to the case of two indepen-
dent variables. In fact, if we set p = 1 and δ(y)= δ(y0) for all y ∈ J , Theorem 2.1 reduces
to Theorem 1.6. If we further require γ(x)= x for all x ∈ I , Theorem 2.1 further reduces
to the famous Bihari inequality [4].

Theorem 2.3. Let k ≥ 0 and p > 1 be constants. Let a,b ∈ C(Δ,R+), α,γ ∈ C1(I ,I), β,δ ∈
C1(J , J), and ϕ∈ C(R+,R+) be functions satisfying the following:

(i) α, β, γ, δ are nondecreasing with α,γ ≤ idI and β,δ ≤ idJ ;
(ii) ϕ is nondecreasing with ϕ(r) > 0 for r > 0.

If u∈ C(Δ,R+) satisfies

up(x, y)≤ k+
p

p− 1

∫ α(x)

α(x0)

∫ β(y)

β(y0)
a(s, t)u(s, t)dtds

+
p

p− 1

∫ γ(x)

γ(x0)

∫ δ(y)

δ(y0)
b(s, t)u(s, t)ϕ

(
u(s, t)

)
dtds

(2.5)

for all (x, y)∈ Δ, then

u(x, y)≤ {Φ−1
p−1

[
Φp−1

(
k1−(1/p) +A(x, y)

)
+B(x, y)

]}1/(p−1)
(2.6)
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for all (x, y)∈ [x0,x1]× [y0, y1], where

A(x, y) :=
∫ α(x)

α(x0)

∫ β(y)

β(y0)
a(s, t)dtds, B(x, y) :=

∫ γ(x)

γ(x0)

∫ δ(y)

δ(y0)
b(s, t)dtds, (2.7)

and (x1, y1) ∈ Δ is such that Φp−1(k1−(1/p) + A(x, y)) + B(x, y) ∈ Dom(Φ−1
p−1) for all

(x, y)∈ [x0,x1]× [y0, y1].

Remark 2.4. (i) Similar to (i) of Remark 2.2, ifΦp−1(∞)=∞, (2.6) holds for all (x, y)∈ Δ.
(ii) Similar to (ii) of Remark 2.2, if we set β(y)= β(y0) and δ(y)= δ(y0) for all y ∈ J

in Theorem 2.3, we easily arrive at the following 1-dimensional result.

Corollary 2.5. Let k ≥ 0 and p > 1 be constants. Let a,b ∈ C(I ,R+), α,γ ∈ C1(I ,I), and
ϕ∈ C(R+,R+) be functions satisfying the following:

(i) α, γ are nondecreasing with α,γ ≤ idI ;
(ii) ϕ is nondecreasing with ϕ(r) > 0 for r > 0.

If u∈ C(I ,R+) satisfies

up(x)≤ k+
p

p− 1

∫ α(x)

α(x0)
a(s)u(s)ds+

p

p− 1

∫ γ(x)

γ(x0)
b(s)u(s)ϕ

(
u(s)

)
ds (2.8)

for all x ∈ I , then

u(x)≤
{
Φ−1
p−1

[
Φp−1

(
k1−(1/p) +A(x)

)
+B(x)

]}1/(p−1)
(2.9)

for all x ∈ [x0,x1], where

A(x) :=
∫ α(x)

α(x0)
a(s)ds, B(x) :=

∫ γ(x)

γ(x0)
b(s)ds, (2.10)

and x1 ∈ I is chosen in such a way that Φp−1(k1−(1/p) +A(x)) +B(x)∈Dom(Φ−1
p−1) for all

x ∈ [x0,x1].

Remark 2.6. (i) Same as before, in case Φp−1(∞)=∞, inequality (2.9) holds for all x ∈ I .
(ii) Corollary 2.5 generalizes a result of Pachpatte in [18] (Theorem 1.4). In fact, if

we impose the conditions p = 2, x0 = 0, and α(x) = γ(x) = x for all x ∈ I , Corollary 2.5
reduces to Theorem 1.4.

Theorem 2.3 can easily be applied to generate other useful nonlinear integral inequal-
ities in more general situations. For example, we have the following.

Theorem 2.7. Let k ≥ 0 and p > q > 0 be constants. Let a,b ∈ C(Δ,R+), α,γ ∈ C1(I ,I),
β,δ ∈ C1(J , J), and ϕ∈ C(R+,R+) be functions satisfying the following:

(i) α, β, γ, δ are nondecreasing with α,γ ≤ idI and β,δ ≤ idJ ;
(ii) ϕ is nondecreasing with ϕ(r) > 0 for r > 0.
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If u∈ C(Δ,R+) satisfies

up(x, y)≤ k+
p

p− q
∫ α(x)

α(x0)

∫ β(y)

β(y0)
a(s, t)uq(s, t)dtds

+
p

p− q
∫ γ(x)

γ(x0)

∫ δ(y)

δ(y0)
b(s, t)uq(s, t)ϕ

(
u(s, t)

)
dtds

(2.11)

for all (x, y)∈ Δ, then

u(x, y)≤
{
Φ−1
p−q
[
Φp−q

(
k1−(q/p) +A(x, y)

)
+B(x, y)

]}1/(p−q)

∀(x, y)∈ [x0,x1
]× [y0, y1

]
,

(2.12)

where A(x, y) and B(x, y) are defined as in Theorem 2.3, and (x1, y1) ∈ Δ is chosen in
such a way that Φp−q(k1−(q/p) +A(x, y)) +B(x, y)∈Dom(Φ−1

p−q) for all (x, y)∈ [x0,x1]×
[y0, y1].

An important special case of Theorem 2.7 is the following.

Corollary 2.8. Let k ≥ 0 and p > 1 be constants. Let a,b ∈ C(Δ,R+), α,γ ∈ C1(I ,I), β,δ ∈
C1(J , J), and ϕ∈ C(R+,R+) be functions satisfying the following:

(i) α, β, γ, δ are nondecreasing with α,γ ≤ idI and β,δ ≤ idJ ;
(ii) ϕ is nondecreasing with ϕ(r) > 0 for r > 0.

If u∈ C(Δ,R+) satisfies

up(x, y)≤ k+ p
∫ α(x)

α(x0)

∫ β(y)

β(y0)
a(s, t)up−1(s, t)dtds

+ p
∫ γ(x)

γ(x0)

∫ δ(y)

δ(y0)
b(s, t)up−1(s, t)ϕ

(
u(s, t)

)
dtds

(2.13)

for all (x, y)∈ Δ, then

u(x, y)≤Φ−1
1

[
Φ1
(
k1/p +A(x, y)

)
+B(x, y)

]
, ∀(x, y)∈ [x0,x1

]× [y0, y1
]
, (2.14)

where A(x, y) and B(x, y) are defined as in Theorem 2.3, and (x1, y1)∈ Δ is chosen in such
a way that Φ1(k1/p +A(x, y)) +B(x, y)∈Dom(Φ−1

1 ) for all (x, y)∈ [x0,x1]× [y0, y1].

In particular, we have the following useful consequence.

Corollary 2.9. Let k ≥ 0 and p > 1 be constants. Let a,b ∈ C(Δ,R+), α,γ ∈ C1(I ,I), and
β,δ ∈ C1(J , J) be functions such that α, β, γ, δ are nondecreasing with α,γ ∈ idI and β,δ ≤
idJ . If u∈ C(Δ,R+) satisfies

up(x, y)≤ k+ p
∫ α(x)

α(x0)

∫ β(y)

β(y0)
a(s, t)up−1(s, t)dtds

+ p
∫ γ(x)

γ(x0)

∫ δ(y)

δ(y0)
b(s, t)up(s, t)dtds

(2.15)
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for all (x, y)∈ Δ, then

u(x, y)≤ (k1/p +A(x, y)
)

expB(x, y) (2.16)

for all (x, y)∈ Δ, where A(x, y) and B(x, y) are as defined in Theorem 2.3.

Remark 2.10. Corollary 2.9 generalizes the results of Pachpatte (Theorem 1.3), Dafermos
(Theorem 1.2), and Ou-Iang (Theorem 1.1).

Corollary 2.11. Let k ≥ 0 and p > 1 be constants. Let b ∈ C(Δ,R+), γ ∈ C1(I ,I), and
δ ∈ C1(J , J) be functions such that γ, δ are nondecreasing with γ ≤ idI and δ ≤ idJ . If u ∈
C(Δ,R+) satisfies

up(x, y)≤ k+ p
∫ γ(x)

γ(x0)

∫ δ(y)

δ(y0)
b(s, t)up(s, t)dtds (2.17)

for all (x, y)∈ Δ, then

u(x, y)≤ k1/p expB(x, y) (2.18)

for all (x, y)∈ Δ, where B(x, y) is as defined in Theorem 2.3.

Remark 2.12. Corollary 2.11 generalizes Corollary 2 in Lipovan [12] to the case of two in-
dependent variables. In fact, if we set p = 2 and δ(y)= δ(y0) for all y ∈ J , Corollary 2.11
reduces to the said Corollary 2. In particular, if we further require γ(x)= x for all x ∈ I ,
Corollary 2.11 further reduces to the famous Gronwall-Bellman inequality [3, 8].

Remark 2.13. It is evident that the results above can easily be generalized to obtain ex-
plicit bounds for functions satisfying certain integral inequalities involving more retarded
arguments. It is also clear that these results can be extended to functions of more than 2
variables in the obvious way. Details of these are rather algorithmic and so will not be
given here.

3. Applications to boundary value problems

We will in this section illustrate how the results in Section 2 can be applied to study the
boundedness, uniqueness, and continuous dependence of the solutions of certain ini-
tial boundary value problems for hyperbolic partial differential equations. Consider the
following boundary value problem (BVP):

zp−1zxy + (p− 1)zp−2zxzy = F
(
x, y,z

(
ρ(x),λ(y)

))
(3.1)

satisfying

z
(
x, y0

)= f (x), z
(
x0, y

)= g(y), f
(
x0
)= g(y0

)= 0, (3.2)

where p ≥ 2, F ∈ C(Δ×R,R), f ∈ C1(I ,R), g ∈ C1(J ,R), ρ ∈ C1(I ,I), λ∈ C1(J , J), 0 < ρ′,
λ′ ≤ 1, ρ(x0)= x0, λ(y0)= y0.
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Remark 3.1. Setting ρ(x) = x − h(x) and λ(y) = y − k(y), (BVP) becomes an initial
boundary value problem with delay.

Our first result deals with the boundedness of solutions.

Theorem 3.2. Consider (BVP). If
∣
∣F(x, y,v)

∣
∣≤ b(x, y)|v|p,

∣
∣ f p(x) + gq(y)

∣
∣≤ k,

(3.3)

where b ∈ C(Δ,R+) and k ≥ 0 is a constant, then all solutions z(x, y) of (BVP) satisfy
∣
∣z(x, y)

∣
∣≤ k1/p expB(x, y), (x, y)∈ Δ, (3.4)

where

B(x, y) :=MN
∫ ρ(x)

ρ(x0)

∫ λ(y)

λ(y0)
b(σ ,τ)dτ dσ , b(σ ,τ) := b(ρ−1(σ),λ−1(τ)

)
,

M :=max
{

1
ρ′(x)

: x ∈ I
}

, N :=max
{

1
λ′(y)

: y ∈ J
}

.

(3.5)

In particular, if B is bounded on Δ, then every solution z of (BVP) is bounded on Δ.

The next result is about uniqueness.

Theorem 3.3. Consider (BVP). If
∣
∣F
(
x, y,v1

)−F(x, y,v2
)∣
∣≤ b(x, y)

∣
∣v

p
1 − vp2

∣
∣, (3.6)

where b ∈ C(Δ,R+), then (BVP) has at most one solution on Δ.

Finally, we will investigate the continuous dependence of the solutions of (BVP) on
the function F and the boundary data. For this we consider a variation of (BVP):

(BVP)

zp−1zxy + (p− 1)zp−2zxzy = F
(
x, y,z

(
ρ(x),λ(y)

))
(3.7)

satisfying

z
(
x, y0

)= f (x), z
(
x0, y

)= g(y), f
(
x0
)= g(y0

)= 0, (3.8)

where p ≥ 2, F ∈ C(Δ×R,R), f ∈ C1(I ,R), g ∈ C1(J ,R), ρ ∈ C1(I ,I), λ∈ C1(J , J), 0 < ρ′,
λ′ ≤ 1, ρ(x0)= x0, λ(y0)= y0.

Theorem 3.4. Consider (BVP) and (BVP). If
(i) |F(x, y,v1)−F(x, y,v2)| ≤ b(x, y)|vp1 − vp2 | for some b ∈ C(Δ,R+);

(ii) |( f (x)− f (x)) + (g(y)− g(y))| ≤ ε/2;
(iii) for all solutions z(x, y) of (BVP),

∫ x

x0

∫ y

y0

∣
∣F
(
s, t,z

(
ρ(s),λ(t)

))−F(s, t,z(ρ(s),λ(t)
))∣
∣dtds≤ ε

2
, (3.9)
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then
∣
∣zp(x, y)− zp(x, y)

∣
∣≤ εexp

(
pB(x, y)

)
, (3.10)

where B(x, y) is as defined in Theorem 3.2. Hence zp(x, y) depends continuously on F, f ,
and g. In particular, if z(x, y) does not change sign, it depends continuously on F, f , and g.

Remark 3.5. The initial boundary value problem (BVP) considered in this section is
clearly not the only problem for which the boundedness, uniqueness, and continuous
dependence of its solutions can be studied by using the main results in Section 2. For
example, one can arrive at similar results (much more complicated computations are in-
volved though) for the following variation of our (BVP):

zp−1zxy + (p− 1)zp−2zxzy = F
(
x, y,z

(
ρ(x),λ(y)

)
,z
(
μ(x),ν(y)

) ·w(μ(x),ν(y)
))

(3.11)

satisfying

z
(
x, y0

)= f (x), z
(
x0, y

)= g(y), f
(
x0
)= g(y0

)= 0, (3.12)

where w ∈ C(R+,R+) is nondecreasing with w(r) > 0 for r > 0.

4. Discrete Gronwall-Bellman-Ou-Iang-type inequalities

In what follows, I := [m0,M)∩ Z and J := [n0,N)∩ Z are two fixed lattices of integral
points inR, wherem0,n0 ∈ Z,M,N ∈ Z∪{∞}. LetΩ := I × J ⊂ Z2, and for any (s, t)∈Ω,
the sublattice [m0,s]× [n0, t]∩Ω of Ω will be denoted as Ω(s,t).

If U is a lattice in Z (resp. Z2), the collection of allR-valued functions on U is denoted
by �(U), and that of all R+-valued functions by �+(U). For the sake of convenience,
we extend the domain of definition of each function in �(U) and �+(U) trivially to the
ambient space Z (resp., Z2). So, for example, a function in �(U) is regarded as a function
defined on Z (resp., Z2) with support in U .

If U is a lattice in Z, the difference operator Δ on f ∈�(Z) or �+(Z) is defined as

Δ f (n) := f (n+ 1)− f (n), n∈U , (4.1)

and if V is a lattice in Z2, the partial difference operators Δ1 and Δ2 on u ∈ �(Z2) or
�+(Z2) are defined as

Δ1u(m,n) := u(m+ 1,n)−u(m,n), (m,n)∈V ,

Δ2u(m,n) := u(m,n+ 1)−u(m,n), (m,n)∈V. (4.2)

Theorem 4.1. Suppose u∈�+(Ω). If c ≥ 0, α > 0, b ∈�+(Ω), and ϕ∈ C(R+,R+) satisfy
the following:

(i) ϕ is nondecreasing with ϕ(r) > 0 for r > 0;
(ii) for any (m,n)∈Ω,

uα(m,n)≤ c+
m−1∑

s=m0

n−1∑

t=n0

b(s, t)ϕ
(
u(s, t)

)
, (4.3)
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then

u(m,n)≤
{
Φ−1
α

[
Φα(c) +B(m,n)

]}1/α
(4.4)

for all (m,n)∈Ω(m1,n1), where

B(m,n) :=
m−1∑

s=m0

n−1∑

t=n0

b(s, t), (4.5)

and (m1,n1)∈Ω is chosen such that Φα(c) +B(m,n)∈Dom(Φ−1
α ) for all (m,n)∈Ω(m1,n1).

Remark 4.2. (i) When α= 1, Theorem 4.1 reduces to [6, Theorem 2.1].
(ii) In case Φα(∞)=∞, we may take m1 =M, n1 =N . In particular, (4.4) holds for all

(m,n)∈Ω.

Theorem 4.3. Suppose u∈�+(Ω). If k ≥ 0, p > 1, a,b ∈�+(Ω), and ϕ∈ C(R+,R+) sat-
isfy the following:

(i) ϕ is nondecreasing with ϕ(r) > 0 for r > 0;
(ii) for any (m,n)∈Ω,

up(m,n)≤ k+
m−1∑

s=m0

n−1∑

t=n0

a(s, t)u(s, t) +
m−1∑

s=m0

n−1∑

t=n0

b(s, t)u(s, t)ϕ
(
u(s, t)

)
, (4.6)

then

u(m,n)≤
{
Φ−1
p−1

[
Φp−1

(
k1−(1/p) +A(m,n)

)
+B(m,n)

]}1/(p−1)
(4.7)

for all (m,n)∈Ω(m1,n1), where

A(m,n) :=
m−1∑

s=m0

n−1∑

t=n0

a(s, t), B(m,n) :=
m−1∑

s=m0

n−1∑

t=n0

b(s, t), (4.8)

and (m1,n1) ∈ Ω is such that Φp−1(k1−(1/p) + A(m,n)) + B(m,n) ∈ DomΦ−1
p−1 for all

(m,n)∈Ω(m1,n1).

Remark 4.4. (i) When p = 2, Theorem 4.3 reduces to Theorem 1.6.
(ii) In case Φp−1(∞)=∞, inequality (4.7) holds for all (m,n)∈Ω.

In case Ω degenerates into a 1-dimensional lattice, Theorem 4.3 takes the following
simpler form which is a generalization of a result of Pachpatte in [18].

Corollary 4.5. Suppose u∈�+(I). If k ≥ 0, p > 1, a,b ∈�+(I), and ϕ∈ C(R+,R+) sat-
isfy the following:

(i) ϕ is nondecreasing with ϕ(r) > 0 for r > 0;
(ii) for any m∈ I ,

up(m)≤ k+
m−1∑

s=m0

a(s)u(s) +
m−1∑

s=m0

b(s)u(s)ϕ
(
u(s)

)
, (4.9)
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then

u(m)≤
{

Φ−1
p−1

[

Φp−1

(

k1−(1/p) +
m−1∑

s=m0

a(s)

)

+
m−1∑

s=m0

b(s)

]}1/(p−1)

, ∀m∈ [m0,m1
]∩ I ,
(4.10)

where m1 ∈ I is such that Φp−1(k +
∑m−1

s=m0
a(s)) +

∑m−1
s=m0

b(s) ∈ DomΦ−1
p−1 for all m ∈

[m0,m1]∩ I .
Theorem 4.3 can easily be applied to generate other useful discrete inequalities in more

general situations. For example, we have the following.

Theorem 4.6. Suppose u∈�+(Ω). If k ≥ 0, p > q > 0, a,b ∈�+(Ω), and ϕ∈ C(R+,R+)
satisfy the following:

(i) ϕ is nondecreasing with ϕ(r) > 0 for r > 0;
(ii) for any (m,n)∈Ω,

up(m,n)≤ k+
m−1∑

s=m0

n−1∑

t=n0

a(s, t)uq(s, t) +
m−1∑

s=m0

n−1∑

t=n0

b(s, t)uq(s, t)ϕ
(
u(s, t)

)
, (4.11)

then

u(m,n)≤
{
Φ−1
p−q
[
Φp−q

(
k1−(q/p) +A(m,n)

)
+B(m,n)

]}1/(p−q)
(4.12)

for all (m,n) ∈ Ω(m1,n1), where A(m,n), B(m,n) are defined as in Theorem 4.3, and
(m1,n1) ∈ Ω is chosen such that Φp−q(k1−(q/p) +A(m,n)) + B(m,n) ∈ DomΦ−1

p−q for all
(m,n)∈Ω(m1,n1).

An important special case of Theorem 4.6 is the following.

Corollary 4.7. Suppose u ∈�+(Ω). If k ≥ 0, p > 1, a,b ∈�+(Ω), and ϕ ∈ C(R+,R+)
satisfy the following:

(i) ϕ is nondecreasing with ϕ(r) > 0 for r > 0;
(ii) for any (m,n)∈Ω,

up(m,n)≤ k+
m−1∑

s=m0

n−1∑

t=n0

a(s, t)up−1(s, t) +
m−1∑

s=m0

n−1∑

t=n0

b(s, t)up−1(s, t)ϕ
(
u(s, t)

)
, (4.13)

then

u(m,n)≤Φ−1
1

[
Φ1
(
k1/p +A(m,n)

)
+B(m,n)

]
, ∀(m,n)∈Ω(m1,n1), (4.14)

where A(m,n), B(m,n) are defined as in Theorem 4.3, and (m1,n1)∈Ω is chosen such that
Φ1(k1/p +A(m,n)) +B(m,n)∈DomΦ−1

1 for all (m,n)∈Ω(m1,n1).

In particular, we have the following useful consequence.
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Corollary 4.8. Suppose u∈�+(Ω). If k ≥ 0, p > 1, and a,b ∈�+(Ω) satisfy

up(m,n)≤ k+
m−1∑

s=m0

n−1∑

t=n0

a(s, t)up−1(s, t) +
m−1∑

s=m0

n−1∑

t=n0

b(s, t)up(s, t) for any (m,n)∈Ω,

(4.15)

then

u(m,n)≤ (k1/p +A(m,n)
)

expB(m,n), ∀(m,n)∈Ω, (4.16)

where A(m,n), B(m,n) are defined as in Theorem 4.3

In case Ω degenerates into a 1-dimensional lattice, Corollary 4.8 takes the following
simpler form which generalizes another result of Pachpatte in [23].

Corollary 4.9. Suppose u∈�+(I). If k ≥ 0, p > 1, and a,b ∈�+(I) satisfy

up(m)≤ k+
m−1∑

s=m0

a(s)up−1(s) +
m−1∑

s=m0

b(s)up(s) for any m∈ I , (4.17)

then

u(m)≤
[

k1/p +
m−1∑

s=m0

a(s)

] m−1∏

s=m0

expb(s), ∀m∈ I. (4.18)

A special situation of Corollary 4.8 is the following 2-dimensional discrete version of
Ou-Iang’s inequality.

Corollary 4.10. Suppose u∈�+(Ω). If k ≥ 0, p > 1, and b ∈�+(Ω) satisfy

up(m,n)≤ k+
m−1∑

s=m0

n−1∑

t=n0

b(s, t)up(s, t) for any (m,n)∈Ω, (4.19)

then

u(m,n)≤ k1/p expB(m,n), ∀(m,n)∈Ω, (4.20)

where B(m,n) is as defined in Theorem 4.3.

In case Ω degenerates into a 1-dimensional lattice, Corollary 4.10 takes the follow-
ing simpler form which is a generalized 1-dimensional discrete analogue of Ou-Iang’s
inequality.

Corollary 4.11. Suppose u∈�+(I). If k ≥ 0, p > 1, and b ∈�+(I) satisfy

up(m)≤ k+
m−1∑

s=m0

b(s)up(s) for any m∈ I , (4.21)
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then

u(m)≤ k1/p
m−1∏

s=m0

expb(s), ∀m∈ I. (4.22)

Remark 4.12. It is evident that the results above can be generalized to obtain explicit
bounds for functions satisfying certain discrete sum inequalities involving more retarded
arguments. It is also clear that these results can be extended to functions on higher di-
mensional lattices in the obvious way. As details of these are rather algorithmic, they will
not be carried out here.

5. Applications to boundary value problems

In this section, we will illustrate how the results obtained in Section 4 can be applied to
study the boundedness, uniqueness, and continuous dependence of the solutions of cer-
tain boundary value problems for difference equations involving 2 independent variables.

We consider the following boundary value problem (BVP):

Δ12z
p(m,n)= F(m,n,z(m,n)

)
(5.1)

satisfying

z
(
m,n0

)= f (m), z
(
m0,n

)= g(n), f
(
m0
)= g(n0

)= 0, (5.2)

where p > 1, F ∈�(Ω×R), f ∈�(I), and g ∈�(J) are given.
Our first result deals with the boundedness of solutions.

Theorem 5.1. Consider (BVP). If

∣
∣F(m,n,v)

∣
∣≤ b(m,n)|v|p,

∣
∣ f (m)

∣
∣p +

∣
∣g(n)

∣
∣p ≤ kp

(5.3)

for some k ≥ 0, where b ∈�+(Ω), then all solutions of (BVP) satisfy

∣
∣z(m,n)

∣
∣≤ k expB(m,n), (m,n)∈Ω, (5.4)

where B(m,n) is defined as in Theorem 4.1. In particular, if B(m,n) is bounded on Ω, then
every solution of (BVP) is bounded on Ω.

The next result is about uniqueness.

Theorem 5.2. Consider (BVP). If

∣
∣F
(
m,n,v1

)−F(m,n,v2
)∣
∣≤ b(m,n)

∣
∣v

p
1 − vp2

∣
∣ (5.5)

for some b ∈�+(Ω), then (BVP) has at most one solution on Ω.
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Finally, we investigate the continuous dependence of the solutions of (BVP) on the
function F and the boundary data f and g. For this we consider the following variation
of (BVP):

(BVP)

Δ12z
p(m,n)= F(m,n,z(m,n)

)
(5.6)

with

z
(
m,n0

)= f (m), z
(
m0,n

)= g(n), f
(
m0
)= g(n0

)= 0, (5.7)

where p > 1, F ∈�(Ω×R), f ∈�(I), and g ∈�(J) are given.

Theorem 5.3. Consider (BVP) and (BVP). If
(i) |F(m,n,v1)−F(m,n,v2)| ≤ b(m,n)|vp1 − vp2 | for some b ∈�+(Ω);

(ii) |( f p(m)− f
p
(m)) + (g p(n)− g p(n))| ≤ ε/2;

(iii) for all solutions z(m,n) of (BVP),

m−1∑

s=m0

n−1∑

t=n0

∣
∣F
(
s, t,z(s, t)

)−F(s, t,z(s, t)
)∣
∣≤ ε

2
, ∀(m,n)∈Ω, v1,v2 ∈R, (5.8)

then

∣
∣zp(m,n)− zp(m,n)

∣
∣≤ εexp

(
pB(m,n)

)
, (5.9)

where B(m,n) is as defined in Theorem 4.1. Hence zp depends continuously on F, f , and g.
In particular, if z does not change sign, it depends continuously on F, f , and g.

Remark 5.4. The boundary value problem (BVP) is clearly not the only problem for which
the boundedness, uniqueness, and continuous dependence of its solutions can be studied
by using the results in Section 4. For example, one can arrive at similar results (with much
more complicated computations) for the following variation of the (BVP):

Δ12z
p(m,n)= F

(
m,n,z(m,n),z(m,n) ·ϕ(∣∣z(m,n)

∣
∣
))

(5.10)

with

z
(
m,n0

)= f (m), z
(
m0,n

)= g(n), f
(
m0
)= g(n0

)= 0, (5.11)

where p > 1, F ∈�(Ω×R2), f ∈�(I), g ∈�(J), and ϕ∈ C(R+,R+) are given.
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OSCILLATION OF HIGHER-ORDER NEUTRAL TYPE
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH
DISTRIBUTED ARGUMENTS

R. S. DAHIYA AND A. ZAFER

This paper is concerned with the oscillation of the solutions of the nth-order neutral
functional differential equation with distributed arguments of the form [x(t) +
∫ b
a p(t,r)x(τ(t,r))dr](n) + δ

∫ d
c q(t,r) f (x(σ(t,r)))dr = 0, δ =±1. Sufficient conditions are

presented for which every solution x(t) is either oscillatory or else limt→∞ |x(t)| = ∞ or
liminf t→∞ x(t)= 0 depending on (−1)nδ =±1.

Copyright © 2006 R. S. Dahiya and A. Zafer. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider the nth-order neutral equations of the form

[

x(t) +
∫ b

a
p(t,r)x

(
τ(t,r)

)
dr
](n)

+ δ
∫ d

c
q(t,r) f

(
x
(
σ(t,r)

))
dr = 0, (1.1)

where the following conditions are tacitly assumed:
(a) p ∈ C([t0,∞)× [a,b],R+), where R+ = [0,∞) and t0 ≥ 0 is fixed;
(b) q ∈ C([t0,∞)× [c,d],R+), q(t,u) �= 0 for all (t,u) ∈ [t∗,∞)× [c,d] for any t∗ ≥

t0;
(c) f ∈ C(R,R), x f (x) > 0 for all x �= 0;
(d) τ ∈ C([t0,∞)× [a,b],R+), τ(t,u)≤ t for each u∈ [a,b], τ(t,u)→∞ as t→∞ for

each u∈ [a,b];
(e) σ ∈ C([t0,∞)× [c,d],R+) is nondecreasing in both variables, σ(t,u) > t for all

u∈ [c,d], σ(t,u)→∞ as t→∞ for each u∈ [c,d].
By a solution of (1.1) we mean a real-valued function x which satisfies (1.1) and

sup{x(t) : t ≥ t∗} �= 0 for any t∗ ≥ t0. A solution x(t) of (1.1) is called oscillatory if the
set of its zeros is unbounded from above, otherwise it is said to be nonoscillatory. We
make the standing hypothesis that (1.1) possesses such solutions.

The oscillation of solutions of neutral equations has been investigated by many au-
thors, see [1–9, 14–21]. However, all the equations involved in these studies, except the

Hindawi Publishing Corporation
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316 Oscillation of differential equations with distributed arguments

ones considered in [3, 18, 19], greatly differ from (1.1) in the sense that they do not con-
tain distributed arguments. It is obvious that (1.1) contains a large class of previously
studied neutral equations. In particular, if τ(t,r) = τ0(t), σ(t,r) = σ0(t), q(t,r) = q0(t),
p(t,r)= p0(t), a= c = 0, and b = d = 1, then (1.1) reduces to

[
x(t) + p0(t)x

(
τ0(t)

)](n)
+ q0(t) f

(
σ0(t)

)= 0 (1.2)

whose oscillation has been the topic of many studies including the ones mentioned above.
In this work we present oscillation criteria for solutions of (1.1) which are new even

for the nonneutral equations (p(t,r) ≡ 0) and their special cases, and which reduce to
known results obtained previously for (1.2) in [4]. For some related results in the case
when σ(t,u) is nondecreasing and σ(t,u) ≥ t + k for some k > 0 and for all u∈ [c,d] we
refer to [3].

2. Main results

In the sequel, we will also assume without further mention that

H(t) := 1−
∫ b

a
p(t,r)dr (2.1)

is eventually nonnegative, bounded, and not identically zero.

Theorem 2.1. Suppose that x f (x)≥ x2 for all x ∈R and that

limsup
t→∞

∫ σ(t,c)

t
(s− t)n−1

∫ d

c
q(s,r)H

(
σ(s,r)

)
dr ds > (n− 1)!. (2.2)

(i) If δ = +1, then every solution x(t) of (1.1) is oscillatory when n is even, and is either
oscillatory or satisfies liminf t→∞ x(t)= 0 when n is odd.

(ii) If δ = −1, then every solution x(t) of (1.1) is either oscillatory or else satisfies
limt→∞ |x(t)| = ∞ or liminf t→∞ x(t) = 0 when n is even, and is either oscillatory
or satisfies limt→∞ |x(t)| =∞ when n is odd.

Proof. Suppose that there exists an eventually positive solution x(t) of (1.1), and let

z(t)= x(t) +
∫ b

a
p(t,r)x

(
τ(t,r)

)
dr. (2.3)

Clearly, z(t) is eventually positive, and from (1.1), z(n)(t) ≤ 0 eventually. Applying the
well-known lemma of Kiguradze [12], we see that there exist a T > t0 and an integer
l ∈ {0,1, . . . ,n} with (−1)n−l−1δ = 1 such that for t ≥ T ,

z(k)(t) > 0, k = 1,2, . . . , l;

(−1)n−k−1z(k)(t) > 0, k = l, . . . ,n− 1.
(2.4)
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Suppose that 0≤ l ≤ n− 1. By Taylor’s formula for r > t ≥ T we have

z(l)(t)=
n−l−1∑

i=0

z(l+i)(r)
i!

(t− r)i +
∫ r

t

(t− r)n−l−1

(n− l− 1)!

(− z(n)(r)
)
dr. (2.5)

In view of (2.4), it follows from (2.5) that

z(l)(t)≥
∫ r

t

(s− t)n−l−1

(n− l− 1)!

(− z(n)(s)
)
ds, T ≤ t < r, (2.6)

and hence

z(l)(t)≥
∫∞

t

(s− t)n−l−1

(n− l− 1)!

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds. (2.7)

If l = 0, that is, (−1)nδ =−1, then from (2.7) we have

∫∞

T
(s−T)n−1

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds≤ (n− 1)!z(T). (2.8)

On the other hand,

∫∞

T
tn−1

∫ d

c
q(t,r)dr dt =∞. (2.9)

Otherwise, in view of (2.1), we would have

∫∞

T
tn−1

∫ d

c
q(t,r)H

(
σ(t,r)

)
dr dt <∞. (2.10)

Then by (2.2) we would obtain the contradiction that

(n− 1)! < limsup
t→∞

∫∞

t
sn−1

∫ d

c
q(s,r)H

(
σ(s,r)

)
dr ds= 0. (2.11)

From (2.8) and (2.9) it follows that

liminf
t→∞ x(t)= 0. (2.12)

If l = n (δ =−1), we see that limt→∞ z(t)=∞ and so limt→∞ x(t)=∞.
Lastly, we need to consider the possibility that 1≤ l ≤ n− 1. In this case we claim that

z
(
σ(t,c)

)≥
∫ σ(t,c)

t

(s− t)n−1

(n− 1)!

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds. (2.13)
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In case l = 1, inequality (2.13) follows easily by integrating (2.7) from t to σ(t,c). If l > 1,
then since z(l−1)(t) > 0 for t ≥ T , integrating (2.7) from T to t leads to

z(l−1)(t)≥ (t−T)
(n− l)!

∫∞

t

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds. (2.14)

In view of (2.4) if we integrate the above inequality from T to t recurrently (l− 2) times,
we obtain

z′(t)≥ (t−T)n−2

(n− 2)!

∫∞

t

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds. (2.15)

Integrating (2.15) from t to σ(t,c) we arrive at (2.13). Now, since z is increasing, τ(t,u)≤
t, and x(t)≤ z(t), it follows that

z(t)≤ x(t) + z(t)
∫ b

a
p(t,u)du (2.16)

or

H(t)z(t)≤ x(t). (2.17)

Using (2.17) and the fact that σ(t,u) is nondecreasing in (2.13), it also follows that

(n− 1)!≥ limsup
t→∞

∫ σ(t,c)

t
(s− t)n−1

∫ d

c
q(s,r)H

(
σ(s,r)

)
dr ds. (2.18)

Clearly, (2.18) contradicts (2.2). �

In the next theorem we will make use of the notation

Mf =max
{

limsup
x→∞

x

f (x)
, limsup
x→−∞

x

f (x)

}

≥ 0. (2.19)

Theorem 2.2. Suppose that Mf <∞ and

limsup
t→∞

∫ σ(t,c)

t
(s− t)n−1

∫ d

c
q(s,r)H

(
σ(s,r)

)
dr ds > (n− 1)!Mf . (2.20)

(i) If δ = +1, then every solution x(t) of (1.1) is oscillatory or satisfies liminf t→∞ x(t)=
0.

(ii) If δ = −1, then every solution x(t) of (1.1) is either oscillatory or satisfies
limt→∞ |x(t)| =∞ or liminf t→∞ x(t)= 0.
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Proof. Assume that x(t) is a nonoscillatory solution of (1.1), say x(t) > 0 eventually. As in
the previous theorem, for 0≤ l ≤ n− 1 with (−1)n−l−1δ = 1,

z(l)(t)≥
∫∞

t

(s− t)n−l−1

(n− l− 1)!

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds. (2.21)

We will distinguish the following three possibilities.
Case 1. l = 0, ((−1)nδ =−1). From (2.21), we have

∫∞

t

(s− t)n−l−1

(n− l− 1)!

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds≤ z(T). (2.22)

On the other hand,

∫∞
tn−1

∫ d

c
q(t,r)H

(
σ(t,r)

)
dr dt =∞, (2.23)

since otherwise by (2.20) we would get

(n− 1)!Mf < limsup
t→∞

∫∞

t
sn−1

∫ d

c
q(s,r)H

(
σ(s,r)

)
dr ds= 0, (2.24)

a contradiction with Mf ≥ 0. Now it follows from (2.23) that

∫∞
tn−1

∫ d

c
q(t,r)dr dt =∞. (2.25)

In view of (2.22) and (2.25), we get

liminf
t→∞ x(t)= 0. (2.26)

Case 2. l = 1, (−1)nδ = 1, with z(t) bounded. Integrating (2.21) from T to∞, we have

z(∞)− z(T)≥
∫∞

T

(s−T)n−2

(n− 1)!

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds. (2.27)

Employing the above argument, one can easily see that

liminf
t→∞ x(t)= 0. (2.28)

Case 3. l > 1 or l = 1 with z(t) unbounded. Note that if l > 1 then x(t) is unbounded, and
that (2.13) holds if l ≥ 1 (see the proof of the previous theorem). Thus, from (2.13) we
see that

z
(
σ(t,c)

)≥ 1
(n− 1)!

inf

{
f
(
x
(
σ(s,r)

))

x
(
σ(t,r)

) : (s,r)∈ [t,σ(t,c)
]× [c,d]

}

×
∫ σ(t,c)

t
(s− t)n−1

∫ d

c
q(s,r)x

(
σ(s,r)

)
dr ds.

(2.29)



320 Oscillation of differential equations with distributed arguments

In view of (2.17), we obtain from (2.29) that

z(σ(t,c))≥ 1
(n− 1)!

inf

{
f
(
x
(
σ(s,r)

))

x
(
σ(t,r)

) : (s,r)∈ [t,σ(t,c)
]× [c,d]

}

×
∫ σ(t,c)

t
(s− t)n−1

∫ d

c
q(s,r)H

(
σ(s,r)

)
z
(
σ(s,r)

)
dr ds.

(2.30)

Using the fact that z(t) is increasing, we obtain

(n− 1)!sup
{

x
(
σ(s,r)

)

f
(
x
(
σ(t,r)

)) : (s,r)∈ [t,σ(t,c)
]× [c,d]

}

≥
∫ σ(t,c)

t
(s− t)n−1

∫ d

c
q(s,r)H

(
σ(s,r)

)
dr ds.

(2.31)

Letting t→∞ in (2.31) results in a contradiction with (2.20). If l = n, as before we obtain
limt→∞ x(t)=∞. This completes the proof. �

Theorem 2.3. Suppose that

u f (vu)≥ u f1(v) f2(u), u∈R, v ≥ 0, (2.32)

for some functions f1 ∈ C(R+,R+) and f2 ∈ C(R,R), where u f2(u) > 0 for all u �= 0. Let f2
be nondecreasing and superlinear in the sense that

∫∞ du

f2(u)
<∞,

∫ −∞ du

f2(u)
<∞. (2.33)

If

∫∞
tn−1

∫ d

c
q(t,r) f1

(
H
(
σ(t,r)

))
dr dt =∞, (2.34)

then the conclusion of Theorem 2.1 holds.

Proof. Let x(t) be a nonoscillatory solution of (1.1) which eventually takes on positive
values only. As in the proof of Theorem 2.1, for t ≥ T and (−1)n−l−1δ = 1, 0≤ l ≤ n− 1,
we arrive at

z(l)(t)≥
∫∞

t

(s− t)n−l−1

(n− l− 1)!

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds. (2.35)

If l = 0, then (−1)nδ =−1, and from (2.35) we have

∫∞

T
(s−T)n−1

∫ d

c
q(s,r) f

(
x
(
σ(s,r)

))
dr ds≤ (n− 1)!z(T), (2.36)

which, in view of (2.34), leads to liminf t→∞ x(t)= 0.
Let l ≥ 1. Clearly, (2.17) holds and hence

x
(
σ(s,r)

)≥H(σ(s,r)
)
z(t), s≥ t, r ∈ [c,d]. (2.37)
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Using this inequality in (2.35) we have

z(l)(t)≥
∫∞

t

(s− t)n−l−1

(n− l− 1)!

∫ d

c
q(s,r) f

(
H
(
σ(s,r)

)
z(t)

)
dr ds. (2.38)

If l = 1, integrating (2.38) divided by f2(z(t)) from T to∞, we get

∫ z(∞)

z(T)

du

f2(u)
≥
∫∞

T

(s−T)n−1

(n− 1)!

∫ d

c
q(s,r) f1

(
H
(
σ(s,r)

))
dr ds, (2.39)

which contradicts (2.33) and (2.34).
To complete the proof it suffices to show that (2.39) holds also if 1 < l ≤ n− 1, since

the case l = n leads to δ = −1 and limt→∞ x(t) = ∞. Notice that (2.15) is satisfied and
therefore

z′(t)
f2
(
z(t)

) ≥ (t−T)n−2

(n− 2)!

∫∞

t

∫ d

c
q(s,r) f1

(
H
(
σ(s,r)

))
dr ds. (2.40)

Integrating the last inequality from T to∞ we see that (2.39) holds. �

We note that condition (2.32) provides quite a large class of functions of interest. In
particular, if f (x)= |x|β−1x (β > 1), then f1 = f2 = f . One may also take linear combina-
tions of functions |x|β−1x.

3. Generalizations

The results in the previous section can be easily extended to equations of the form

(
k(t)z(n−1))′ + δ

∫ d

c
q(t,r) f

(
x
(
σ(t,r)

))
dr = h(t), (3.1)

where z(t)= x(t) +
∫ b
a p(t,r)x(τ(t,r))dr, and

(i) k(t) > 0, k′(t)≥ 0,
∫∞(1/k(t))dt =∞;

(ii) h(t)= ρ(n)(t) for some oscillatory function ρ(t), limt→∞ ρ(t)= 0.
Below we state without proof the analogous theorems. For details on the methods we

refer to [4] for (i) and to [1, 3, 10] in the case of (ii). We should note that the technique
used in [3] to handle forcing terms satisfying (ii) was first introduced by Kartsatos in [10].

Theorem 3.1. Suppose that x f (x)≥ x2 for all x ∈R and

limsup
t→∞

∫ σ(t,c)

t
(s− t)n−1

∫ d

c

q(s,r)
k(s)

H
(
σ(s,r)

)
dr ds > (n− 1)!. (3.2)

(i) If δ = +1, then every solution x(t) of (3.1) is oscillatory when n is even, and is either
oscillatory or satisfies liminf t→∞ x(t)= 0 when n is odd.

(ii) If δ = −1, then every solution x(t) of (3.1) is either oscillatory or else satisfies
limt→∞ |x(t)| = ∞ or liminf t→∞ x(t) = 0 when n is even, and is either oscillatory
or satisfies limt→∞ |x(t)| =∞ when n is odd.
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Theorem 3.2. Suppose that Mf <∞ and

limsup
t→∞

∫ σ(t,c)

t
(s− t)n−1

∫ d

c

q(s,r)
k(s)

H
(
σ(s,r)

)
dr ds > (n− 1)!Mf . (3.3)

(i) If δ = +1, then every solution x(t) of (3.1) is oscillatory or satisfies liminf t→∞ x(t)=
0.

(ii) If δ = −1, then every solution x(t) of (3.1) is either oscillatory or satisfies
limt→∞ |x(t)| =∞ or liminf t→∞ x(t)= 0.

Theorem 3.3. Suppose that

u f (vu)≥ u f1(v) f2(u), u∈R, v ≥ 0, (3.4)

for some functions f1 ∈ C(R+,R+) and f2 ∈ C(R,R), where u f2(u) > 0 for all u �= 0. Let f2
be nondecreasing and superlinear in the sense that

∫∞ du

f2(u)
<∞,

∫ −∞ du

f2(u)
<∞. (3.5)

If

∫∞
tn−1

∫ d

c

q(t,r)
k(t)

f1
(
H
(
σ(t,r)

))
dr dt =∞, (3.6)

then the conclusion of Theorem 3.1 holds.

The problem of finding similar oscillation criteria when k ∈ L1([t0,∞)) or when (ii)
fails to hold (e.g., ρ is nonoscillatory and/or not approaching zero as t→∞) seems to be
interesting. In the case when ρ(t) is periodic (not necessarily small) there is a possibility of
employing the arguments developed by Kartsatos in [11]. More results on forced differ-
ential equations can be found in [1]. Another challenging and more difficult problem in
this setup is to allow q to change sign for which there is hardly any result in the literature.

As a last remark the oscillation criteria presented in this paper reduce to some results
derived for (1.2) in [4] and thereby extend and improve some results previously given in
[13].
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ON PARABOLIC SYSTEMS WITH DISCONTINUOUS
NONLINEARITIES

H. DEGUCHI

We present existence, uniqueness, and stability results for the initial value problems for
parabolic systems with discontinuous nonlinearities.

Copyright © 2006 H. Deguchi. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we will study weak solutions of the initial value problem

ut = uxx + f (u)− f (1)H(v−β), 0 < t < T , x ∈ R,

vt = vxx + g(v)− g(1)H(u−α), 0 < t < T , x ∈ R,

u |t=0= u0, v |t=0= v0, x ∈ R,

(1.1)

where 0 < α, β < 1 are two constants, H is the function on R given by

H(u)= 0 in (−∞,0), H(u)= 1 in (0,∞), 0≤H(0)≤ 1, (1.2)

and f and g satisfy the following condition.
(A1) f and g are two Lipschitz continuous functions on R such that f (0)= g(0)= 0,

f (1) < f (u) < 0 in (0,1), and g(1) < g(v) < 0 in (0,1).
The concept of Nash equilibrium has played a central role as a solution concept in

game theory. However, when a game has multiple Nash equilibria, the players face a prob-
lem which equilibrium they should play. As an example, let us consider the following
game.

Player 2
A2 B2

Player 1
A1

B1

a1, a2 0, 0
0, 0 b1, b2

(1.3)

Hindawi Publishing Corporation
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with ai,bi > 0 for i= 1,2. This game is a coordination game and has two strict Nash equi-
libria A and B. Let u and v denote the frequencies of the B1-strategy for player 1 and
the B2-strategy for player 2, respectively. Then the payoffs for player 1 playing A1 or B1,
respectively, are given by a1(1− v) and b1v. The payoffs for player 2 playing A2 or B2,
respectively, are given by a2(1−u) and b2u. In the coordinates (u,v), we can identify the
equilibria A= (0,0) and B = (1,1).

As an important concept of equilibrium selection, there is the concept of risk-
dominance by Harsanyi and Selten [5]. For the game (1.3), B is said to risk-dominate
A if a1a2 < b1b2. On the other hand, Hofbauer [7] introduced the concept of spatial
dominance by means of a problem like (1.1), and compared it with the concept of risk-
dominance for the game (1.3). We now explain his approach and results for the game
(1.3). We consider two player populations distributed on R. Then (u,v)= (u(t,x),v(t,x))
is a function of time t and space x ∈ R, and takes values between (0,0) and (1,1). Assume
that the local interaction among the players is described by the best response dynamics.
This dynamics models the situation that a certain proportion of players at each x switches
to locally best responses at any t. Assume further that the random motion of the players
can be modeled by diffusion. These assumptions yield the initial value problem

ut = uxx −u+H(v−β), 0 < t < T , x ∈ R,

vt = vxx − v+H(u−α), 0 < t < T , x ∈ R,

u |t=0= u0, v |t=0= v0, x ∈ R,

(1.4)

where (α,β) = (a2/(a2 + b2),a1/(a1 + b1)). A Nash equilibrium C is said to be spatially
dominant if the corresponding constant stationary solution (uc,vc) of problem (1.4) is
asymptotically stable in the compact-open topology, that is, there exist two constants
r > 0 and ε > 0 such that, for any initial datum satisfying |(u0(x),v0(x))− (uc,vc)| < ε for
x ∈ [−r,r], the solution (u(t,x),v(t,x)) of problem (1.4) converges to (uc,vc) as t ↑ ∞,
uniformly on any compact subset of R. In other words, if a spatially dominant equilib-
rium prevails initially on a large enough finite part of the space, then it eventually takes
over on the whole space. By definition, at most one equilibrium can be spatially dom-
inant. Hofbauer [7] proved that (i) B is spatially dominant if 0 < α + β < 1, that is, B
risk-dominates A, and (ii) A is spatially dominant if α+ β > 1, that is, A risk-dominates
B. Also, Hofbauer [6] showed that problem (1.4) has a unique monotone traveling wave
solution connecting the two equilibria A and B. Moreover, he proved that its wave speed
is zero if α+β = 1, that is, A and B are equally risky. This explains that (iii) neither A nor
B is spatially dominant if A and B are equally risky. It is easy to see that the converses of
(i), (ii), and (iii) are true. Thus, for the game (1.3), the concept of spatial dominance is
equivalent to the concept of risk-dominance. However, the problem of the existence and
uniqueness of solutions of problem (1.4) was not treated. Note that problem (1.4) is a
special case of problem (1.1) if we take f (u)=−u and g(v)=−v.

The purposes of this paper are to show the existence and uniqueness of solutions of
problem (1.1), and to extend the stability results of Hofbauer [6, 7].
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The rest of this paper is organized as follows. In Section 2, after giving the definition
of a weak solution of problem (1.1), we obtain existence, uniqueness, and stability results
for problem (1.1) (Theorems 2.3, 2.6, 2.8, 2.10, 2.11, and 2.12). In Section 3, we discuss
solutions of problem (1.1) formulated as differential inclusions (Propositions 3.2 and
3.3). The details and proofs will be given in [2].

2. Existence, uniqueness, and stability theorems

Let us first explain some notation and definitions. Let CB(R) and CB([0,T)× R) de-
note the space of bounded continuous functions on R and [0,T)×R, respectively. Let
C0,1((0,T)×R) be the space of continuous functions on (0,T)×R that are continuously
differentiable in x ∈ R. If u, v ∈ CB([0,T)×R)∩C0,1((0,T)×R) and u≤ v in [0,T)×R,
then [u,v] denotes the order interval {w ∈ CB([0,T)×R)∩C0,1((0,T)×R) | u≤w ≤ v}.
Definition 2.1. A pair (u,v) of functions u, v ∈ CB([0,T)×R)∩C0,1((0,T)×R) is called
a weak solution of problem (1.1) if it satisfies the following two conditions:

(i) for all ϕ∈�((0,T)×R),

∫ T

0

∫

R

(
uϕt −uxϕx +

(
f (u)− f (1)H(v−β)

)
ϕ
)
dxdt = 0,

∫ T

0

∫

R

(
vϕt − vxϕx +

(
g(v)− g(1)H(u−α)

)
ϕ
)
dxdt = 0;

(2.1)

(ii) for all x0 ∈ R,

lim
t↓0,x→x0

u(t,x)= u0
(
x0
)
, lim

t↓0,x→x0

v(t,x)= v0
(
x0
)
. (2.2)

A similar definition to Definition 2.1 will be used for the case where nonlinearities
depend on t and x as well as u and v.

Definition 2.2. A pair (u,v) of functions u,v ∈ CB([0,T)×R)∩C0,1((0,T)×R) is said to
be a weak upper solution of problem (1.1) if it satisfies the following two conditions:

(i′) for all nonnegative functions ϕ∈�((0,T)×R),

∫ T

0

∫

R

(
uϕt −uxϕx +

(
f (u)− f (1)H(v−β)

)
ϕ
)
dxdt ≤ 0,

∫ T

0

∫

R

(
vϕt − vxϕx +

(
g(v)− g(1)H(u−α)

)
ϕ
)
dxdt ≤ 0;

(2.3)

(ii′) for all x0 ∈ R,

lim
t↓0,x→x0

u(t,x)≥ u0
(
x0
)
, lim

t↓0,x→x0

v(t,x)≥ v0
(
x0
)
. (2.4)

A weak lower solution of problem (1.1) is defined by reversing the inequalities in condi-
tions (i′) and (ii′).
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To state an existence theorem for problem (1.1), we will impose the following two
conditions:

(B1) (u0,v0)∈ CB(R)×CB(R), and (0,0)≤ (u0(x),v0(x))≤ (1,1) on R;
(A2) problem (1.1) has a weak upper solution (u,v) and a weak lower solution (u,v)

such that (u,v) ≤ (u,v) in (0,T)×R. Moreover, there exist the two nonpositive
functions W1,W2 ∈ L∞((0,T)×R) and the two nonnegative functions w1,w2 ∈
L∞((0,T)×R) such that, for any nonnegative function ϕ∈�((0,T)×R),

∫ T

0

∫

R

(
uϕt −uxϕx +

(
f (u)− f (1)H̃(v−β)−W1

)
ϕ
)
dxdt = 0,

∫ T

0

∫

R

(
vϕt − vxϕx +

(
g(v)− g(1)H̃(u−α)−W2

)
ϕ
)
dxdt = 0,

∫ T

0

∫

R

(
uϕt −uxϕx +

(
f (u)− f (1)Ĥ(v−β)−w1

)
ϕ
)
dxdt = 0,

∫ T

0

∫

R

(
vϕt − vxϕx +

(
g(v)− g(1)Ĥ(u−α)−w2

)
ϕ
)
dxdt = 0,

(2.5)

where

H̃(u)=
⎧
⎨

⎩

1 if u≥ 0,

0 if u < 0,
Ĥ(u)=

⎧
⎨

⎩

1 if u > 0,

0 if u≤ 0.
(2.6)

Theorem 2.3. Let 0 < α, β < 1, and assume that conditions (A1), (A2), and (B1) are sat-
isfied. Then problem (1.1) has the global maximal and minimal weak solutions (U ,V) and
(u,v) in the order interval [u,u]× [v,v].

Sketch of the proof of Theorem 2.3. We will prove only the existence of maximal weak so-
lution in the order interval [u,u]× [v,v]. Fix T > 0 arbitrarily and consider the iteration
scheme

Un+1
t −Un+1

xx +MUn+1 = f
(
Un
)− f (1)H̃

(
Vn−β)+MUn, 0 < t < T , x ∈ R,

Vn+1
t −Vn+1

xx +MVn+1 = g(Vn
)− g(1)H̃

(
Un−α)+MVn, 0 < t < T , x ∈ R,

Un+1 |t=0= u0, Vn+1 |t=0= v0, x ∈ R,

(2.7)

where (U0,V 0)= (u,v) and M > 0 is a constant such that u�→ f (u) +Mu and v �→ g(v) +
Mv are nondecreasing on R. We see that, for each n ∈ N0, problem (2.7) has a unique
weak solution (Un+1,Vn+1), which satisfies

u≤Un+1 ≤Un ≤ ··· ≤U1 ≤U0 = u,

v ≤Vn+1 ≤Vn ≤ ··· ≤V 1 ≤V 0 = v.
(2.8)
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Hence, the limit (U ,V)∈ [u,u]× [v,v] is a weak solution of the problem

Ut −Uxx = f (U)− f (1)H̃(V −β), 0 < t < T , x ∈ R,

Vt −Vxx = g(V)− g(1)H̃(U −α), 0 < t < T , x ∈ R,

U |t=0= u0, V |t=0= v0, x ∈ R.

(2.9)

We can show that the Lebesgue measures of {(t,x)∈ (0,T)×R |U(t,x)= α} and {(t,x)∈
(0,T)×R |V(t,x)= β} are zero. Hence, (U ,V) is a weak solution of problem (1.1).

For any weak solution (u1,v1) ∈ [u,u]× [v,v] of problem (1.1), we find that (Un,
Vn) ≥ (u1,v1) in (0,T)× R for n ∈ N. Therefore (U ,V) ≥ (u1,v1) in (0,T)× R. Thus,
(U ,V) is the maximal weak solution in [u,u]× [v,v]. �

Remark 2.4. Problem (1.1) has the global maximal and minimal weak solutions (U ,V)
and (u,v) in the order interval [0,1]× [0,1] if 0 < α, β < 1 and if conditions (A1) and (B1)
are satisfied, since (u,v)≡ (1,1) and (u,v)≡ (0,0) are a weak upper solution and a weak
lower solution, respectively, of problem (1.1) as in condition (A2).

Concerning the size of weak solutions of problem (1.1), the following proposition
holds.

Proposition 2.5. Let 0 < α, β < 1, and assume that conditions (A1) and (B1) are satisfied.
Then any weak solution of problem (1.1) is contained in the order interval [0,1]× [0,1].

To state a uniqueness theorem for problem (1.1), we will impose the following two
conditions:

(A3) there exists a constant L > 0 such that f (u)≥−Lu in (0,1), g(v)≥−Lv in (0,1)
and f (1)= g(1)=−L;

(B2) (u0,v0) satisfies the following five conditions:
(B2-1) (u0,v0)∈ C1(R)×C1(R);
(B2-2) (u0,v0) is even on R;
(B2-3) (u′0(x),v′0(x))≤ (0,0) in (0,∞);
(B2-4) (u0(x1),v0(x2))= (α,β) and (u′0(x1),v′0(x2)) < (0,0) for some x1, x2 > 0;
(B2-5) (u0(∞),v0(∞))= (0,0).

Theorem 2.6. Choose 0 < α, β < 1 so that 0 < α+β < 1. Assume that conditions (A1), (A3),
(B1), and (B2) are satisfied. Then there exist two constants r > 0 and ε > 0 such that, if
|(u0(x),v0(x))− (1,1)| < ε for x ∈ [−r,r], then the weak solution of problem (1.1) is glob-
ally unique in time.

The following proposition is needed in the proof of Theorem 2.6.

Proposition 2.7. Choose 0 < α, β < 1 so that 0 < α+ β < 1. Assume that conditions (A1),
(A3), (B1), and (B2) are satisfied. Then there exist two constants r > 0 and ε > 0 such that,
if |(u0(x),v0(x))− (1,1)| < ε for x ∈ [−r,r], then problem (1.1) has a weak lower solution
(u,v)∈ [0,1]× [0,1] with the three properties that

(i) (u,v) is as in condition (A2);
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(ii) there exist three constants p > 0, θ1 > 0, and θ2 > 0 such that u(t,x) > α on (0,T)×
[−p√t − θ2, p

√
t + θ2] and v(t,x) > β on (0,T)× [−p√t − θ1, p

√
t + θ1] for each

T > 0;
(iii) (u(t,x),v(t,x)) converges to (1,1) as t ↑ ∞, uniformly on any compact subset of R.

Sketch of the proof of Proposition 2.7. A weak lower solution (u,v) as in the statement is
obtained as a unique weak solution of the problem

ut = uxx −Lu+Lh1(t,x), 0 < t < T , x ∈ R,

vt = vxx −Lv+Lh2(t,x), 0 < t < T , x ∈ R,

u |t=0= u0, v |t=0= v0, x ∈ R,

(2.10)

where

hi(t,x) :=
⎧
⎨

⎩

1 if |x| ≤ p
√
t+ θi,

0 otherwise,
(2.11)

with suitable positive constants p and θi. �

Sketch of the proof of Theorem 2.6. Fix T > 0 arbitrarily. By Proposition 2.5, it suffices to
show that the maximal weak solution (U ,V)∈ [0,1]× [0,1] coincides with the minimal
weak solution (u,v) ∈ [0,1] × [0,1]. Put T0 := sup{t ∈ [0,T) | (U ,V) = (u,v)
on [0, t]×R}. We will prove that (U ,V) = (u,v) in (T0,T0 +T1)×R for some 0 < T1 <
T −T0. To do this, we use an idea of Feireisl [3]. For simplicity, we consider only the case
T0 = 0.

Define E(t) := ‖V − v‖L∞((0,t)×R) and Js,β,t := {y ∈ R | |V(s, y)−β| ≤ E(t)}. Let K(t,x)
be the heat kernel. Then U(t,x)−u(t,x) satisfies

U(t,x)−u(t,x)

=
∫ t

0

∫

R
K(t− s,x− y)

(
f
(
U(s, y)

)− f
(
u(s, y)

))
dyds

− f (1)
∫ t

0

∫

Js,β,t

K(t− s,x− y)
(
H
(
V(s, y)−β)−H(v(s, y)−β))dyds

=: A(t,x) +B(t,x).

(2.12)

(1) Estimate of A(t,x): by the Lipschitz continuity of f , there exists a constant L1 > 0
such that, for 0 < t < T and x ∈ R,

∣
∣A(t,x)

∣
∣≤ L1t‖U −u‖L∞((0,t)×R). (2.13)

(2) Estimate of B(t,x): the general shape of v0 is inherited byV ∈ [0,1], andV(t,0) > β
on [0,T) by Proposition 2.7. Therefore, there exist two constants ν1 > 0 and 0 < T2 < T
such that |Vx(t,x)| ≥ ν1 > 0 on {(t,x) ∈ (0,T2)×R | |V(t,x)− β| ≤ E(T2)}. Further, for
any 0 < t < T2, the cardinal number of {x ∈ R | V(t,x) = β} equals 2. Hence, for any
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0 < t < T2 and any 0 < s < t, we get the inequality

μ
(
Js,β,t

)= μ({y ∈ R | ∣∣V(s, y)−β∣∣≤ E(t)
})≤ 4E(t)

ν1
, (2.14)

so that, for 0 < t < T2 and x ∈ R,

∣
∣B(t,x)

∣
∣≤ 8| f (1)|√t√

πν1
‖V − v‖L∞((0,t)×R). (2.15)

By combining (2.12), (2.13), and (2.15), we have, for 0 < t < T2,

‖U −u‖L∞((0,t)×R) ≤ L1t‖U −u‖L∞((0,t)×R) +
8| f (1)|√t√

πν1
‖V − v‖L∞((0,t)×R). (2.16)

Similarly, there exist three constants L2 > 0, ν2 > 0, and T3 > 0 such that, for 0 < t < T3,

‖V − v‖L∞((0,t)×R) ≤ 8|g(1)|√t√
πν2

‖U −u‖L∞((0,t)×R) +L2t‖V − v‖L∞((0,t)×R). (2.17)

By combining inequalities (2.16) and (2.17) and choosing suitably 0 < T1 < min(T2,T3),
we find that (U ,V)= (u,v) in (0,T1)×R. �

We consider the following condition on (u0,v0):
(B3) (u0,v0) satisfies the following four conditions:

(B3-1) (u0,v0)∈ C1(R)×C1(R);
(B3-2) (u′0(x),v′0(x))≥ (0,0) on R;
(B3-3) (u0(x1),v0(x2))= (α,β) and (u′0(x1),v′0(x2)) > (0,0) for some x1, x2 ∈ R;
(B3-4) (u0(−∞),v0(−∞))= (0,0) and (u0(∞),v0(∞))= (1,1).

Then, in a similar way to the proof of Theorem 2.6, we can prove the following theorem.

Theorem 2.8. Let 0 < α, β < 1, and assume that conditions (A1) and (B3) are satisfied.
Then the weak solution of problem (1.1) is globally unique in time.

Remark 2.9. Nonuniqueness results for parabolic equations with discontinuous nonlin-
earities have been obtained in Feireisl and Norbury [4] and Deguchi [1].

We next describe results on stability of two constant stationary solutions (0,0) and
(1,1) of problem (1.1). The following theorem is a consequence of Proposition 2.7.

Theorem 2.10. Let 0 < α, β < 1, and assume that conditions (A1) and (A3) are satisfied.
Then the constant stationary solution (1,1) of problem (1.1) is asymptotically stable in the
compact-open topology if 0 < α+β < 1.

Instead of condition (A3), we consider the following condition:
(A4) there exists a constant L > 0 such that f (u)≤−Lu in (0,1), g(v)≤−Lv in (0,1)

and f (1)= g(1)=−L.
Then we obtain the following theorem.

Theorem 2.11. Let 0 < α, β < 1, and assume that conditions (A1) and (A4) are satisfied.
Then the constant stationary solution (0,0) of problem (1.1) is asymptotically stable in the
compact-open topology if α+β > 1.
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We next discuss the case α+β = 1.

Theorem 2.12. Let 0 < α, β < 1, and assume that conditions (A1), (A3), and (A4) are
satisfied. Then both the constant stationary solutions (0,0) and (1,1) of problem (1.1) are
asymptotically unstable in the compact-open topology if α+β = 1.

Sketch of the proof of Theorem 2.12. We consider the following condition on (u0,v0):
(B4) (u0,v0) satisfies the following three conditions:

(B4-1) (u0,v0)∈ C1(R)×C1(R);
(B4-2) (u′0(x),v′0(x))≥ (0,0) on R;
(B4-3) (u0(x),v0(x)) equals either (0,0) or (1,1) outside a finite interval.

Under this condition, it suffices to construct a weak lower solution (u,v)∈ [0,1]× [0,1]
and a weak upper solution (u,v) ∈ [0,1]× [0,1] of problem (1.1) which are as in con-
dition (A2) and converge neither to (0,0) nor (1,1) on R as t ↑ ∞. Such a weak lower
solution (u,v) is obtained as a unique weak solution of the problem

ut = uxx −Lu+Lh2(x), 0 < t < T , x ∈ R,

vt = vxx −Lv+Lh1(x), 0 < t < T , x ∈ R,

u |t=0= u0, v |t=0= v0, x ∈ R,

(2.18)

where L > 0 is as in condition (A3) and

hi(x) :=
⎧
⎨

⎩

1 if θi ≤ x <∞,

0 otherwise,
(2.19)

with a suitable positive constant θi. A weak upper solution (u,v) with the above properties
can be constructed similarly. �

3. Concluding remarks

We discuss the relationship between weak solutions of problem (1.1) and solutions of
problem (1.1) formulated as differential inclusions. To distinguish between these two
kinds of solutions, we call the latter “w-solutions.” The definition of aw-solution of prob-
lem (1.1) is given as follows.

Definition 3.1. A pair (u,v) of functions u, v ∈ CB([0,T)×R)∩C0,1((0,T)×R) is called
a w-solution of problem (1.1) if it satisfies the following two conditions:

(i) there exist two bounded measurable functions k and � on (0,T)×R such that, for
all ϕ∈�((0,T)×R),

∫ T

0

∫

R

(
uϕt −uxϕx +

(
f (u) + k(t,x)

)
ϕ
)
dxdt = 0,

∫ T

0

∫

R

(
vϕt − vxϕx +

(
g(v) + �(t,x)

)
ϕ
)
dxdt = 0,

(3.1)
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and that

− f (1)Ĥ
(
v(t,x)−β)≤ k(t,x)≤− f (1)H̃

(
v(t,x)−β),

−g(1)Ĥ
(
u(t,x)−α)≤ �(t,x)≤−g(1)H̃

(
u(t,x)−α)

(3.2)

almost everywhere in (0,T)×R, where H̃ and Ĥ are as in condition (A2);
(ii) for all x0 ∈ R,

lim
t↓0,x→x0

u(t,x)= u0
(
x0
)
, lim

t↓0,x→x0

v(t,x)= v0
(
x0
)
. (3.3)

We can easily check that the maximal and minimal weak solutions (U ,V), (u,v) ∈
[u,u]× [v,v] obtained in Theorem 2.3 of problem (1.1), are w-solutions of problem
(1.1). The following proposition shows the relationship between them and other w-
solutions.

Proposition 3.2. Let 0 < α, β < 1, and assume that conditions (A1), (A2), and (B1) are
satisfied. Then the maximal and minimal weak solutions (U ,V), (u,v)∈ [u,u]× [v,v] ob-
tained in Theorem 2.3 of problem (1.1), are the maximal and minimal w-solutions, respec-
tively, of problem (1.1) in the order interval [u,u]× [v,v].

Concerning the size of w-solutions of problem (1.1), the following proposition holds.

Proposition 3.3. Let 0 < α, β < 1, and assume that conditions (A1) and (B1) are satisfied.
Then any w-solution of problem (1.1) is contained in the order interval [0,1]× [0,1].

Remark 3.4. By Propositions 3.2 and 3.3, Theorems 2.6, 2.8, 2.10, 2.11, and 2.12 also hold
for w-solutions of problem (1.1).
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ASYMPTOTIC STABILITY FOR A HIGHER-ORDER
RATIONAL DIFFERENCE EQUATION

M. DEHGHAN, C. M. KENT, AND H. SEDAGHAT

For the rational difference equation xn = (α+
∑m

i=1 aixn−i)/(β+
∑m

i=1 bixn−i), n= 1,2, . . . ,
we obtain sufficient conditions for the asymptotic stability of a unique fixed point relative
to an invariant interval. We focus on negative values for the coefficients ai, a range that
has not been considered previously.

Copyright © 2006 M. Dehghan et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the higher-order difference equation

xn = f
(
xn−1, . . . ,xn−m

)
, n= 1,2, . . . , (1.1)

where m is a nonnegative integer and f : Rm → R is a given function. In the literature
on difference equations, problems involving the asymptotic stability of fixed points of
(1.1) in the case in which f is monotonic (nonincreasing or nondecreasing) in each of
its arguments or coordinates arise frequently. In particular, the general rational difference
equation

xn = α+
∑m

i=1 aixn−i
β+

∑m
i=1 bixn−i

, n= 1,2, . . . , (1.2)

and various special cases of it have been studied extensively in the literature; see, for ex-
ample, [3, 5] for a discussion of (1.2) in its general form and [4] for a discussion of the
second-order case. The bibliographies in these books contain numerous references to ad-
ditional results that discuss asymptotic stability for various special cases.

In this paper we consider (1.2) in its general form above and give conditions for the
asymptotic stability of a fixed point relative to an invariant interval that contains the
fixed point. Our results concern a range of parameters, including negative coefficients,
that extend those previously considered elsewhere.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 335–339
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2. The main results

We first quote a basic result from [1] as a lemma. This result concerns the general equa-
tion (1.1) and was inpired by the study of pulse propagation in a ring of excitable media
in [7] which involved an equation of type (1.1).

Lemma 2.1. Let r0, s0 be extended real numbers where −∞≤ r0 < s0 ≤∞ and consider the
following hypotheses:

(H1) f (u1, . . . ,um) is nonincreasing in each u1, . . . ,um ∈ I0, where I0 = (r0,s0] if s0 <∞
and I0 = (r0,∞) otherwise;

(H2) g(u)= f (u, . . . ,u) is continuous and decreasing for u∈ I0;
(H3) there is r ∈ [r0,s0) such that r < g(r)≤ s0. If r0 =−∞ or limt→r+

0
g(t)=∞, then we

assume that r ∈ (r0,s0);
(H4) there is s∈ [r,x∗) such that g2(s)≥ s, where g2(s)= g(g(s));
(H5) there is s∈ [r,x∗) such that g2(u) > u for all u∈ (s,x∗).
Then the following is true.

(a) If (H2) and (H3) hold, then (1.1) has a unique fixed point x∗ in the open interval
(r,g(r)).

(b) Let I = [s,g(s)]. If (H1)–(H4) hold, then I is an invariant interval for (1.1) and
x∗ ∈ I .

(c) If (H1)–(H3) and (H5) hold, then x∗ is stable and attracts all solutions of (1.1)
with initial values in (s,g(s)).

(d) If (H1)–(H3) hold, then x∗ is an asymptotically stable fixed point of (1.1) if it is an
asymptotically stable fixed point of the mapping g; for example, if g is continuously
differentiable with g′(x∗) >−1.

Remarks 2.2. (1) If f is continuous on [s,g(s)]m, then the attractivity of x∗ in Lemma
2.1(c) also follows from the general [2, Theorem 1.15]; see [1] for additional comments
in this regard.

(2) Condition (H5) is equivalent to x∗ being an asymptotically stable fixed point of the
function g relative to the interval (s,g(s)); see [5, Theorem 2.1.2]. Hence Lemma 2.1(d)
follows from Lemma 2.1(c).

Now we consider the rational difference equation (1.2) which we rewrite for notational
convenience as follows:

xn = α−∑m
i=1 aixn−i

β+
∑m

i=1 bixn−i
, (2.1)

where

α > 0, ai,bi ≥ 0, i= 1,2, . . . ,m,

a=
m∑

i=1

ai > 0, b =
m∑

i=1

bi > 0, β > a.
(2.2)

We note that the special case where ai = 0 for all i is discussed in [1, 6], so we will not
consider that case here. The functions f and g in Lemma 2.1 take the following forms
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for (2.1):

f
(
u1, . . . ,um

)= α−∑m
i=1 aiui

β+
∑m

i=1 biui
, g(u)= α− au

β+ bu
, u,ui ∈R. (2.3)

Theorem 2.3. Assume that f , g are given by (2.3) and that conditions (2.2) hold. If s =
−α(β− a)/(a2 +αb), then

(a) g(s)= α/a and s >−β/b;
(b) I = [s,g(s)] is an invariant interval for (2.1);
(c) every solution of (2.1) with initial values in (s,g(s)) converges to the fixed point

x∗ =
−(a+β) +

√
(a+β)2 + 4αb

2b
∈ (0,g(s)

)⊂ I. (2.4)

Proof. (a) The first assertion is easily verified by substitution, and the second follows
from the observation that the value of s is an increasing function of a when β > a and the
infimum of s is −β/b.

(b) and (c) In Lemma 2.1, set r0 =−β/b and let s0 = α/a. For u∈ (r0,s0]= I0, we have
α− au≥ 0 and β+ bu > 0. Thus, g has a decreasing numerator and an increasing denom-
inator on I0, so g is decreasing on I0. Similarly, if (u1, . . . ,um)∈ Im0 , then

α−
m∑

i=1

aiui≥ α− amax
{
u1, . . . ,um

}≥ α− as0 = 0,

β+
m∑

i=1

biui≥ β+ bmin
{
u1, . . . ,um

}
> β+ br0 = 0,

(2.5)

so that f (u1, . . . ,um) ≥ 0. Thus, for (u1, . . . ,um) ∈ Im0 , the numerator of f is a decreasing
function of uj and its denominator an increasing function of uj for each j = 1, . . . ,m with
ui fixed for i
= j. It follows that f is a decreasing function on Im0 in each of its coordinates.
Therefore, hypotheses (H1) and (H2) are satisfied in Lemma 2.1, and (H3) also holds
since for r = s∈ (r0,0) it is true that

r = s < 0 <
α

a
= s0 = g(s)= g(r). (2.6)

Further, the interval I is invariant because g is decreasing with g(g(s))= 0∈ I so g(I)⊂
I and part (b) is established. To complete the proof of part (c), we now establish (H5).
First, we may verify by a straightforward calculation that x∗ is a solution of the equation
g(u) = u so that x∗ is a fixed point of (2.1). Also, under conditions (2.2) x∗ > 0 and
x∗ < g(s) if and only if

−(a+β) +
√

(a+β)2 + 4αb

2b
<
α

a
,

iff a
√

(a+β)2 + 4αb < 2αb+ a(a+β),

iff a2(a+β)2 + 4a2αb <
[
2αb+ a(a+β)

]2
,

iff 0 < α2b2 +αβab.

(2.7)
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The last inequality is true under conditions (2.2), so it follows that x∗ ∈ (0,g(s))⊂ I.
Since g is decreasing on I0 ⊃ I , we conclude that x∗ is the only fixed point of g in I . Now
the inequality g2(u) > u can be written as

α(β− a) +
(
αb+ a2

)
u

(
β2 +αb

)
+ b(β− a)u

> u (2.8)

or equivalently as

b(β− a)u2 +
(
β2− a2)u+α(β− a) > 0. (2.9)

If β > a, then dividing by β− a gives

bu2 + (β+ a)u−α < 0. (2.10)

For this last inequality to hold, we need u∈ (u−,u+) where u− and u+ are the two roots
of the equation

bu2 + (β+ a)u−α= 0. (2.11)

But u+ = x∗ and

u− =
−(a+β)−

√
(a+β)2 + 4αb

2b
<
−(a+β)− (a+β)

2b
<−β

b
. (2.12)

Therefore, (2.10) holds for u∈ (−β/b,x∗) and, in particular, for u∈ (s,x∗). Thus (H5)
holds and by Lemma 2.1 x∗ is a stable attractor of all solutions in (s,g(s)). This completes
the proof. �

Remarks 2.4. The function g above is in fact decreasing on (−β/b,∞), and iterates of
g starting from an initial value u0 ∈ (−β/b,∞) converge to x∗ if β > a. This inequal-
ity assures that (−β/b,∞) is an invariant interval for g in addition to (H5) holding on
(−β/b,x∗) as shown in the proof of Theorem 2.3. However, the fixed point x∗ above will
not in general attract solutions of the higher-order equation (2.1) that start from initial
values outside the interval I = [s,g(s)]. One reason for this is that (H1) does not hold if
the numerator of f can be negative, which is possible if some of the coordinates of the
point (u1, . . . ,um) are large and positive.

For example, consider the following special case of (2.1):

xn = 1− axn−2

1 + b1xn−1 + b2xn−2
, (2.13)

where α= β = 1, b1,b2 > 0, and a1 = 0 so a= a2. The second-order equation (2.13) has a
2-cycle {p,q} if

p = 1− ap
1 + b1q+ b2p

, q = 1− aq
1 + b1p+ b2q

. (2.14)
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If, for example,

b2 < b1 < 4b2
2 + b2, a >

2b2√
b1− b2

− 1, (2.15)

then the system of (2.14) has real solutions:

p = c±
√
c2− 4

(
b1− b2

)

2
(
b1− b2

) , q =−p− 1 + a
b2

= c∓
√
c2− 4

(
b1− b2

)

2
(
b1− b2

) , (2.16)

where c = (1 + a)(1− b1/b2). In particular, if b2 = 1/4, b1 = 1, and a= 0.8, then c =−5.4
and from (2.16) we obtain p ≈ −7.01 and q ≈ −0.19. Also, here α/a = 1/0.8 = 1.25 and
the invariant interval is I ≈ [−0.106,1.25]. Choosing at least one initial condition greater
than 1.25 may cause a trajectory of (2.13) to reach the 2-cycle {p,q}. With, for ex-
ample, x0 = 0.4 and x−1 = 5 as initial values, we obtain x1 ≈ −1.13 which is less than
−β/b =−0.8, and after this the solutions oscillate about the point of discontinuity −β/b.
Of course, if both initial conditions are in the interval of Theorem 2.3, then the corre-
sponding solution of (2.13) converges to the fixed point x∗ ≈ 0.45.
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INEQUALITIES FOR POSITIVE SOLUTIONS OF
THE EQUATION ẏ(t)=−∑n

i=1(ai + bi/t)y(t− τi)
JOSEF DIBLÍK AND MÁRIA KÚDELČÍKOVÁ

The equation ẏ(t) = −∑n
i=1 (ai + bi/t)y(t− τi), where ai,τi ∈ (0,∞), i = 1,2, . . . ,n, and

bi ∈ R are constants, is considered when t→∞ under supposition that the transcenden-
tal equation λ =∑n

i=1 aie
λτi has two real and different roots. The existence of a positive

solution is proved as well as its asymptotic behaviour.

Copyright © 2006 J. Diblı́k and M. Kúdelčı́ková. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider equation

ẏ(t)=−
n∑

i=1

(

ai +
bi
t

)

y
(
t− τi

)
, (1.1)

where ai,τi ∈ R+ := (0,∞), i = 1,2, . . . ,n, and bi ∈ R are constants. The case when there
exist positive solutions is studied. In the supposition of existence of two real (positive)
different roots λj , j = 1,2, λ1 < λ2, of the transcendental equation

λ=
n∑

i=1

aieλτi , (1.2)

we prove the existence of a positive solution y = y(t) having for t →∞ asymptotic be-
haviour

y(t)∼ e−λ1ttr1 (1.3)

with an appropriate number r1. Corresponding below and upper inequalities are given
for y(t), too.

Hindawi Publishing Corporation
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2. A nonlinear theorem

Let Rn be equipped with the maximum norm. With Rn≥0 (Rn>0) we denote the set of all
componentwise nonnegative (positive) vectors v in Rn, that is, v = (v1, . . . ,vn) with vi ≥ 0
(vi > 0) for i = 1, . . . ,n. For u,v ∈ Rn, we say u ≤ v if v− u ∈ Rn≥0, u� v if v− u ∈ Rn>0,
u < v if u≤ v and u	= v.

Let C([a,b],Rn), where a,b ∈ R, a < b, be the Banach space of the continuous map-
pings from the interval [a,b] intoRn equipped with the supremum norm ‖ψ‖ = supθ∈[a,b]

|ψ(θ)|, ψ ∈ C([a,b],Rn). We will denote this space as Cr if a=−r < 0 and b= 0.
Let us consider a system of functional differential equations

ẏ(t)= f
(
t, yt

)
, (2.1)

where f : Ω→ Rn is a continuous quasibounded functional which satisfies a local Lips-
chitz condition with respect to the second argument and Ω is an open subset in R×Cr .
We assume that the derivative in (2.1) is at least right-sided.

If σ ∈ Rn, A ≥ 0, and y ∈ C([σ − r,σ +A],Rn), then for each t ∈ [σ ,σ +A] we define
yt ∈ Cr by means of relation yt(θ)= y(t+ θ), θ ∈ [−r,0].

In accordance with [2], a function y is said to be a solution of the system (2.1) on
[σ − r,σ +A) with A > 0 if y ∈ C([σ − r,σ +A),Rn), (t, yt) ∈ Ω for t ∈ [σ ,σ +A) and
y(t) satisfies (2.1) for t ∈ [σ ,σ +A). For given σ ∈ R, ϕ∈ Cr , we say y(σ ,ϕ) is a solution
of (2.1) through (σ ,ϕ) ∈Ω if there is an A > 0 such that y(σ ,ϕ) is a solution of system
(2.1) on [σ − r,σ +A) and yσ(σ ,ϕ) = ϕ. In view of the above conditions, each element
(σ ,ϕ)∈Ω determines a unique solution y(σ ,ϕ) of system (2.1) through (σ ,ϕ)∈Ω on its
maximal interval of existence which depends continuously on the initial data [2].

For given k ∈ Rn>0, let us consider the integro-functional inequalities

L1(t)≤−λ(t)− (I(k,L1
)
(t)
)−1

f
(
t,I
(
k,L1

)
t

)
,

L2(t)≥−λ(t)− (I(k,L2
)
(t)
)−1

f
(
t,I
(
k,L2

)
t

) (2.2)

on [t0,∞), t0 ∈ Rn, for Lj ∈ C([t0− r,∞),Rn), j = 1,2, where

I : Rn>0×C
([
t0− r,∞

)
,Rn
)−→ C

([
t0− r,∞

)
,Rn
)

(2.3)

is defined by

Ii(k,L)(t) := ki exp
(

−
∫ t

t0−r
λi(s)ds+

∫∞

t
Li(s)ds

)

, (2.4)

i= 1, . . . ,n, t ∈ [t0− r,∞) with a fixed function λ∈ C([t0− r,∞),Rn), provided that im-
proper integrals

∫∞
Li(s)ds exist.

We consider an operator equation

L(t)= (TL)(t) :=−λ(t)− (I(k,L)(t)
)−1

f
(
t,I(k,L)t

)
, (2.5)
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where λ is a fixed function on interval [t0− r,∞). It is easy to verify that system (2.1) is
connected with operator equation (2.5) by the substitution

y(t)= I(k,L)(t). (2.6)

A function L is said to be a solution of operator equation (2.5) on interval [σ − r,σ +A)
with A > 0 if L∈ C([σ − r,σ +A),Rn), (t,Lt)∈Ω for t ∈ [σ ,σ +A) and L(t) satisfies (2.5)
for t ∈ [σ ,σ +A). The next theorem which is necessary for our investigation and taken
from [1] indicates conditions under which there exists solution of system (2.1).

Theorem 2.1. Let us suppose that
(i) for any M ≥ 0, ϑ≥ t0, there are K1, K2 such that

∣
∣(TL)(t)

∣
∣≤ K1,

∣
∣(TL)(t)− (TL)(t′)

∣
∣≤ K2|t− t′|

(2.7)

for any t, t′ ∈ [t0,ϑ] and any function L∈ C([t0− r,ϑ),Rn) with |L| ≤M;
(ii) there are k ∈ Rn>0 and functions Lj ∈ C([t0 − r,∞),Rn), j = 1,2, with convergent

integrals
∫∞

Lij(s)ds, j = 1,2; i= 1, . . . ,n, satisfying L1(t)≤ L2(t) on [t0− r,∞) and
the inequalities (2.2) on [t0,∞), that is, the inequalities:

L1(t)≤ (TL1
)
(t), L2(t)≥ (TL2

)
(t); (2.8)

(iii) there is a Lipschitz continuous function ϕ : [t0− r, t0]→ Rn satisfying ϕ(t0)= 0 and
on [t0− r, t0] inequalities

L1(t)≤ (TL1
)(
t0
)

+ϕ(t), L2(t)≥ (TL2
)(
t0
)

+ϕ(t); (2.9)

(iv) for any functions Λ j(t)∈ C([t0− r,ϑ),Rn), j = 1,2, with Λ1(t)≤Λ2(t) for t ∈ [t0−
r,ϑ), ϑ≥ t0, we have

(
TΛ1

)
(t)≤ (TΛ2

)
(t), t ∈ [t0,∞). (2.10)

Then there exists a solution y of the system (2.1) on [t0− r,∞) satisfying

I
(
k,L1

)
(t)≤ y(t)≤ I(k,L2

)
(t) (2.11)

on t ∈ [t0− r,∞).

3. Linear corollary of the theorem

Let us apply Theorem 2.1 to the investigation of delayed linear equation of the type (2.1)
with f (t, yt) :=−∑n

i=1 ci(t)y(t− τi(t)), that is, to the equation

ẏ(t)=−
n∑

i=1

ci(t)y
(
t− τi(t)

)
(3.1)
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with a positive Lipschitz continuous bounded coefficients ci on [t0,∞) and Lipschitz con-
tinuous bounded positive delays τi(t)≤ r, r ∈ R+, where we suppose differences t− τi(t)
increasing on [t0,∞). Let us define τ(t) :=max{τi(t)}, i = 1,2, . . . ,n. Using the substitu-
tion (2.6) for linear case we obtain the operator (TL)(t) defined by formula (2.5) in the
form

(TL)(t) :=−λ(t) +
n∑

i=1

ci(t)exp
(∫ t

t−τi(t)

[
λ(s) +L(s)

]
ds
)

. (3.2)

Now we apply Theorem 2.1 to linear equation (3.1). We omit corresponding (techni-
cally cumbersome) proof.

Theorem 3.1. Let us suppose that there are continuous functions Lj : [t0 − τ(t0),∞)→ R,
j = 1,2, and a Lipschitz continuous function ϕ(t) : [t0− τ(t0), t0)→ R satisfying ϕ(t0)= 0,
L1(t) ≤ L2(t) for t ∈ [t0− τ(t0),∞) and integrals

∫∞
Lj(s)ds, j = 1,2, exist. Let a Lipschitz

continuous bounded function λ : [t0 − τ(t0),∞)→ R be given such that also the following
inequalities are satisfied:

λ(t) +L1(t)≤
n∑

i=1

ci(t)exp
(∫ t

t−τi(t)

[
λ(s) +L1(s)

]
ds
)

, (3.3)

λ(t) +L2(t)≥
n∑

i=1

ci(t)exp
(∫ t

t−τi(t)

[
λ(s) +L2(s)

]
ds
)

(3.4)

on interval [t0,∞), and

λ(t0) +L1(t)≤
n∑

i=1

ci
(
t0
)

exp
(∫ t0

t0−τi(t0)

[
λ(s) +L1(s)

]
ds
)

+ϕ(t), (3.5)

λ
(
t0
)

+L2(t)≥
n∑

i=1

ci
(
t0
)

exp
(∫ t0

t0−τi(t0)

[
λ(s) +L2(s)

]
ds
)

+ϕ(t) (3.6)

on interval [t0− τ(t0), t0].
Then there exists a solution y = y(t) of (3.1) on [t0− τ(t0),∞), such that

exp
[∫∞

t
L1(s)ds

]

≤ y(t) · e
∫ t
t0−τ(t0) λ(s)ds ≤ exp

[∫∞

t
L2(s)ds

]

. (3.7)

4. Investigation of (1.1)

We consider delayed equation of the type (3.1) with ci(t) := (ai + bi/t), τi(t) := τi = const,
where ai,τi ∈ R+ and bi ∈ R, i= 1,2, . . . ,n, that is, (1.1).
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We will try to find so-called approximative solutions corresponding to (1.1) in the
form

yas(t)∝ e−λttr
(

1 +
A

t

)

, (4.1)

where r and A are coefficients (specified below in Theorem 4.3) and λ is one from two
real positive different roots λ1 < λ2 of the transcendental equation (1.2), the existence of
which is supposed. We show that these solutions satisfy formally for t→∞ (1.1) with the
order of accuracy O(e−λttr−2).

We define the auxiliary function f (λ) := λ−∑n
i=1 aie

λτi . Then

f ′(λ)= 1−
n∑

i=1

aiτieλτi , f ′′(λ)=−
n∑

i=1

aiτi
2eλτi . (4.2)

Lemma 4.1. Let positive constants ai,τi, i= 1,2, . . . ,n, be given and let just two real different
positive roots λj , j = 1,2, λ1 < λ2 of (1.2) exist. Then f ′(λ1) > 0 and f ′(λ2) < 0.

Proof. The second derivative (4.2) of the function f is on R negative. Therefore the first
derivative f ′ is a decreasing function, f ′(0) = 1 and f ′(+∞) = −∞. Since (1.2) has just
two different positive roots, it means that there exists just one point (extremal point)
λε ∈ (λ1,λ2) for which it holds f ′(λε) = 0. At λε the auxiliary function f (λ) reaches its
maximum and f (λε) > 0. Since that f ′(λ1) > 0 (function f (λ) increases to its maximum)
and f ′(λ2) < 0 (function f (λ) decreases from its maximum). �

The following lemma, the proof of which can be made easily using the binomial for-
mula and the method of induction and therefore is omitted, will be used in the proof of
next theorem.

Lemma 4.2. Let r ∈ R be given. Then the asymptotic representation

(t− τ)r = tr
[

1− rτ

t
+
r(r− 1)τ2

2t2
+ o
(

1
t2

)]

(4.3)

holds for t→∞.

Theorem 4.3. Let positive constants ai,τi, i = 1,2, . . . ,n, be given and (1.2) has just two
real different roots λj , j = 1,2, λ1 < λ2. Then there exist two approximative solutions of (1.1)
having the form (4.1):

yasj (t)∝ e−λj ttr j
(

1 +
Aj

t

)

, j = 1,2, (4.4)

with

r j =
(

−
n∑

i=1

bieλjτi
)
[
f ′
(
λj
)]−1

, (4.5)

Aj = 1
f ′
(
λj
)

[

− r j
(
r j − 1

)

2
f ′′
(
λj
)− r j

n∑

i=1

biτieλjτi
]

. (4.6)



346 Solutions of the equation ẏ(t)=−∑n
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Proof. At first, note that the coefficients r j , Aj , j = 1,2, are well defined since, due to
Lemma 4.1, f ′(λj)	= 0. Now substituting the approximative solution (4.1) into (1.1), we
expect that

− λe−λt
(
tr +Atr−1)+ e−λt

(
rtr−1 +A(r− 1)tr−2)

∝−
n∑

i=1

(

ai +
bi
t

)

e−λ(t−τi)((t− τi
)r

+A
(
t− τi

)r−1)
.

(4.7)

With the aid of Lemma 4.2 and after some necessary computations, we get

− λ− λA

t
+
r

t
+
A(r− 1)

t2

∝−
n∑

i=1

eλτi
(

ai +
1
t

(
aiA− airτi + bi

)

+
1
t2

(

aiAτi +A
(− airτi + bi

)
+

1
2
airτi

2(r− 1)− birτi
))

.

(4.8)

Now comparing the coefficients at the members with the same powers t0, t−1, and t−2 of
t, we obtain

λ=
n∑

i=1

aieλτi ,

−λA+ r =−
n∑

i=1

eλτi
(
aiA− airτi + bi

)
,

A(r− 1)=−
n∑

i=1

eλτiτi

(

aiA− aiAr + biA+
1
2
air(r− 1)τi− bir

)

.

(4.9)

When using the first relation, from the second one, we get

r = 1
f ′(λ)

(

−
n∑

i=1

bieλτi
)(

1−
n∑

i=1

aiτieλτi
)−1(

−
n∑

i=1

bieλτi
)

. (4.10)

From the third equation (using above relations) after some simplifications, we have

A= 1
f ′(λ)

[

− r(r− 1)
2

f ′′(λ)− r
n∑

i=1

biτieλτi
]

. (4.11)

Now identifying the corresponding λ, r, A with λ1, r1, A1 or with λ2, r2, A2, we get the
pair of approximative solutions yas1 (t) and yas2 (t). Thus the proof is finished. �
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Now we define with the aid of coefficients of approximative solutions function λ(t)
and functions L1(t) and L2(t), L1(t)≤ L2(t), corresponding to the root λ= λ1 of (1.2) as

λ(t) := λ1− r1

t
,

L1(t) :=
(
A1− ε1

)

t2
,

L2(t) :=
(
A1 + ε1

)

t2
,

(4.12)

with a constant ε1 ∈ (0,1).

Theorem 4.4. Suppose that (1.2) has just two real different roots λj , j = 1,2, λ1 < λ2. Then
for every ε1 ∈ (0,1) there exist a t0 ∈ R, t0 > τ, τ =max{τi}, i = 1,2, . . . ,n, and a positive
solution y∗(t) of (1.1) on [t0− τ,∞) satisfying inequalities

e−λ1ttr1

(

1 +
A1− ε1

t

)

≤ y∗(t)≤ e−λ1ttr1

(

1 +
A1 + ε1

t

)

, (4.13)

where coefficients r1, A1 are defined by formulas (4.5), (4.6).

Proof. We employ Theorem 3.1. It is supposed that ε1 is a fixed positive number and t0
is large enough to indicate the asymptotic relations and inequalities are valid. Let λ(t),
L1(t), L2(t) be defined by formulae (4.12). At first we show that functions L1(t), L2(t)
really satisfy inequalities (3.3) and (3.4). We have to verify that

λ1− r1

t
+

(
A1− ε1

)

t2
≤

n∑

i=1

(

ai +
bi
t

)

e
∫ t
t−τi(t) (λ1−r1/s+(A1−ε1)/s2)ds (4.14)

holds. Let us simplify the right-hand side (denote it by �). After integration we obtain

�=
n∑

i=1

(

ai +
bi
t

)

exp
[

λ1τi− r1 ln
t

t− τi −
(
A1− ε1

)
(

1
t
− 1
t− τi

)]

=
n∑

i=1

(

ai +
bi
t

)

eλ1τi

(
t− τi
t

)r1

·�
(
τi
)

(4.15)

with

�
(
τi
)

:= exp
[
τi
(
A1− ε1

)

t
(
t− τi

)

]

. (4.16)

It is easy to see that for sufficiently large t,

�(τi)= exp
[

τi
(
A1− ε1

) 1
t2

(

1 +
τi
t

+ o
(

1
t

))]

= 1 +
τi
(
A1− ε1

)

t2
+ o
(

1
t2

)

. (4.17)
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With the aid of Lemma 4.2, we get

�=
n∑

i=1

(

ai +
bi
t

)

eλ1τi

(

1− r1τi
t

+
r1
(
r1− 1

)
τi2

2t2
+ o
(

1
t2

))

·�
(
τi
)

=
n∑

i=1

(

ai +
bi
t

)

eλ1τi

(

1− r1τi
t

+

(
A1− ε1

)
τi

t2
+
r1
(
r1− 1

)
τi2

2t2
+ o
(

1
t2

))

= eλ1τi ·
[

ai +
1
t

(
bi− air1τi

)
+

1
t2

(

aiA1τi− aiε1τi− bir1τi +
air1

(
r1− 1

)
τi2

2

)

+ o
(

1
t2

)]

= λ1 +
[− r1 f

′(λ1
)

+ r1
(
f ′
(
λ1
)− 1

)]1
t

+
1
t2

[

− 1
2
r1
(
r1− 1

)
f ′′
(
λ1
)− r1

n∑

i=1

biτieλ1τi +
(
A1− ε1

)(
1− f ′

(
λ1
))
]

+ o
(

1
t2

)

.

(4.18)

Now we compare coefficients at the members with the same powers (t0, t−1, and t−2) of t
at left-hand and right-hand sides of the inequality (4.14). Left-hand sides are denoted as
� and right-hand sides as � with corresponding indices. We obtain

�0 = λ1, �0 = λ1,

�−1 =−r1, �−1 =−r1,

�−2 =A1− ε1,

�−2 =−1
2
r1
(
r1− 1

)
f ′′
(
λ1
)− r1

n∑

i=1

biτieλ1τi +
(
A1− ε1

)(
1− f ′

(
λ1
))
.

(4.19)

Obviously �0 =�0 and �−1 =�−1 is valid. Since, in view of (4.2), (4.5), and (4.6),

�−2 = A1 f
′(λ1

)
+A1−A1 f

′(λ1
)− ε1 + ε1 f

′(λ1
)= A1− ε1 + ε1 f

′(λ1
)
, (4.20)

then, for the validity of inequality �−2 <�−2, the inequality f ′(λ1) > 0 is sufficient. This
is true (see Lemma 4.1). That means (3.3) is fulfilled. Inequality (3.4) for L2(t) holds by
the same arguments.

Let us show that also inequalities (3.5) and (3.6) hold on [t0 − τ, t0] with Lipschitz
continuous function

ϕ(t) := L1(t)−L1
(
t0
)
. (4.21)

At first we verify validity of (3.5), that is, validity of

λ1− r1

t0
+
A1− ε1

t2
≤

n∑

i=1

(

ai +
bi
t0

)

e
∫ t0
t0−τi (λ1−r1/s+(A1−ε1)/s2)ds +

A1− ε1

t2
− A1− ε1

t20
, (4.22)
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which holds automatically since the inequality

λ1− r1

t0
+
A1− ε1

t20
≤

n∑

i=1

(

ai +
bi
t0

)

e
∫ t0
t0−τi (λ1−r1/s+(A1−ε1)/s2)ds (4.23)

is a special case of (3.3) with t = t0. To show (3.6), we have to verify if

λ1− r1

t0
+
A1 + ε1

t2
≥

n∑

i=1

(

ai +
bi
t0

)

e
∫ t0
t0−τi (λ1−r1/s+(A1−ε1)/s2)ds +

A1− ε1

t2
− A1− ε1

t20
(4.24)

holds on [t0− τ, t0]. After integration, some simplifications, using (4.2), (4.6), and above
computation for �, we can see that it is necessary to verify the inequality

A1− ε1

t20
+

2ε1

t2
≥ 1
t20

((
A1− ε1

)(
1− f ′

(
λ1
))

+A1 f
′(λ1

))
, (4.25)

which can be simplified to 2t20 ≥ f ′(λ1)t2 or (since t0 ≥ t) to the inequality f ′(λ1) ≤ 2
which holds obviously. Hence (3.6) is fulfilled on [t0− τ, t0].

All conditions of Theorem 3.1 are valid. It follows from inequalities (3.7) that there
exists a solution y = y(t) such that

y1(t)≤ y(t)≤ y2(t) (4.26)

with y1(t) := I(k,L1)(t) and y2(t) := I(k,L2)(t). After some simplifications, we get

yj(t)= I
(
k,Lj

)
(t)= exp

(

−
∫ t

t0−τ
λ(s)ds+

∫∞

t
L j(s)ds

)

= exp
(

−
∫ t

t0−τ

[

λ1− r1

s

]

ds+
∫∞

t

A1− ε1

s2
ds
)

= exp
(

− [λ1s− r1 lns
]t
t0−τ +

[

− A1− ε1

s

]∞

t

)

= exp
(

− λ1
(
t− t0 + τ

)
+ r1 ln

t

t0− τ +
A1− ε1

t

)

= e−λ1(t−t0+τ)
(

t

t0− τ
)r1

exp
(
A1− ε1

t

)

= e−λ1(τ−t0) 1
(
t0− τ

)r1 e−λ1ttr1

(

1 +
A1− ε1

t
+ o
(

1
t

))

= Kje−λ1ttr1

(

1 +
A1− ε1

t
+ o
(

1
t

))

, j = 1,2,

(4.27)

with

Kj := e−λ1(τ−t0)(t0− τ
)−r1 , j = 1,2. (4.28)

Put y = y∗(t) := y(t)/K1. Since K1 = K2, inequality (4.13) holds due to the linearity of
(3.1). �
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i=1(ai + bi/t)y(t− τi)

Acknowledgments

The first author was supported by the Grant A 1163401 of Grant Agency of the AS CR
and by the Council of Czech Government MSM 0021630503. The second author was
supported by the Grants nos. 1/0026/03 and 1/3238/06 of the Grant Agency of Slovak
Republic (VEGA).

References
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LOCAL AND GLOBAL ESTIMATES FOR SOLUTIONS TO
THE A-HARMONIC EQUATION AND RELATED OPERATORS

SHUSEN DING

We summarize different versions of the A-harmonic equations for both of differential
forms and functions. We also prove the Hardy-Littlewood inequalities with Orlicz norms.

Copyright © 2006 Shusen Ding. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The A-harmonic equations belong to the nonlinear elliptic equations written in terms of
an operator A satisfying certain structural assumptions. The A-harmonic equations are
of particular importance because they have wide applications in many fields, including
quasiconformal analysis, nonlinear elasticity, and potential theory, see [5–7, 9]. The A-
harmonic equations are important extensions of the p-harmonic equation inRn, p > 1. In
recent years, there have been remarkable advances made in studying the different versions
of the A-harmonic equations for differential forms, see [1–3, 6, 7, 9]. In this paper, we
first summarize different versions of the A-harmonic equations. Then, we prove some
versions of the Hardy-Littlewood inequalities with Ls(logL)α-norms.

We first introduce some definitions and notation. We always assume Ω is a connected
open subset of Rn. For 0≤ k ≤ n, a k-form ω(x) is defined by

ω(x)=
∑

I

ωI(x)dxI =
∑
ωi1i2...ik (x)dxi1 ∧dxi2 ∧···∧dxik , (1.1)

where ωi1i2...ik (x) are real functions in Rn, I = (i1, i2, . . . , ik), i j ∈ {1,2, . . . ,n}, and j =
1,2, . . . ,k. Whenωi1i2...ik (x) are differentiable functions,ω(x) is called a differential k-form.
We write |ω(x)|p = (

∑
I |ωI(x)|2)p/2 and ‖ω‖p,Ω = (

∫
Ω |ω(x)|pdx)1/p. We should note that

a differential 0-form is a differentiable function f : Rn → R. Let ∧l = ∧l(Rn) denote all
l-forms in Rn, generated by dxi1 ∧ dxi2 ∧···∧ dxil , l = 1,2, . . . ,n. We denote the space of
differential l-forms by D′(Ω,∧l). We use Lp(Ω,∧l) to denote the space of all l-forms with
ωI ∈ Lp(Ω,R).

Hindawi Publishing Corporation
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We define the Hodge star operator � : ∧ → ∧ as follows: if ω = αi1,i2,...,ik (x1,x2, . . . ,
xn)dxi1 ∧dxi2 ∧···∧dxik , i1 < i2 < ··· < ik, is a differential k-form, then

�ω = sign(π)αi1,i2,...,ik

(
x1,x2, . . . ,xn

)
dxj1 ∧···∧dxn−k, (1.2)

where π = (i1, . . . , ik, j1, . . . , jn−k) is a permutation of (1, . . . ,n) and sign(π) is the signature
of permutation. The Hodge star operator� has the properties

�ωI(x)dxI =�ωi1i2···ik dxi1 ∧dxi2 ∧···∧dxik = (−1)
∑

(I)ωIdxJ , (1.3)

where I = (i1, i2, . . . , ik), J = {1,2, . . . ,n}− I ,∑(I)= k(k+ 1)/2 +
∑k

j=1 i j . We should notice
that � maps k-forms in Rn to (n− k)-forms for 0 ≤ k ≤ n. For example, in R3, �dx1 =
(−1)2dx2∧dx3 = dx2∧dx3.

2. Different versions of A-harmonic equations

We denote differential operator by d : D′(Ω,∧l) → D′(Ω,∧l+1), for l = 0,1, . . . ,n. The
Hodge codifferential operator d� : D′(Ω,∧l+1)→ D′(Ω,∧l) is given by d� = (−1)nl+1�
d� on D′(Ω,∧l+1), l = 0,1, . . . ,n. The differential equation

d�A(x,dω)= 0 (2.1)

is called the A-harmonic equation and the nonlinear elliptic equation

d�A(x,dω)= B(x,dω) (2.2)

is called the nonhomogeneous A-harmonic equation for differential forms, where A : Ω×
∧l(Rn)→∧l(Rn) and B : Ω×∧l(Rn)→∧l−1(Rn) are operators satisfying the following
conditions:

∣
∣A(x,ξ)

∣
∣≤ a|ξ|p−1,

∣
∣B(x,ξ)

∣
∣≤ b|ξ|p−1,

〈
A(x,ξ),ξ

〉≥ |ξ|p, (2.3)

for almost every x ∈Ω and all ξ ∈ ∧l(Rn). Here a,b > 0 are constants and 1 < p <∞ is
a fixed exponent associated with (2.2). A solution to (2.2) is an element of the Sobolev

space W
1,p
loc (Ω,Λ�−1) such that

∫

Ω
A(x,dω) ·dϕ+B(x,dω) ·ϕ= 0, (2.4)

for all ϕ∈W1,p
loc (Ω,Λ�−1) with compact support. The solutions of the A-harmonic equa-

tion are called A-harmonic tensors.
Let A : Ω×∧l(Rn)→∧l(Rn) be defined by A(x,ξ)= ξ|ξ|p−2 with p > 1. Then A satis-

fies the required conditions and (2.1) becomes the p-harmonic equation

d�
(
dω|dω|p−2)= 0 (2.5)

for differential forms. If we choose p = 2 in (2.5), (2.5) reduces to the Laplace equation

d�(dω)= 0. (2.6)
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If we choose ω to be a function u in (2.1), (2.2), (2.5), and (2.6), respectively, we obtain
the following corresponding A-harmonic equation:

divA(x,∇u)= 0, (2.7)

the nonhomogeneous A-harmonic equation:

divA(x,∇u)= B(x,∇u), (2.8)

the p-Laplace equation or p-harmonic equation:

div
(∇u|∇u|p−2)= 0, (2.9)

and the Laplace equation or harmonic equation:

div(∇u)= 0 or Δu= 0 (2.10)

for functions. By a simple calculation, we know that (2.9) is equivalent to

(p− 2)
n∑

k=1

n∑

i=1

uxkuxiuxkxi + |∇u|2Δu= 0. (2.11)

In addition to the above harmonic equations for functions and differential forms, an-
other kind of differential equations, the conjugate harmonic equations for differential
forms, has also received much investigation in recent years, see [2, 6, 7]. Let u, v, g, and h
be differential forms. Then, the equations

A(x,g +du)= h+d�v, (2.12)

A(x,du)= d�v (2.13)

are called the conjugate A-harmonic equations and the equation

du|du|p−2 = d�v (2.14)

is called the conjugate p-harmonic equation [6]. Considering the length of the paper, we
cannot list the results about these equations here. See [3, 6, 7] for recent results about
(2.12) and (2.13). We should notice that (2.12) is also called the nonhomogeneous A-
harmonic equation. It should be mentioned that in (2.12), (2.13), and (2.14), u is an
(l− 1)-form and v is an (l + 1)-form. A pair (u,v) is called the conjugate A-harmonic
fields or conjugate A-harmonic tensors.

3. Inequality with Orlicz norms

A continuously increasing function ϕ : [0,∞]→ [0,∞] with ϕ(0) = 0 and ϕ(∞) =∞ is
called an Orlicz function. The Orlicz space Lϕ(Ω) consists of all measurable functions
f on Ω such that

∫
Ωϕ(| f |/λ)dx <∞ for some λ = λ( f ) > 0. Lϕ(Ω) is equipped with the

nonlinear Luxemburg functional

‖ f ‖ϕ = inf
{

λ > 0 :
∫

Ω
ϕ
( | f |
λ

)

dx ≤ 1
}

. (3.1)
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A convex Orlicz function ϕ is often called a Young function. If ϕ is a Young function,
then ‖ · ‖ϕ defines a norm in Lϕ(Ω), which is called the Luxemburg norm. For ϕ(t) =
tp logα(e + t), 0 < p <∞, and α ≥ 0 (note that ϕ is convex for 1 ≤ p <∞ and any real α
with α≥ 1− p), we have

‖ f ‖Lp logα L = inf
{

k :
∫

Ω
| f |p logα

(

e+
| f |
k

)

dx ≤ kp
}

. (3.2)

Let 0 < p <∞ and α≥ 0 be real numbers and let E be any subset of Rn. We define the
functional on a measurable function f over E by

[ f ]Lp(logL)α(E) =
(∫

E
| f |p logα

(

e+
| f |
‖ f ‖p

)

dx

)1/p

, (3.3)

where ‖ f ‖p = (
∫
E | f (x)|pdx)1/p.

In 1999, Iwaniec and Verde proved in [8] that the norm ‖ f ‖Lp logα L is equivalent to
the norm [ f ]Lp(logL)α(Ω) if 1≤ p <∞ and α ≥ 0. Recently, we proved the following theo-
rem (Theorem 3.1) in [4] which indicates that the norm ‖ f ‖Lp logα L is also equivalent to
[ f ]Lp(logL)α(Ω) for 0 < p < 1 and α≥ 0.

Theorem 3.1. For each f ∈ Lp(logL)α(Ω), 0 < p <∞, and α≥ 0,

‖ f ‖p ≤ ‖ f ‖Lp logα L ≤ [ f ]Lp(logL)α(Ω) ≤ C‖ f ‖Lp logα L, (3.4)

where C = 2α/p(1 + (α/ep)α)1/p is a constant independent of f .

In 1999, Nolder proved the following local Hardy-Littlewood inequality for solutions
to the conjugate A-harmonic equation in [9].

Lemma 3.2. Let u and v be conjugate A-harmonic tensors in Ω ⊂ Rn, σ > 1, and 0 < s,
t <∞. Then there exists a constant C, independent of u and v, such that

∥
∥u−uQ

∥
∥
s,Q ≤ C|Q|β

∥
∥v− c1

∥
∥q/p
t,σQ,

∥
∥v− vQ

∥
∥
t,Q ≤ C|Q|−βp/q

∥
∥u− c2

∥
∥p/q
s,σQ,

(3.5)

for all cubes Q with σQ ⊂Ω. Here c1 is any form in W1
p, loc(Ω,Λ) with d�c1 = 0, c2 is any

form in W1
q, loc(Ω,Λ) with dc2 = 0, and β = 1/s+ 1/n− (1/t+ 1/n)q/p.

Using Lemma 3.2 and Theorem 3.1, we prove the following Hardy-Littlewood inequal-
ity with Lp(logL)α-norms.

Theorem 3.3. Let u and v be solutions to the conjugate A-harmonic equation (2.13) in
Ω⊂Rn, σ > 1, and 0 < s, t <∞. Then there exists a constant C, independent of u and v, such
that

∥
∥u−uB

∥
∥
Ls(logL)α(B) ≤ C|B|γ‖v− c‖

q/p

Lt(logL)β(σB), (3.6)

for all balls or cubes B with σB ⊂Ω and all α with 0 < α < s and β ≥ 0. Here c is any form in
W1

p, loc(Ω,Λ) with d�c = 0 and γ = 1/s+ 1/n− (1/t+ 1/n)q/p−α/s2.
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Proof. First, using Hölder inequality with 1/s= 1/(s2/(s−α)) + 1/(s2/α), we have

(∫

B

∣
∣u−uB

∣
∣s logα

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

)1/s

=
(∫

B

(
∣
∣u−uB

∣
∣ logα/s

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

))s

dx

)1/s

≤
(∫

B

∣
∣u−uB

∣
∣s

2/(s−α)
dx

)(s−α)/s2(∫

B
logs

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

)α/s2

= ∥∥u−uB
∥
∥
s2/(s−α),B

(∫

B
logs

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

)α/s2

.

(3.7)

Choosing parametermwith 0<m < t and using the Hardy-Littlewood inequality (Lemma
3.2), we have

∥
∥u−uB

∥
∥
s2/(s−α),B ≤ C1|B|γ1‖v− c‖q/pm,σB, (3.8)

where γ1 = (s−α)/s2 + 1/n− (1/m+ 1/n)q/p and c is any coclosed form. Applying Hölder
inequality with 1/m= 1/t+ (t−m)/mt, we obtain

‖v− c‖m,σB

=
(∫

σB

(

|v− c| logβ/t
(

e+
|v− c|
‖v− c‖t

)

log−β/t
(

e+
|v− c|
‖v− c‖t

))m

dx

)1/m

≤
(∫

σB
|v− c|t logβ

(

e+
|v− c|
‖v− c‖t

)

dx

)1/t(∫

σB
log−βm/(t−m)

(

e+
|v− c|
‖v− c‖t

)

dx

)(t−m)/mt

≤
(∫

σB
|v− c|t logβ

(

e+
|v− c|
‖v− c‖t

)

dx

)1/t(∫

σB
1dx

)(t−m)/mt

≤ C2|B|(t−m)/mt

(∫

σB
|v− c|t logβ

(

e+
|v− c|
‖v− c‖t

)

dx

)1/t

.

(3.9)

Combining (3.7), (3.8), and (3.9) yields

(∫

B

∣
∣u−uB

∣
∣s logα

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

)1/s

≤ C3|B|γ1+q(t−m)/mpt

(∫

σB
|v− c|t logβ

(

e+
|v− c|
‖v− c‖t

)

dx

)q/pt

×
(∫

B
logs

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

)α/s2

.

(3.10)
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Note that x > log(e+ x) if x ≥ e. Then

∫

B
logs

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

=
∫

{B:(|u−uB|/‖u−uB‖s)<e}
logs

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

+
∫

{B:(|u−uB|/‖u−uB‖s)≥e}
logs

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

≤ C4 +
∫

B

( ∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)s

dx

= C4 +
1

‖u−uB‖ss

∫

B

∣
∣u−uB

∣
∣sdx

= C5.

(3.11)

Substituting (3.11) into (3.10), we find that

(∫

B

∣
∣u−uB

∣
∣s logα

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

)1/s

≤ C6|B|γ1+q(t−m)/mpt

(∫

σB
|v− c|t logβ

(

e+
|v− c|
‖v− c‖t

)

dx

)q/pt

.

(3.12)

A simple calculation gives

γ1 +
q(t−m)
mpt

= 1
s

+
1
n
−
(

1
n

+
1
t

)
q

p
− α

s2
. (3.13)

Substituting (3.13) into (3.12), we have

(∫

B

∣
∣u−uB

∣
∣s logα

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

)1/s

(3.14)

≤ C6|B|γ
(∫

σB
|v− c|t logβ

(

e+
|v− c|
‖v− c‖t

)

dx

)q/pt

, (3.15)

where γ = 1/s+ 1/n− (1/t + 1/n)q/p− α/s2. By the equivalence of the norm ‖ f ‖Lp logα L

and the functional [ f ]Lp(logL)α(Ω), we know that (3.15) is equivalent to (3.6). The proof of
Theorem 3.3 has been completed. �

Iwaniec and Lutoborski proved the following result in [7]. Let D ⊂Rn be a bounded,
convex domain. To each y ∈ D there corresponds a linear operator Ky : C∞(D,Λl)→
C∞(D,Λl−1) defined by

(
Kyω

)(
x;ξ1, . . . ,ξl

)=
∫ 1

0
tl−1ω

(
tx+ y− ty; x− y, ξ1, . . . , ξl−1

)
dt (3.16)
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and the decomposition ω = d(Kyω) + Ky(dω). A homotopy operator T : C∞(D,Λl)→
C∞(D,Λl−1) is defined by averaging Ky over all points y in D Tω = ∫D ϕ(y)Kyωdy, where
ϕ∈ C∞0 (D) is normalized by

∫
D ϕ(y)dy = 1. We define the l-form ωD ∈D′(D,∧l) by

ωD = |D|−1
∫

D
ω(y)dy, l = 0, ωD = d(Tω), l = 1,2, . . . ,n, (3.17)

for all ω ∈ Lp(D,Λl), 1≤ p <∞, then T(dω)= ω−ωD. Thus, from Theorem 3.3, we have
the following estimate for the composition of the homotopy operator T and the differen-
tial operator d:

∥
∥T(du)

∥
∥
Ls(logL)α(B) ≤ C|B|γ‖v− c‖

q/p

Lt(logL)β(σB) (3.18)

if the condition in Theorem 3.3 is satisfied.
We will need the following Ar-weights or Muckenhoupt weights, and the weak reverse

Hölder inequality for Ar-weights [5].

Muckenhoupt weights. A weight w(x) is called an Ar(E)-weight in a set E ⊂Rn for r > 1,
write w ∈Ar(E) if

sup
B

(
1
|B|

∫

B
wdx

)(
1
|B|

∫

B

(
1
w

)1/(r−1)

dx

)r−1

<∞ (3.19)

for any ball B ⊂ E.

Lemma 3.4. If w ∈Ar , r > 1, then there exist constants λ > 1 and C, independent of w, such
that

‖w‖λ,B ≤ C|B|(1−λ)/λ‖w‖1,B (3.20)

for all cubes or balls B ⊂Rn.
We also prove the Ar(Ω)-weighted Hardy-Littlewood inequality with Ls(logL)α-norms.

Theorem 3.5. In addition to the conditions in Theorem 3.3, assume that w(x)∈Ar(Ω) for
some r > 1. Then

∥
∥u−uB

∥
∥
Ls(logL)α(B,w) ≤ C|B|γ‖v− c‖

q/p

Lt(logL)β(σB,wpt/qs) (3.21)

for any ball B, where γ = 1/s+ 1/n− (1/n+ 1/t)q/p−α(λ− 1)/λs2 and λ > 1 is the constant
appearing in Lemma 3.4.

Proof. By Lemma 3.4, there exist constants λ > 1 and C1, independent of w, such that

‖w‖λ,B ≤ C1|B|(1−λ)/λ‖w‖1,B. (3.22)

For any constants ki > 0, i= 1,2,3, there are constants m> 0 and M > 0 such that

m log
(

e+
x

k1

)

≤ log
(

e+
x

k2

)

≤M log
(

e+
x

k3

)

, (3.23)
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for any x > 0. Therefore, we have

m
(∫

B
|u|t logα

(

e+
|u|
k1

)

dx
)1/t

≤
(∫

B
|u|t logα

(

e+
|u|
k2

)

dx
)1/t

≤M
(∫

B
|u|t logα

(

e+
|u|
k3

)

dx
)1/t

.

(3.24)

By properly selecting constants ki, we will have different inequalities that we need. Choose
k = λs/(λ− 1). Applying the Hölder inequality with 1/s= 1/k+ (k− s)/ks and using (3.22)
and (3.24), we find that

(∫

B

∣
∣u−uB

∣
∣s logα

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

wdx

)1/s

≤
(∫

B

∣
∣u−uB

∣
∣k logαk/s

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

)1/k(∫

B
wk/(k−s)dx

)(k−s)/ks

≤
(∫

B

∣
∣u−uB

∣
∣k logαk/s

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

dx

)1/k(∫

B
wλdx

)1/λs

≤ C2|B|(1−λ)/λs

(∫

B

∣
∣u−uB

∣
∣k logαk/s

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
k

)

dx

)1/k

‖w‖1/s
1,B.

(3.25)

Next, choose m= qst/(qs+ pt(r− 1)). Then, 0 <m < t. From Theorem 3.3, we have

(∫

B

∣
∣u−uB

∣
∣k logαk/s

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
k

)

dx

)1/k

≤ C3|B|γ′
(∫

σB
|v− c|m logβ

′
(

e+
|v− c|
‖v− c‖m

)

dx
)q/pm

,

(3.26)

where γ′ = 1/k + 1/n− (1/n+ 1/m)q/p− α/ks and the parameter β′ will be determined
later. Using Hölder inequality again with 1/m= 1/t+ (t−m)/mt and (3.24), we obtain

(∫

σB
|v− c|m logβ

′
(

e+
|v− c|
‖v− c‖m

)

dx
)1/m

=
(∫

σB

(

|v− c| logβ
′/m
(

e+
|v− c|
‖v− c‖m

)

wp/qsw−p/qs
)m
dx
)1/m

≤
(∫

σB
|v− c|t logβ

′t/m
(

e+
|v− c|
‖v− c‖m

)

wpt/qsdx
)1/t(∫

σB

(
1
w

)mpt/qs(t−m)

dx
)(t−m)/mt

≤ C3

(∫

σB
|v− c|t logβ

′t/m
(

e+
|v− c|
‖v− c‖t

)

wpt/qsdx
)1/t(∫

σB

(
1
w

)1/(r−1)

dx
)p(r−1)/qs

.

(3.27)
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Since w ∈ Ar , then

‖w‖1/s
1,B

(∫

σB

(
1
w

)1/(r−1)

dx
)(r−1)/s

≤ |σB|r/s
((

1
|σB|

∫

σB
wdx

)(
1
|σB|

∫

σB

(
1
w

)1/(r−1)

dx

)r−1)1/s

≤ C4|B|r/s.

(3.28)

Combining (3.25), (3.26), (3.27), and (3.28), we conclude that

(∫

B

∣
∣u−uB

∣
∣s logα

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

wdx

)1/s

≤ C5|B|γ
(∫

σB
|v− c|t logβ

′t/m
(

e+
|v− c|
‖v− c‖m

)

wpt/qsdx
)q/pt

,

(3.29)

where γ = γ′ + (1− λ)/λs+ r/s= 1/s+ 1/n− (1/n+ 1/t)q/p−α(λ− 1)/λs2. Selecting β′ =
βm/t and using (3.24), we have

(∫

σB
|v− c|t logβ

′t/m
(

e+
|v− c|
‖v− c‖m

)

wpt/qsdx
)q/pt

≤ C6

(∫

σB
|v− c|t logβ

(

e+
|v− c|
‖v− c‖t

)

wpt/qsdx
)q/pt

.

(3.30)

Substituting (3.30) into (3.29) yields

(∫

B

∣
∣u−uB

∣
∣s logα

(

e+

∣
∣u−uB

∣
∣

∥
∥u−uB

∥
∥
s

)

wdx
)1/s

≤ C7|B|γ
(∫

σB
|v− c|t logβ

(

e+
|v− c|
‖v− c‖t

)

wpt/qsdx

)q/pt

,

(3.31)

which is equivalent to

∥
∥u−uB

∥
∥
Ls(logL)α(B,w) ≤ C|B|γ‖v− c‖

q/p

Lt(logL)β(σB,wpt/qs) (3.32)

by the equivalence of the norm ‖ f ‖Lp logα L and the functional [ f ]Lp(logL)α(Ω). The proof of
Theorem 3.5 has been completed. �

From [5], we know that ifw ∈ Ar(E) and 0 < η ≤ 1, thenwη ∈ Ar(E). Therefore, under
the same condition of Theorem 3.5, we also have the following local estimate:

∥
∥u−uB

∥
∥
Ls(logL)α(B,wη) ≤ C|B|γ‖v− c‖

q/p

Lt(logL)β(σB,wηpt/qs). (3.33)

In 1999, Nolder also proved the following global Hardy-Littlewood inequality with
Ls-norms in John domain Ω [9].
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Theorem 3.6. Let u∈D′(Ω,Λ0) and v ∈D′(Ω,Λ2) be conjugate A-harmonic tensors. Let
q ≤ p, v− c ∈ Lt(Ω,Λ2), and s > 0 and t > 0 satisfy 1/s+ 1/n− (1/t + 1/n)q/p = 0. Then
there exists a constant C, independent of u and v, such that

∥
∥u−uB0

∥
∥
s,Ω ≤ C‖v− c‖

q/p
t,Ω , (3.34)

for any δ-John domain Ω⊂Rn. Here c is any form inW1
q, loc(Ω,Λ) with d∗c = 0 and B0 ⊂Ω

is a fixed ball.

Finally, we prove the following global Hardy-Littlewood inequality with Ls(logL)α-
norms in δ-John domains. See [2] or [9] for the definition of the δ-John domains.

Theorem 3.7. Let u ∈ D′(Ω,Λ0) and v ∈ D′(Ω,Λ2) be solutions to the conjugate A-har-
monic equation (2.13) in a δ-John domain Ω ⊂ Rn. Let q ≤ p, v− c ∈ Lt(logL)β(Ω,Λ2),
and s > 0 and t > 0 satisfy 1/s+ 1/n− (1/t+ 1/n)q/p−α/s2 = 0. Then there exists a constant
C, independent of u and v, such that

∥
∥u−uB0

∥
∥
Ls(logL)α(Ω) ≤ C‖v− c‖

q/p

Lt(logL)β(Ω), (3.35)

where 0 < α < s and β > 0 are constants, c is any form in W1
q, loc(Ω,Λ) with d∗c = 0, and

B0 ⊂Ω is a fixed ball.

Proof. Applying the Hölder inequality with 1/s= 1/(s2/(s−α)) + 1/(s2/α), we obtain

∥
∥u−uB0

∥
∥
Ls(logL)α(Ω) =

(∫

Ω

∣
∣u−uB0

∣
∣s logα

(

e+

∣
∣u−uB0

∣
∣

∥
∥u−uB0

∥
∥
s,Ω

)

dx

)1/s

≤
(∫

Ω

∣
∣u−uB0

∣
∣s

2/(s−α)
dx
)(s−α)/s2

(∫

Ω
logs

(

e+

∣
∣u−uB0

∣
∣

∥
∥u−uB0

∥
∥
s,Ω

)

dx

)α/s2

= ∥∥u−uB0

∥
∥
s2/(s−α),Ω

(∫

Ω
logs

(

e+

∣
∣u−uB0

∣
∣

∥
∥u−uB0

∥
∥
s,Ω

)

dx

)α/s2

.

(3.36)

Since (s−α)/s2 + 1/n− (1/m+ 1/n)q/p = 0, using Theorem 3.6, we have

∥
∥u−uB0

∥
∥
s2/(s−α),Ω ≤ C1‖v− c‖q/pt,Ω . (3.37)

Combining (3.36) and (3.37) yields

∥
∥u−uB0

∥
∥
Ls(logL)α(Ω) ≤ C1‖v− c‖q/pt,Ω ·

(∫

Ω
logs

(

e+

∣
∣u−uB0

∣
∣

∥
∥u−uB0

∥
∥
s,Ω

)

dx

)α/s2

. (3.38)

Similar to (3.11), we can prove that

∫

Ω
logs

(

e+

∣
∣u−uB0

∣
∣

∥
∥u−uB0

∥
∥
s,Ω

)

dx ≤ C2. (3.39)
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Substituting (3.39) into (3.38) and using logβ(e+ |v− c|/‖v− c‖t,Ω) > 1, we find that

∥
∥u−uB0

∥
∥
Ls(logL)α(Ω) ≤ C3‖v− c‖q/pt,Ω

≤ C3

(∫

Ω
|v− c|t logβ

(

e+
|v− c|
‖v− c‖t,Ω

)

dx

)q/pt

≤ C3‖v− c‖q/pLt(logL)β(Ω).

(3.40)

The proof of Theorem 3.7 has been completed. �
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NONOSCILLATION OF ONE OF THE COMPONENTS
OF THE SOLUTION VECTOR

ALEXANDER DOMOSHNITSKY

Theorem about equivalence on nonoscillation of one of the components of the solution
vector, positivity of corresponding elements of the Green matrix, and an assertion about
a differential inequality of the de La Vallee Poussin type is presented in this paper. On
this basis, several coefficient tests of the component’s nonoscillation are obtained. It is
demonstrated that each of the tests is best possible in a corresponding sense.

Copyright © 2006 Alexander Domoshnitsky. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Comparison of solutions

Consider the following system:

(
Mix

)
(t)≡ x′i (t) +

n∑

j=1

(
Bijxj

)
(t)= fi(t), t ∈ [0,ω], i= 1, . . . ,n, (1.1)

where x = col(x1, . . . ,xn), Bij : C[0,ω] → L[0,ω], i, j = 1, . . . ,n, are linear continuous opera-
tors, C[0,ω] and L[0,ω] are the spaces of continuous and summable functions y : [0,ω]→
R1, respectively.

Oscillation of two-dimensional linear differential systems with deviating arguments
was defined by many authors as oscillation of all components of the solution vector (see
the recent paper [9] and bibliography therein). However, the components of the solution
vector can have a different oscillation behavior. For example, in the system

x′1(t) + p11x1
(
t− τ11

)= 0,

x′2(t) + p22x2
(
t− τ22

)= 0,
(1.2)

where p11τ11 ≤ 1/e, p22τ22 > 1/e, the first component nonoscillates and the second one
oscillates. The different oscillation behavior can be also found in a case of systems with

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 363–371



364 Nonoscillation of one of the components of solution vector

off-diagonal terms. For instance, the system

x′1(t)− x1(t) + cos t x2(t) + sin t x2

(

t− π

2

)

= 0,

x′2(t) + asin t x1(t) + bx2

(

t− π

2

)

= 0,
(1.3)

where a+ b = 1, has a solution x1 = 1, x2 = cos t.
In this paper, we study nonoscillation of one of the components of the solution vec-

tor. A relation between nonoscillation of the component xr and the property D (see
Definition 1.1) will be established.

Let l : Cn[0,ω]→Rn be a linear bounded functional. The following boundary value prob-
lem:

(
Mix

)
(t)= fi(t), t ∈ [0,ω], i= 1, . . . ,n, lx = α, (1.4)

where α∈ Rn, can be considered. We focus our attention upon the problem of compari-
son for one of the components of solution vector.

Definition 1.1. Say that boundary value problem (1.4) satisfies the property D for the
component xr if from the conditions

(−1)ki
[(
Mix

)
(t)− (Miy

)
(t)
]≥ 0, t ∈ [0,ω], lx = ly, i= 1, . . . ,n, (1.5)

where ki (i= 1, . . . ,n) is either 1 or 2, the inequality

xr(t)≥ yr(t), t ∈ [0,ω], (1.6)

follows.

In the main assertion of this paper, an equivalence of this property for the Cauchy and
several other boundary value problems and nonoscillation of the component xr of the
solution vector of system (1.1) on [0,ω] will be established. Various coefficient tests of
nonoscillation of xr will be proposed. It is demonstrated that these tests are best possible
in corresponding cases.

The property D is weakening of the following property, known in the literature [12] as
the applicability of Tchaplygin’s theorem.

Definition 1.2. Say that Tchaplygin’s theorem is applicable to boundary value problem
(1.4) if from the conditions

(
Mix

)
(t)≥ (Miy

)
(t), t ∈ [0,ω], i= 1, . . . ,n, lx = ly, (1.7)

it follows that

xi(t)≥ yi(t), t ∈ [0,ω], i= 1, . . . ,n. (1.8)
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Let us find up the relation between this property and the positivity of Green’s matrices.
If the homogeneous boundary value problem (Mix)(t)= 0, t ∈ [0,ω], i= 1, . . . ,n, lx =

0, has only the trivial solution, then the boundary value problem (1.4) has for each fi ∈
L[0,ω], i= 1, . . . ,n, α∈Rn a unique solution, which has the following representation [2]:

x(t)=
∫ ω

0
G(t,s) f (s)ds+X(t)α, t ∈ [0,ω], (1.9)

where the n× n matrix G(t,s) is called Green’s matrix of problem (1.4), X(t) is an n×n
fundamental matrix of the system (Mix)(t)= 0, i= 1, . . . ,n, such that lX = E (E is the unit
n×nmatrix), and f = col( f1, . . . , fn). It is clear from the solution representation (1.9) that
the matricesG(t,s) andX(t) determine all properties of solutions. If Green’s matrixG(t,s)
is positive, for example, then Tchaplygin’s theorem is applicable to problem (1.4). From
the formula of the solution’s representation, it follows that the property D is reduced to
sign-constancy of all elements standing only in the rth row of Green’s matrix.

The great importance of the property (1.7)-(1.8) in the approximate integration was
noted by Tchaplygin [13]. Series of papers, started with the known paper by Luzin [12],
were devoted to the various aspects of Tchaplygin’s approximate method of integration.
Note in this connection the well-known monograph by Lakshmikantham and Leela [10]
and the recent monograph by Kiguradze and Puza [8].

As a particular case of system (1.1), let us consider the delay system

x′i (t) +
n∑

j=1

pi j(t)xj
(
hi j(t)

)= fi(t), i= 1, . . . ,n, t ∈ [0,ω], (1.10)

x(θ)= 0 for θ < 0, (1.11)

where pi j are measurable essentially bounded functions, and hi j are measurable functions
such that hi j(t)≤ t for i, j = 1, . . . ,n, t ∈ [0,ω]. Its general solution has the representation

x(t)=
∫ t

0
C(t,s) f (s)ds+C(t,0)x(0), t ∈ [0,ω], (1.12)

where C(t,s) = {Cij(t,s)}i, j=1,...,n is called the Cauchy matrix of system (1.10). Note that
for each fixed s, the matrix C(t,s) is the fundamental matrix of the system

x′i (t) +
n∑

j=1

pi j(t)xj
(
hi j(t)

)= 0, i= 1, . . . ,n, t ∈ [0,ω],

x(θ)= 0 for θ < s,

(1.13)

such that C(s,s) is the unit n×n matrix [2].
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The classical Wazewskii’s theorem [14] claims that the condition

pi j ≤ 0 for j �= i, i, j = 1, . . . ,n, (1.14)

is necessary and sufficient for nonnegativity of all elements Cij(t,s) of the Cauchy matrix
and consequently of the property (1.7)-(1.8) for system of ordinary differential equations:

x′i (t) +
n∑

j=1

pi j(t)xj(t)= fi(t), i= 1, . . . ,n, t ∈ [0,ω]. (1.15)

The property D leads to essentially less-hard limitations on the given system.
Our technique in proofs of main assertions of the paper is based on a construction

of a corresponding scalar functional differential equation for the nth component of the
solution vector and then we use the assertions of [1] about the differential inequali-
ties, nonoscillation, and positivity of Green’s functions of corresponding boundary value
problems for first-order scalar functional differential equations. In this sense this ap-
proach is similar to the idea of the classical Gauss method for solving systems of the
linear algebraic equations.

The problem of the asymptotic stability of delay differential systems is one of the most
important applications of results on positivity of the Cauchy matrix C(t,s). The cor-
responding technique in study of the exponential stability was presented in [4] and in
other terminologies in [5], where necessary and sufficient conditions of the exponential
stability for system possessing positivity of the Cauchy matrix were obtained, (see, also, a
development of this approach in [6]).

2. Nonoscillation of the nth component of the solution vector

In this section, we consider the system

(
Mix

)
(t)≡ x′i (t) +

n∑

j=1

(
Bijxj

)
(t)= fi(t), t ∈ [0,ω], i= 1, . . . ,n, (2.1)

where Bij : C[0,ω]→ L[0,ω] are linear bounded Volterra operators for i, j = 1, . . . ,n.
Together with system (2.1), let us consider the following auxiliary system of the order

n− 1:

x′i (t) +
n−1∑

j=1

(
Bijxj

)
(t)= fi(t), t ∈ [0,ω], i= 1, . . . ,n− 1, (2.2)

and denote by K(t,s) = {Kij(t,s)}i, j=1,...,n−1 its Cauchy matrix. Denote by G(t,s) =
{Gij(t,s)}i, j=1,...,n and P(t,s)= {Pi j(t,s)}i, j=1,...,n Green’s matrices of the problems consist-
ing of (2.1) and one of the boundary conditions

xi(0)= 0, i= 1, . . . ,n− 1, xn(ω)= 0, (2.3)
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or

xi(0)= 0, i= 1, . . . ,n− 1, xn(0)= xn(ω), (2.4)

respectively.

Theorem 2.1. Let all elements of the (n− 1)× (n− 1) Cauchy matrix K(t,s) of system
(2.2) be nonnegative, let each of the operators Bjn and Bnj be positive or negative, while let
the product −BnjBjn be positive operators for j = 1, . . . ,n− 1.

If Bni for i= 1, . . . ,n− 1 are negative operators, then the following five assertions are equiv-
alent:

(1) there exists an absolutely continuous vector function v such that vn(t) > 0, vi(0) ≤ 0
for i= 1, . . . ,n− 1, (Miv)(t)≤ 0 for i= 1, . . . ,n, t ∈ [0,ω];

(2) Cnn(t,s) > 0, Cnj(t,s)≥ 0 for j = 1, . . . ,n− 1, 0≤ s≤ t ≤ ω;
(3) the boundary value problem (2.1), (2.3) is uniquely solvable and its Green’s matrix

satisfies the inequalities Gnj(t,s) ≤ 0 for j = 1, . . . ,n, t,s ∈ [0,ω], while Gnn(t,s) < 0
for 0≤ t < s≤ ω;

(4) if in addition the operator B, determined by equality

(
Bxn

)
(t)≡−

n−1∑

i=1

Bni

{∫ t

0

n−1∑

j=1

Kij(t,s)
(
Bjnxn

)
(s)ds

}

(t) +
(
Bnnxn

)
(t), t ∈ [0,ω], (2.5)

is nonzero operator, the boundary value problem (2.1), (2.4) is uniquely solvable
and its Green’s matrix satisfies the inequalities Pnj(t,s) ≥ 0 for j = 1, . . . ,n, while
Pnn(t,s) > 0 for t,s∈ [0,ω];

(5) the nth component of the solution vector x of the homogeneous system Mix = 0, i =
1, . . . ,n, such that xi(0)≥ 0, i= 1, . . . ,n− 1, xn(0) > 0, is positive for t ∈ [0,ω].

If Bni for i= 1, . . . ,n− 1 are positive operators, then the following five assertions are equiv-
alent:

(1∗) there exists an absolutely continuous vector function v such that vn(t) > 0, vi(0)≥ 0,
(Miv)(t)≥ 0 for i= 1, . . . ,n− 1, (Mnv)(t)≤ 0 for t ∈ [0,ω];

(2∗) Cnn(t,s) > 0, Cnj(t,s)≤ 0 for j = 1, . . . ,n− 1, 0≤ s≤ t ≤ ω;
(3∗) the boundary value problem (2.1), (2.3) is uniquely solvable and its Green’s matrix

satisfies the inequalities Gnj(t,s)≥ 0 for j = 1, . . . ,n− 1, Gnn(t,s)≤ 0 for t,s∈ [0,ω]
while Gnn(t,s) < 0 for 0≤ t < s≤ ω;

(4∗) if in addition the operator B, is nonzero operator, the boundary value problem (2.1),
(2.4) is uniquely solvable and its Green’s matrix satisfies the inequalities Pnj(t,s)≤ 0
for j = 1, . . . ,n, Pnn(t,s) > 0 for t,s∈ [0,ω];

(5∗) the nth component of the solution vector x of the homogeneous system Mix = 0, i =
1, . . . ,n, such that xi(0)≤ 0, i= 1, . . . ,n− 1, xn(0) > 0, is positive for t ∈ [0,ω].

Remark 2.2. The assertions (1)–(5) and (1∗)–(5∗) are analogs for the nth component of
the solution vector of nth-order functional differential systems of the classical de La Vallee
Poussin theorem about the differential inequality obtained in [3] for ordinary second-
order equations. Assertions (2)–(5), (2∗)–(5∗), (3)–(5), and (3∗)–(5∗) are analogs of the
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corresponding assertions connecting nonoscillation and positivity of Green’s functions
for the nth-order ordinary differential equations [11].

Let us write system (1.10) in the following form:

x′i (t) +
n∑

j=1

pi j(t)xj
(
t− τi j(t)

)= fi(t), i= 1, . . . ,n, t ∈ [0,+∞), (2.6)

where τi j ≥ 0 for i, j = 1, . . . ,n.

Let us introduce the following denotations: p∗i j = esssup pi j(t), pi j∗ = ess inf pi j(t),
τ∗i j = esssupτi j(t), τi j∗ = ess inf τi j(t), p+

i j(t)=max{0, pi j(t)}.
Theorem 2.3. Let the following conditions be fulfilled:

(1) pi j ≤ 0 for i�= j, i, j = 1, . . . ,n− 1;
(2) pjn ≥ 0, pnj ≤ 0 for j = 1, . . . ,n− 1;
(3) τ∗ii (p+

ii )
∗ ≤ 1/e, for i= 1, . . . ,n− 1;

(4) there exists a positive α such that τ∗i j α≤ 1/e for i= 1, . . . ,n, and

p+
nn(t)eατnn(t)−

n−1∑

j=1

pnj(t)eατnj (t) ≤ α≤ min
1≤i≤n−1

{

pii(t)eατii(t) +
n∑

j=1, i�= j
pi j(t)eατnj (t)

}

,

(2.7)

where t ∈ [0,+∞).
Then the elements of the nth row of the Cauchy matrix of system (2.6) satisfy the inequal-

ities

Cnj(t,s)≥ 0, Cnn(t,s) > 0, j = 1, . . . ,n− 1, 0≤ s≤ t < +∞. (2.8)

The idea of the proof is to demonstrate that the vector

vi(t)=−e−αt, i= 1, . . . ,n− 1, vn(t)= e−αt, t ∈ [0,+∞), (2.9)

satisfies condition (1) of Theorem 2.1.
For the ordinary differential system

x′i (t) +
n∑

j=1

pi j(t)xj(t)= fi(t), i= 1, . . . ,n, t ∈ [0,+∞), (2.10)

Theorem 2.3 implies the following assertion.

Theorem 2.4. Let the following conditions be fulfilled:
(1) pi j ≤ 0 for i�= j, i, j = 1, . . . ,n− 1;
(2) pjn ≥ 0, pnj ≤ 0 for j = 1, . . . ,n− 1;
(3) there exists a positive α such that

p+
nn(t)−

n−1∑

j=1

pnj(t)≤ α≤ min
1≤i≤n−1

{

pii(t) +
n∑

j=1, i�= j
pi j(t)

}

, t ∈ [0,+∞). (2.11)
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Then the elements of the nth row of the Cauchy matrix of system (2.10) satisfy the in-
equalities Cnn(t,s) > 0, Cnj(t,s)≥ 0 for j = 1, . . . ,n− 1, 0≤ s≤ t < +∞.

Consider now the following ordinary differential system of the second order

x′1(t) + p11(t)x1(t) + p12(t)x2(t)= f1(t),

x′2(t) + p21(t)x1(t) + p22(t)x2(t)= f2(t),
t ∈ [0,+∞). (2.12)

Theorem 2.5. Let the following conditions be fulfilled:
(1) p11 ≥ 0, p12 ≥ 0, p21 ≤ 0, p22 ≥ 0;
(2) there exists a positive α such that

p22(t)− p21(t)≤ α≤ p11(t)− p12(t), t ∈ [0,+∞). (2.13)

Then the elements of the second row of the Cauchy matrix of system (2.12) satisfy the
inequalities C21(t,s)≥ 0, C22(t,s) > 0 for 0≤ s≤ t < +∞.

Remark 2.6. If coefficients pi j are constants, the second condition in Theorem 2.5 is as
follows:

p22− p21 ≤ p11− p12. (2.14)

Remark 2.7. Let us demonstrate that inequality (2.14) (and consequently inequality
(2.13)) is best possible in a corresponding case. It is known that for each fixed s the
2×2 matrix C(t,s) is a fundamental matrix X(t) of system (2.15) satisfying the condi-
tion C(s,s)= E, where E is the unit 2×2 matrix. Theorem 2.5 claims that the elements in
the second row of the fundamental matrices are positive. The characteristic equation of
the system

x′1(t) + p11x1(t) + p12x2(t)= 0,

x′2(t) + p21x1(t) + p22x2(t)= 0,
t ∈ [0,+∞), (2.15)

with constant coefficients is as follows:

λ2 +
(
p11 + p22

)
λ+ p11p22− p12p21 = 0, (2.16)

and its roots are real if and only if

(
p11− p22

)2 ≥−4p12p21. (2.17)

Let us instead of inequality (2.14) consider

p22− p21 ≤ p11− p12 + ε, (2.18)

where ε is any positive constant. We can set p11 = p22, then the inequality becomes of
the following form p12− p21 ≤ ε. If p12p21 < 0, then inequality (2.17) is not satisfied and
consequently each element of the fundamental and the Cauchy matrices oscillates.
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In the following assertion, we propose an efficient test of nonnegativity of elements in
the nth row of the Cauchy matrix in case when the coefficients |pnj| are small enough for
j = 1, . . . ,n− 1.

Theorem 2.8. Let the following conditions be fulfilled:
(1) pi j ≤ 0 for i�= j, i, j = 1, . . . ,n− 1;
(2) pjn ≥ 0, pnj ≤ 0 for j = 1, . . . ,n− 1;
(3) τi j = 0 for i= 1, . . . ,n, j = 1, . . . ,n− 1, τnn = const;
(4) the following inequalities

p+
nn(t)τnn exp

{

τnn

n−1∑

j=1

∣
∣pnj

∣
∣∗
}

≤ 1
e

, t ∈ [0,+∞), (2.19)

1
τnn

+
n−1∑

j=1

∣
∣pnj

∣
∣∗ ≤ min

1≤i≤n−1

{

pii(t) +
n∑

j=1, i�= j
pi j(t)

}

, t ∈ [0,+∞), (2.20)

are fulfilled.
Then the elements of the nth row of the Cauchy matrix of system (2.6) satisfy the inequal-

ities Cnn(t,s) > 0, Cnj(t,s)≥ 0 for j = 1, . . . ,n− 1, 0≤ s≤ t < +∞.

Remark 2.9. It should be noted that inequality (2.19) is best possible in the following
sense. If pnj = 0 for j = 1, . . . ,n− 1, pnn = const > 0, then inequality (2.19) becomes as
follows:

pnnτnn ≤ 1
e

, t ∈ [0,+∞), (2.21)

and Cnn(t,s)= cn(t,s), where cn(t,s) is the Cauchy function of the diagonal equation

x′n(t) + pnnx
(
t− τnn

)= 0, t ∈ [0,+∞). (2.22)

The opposite inequality pnnτnn > 1/e implies oscillation of all solutions [7] and by virtue
of [1] cn(t,s) changes its sign. Now it is clear that we cannot substitute

p+
nn(t)τnn exp

{

τnn

n−1∑

j=1

∣
∣pnj

∣
∣∗
}

≤ 1 + ε
e

, t ∈ [0,+∞), (2.23)

where ε is any positive number instead of inequality (2.19).
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MODULATED POISSON MEASURES ON ABSTRACT SPACES

JEWGENI H. DSHALALOW

We introduce a notion of a random measure ξ whose parameters change in accordance
with the evolution of a stochastic process η. Such a measure is called an η-modulated
random measure. A class of problems like this stems from stochastic control theory, but
in the present paper we are more focused on various constructions of modulated random
measures on abstract spaces as well as the formation of functionals of a random process
η with respect to measurable functions and an η-modulated random measure (so-called
potentials), specifically applied to the class of η-modulated marked Poisson random mea-
sures.

Copyright © 2006 Jewgeni H. Dshalalow. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

This paper deals with a formalism of modulated random measures that stem from core
applications in physical sciences, engineering and technology, and applied probability
[5, 10, 11]. One of the typical models is a stock market being constantly perturbed by
economic news, random cataclysms and disasters, including famine, earthquakes, hurri-
canes, and political events and wars. This causes the main parameters of stocks or mutual
funds, as well as major indexes to alter dependent on these events. We can think of the
stock market as a stochastic process (such as Brownian motion) modulated by some other
“external” stochastic process that takes values in some space and moving randomly from
state to state. The parameters of stock market will remain homogeneous as long as the
external process sojourns in a set. Once it moves on to another set, the parameters of the
stock market change.

One of the widely accepted forms of modulated processes in the literature is found in
Markov-modulated Poisson processes, in which a Poisson process alters its rate in accor-
dance with an external Markov chain with continuous time parameter. It goes back to
at least 1977 or even earlier in one of the seminal Neuts’ articles (cf. [9]) and it is still
a very popular topic in queueing known under batch Markov arrival processes. A main

Hindawi Publishing Corporation
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374 Modulated Poisson measures on abstract spaces

advantage of this type of processes is the emulation of a more general point-counting
process, along with huge computational benefits.

In the present paper, we introduce several simple and more complex constructions of
general classes of random processes ξ (random measures) modulated by another process
η, whose nature is not restricted to being a Markov or other special process, although
some applications do benefit from a special assumption on η to be semi-Markov or
semiregenerative [2, 3]. For some related literature, the reader is advised to see [6–8].
Our main goal is to extend earlier efforts we made for some constructions [1] basically
from random measures on Euclidean spaces to random measures on topological spaces.
Our intention is to generalize a basic formula for the intensity of a random measure and
the intensity of a modulated random measure to a functional of the stochastic process η
with respect to random measure ξ being modulated by η. This we call the potential of η
with respect to ξ. A very compact formula for the class of potentials of random processes
with respect to marked Poisson random measure was derived. The results can be found
useful in stochastic control.

2. Preliminaries

We will use the following notation throughout. [X ,Y , f ] denotes a function with X as its
domain and Y as its codomain. If Y ′ is a subset of Y , by f ∗(Y ′) we denote the inverse
image of Y ′. If �(Y) is a system of subsets of Y , then the set of all inverse images of �(Y)
under f will be denoted by f ∗∗(�(Y)).

Let (X,τX) be an LCHS (locally compact Hausdorff space), often abbreviated as X and
let �X =�(X) be the corresponding Borel σ-algebra (generated by τX).

Let �X denote the set of all relatively compact Borel subsets of X (which is a ring) and
let �X denote the set of all compact subsets. A Borel measure μ on �X is called locally
finite if μ is finite on �X. Notice that μ is a Borel-Lebesgue-Stieltjes measure on �Rd (cf.
Dshalalow [4]) if and only if it is locally finite.

Let MX denote the set of all locally finite (Borel) measures on �X. We assume that all
measures we will deal with will be positive.

Definition 2.1 (cf. Dshalalow [4]). Let A be a Borel set and μ∈MX.
μ is inner regular at A if

μ(A)= sup
{
μ(K) : K ⊆A, A∈�X

}
. (2.1)

μ is outer regular at A if

μ(A)= inf
{
μ(U) : A⊆U ,U ∈ τX

}
. (2.2)

Measure μ is weakly regular or Radon if it is inner regular on τX, that is, at each open
set, and it is outer regular on �X, that is, at each Borel set.

Measure μ is regular if it is inner and outer regular on �X.

Regularity of locally finite Borel measures is a special feature and either it is to be
assumed or it follows from some assumptions imposed on the topology τX. One of them
is as follows.
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Theorem 2.2 (cf. Dshalalow [4]). If (X,τX) is σ-compact, then any locally finite measure
on �X is regular (in particular, Radon) and σ-finite.

Thus assuming (X,τX) to be σ-compact (and LCHS as we have previously assumed),
MX turns out to be the set of all regular measures (in particular, Radon).

Remark 2.3. It is very common in the literature to assume that X is second countable,
which would make it metrizable, separable, and σ-compact. While metrization is a valu-
able asset, it is not always mandatory, and σ-compactness of X, while often sufficient, is
a relatively weak assumption. The Euclidean space with its natural topology is LCHS,
σ-compact, and Lindelöf compact. Thus, any locally finite measure on �Rd is Borel-
Lebesgue-Stieltjes, Radon, and regular. Of course, Euclidean space is also second count-
able and complete and, therefore, it is Polish. Notice that not every LCHS X, which is sec-
ond countable, is Polish. For instance, if X = (0,1) with the relative topology τe ∩ (0,1),
then it is a second countable LCHS, but not complete.

Thus, under the assumption that (X,τX) is σ-compact (and LCHS), we have that MX

is the set of all regular (in particular, Radon) measures. We will continue assuming this
throughout.

Given a Borel set B, denote the map μ�→ μ(B) by ψB : MX→R+. The family {ψB : B ∈
�X} of all such maps indexed by elements of �X induces the smallest σ-algebra �X in
MX relative to which every such map ψB is measurable, that is,

�X = σ
(
⋃

B∈�X

ψ∗∗B
(
�
(
R+
))
)

. (2.3)

Definition 2.4. Let (Ω,A(Ω),P) be a probability space. A random measure ξ is any mea-
surable mapping from (Ω,A(Ω),P) to (MX,�X). (It is a parametric family of measures
in MX indexed by ω ∈Ω such that ξ∗∗(�X)⊆A(Ω). It is an r.v. generating a family Pξ∗

of distributions on �X.) The integral measure

Eξ =
∫

ξdP (2.4)

is called the intensity of ξ. Observe that while Eξ is a Borel measure on �X, in general,
Eξ /∈MX.

3. Modulated random measures

Construction 1. We begin with a special construction of a random measure to be used for
modulation. Let μ ∈MX and let G be a measurable subset of the product space Ω×X,
that is, G ∈ A(Ω)⊗�X and, for any ω ∈ Ω, let Gω denote the ω-section of G. Since
μ is σ-finite (due to σ-compactness assumption on X, see Theorem 2.2), the map ω�→
μ(Gω) is A(Ω)-�(R+)-measurable and thus it can be regarded as a random variable on
(Ω,A(Ω),P). Hence, given a fixed G, the map

(ω,B) νG(ω,B) := μ(Gω∩B
)
, B ∈�X, (3.1)
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is a random measure from (Ω,A(Ω),P) to (MX,�X). The intensity EνG, as for any ran-
dom measure, is a measure itself, but in this case, it is also locally finite and thus regular.
Indeed, it is readily seen that

EνG ≤ EνΩ×X = μ (3.2)

and thus, for every G∈A(Ω)⊗�X, EνG ∈MX. In particular, it follows that the measure
EνG is absolutely continuous with respect to μ, that is, if [g]μ is the corresponding Radon-
Nikodym derivative, then

EνG

(

=
∫

μ
(
Gω∩·

)
P(dω)

)

= μ[g]μ

(

=
∫

[g]μdμ
)

. (3.3)

Now modulation is based on the following concept.

Definition 3.1. A sequence of locally finite regular measures {μ1,μ2, . . .} is locally bounded
if for any relatively compact Borel set R∈�X, there is a locally finite regular Borel mea-
sure δR such that

μi(B)≤ δR(B), ∀B ∈ R∩�X, i= 1,2, . . . . (3.4)

Construction 2. Let {μ1,μ2, . . .} be a locally bounded sequence from MX, let
{
G1,G2, . . .

}∈A(Ω)⊗�X (3.5)

be a measurable partition of Ω×X, and let {a1,a2, . . .} be a bounded sequence of non-
negative real numbers. Define

ξ = ξ(ω,·)=
∞∑

i=1

aiμi
((
Gi
)
ω∩·

)
. (3.6)

Proposition 3.2. Given a locally bounded sequence of regular measures {μ1,μ2, . . .}, a mea-
surable partition {G1,G2, . . .} of Ω×X, and a bounded sequence {a1,a2, . . .}, ξ is a random
measure and its intensity Eξ is a locally finite regular measure.

Proof. Since each μi is σ-finite, μi((Gi)ω ∩B) is measurable for each i and for each B ∈
�X, and so is ξ(·,B). Now, the condition of local boundedness of the sequence {μ1,μ2, . . .}
is equivalent to the existence of a family {δR : R∈�X} ⊆MX such that for each relatively
compact Borel set R, there is a locally finite Borel measure δR such that for each B ∈
R∩�X,

μi(B)≤ δB(B), ∀i= 1,2, . . . . (3.7)

Then, if a is an upper bound for {ai}, we have that

ξ(ω,R)≤ a
∑

i

δB
((
Gi
)
ω∩R

)= aδB
(
∑

i

(
Gi
)
ω∩R

)

= aδR(R) <∞, (3.8)

good for all ω. It means that ξ is for every ω locally finite and thus regular and, conse-
quently, a random measure. Finally, Eξ(R)≤ aδR(R) <∞ and hence Eξ ∈MX. �
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Notice that local boundedness of the sequence {μ1,μ2, . . .} is a relatively weak restric-
tion to the sequence (resembling pointwise boundedness of a sequence of functions) ap-
plied to only the ring of relatively compact Borel sets, and that this is obviously a weaker
condition than μi ≤ δ for all i.

Construction 3. Let η be a stochastic process from probability space (Ω,A(Ω),P) to
(Y ,�(τ(Y))) parameterized by t ∈ X (which, as before, is LCHS and σ-compact) and
let {Y1,Y2, . . .} be a measurable countable partition of Y . Then, {η∗(Yi), i = 1,2, . . .} is
a measurable partition of Ω×X. Under the condition of Construction 2 (as regards μi’s
and a), denote

ξη =
∑

i

aiμi
((
η∗
(
Yi
))

ω∩·
)
. (3.9)

Then, by Proposition 3.2, ξη is a random measure. We will call ξη the random measure
modulated by stochastic process η with respect to the sequence {μ1,μ2, . . .}. Obviously,
the intensity

Eξη =
∑

i

aiEμi
((
η∗
(
Yi
))

ω∩·
)

(3.10)

is a locally finite regular measure as per Proposition 3.2.

Construction 4. Under the condition of Construction 3, let us assume that for each i,
μi σ ∈MX (which would be automatically yielded should μi ≤ σ in place of much
weaker local boundedness be assumed) and let λi be a Radon-Nikodym density from the
class dμi/dσ . Then,

μiη
∗(Yi

)=
∫

1Yi ◦ηdμi =
∫

1Yi ◦ηλidσ. (3.11)

Now, we have the following proposition.

Proposition 3.3.

Eμiη
∗(Yi

)=
∫

E
[

1Yi ◦η
]
λidσ =

∫

t∈X
P
{
η(t)∈ Yi

}
λi(t)dσ(t), (3.12)

and thus the intensity Eξη is

Eξη =
∑

i

ai

∫

t∈X
P
{
η(t)∈ Yi

}
λi(t)dσ(t). (3.13)

4. Modulated Poisson measures

We begin with some basic notions of Poisson random measures due to [6–8].

Definition 4.1 (cf. Kallenberg [6]). Let

ξ =
ν∑

i=1

Xiετi , (4.1)
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where X1,X2, . . . are i.i.d. nonnegative r.v.’s, τ1,τ2, . . . are i.i.d. r.v.’s valued in X, and ν is a
Poisson r.v. with mean b. Then ξ is a random measure and it is called a marked Poisson
random measure (MPRM). Assume here position independent marking (i.e., Xi’s and τi’s
are independent). Alternatively, ξ is referred to as a compound Poisson process or marked
Poisson process, in this case with position independent marking.

The associated random measure N =∑ν
i=1 ετi is called the support counting measure

of ξ. Random measures ξ and N are known to have the following properties:
(i) for disjoint B1, . . . ,Bk ∈�X, the r.v.’s ξ(B1), . . . ,ξ(Bk) are independent;

(ii) there is a regular locally finite measure μ∈MX such that

Eeθξ(·) = eμ(·)[m(θ)−1], (4.2)

where m(θ)= EeθX1 and, in particular,

EeθN(·) = eμ(·)(eθ−1), (4.3)

with μ being called the mean measure of N . ξ is also said to be directed by measure μ.
Notice that

μ= bPτ , b = Eν, (4.4)

where τ ∼ τ1.

The intensity of ξ is

Eξ = aμ, (4.5)

where a= EX and X ∼ X1.
Assume that ξ1,ξ2, . . . is a locally bounded sequence of MPRMs such that for a fixed k,

ξk =
νk∑

i=1

X (k)
i ετ(k)

i
(4.6)

directed by mean measure μk and Eξk = akμk, where ak = EXk. Then, under the condition
of Construction 3,

Πη =
∑

i

ξi
(
ω,
(
η∗
(
Yi
))

ω∩·
)

(4.7)

is a random measure modulated by η, which we will call a marked Poisson random measure
modulated by η.

From formula (4.5), the intensity of Πη is

EΠη =
∑

i

aiEμi
((
η∗
(
Yi
))∩·). (4.8)
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Now, if each respective mean measure μi is continuous with respect to some σ ∈MX

and if λi ∈ dμi/dσ , then by formulas (3.12)-(3.13) and (4.8),

EΠη =
∑

i

ai

∫

t∈X
P
{
η(t)∈ Yi

}
λi(t)dσ(t), (4.9)

which is identical to (3.13) having ai = EXi in mind and due to original conditions of
Construction 2, assuming the sequence {ai} bounded.

5. Potentials of stochastic processes with respect to a modulated Poisson measure

Recall from (4.5) that the intensity of a marked Poisson measure ξ directed by a mean
measure μ is Eξ = aμ. We will present an analog of this equation for a class of functionals
of stochastic processes with respect to random measures and then extend it to modulated
Poisson measures.

Definition 5.1. Let η be a stochastic process from (Ω,A(Ω),P) to (Y ,�(τ(Y))) parame-
terized by t ∈X (LCHS and σ-compact), let [Y ,R, f ] be Borel measurable function, and
let ξ be a random measure. Then, call E

∫
f (η)dξ the potential of η with respect to f and

random measure ξ (provided that the integral exists).

Theorem 5.2. In the condition of Definition 5.3, the potential of stochastic process η with
respect to f and a marked Poisson measure ξ directed by a mean measure μ satisfies the
following equation:

E
∫

f (η)dξ = aE
∫

f (η)dμ, (5.1)

provided that the integrals in (5.1) exist.

Proof. Let Y ′ be a measurable subset of Y . By (4.5),

Eξη∗(Y ′)= aEμη∗(Y ′). (5.2)

On the other hand, the left- and right-hand sides of (5.2) yield

E
∫

1Y ′ ◦ηdξ = aE
∫

1Y ′ ◦ηdμ. (5.3)

Thus, for a simple function h=∑k
i=1 bi1Yi , (5.3) yields

E
∫ k∑

i=1

bi1Yidξη
∗ = aE

∫ k∑

i=1

bi1Yidμη
∗, (5.4)
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and for any measurable nonnegative f = suphn,

E
∫

f dξη∗ = supE
∫

hndξη
∗ = asupE

∫

hndμη
∗. (5.5)

Using the change of variables and extending (5.5) to real-valued function, we are done
with the proof. �

Definition 5.3. Let η be a stochastic process from (Ω,A(Ω),P) to (Y ,�(τ(Y))) parame-
terized by t ∈X and let F = { fi} be a sequence of measurable functions. The potential of
η with respect to F and an η-modulated Poisson measure

Πη =
∑

i

ξi
(
ω,
(
η∗
(
Yi
))

ω∩·
)

(5.6)

is defined as

EΠηF(η)= E
∫ ∑

i

fi(η)dξi, (5.7)

provided that the integral on the right of (5.7) exists.

From Theorem 5.2, we have the following theorem.

Theorem 5.4. Under the condition of Definition 5.3, the potential of η with respect to F and
an η-modulated Poisson measure satisfies the formula

EΠηF(η)=
∑

i

aiE
∫

fi(η)dμi. (5.8)

The result of Theorem 5.4 can be very useful in stochastic control theory where the
right-hand side of (5.8) can be interpreted as a reward function for a Poisson process
controlled by a stochastic process.
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ANNULAR JET AND COAXIAL JET FLOW

JOSHUA DU AND JUN JI

The dispersion relations for supersonic, in-viscid, and compressible jet flow of annular
and coaxial jets under vortex sheet model are derived. The dispersion relation in either
case, in a form of determinant of a 4× 4 matrix, is an implicit function of ω and wave
number κ, and provides the foundation to investigate Kelvin-Helmholtz instability and
acoustic waves. The dispersion relation of jet flow under more realistic model, like finite
thickness model, can also be derived.

Copyright © 2006 J. Du and J. Ji. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Jet aircrafts were introduced right after the Second World War. Because of the very high
speed of the jet, and the large tangential gradient of the velocity of jet flow, the Kelvin-
Helmholtz instability waves caused the instability and dramatically reduced life spans of
jets. Hence jet noise prediction and reduction became important economical, environ-
mental, and safety issues.

Many researchers, like Tam and Morris [6], Tam and Burton [3, 4], and Tam and
Hu [5], found that Kelvin-Helmholtz instability waves in supersonic jets constitute the
basic elements of the feedback loop responsible for the generation of multiple-jet reso-
nance tones. They successfully modeled the jet flow and interpreted the characteristics of
instability waves and upstream propagated acoustic wave through numerical computa-
tion.

At the same time many researchers, like Morris et al. [1], Wlezien [9], Tam and Ahuja
[2], Tam and Norum [7], and Tam and Thies [8], also investigated the problems of how
jet nozzles of different geometries affect the generation of the instability wave, focusing
on rectangular jets.

We are interested in studying annular and coaxial jets. In this paper, we modeled the
jet flow and derived dispersion relations for single annular and coaxial jet flow as an
introduction to the investigation of multiple annular and coaxial jets flow.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 383–390
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2. Annular jets

Consider an annular jet with radii R1 and R2, respectively. The intersection of the jet with
yz-plane is shown in Figure 2.1. The x-axis points to down stream direction which is
perpendicular to yz-plane.

The cylindrical coordinate system, (r,θ,x), is introduced at the center of the circle. The
whole region of the yz-plane can be divided into three regions:

(i) region 1: r < R1;
(ii) region 2: R1 < r < R2;

(iii) region 3: r > R2.

Here dimensionless variables will be used in the analysis. We define u and �V⊥ to be
the components of velocity in the directions of x and yz-plane, respectively, ρ to be the
jet density, p to be the pressure, and ū(r) and ρ̄(r) to be the mean velocity and the mean
density of the jet. The jet Mach number M is the ratio of the jet speed to the sound speed
inside the jet. We assume that the mean pressure p∞ is a constant.

The standard linearized conservation of mass, momentum, and energy equations of a
compressible inviscid fluid are

∂ρ

∂t
+∇· (ρ̄�V⊥ + ρū�x

)= 0, (2.1)

ρ̄
(
∂u

∂t
+ ū

∂u

∂x
+ �V⊥ ·∇⊥ū

)

=−∂p
∂x

, (2.2)

ρ̄
(
∂�V⊥
∂t

+ ū
∂�V⊥
∂x

)

=−∇⊥p, (2.3)

M2
(
∂p

∂t
+ ū

∂p

∂x

)

+∇⊥ · �V⊥ +
∂u

∂x
= 0, (2.4)

where �x is the unit vector in x-direction. Operator ∇ is the gradient in xyz-space, and
∇⊥,∇2⊥ are gradient and Laplacian operators in yz-plane, respectively, that is,

∇= ∂

∂x
�x+

∂

∂y
�y +

∂

∂z
�z, ∇⊥ = ∂

∂y
�y +

∂

∂z
�z, ∇2

⊥ =
∂2

∂y2
+
∂2

∂z2
, (2.5)

where �y and �z are the unit vectors in the directions of y and z, respectively.
Since the pressure and velocity have wave structure, we define

u= ûei(κx−ωt), �V⊥ = �̂V⊥ei(κx−ωt), p = p̂ei(κx−ωt), (2.6)

and then (2.2)–(2.4), after separating wave factor ei(κx−ωt), can be reduced to the follow-
ing:

iρ̄ �̂V⊥ ·∇⊥ū+ ρ̄(ω− ūκ)û= κp̂, (2.7)

�̂V⊥ = ∇⊥ p̂
iρ̄(ω− ūκ)

, (2.8)

M2(ω− ūκ) p̂− κû=−i∇⊥ · �̂V⊥. (2.9)
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(r, θ)

R1 R20

Figure 2.1

From (2.7) and (2.9), eliminating û, we have

iρ̄(ω− ūκ)∇⊥ · �̂V⊥ + iκρ̄ �̂V⊥ ·∇⊥ū+
(
ρ̄M2(ω− ūκ)2− κ2) p̂ = 0. (2.10)

Substituting (2.8) into (2.10), we have

∇2
⊥ p̂+

(
2κ∇⊥ū
ω− κū −

∇⊥ρ̄
ρ̄

)

·∇⊥ p̂+
(
ρ̄M2(ω− ūκ)2− κ2) p̂ = 0. (2.11)

Thus, the original nonlinear system (2.1)–(2.4) with unknown functions ρ,u, �V⊥, and p

has been reduced to a Bessel type equation (2.11) involving p̂ only. Consequently, �̂V⊥ and

û can be solved from (2.8) and (2.9) after solving p̂ from (2.11). Finally, u, �V⊥, and p can
be obtained from (2.6) and then ρ from (2.1). The solution of (2.11) in the region α will
be denoted by p̂α for each α, α= 1,2,3.

Upon using polar coordinate (r,θ), with the fact that

∇⊥ = ∂

∂r
�r +

1
r

∂

∂θ
�θ, ∇2

⊥ =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
, (2.12)

where �r and �θ are unit vectors in the directions of r and θ, respectively, (2.11) can be
written as

∂2 p̂2

∂r2
+
(

1
r

+
2κ∂ū/∂r
ω− ūκ −

1
ρ̄

∂ρ̄

∂r

)
∂p̂2

∂r
+

1
r2

∂2 p̂2

∂θ2
+
(
ρ̄M2(ω− ūκ)2− κ2) p̂2 = 0. (2.13)

We use vortex sheet model. The profile of mean velocity of the jet is shown as in
Figure 2.2.

For the vortex sheet model, the mean velocity ū(r) is 1 inside the jet and 0 outside the
jet while the mean density ρ̄ is 1 inside the jet and ρ̄o outside the jet:

ū(r)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if r < R1,

1 if R1 < r < R2,

0 if r > R2,

ρ̄(r)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ̄o if r < R1,

1 if R1 < r < R2,

ρ̄o if r > R2,

(2.14)
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z

y

(a)

z

x

u

u

(b)

Figure 2.2

where γ is the ratio of the specific heats of gas and

ρ̄o = 1
1 +

(
(γ− 1)/2

)
M2

(2.15)

is the density of the gas outside the jet. It is easily seen from (2.13) and (2.14) that the
governing equation in the first or third region becomes

∂2 p̂α
∂r2

+
1
r

∂p̂α
∂r

+
1
r2

∂2 p̂α
∂θ2

+ λ2
o p̂α = 0, α= 1 (with r < R1) or α= 3 (with r > R2),

(2.16)

where λo =
√
ρ̄oM2ω2− κ2, and that the governing equation (2.13) in the second region is

reduced to

∂2 p̂2

∂r2
+

1
r

∂p̂2

∂r
+

1
r2

∂2 p̂2

∂θ2
+ λ2 p̂2 = 0, R1 < r < R2, (2.17)

where λ= √M2(ω− κ)2− κ2. We comment that the branch cuts of λ and λo are chosen to
have 0≤ argλ,argλo < π.

The dynamic and kinematic boundary conditions at the vortex sheets (r = R1 or r =
R2) are

p̂1 = p̂2 if r = R1,

p̂2 = p̂3 if r = R2,

1
ρ̄oω2

∂p̂1

∂r
= 1

(ω− κ)2

∂p̂2

∂r
if r = R1,

1
ρ̄oω2

∂p̂3

∂r
= 1

(ω− κ)2

∂p̂2

∂r
if r = R2.

(2.18)
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The general solution of the governing equation in each region can be written in the
form of Fourier series of cosine and sine functions, for instance,

p̂1 =
∞∑

n=0

AnJn
(
λor
)

cos(nθ), (2.19)

p̂2 =
∞∑

n=0

(
BnJn(λr)cos(nθ) +CnH(1)

n (λr)cos(nθ)
)
, (2.20)

p̂3 =
∞∑

n=0

DnH
(1)
n

(
λor
)

cos(nθ). (2.21)

Applying the boundary conditions (2.18), we have

AnJn
(
λoR1

)= BnJn
(
λR1

)
+CnH(1)

n

(
λR1

)
, (2.22)

BnJn
(
λR2

)
+CnH(1)

n

(
λR2

)=DnH
(1)
n

(
λoR2

)
, (2.23)

λo
ρ̄oω2

AnJ
′
n

(
λoR1

)= λ

(ω− κ)2

(
BnJ

′
n

(
λR1

)
+Cn

(
H(1)
n

)′(
λR1

))
, (2.24)

λo
ρ̄oω2

Dn
(
H(1)
n

)′(
λoR2

)= λ

(ω− κ)2

(
BnJ

′
n

(
λR2

)
+Cn

(
H(1)
n

)′(
λR2

))
. (2.25)

Let β ≡ (ω− κ)2λo/(ρ̄oω2λ). Equations (2.22)–(2.25) can be rewritten as a system of linear
equations in unknowns An,Bn,Cn, and Dn:

AnJn
(
λoR1

)−BnJn
(
λR1

)−CnH(1)
n

(
λR1

)= 0,

BnJn
(
λR2

)
+CnH(1)

n

(
λR2

)−DnH
(1)
n

(
λoR2

)= 0,

βAnJ
′
n

(
λoR1

)−BnJ ′n
(
λR1

)−Cn
(
H(1)
n

)′(
λR1

)= 0,

BnJ
′
n

(
λR2

)
+Cn

(
H(1)
n

)′(
λR2

)−βDn
(
H(1)
n

)′(
λoR2

)= 0.

(2.26)

For nontrivial solutions of An,Bn,Cn, and Dn, we have

det

⎛

⎜
⎜
⎜
⎜
⎝

Jn
(
λoR1

) −Jn
(
λR1

) −H(1)
n
(
λR1

)
0

0 Jn
(
λR2

)
H(1)
n
(
λR2

) −H(1)
n
(
λoR2

)

βJ ′n
(
λoR1

) −J ′n
(
λR1

) −(H(1)
n
)′(
λR1

)
0

0 J ′n
(
λR2

) (
H(1)
n
)′(
λR2

) −β(H(1)
n
)′(
λoR2

)

⎞

⎟
⎟
⎟
⎟
⎠
= 0, (2.27)

which is the dispersion relation of annular and coaxial jet flow under the vortex sheet
model.

3. Coaxial circular jets

A coaxial circular jet consists of two circular jets with radii R1 and R2, respectively. Let
R1 < R2. Obviously, the yz-plane is divided into three regions in this situation: region 1
(r < R1), region 2 (R1 < r < R2), and region 3 (r > R2). However, in this case, the region 1
is the inside of the jet with radius R1, the region 3 is the outside of the jet with radius R2,
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and the region 2 is the intersection of the inside of the jet with radius R2 and outside of
the jet with radius R1. Thus, the mean velocity and the mean density of these jets can be
defined as follows:

ū(r)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if r < R1,

ū2 if R1 < r < R2,

0 if r > R2,

ρ̄(r)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if r < R1,

ρ̄2 if R1 < r < R2,

ρ̄o if r > R2,

(3.1)

where ū2 and ρ̄2 are constants (0 < ū2 < 1, ρ̄o < ρ̄2 < 1) and ρ̄o is defined as in (2.15)
under the vortex sheet model assumption. We observe the similarity between the coaxial
circular engine jet and the annular jet of the previous section. The only difference is the
values of the mean velocity and mean density functions on three regions. The governing
equations on all these regions can be easily obtained from (2.13) and (3.1). In the first
region (r < R1), the governing equation is

∂2 p̂1

∂r2
+

1
r

∂p̂1

∂r
+

1
r2

∂2 p̂2

∂θ2
+ λ2

1 p̂1 = 0, r < R1, (3.2)

where λ1 =
√
M2(ω− κ)2− κ2 and its general solution in Fourier cosine/sine is

p̂1 =
∞∑

n=0

AnJn
(
λ1r
)

cos(nθ). (3.3)

In the second region (R1 < r < R2), the governing equation is

∂2 p̂2

∂r2
+

1
r

∂p̂2

∂r
+

1
r2

∂2 p̂2

∂θ2
+ λ2

2 p̂2 = 0, R1 < r < R2, (3.4)

where λ2 =
√
ρ̄2M2(ω− ū2κ)2− κ2 and its general solution in Fourier cosine/sine is

p̂2 =
∞∑

n=0

(
BnJn

(
λ2r
)

cos(nθ) +CnH(1)
n

(
λ2r
)

cos(nθ)
)
. (3.5)

Finally, in the third region (r > R2), the governing equation is

∂2 p̂3

∂r2
+

1
r

∂p̂3

∂r
+

1
r2

∂2 p̂3

∂θ2
+ λ2

o p̂3 = 0, r > R2, (3.6)

where λo =
√
ρ̄oM2ω2− κ2 and its general solution in Fourier cosine/sine is

p̂3 =
∞∑

n=0

(
DnH

(1)
n

(
λor
)

cos(nθ)
)
. (3.7)
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The dynamic and kinematic boundary conditions at the vortex sheets on r = R1 and r =
R2 are

p̂1 = p̂2 if r = R1,

p̂2 = p̂3 if r = R2,

1
(ω− κ)2

∂p̂1

∂r
= 1

ρ̄2
(
ω− ū2κ

)2

∂p̂2

∂r
if r = R1,

1
ρ̄oω2

∂p̂3

∂r
= 1

ρ̄2
(
ω− ū2κ

)2

∂p̂2

∂r
if r = R2.

(3.8)

Applying the boundary conditions (3.8), we have

AnJn
(
λ1R1

)= BnJn
(
λ2R1

)
+CnH(1)

n

(
λ2R1

)
,

BnJn
(
λ2R2

)
+CnH(1)

n

(
λ2R2

)=DnH
(1)
n

(
λ3R2

)
,

λ1

(ω− κ)2
AnJ

′
n

(
λ1R1

)= λ2

ρ̄2
(
ω− ū2κ

)2

(
BnJ

′
n

(
λ2R1

)
+Cn

(
H(1)
n

)′(
λ2R1

))
,

λo
ρ̄oω2

Dn
(
H(1)
n

)′(
λoR2

)= λ2

ρ̄2
(
ω− ū2κ

)2

(
BnJ

′
n

(
λ2R2

)
+Cn

(
H(1)
n

)′(
λ2R2

))
.

(3.9)

Define

β1 ≡ ρ̄2
(
ω− ū2κ

)2
λ1

(ω− κ)2λ2
, β2 ≡ ρ̄2

(
ω− ū2κ

)2
λo

ρ̄oω2λ2
. (3.10)

Equations (3.9) can be rewritten as a system of linear equations in unknowns An,Bn,Cn,
and Dn:

AnJn
(
λ1R1

)−BnJn
(
λ2R1

)−CnH(1)
n

(
λ2R1

)= 0,

BnJn
(
λ2R2

)
+CnH(1)

n

(
λ2R2

)−DnH
(1)
n

(
λoR2

)= 0,

β1AnJ
′
n

(
λ1R1

)−BnJ ′n
(
λ2R1

)−Cn
(
H(1)
n

)′(
λ2R1

)= 0,

BnJ
′
n

(
λ2R2

)
+Cn

(
H(1)
n

)′(
λ2R2

)−β2Dn
(
H(1)
n

)′(
λoR2

)= 0.

(3.11)

For nontrivial solutions, we have the following dispersion relation:

det

⎛

⎜
⎜
⎜
⎜
⎝

Jn
(
λ1R1

) −Jn
(
λ2R1

) −H(1)
n
(
λ2R1

)
0

0 Jn
(
λ2R2

)
H(1)
n
(
λ2R2

) −H(1)
n
(
λoR2

)

β1J ′n
(
λ1R1

) −J ′n
(
λ2R1

) −(H(1)
n
)′(
λ2R1

)
0

0 J ′n
(
λ2R2

) (
H(1)
n
)′(
λ2R2

) −β2
(
H(1)
n
)′(
λoR2

)

⎞

⎟
⎟
⎟
⎟
⎠
= 0. (3.12)
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ON THE GLOBAL BEHAVIOR OF SOLUTIONS TO
NONLINEAR INVERSE SOURCE PROBLEMS

A. EDEN AND V. K. KALANTAROV

We find conditions on data guaranteeing global nonexistence of solutions to inverse
source problems for nonlinear parabolic and hyperbolic equations. We also establish sta-
bility results on a bounded domain for corresponding problems with the opposite sign
on the power-type nonlinearities.

Copyright © 2006 A. Eden and V. K. Kalantarov. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Inverse problems are most of the time ill-posed. Therefore, the powerful tools and tech-
niques of the dynamical systems theory usually do not apply. However, in the rare and
fortunate cases where the given inverse problem is well-posed one can study the long
time behavior of solutions. The questions that can be addressed are, but not limited to
(i) the global existence or nonexistence of solutions; (ii) the stability of solutions, (iii) the
regularity of solutions; (iv) the stability of solutions in a wider sense, that is, the existence
of an (exponential) attractor, its finite dimensionality, the structure of the global attractor
and so forth.

In [5, 6], we have tried to address some of these questions for a class of semilinear
parabolic and hyperbolic inverse source problems with integral constraints. In particu-
lar, depending on the sign of the nonlinearity we have established both global nonex-
istence results as well as stability results. One of the standard tools for establishing the
global nonexistence of solutions is the concavity argument that was introduced by Levine
[11, 10] and was generalized in [9]. This approach requires the appropriate functional to
satisfy the desired differential inequality, with a judicious choice of the initial data. The
main trust of the work in [5, 6] was to prove global nonexistence results for parabolic
and hyperbolic inverse source problems using the generalized concavity argument given
in [9]. In the same works, when the nonlinearities have the opposite sign, it was shown
that the solutions converge to zero in H1-norm when the integral constraint that drives
the system tends to 0.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 391–402



392 Nonlinear inverse source problems

In this note, we start by recalling some of the relevant previous work that address the
questions (i)–(iv) raised above. Then we summarize our work in this field without going
into all the details.

The papers that address the issues raised above are few in number. This fact might be
partially explained by the absence of a variety of well-posed nonlinear inverse problems.
We classify these results on the global behavior of solutions under two headings: point
source problems, problems with integral constraints.

The works of Riganti and Savateev [13] and Trong and Ang [14] are both point source
problems, they are also called coefficient identification problems. In [13] the authors
prove the global solvability of the solutions for the problem

ut = uxx +F(t)up, x ∈ (0, l), t ∈ (0,T),

u(x,0)= u0(x), x ∈ [0, l],

ux(0, t)= ux(l, t)= 0, ∀t ∈ [0,T].

(1.1)

Here 0 < p < 1 is a given number, F(t) and u(x, t) are the functions to be determined
under the additional condition

u
(
x0, t

)= φ(t), t ∈ [0,T], x0 ∈ (0, l), (1.2)

and compatibility conditions

u
′
0(0)= u′0(l)= 0, u0

(
x0
)= φ(0). (1.3)

This is in fact an interior source problem where φ(t) is a given function that measures the
intensity of the interior source and u and F are unknown functions. They also prove the
stability of the stationary solution under some restrictions on the data. In [14] Trong and
Ang consider the following boundary source problem:

ut = uxx + b(t)ux, 0 < x < 1,

u(x,0)= u0(x), 0≤ x ≤ 1,

u(0, t)= f (t), ux(1, t)= 0, t > 0, ux(0, t) + b(t)u(0, t)= 0, t > 0,

(1.4)

where f , u0 are given functions, b(t) and u(x, t) are unknown functions. They prove the
global nonexistence of solutions. In [1] a stability result has been proven for the solution
of the problem

ut = uxx +u2−K2(t), x ∈ (0,1), t > 0,

ux(0, t)= ux(1, t)= 0, t > 0,
(1.5)

with the integral constraint
∫ 1

0 u(x, t)dx = 0. In fact, the authors proved that for initial
data with small L2-norm the solution converges to zero in H1-norm.They also estab-
lished a blowup result by considering some conditions on the first two Fourier coeffi-
cients of the initial data u0. In [15] Vasin and Kamynin established the stability of the
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zero solution in the L2-norm for an inverse problem for a second-order linear parabolic
equation. Whereas in [7], Guvenilir and Kalantarov showed the asymptotic stability in
the H1-norm for linear parabolic- and hyperbolic-type problems. Last but not the least,
Hu and Yin [8] have considered the problem of global nonexistence when b = 0 in (2.1),
with Neumann boundary condition instead of (2.2) and when w(x)≡ 1. They also treat
the problem

ut = Δu+ k(t)up for x ∈Ω, t > 0,
∫

Ω
u(x, t)dx = g(t),

(1.6)

and established global existence result as well as a blowup result for radially symmetric
solutions.

Let us recall also the basic lemma from [9].

Lemma 1.1. Let α > 0, C1,C2 ≥ 0, and C1 +C2 > 0. Suppose that Ψ(t) is a twice differen-
tiable positive function satisfying

Ψ
′′
Ψ− (1 +α)

[
Ψ
′]2 ≥−2C1ΨΨ

′ −C2[Ψ]2 (1.7)

for all t ≥ 0. If Ψ(0) > 0, and Ψ
′
(0) + γ2α−1Ψ(0) > 0, then

Ψ(t)−→∞ as t −→ t1 ≤ t2 = 1

2
√
C2

1 +αC2

ln
γ1Ψ(0) +αΨ

′
(0)

γ2Ψ(0) +αΨ′(0)
. (1.8)

Here γ1 =−C1 +
√
C2

1 +αC2, γ2 =−C1−
√
C2

1 +αC2.

2. Parabolic equations

In this section we consider the global in time behavior of solutions of inverse source
problems for nonlinear second-order parabolic equations. First we consider the following
problem:

ut −Δu−|u|pu+ b(x, t,u,∇u)= F(t)w(x), x ∈Ω, t > 0, (2.1)

u(x, t)= 0, x ∈ ∂Ω, t > 0, (2.2)

u(x,0)= u0(x), x ∈Ω, (2.3)
∫

Ω
u(x, t)w(x)dx = 1, t > 0. (2.4)

Here and in the rest of the paper Ω is a domain of Rn with smooth boundary ∂Ω, p is a
given positive number, w(x),u0(x), and b(x, t,u,q) are given functions. Assume that

w ∈H2(Ω)∩H1
0 (Ω)∩Lp+2(Ω),

∫

Ω
w2(x)dx = 1, (2.5)
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and, for some M1,M2 > 0,

∣
∣b(x, t,u,q)

∣
∣≤M1|q|+M2|u|, ∀x ∈Ω, t ∈ R+, u∈ R, q ∈ Rn. (2.6)

The problem is to find a pair of functions {u(x, t),F(t)} satisfying (2.1)–(2.4) when

u0 ∈H1
0 (Ω)∩Lp+2(Ω),

∫

Ω
u0(x)w(x)dx = 1. (2.7)

Theorem 2.1. Let the conditions (2.5)–(2.7) be satisfied and assume that ‖u0‖ > 0 and

[
∥
∥u0

∥
∥p+2
p+2−

1
2

∥
∥∇u0

∥
∥2−

(
λ0

2
+

3M2
1

8ε1
+
δ(1 +α)2

α(p+ 4)

)
∥
∥u0

∥
∥2
]

> C̃(p,M1,M2,w), (2.8)

where ‖ · ‖ is the norm and 〈·,·〉 is the inner product of L2(Ω), C̃(p,M1,M2,w) is sufficiently
large positive number, ε1 = p/8 + 2p,δ =−γ2/α,λ0 = 3p+ 6/p[1 +M2

1(p+ 4)/p], α=−1 +
(1 + p/8)1/2.

Then there exists a finite t1 such that

∥
∥u(t)

∥
∥−→ +∞ as t −→ t−1 . (2.9)

To prove the theorem we consider the following problem that is obtained from (2.1)–
(2.4) by substituting v(x, t)= u(x, t)e−λt:

vt −Δv+ λv− eλpt|v|pv+ b
(
x, t,eλtv,eλt∇v)e−λt = Fwe−λt, x ∈Ω, t > 0, (2.10)

v(x, t)= 0, x ∈ ∂Ω, t > 0, (2.11)

v(x,0)= u0(x), x ∈Ω, (2.12)

〈v,w〉 = e−λt, t > 0. (2.13)

The value of the parameter λ will be prescribed later. We, multiplying (2.10) by w and
using (2.13), obtain

F(t)=−eλt〈v,Δw〉− eλ(p+1)t〈|v|pv,w
〉

+
〈
b
(
x, t,eλtv,eλt∇v),w〉. (2.14)

Substituting (2.14) into (2.10) one obtains a problem that is shown to be equivalent to
(2.10)–(2.13). (See, e.g. [12], or [2].)

Following [9, 11], we define the functional as

Ψ(t)=
∫ t

0

∥
∥v(τ)

∥
∥2
dτ +C3, (2.15)

whereC3 > 0 is judiciously chosen constant that depends onM1,M2,λ0, p,w(x), and ‖u0‖.
It is clear that

Ψ
′
(t)= ∥∥v(t)

∥
∥2 = 2

∫ t

0

〈
vτ ,v

〉
dτ +

∥
∥u0

∥
∥2

, Ψ
′′

(t)= d

dt

∥
∥v(t)

∥
∥2
. (2.16)
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In order to obtain a differential inequality of the form (2.10), we need to bound from
below Ψ

′′
(t) for solutions of (2.10)–(2.13).

The following notations are introduced to simplify the estimates:

b̂(t,v)≡ b(x, t,eλtv,eλt∇v), G(t,v)≡ eλpt
∫

Ω
|v|p+2dx,

L
(
v(t)

)≡ ∥∥∇v(t)
∥
∥2

+ λ
∥
∥v(t)

∥
∥2

, j(t)≡−1
2
L(v) +

1
p+ 2

G(t,v).
(2.17)

To achieve our task first we estimate d/dt‖v‖2 from below in terms of j(t) and −‖v‖2,
then estimate j(t) from below by

∫ t
0 ‖vτ‖2dτ and

∫ t
0 ‖v‖2dτ. And finally combine the pre-

vious lower estimates to obtain a lower estimate for Ψ
′′
Ψ− (1 + α)[Ψ

′
]2 for a suitably

chosen α > 0.
To get the lower estimate for d/dt‖v‖2, we multiply (2.10) by v, integrate over Ω, using

(2.13) and (2.14)

1
2
Ψ
′′

(t)= 1
2
d

dt
‖v‖2 +L(v)−G(t,v) +

〈
b̂(t,v),v

〉
e−λt

=−e−λt〈v,Δw〉− eλ(p−1)t〈|v|pv,w
〉

+
〈
b̂(t,v),w

〉
e−2λt.

(2.18)

On the other hand, multiplying (2.10) by vt, integrating over Ω, and using in addition to
(2.13) and (2.18) the fact that 〈w,vt〉 = −λe−λt, we get

∥
∥vt
∥
∥2− d

dt
j(t) +

λp

p+ 2
G(t,v) +

〈
b̂(t,v),vt

〉
e−λt

= λ
[
e−λt〈v,Δw〉+ eλ(p−1)t〈|v|pv,w

〉− 〈b̂(t,v),w
〉
e−2λt

]
.

(2.19)

Now we are going to estimate various terms on the right-hand side of (2.19) by the ap-
propriate combinations of G(t,v) and j(t). Let us recall that Young’s inequality implies
that, for a,b ≥ 0,

ab≤ βaq +C(β,q)bq
′

(2.20)

for 1/q+ 1/q
′ = 1 and where β > 0,C(β,q)= 1/q

′
(βq)q

′
/q.

Taking a= ‖v‖,b = ‖Δw‖e−λt,q = q′ = 2, and β = λp/8, we get

∣
∣〈v,Δw〉e−λt∣∣≤ λp

8
‖v‖2 +

2
pλ
‖Δw‖2e−2λt, (2.21)

and taking q=(p+ 2)/p+ 1,q
′ = p+ 2,a= e(λ(p2+p)/p+2)t‖v‖p+1

p+2,b = ‖w‖p+2e−2λt/(p+2), and
β = p/(2(p+ 2)), we get

eλ(p−1)t
∫

Ω
|v|pvwdx ≤ p

2(p+ 2)
G(t,v) +

e−2λt

(p+ 2)[p/(2p+ 2)]p+1

∫

Ω
|w|p+2dx. (2.22)
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By using the condition (2.6) similarly, we obtain

e−2λt
∣
∣
〈
b̂(t,v),w

〉∣
∣≤ p

8
‖∇v‖2 +

2
p
M2

1‖w‖2e−2λt +
λp

4
‖v‖2 +

M2
2

λp
‖w‖2e−2λt, (2.23)

e−λt
∣
∣
〈
b̂(t,v),v

〉∣
∣≤M1‖∇v‖‖v‖+M2‖v‖2 ≤

(

M2 +
2M2

1

p

)

‖v‖2 +
p

8
‖∇v‖2. (2.24)

Rewriting (2.18) and using (2.21)–(2.24),

1
2
d

dt
‖v‖2 ≥

(
p

2
+ 2
)

j(t)−
(

M1 +
2
p
M2

2

)

‖v‖2−D0, (2.25)

where D0=2λ/p‖Δw‖2 +(1/(p+ 2)[p/(2p+ 2)]p+1)‖w‖p+2
p+2 +((2/p)M2

1 +(M2
2 /λp))‖w‖2.

The last inequality gives us a lower bound ofΨ
′′

(t) in terms of j(t) and−‖v‖2. Thus we
next set out to estimate j(t) from below using (2.19). We proceed to estimate the terms on
the right-hand side of (2.19) similar to (2.21) and (2.22) with β = 1/2 and b = λ‖Δw‖e−λt
in the first case and with β = 1 and b = λ‖w‖p+2e−2λt/(p+2) in the second case to get

∣
∣λe−λt〈v,Δw〉∣∣≤ 1

2
‖v‖2 +

λ2

2
‖Δw‖2e−2λt, (2.26)

∣
∣λeλ(p−1)t〈|v|pv,w

〉∣
∣≤G(t,v) +C(p)λp+2e−2λt

∫

Ω
|w|p+2dx. (2.27)

From Young’s inequality we get the estimates

e−λt
∣
∣
〈
b̂(t,v),vt

〉∣
∣≤ ε1

∥
∥vt
∥
∥2

+
3M2

1

8ε1
‖∇v‖2 +

3M2
2

4ε1
‖v‖2, (2.28)

λe−2λt
∣
∣
〈
b̂(t,v),w

〉∣
∣≤ 1

2
‖∇v‖2 +

1
2

(
M2

1 +M2
2

)
λ2e−2λt‖w‖2 +

1
2
‖v‖2. (2.29)

Rewriting (2.19) and using (2.26)–(2.29),

d

dt
j(t)≥ (1− ε1

)∥
∥vt
∥
∥2

+
(
λp

p+ 2
− 1
)

G(t,v)−
[

3M2
1

8ε1
+

1
2

]

‖∇v‖2−
[

3M2
2

4ε1
+ 1
]

‖v‖2

− λ2

2
‖Δw‖2e−2λt −C(p)λp+2e−2λt‖w‖p+2

p+2−
1
2

(
M2

1 +M2
2

)
λ2‖w‖2e−2λt.

(2.30)

Integrating the inequality (2.30) from 0 to t and estimating 1− e−2λt by 1, we get

j(t)≥ j(0) +
(
1− ε1

)
∫ t

0

∥
∥vτ
∥
∥2
dτ +

(
λp

p+ 2
− 1
)∫ t

0
G(τ,v)dτ

−
[

3M2
1

8ε1
+

1
2

]∫ t

0
‖∇v‖2dτ −

[
3M2

2

4ε1
+ 1
]∫ t

0
‖v‖2dτ −D1,

(2.31)

where D1 = λ/4‖Δw‖2 + (C(p)λp+1)/2‖w‖p+2
p+2 + λ/4[M2

1 +M2
2]‖w‖2.
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In (2.31), we still need to estimate from above
∫ t

0 ‖∇v‖2dτ, we will achieve estimating
this term from (2.18):

1
2
d

dt

∥
∥v(t)

∥
∥2

+
∥
∥∇v(t)

∥
∥2

+ λ
∥
∥v(t)

∥
∥2

≤ 2G(t,v) +C(p)e−2λt‖w‖p+2
p+2 +

1
4
‖∇v‖2 +

(
M2

1 +M2
)‖v‖2 +

λ

2
‖v‖2

+
1

2λ
‖Δw‖2e−2λt +

λ

2
‖v‖2 +

M2
2

2λ
‖w‖2e−2λt +

1
4
‖∇v‖2 +M2

1‖w‖2e−2λt.

(2.32)

Rearranging and integrating (2.32) from 0 to t,

1
2

∥
∥v(t)

∥
∥2

+
1
2

∫ t

0
‖∇v‖2dτ ≤ 1

2

∥
∥u0

∥
∥2

+ 2
∫ t

0
G
(
τ,v(τ)

)
dτ +

(
M2

1 +M2
)
∫ t

0
‖v‖2dτ +D2,

(2.33)

where D2 = C(p)/2λ
∫
Ω |w|p+2dx+ (M2

2 /4λ
2 +M2

1 /2λ)‖w‖2 + 1/4λ2‖Δw‖2.
Dropping the first term on the left-hand side of (2.33), we get

∫ t

0

∥
∥∇v(τ)

∥
∥2
dτ ≤ 2D2 +

∥
∥u0

∥
∥2

+ 4
∫ t

0
G
(
τ,v(τ)

)
dτ + 2

(
M2

1 +M2
)
∫ t

0
‖v‖2dτ. (2.34)

Using this estimate in (2.31),

j(t)≥ (1− ε1
)
∫ t

0

∥
∥vτ
∥
∥2
dτ −M4

∫ t

0
‖v‖2dτ +D3, (2.35)

whereD3= j(0)−(3M2
1/8ε1 +(1/2))[‖u0‖2 +2D2]−D1,M4=3M2

2 /4ε1 +(1/2)+(3M2
1/4ε1 +

2)(M2
1 +M2).

We are now set for the application of the lemma. Combining (2.25) with (2.35),

Ψ
′′

(t)= d

dt
‖v‖2 ≥ (4 + p) j(t)− 2

(

M1 +
2
p
M2

2

)

‖v‖2− 2D0

≥ 4
(

1 +
p

4

)
(
1− ε1

)
∫ t

0

∥
∥vτ
∥
∥2
dτ − 4

(

1 +
p

4

)

M4

∫ t

0
‖v‖2dτ

− 2
(

M1 +
2
p
M2

2

)

‖v‖2 + 4
(

1 +
p

4

)

D3− 2D0.

(2.36)

We take ε1 = (p/8)/(1 + (p/4)) and λ= λ0 given in Theorem 2.1. Then the last inequality
takes the form

Ψ
′′

(t)≥ 4
(

1 +
p

8

)∫ t

0

∥
∥vτ
∥
∥2
dτ − (4 + p)M4Ψ(t)− 2C1‖v‖2 +A0 + (4 + p)M4C3,

(2.37)
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where C1 = (M1 + (2/p)M2
2) and A0 = (4 + p)D3− 2D0. It is easy to see that

[
Ψ
′
(t)
]2 =

(
∥
∥u0

∥
∥2

+ 2
∫ t

0

〈
v,vτ

〉
dτ
)2

≤
(

1 +
1
ε4

)
∥
∥u0

∥
∥4

+ 4
(
1 + ε4

)
(∫ t

0
‖v‖2dτ

)(∫ t

0

∥
∥vτ
∥
∥2
dτ
)

.

(2.38)

Thus

Ψ
′′

(t)Ψ(t)− (1 +α)
[
Ψ
′
(t)
]2 ≥ 4

(

1 +
p

8

)∫ t

0

∥
∥vτ
∥
∥2
dτ
(∫ t

0
‖v‖2dτ +C3

)

+
[
A0− (p+ 4)M4Ψ(t) + (p+ 4)M4C3− 2C1Ψ

′
(t)
]
Ψ(t)

− 4(1 +α)
(
1 + ε4

)
∫ t

0

∥
∥vτ
∥
∥2
dτ

×
∫ t

0
‖v‖2dτ − (1 +α)

(

1 +
1
ε4

)
∥
∥u0

∥
∥4
.

(2.39)

Let us choose α= ε4 > 0 so that (1 +α)2 = 1 + (p/8), that is, α=−1 +
√

1 + (p/8). So due

to the Cauchy-Schwarz inequality, we have
∫ t

0 ‖vτ‖2dτ
∫ t

0 ‖v‖2dτ − (
∫ t

0〈v,vτ〉dτ)2 ≥ 0 and
the inequality (2.39) can be simplified to

Ψ
′′

(t)Ψ(t)−
(

1 +
p

4

)
[
Ψ
′
(t)
]2 ≥−2C1Ψ

′
(t)Ψ(t)− (p+ 4)M4Ψ

2(t) +D4, (2.40)

where D4 = A0C3 + (p + 4)M4C
2
3 − ((1 +α)2/α)‖u0‖4. So the lemma can be applied if

D4≥0 and ψ
′
(0)>δΨ(0), where δ=−γ2/α. Assume that ‖u0‖>0, A0>(δ(1+α)2/α)‖u0‖2

and let us choose C3 = ((1 +α)2/α)(‖u0‖4/A0). Then D4 ≥ 0 and δΨ(0) = δC3 = ((1 +
α)2δ/α)(‖u0‖4/A0) < ‖u0‖2 =Ψ

′
(0).

So the function Ψ(t) satisfies all conditions of lemma and therefore there exists 0 <
t1 <∞, such that ‖u(t)‖ tends to infinity as t→ t−1 . Hence the conclusion of Theorem 2.1
is true.

2.1. Stability problem. Here we consider the following inverse source problem:

ut −Δu+ |u|pu= F(t)w(x), x ∈Ω, t > 0, (2.41)

u(x, t)= 0, x ∈ ∂Ω, t > 0, (2.42)

u(x,0)= u0(x), x ∈Ω, (2.43)
∫

Ω
u(x, t)w(x)dx = φ(t), t > 0, (2.44)



A. Eden and V. K. Kalantarov 399

where Ω is a bounded domain. We assume that w satisfies the condition (2.5), and u0

satisfies conditions

u0 ∈H1
0 (Ω)∩Lp+2(Ω),

∫

Ω
u0(x)w(x)dx = φ(0). (2.45)

Theorem 2.2. Assume that the conditions (2.5) and (2.45) are satisfied and suppose that
φ,φ

′
are continuous functions defined on [0,∞), which tend to 0 as t→∞. Then

lim
t→∞

[∥
∥∇u(t)

∥
∥2

+
∥
∥u(t)

∥
∥p+2
p+2

]
= 0. (2.46)

Proof. Multiplying (2.41) by w, integrating over Ω, and using (2.44), we obtain

F(t)= φ′(t)−〈∇u,∇w〉+
〈|u|pu,w

〉
. (2.47)

Thus (2.41) takes the form

ut −Δu+ |u|pu= [φ′(t)−〈∇u,∇w〉+
〈|u|pu,w

〉]
w(x), x ∈Ω, t > 0. (2.48)

To show (2.46) we multiply the last equation by ut +u and integrate over Ω:

d

dt

[
1
2
‖u‖2 +

1
2
‖∇u‖2 +

1
p+ 2

‖u‖p+2
p+2

]

+‖∇u‖2 +‖u‖p+2
p+2

≤ φ′(t)2 +
∣
∣φ

′
(t)φ(t)

∣
∣+‖∇u‖‖∇w‖(∣∣φ′(t)∣∣+ |φ(t)|)

+
∣
∣
〈|u|pu,w

〉∣
∣
(∣
∣φ

′
(t)
∣
∣+ |φ(t)

∣
∣
)
.

(2.49)

By using the Young inequality with ε in the right-hand side of the last inequality, we
obtain

d

dt
E(t) + k0(1− ε)E(t)≤ h(t). (2.50)

Here ε∈(0,1),E(t)≡(1/2)‖u‖2+(1/2)‖∇u‖2+(1/p+2)‖u‖p+2
p+2, h(t)≡φ′(t)2 +|φ′(t)φ(t)|+

(1/2ε)‖∇w‖2(|φ′(t)|2 + |φ(t)|2) +C(ε, p)‖w‖p+2
p+2(|φ′(t)|p+2 + |φ(t)|p+2). Since h(t)→ 0

as t→∞, the result follows. �

3. Wave equations

The inverse problem we consider first in this section consists of finding a pair of functions
{u(x, t),F(t)} satisfying

utt −Δu−|u|pu+ b(x, t,u,∇u)= F(t)w(x), x ∈Ω, t > 0, (3.1)

u(x, t)= 0, x ∈ ∂Ω, t > 0, (3.2)

u(x,0)= u0(x), ut(x,0)= u1(x), x ∈Ω, (3.3)
∫

Ω
u(x, t)w(x)dx = 1, t > 0. (3.4)
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Theorem 3.1. Let the conditions (2.5)–(2.7) be satisfied, u1 ∈ L2(Ω),〈u1,w〉 = 0, and as-
sume that

E(0)=
[

− 1
2

∥
∥u1

∥
∥2− 1

2

∥
∥∇u0

∥
∥2− λ2

2

∥
∥u0

∥
∥2

+
1

p+ 2

∥
∥u0

∥
∥p+2
p+2

]

> D
(
p,M1,M2,w

)
, (3.5)

where λ = max{(p+ 2/p)(M1 + M2 + 1);(M2/2)1/3}, and D(p,M1,M2,w) is sufficiently
large positive number. Then there exists a finite t1 such that the solution of the problem
(3.1)–(3.4) blows up in a finite time, that is,

∥
∥u(t)

∥
∥−→ +∞ as t −→ t−1 . (3.6)

The way of proof of this theorem is similar to the proof of Theorem 2.1. Here we show that
Ψ(t)= ‖u(t)‖2 blows up in a finite time.

3.1. Stability problem and the exponential attractor. Now we consider the following
inverse source problem:

utt −Δu+ aut + |u|pu− bu= F(t)w(x), x ∈Ω, t > 0, (3.7)

u(x, t)= 0, x ∈ ∂Ω, t > 0, (3.8)

u(x,0)= u0(x), ut(x,0)= u1(x), x ∈Ω, (3.9)
∫

Ω
u(x, t)w(x)dx = φ(t), t > 0. (3.10)

Theorem 3.2. Assume that the conditions (2.5) and (2.45) are satisfied, the damping coef-
ficient b ∈ (0,λ1) and suppose that φ,φ

′
,φ

′′
are continuous functions defined on [0,∞), such

that φ
′′

is a bounded function and φ,φ
′

tend to 0 as t→∞. Then

lim
t→∞

[∥
∥ut
∥
∥2

+
∥
∥∇u(t)

∥
∥2

+
∥
∥u(t)

∥
∥p+2
p+2

]
= 0. (3.11)

Multiplying (3.7) by w, integrating over Ω, and using (3.10), we obtain

F(t)= φ′′(t) + 〈∇u,∇w〉+ aφ
′
(t) +

〈|u|pu,w
〉− bφ(t). (3.12)

Substituting (3.12) in (3.7), we get

utt −Δu+ aut + |u|pu− bu

=
[
φ
′′

(t) + 〈∇u,∇w〉+ aφ
′
(t) +

〈|u|pu,w
〉− bφ(t)

]
w(x), x ∈Ω, t > 0.

(3.13)

To get the result we derive the inequality

d

dt
Eη(t) + δ

d

dt
Eη(t)≤H(t) (3.14)
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for the Lyapunov-like functional

Eη(t)≡ 1
2

∥
∥ut
∥
∥2

+
1
2
‖∇u‖2 +

1
p+ 2

‖u‖p+2
p+2−

b

2
‖u‖2 +η

a

2
‖u‖2 +η

〈
ut,u

〉
, (3.15)

where

H(t)≡ ∣∣φ′′(t)φ′(t)∣∣+ (b+ηa)
∣
∣φ

′
(t)φ(t)

∣
∣

+
1

4ε
‖∇w‖2(∣∣φ

′
(t)
∣
∣+η

∣
∣φ(t)

∣
∣
)2

+C(ε, p)‖w‖p+2
p+2

(∣
∣φ

′
(t)
∣
∣+η

∣
∣φ(t)

∣
∣
)p+2

(3.16)

and δ is some positive number. Since H(t)→ 0 as t→∞ by the conditions imposed on φ(t),
the result of the theorem follows from the estimate

∥
∥ut(t)

∥
∥2

+
∥
∥∇u(t)

∥
∥2

+
∥
∥u(t)

∥
∥p+2
p+2 ≤ C0Eη(t), (3.17)

which we derived using 0 < b < λ1, for η < a/2.

3.2. Strongly damped wave equation. Now we consider the following inverse source
problem:

utt −Δu−Δut + |u|pu= F(t)w(x), x ∈Ω, t > 0,

u(x, t)= 0, x ∈ ∂Ω, t > 0,

u(x,0)= u0(x), ut(x,0)= u1(x), x ∈Ω,
∫

Ω
u(x, t)w(x)dx = φ(t), t > 0.

(3.18)

We assume thatw satisfies the condition (2.6), u1 ∈ L2(Ω),〈u1,w〉w = φ′(0) and u0 satisfy
condition (2.45).

Similarly we can show that the energy integral

E(t)= 1
2

∥
∥ut(t)

∥
∥2

+
1
2

∥
∥∇u(t)

∥
∥2

+
1

p+ 2

∥
∥u(t)

∥
∥p+2
p+2 (3.19)

is tending to zero with an exponential rate as t → +∞. When φ(t) ≡ 1, this problem is
equivalent to the following initial boundary value problem:

utt −Δu−Δut + |u|pu
= [〈∇u,∇w〉+

〈∇ut,∇w
〉

+
〈|u|pu,w

〉− b〈u,w〉]w, x ∈Ω, t > 0,
(3.20)

u(x, t)= 0, x ∈ ∂Ω, t > 0, (3.21)

u(x,0)= u0(x), ut(x,0)= u1(x), x ∈Ω. (3.22)
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A proper modification of arguments in [3, 4] allows us to show that, if p < (n+ 2)/(n− 2),
when n ≥ 3 and p > 0 when n = 1,2, this problem generates a continuous semigroup
Vt, t > 0, in a phase space X1 :H1

0 (Ω)×L2(Ω), which has an exponential attractor A⊂ X1.
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JUSTIFICATION OF QUADRATURE-DIFFERENCE METHODS
FOR SINGULAR INTEGRODIFFERENTIAL EQUATIONS

A. FEDOTOV

Here we propose and justify quadrature-difference methods for different kinds (linear,
nonlinear, and multidimensional) of periodic singular integrodifferential equations.

Copyright © 2006 A. Fedotov. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In Section 2 we propose and justify quadrature-difference methods for linear and nonlin-
ear singular integrodifferential equations with Hölder-continuous coefficients and right-
hand sides. In Section 3 the same method is justified for linear singular integrodifferential
equations with discontinuous coefficients and right-hand sides. In Section 4 we propose
and justify cubature-difference method for multidimensional singular integrodifferential
equations in Sobolev space.

2. Linear and nonlinear singular integrodifferential equations with
continuous coefficients

Let us consider the linear singular integrodifferential equation

m∑

ν=0

(
aν(t)x(ν)(t) + bν(t)

(
Jx(ν))(t) +

(
J0hνx

(ν))(t)
)= y(t) (2.1)

and the nonlinear singular integrodifferential equation

F
(
t,x(m)(t), . . . ,x(t),

(
Jx(m))(t), . . . , (Jx)(t),

(
J0hmx

(m))(t), . . . ,
(
J0h0x

)
(t)
)= y(t), (2.2)

where x(t) is a desired unknown, aν(t), bν(t),hν(t,τ),ν = 0,1, . . . ,m− 1, y(t), and F(t,
um, . . . ,u0,vm, . . . ,v0,wm, . . . ,w0) are given continuous 2π-periodic by the variables t,τ

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 403–411



404 Justification of quadrature-difference methods

functions, singular integrals

(
Jx(ν))(t)= 1

2π

∫ 2π

0
x(ν)(τ)cot

τ − t
2

dτ, ν= 0,1, . . . ,m− 1, (2.3)

are to be interpreted as the Cauchy-Lebesgue principal value, and

(
J0hνx

(ν))(t)= 1
2π

∫ 2π

0
hν(t,τ)x(ν)(τ)dτ, ν= 0,1, . . . ,m− 1, (2.4)

are regular integrals.
Let us fix n∈N and define on [0,2π] the grid

tk = 2πk
n

, k = 0,1, . . . ,n− 1. (2.5)

An approximate solution of (2.1), (2.2) we seek in the form of the vector

xn =
(
x0,x1, . . . ,xn−1

)
(2.6)

of values of the unknown function in the nodes (2.5). The components [xn]k = xk, k =
0,1, . . . ,n− 1, of this vector are a solution of the systems of linear algebraic equations

m∑

ν=0

(

aν
(
tk
)[
Dν
nxn

]
k +

bν
(
tk
)

n

n−1∑

l=0

γk−l
[
Dν
nxn

]
l

+
1
N

n−1∑

l=0

hν
(
tk, tl

)[
Dν
nxn

]
l

)

= y
(
tk
)
, k = 0,1, . . . ,n− 1,

(2.7)

and the system of nonlinear algebraic equations

F

(

tk,
[
Dm
n xn

]
k, . . . ,

[
D0
nxn

]
k,

1
n

n−1∑

l=0

γk−l
[
Dm
n xn

]
l, . . . ,

1
n

n−1∑

l=0

γk−l
[
D0
nxn

]
l,

1
n

n−1∑

l=0

hm
(
tk, tl

)[
Dm
n xn

]
l, . . . ,

1
n

n−1∑

l=0

h0
(
tk, tl

)[
D0
nxn

]
l

)

= y
(
tk
)
, k = 0,1, . . . ,n− 1.

(2.8)

Here Dν
nxn, ν = 0,1, . . . ,m, are arbitrary convergent difference formulas defined on the

grid (2.5):

[
Dν
nxn

]
k = h−ν

sν∑

j=−rν
cν jxk+ j , h= 2π

n
, ν= 0,1, . . . ,m,

xk+ j =
⎧
⎨

⎩

xk+ j+n, k+ j < 0,

xk+ j−n, k+ j ≥ n,
k = 0,1, . . . ,n− 1,

(2.9)
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and γk−l = γ(n)
k−l, k, l = 0,1, . . . ,n− 1,

γ(n)
r =

{

tan
rπ

2n
, r− even,−cot

rπ

2n
, r−odd

}

, n−odd,

γ(n)
r =

{

0, r− even,2cot
rπ

2n
, r−odd

}

, n− even,

(2.10)

are the coefficients of the quadrature formulas.
Let us fix β ∈ R, 0 < β ≤ 1 and r ∈ N. By H(r)

β (H(0)
β =Hβ) and H(r)

β,n(H(0)
β,n =Hβ,n) we

denote the space of 2π-periodic functions with Hölder continuous rth derivative and the
space of vectors (2.6) with norms

‖x‖H(r)
β
=max

{

max
0≤ν≤r

∥
∥x(ν)

∥
∥

C,H
(
x(r);β

)
}

,

‖x‖C = max
0≤t≤2π

∣
∣x(t)

∣
∣, H(x;β)= sup

t�=τ
t,τ∈[0,2π]

∣
∣x(t)− x(τ)

∣
∣

|t− τ|β ,

∥
∥xn

∥
∥

H(r)
β,n
=max

{

max
0≤ν≤r

∥
∥D̄ν

nxn
∥
∥

Cn
,Hn

(
D̄r
nxn;β

)
}

,

∥
∥xn

∥
∥

Cn
= max

0≤k≤n−1

∣
∣
[

xn
]
k

∣
∣, Hn

(
xn;β

)=max
k�=l

∣
∣
[

xn
]
k −

[
xn
]
l

∣
∣

∣
∣tk − tl

∣
∣β

, tk, tl ∈ Δn,

D̄ν
nxn = D̄n

(
D̄ν−1
n xn

)
, ν= 1,2, . . . ,r, D̄0

nxn = xn,

[
D̄nxn

]
k =

xk+1− xk
h

, k = 0,1, . . . ,n− 2,
[
D̄nxn

]
n−1 =

x0− xn−1

h
,

Δn : tk = 2πk
n

, k = 0,1, . . . ,n− 1, h= 2π
n

,

(2.11)

correspondently.

The spaces H(m)
β ,H(m)

β,n and Hβ,Hβ,n we bind by the operators

pnx =
(
x
(
t0
)
,x
(
t1
)
, . . . ,x

(
tn−1

))
, pn : H(m)

β −→H(m)
β,n ,

qnx =
(
x
(
t0
)
,x
(
t1
)
, . . . ,x

(
tn−1

))
, qn : Hβ −→Hβ,n.

(2.12)

Theorem 2.1 [1]. Assume that (2.1) and the system of equations (2.7) satisfy the following
conditions:

(A1) functions aν(t),bν(t),hν(t,τ), ν= 0,1, . . . ,m, and y(t) belong to Hα, 0 < α≤ 1;
(A2) a2

m(t) + b2
m(t) �= 0, t ∈ [0,2π];

(A3) κ= ind(am(t) + ibm(t))= 0;
(A4) equation (2.1) has a unique solution x∗(t) ∈H(m)

β for any right-hand side y(t) ∈
Hβ, 0 < β < α;

(B1) the formulas for numerical differentiation Dν
nxn, ν= 0,1, . . . ,m, converge;

(B2) characteristical values of the formula Dm
n do not lie on the unit circle.
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Then, for sufficiently large n, the system of equations (2.7) is uniquely solvable and the ap-
proximate solutions x∗n converge to the exact solution x∗(t) of (2.1):

∥
∥x∗n − pnx∗

∥
∥

H(m)
β,n
≤ C(n−α+β lnn+ εn

)
,

εn = max
o≤ν≤m

∥
∥Dν

npnx
∗ − qnx∗(ν)

∥
∥

Hβ,n
.

(2.13)

If, moreover, functions aν(t),bν(t),hν(t,τ), ν= 0,1, . . . ,m, and y(t) belong toH(r)
α , r ∈N,

then
∥
∥x∗n − pnx∗

∥
∥

H(m)
β,n
≤ C(n−r−α+β lnn+ εn

)
, r +α > β. (2.14)

Theorem 2.2 [3]. Assume that (2.2) and the system of equations (2.8) satisfy the following
conditions:

(A1) functions hν(t,τ), ν = 0,1, . . . ,m, (by both variables), F(t,um, . . . ,u0,vm, . . . ,v0,
wm, . . . ,w0), and y(t) (by the variable t) belong to Hα, 0 < α≤ 1;

(A2) equation (2.2) has a unique solution x∗(t)∈H(m)
α in some sphere of the space H(m)

β ,
0 < β < α;

(A3) function F(t,um, . . . ,u0,vm, . . . ,v0,wm, . . . ,w0) is continuously differentiable by the
variables uν,vν,wν, ν= 0,1, . . . ,m, in some neighborhood

|t| <∞,
∣
∣uν− x∗(ν)(t)

∣
∣≤ C,

∣
∣vν−

(
Jx∗(ν))(t)

∣
∣≤ C,

∣
∣wν−

(
J0hνx

∗(ν))(t)
∣
∣≤ C, ν= 0,1, . . . ,m,

(2.15)

and its partial derivatives F
′
uν

,F
′
vν

,F
′
wν

, ν = 0,1, . . . ,m, belong to Hα by t and are
Lipschitz-continuous by uν,vν,wν, ν= 0,1, . . . ,m;

(A4) F
′2
um(x∗) +F

′2
vm(x∗) �= 0, t ∈ [0,2π];

(A5) κ= ind(F
′
um(x∗) + iF

′
vm(x∗))= 0;

(A6) the equation

m∑

ν=0

(
F′uν

(x∗)x(ν)(t) +F′vν
(x∗)

(
Jx(ν))(t) +F′wν

(x∗)
(
J0hνx

(ν))(t)
)= 0, (2.16)

has only zero solution in H(m)
β ;

(B1) the formulas for numerical differentiation Dν
nxn, ν= 0,1, . . . ,m, converge;

(B2) characteristical values of the formula Dm
n do not lie on the unit circle.

Then, for sufficiently large n, the system of equations (2.8) is uniquely solvable in some sphere
∥
∥xn− pnx∗

∥
∥

H(m)
β,n
≤ C, (2.17)

and the approximate solutions x∗n converge to the exact solution x∗(t) of (2.2):
∥
∥x∗n − pnx∗

∥
∥

H(m)
β,n
≤ C(n−α+β lnn+ εn

)
,

εn = max
o≤ν≤m

∥
∥Dν

npnx
∗ − qnx∗(ν)

∥
∥

Hβ,n
.

(2.18)
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If, moreover, functions hν(t,τ), ν=0,1, . . . ,m, (by both variables), F(t,um, . . . ,u0,vm, . . . ,
v0,wm, . . . ,w0), and y(t) (by the variable t) belong to H(r)

α , r ∈N, then

∥
∥x∗n − pnx∗

∥
∥

H(m)
β,n
≤ C(n−r−α+β lnn+ εn

)
, r +α > β. (2.19)

3. Linear singular integrodifferential equations with discontinuous coefficients

Let us consider a linear singular integrodifferential equation

m∑

ν=0

(
aν(t)x(ν)(t) + bν(t)

(
Jx(ν))(t) +

(
J0hνx

(ν))(t)
)= y(t), (3.1)

where x(t) is a desired unknown, aν(t), bν(t),hν(t,τ),ν= 0,1, . . . ,m− 1, and y(t) are given
2π-periodic by the variables t,τ functions.

Denote by x(tk) values and by

x̄
(
tk
)= 1

h

∫ tk+1

tk
x(τ)dτ, k = 0,1, . . . ,n− 1, h= 2π

n
, (3.2)

the average values of the function x(t) in the nodes of the grid (2.5).
We seek an approximate solution of (3.1), as in Section 2, in the form of the vector

(2.6) of values of the unknown function in the nodes (2.5). The components of this vector
are a solution of the system of linear algebraic equations

am
(
tk
)[
Dm
n xn

]
k +

bm
(
tk
)

n

n−1∑

l=0

αk−l
[
Dm
n xn

]
l +

1
n

n−1∑

l=0

h̄m
(
tk, tl

)[
Dm
n xn

]
l

+
m−1∑

ν=0

(

āν
(
tk
)[
Dν
nxn

]
k +

b̄ν
(
tk
)

n

n−1∑

l=0

αk−l
[
Dν
nxn

]
l +

1
n

n−1∑

l=0

h̄ν
(
tk, tl

)[
Dν
nxn

]
l

)

= ȳ
(
tk
)
, k = 0,1, . . . ,n− 1.

(3.3)

Here formulasDν
n and coefficients γk−l = γ(n)

k−l, k, l = 0,1, . . . ,n− 1, are defined in Section 2.

Let us fix r ∈N. By W(r)
2 (W(0)

2 = L2) and W(r)
2,n(W(0)

2,n = L2,n) we denote the space of 2π-
periodic functions with r − 1 absolutely continuous derivatives and rth derivative from
L2 and the space of vectors (2.6) with norms

‖x‖W(r)
2
= max

0≤ν≤r
∥
∥x(ν)

∥
∥

L2
, x ∈W(r)

2 ,

∥
∥x(ν)

∥
∥

L2
=
(

1
2π

∫ 2π

0

∣
∣x(ν)(τ)

∣
∣2
dτ

)1/2

, ν= 0,1, . . . ,r,

∥
∥xn

∥
∥

W(r)
2,n
= max

0≤ν≤r
∥
∥D̄(ν)

n xn
∥
∥

L2,n
, xn ∈W(r)

2,n,

∥
∥D̄ν

nxn
∥
∥

L2,n
=
(

1
n

n−1∑

k=0

[
D̄ν
nxn

]2
k

)1/2

, ν= 0,1, . . . ,r,

(3.4)

correspondently.
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The spaces W(m)
2 ,W(m)

2,n , m≥ 1, and L2,L2,n we bind by the operators

pnx =
(
x
(
t0
)
,x
(
t1
)
, . . . ,x

(
tn−1

))
, pn : W(m)

2 −→W(m)
2,n ,

qnx =
(
x̄
(
t0
)
, x̄
(
t1
)
, . . . , x̄

(
tn−1

))
, qn : L2 −→ L2,n.

(3.5)

Theorem 3.1 [2]. Assume that (3.1) and the system of equations (3.3) satisfy the following
conditions:

(A1) am(t),bm(t) ∈Hα, 0 < α ≤ 1, aν(t),bν(t),hν(t,τ), ν = 0,1, . . . ,m− 1, hm(t,τ) and
y(t) belong to L2;

(A2) a2
m(t) + b2

m(t) �= 0, t ∈ [0,2π];
(A3) κ= ind(am(t) + ibm(t))= 0;
(A4) equation (3.1) has a unique solution x∗(t)∈W(m)

2 for any right-hand side y(t)∈L2;
(B1) the formulas for numerical differentiation Dν

nxn, ν= 0,1, . . . ,m, converge;
(B2) characteristical values of the formula Dm

n do not lie on the unit circle.
Then, for sufficiently large n, the system of equations (3.3) is uniquely solvable, and the
approximate solutions x∗n converge to the exact solution x∗(t) of (3.1):

∥
∥x∗n − pnx∗

∥
∥

W(m)
2,n
≤ c

(

n−α +
m∑

ν=0

(

ωτ

(

hν;
1
n

)

2
+ω

(

x∗(ν);
1
n

)

2

)

+ εn

)

,

εn = max
0≤ν≤m

∥
∥Dν

npnx
∗ − qnx∗(ν)

∥
∥

L2,n
,

ω
(
x∗(ν);δ

)
2 = sup

0<η≤δ

{∫ 2π

0

∣
∣x∗(ν)(t+η)− x∗(ν)(t)

∣
∣2
dt

}1/2

,

ωτ
(
hν;δ

)
2 =

∥
∥
∥
∥
∥

sup
0≤η≤δ

{∫ 2π

0

∣
∣hν(t,τ +η)−hν(t,τ)

∣
∣2
dτ

}1/2∥∥
∥
∥
∥

L2

,

ν= 0,1, . . . ,m.

(3.6)

4. Multidimensional singular integrodifferential equations

Let us consider multidimensional (here, for the sake of simplicity, we consider only the
2-dimensional case) singular integrodifferential equation

(ABu)(t) + (Tu)(t)= y(t), t= (t(1), t(2))∈ Δ= [−π,π]2, (4.1)

where u(t) is a desired unknown, coefficients akl(t), k, l = 0,1, and bαβ(t), |α| = α1 +α2 =
m, |β| = β1 +β2 =m of the operators

Au≡ a00(t)u(t) + a01(t)
(
J01u

)
(t) + a10(t)

(
J10u

)
(t) + a11(t)

(
J11u

)
(t),

Bu≡ (Bu)(t)=
∑

|α|=|β|=m
bαβ(t)

(
Dα+βu

)
(t),

(4.2)



A. Fedotov 409

and right-hand side y(t) are given 2π-periodic, by each variable functions, singular inte-
grals

(
J01u

)
(t)= 1

2π

∫ π

−π
u
(
t(1),τ(2))cot

τ(2)− t(2)

2
dτ(2),

(
J10u

)
(t)= 1

2π

∫ π

−π
u
(
τ(1), t(2))cot

τ(1)− t(1)

2
dτ(1),

(
J11u

)
(t)= 1

4π2

∫ π

−π

∫ π

−π
u
(
τ(1),τ(2))cot

τ(1)− t(1)

2
cot

τ(2)− t(2)

2
dτ(2)dτ(1),

t= (t(1), t(2)), τ = (τ(1),τ(2))∈ Δ= [−π,π]2,

(4.3)

are to be interpreted as the Cauchy-Lebesgue principal values, and T is a known linear
operator.

Let us fix n= (n1,n2)∈N=N2, denote by

In = In1 × In2 , Inj =
{
kj
∣
∣kj ∈ Z,

∣
∣kj

∣
∣≤ nj

}
, j = 1,2, (4.4)

an index set, and define on Δ the grid

Δn =
{

tk =
(
tk1 , tk2

)∣
∣k= (k1,k2

)∈ In, tkj = kjhj , hj = 2π/
(
2nj + 1

)
, j = 1,2

}
. (4.5)

An approximate solution of (4.1) we seek in the form of the grid function (matrix of
values) un = un(t), defined on Δn. The values of this function in the nodes of the grid
(4.5) are a solution of the system of linear algebraic equations

a00
(

tk
) ∑

|α|=|β|=m
bαβ
(

tk
)(
D

α+β
n un

)(
tk
)

+ a01
(

tk
)(

2n2 + 1
)−1 ∑

l2∈In2

γ(n2)
k2−l2

∑

|α|=|β|=m
bαβ
(
tk1 , tl2

)(
D

α+β
n un

)(
tk1 , tl2

)

+ a10
(

tk
)(

2n1 + 1
)−1 ∑

l1∈In1

γ(n1)
k1−l1

∑

|α|=|β|=m
bαβ
(
tl1 , tk2

)(
D

α+β
n un

)(
tl1 , tk2

)

+ a11
(

tk
)
[2n + 1]−1

∑

l∈In
γ(n1)
k1−l1γ

(n2)
k2−l2

∑

|α|=|β|=m
bαβ
(
tl1 , tl2

)(
D

α+β
n un

)(
tl
)

+
(
Tnun

)(
tk
)= f

(
tk
)
, tk =

(
tk1 , tk2

)
, tl =

(
tl1 , tl2

)∈ Δn, 1= (1,1),

(4.6)

of the cubature-difference method.
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Here

D
α+β
n un = 1

2

(
∂α∂̄β + ∂̄α∂β

)
un, (4.7)

where

∂αun = ∂α1
1 ∂

α2
2 un, ∂̄αun = ∂̄α1

1 ∂̄
α2
2 un,

∂jun = h−1
j

(
un
(

t +hjδ j
)−un(t)

)
, ∂̄ jun = h−1

j

(
un(t)−un

(
t−hjδ j

))
,

δ j =
(
δj1,δj2

)
, j = 1,2,

(4.8)

are difference formulas defined on the grid (4.5), Tn is arbitrary convergent to T operator,

and γ
(nj )
kj−l j , j = 1,2,

γ
(q)
r =

{

tan
rπ

2(2q+ 1)
, r− even, −cot

rπ

2(2q+ 1)
, r−odd

}

, (4.9)

are coefficients of the quadrature formulas.
Let us fix s∈ R, s > 1. By Hs and Hs

n we denote Sobolev space of functions and space
of grid functions (matrix of values) with norms

‖u‖Hs =
(
∑

k∈Z

(
1 + k2)s∣∣û

(
k)
∣
∣2
)1/2

, Z= Z2, (4.10)

where

û(k)= (2π)−2
∫

Δ
u(τ)ēk(τ)dτ (4.11)

are the Fourier coefficients of the function u(τ) by the system of trigonometric monomi-
als

ek(τ)= exp(ik · τ), k∈ Z, τ ∈ Δ, (4.12)

∥
∥un

∥
∥

Hs
n
=
(
∑

k∈In

(
1 + k2)s∣∣ûn(k)(n)

∣
∣2
)1/2

, (4.13)

where

ûn(k)(n) = [2n + 1]−1
∑

l∈In

un
(

tl
)
ēk
(

tl
)
, k∈ In, (4.14)

are Fourier-Lagrange coefficients of the function un(t) with respect to the grid Δn.
Spaces Hs and Hs

n we bind by the operator

pnu=
(
u
(

tk
))

k∈In
, pn :Hs −→Hs

n. (4.15)
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Theorem 4.1 [4]. Assume that (4.1) and the system of equations (4.6) satisfy the following
conditions:

(A1) for any n operator A maps the set of all trigonometric polynomials of order not
higher than n to itself;

(A2) B is elliptic operator; that is, for any point t∈ Δ and real numbers τα,τβ, the follow-
ing inequality is valid:

∑

|α|=|β|=m
bαβ(t)τατβ ≥ C

∑

|α|=m
τ2
α; (4.16)

(A3) operator T : Hs+2m→Hs+ε is bounded for some ε ∈R,ε > 0;
(A4) equation (4.1) has a unique solution u∗(t)∈Hs+2m for any right-hand side y(t)∈

Hs;
(B1) operator Tn approximates operator T with respect to pn; that is, for any function

u(t)∈Hs,

∥
∥Tnpnu− pnTu

∥
∥

Hs
n
= ηn −→ 0 for n−→∞. (4.17)

Then for all n, beginning from some n0, the system of equations (4.6) is uniquely solvable
and approximate solutions u∗n converge to the exact solution u∗(t) of (4.1):

∥
∥u∗n − pnu

∗∥∥
Hs+2m

n
−→ 0, n−→∞. (4.18)

If, in addition, u∗(t)∈Hs+2m+2, then the error estimation

∥
∥u∗n − pnu

∗∥∥
Hs+2m

n
≤ C(h2 +ηn

)
,

h= (h1,h2
)
, hj = 2π/

(
2nj + 1

)
, j = 1,2,

(4.19)

is valid.
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EXISTENCE AND MULTIPLICITY RESULTS FOR
HEMIVARIATIONAL INEQUALITIES

MICHAEL E. FILIPPAKIS

We prove an existence and a multiplicity result for hemivariational inequalities in which
the potential − j(z,x) is only partially coercive. Our approach is variational based on the
nonsmooth critical point theory, see Chang, Kourogenis, and Papageorgiou and on an
auxiliary result due to Tang and Wu relating uniform coercivity and subadditivity.

Copyright © 2006 Michael E. Filippakis. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we prove an existence theorem and a multiplicity theorem for nonlinear
hemivariational variational inequalities driven by the p-Laplacian. Hemivariational in-
equalities are a new type of variational expressions, which arise in theoretical mechanics
and engineering, when one deals with nonsmooth and nonconvex energy functionals.
For concrete applications, we refer to the book of Naniewicz and Panagiotopoulos [25].
Hemivariational inequalities have intrinsic mathematical interest as a new form of varia-
tional expressions. They include as a particular case problems with discontinuities.

In the last decade, hemivariational inequalities have been studied from a mathematical
viewpoint primarily for Dirichlet problems. We refer to the works of Goeleven et al. [13],
Motreanu and Panagiotopoulos [24], Radulescu and Panagiotopoulos [27], Radulescu
[26], and the references therein. Quasilinear Dirichlet problems were studied recently
by Gasiński and Papageorgiou [9–12]. The study of the Neumann problem is lagging be-
hind. In the past, Neumann problems with a C1 energy functional (i.e., smooth potential)
were studied by Mawhin et al. [23], Drabek and Tersian [8] (semilinear problems), and
Huang [17], Arcoya and Orsina [2], Hu and Papageorgiou [16]. The semilinear Neumann
problem with a discontinuous forcing term was studied by Costa and Goncalves [7] with
a forcing term independent of the space variable z ∈ Z, bounded and with zero mean
value.

In this paper, we prove an existence and a multiplicity result for hemivariational in-
equalities where the potential − j(z,x) is only partially coercive. Our present approach is
variational based on the nonsmooth critical point theory (see Chang [5] and Kourogenis

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 413–421



414 Existence and multiplicity results

and Papageorgiou [21]) and an auxiliary result due to Tang and Wu [28] relating uniform
coercivity and subadditivity.

Let Z ⊆RN be a bounded domain with a C1-boundary Γ. The problem under consid-
eration is the following:

−div
(∥
∥Dx(z)

∥
∥p−2

Dx(z)
)
∈ ∂ j(z,x(z)

)
a.e. on Z,

∂x

∂np
= 0 on Γ, 1 < p <∞.

(1.1)

Here ∂x/∂np = ‖Dx(z)‖p−2(Dx(z),n(z)), z ∈ Γ, with n(z) being the outward normal
on the boundary and the boundary condition is interpreted in the sense of trace.

2. Mathematical background

The nonsmooth critical point theory is based on the subdifferential calculus for locally
Lipschitz functions. So letX be a Banach space. For a locally Lipschitz function ϕ : X →R,
the generalized directional derivative at x ∈ X in the direction h∈ X ϕ0(x;h), is defined
by

ϕ0(x;h)= limsup
x′→x
λ↓0

ϕ(x′ + λh)−ϕ(x′)
λ

. (2.1)

We define the nonempty, w∗-compact, and convex set ∂ϕ(x)⊆ X∗:

∂ϕ(x)= {x∗ ∈ X∗ : 〈x∗,h〉 ≤ ϕ0(x;h)∀h∈ X}. (2.2)

The multifunction x → ∂ϕ(x) is called the generalized subdifferential of ϕ. If ϕ ∈
C1(X), then ∂ϕ(x)= {ϕ′(x)} for all x ∈ X . Also if ϕ,ψ : X →R are locally Lipschitz func-
tions and μ∈R, then

∂(ϕ+ψ)⊆ ∂ϕ+ ∂ψ, ∂(μϕ)= μ∂ϕ. (2.3)

A point x ∈ X is a critical point of the locally Lipschitz function ϕ, if 0∈ ∂ϕ(x).
In this setting, the well-known Palais-Smale condition has the following form.

“A locally Lipschitz function ϕ : X → R satisfies the nonsmooth Palais-
Smale condition (the nonsmooth PS-condition for short), if every se-
quence {xn}n≥1 such that {ϕ(xn)}n≥1 ⊆ R is bounded and m(xn) =
inf{‖x∗‖ : x∗ ∈ ∂ϕ(xn)} → 0 as n→∞ has a strongly convergent sub-
sequence.”

The auxiliary result of Tang and Wu that we will need is the following.

Lemma 2.1. If j : Z×R→R is a function such that for all x ∈R, z→ j(z,x) is measurable,
for almost all z ∈ Z, x→ j(z,x) is continuous, for every M > 0 there exists αM ∈ L1(Z) such
that for almost all z ∈ Z and all |x| ≤M, | j(z,x)| ≤ αM(z), and j(z,x)→−∞ as |x| → +∞
uniformly for almost all z ∈ E with |E| > 0, then there exist g ∈ C(R) subadditive such that
g(x)→ +∞ as |x| → +∞ and g(x) ≤ |x|+ 4 and η ∈ L1(Z), such that for almost all z ∈ E
and all x ∈R, j(z,x)≤−g(x) +η(z).
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3. Existence and multiplicity results

Our hypotheses on the nonsmooth potential j(z,x) are the following.
H( j)1: j : Z×R→R is a function such that j = j1 + j2 and for i= 1,2, we have ji(·,0)∈

L∞(Z) and
(i) for all x ∈R, z→ ji(z,x) is measurable;

(ii) for almost all z ∈ Z, x→ ji(z,x) is locally Lipschitz;
(iii) for almost all z ∈ Z, all x ∈R, and all u∈ ∂ j1(z,x), we have

|u| ≤ α(z) + c|x|p−1 with α∈ L∞(Z), c > 0; (3.1)

(iv) j1(z,x)→−∞ as |x| → ∞ uniformly for almost all z ∈ E, |E| > 0 and there
exists ξ ∈ L1(Z) such that for almost all z ∈ Z and all x ∈R, j1(z,x)≤ ξ(z);

(v) there exists θ ∈ Lq(Z) such that for almost all z ∈ Z, all x ∈ R, and all u ∈
∂ j2(z,x), we have |u| ≤ θ(z) and for all x ∈ R ∫

Z j2(z,x)dz ≤ c0 for some
c0 > 0.

Our first existence theorem reads as follows.

Theorem 3.1. If hypotheses H( j)1 hold, then problem (1.1) has a solution.

Proof. Let ϕ :W
1,p
0 (Z)→R be the energy functional defined by

ϕ(x)= 1
p
‖Dx‖pp−

∫

Z
j
(
z,x(z)

)
dz

= 1
p
‖Dx‖pp−

∫

Z
j1
(
z,x(z)

)
dz−

∫

Z
j2
(
z,x(z)

)
dz.

(3.2)

We know (see, e.g., Chang [5] or Hu and Papageorgiou [15]) that ϕ is locally Lipschitz.
By virtue of Lemma 2.1, for almost all z ∈ E and all x ∈R, we have

j1(z,x)≤−g(x) +η(z), (3.3)

where g ∈ C(R) is subadditive, coercive, and η ∈ L1(Z). We have

∫

Z
j1
(
z,x(z)

)
dz =

∫

E
j1
(
z,x(z)

)
dz+

∫

Z\E
j1
(
z,x(z)

)
dz

≤−
∫

E
g
(
x(z)

)
dz+

∫

E
η(z)dz+

∫

Z\E
ξ(z)dz.

(3.4)

Consider the following direct sum decomposition:

W1,p(Z)(Z)=R⊕V (3.5)

with V = {v ∈W1,p(Z) :
∫
Z v(z)dz = 0}. So if x ∈W1,p(Z), we can write in a unique way

that x = x+ x̂, with x ∈R and x̂ ∈V . Exploiting the subadditivity of g, we have

g(x)= g(x(z)− x̂(z)
)≤ g(x(z)

)
+ g
(− x̂(z)

) ∀z ∈ Z,

=⇒ g(x)− g(− x̂(z)
)≤ g(x(z)

) ∀z ∈ Z. (3.6)
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In addition from Lemma 2.1, we have

g
(− x̂(z)

)≤ ∣∣x̂(z)
∣
∣+ 4. (3.7)

So we can write that

−
∫

E
g
(
x(z)

)
dz ≤−g(x)|Z|+

∫

E

(∣
∣x̂(z)

∣
∣+ 4

)
dz

≤−g(x̂)|Z|+ b1/q‖x̂‖p + 4|Z|
≤ −g(x)|Z|+ c1‖Dx‖p + 4|Z| for some c1 > 0.

(3.8)

Here we have used the Poincare-Wirtinger inequality.
Let θ(t)= {(v,λ)∈R× (0,1) : v ∈ ∂ j2(z,x+ λx̂(z)), j2(z,x+ x̂(z))− j2(z,x)= vx̂(z)}.

From the Lebourg mean value theorem (see, e.g., Clarke [6, page 41]), we know that for
almost all z ∈ Z, θ(z) �=∅. By redefining θ(·) on an exceptional Lebesgue-null set, we
may assume without any loss of generality that θ(z)�=∅ for all z ∈ Z. We will show that
in every direction h ∈ R, the function (z,λ)→ j02 (z,x + λx̂(x);h) is measurable. Indeed,
from the definition of the generalized directional derivative, we have

j02
(
z,x+ λx̂(z);h

)= inf
m≥ 1

sup
r,s∈Q∩(−1/m,1/m)

λ↓0

j2
(
z,x+ λx̂(z) + r + sh

)− j2
(
z,x+ λx̂(z) + r

)

s
.

(3.9)

Since j2 is jointly measurable (see Hu and Papageorgiou [14, page 142]), it follows that
(z,λ)→ j02 (z,x + λx̂(z);h) is measurable. Set S(z,λ) = ∂ j2(z,x + λx̂(z)) and let {hm}m ≥
1⊆R be an enumeration of the rational numbers. Because j02 (z,x+ λx̂(z);·) is a contin-
uous function, we can write that

GrS= {(z,λ,u)∈ Z× (0,1)×R : u∈ S(z,λ)
}

=
⋂

m≥1

{
(z,λ,u)∈ Z× (0,1)×R : uhm ≤ j02

(
z,x+ λx̂(z);hm

)}

=⇒GrS∈�(Z)∈ B(0,1)×B(R)

(3.10)

with �(Z) being the Lebesgue σ-field of Z and B(0,1) (resp., B(R)) the Borel σ-field
of (0,1) (resp., of R). So we can apply the Yankov-von Neumann-Aumann selection
theorem (see Hu and Papageorgiou [14, page 158]) to obtain measurable functions v :
Z → R and λ : Z → (0,1) such that (v(z),λ(z)) ∈ θ(z) for all z ∈ Z and j2(z,x + x̂(z))−
j2(z,x) = v(z)x̂(z), v(z) ∈ ∂ j2(z,x + λ(z)x̂(z)) a.e. on Z. Using hypothesis H( j)1(v) and
the Poincare-Wirtinger inequality, we obtain

∫

Z
j2
(
z,x(z)

)
dz =

∫

Z
j2
(
z,x+ x̂(z)

)
dz

≤
∫

Z
j2(z,x)dz+ c2‖Dx‖p‖θ‖1 for some c2 > 0.

(3.11)
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Thus finally we have that

ϕ= 1
p
‖Dx‖pp−

∫

Z
j1
(
z,x(z)

)
dz−

∫

Z
j2
(
z,x(z)

)
dz

≥ 1
p
‖Dx‖pp + g(x)|Z|− c1‖Dx‖p− 4|Z|−‖η‖1− c2‖θ‖1‖Dx‖p.

(3.12)

From this inequality and recalling that g(·) is coercive, we infer that ϕ is coercive.
Because the Sobolev space W1,p(Z) is embedded compactly in Lp(Z), we can easily check
that ϕ is weakly lower semicontinuous. Then by the Weierstrass theorem, we can find that
x ∈W1,p(Z) such that ϕ(x) = inf ϕ. So we have 0 ∈ ∂ϕ(x). Let A : W1,p(Z)→W1,p(Z)∗

be the nonlinear operator defined by

〈
A(x), y

〉=
∫

Z

∥
∥Dx(z)

∥
∥p−2(

Dx(z),Dy(z)
)
RN dz. (3.13)

We have A(x)= u with u∈ Sq∂ j(·,x(·)). For every ψ ∈ C∞c (0,b), we have

∫

Z

∥
∥Dx(z)

∥
∥p−2(

Dx(z),Dψ(z)
)
RN dz =

∫

Z
u(z)ψ(z)dz. (3.14)

From a well-known representation theorem (see Adams [1, page 50], or Hu and Papa-

georgiou [14]) and since div(‖Dx(·)‖p−2Dx(·))∈W1,p
0 (Z)∗ =W−1,q(Z), we have

〈−div
(‖Dx‖p−2Dx

)
,ψ
〉

0 =
∫ b

0
u(z)ψ(z)dz = 〈u,ψ〉0 (3.15)

with 〈·,·〉0 denoting the duality brackets for the pair (W
1,p
0 (Z),W−1,q(Z)). Since the test

functions C∞c (Z) are dense in W
1,p
0 (Z), it follows that

−div
(∥
∥Dx(z)

∥
∥p−2

Dx(z)
)= u(z)∈ ∂ j(z,x(z)

)
a.e. on Z. (3.16)

From the quasilinear Green’s identity (see Kenmochi [19], or Casas and Fernández [4],
or Hu and Papageorgiou [15, page 867]), for every v ∈W1,p(Z), we have

∫

Z
div

(‖Dx‖p−2Dx
)
vdz+

∫

Z
‖Dx‖p−2(Dx,Dv)RN dz =

〈
∂x

∂np
,γ(v)

〉

Γ

(3.17)

with 〈·,·〉Γ being the duality brackets for the pair (W1/q,p(Γ),W−1/q,q(Γ)) and γ :W1,p(z)→
Lp(Z) is the trace operator.
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From (3.16) and since A(x)= u, we obtain

0= 〈A(x),v
〉

+
∫

Z
−uvdz =

〈
∂x

∂np
,γ(v)

〉

Γ

. (3.18)

But γ(W1,p(Z))=W1/q,p(Γ) (see Kufner et al. [22, page 338]). It follows that ∂x/∂np =
0. So x is a solution of problem (1.1). �

Next imposing an extra condition about the behavior of j(z,·) near the origin, we
can have a multiplicity result for problem (1.1). This result is based on a nonsmooth
extension of the local linking theorem of Brezis and Nirenberg [3] established recently by
Kandilakis et al. [18].

Theorem 3.2. If X is a reflexive Banach space such that X = Y ⊕V with dimY < +∞,
ϕ : X → R is Lipschitz continuous on bounded sets, satisfies the nonsmooth PS-condition,
ϕ(0)= 0, and

(a) there exists r > 0 such that

ϕ(y)

⎧
⎨

⎩

≤ 0 if y ∈ Y , ‖y‖ ≤ r,
≥ 0 if y ∈V , ‖y‖ ≤ r; (3.19)

(b) ϕ is bounded below and inf ϕ < 0,
then ϕ has at least two nontrivial critical points.

The hypotheses on the nonsmooth potential are the following.
H( j)2: j : Z×R→R is a function which satisfies hypotheses H( j)1 and

(vi) limx→0(p j(z,x)/|x|p)= 0 uniformly for almost all z ∈ Z and there exists r0 >
0 such that for almost all z ∈ Z and all |x| ≤ r0, we have j(z,x)≥ 0.

Theorem 3.3. If hypotheses H( j)2 hold, then problem (1.1) has at least two nontrivial
solutions.

Proof. Let ϕ : W1,p → R be the Lipschitz continuous on bounded sets energy functional
defined by

ϕ(x)= 1
p
‖Dx‖pp−

∫

Z
j
(
z,x(z)

)
dz. (3.20)

From the proof of Theorem 3.1, we know that ϕ is coercive, hence it satisfies the non-
smooth PS-condition (see Kourogenis and Papageorgiou [20]). As before, we consider
the direct sum decomposition

W1,p(Z)=R⊕V , (3.21)

with V = {v ∈W1,p(Z) :
∫
Z v(z) = 0}. By virtue of hypothesis H( j)2(vi), given ε > 0, we

can find, δ > 0 such that for almost all z ∈ Z and all |x| ≤ δ, we have j(z,x)≤ (ε/p)|x|p.
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Also from the Lebourg mean value theorem, we have that for almost all z ∈ Z and all
x ∈R

j(z,x)≤ α1(z)
(
1 + |x|p) (3.22)

with α1 ∈ L∞(Z). So for almost all z ∈ Z and all |x| > δ, we have

j(z,x)≤ c3 + c4|x|β p < β < p∗ and some c3,c4 > 0. (3.23)

So finally we can write that for almost all z ∈ Z and all x ∈R, we have

j(z,x)≤ ε

p
|x|p + c5|x|β for some c5 > 0. (3.24)

Then for v ∈V , we have

ϕ(x)≥ 1
p
‖Dv‖pp− ε

p
‖v‖pp− c5‖v‖ββ. (3.25)

From the Poincare-Wirtinger inequality and since β < p∗, we obtain for ε > 0 small
that

ϕ(v)≥ c6‖Dv‖pp− c7‖Dv‖βp for some c6,c7 > 0. (3.26)

Since β > p, for r1 > 0 small, if ‖Dv‖p ≤ r1, we have

ϕ(v)≥ 0. (3.27)

Also from hypothesis H( j)2(vi) if y ∈R, ‖y‖ ≤ r0, we have

ϕ(y)≤ 0. (3.28)

Note that ϕ being coercive is bounded below.
If inf ϕ < 0, then using r =min{r0,r1} > 0, we can apply Theorem 3.2 and obtain two

nontrivial critical points of ϕ. As in the proof of Theorem 3.1, we can easily check that
these are two nontrivial solutions of (1.1).

If inf ϕ ≥ 0, then evidently for every y ∈ RN with β1/q|y| ≤ r (hypothesis H( j)2(vi)),
we have that ϕ(y)= 0 and so ϕ has a continuum of nontrivial critical points. �

Consider the nonsmooth locally Lipschitz potential j(z,x) defined by

j(z,x)=
⎧
⎨

⎩

|x|p ln
(
1 + |x|p) if |x| ≤ 1,

−χE(z) ln|x|+ χEc(z)sin|x| if |x| > 1,
(3.29)

with |E| > 0. It is easy to see that this j(z,x) satisfies hypotheses H( j)2.
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VLASOV-ENSKOG EQUATION WITH THERMAL
BACKGROUND IN GAS DYNAMICS

WILLIAM GREENBERG AND PENG LEI

In order to describe dense gases, a smooth attractive tail is added to the hard core repul-
sion of the Enskog equation, along with a velocity diffusion. The existence of global-in-
time renormalized solutions to the resulting diffusive Vlasov-Enskog equation is proved
for L1 initial conditions.

Copyright © 2006 W. Greenberg and P. Lei. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

One of the problems of greatest current interest in the kinetic theory of classical systems
is the construction and analysis of systems which describe dense gases. The Boltzmann
equation, employed for more than a century to give the time evolution of gases, is accu-
rate only in the dilute-gas regime, yielding transport coefficients of an ideal fluid. In 1921,
Enskog introduced a Boltzmann-like collision process with hard core interaction, repre-
senting molecules with nonzero diameter. The Enskog equation, as revised in the 1970’s
in order to obtain correct hydrodynamics, describes a nonideal fluid with transport co-
efficients within 10% of those of realistic numerical models up to one-half close packing
density. A limitation, however, in its usefulness is that, unlike the Boltzmann equation,
no molecular interaction is modeled beyond the hard sphere collision.

A strategy to rectify this is the addition of a smooth attractive tail to a hard repulsive
core of radius a, thereby approximating a van der Waals interaction. The potential must
be introduced at the Liouville level. Following the pioneering work of de Sobrino [1],
Grmela [5, 6], Karkhech and Stell [7, 8], van Beijeren [11], and van Beijeren and Ernst
[12], with a potential satisfying the Poisson equation, one obtains the coupled kinetic
equations:

[
∂

∂t
+�v ·∇�r

]

f (�r,�v, t)=−�E ·∇�v f (�r,�v, t) +CE( f , f ),

div�r �E(�r, t)=−
∫

d�v f (�r,�v, t)
(1.1)

Hindawi Publishing Corporation
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424 Vlasov-Enskog equation with thermal background

with CE( f , f ) the Enskog collision term

CE( f , f )(�r,�v, t)= a2
∫∫

R2×S2
+

[
Y(�r,�r− a�ε ) f (�r,�v′, t) f (�r− a�ε,�v′1, t)

−Y(�r,�r + a�ε ) f (�r,�v, t) f
(
�r + a�ε,�v1, t

)]〈
�ε,�v−�v1

〉
d�εd�v1,

�v′ =�v−�ε〈�ε,�v−�v1
〉

, �v′1 =�v1 +�ε
〈
�ε,�v−�v1

〉
.

(1.2)

The geometric factor Y(�r1,�r2) is a functional of f which, in principle, should be deter-
mined by the Mayer cluster expansion [10].

In the derivation of these equations from the BBGKY hierarchy, velocity correlations
have been neglected. This is a small angle scatttering effect. We account for this effect
by the addition of a velocity diffusion λΔ�v f . Thus we are led to consider the following
diffusive Vlasov-Enskog system:

[
∂

∂t
+�v ·∇�r

]

f (�r,�v, t)− λΔ�v f + �E(�r, t) ·∇�v f (�r,�v, t)= CE( f , f ), (1.3)

div�r �E(�r, t)=−
∫

d�v f (�r,�v, t), (1.4)

with initial condition

f (�r,�v, t)|t=0 = f0(�r,�v ). (1.5)

In this paper we will outline an existence proof for (renormalized) solutions of the Cauchy
problem for the diffusive Vlasov-Enskog system, including initial conditions far from
equilibrium.

In Section 2 we give bounds related to mass, energy, and entropy, which imply the
weak precompactness of the set of solutions. Then we derive sequential stability results. In
Section 3 we construct solutions to some approximate equations. Finally, in Section 4 we
construct approximate solutions to the diffusive system, which form a weakly precompact
set. Then sequential stability will show that limits provide global-in-time solutions to the
Cauchy initial value problem.

2. Bounds and stability

Throughout we will assume the natural symmetry condition of the geometric factor

Y(σ ,τ)= Y(τ,σ) (2.1)

as well as joint continuity, and the cutoff

sup
σ ,τ

τY(τ,σ)≤MY <∞ (2.2)

with Y a function of the local densities

σ = n(�r )=
∫

R3
f (�r,�v, t)d�v, (2.3)
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and so fourth. Since molecules have nonzero diameter, densities should not be expected
to exceed close packing, which is represented by the cutoff on Y .

By straightforward calculation one may derive for solutions of (1.3), (1.4) conserva-
tion of mass

∫∫

R3×R3
f (�r,�v, t)d�vd�r =

∫∫

R3×R3
f (�r,�v,0)d�vd�r =M1, ∀t ≥ 0, (2.4)

as well as the energy bound
∫∫

R3×R3
v2 f (�r,�v, t)d�vd�r +

∫

R3

∥
∥�E(�r, t)

∥
∥2
d�r =M2 + 2λM1t, ∀t ≥ 0, (2.5)

where

M2 =
∫∫

R3×R3
v2 f (�r,�v,0)d�vd�r +

∫

R3
d�r
∥
∥�E(�r,0)

∥
∥2
. (2.6)

If, in addition,
∫∫

R3×R3
r2 f (�r,�v,0)d�vd�r =M3, (2.7)

then
∫∫

R3×R3
r2 f (�r,�v, t)d�vd�r ≤ 1

M2
1

(
M2 + 2λM1t

)3
+ 2M3. (2.8)

For this system we may introduce an entropy functional

Γ(t)=
∫∫

R3×R3
f (�r,�v, t) log f (�r,�v, t)d�vd�r−

∫ t

0
I(s)ds+

∫ t

0
J(s)ds, (2.9)

where

I(t)= 1
2

∫∫ ∫∫

R3×R3×R3×S2
+

d�εd�v1d�vd�r f (�r,�v, t)

× [ f (�r− a�ε,�v1, t
) ·Y(�r,�r− a�ε )− f

(
�r + a�ε,�v1, t

)
Y(�r,�r + a�ε )

]〈
�ε,�v−�v1

〉

= I+(t)− I−(t),

J(t)= 4λ
∫∫

R3×R3

∥
∥
∥∇�v

√
f (�r,�v, t)

∥
∥
∥

2
d�vd�r.

(2.10)

By convexity arguments one has (d/dt)Γ(t)≤ 0 and the bound
∫∫

R3×R3
f (�r,�v, t)

∣
∣ log f (�r,�v, t)

∣
∣d�vd�r ≤M4 <∞, 0≤ t ≤ T , (2.11)

for any T > 0, if the left-hand side is finite at t = 0. In particular, for any T > 0, if
∫∫

R3×R3
f0(�r,�v )

(
1 + r2 + v2 +

∣
∣ log f0

∣
∣
)
d�vd�r <∞, (2.12)
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then
∫∫

R3×R3
f (�r,�v, t)

(
1 + r2 + v2 + | log f |)d�vd�r ≤ CT <∞, (2.13)

∫

R3

∥
∥�E(�r, t)

∥
∥2
d�r ≤ CT , 0 < t < T. (2.14)

Now consider a sequence fn of nonnegative solutions of (1.3), (1.4) with functions
fn ∈W2,∞(R3×R3× [0,∞)), fn → 0 as (�r,�v )→∞ uniformly in t ∈ [0,T] for all T <∞,
En ∈W2,∞(R3× [0,∞)), En→ 0 as �r →∞, and

∫∫

R3×R3
fn(�r,�v, t)

(
1 + r2 + v2 +

∣
∣ log fn

∣
∣
)
d�vd�r ≤ CT <∞, (2.15)

∫

R3

∥
∥�E(�r, t)

∥
∥2
d�r ≤ CT , 0 < t < T , (2.16)

with CT independent of n, as well as

∫ T

0

∫∫

R3×R3

{∥
∥
∥∇�v

√
fn
∥
∥
∥

2
+
∣
∣ log fnCE

(
fn, fn

)∣
∣
}

d�vd�r ≤ CT. (2.17)

By (2.15), (2.16), we may assume, possibly by passing to a subsequence, that fn converges

weakly in L1(Rn×Rn× [0,T]) to f for all T , and �En converges weakly in L2(Rn× [0,T])

to �E.
In order to deal with initial values far from equilibrium, DiPerna and Lions in their

treatment of the Boltzmann equation introduced the renormalization of the dependent
variable f by a suitable nonlinear transformation [2–4]. This setting carries over to the
Enskog equation, and to the diffusive system we study as well. Suppose f is a smooth non-
negative solution of (1.3), (1.4). Then gδ = (1/δ) log(1 + δ f ) solves the following renor-
malized version of (1.3):

∂

∂t
gδ +�v ·∇�r gδ − λΔ�v gδ = 1

1 + δ f
CE( f , f )− �E ·∇�v gδ + λδ

∥
∥∇�v gδ

∥
∥2

, (2.18)

which motivates the following definition.

Definition 2.1. A nonnegative element f of C([0,∞),L1(R3
�r ×R3

�v)) is a renormalized so-
lution of the diffusive Vlasov-Enskog system (1.3), (1.4) if the composite function gδ =
(1/δ) log(1 + δ f ) satisfies the renormalized equations (1.4)–(2.18) in the sense of distri-
butions.

We may now posit the sequential stability of solutions to the diffusive Vlasov-Enskog
system.

Theorem 2.2. Under the assumptions (2.15), (2.16), (2.17), 1 ≤ p <∞, and T > 0, the
sequence fn converges in Lp([0,T];L1(R3

�r ×R3
�v)) to a renormalized solution f of the diffusive

Vlasov-Enskog system which satisfies the bounds (2.13), (2.14) for almost everywhere t ∈
(0,T) as well as (2.17). Furthermore, for every δ > 0, the renormalized Enskog interaction
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terms satisfy

C+
E ( f , f )(1 + δ f )−1|�v∈BR ∈ L1([0,∞)×R3

�r ×BR
)
,

C−E ( f , f )(1 + δ f )−1|�v∈BR ∈ C
(
[0,∞);L1(R3

�r ×BR
))

,
(2.19)

and gδ|�v∈BR ∈ L2((0,T)×R3
�r ;H

1(BR)) for all R,T <∞.

Proof. The proof of the theorem is both lengthy and delicate, and details are beyond the
scope of this short paper. We will restrict ourselves to an outline of the key steps.

It is necessary first to study properties of the partial diffusive linear transport operator

Lλ = ∂

∂t
+�v ·∇�r − λΔ�v. (2.20)

It is known that (Lλ)−1 maps precompact sequences onto precompact sequences in
L1([0,T]×R3×R3). However, we need to apply (Lλ)−1 to sequences in L1([0,T]×R3×
R3)⊕L1([0,T]×R3

�r ;L
2(R3

�v)), that is, to show that Lλ is similar to a hypoelliptic operator
from L1([0,T]×R3×R3) to L1([0,T]×R3×R3)⊕L1([0,T]×R3

�r ;L
2(R3

�v)).

Lemma 2.3. Suppose {hn} is a bounded sequence in L1([0,T]×R3×R3) satisfying

sup
n

∫ T

0

∫∫

|(�r,�v )|≥R

∣
∣hn

∣
∣d�r d�vdt −→ 0 as R−→∞. (2.21)

Suppose {ĥn} is a bounded sequence in L1([0,T]×R3
�r ;L

2(R3
�v)) satisfying

sup
n

∫ T

0
dt
∫

R3
d�r
(∫

|�r |+|�v |≥R

∣
∣ĥn

∣
∣2

(�r,�v, t)d�v
)1/2

−→ 0 as R−→∞. (2.22)

Suppose {gn0 } is a bounded sequence in L1(R3×R3) satisfying

sup
n

∫∫

|(�r,�v )|≥R

∣
∣gn0

∣
∣d�r d�v −→ 0 as R−→∞. (2.23)

Then the set of solutions {gn} of the equations

Lλg
n = hn + ĥn in (0,T)×R3×R3,

gn|t=0 = gn0 ,
(2.24)

is precompact in L1([0,T]×R3×R3).

Now the proof of Theorem 2.2 proceeds in four steps. The first is to show that {CE( fn,
fn)} forms a bounded set in L1([0,T]×R3×R3). In fact,C−E ( fn, fn)(1 + δ fn)−1 is bounded
in L∞([0,T];L1(R3

�r ×R3
�v)). The L1 bound on C+

E ( fn, fn) depends on Enskog gain bounds
due to Polewczak. [9]

The second step is to demonstrate the precompactness of {gnδ }, where gnδ =(1/δ) log(1 +
δ f n). Although the lemma cannot be applied directly to {gnδ }, we introduce cutoff func-
tions φm(�r,�v ) in �(R3×R3) with supp(φm)∈ {Bm×Bm}, 0≤ φm ≤ 1, φm|Bm−1×Bm−1 = 1.
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Here and subsequently, Bm are balls in R3 centered about the origin with radius Rm→∞.
Then Lλ(φmgnδ ) is bounded in L1([0,T]× R3 × R3)⊕ L1([0,T]× R3

�r ;L
2(R3

�v)) by the as-
sumptions (2.15), (2.16), and the lemma will show that {φmgnδ } is precompact for fixed
m. Now a diagonal argument and applications of classical measure theory will eventually
prove that {gnδ } converges in Lp([0,T];L1(R3×R3)) to gδ for all 1≤ p <∞ and all T <∞,
and that f n converges to f .

The third step is to demonstrate that CE( f n, f n)(1 + δ f n)−1 converges in L1 to CE( f ,
f )(1 + δ f )−1, and that C±E ( f , f )(1 + δ f )−1 ∈ L1. This hinges, again, on the Enskog gain
bounds.

Finally, one must pass to the limit in the renormalized equation. This is the crucial
step in the proof. One starts with the following lemma.

Lemma 2.4. There exist a bounded nonnegative measure μ1 and a locally bounded measure
μ2 on [0,T]×R3×R3 such that

∣
∣∇�vgnδ

∣
∣2 −→n

∣
∣∇�vgδ

∣
∣2

+μ1 in �′
(
[0,T]×R3×R3),

−�En ·∇�vgnδ −→n −�E ·∇�vgδ +μ2 in �′
(
[0,T]×R3×R3).

(2.25)

One then can pass to the limit in the renormalized equations in the sense of distribu-
tions and deduce

∂gδ
∂t

+�v ·∇�r gδ − λΔ�v gδ = 1
1 + δ f

CE( f , f ) + λδ
∣
∣∇�v gδ

∣
∣2− �E ·∇�v gδ +μ (2.26)

in �′([0,T]×R3×R3),

div�r �E =−n(�r, t) (2.27)

in D′([0,T]×R3), where μ= λμ1−μ2.
The issue then is to show that the measure μ vanishes. This is accomplished by a

lengthy series of estimates using convolution regularization and the weak precompact-

ness of {�En(�r, t)} in L2([0,T]×R3
�r ). It remains still to prove that both μ1 and μ2 vanish,

which is, however, anticlimactic. �

3. Existence of approximate solutions

Let X = Lp(R3×R3), 1≤ p <∞, and define the diffusive operator � f =−�v ·∇�r f + λΔ�v f
on Wp,∞(R3 × R3). It is easy to see that � generates a positive contraction semigroup

on X . Similarly, for �E(�r, t) bounded continuous on R3× [0,T] and L(�r,�v, t) nonnegative
and measurable on R3×R3× [0,T], define the time-dependent Vlasov-Enskog operator

�(t) f (�r,�v, t)=−�E(�r, t) ·∇�v f (�r,�v, t)− L(�r,�v, t) f (�r,�v, t) with domain { f ∈ X : ‖∇�v f ‖ ∈
X , limv→∞ f (�r,�v, t)= 0}, which generates a two-parameter positive contractive evolution
operator UB on X . By virtue of the Trotter product formula we may obtain from UA and
UB the two-parameter positive evolution operator U .
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Consider the initial value problem

∂

∂t
f (�r,�v, t) +�v ·∇�v f − λΔ�v f + �E(�r, t) ·∇�v f = ĈE( f , f ), (3.1)

�E(�r, t)= 1
4π

∫

d�r ′∇�r 1
‖�r−�r′‖

∫

d�v f (�r ′,�v, t), (3.2)

lim
t→0+

f (�r,�v, t)= f0(�r,�v ), (3.3)

where

ĈE( f , f )(�r,�v, t)

=
∫∫

R3×S2
+

[
Ŷ
(
(�r,�r− a�ε, t)ηB

(
�v,�v1

)
f (�r,�v′, t) f

(
�r− a�ε,�v′1, t

)

−Y(�r,�r + a�ε, t)ηB
(
�v,�v1

)
f (�r,�v, t) f

(
�r + a�ε,�v1, t

)]〈
�ε,�v−�v1

〉
d�ε�v1

= Ĉ+
E − Ĉ−E .

(3.4)

Writing B = {(�v,�v1) : v2 + v2
1 ≤ k} for some positive constant k, we will assume

(A1) f0 ∈ C∞0 (R3×R3)∩L1
+(R3×R3),

(A2) for a bounded function Y ′ satisfying (2.1), (2.2),

Ŷ
(
�r1,�r2

)= (1 +n
(
�r1
))−1(

1 +n
(
�r2
))−1

Y ′
(
n
(
�r1
)
,n
(
�r2
))

, (3.5)

(A3) Y ′ satisfies the Lipschitz condition |Y ′(σ1,τ1)−Y ′(σ2,τ2)| ≤ C(|σ1− σ2|+ |τ1−
τ2|) for a constant C independent of σ and τ,

(A4) ηB(�v,�v1) = ηB(�v1,�v )= ηB(�v′1,�v′ ) is a smooth nonnegative function, η ≤ 1, with
support in B.

Theorem 3.1. Under the assumptions (A1)–(A4), (3.1), (3.2), and (3.3) have a unique
nonnegative solution which for 1≤ p ≤∞ belongs to C([0,T];Lp(R3

�r ;L
1(R3

�v))) for each T ∈
(0,∞).

Proof. Let us introduce the spaces X = C(R3
�r ;L

1(R3
�v)) with

‖ f ‖X = sup
�r

∫
∣
∣ f (�r,�v )

∣
∣d�v, (3.6)

the space M = X ∩L1(R3×R3) with

‖ f ‖M =max
{‖ f ‖L1 ,‖ f ‖X

}
, (3.7)

and the space MT = C([0,T];M) with

‖g‖T = sup
0≤t≤T

∥
∥g(t)

∥
∥
M. (3.8)

We will first prove that the equation has a unique solution inMT′ for T′ sufficiently small.
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We consider the integral equation

f (t)=UA(t) f0 +
∫ t

0
UA(t− s)[ĈE( f , f )(s)− �E ·∇�v f (s)

]
ds. (3.9)

The right-hand side can be written as the sum of an Enskog term, a Vlasov term, and
the boundary term UA(t) f0. Then (A2) and (A3) may be used to show that ĈE is globally
Lipschitz, and consequently the Enskog term is Lipschitz continuous in M. The second
term can be rewritten with some care to show that it is locally Lipschitz continuous inMt.

Define the sequence of functions:

f (0) = 0,

L(i)(�r,�v, t)= Ĉ−E
(
f (i), f (i)),

�E(i)(�r, t)= 1
4π

∫∫

∇�r 1
∣
∣�r−�r1

∣
∣ f

(i)(�r1,�v, t
)
d�r1d�v,

f (i+1) =U(t,0;�E(i)) f0 +
∫ t

0
U
(
t,s;�E(i))Ĉ+

E

(
f (i), f (i))(s)ds.

(3.10)

It is not difficult to show that the sequence converges to a nonnegative solution f of
(3.9) for sufficiently small time t. Indeed, one may estimate

∥
∥ f (i+1)

∥
∥
M ≤

∥
∥ f0
∥
∥
M + tC

∥
∥ f (i)

∥
∥2
M. (3.11)

Letting T1 = 1/4C‖ f0‖M , one has inductively ‖ f (i)‖T1 ≤ 2‖ f0‖M . By contraction mapping
and the previously demonstrated Lipschitz continuity, one concludes that f is a unique
positive solution in MT′ for some 0 < T′ ≤ T . From the estimates ‖ f (t)‖L1 ≤ ‖ f0‖L1 and
‖ f (t)‖X ≤

∫
R3 d�v sup�r f0(�r,�v ) <∞, the local solution can be extended to a global solution.

The solution of the integral equation can be carried from L1(R3
�r ;L

1(R3
�v)) ∩ C(R3

�r ;
L1(R3

�v)) to Lp(R3
�r ;L

1(R3
�v)) for any 1≤ p <∞ by interpolation theory. Finally, to show that

the solution of the integral equation is the solution of the differential equations (3.1),
(3.2) it is sufficient to show that f (t)∈ C([0,T];�(�)), which follows from estimates on
the derivates of f , which we omit. �

4. Global existence

We now state and prove the main result.

Theorem 4.1. Assume that f0(�r,�v )≥ 0 satisfies

∫∫

R3×R3
d�rd�v f0(�r,�v )

(
1 + r2 + v2 +

∣
∣ log f0

∣
∣
)≤ C <∞, (4.1)

and that �E0(�r )=∇�r (1/|�r |� ∫R3 f0(�r,�v )d�v ) satisfies

∫

R3

∣
∣�E0(�r )

∣
∣2
d�r ≤ C <∞. (4.2)
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Then there exists f ∈ C([0,∞);L1(R3×R3)) which satisfies (1.4), (1.5) and such that, for all
δ>0, gδ=(1/δ) log(1+δ f )( f ) satisfies (2.18) in the sense of distributions, and gδ|(0,T)×R3×BR
∈ L2([0,T]×R3;H1(BR)), for all R,T <∞. In other words, f is a renormalized solution of
the diffusive Vlasov-Enskog system satisfying the initial condition.

Proof. Truncating f0 and regularizing the truncated function by convolution, one can
obtain a sequence f n0 ∈�(R3×R3) such that f0 ≥ 0 and

∫∫

R3×R3
d�r d�v

∣
∣ f0− f n0

∣
∣
(
1 + r2 + v2)−→n 0,

∫

R3
d�r
∣
∣�En0 − �E0

∣
∣2 −→n 0,

∫∫

R3×R3
d�r d�v f n0

∣
∣ log f n0

∣
∣≤ C

(4.3)

for some constant C ≥ 0 independent of n.
Now choose ηn so that 0 ≤ ηn ≤ 1, suppηn ⊂ Bn+1, and ηn|Bn = 1. Further, let Y ′n ∈

C∞(R×R) satisfy (A2) and (A3) with the Lipschitz constant C = Cn depending on n only
and such that limn supσ ,τ |Y(σ ,τ)− Y ′n(σ ,τ)| = 0. Define the approximating geometric
factors

Ŷn(σ ,τ)=
(

1 +
1
nσ

)−1(

1 +
1
nτ

)−1

Y ′n(σ ,τ)χ
{‖�r ‖ ≤ n} (4.4)

and consider the solution of the system

Lλ fn + �En(�r, t) ·∇�v fn = ĈnE
(
fn, fn

)
,

�En(�r, t)= 1
4π

∫∫

∇�r 1
∣
∣�r−�r1

∣
∣ fn

(
�r1,�v, t

)
d�r1d�v.

(4.5)

Then, by Theorem 3.1, for each n there exists a unique nonnegative solution fn(t) ∈
L1 ∩ L∞(R3 ×R3). Furthermore, the conditions (2.15), (2.16), and (2.17) are automati-
cally satisfied for fn and ĈnE( fn, fn) provided the equalities and inequalities (2.4), (2.5),

(2.8), and (2.11) are justified for fn and �En. (2.4), (2.5), and (2.8) can be checked without

difficulty by the regularity and decay of fn and �En. In view of the choice of f n0 , (2.11) may
be justified by the lower bound method on Γ. See [2, pages 17-18].

Despite the fact that fn is not a solution of (1.3), (1.4), we can see from a careful
examination of the proof of Theorem 2.2 that the theorem still applies to the sequence of
solutions of the approximate equations. Passing to a subsequence if necessary, one obtains
convergence in C([0,T];L1(R3,R3)), for all T > 0, to a renormalized solution, as given by
(2.18), thus completing the proof. �
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THE RELATIONSHIP BETWEEN KINETIC SOLUTIONS
AND RENORMALIZED ENTROPY SOLUTIONS
OF SCALAR CONSERVATION LAWS

SATOMI ISHIKAWA AND KAZUO KOBAYASI

We consider L1 solutions of Cauchy problem for scalar conservation laws. We study two
types of unbounded weak solutions: renormalized entropy solutions and kinetic solu-
tions. It is proved that if u is a kinetic solution, then it is indeed a renormalized entropy
solution. Conversely, we prove that if u is a renormalized entropy solution which satisfies
a certain additional condition, then it becomes a kinetic solution.

Copyright © 2006 S. Ishikawa and K. Kobayasi. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider the following Cauchy problem for the scalar conservation law:

∂tu+ divA(u)= 0, (t,x)∈Q ≡ (0,T)×Rd, (1.1)

u(0,x)= u0(x), x ∈Rd, (1.2)

where A : R→ Rd is locally Lipschitz continuous, u0 ∈ L1(Rd), T > 0, d ≥ 1. It is well
known by Kružkov [7] that if u0 ∈ L∞(Rd), then there exists a unique bounded entropy
solution u of (1.1)-(1.2). By nonlinear semigroup theory (cf. [3, 4]) a generalized (mild)
solution u of (1.1)-(1.2) has been constructed in L1 spaces for any u0 ∈ L1(Rd). However,
since the mild solution u is, in general, unbounded and the flux A is assumed no growth
condition, the functionA(u) may fail to be locally integrable. Consequently, divA(u) can-
not be defined even in the sense of distributions, so that it is not clear in which sense the
mild solution satisfies (1.1). In connection with this matter, Bénilan et al. [1] introduced
the notion of renormalized entropy solutions in order to characterize the mild solutions
constructed via nonlinear semigroup theory in the L1 framework.

On the other hand, Chen and Perthame [2] (also see [8]) introduced the notion of
kinetic solutions and established a well-posedness theory for L1 solutions of (1.1)-(1.2)
by developing a kinetic formulation and using the regularization by convolution.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 433–440
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Our purpose of this paper is to clear up the relationship between renormalized en-
tropy solutions and kinetic solutions. An equivalent definition of renormalized entropy
solutions is also considered in [6].

2. Statement of the results

We start with some notations. Define

sgn+(r)=
⎧
⎨

⎩

1 if r > 0,

0 if r ≤ 0,
sgn−(r)=

⎧
⎨

⎩

−1 if r < 0,

0 if r ≥ 0,
(2.1)

and r± = sgn±(r)r. Let a∨ b denote max{a,b}, and let a∧ b denote min{a,b}. Set Q =
(0,T)×Rd and Q = [0,T)×Rd. For a function u :Q→R, we define

f±(t,x,ξ)= sgn±
(
u(t,x)− ξ), (t,x)∈Q, ξ ∈R. (2.2)

Similarly, for the initial data u0 we define

f 0
±(x,ξ)= sgn±

(
u0(x)− ξ), x ∈Rd, ξ ∈R. (2.3)

The entropy fluxes which we use here will be given by

Φ±(u,κ)= sgn±(u− κ)
(
A(u)−A(κ)

)
. (2.4)

We now recall the notions of kinetic solutions and renormalized entropy solutions of
the Cauchy problem (1.1)-(1.2), which were introduced by Chen and Perthame [2] and
by Bénilan et al. [1], respectively.

Definition 2.1. A measurable function u : Q→R is said to be a kinetic solution of (1.1)-
(1.2) if the following properties hold:

(i) u∈ L∞(0,T ;L1(Rd));
(ii) there exist nonnegative measures m+(t,x,ξ), m−(t,x,ξ) ∈ C(Rξ ;w-�(Q)) such

that

lim
ξ→±∞

∫

Q
m±(t,x,ξ)dtdx = 0 (2.5)

and such that for any φ∈ C∞0 (Q×R), φ ≥ 0,

∫

Q×R
f±
(
∂t +A′(ξ) ·∇x

)
φdtdxdξ +

∫

Rd+1
f 0
±φ(0,x,ξ)dxdξ

=
∫

Q×R
∂ξφm±(t,x,ξ)dtdxdξ.

(2.6)



S. Ishikawa and K. Kobayasi 435

Definition 2.2. A measurable function u : Q → R is said to be a renormalized entropy
subsolution (resp., supersolution) of (1.1)-(1.2) if the following properties hold:

(i) u∈ L∞(0,T ;L1(Rd));
(ii) for every � > 0 there exists a nonnegative bounded measure μ+

� (resp., μ−� ) on Q
such that

lim
�→∞

μ±� (Q)= 0 (2.7)

and such that for every �,κ∈R with |κ| ≤ � and for every ϕ∈ C∞0 (Q), ϕ≥ 0,

∫

Q

{
(u∧ �− κ)+ϕt +Φ+(u∧ �,κ) ·∇xϕ

}
dtdx

+
∫

Rd

(
u0∧ �− κ

)+
ϕ(0,x)dx ≥−

∫

Q
ϕμ+

� (t,x)dtdx
(2.8)

respectively,

∫

Q

{(
u∨ (−�)− κ)−ϕt +Φ−

(
u∨ (−�),κ

) ·∇xϕ
}
dtdx

+
∫

Rd

(
u0∨ (−�)− κ)−ϕ(0,x)dx ≥−

∫

Q
ϕμ−� (t,x)dtdx.

(2.9)

Moreover, if u is a renormalized entropy subsolution and a renormalized entropy su-
persolution of (1.1)-(1.2), then u is said to be a renormalized entropy solution of (1.1)-
(1.2).

Then we have the following theorem.

Theorem 2.3. Let u ∈ L∞(0,T ;L1(Rd)). Then u is a kinetic solution of (1.1)-(1.2) if and
only if u is a renormalized entropy solution of (1.1)-(1.2) and the following additional con-
dition holds.

(A) For each ζ(t,x)∈ C∞0 (Rd+1), ζ ≥ 0, and each ξ ∈R, there exists a constant C(ζ ,ξ)≥
0, such that

lim
ξ→±∞

C(ζ ,ξ)= 0 (2.10)

and for any � > 0,

∫

Q

{(
T�(u)− ξ)±∂tζ +Φ±

(
T�(u),ξ

) ·∇xζ
}
dtdx

+
∫

Rd

(
T�
(
u0
)− ξ)±ζ(0,x)dx ≤ C(ζ ,ξ),

(2.11)

where T�(u)= (u∧ �)∨ (−�).
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3. Proof of Theorem 2.3

In this section, let u be always a function of L∞(0,T ;L1(Rd)), and let κ and � be real
numbers such that |κ| ≤ �. First, we assume that u is a kinetic solution of (1.1)-(1.2). Let
ξ �→ E±n (ξ) be a smooth approximation of ξ �→ (ξ − κ)± such that |(E±n )′(ξ)| ≤ 1 for any
positive integer n. Let Φn be a smooth approximation of the characteristic function χ(−�,�)

on (−�,�) such that suppΦn ⊂ (−�,�) and 0≤Φn ≤ 1. Now, let ϕ∈ C∞0 (Rd+1), ϕ≥ 0, and
apply (2.6) to the test function φ(t,x,ξ)= (E±n )′(ξ)Φn(ξ)ϕ(t,x):

∫

Q

[∫

R
Φn(ξ)

(
E±n
)′

(ξ) f±dξ
]

ϕt +
[∫

R
A′(ξ)Φn(ξ)

(
E±n
)′

(ξ) f±dξ
]

·∇xϕdtdx

+
∫

Rd

[∫

R
Φn(ξ)

(
E±n
)′

(ξ) f 0
±dξ

]

ϕ(0,x)dx

=
∫

Q×R

[
Φn
′(E±n

)′
+Φn

(
E±n
)′′]

ϕm±dtdxdξ.

(3.1)

Passing n to infinity, we get

∫

Q

{(
T�(u)− κ)±ϕt +Φ±

(
T�(u),κ

) ·∇xϕ
}
dtdx

+
∫

Rd

(
T�
(
u0
)− κ)±ϕ(0,x)dx

=−
∫

Q

{
m±(t,x,±�)−m±(t,x,κ)

}
ϕ(t,x)dtdx

≥−
∫

Q
ϕ(t,x)m±(t,x,±�)dtdx.

(3.2)

By setting μ±� (t,x)=m±(t,x,±�) for (t,x)∈Q, we have (2.7) from (2.5), and both (2.8)
and (2.9) follow from (3.2). Therefore, in order to see that u is a renormalized entropy
solution it suffices to show that the condition (A) holds. To this end, let ζ ∈ C∞0 (Rd+1),
ζ ≥ 0, and let η be a function in C∞0 (Rd+1) such that 0≤ η ≤ 1 and η = 1 on suppζ . Next,
applying (2.6) to the test function φ(t,x,ξ)= (E±n )′(ξ)Φn(ξ)ζ(t,x)η(t,x) and passing n to
infinity, we get

∫

Q

{(
T�(u)− κ)±∂t(ζη) +Φ±

(
T�(u),κ

) ·∇x(ζη)
}
dtdx

+
∫

Rd

(
T�
(
u0
)− κ)±ζ(0,x)dx

=
∫

Q
ζη
{
m±(·,·,κ)−m±(·,·,�)

}
dtdx

≤
∫

Q
ζηm±(·,·,κ)dtdx.

(3.3)
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Note that (ζη)t = ζtη, ∇x(ζη)= η∇xζ because η = 1 on suppζ . Therefore, the above in-
equality comes to

∫

Q

{(
T�(u)− κ)±ζt +Φ±

(
T�(u),κ

) ·∇xζ
}
dtdx+

∫

Rd

(
T�
(
u0
)− κ)±ζ(0,x)dx

≤
∫

Q
ζm±(·,·,κ)dtdx.

(3.4)

By setting C(ζ ,ξ) = ∫Q ζm±(·,·,ξ)dtdx, we have (2.10) and (2.11), and hence condition
(A) holds.

Conversely, we assume that u is a renormalized entropy solution of (1.1)-(1.2). Define
a linear form m±� on C∞0 (Q) by

m±� (ϕ)=
∫

Q

{(
T�(u)− ξ)±ϕt +Φ±

(
T�(u),ξ

) ·∇ϕ
}
dtdx

+
∫

Q
ϕμ±� dt dx for ϕ∈ C∞0 (Q).

(3.5)

By virtue of (2.8) and (2.9) we see that m±� (ϕ) are nonnegative for any φ ≥ 0. Hence, we
conclude that for any ξ there are a nonnegative measure m+

� (t,x,ξ) on Q and a nonnega-
tive measure m−� (t,x,ξ) on Q such that for any ϕ∈ C∞0 (Q),

∫

Q
ϕm±� (t,x,ξ)dtdx =m±� (ϕ). (3.6)

It is easy to see that m±� ∈ C(Rξ ;w-�(Q)+) and m±� = μ±� for ±ξ ≥ �. In particular, (2.7)
implies (2.5). We have only to prove (2.6). By (3.5) and (3.6) we have

(
∂t +A′(ξ) ·∇x

)
f�± = ∂ξm±� in �′

(
Q×Rξ

)
, (3.7)

where f�±(t,x,ξ)= sgn± (T�(u(t,x))− ξ). By the proof of [9, Proposition 3.4], there exists
a function f τ0

�± ∈ L∞(Rd
x ×Rξ) such that (see [9, (3.10)])

∫

Q×R
f�±
(
∂t +A′(ξ) ·∇x

)
φdtdxdξ +

∫

Rd×R
f τ0
�±φ(0,x,ξ)dxdξ

=
∫

Q×R
∂ξφm

±
� dt dxdξ

(3.8)

for any φ ∈ C∞0 (Q×R). Applying (3.8) to the test function φ(t,x,ξ)= sgn±(ξ − κ)ϕ(t,x)
with ϕ∈ C∞0 (Rd+1), ϕ≥ 0, we get

∫

Q

{(
T�(u)− κ)±∂tϕ+Φ±

(
T�(u),κ

) ·∇xϕ
}
dtdx+

∫

Rd

[∫

R
f τ0
�±sgn±(ξ − κ)dξ

]

ϕ(0,x)dx

=
∫

Q
ϕm±� (·,·,κ)dtdx.

(3.9)
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Since u is a renormalized entropy solution, it follows from (2.8), (2.9), and (3.5) that

−
∫

Q
ϕμ±� dt dx−

∫

Rd

(
T�
(
u0
)− κ)±ϕ(0,x)dx

+
∫

Rd

[∫

R
f τ0
�±sgn±(ξ − κ)dξ

]

ϕ(0,x)dx ≤
∫

Q
ϕm±� (·,·,κ)dtdx,

(3.10)

which implies

∫

Rd

[∫

R
f τ0
�±sgn±(ξ − κ)dξ

]

ψ(x)dx

≤
∫

Rd

(
T�
(
u0
)− κ)±ψ(x)dx+

∫

Rd
ψ(x)μ±� (0,·)dx

(3.11)

for any ψ ∈ C∞0 (Rd), ψ ≥ 0. Now, for any κ, define the measures m�+(·,κ) and m�−(·,κ)
on Rd by

m�± =
(
T�
(
u0
)− κ)± −

∫ ±∞

κ
f τ0
�±dξ +μ±� (0,·). (3.12)

By virtue of (3.11) we easily see that

f 0
�± = ∂ξm0

�± + f 0
�± in �′

(
Rd
x ×Rξ

)
,

m0
�± ∈ C

(
[−�,�];�

(
Rd
)+)

,

m0
�± = μ±� (0,·) for ± ξ > �.

(3.13)

Hence, by (3.8) we have

∫

Q×R
f�±
(
∂t +A′(ξ) ·∇x

)
φdtdxdξ +

∫

Rd+1
f 0
�±φ

(t=0)dxdξ

=
∫

Q×R
∂ξφm

±
� dt dxdξ +

∫

Rd+1
∂ξφ

(t=0)m0
�±dxdξ

=
∫

Q×R
∂ξφm

±
� dt dxdξ for any φ ∈ C∞0 (Q×R),

(3.14)

where the measures m±� on Q×R are defined by

m±� =m±� 1Q×R +m0
�±1{0}×Rd×R. (3.15)

Set

ω
(
ξ1,ξ2

)= sup
κ1,κ2∈[ξ1∧ξ2,ξ1∨ξ2]

∣
∣A
(
κ1
)−A(κ2

)∣
∣, ξ1,ξ2 ∈R. (3.16)
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Then, (3.5), (3.6), and (3.12) give that for any φ ∈ C∞0 (Q) and for any ξ1,ξ2 ∈ R with
ξ1 ≤ ξ2, we have

∣
∣
∣
∣

∫

Q
ϕ(t,x)

(
m±�

(
t,x,ξ1

)−m±�
(
t,x,ξ2

))
dtdx

∣
∣
∣
∣

≤
∫

Q

∣
∣
(
T�(u)− ξ1

)± − (T�(u)− ξ2
)±∣∣∣∣ϕt

∣
∣dtdx

+
∫

Q

∣
∣Φ±

(
T�(u),ξ1

)−Φ±
(
T�(u)− ξ2

)∣
∣
∣
∣∇xϕ

∣
∣dtdx

+
∫

Rd

∣
∣
(
T�
(
u0
)− ξ1

)± − (T�
(
u0
)− ξ2

)±∣∣∣∣ϕ(t=0)
∣
∣dx

+
∫

Rd

∫ ξ2

ξ2

∣
∣ f τ0

�±
∣
∣dξ

∣
∣ϕ(t=0)

∣
∣dx

≤ C(ϕ)
(
ω
(
ξ1,ξ2

)
+
∣
∣ξ1− ξ2

∣
∣
)
,

(3.17)

where C(ϕ) is a positive constant which may depend upon ϕ.
On the other hand, let K ⊂Q be a compact set, and take ζ ∈ C∞0 (Rd+1) such that ζ ≥ 0

and ζ = 1 on K . By virtue of (3.5), (3.6), (3.9), (3.11), (3.12), (3.15), and condition (A),
we get

∫

K
m±� (t,x,ξ)dtdx

≤
∫

Q

{(
T�(u)− ξ)±ζtΦ±

(
T�(u),ξ

) ·∇xζ
}
dtdx

+ 2
∫

Rd

(
T�
(
u0
)− ξ)±ζ(0,x)dx+ 2

∫

Rd
ζ(0,x)μ±� (0,x)dx

≤ C(ζ ,ξ) +μ±� (Q).

(3.18)

This estimate and (2.7) imply that m±� is bounded in L1
loc(Q×R) uniformly with respect

to �. By the weak compactness for measures (e.g., see [5]) there exists a subsequence {�k}
and m± ∈�(Q×R)+ such that m±�k (t,x,ξ)⇀m±(t,x,ξ), as k →∞, in the topology w-
�(Q×Rξ) as well as in the topology w-�(Q) for any rational number ξ. Notice that by
(3.17), this convergence in w-�(Q) is also valid for any real number ξ. Consequently, we
conclude that m± ∈ C(Rξ ;w-�(Q)) and limξ→±∞m±(t,x,ξ) = 0 in w-�(Q). Moreover,
passing to the limit with � = �k →∞ in (3.14) yields (2.6). Thus, we see that u is a kinetic
solution of (1.1)-(1.2). Thus the proof of Theorem 2.3 is completed.
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SUBDIFFERENTIAL OPERATOR APPROACH TO THE
DIRICHLET PROBLEM OF NONLINEAR DEGENERATE
PARABOLIC EQUATIONS

A. ITO, M. KUBO, AND Q. LU

We define a convex function on H−1(Ω) whose subdifferential generates an evolution
equation for the Dirichlet problem of a nonlinear parabolic equation associated with an
arbitrary maximal monotone graph. Some applications to the Penrose-Fife phase transi-
tion model are given.

Copyright © 2006 A. Ito et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

This paper is concerned with the following initial-boundary value problem for a nonlin-
ear parabolic partial differential equation.

Problem 1.1.

ut −Δv = f (t,x), v ∈ α(u) in (0,T)×Ω,

v = h(x) on (0,T)× ∂Ω,

u(0,x)= u0(x) in Ω,

(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded domain, f (t,x) is a given function in (0,T)×Ω,
h(x) is a given boundary value on ∂Ω, u0 is a given initial value in Ω, and α is a maximal
monotone graph in R×R.

The present paper aims to formulate Problem 1.1 in a form of the Cauchy problem of
an evolution equation as follows.

Problem 1.2.

u′(t) + ∂ϕ
(
u(t)

)� f ∗(t), 0 < t < T ,

u(0)= u0.
(1.2)

Hindawi Publishing Corporation
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Here ϕ :H−1(Ω)→R∪{+∞} is a proper, l.s.c., and convex function, ∂ϕ is the subdiffer-
ential of ϕ, and

f ∗(t) := f (t) +Δh. (1.3)

Our subject is to find ϕ such that Problem 1.2 is equivalent to Problem 1.1.

In the case where α is coercive (or surjective cf. [3, Proposition 2.14, Remark 2.3]),
Brézis [2] and Damlamian [7] succeeded in defining a convex function with which Prob-
lems 1.1 and 1.2 are equivalent to each other.

However, in various physical models, one has to study Problem 1.1 with a noncoercive
(or nonsurjective) maximal monotone function (or graph) α. For example, the function
defined by

α(r)=−1
r

(r > 0) (1.4)

has been used to define the heat flux of a general energy balance law in nonequilibrium
thermodynamics (cf. de Groot and Mazur [11]), in the phase transition models proposed
by Penrose and Fife [27] and by Alt and Pawlow [1] (cf. [4]), and the related Stefan prob-
lem is studied by Colli and Savarè [6]. Another example is

α(r)= logr (r > 0), (1.5)

which appears in plasma physics (cf. Longren and Hirose [26]) and in the hydrodynami-
cal limit in gas dynamics (cf. Kurtz [24] and Lions and Toscani [25]). These examples are
out of scope of the results in [2, 7].

When one replaces the Dirichlet boundary condition in Problem 1.1 by the third
boundary condition (n0 > 0),

∂v

∂n
+n0v = h on (0,T)× ∂Ω. (1.6)

Damlamian and Kenmochi [10] succeeded in defining a convex function whose subdif-
ferential generates Problem 1.2 which is equivalent to the corresponding initial-boundary
value problem for an arbitrary maximal monotone graph.

The results and methods in the above cited paper [2, 7, 10] are not directly applicable
to our Problem 1.1 with the Dirichlet boundary conditions and an arbitrary maximal
monotone graph.

Let us give here a formal calculation in order to explain the basic idea. Assume that
Problem 1.1 has a solution. Then, we have

ut −Δ
(
α(u)−h)= f ∗(= f +Δh). (1.7)

Testing this by (−Δ0)−1ut (Δ0 is the Laplace operator with homogeneous Dirichlet bound-
ary condition), we obtain

∣
∣ut
∣
∣2
H−1(Ω) +

d

dt

{∫

Ω
α̂(u)dx− (h,u)

}

= ( f ∗,
(−Δ0

)−1
ut
)
. (1.8)
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Here | · |H−1(Ω) is the dual norm in H−1(Ω) defined by the gradient norm in H1
0 (Ω) and

the duality map

−Δ0 :H1
0 (Ω)−→H−1(Ω), (1.9)

(·,·) is the inner product in L2(Ω), the boundary value h is assumed to be defined in the
interior of Ω, and α̂ :R→R∪{+∞} is a proper, l.s.c., and convex function such that

∂α̂= α. (1.10)

The energy identity (1.8) suggests the form of the desired convex function. In fact, the
desired ϕ should coincide on L2(Ω) with ϕ0 defined by

ϕ0(z) :=
∫

Ω
α̂
(
z(x)

)
dx− (h,z) (1.11)

for z ∈ L2(Ω). We have to extend this ϕ0 on H−1(Ω) to justify the above identity (1.8)
since we can expect that the time derivative ut belongs only to H−1(Ω) if no regularity of
α (or its inverse) is assumed.

If α̂ (or α) is coercive, then we can define ϕ = +∞ in H−1(Ω) \ L2(Ω) (cf. [2, 7]) in
order that the evolution equation (1.2) generated by its subdifferential ∂ϕ is equivalent to
Problem 1.1. Also in this case, one can take Δh= 0 in Ω, that is, f = f ∗.

If α̂ is not coercive, this does not work. We have to employ the duality argument of
convex functionals (cf. [12, 28]).

In Section 2, we give the main result (Theorem 2.2) and the outline of the proof. In
Section 3, we apply Theorem 2.2 to the Penrose-Fife phase transition model. The detailed
proofs are given in the papers [16, 17, 23].

2. Main result

Let us first observe that there arises a kind of necessary condition for Problem 1.1 to admit
a solution. That is, since we have v ∈ α(u) and v = h, we must have h∈ R(α) (the range
of α). Hence, we assume hereafter that the following condition holds:

(C) h∈H1(∂Ω) and there exists h̃∈H1(∂Ω) such that h∈ α(h̃) on ∂Ω.

Lemma 2.1 ([23, Proposition 2.2]). We can extend h, h̃ so that h, h̃∈H1(Ω) and

∫

Ω
α̂∗
(
h(x)

)
dx < +∞. (2.1)

Here α̂∗ is the conjugate convex function of α̂ (cf. (1.10)):

α̂∗(r∗) := sup
r∈R

{
r∗ · r− α̂(r)

}
. (2.2)

Now, we state the main result.
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Theorem 2.2 ([23, Theorem 2.1]). There exists ϕ : H−1(Ω)→ R∪{+∞} a proper, l.s.c.,
and convex function such that the following hold:

(i) ϕ|L2(Ω) = ϕ0 on L2(Ω) (cf. (1.11));
(ii) for z ∈ L2(Ω) and z∗ ∈H−1(Ω), z∗ ∈ ∂ϕ(z) if and only if there exists z̃ ∈ L2(Ω)

such that z̃ ∈ α(z) in Ω, z̃−h∈H1
0 (Ω), and z∗ = −Δ(z̃−h).

From this theorem, we can conclude that for u∈ L∞(0,T ;L2(Ω)) Problem 1.2 is equiv-
alent to Problem 1.1.

Idea of the proof of Theorem 2.2. Here we give the definition of ϕ. Let ψ : H−1(Ω)→ R∪
{+∞} be defined by

ψ(z) :=
∫

Ω
α̂∗
((−Δ0

)−1
z+h

)
dx. (2.3)

By Lemma 2.1, ψ is proper since

ψ(0)=
∫

Ω
α̂∗
(
h(x)

)
dx < +∞. (2.4)

Now, we define ϕ := ψ∗ :H−1(Ω)→R∪{+∞} (the conjugate convex function of ψ):

ϕ(z) := sup
w∈H−1(Ω)

{〈
w,
(−Δ0

)−1
z
〉−ψ(w)

}
. (2.5)

Then, by employing the property of convex functions and their conjugate functions (cf.
[12, 28]), we can show that this function ϕ has the desired properties. We refer to [23,
Section 3] for the details. �

By the theory of subdifferential evolution equations (cf. [3]), Problem 1.2 admits a
unique solution u∈W1,2(0,T ;H−1(Ω)) for any initial value u0 ∈D(ϕ). The next theorem
assures that if u0 ∈ L2(Ω), the solution of (1.2) gives a solution of Problem 1.1.

Theorem 2.3 ([23, Theorem 2.1]). If u0 ∈ D(ϕ)∩ L2(Ω), then the solution u of (1.2)
belongs to L∞(0,T ;L2(Ω)), hence, by Theorem 2.2, is a solution of (1.1).

Remark 2.4. The condition (C) (or (2.1) in Lemma 2.1) for the solvability of Problem 1.1
was first noticed in [20], where the case of time-dependent Dirichlet data was studied
without using the evolution equation of the form (1.2). By the strong nonlinearity im-
plied by the maximal monotone graph α, each boundary condition has its own difficulty
to overcome. We refer to [22] for the Neumann problem, and to [14, 29] for the case
Ω=RN .

3. Applications to the Penrose-Fife model

3.1. Nonconserved order parameters. Here we consider the following system which was
proposed by Penrose and Fife [27] as a nonisothermal phase transition dynamics model
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consistent with the laws of thermodynamics:

et −Δv = f (t,x), v ∈ α(u)
(
u := e− λ(w)

)
in (0,T)×Ω,

wt − κΔw+ g(w) + ξ − vλ′(w)= 0, ξ ∈ β(w) in (0,T)×Ω.
(3.1)

Here e, u, and w are the specific internal energy, the (absolute) temperature and the order
parameter, respectively. The first equation refers to the energy balance law. The second
one describes the dynamics of the order parameter, which is here assumed to be noncon-
served and subject to the constraint imposed by the maximal monotone graph β. Other
given data f ,λ,κ > 0, g will be specified later. The model for a conserved order parameter
will be briefly discussed in the next Section 3.2.

A lot of studies have been done for this system. So far, most of the works treated the
third boundary condition (cf. [4, 8, 19]) n0 > 0,

∂v

∂n
+n0v = h on (0,T)× ∂Ω (3.2)

or the Neumann condition (cf. [5, 15, 18, 31, 32])

∂v

∂n
= h on (0,T)× ∂Ω. (3.3)

Recently, Gilardi and Marson [13] treated the Dirichlet boundary condition for the tem-
perature

v = h(x) on (0,T)× ∂Ω, (3.4)

assuming that α(u) behaves asymptotically like −1/u as u→ 0 and like a linear function
as u→∞. Notice that in this case one has R(α)=R.

By the strong nonlinearity caused by the maximal monotone graph α, each boundary
condition for the temperature demands a different kind of difficulty (cf. [15, Section 1]).

Usually, one considers the Neumann boundary condition for the order parameter

∂w

∂n
= 0 in (0,T)× ∂Ω. (3.5)

And one may treat other standard boundary conditions likewise, since the principal part
of the equation for the order parameter is linear (cf. [18]).

Here, we study the problems (3.1)–(3.5) with the initial condition

e(0,x)= e0(x), w(0,x)=w0(x) in Ω, (3.6)

for an arbitrary maximal monotone graph α by applying Theorem 2.2.
As in Section 2, we assume that α is an arbitrary maximal monotone graph and that

the boundary data h is given as in the condition (C) and Lemma 2.1. Other data are given
as follows:

(i) f ∈ L2(0,T ;H);
(ii) λ∈ C1,1(R);
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(iii) κ > 0 is a constant;
(iv) g ∈ C0,1(R) with ĝ ∈ C1,1(R) such that ĝ′ = g;

(v) β is a maximal monotone graph with β = ∂β̂. The domain D(β) of β is bounded;
(vi) [e0,w0]∈ L2(Ω)×H1(Ω).

We denote by (PF) (the Penrose-Fife model or the phase field model) the system (3.1)–
(3.6). The notion of its solution is defined below.

Definition 3.1. We call that a pair of functions [e,w] : [0,T]→ L2(Ω)×H1(Ω) is a (weak)
solution of (PF) if the following (a)–(e) hold (e′ and w′ denote, respectively, the time
derivatives of e and w):

(a) e ∈ L∞(0,T ;L2(Ω))∩W1,2(0,T ;H−1(Ω));
(b) w ∈ L∞(0,T ;H1(Ω))∩W1,2(0,T ;L2(Ω));
(c) there exists v ∈ L2(0,T ;H1(Ω)) such that v ∈ α(u), u := e− λ(w), in (0,T)×Ω,

and α̃ = h on (0,T)× ∂Ω. For all z ∈ H1
0 (Ω) and almost everywhere t ∈ (0,T)

there holds

〈e′,z〉+
∫

Ω
∇v ·∇zdx = ( f ,z), (3.7)

where 〈·,·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω);

(d) there exists ξ ∈ L2(0,T ;L2(Ω)) such that ξ ∈ β(w) in Ω× (0,T), and for all z ∈
H1(Ω) and almost everywhere t ∈ (0,T) there holds

(w′,z)− κ
∫

Ω
∇w ·∇zdx+

(
g(w) + ξ − vλ′(w),z

)= 0; (3.8)

(e) e(0)= e0 and w(0)=w0.
Next, we define the generating functional of the problem.

Definition 3.2. Define a functional Φ : L2(Ω)×H1(Ω)→R∪{+∞} by (u := e− λ(w)),

Φ(e,w)= ϕ0(u) +
κ

2

∫

Ω
|∇w|2dx+

∫

Ω
ĝ(w)dx+

∫

Ω
β̂(w)dx, (3.9)

for [e,w]∈ L2(Ω)×H1(Ω), where ϕ0 is defined by (1.11).
Now, applying Theorem 2.2, we will prove the following fundamental energy identity

of the problem (PF).

Theorem 3.3. Let [e,w] be a solution of (PF). Then, the function t �→Φ(t) :=Φ(e(t),w(t))
is absolutely continuous on [0,T] and the following equality holds for almost everywhere
t ∈ (0,T):

|e′|2H−1(Ω) + |w′|2L2(Ω) +
d

dt
Φ(t)= 〈 f ∗,−Δ−1

0 e′
〉

+
(
h,
(
λ(w)

)′)
. (3.10)

Proof. First note that (λ(w))′ = λ′(w)w′ ∈ L2(0,T ;L2(Ω)). Hence, u′ = e′ − λ′(w)w′ ∈
L2(0,T ;H−1(Ω)). Next note that by Theorem 2.2(ii) we have for almost everywhere t ∈
(0,T):

−Δ(v−h)∈ ∂ϕ(u). (3.11)
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Hence, by the chain rule [3, Lemma 3.3] and Theorem 2.2(i), we obtain

〈v−h,u′〉 = d

dt
ϕ(u)= d

dt
ϕ0(u). (3.12)

Therefore, by choosing z =−Δ−1
0 e′ in Definition 3.1(c) (with Δh added to the both hand

sides), we have

〈
e′,−Δ−1

0 e′
〉

+
∫

Ω
∇(v−h) ·∇(−Δ−1

0 e′
)

= |e′|2H−1(Ω) + 〈v−h,u′〉+
〈
v−h,λ′(w)w′

〉

= |e′|2H−1(Ω) +
d

dt
ϕ0(u) +

(
v−h,λ′(w)w′

)

= 〈 f ∗,−Δ−1
0 e′

〉
.

(3.13)

Similarly, choosing z = w′ in Definition 3.1(d) and noting that β̂ and ĝ are, respectively,
primitives of β and g, we have

(w′,w′) +
d

dt

{
κ

2

∫

Ω
|∇w|2dx+

∫

Ω
ĝ(w)dx+

∫

Ω
β̂(w)dx

}

−
∫

Ω
vλ′(w)w′dx = 0. (3.14)

Adding the above two equalities, we obtain the desired identity. �

The identity in Theorem 3.3 is very important from both physical and mathematical
viewpoints.

Physically, the functional Φ refers to the negative of the total entropy of the system,
and is introduced by Penrose and Fife [27] so that the system (3.1) is consistent with the
entropy law (the second law of thermodynamics). The right-hand side of the identity in
Theorem 3.3 refers to the external supply of entropy due to the given data f and h.

Also, the identity in Theorem 3.3 can be used to prove the existence of a solution. In
fact, we use this kind of identity to show uniform bounds of solutions of appropriately
regularized problems. The detailed analysis is given in [17].

Notice that Theorem 3.3 implies a necessary condition Φ(e0,w0) < +∞ on the initial
value, in order for a solution to exist. This means that the total entropy of the initial state
must be finite, which is physically reasonable.

3.2. Conserved order parameters. The model with a conserved order parameter is given
as follows:

et −Δv = f (t,x), v ∈ α(u)
(
u := e− λ(w)

)
in (0,T)×Ω,

wt −Δ
{− κΔw+ g(w) + ξ − vλ′(w)

}= 0, ξ ∈ β(w) in (0,T)×Ω,

v = h(x) on (0,T)× ∂Ω,

∂w

∂n
= ∂

∂n

{− κΔw+ g(w) + ξ − vλ′(w)
}= 0 on (0,T)× ∂Ω,

e(0,x)= e0(x), w(0,x)=w0(x) in Ω.

(3.15)
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This model has been studied so far with the Neumann boundary condition (cf. [15,
30, 32]) or the third boundary condition (cf. [4, 9, 21]) imposed on the first equation.

We can employ the idea in the previous sections to study the model with the Dirichlet
boundary condition as above for an arbitrary maximal monotone graph α. The details
will be given in the paper [16].
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A DISCRETE-TIME HOST-PARASITOID MODEL

SOPHIA R.-J. JANG AND JUI-LING YU

We study a discrete-time host-parasitoid model proposed by May et al. In this model,
the parasitoid attacks the host first then followed by density dependence, where density
dependence depends only on those host populations that escaped from being parasitized.
Asymptotic dynamics of the resulting system are derived. There exist thresholds for which
both populations can coexist indefinitely.

Copyright © 2006 S. R.-J. Jang and J.-L. Yu. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

It is well known that the sequence of density dependence and parasitism in the host life
cycle can have a significant effect on the population dynamics of the host-parasitoid inter-
action. Consequently, the effect can have important implications for biological control. In
[10], May et al. proposed and numerically simulated three host-parasitoid models based
on the timing of parasitism and density dependence. In this work, we will study a model
proposed by May et al. [10] in which parasitism occurs first then followed by density de-
pendence. However, density dependence only depends on the remaining host population
that escaped being parasitized.

2. The model

Let Nt be the host population at time t. The parasitoid population at time t is denoted
by Pt. An individual parasitoid must find a host to deposit its eggs so that the parasitoid
can reproduce. It is assumed that parasitism occurs first then followed by density depen-
dence. Let β be the average number of offsprings that a parasitized host can reproduce
for a parasitoid individual. It is assumed that the number of encounters between host
and parasitoid populations at any time t ≥ 0 follows that of simple mass action, bNtPt,
where the searching efficiency b is a constant. We assume that the number of encounters
is distributed randomly with a Poisson distribution. Consequently, the probability that
an individual host will escape from being parasitized when the parasitoid population is

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 451–455
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of size P is e−bp. For simplicity, the host population in the absence of the parasitoid is
modeled by a simple Beverton-Holt equation λN/(1 + kN), where parameters λ and k are
positive. Since density dependence occurs after parasitism, the interaction between the
host and the parasitoid is governed by the following system of difference equations:

Nt+1 = λNt

1 + kNte−bPt
e−bPt , (2.1)

Pt+1 = βNt
(
1− e−bPt),

N0,P0 ≥ 0.
(2.2)

Steady state E0 = (0,0) always exists. The Jacobian matrix can be given by

J =
(

J11 J12

β
(
1− e−bP) βbNe−bP

)

, (2.3)

where

J11 = λe−bP
(
1 + kNe−bP

)2 ,

J12 = −λbNe−bP
(
1 + kNe−bP

)2 .

(2.4)

Note that

J(0,0)=
(
λ 0

0 0

)

. (2.5)

Thus it can be easily seen that E0 is the only steady state of system (2.1) if λ < 1 and it is
globally asymptotically stable. Indeed,

Nt+1 = λNt

1 + kNte−bPt
e−bPt = λNt

kNt + ebPt

≤ λNt

1 + kNt
< λNt,

(2.6)

for t ≥ 0 implies limt→∞Nt = 0 as λ < 1. As a result, we can show that limt→∞Pt = 0 and
hence E0 = (0,0) is globally asymptotically stable.

Suppose now λ > 1. Then (2.1) has another boundary steady state E1 = ((λ− 1)/k,0)=
(N̄ ,0) and the Jacobian matrix of the system associated with E1 is

J(N̄ ,0)=

⎛

⎜
⎜
⎝

1
λ

J12
(
E1
)

0 βb
λ− 1
k

⎞

⎟
⎟
⎠ . (2.7)
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Thus E1 is locally asymptotically stable if βb(λ− 1)/k = βbN̄ < 1. We show that (2.1) has
no interior steady state if βbN̄ < 1. Notice that the P-component of an interior steady
state (N∗,P∗) must satisfy

λ= ebP + kh(P), (2.8)

where h(P)= P/β(1− e−bP) for P > 0. Since limP→0+ h(P)= 1/βb, h′(P) > 0 for P > 0 and
limt→∞h(∞)=∞, we see that (2.8) has a positive solution P∗ if and only if

βb+ k
βb

< λ iff βbN̄ > 1. (2.9)

In this case P∗ > 0 is unique and there is a unique interior steady state E1 = (N∗,P∗) if
βbN̄ > 1. We conclude that if λ > 1 and βbN̄ < 1, then E1 is locally asymptotically sta-
ble and there is no interior steady state. We show that solutions of (2.1) with N0 > 0 all
converge to E1.

To this end,

Nt+1 = λNt

ebPt + kNt
≤ λNt

1 + kNt
, (2.10)

for t ≥ 0 implies limsupt→∞Nt ≤ (λ− 1)/k by a simple comparison argument. Then for
any ε > 0 there exists t0 > 0 such that Nt < (λ− 1)/k + ε for t ≥ t0. Since βbN̄ < 1, we
choose ε > 0 such that

βb(N̄ + ε) < 1. (2.11)

But then

Pt+1 = βNt
(
1− e−bPt) < β(N̄ + ε)

(
1− e−bPt)≤ βb(N̄ + ε)Pt, (2.12)

for t ≥ t0 implies limt→∞Pt = 0. Consequently, we can prove that liminf t→∞Nt ≥ (λ−
1)/k if N0 > 0. Therefore, limt→∞Nt = N̄ and E1 is globally asymptotically stable.

Suppose now λ > 1 and βbN̄ > 1. Notice E0 and E1 are unstable and (2.1) has a unique
interior steady state. We prove that the system is uniformly persistent by using a result of
Hofbaur and So [6]. Clearly, system (2.1) has a global attractor X . Let Y = {(N ,P)∈R2

+ :
N = 0 or P = 0}, that is, Y is the union of nonnegative coordinate axes, and let M be the
maximal invariant set in Y . Then M = {E0,E1}, where {E0} and {E1} are isolated in X .
We claim that the stable set W+(E0)= {(N ,P)∈R2

+ :Nt → 0,Pt → 0 as t→∞} lies in Y .
For suppose there exists a solution (Nt,Pt) of (2.1) with N0 > 0, P0 > 0 such that

limt→∞(Nt,Pt)= E0, then since λ > 1, we can choose ε > 0 such that λ− ebε > 0. For this
ε > 0 there exists t1 > 0 such that Pt < ε for t ≥ t1, and consequently

Nt+1 = λNt

ebPt + kNt
>

λNt

ebε + kNt
, (2.13)

for t ≥ t1. Hence liminf t→∞Nt > (λ− ebε)/k > 0 and we obtain a contradiction. Therefore
W+(E0) lies on Y . Similarly, if there exists a solution (Nt,Pt) of (2.1) with N0,P0 > 0 such
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that limt→∞(Nt,Pt) = E1 = ((λ− 1)/k,0), then for any ε > 0 there exists t2 > 0 such that
Nt > (λ− 1)/k− ε if t ≥ t2. Since βbN̄ > 1, we choose ε > 0 such that βb((λ− 1)/k− ε) >
1. But then

Pt+1 > β
(
λ− 1
k
− ε

)
(
1− e−bPt), (2.14)

for t ≥ t2 implies liminf t→∞Pt > 0 and we obtain a contradiction. Therefore W+(E1) lies
on Y and system (2.1) is uniformly persistent by Hofbauer and So [6, Theorem 4.1].

We summarize the above discussion in the following theorem.

Theorem 2.1. Dynamics of system (2.1) can be summarized below.
(a) If λ < 1, then solutions of (2.1) all converge to E0 = (0,0).
(b) If λ > 1, then system (2.1) has another boundary steady state E1 = (N̄ ,0). In addi-

tion if βbN̄ < 1, then solutions of (2.1) with N0 > 0 all converge to E1. If βbN̄ > 1,
then system (2.1) has a unique interior steady state E2 = (N∗,P∗) and (2.1) is
uniformly persistent, that is, there exists M > 0 such that liminf t→∞Nt ≥M and
liminf t→∞Pt ≥M for all solutions (Nt,Pt) of (2.1) with N0 > 0 and P0 > 0.

3. Discussion

In this short chapter we investigated a model proposed by May et al. [10], where para-
sitism occurs before density dependence and density dependence depends only on the
remaining population that escaped from being parasitized. The model exhibits simple
asymptotic dynamics. Both populations go to extinction if the intrinsic growth rate λ of
the host is less than 1. When the host intrinsic growth rate is greater than 1, then the host
can stabilize in a positive steady state N̄ in the absence of the parasitoid. Therefore the
parasitoid population becomes extinct if βbN̄ < 1, where βbN̄ can be interpreted as the
growth rate of the parasitoid when the host is stabilized at the level N̄ . Both populations
can coexist indefinitely if λ > 1 and βbN̄ > 1.

Notice the per capita population growth rate of the host in the absence of the par-
asitoid population is a decreasing function of the host population. Allee effects occur
when the per capita growth rate of a species is initially an increasing function of the
population size [1]. Allee effects may due to a variety of causes ranging from mating lim-
itation, predator saturation, and antipredator defense and so forth. Among these is the
uncertainty of finding mates to reproduce or lack of cooperative individuals to exploit
resources efficiently in spars populations. We refer the reader to [1, 2, 4, 5] for more bio-
logical discussion about Allee effects. See also [3, 7–9, 11–14] and references cited therein
for models of Alee effects. We will next incorporate Allee effects into the host popula-
tion and examine the Allee effects upon the dynamics of the host-parasitoid interaction
studied in this manuscript.
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A DISCRETE EIGENFUNCTIONS METHOD FOR NUMERICAL
SOLUTION OF RANDOM DIFFUSION MODELS

L. JÓDAR, J. C. CORTÉS, AND L. VILLAFUERTE

This paper deals with the construction of numerical solution of random diffusion mod-
els whose coefficients functions and the source term are stochastic processes depending
on a common random variable and an initial condition which depends on a different
one. After discretization, the random difference scheme is solved using a random discrete
eigenfunctions method. Mean-square stability of the numerical solution is studied, and
a procedure for computing the expectation and the variance of the discrete approximate
stochastic process is given.

Copyright © 2006 L. Jódar et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Mathematical models regarding spatial uncertainty are frequent in geostatistic descrip-
tion of natural variables [4] and modeling hydrology problems [5, 6]. Wave propagation
in random media has been treated in [2] and fishering problems are modeled in [3] using
stochastic processes. In this paper, we consider random diffusion models of the form

ut =
[
p(x,β)ux

]
x − q(x,β)u+F(x, t,β), 0 < x < 1, t > 0,

a1u(0, t) + a2ux(0, t)= 0, t > 0,
∣
∣a1

∣
∣+

∣
∣a2

∣
∣ > 0,

b1u(1, t) + b2ux(1, t)= 0, t > 0,
∣
∣a1

∣
∣+

∣
∣a2

∣
∣ > 0,

u(x,0)= f (x,γ), 0≤ x ≤ 1,

(1.1)

where the unknown u(x, t) as well as coefficient p(x,β), the initial condition f (x,γ), and
the source term F(x, t,β) are second-order stochastic processes depending on mutually
independent second-order random variables β, and γ defined on a common probability
space (Ω,�,P).

Model (1.1) assumes that random variations of the internal influences of the system
undergoing diffusion are stochastic processes depending on the random variable β and
that random external sources to the medium in which the diffusion takes places is also a

Hindawi Publishing Corporation
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stochastic process F(x, t,β) which depends on β. The initial condition f (x,γ) is a spatial
stochastic process depending on the random variable γ. We assume that

β and γ are mutually independent random variables

defined on the same probability space (Ω,�,P),
(1.2)

and there exist positive constants m and M, such that

0≤m≤ p
(
x,β(ω)

)≤M, 0≤ x ≤ 1, ω ∈Ω. (1.3)

Problem (1.1) with F = 0 and where f (x) is a deterministic function has been recently
studied in [9]. A discrete deterministic eigenfunctions method has been recently pro-
posed in [8]. Numerical methods for approximating partial differential equations based
on the Itô stochastic calculus have been proposed in [10] and references therein.

This paper is organized as follows. Section 2 deals with some preliminary results about
the mean-square calculus. In Section 3, the problem (1.1) is discretized a discrete separa-
tion method of variables is proposed. Section 4 deals with the construction of a solution
of the discretized problem using a discrete eigenfunctions method. Finally, in Section 5,
the stability of the discretized solution and an illustrative example are included.

2. Preliminaries

For the sake of clarity in the presentation, we begin this section by recalling some con-
cepts, notations, and results related to the mean-square stochastic calculus, that may be
found in [12]. Let (Ω,�,P) be a probability space. A real random variable (r.v.) Y is a
real function defined on Ω and it is said to be continuous if its distribution function FY
is continuous and almost everywhere differentiable. In this case, its density function is
defined by

gY (y)= dFY (y)
dy

. (2.1)

If Y satisfies the additional property

E
[
Y 2]=

∫∞

−∞
y2gY (y)dy < +∞, (2.2)

then Y is said to be a second-order random variable (2-r.v.) and the above integral is
the expectation of Y 2. If {p(x)}x∈I is a real stochastic process on the probability space
(Ω,�,P), we say that it is a second-order process (2-s.p.), if E[p(x)2] < +∞, for all x ∈ I .

Throughout this paper, a random variable will mean a 2-r.v. and a stochastic process
will denote a 2-s.p. If Y is a 2-r.v., then ‖Y‖ = √E[Y 2] is a norm and the set of all 2-r.v.’s
endowed with this norm is a Banach space denoted by L2 [12] but is not a Banach algebra.

A sequence of 2-r.v.’s {Yn} converges in mean-square (m.s.) to a 2-r.v. Y as n→∞ if

lim
n→∞

∥
∥Yn−Y

∥
∥2 = lim

n→∞E
[∣
∣Yn−Y

∣
∣2
]
= 0. (2.3)
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This type of stochastic convergence is called mean-square convergence. A 2-s.p. {p(x)}x∈I
is m.s. continuous if, for each x, x+ τ ∈ I , one satisfies

lim
τ→0

∥
∥p(x+ τ)− p(x)

∥
∥= 0. (2.4)

This process {p(x)}x∈I is m.s. differentiable to the process {p′(x)}x∈I at x = x0 ∈ I if

E

[(
p
(
x0 +Δx

)− p(x0
)

Δx
− p′(x0

)
)2
]

−→ 0 as Δx −→ 0. (2.5)

The following result shows under which conditions a 2-s.p. {p(x)}x∈I , such that for a
fixed event ω ∈Ω, satisfies the property that the realization p(x)(ω) is differentiable in
the deterministic sense, and is m.s. differentiable.

Theorem 2.1. Let f (x) = f (x,β) be a 2-s.p. defined on (Ω,�,P) which depends on the
2-r.v. β. Assume that for each ω ∈Ω the realization f (x,ω) is a twice differentiable deter-
ministic function, and assume that its second derivative f ′′(x,ω) satisfies the property

∣
∣ f ′′(y,ω)

∣
∣≤M < +∞, ∀(y,ω)∈ [x− δ,x+ δ]×Ω, δ > 0. (2.6)

Then the process f (x,β) is m.s. differentiable and f ′(x) is defined for each ω ∈Ω by

f ′(x)(ω)= f ′(x,ω)= lim
Δx→0

f (x+Δx,ω)− f (x,ω)
Δx

. (2.7)

Proof. Let ω ∈Ω be fixed, and considering Taylor’s expansion about x of the determinis-
tic differentiable function f (x,ω), one gets

f (x+Δx,ω)= f (x,ω) + f ′(x,ω)Δx+
1
2
f ′′
(
xω,ω

)
(Δx)2, (2.8)

for some xω between x and x+Δx. Let f ′(x) be the s.p. defined by (2.7). As for each Δx,
f (x +Δx,β) is a 2-r.v. that is a function of the r.v. β, then by [7, page 93] it follows that
f ′(x) is also a function of β, and by (2.8) one gets

E

[(
f (x+Δx)− f (x)

Δx
− f ′(x)

)2
]

=
(∫ +∞

−∞
f ′′
(
xβ,β

)2
gβ(β)dβ

)
(Δx)2

4
, (2.9)

where gβ is the density function of β. Under hypothesis (2.6), taking limits in (2.9) as
Δx→ 0, one gets

lim
Δx→0

E

[(
f (x+Δx)− f (x)

Δx
− f ′(x)

)2
]

= 0. (2.10)

Thus the result is established. �
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3. Discretization and random Sturm-Liouville problems

Let us subdivide the domain [0,1]× [0,∞[ into equal rectangles of sides Δx = h, Δt = k,
and introduce coordinates of a typical mesh point P(ih, jk). Let us denote u(ih, jk) =
U(i, j), F(ih, jk) = F(i, j), and f (ih) = f (i). Approximating the mean-square partial
derivatives of the stochastic process u(x, t) by the random variables

ut(ih, jk)≈ U(i, j + 1)−U(i, j)
k

,

[
p(ih)ux(ih, jk)

]
x ≈

1
h2

{
p(i)U(i+ 1, j)− (p(i) + p(i− 1)

)
U(i, j) + p(i− 1)U(i− 1, j)

}
,

(3.1)

one gets the random difference scheme

− a{p(i,β)U(i+ 1, j)− [p(i,β) + p(i− 1,β) +h2q(i,β)
]
U(i, j) + p(i− 1,β)U(i− 1, j)

}

+
[
U(i, j + 1)−U(i, j)

]= kF(i, j,β), 1≤ i≤ K , j ≥ 0,
(3.2)

U(0, j)= cU(1, j), j ≥ 0, (3.3)

U(K + 1, j)= dU(K , j), j ≥ 0, (3.4)

U(i,0)= f (i,γ), 1≤ i≤ K , (3.5)

where

a= k

h2
, h= 1

K
, c = a2

(
a2−ha1

)−1
, d = (b2−hb1

)
b−1

2 . (3.6)

Looking for solutions of the homogeneous problem obtained taking F = 0 in (3.2) to-
gether with (3.3), (3.4), of the form

U(i, j)=H(i)G( j), 1≤ i≤ K , j ≥ 0, (3.7)

one gets the random discrete Sturm-Liouville problem; see [8, Section 3]

p(i,β)H(i+ 1)− [p(i,β) + p(i− 1,β) +h2q(i,β)− λ]H(i)

+ p(i− 1,β)H(i− 1)= 0, 1≤ i≤ K ,

H(0)= cH(1), H(K + 1)= dH(K),

(3.8)

together with the random difference equation

G( j + 1)− (1− aλ)G( j)= 0, j ≥ 0. (3.9)

For each event ω ∈Ω, taking realizations p(i,ω), q(i,ω), problem (3.8) is a deterministic
discrete Sturm-Liouville problem, that by [1, page 667] admits a sequence of eigenpairs
(λm(ω),φm(i,ω)) that can be computed as eigenpairs of the algebraic problem:

A(ω)u= λu, (3.10)



L. Jódar et al. 461

where u is a real vector of dimension K and A(ω) is the matrix

A(ω)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(1,ω) −p(1,ω) 0 ··· 0
−p(1,ω) s(2,ω) −p(2,ω) ··· 0

...
. . .

. . .
. . .

...

0
...

. . .
. . . −p(K − 1,ω)

0 ··· ··· −p(K − 1,ω) s(K ,ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.11)

where

s(i,ω)= p(i,ω) + p(i− 1,ω) +h2q(i,ω), 1≤ i≤ K ,

s(1,ω)= s(1,ω)− cp(0,ω),

s(K ,ω)= s(K ,ω)−dp(K ,ω).

(3.12)

Thus eigenvalues λm(ω) and eigenvectors φm(i,ω) are random variables defined on the
probability space (Ω,�,P), that can be chosen so that eigenvectors φm(i,ω) are orthonor-
mal with respect to the weight function r(i)= 1, 1≤ i≤ K ,

〈
φm(i,ω),φn(i,ω)

〉=
K∑

i=1

φm(i,ω)φn(i,ω)= δmn, (3.13)

where δmn is the Kronecker symbol. If {u(i,ω), 1 ≤ i ≤ K} is an arbitrary variable se-
quence, then for each ω ∈Ω,

u(i,ω)=
K∑

m=1

cm(ω)φm(i,ω), 1≤ i≤ K , (3.14)

where the mth Fourier coefficient is the random variable defined by

cm(ω)=
∑K

i=1u(i,ω)φm(i,ω)
∑K

i=1φ2
m(i,ω)

=
K∑

i=1

u(i,ω)φm(i,ω). (3.15)

Expansion (3.14) is called the random discrete Fourier series expansion of u(i,·) with
respect to the eigensystem {φm(i,·)}Km=1, 1≤ i≤ K .

4. Constructive approximate stochastic discrete solution

In this section, we construct a discrete solution process of the random difference scheme
(3.2)–(3.5). Let (λn(ω),φn(i,ω)) be the random eigenpairs of the random discrete Sturm-
Liouville problem (3.8). Let us seek a candidate discrete stochastic solution process of
problem (3.2)–(3.5) of the form

U(i, j,ω)=
K∑

n=1

bn( j,ω)φn(i,ω), ω ∈Ω, (4.1)

where bn( j,ω) are r.v.’s to be determined for 1≤ n≤ K , j ≥ 0.
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Consider the Fourier series expansion of f (1,γ), . . . , f (K ,γ) in terms of the eigensys-
tem {φn(i,ω)}Kn=1, 1≤ i≤ K , ω ∈Ω,

U(i,0,ω)= f
(
i,γ(ω)

)=
K∑

n=1

bn(0,ω)φn(i,ω), (4.2)

αn(ω)= bn(0,ω)=
K∑

i=1

f
(
i,γ(ω)

)
φn(i,ω), 1≤ n≤ K. (4.3)

For each j fixed, consider the random discrete Fourier series of F(·, j),

F(i, j,ω)=
K∑

n=1

γn( j,ω)φn(i,ω), (4.4)

γm( j,ω)=
K∑

n=1

F(n, j,ω)φm(n,ω), j ≥ 0. (4.5)

By imposing to (4.1) that satisfies (3.2) and taking into account (4.4), it follows that

a
K∑

n=1

{
p(i,ω)φn(i+ 1,ω)− [p(i,ω) + p(i− 1,ω) +h2q(i,ω)

]
φn(i,ω)

+ p(i− 1,ω)φn(i− 1,ω)
}
bn( j,ω)

=
K∑

n=1

[
bn( j + 1,ω)− bn( j,ω)

]
φn(i,ω)− k

K∑

n=1

γn( j,ω)φn(i,ω).

(4.6)

Note that as (λn(ω),φn(i,ω)) are eigenpairs of (3.8) it follows that

p(i,ω)φn(i+ 1,ω)− [p(i,ω) + p(i− 1,ω) +h2q(i,ω)
]
φn(i,ω)

+ p(i− 1,ω)φn(i− 1,ω)=−λn(ω)φn(i,ω),
(4.7)

and from (4.6) one gets

−a
K∑

n=1

λn(ω)bn( j,ω)φn(i,ω)=
K∑

n=1

[
bn( j + 1,ω)− bn( j,ω)

]
φn(i,ω)

− k
K∑

n=1

γn( j,ω)φn(i,ω).

(4.8)

By identifying coefficients of φn(i,ω) in both sides of (4.8), one gets that

bn( j + 1,ω)− (1− aλn(ω)
)
bn( j,ω)= kγn( j,ω), 1≤ n≤ K , j ≥ 0. (4.9)
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By [1, page 68], for each ω∈Ω fixed, the solution of (4.9) takes the form

bn( j,ω)= (1− aλn(ω)
) j
bn(0,ω)

+
j−1∑

l=0

k
(
1− aλn(ω)

) j−1−l
γn(l,ω), j ≥ 1,

(4.10)

where bn(0,ω) is given by (4.3). By (4.1), (4.3), and (4.10), one gets the solution of (3.2)–
(3.5).

Note that from (1.2), (3.10)–(3.12), the eigenvalues λn and eigenvectors φn(i) are func-
tions of the random variable β, by the independence of the r.v.’s φn(i) and γ and by theo-
rems of [7, page 93] and [7, page 103] it follows that

E
[(

1− aλn
)h
γn( j)φn(i)

]
=

K∑

n=1

∫∞

−∞

(
1− aλn

)h
F(n, j)φm(n)φn(i) fβ(β)dβ, (4.11)

E
[
αn
(
1− aλn

)h
φn(i)

]
=
∫∞

−∞

∫∞

−∞
αn(β,γ)

[(
1− aλn

)h
φn(i)

]
(β) fβ(β) fγ(γ)dβdγ, (4.12)

where fβ and fγ are the density functions of β and γ, respectively. The expectation of
U(i, j) can be computed from (4.11), (4.12) and hence using the expression

V[X]= E[X2]−E2[X], (4.13)

one computes the variance of U(i, j), denoted by V[U(i, j)].

5. Mean-square stability

In this section, we address the mean-square stability of the discrete approximate stochas-
tic process U(i, j) constructed in Section 4. In order to fix ideas, we introduce the follow-
ing definition.

Definition 5.1. A solution U(i, j) of the random discrete problem (3.2)–(3.5) is mean-
square stable in the fixed station sense with respect to the time, if, for every fixed T > 0
and h0 > 0, with Kh0 = 1, Δt = k, J = T/k integer, one gets

sup
1≤ j≤J ,k→0

∥
∥U(i, j)

∥
∥ < +∞. (5.1)

Let us consider the discrete solution process given by (4.1), (4.3), and (4.10). Let us
take the eigenpairs (λn(ω),φn(i,ω)) of the underlying discrete Sturm-Liouville problem
(3.8) so that for each ω ∈ Ω, {φn(i,ω)} satisfies the orthonormality condition (3.13).
Hence, as φn = φn(i,β) is a function of the r.v. β, one gets

∣
∣φn(i,ω)

∣
∣≤ 1,

∥
∥φ2

n(i)
∥
∥2 =

∫ +∞

−∞
φn(i,β)2 fβ(β)dβ ≤ 1. (5.2)
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Assume that apart from hypothesis (1.2) the initial process f (x) satisfies

∣
∣ f (x)(ω)

∣
∣≤Mf , ∀(x,ω)∈ [0,1]×Ω, (5.3)

and the source term process satisfies

∣
∣F(x, t,ω)

∣
∣≤MF(T), ∀(x, t,ω)∈ [0,1]× [0,T]×Ω. (5.4)

From (4.3), (4.5), and (5.3), for each realization it follows that

∣
∣αn(ω)

∣
∣≤ KMf ,

∣
∣γm( j,ω)

∣
∣≤ KMF(T), 1≤ n,m≤ K , j ≥ 0, ω ∈Ω. (5.5)

Note that by the first Gerschgorin theorem [11, page 60] and condition (1.3) it follows
that there exists a positive constant L such that

∣
∣λn(ω)

∣
∣≤ L, 1≤ n≤ K , ω ∈Ω. (5.6)

By (5.6) and Bernouilli’s inequality, for 1≤ j ≤ J , Jk = T , a= kh−2
0 , one gets

(∣
∣1− aλn(ω)

∣
∣
) j ≤ (1 + a

∣
∣λn(ω)

∣
∣
) j ≤ eJkh−2

0 |λn(ω)| ≤ eTLh−2
0 . (5.7)

Using (4.1), (5.2), and (5.5)–(5.7), it is not difficult to obtain that

∥
∥U(i, j)

∥
∥2 ≤ SK3e2TLh−2

0 , (5.8)

where

S= (2K + 1)M2
f + 2TMF(T)Mf (2K + 1) +T2MF(T)2(2K + 3). (5.9)

Hence, one gets the stability of the solution of problem (3.2)–(3.5).

Example 5.2. Let us consider the random diffusion problem

ut =
[
p(x,β)ux

]
x + 4tβ3 sin

(
3πx

2

)

, 0 < x < 1, t > 0,

u(0, t)= 0, t > 0,

ux(1, t)= 0, t > 0,

u(x,0)= 2β, 0≤ x ≤ 1,

(5.10)

where p(x,β)= β+ cos(βx) and β is a truncated Gaussian r.v. on the interval [−0.5,1.5]
with parameters μ = 0.5, σ2 = 1/12, fβ(β) = √6/πe−12(β−0.5)2

, so that p(x,β) > 0, for all
0≤ x ≤ 1.
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Table 5.1. Numerical results for K = 30, a= 1/5.

(x, t) E[U(x, t)] V[U(x, t)]

(1/10,1) 0.0022 0.0084× 10−3

(2/10,1) 0.0043 0.0327× 10−3

(3/10,1) 0.0063 0.0709× 10−3

(4/10,1) 0.0082 0.1195× 10−3

(5/10,1) 0.0099 0.1742× 10−3

(6/10,1) 0.0114 0.2299× 10−3

(7/10,1) 0.0126 0.2815× 10−3

(8/10,1) 0.0136 0.3240× 10−3

(9/10,1) 0.0142 0.3529× 10−3

Table 5.2. Numerical results for K = 40, a= 1/5.

(x, t) E[U(x, t)] V[U(x, t)]

(1/10,1) 0.0021 0.0080× 10−3

(2/10,1) 0.0042 0.0312× 10−3

(3/10,1) 0.0062 0.0676× 10−3

(4/10,1) 0.0080 0.1139× 10−3

(5/10,1) 0.0097 0.1659× 10−3

(6/10,1) 0.0111 0.2189× 10−3

(7/10,1) 0.0123 0.2677× 10−3

(8/10,1) 0.0132 0.3077× 10−3

(9/10,1) 0.0138 0.3347× 10−3

In Tables 5.1 and 5.2, we calculate the expectation and the variance of U(i, j) from
(4.11)–(4.13). The numerical integration of previous expressions is performed using
composite Simpson’s rule with 20 points. Note that for different values of K , the expecta-
tion E[U(i, j)] remains similar on the same point of the grid.
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Valencia 46022, Spain
E-mail address: lauvilal@doctor.upv.es

mailto:ljodar@imm.upv.es
mailto:jccortes@imm.upv.es
mailto:lauvilal@doctor.upv.es


THE IMMEDIATE DUALITY AS THE MOST SIMPLE SENSOR
FOR SOLVING SMOOTH MULTIDISCIPLINARY ELLIPTIC
PROBLEMS (DOMAIN VARIATION)

V. KAMINSKY

The paper deals with numerical methods for multidisciplinary optimization (MDO)
problems. Different traditional approaches for MDO problems on the base of Lagrange’s
multipliers (LM) have troubles with numerical calculation of the LM values in view of
nonlinear equations systems on each step of the recursion. The approach proposed in the
paper makes it possible to get these values almost “free of charge” on each step of the
recursion by more full use of the results of the problem linearization.

Copyright © 2006 V. Kaminsky. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

This paper has represented new approach in solving MDO problems which contain (1)
some boundary value problem (BVP) (as condition of the connection), (2) a convex ob-
ject functional, and (3) traditional constraints on all parameters (design variables -(DV))
and variables. Such problems are represented widely in design optimization [1, 2, 9, 14–
16], wherein the DV parameters can be present in differential operators, in the right part
of differential equations, in boundary conditions, and in description of the domain. A
kernel of the methods for MDO problems is usually the sensitivity analysis with respect
to the DV for succeeding recursion [2, 11, 16] (the so-called material derivatives). The
Main distinction between traditional and proposed approaches lies in the fact that we use
the linearization result more fully, applying for this purpose the pair of linear interrelated
problems: the primary (P-) problem and dual (D-) problem. Then the proposed tech-
nique of improvement of the quality criteria becomes simpler and more precise specifi-
cally in two situations: (a) the sensitivity matrix may be obtained semianalytically [10],
and (b) the description of DV variation is sufficiently simple (domain variation in BVP or
right part of differential equation variation in BVP, see please [1]) for elliptic operators.

2. Problem formulation

In what follows, the names of all the assumed conditions have been designed by the capi-
tal character Λ�

� with two indexes: (upper) for a number of the condition and (lower) for

Hindawi Publishing Corporation
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the condition object. Our main target in the paper is to show the essence of the proposed
approach, since we resorted to two self-restraints: (a) for all results described here espe-
cially, we take very “good” initial characteristics of spaces, sets, functions, operators, and
maps, (b) we give an outline of the proofs only.

2.1. The domain and differential operator. Let P = {p} ⊂ B be a convex compact (Λ(1)
(P))

in some Banach space B with a suitable norm ‖ · ‖B, let ω� ⊂ ω,ωp,⊂ ω0 ⊂ R(k), k = 2,3,

be bounded domains (Λ(1)
(ω)) with C2—Jordan boundaries γ�, γ, γp, γ0—of Lipschitz-1

property, that is, (Λ(2)
(ω)) where ω is a certain fixed domain and the strongly monotone

potential one-to-one map Π = Π(p) : (p,ω)⇐⇒ ωp, p ∈ P which conserves the given

BVP. LetΠ be a Lipschitz-1 smooth homeomorphism (Λ(1)
(Π)). The compact P and the map

Π generate three homeomorphic compacts: Ω̃p = {ωp}p∈P , Γ̃p = {γp}p∈P (the variation

object in our problem), and its isomorphic image Θ̃= {θp ∈W (1,2) : θp ⇔ γp}p∈P in the
space W (1,2).

Now consider an elliptic operator D = D(x, p) and a right part operator f̄ = f (x, p),
where u ∈ H defined on ωp is the so-called state vector or the solution of the corre-
sponding differential equation D(x, p)u= f̄ (x, p)u, wherein H is some Hilbert space (in

our case, the Sobolev space W (1,2)(ω0) with W (1,2)
0 —the closure of C∞0 (ω0) in W (1,2)).

From here on, we use the same symbol W (1,2) for all domains ω�, ω, ωp, ω0. The map

f̄ : (R(k)×Bp)→ R(1) is sufficiently smooth with respect to both arguments—(Λ(1)
( f̄ )) since

it is evident that u= u(x, p).

2.2. Boundary conditions of BVP. Boundary conditions are established by the bound-
ary operator G = G(p) : H → H′, where H′ is also Hilbert space, that is, Gu = g(x) for
x ∈ γp = γ′p ∪ γ′′p , where γ′p and γ′′p are relatively two open disjoint parts of the boundary
γp. The operator G can be defined on γ′p and γ′′p by different kinds of boundary condi-
tions.

2.3. Special case. The special case we are interested is as follows:D�=∑k
i, j=1(∂/∂xj )(ai j(x,

p)(∂/∂xi)�) + ai(x, p)∂xi� + a0(x, p) and f̄ (x, p) = f (x, p), where f is a scalar function.
Thus we consider the Dirichlet problem

D(x, p)u= f (x, p), (2.1)

where D is a uniform elliptic operator (Λ(1)
(D)). Besides, suppose that ai j ,ai,a0 ∈ C∞(ω0×

P), that is, the condition (Λ(1)
(a)) and inf(x,p)∈(ω0×P) a0(x, p) > 0 and { f ∈C(ω0×P×W (1,2))}

is the set of functions defined on ω0 and uniformly continuous on p ∈ P, that is, the con-

dition (Λ(1)
( f )).

The most interesting boundary conditions (for practical applications) are represented
by

G(p)u= nĀ(p)∇u+α(p)u= g(x, p), (2.2)
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where Ā ≡ 0 and α(p) ≡ 1 for x ∈ γ′p and otherwise for x ∈ γ′′p , n is the unit outward

normal to γ′′p , and g ∈ C(γ×P), that is, the condition (Λ(1)
(g)).

In applied optimization problems in parallel with integral constraints

E1(p,u)=
∫

ωp

b1(x,u, p)(dx)≤ e1, (2.3)

where E1 : (B×W (1,2))→ Rm, e1 ∈ R(m), and b1(x,u, p) is a convex Lipschitz-1 function

(Λ(1)
(b1)) on ω0 with respect to all arguments, pointwise state constraints are of frequent

occurrence (e.g., stress and displacements in all the points of the given domain):

E2(x,u)≤ e2(x), x ∈ ωp, or in special case,

ci
(
x,up

)≤ σ(x), i= 1;I , x ∈ ωp
(2.4)

(see, for instance, [3]), where E2 : (R(k)×W (1,2))→ R(s) and c(x,u) is a Lipschitz-1 vector-
function defined onω0, that is, (Λ(1)

(ci)) with components ci(x,u) i= 1;I—convex functions

on ω0, that is, (Λ(2)
(ci)). Thus the feasible set Θ for the problem is

Θ= {θp ∈ Θ̃⊂W (1,2) : such that (2.2), (2.3), (2.4) are fulfilled
}
. (2.5)

Now define the object function in the following way:

F(u)= F1(p)=
∫

ω∗
b0
(
x,u(p)

)
μ0(dx)−→ min

ω(p)∈Ω
=min

p∈P
=min

θp∈Θ
, (2.6)

where b0(x,u) is a convex Lipschitz-1 function (Λ(1)
(b0)) on ω0 as well. In what follows, the

problems (2.1)-(2.2) and (2.1)–(2.6) are specified by (Ψ) and (Φ) correspondingly.

Proposition 2.1 (existence of solutions in (Ψ) [4, page 9]). Suppose that the problem

(Ψ) has satisfied the following conditions enumerated in Sections 2.1, 2.2, 2.3: (Λ(1)
(ω)), (Λ(2)

(ω)),

(Λ(1)
(D)), (Λ(1)

(a)), (Λ(1)
( f )), and (Λ(1)

(g)) correspondingly on the domain ω, the operator D and its
elements, the right part f , and the boundary condition g. Then the problem (Ψ) has a unique
solution u∈W (1,2) =W (1,2)(ω).

Remark 2.2. Under conditions enumerated in Theorem 2.3, the statement limν→∞‖p(ν)−
p(ν+κ)‖B = 0 implies (a) limν→∞ rH(ωp(ν) ,ωp(ν+κ) )= 0, where rH is Hausdorf ’s distance, (b)
u(ν) ⇀ ū, and (c) limν→∞‖u(ν)− ū‖W (1,2) = 0, where κ is any integer positive number and
ū∈W (1,2).

Theorem 2.3 (existence of solutions (Φ)). Let the suppositions (Λ(1)
(P)), (Λ(1)

(Π)), (Λ(1)
(b0)),

(Λ(1)
(b1)), (Λ(1)

(ci)), (Λ(2)
(ci)) be valid under all conditions of Proposition 2.1. Then there exists the

solution of the problem (Φ).
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Proof. Without loss of generality, we have restricted ourselves to (1) the simplest case—
domain variation only and (2) setting ω(ν+1) ⊂ ω(ν) to prevent difficulties connected with

the functions definition domains f and g on the sequence {ω(ν)}(∞)
ν=1. We will study the

characteristics of F1(p), p ∈ P, instead of F(p,u). Let the sequence {ω(ν) = ωp(ν)}∞ν=1 be

such that (a) limν→∞ω(ν) = ω̈ (in sense of rΩ because of (Λ(1)
(P)), (Λ(1)

(Π))), and (b)
limν→∞F1(p(ν))= inf p∈P F1(p). Then for the corresponding sequence {u(ν) = u(p(ν))}∞ν=1,
we have u(ν) ⇀ ü by ν→∞, where ü ∈W (1,2) and p(ν) → p̈ ∈ P. Then limν→∞ inf F(u(ν),

p(ν)) = limν→∞ inf F1(p(ν)) ≥ F(ü, p̈) = F1( p̈). On the other hand, in view of Λ(1)
(P), Λ

(1)
(b0),

and Remark 2.2, there exists minimizing sequence {p(ν)}∞ν=1 such that limν→∞F1(p(ν))=
inf p∈P F1(p) since ü is the solution of the problem (Φ). �

3. Examples

Example 3.1 [6]. (Control of bar cross-section in elastic torsion conditions to maximize
torsional rigidity.) D(x, p)� ≡ −div(h(x)∇�), f (x, p,u) ≡ 1, G(x, p)u ≡ u(x), g(x) ≡ 0,
x ∈ γ, F(p,u)= (1/mes(ω))

∫
ω u(x)(dx), where ω is a ring with the controlled parameter

h(x).

Example 3.2 [8]. (The optimal shape of the cross-section of plasmas in axisymmetric toroids.)
D(x, p)� ≡ ��− (ν(x) · ∇�), f (x, p,u) ≡ f (x,u), G(x, p)u ≡ u(x), g(x) ≡ c = const,
x∈γ, F(u,ωp)=∫ωp

b0(x,u)(dx)=∫ωp
b0(x,u)(dω) subject to the integral constraint (2.3),

where b1(x,u, p)≡ h(x), e1 =M = const, where the vector function ν(x) and the function
h(x) are suitably defined.

Example 3.3 [5, 12]. (The optimal shape of the magnet poles both in medical MRI tomogra-
phy for diagnostics and MGD-plasm generators.)D(x, p)�≡��, f (x, p,u)≡ 0,G(x, p)u≡
u(x), g(x) ≡ 0, x ∈ γp, x ∈ γp = γ′p ∪ γ′′p , only the part γ′p of γp would be subject to
vary, F(u,ωp) = ∫ω∗(u(x)− u0)2(dx) subject to the pointwise state constraint (2.4) with
E2(x,u)≡ u(x) for x ∈ ωp, and e2(x)≡ constant, x ∈ ωp, u0 ≡ constant, x ∈ ωp.

Example 3.4 (see [13, page 201]). (Structural design of an elastic plate defined on the given
domain ω to minimize the total weight.) D(x, p)� ≡∇2∇2�, f (x, p,u) ≡ f (x, p), x ∈ ω
(external normal forces),G(x, p)u≡ u(x), g(x)≡ 0, x ∈ γ = γ′ ∪ γ′′ under pointwise state
constraints both on displacements (the operator E′2(x,u)= u(x)) and stresses (the oper-
ator E′′2 = σ(x) = σ(u(x))) for all x ∈ ω, where σ = Su and S is a linear bounded oper-
ator; here e′2(x) and e′′2 are some continuous function and number. The prime interest
here is connected with the minimal weight of the plate and hence F(x, p,u) ≡ F(p) =
∫
ω ρ(x)(dx)= ∫ω ρ(x)(dω), where ρ(·) is the density of the plate linearly connected with a

thickness h(x) of the plate.

4. Main idea of the approach

In the main, we are interested in the numerical aspect of the procedure since the main
idea of the approach has been outlined in finite dimensional spaces.

4.1. Bottleneck of LM-approach for nonlinear problems. As a rule the MDO problems
are nonlinear in one form or another. In this situation traditional methods in the MDO
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problems construct usually so called sensitivity matrices on the base of LM for the given
nonlinear problem (on the whole, the admissible set), but just as this takes place, nu-
merical procedure presents a real challenge to solving LM. At the same time, numerical
procedure used for linear systems makes it possible to obtain numerical values of LM
essentially “without payment”.

4.2. The pair of conjugated problems—a linear case. Let Rn and Rm be two finite di-
mensional spaces, let 〈·,·〉 be a scalar product, and let A : ξ → y = Aξ, ξ ∈ R(n), y ∈
R(m) be a linear operator. Introducing two admissible domains ω = {ξ ∈ R(n) : Aξ =≤
b, for ξ ≥ 0} and ω̃ = {y ∈ R(m) : A�y ≥ p, for y ≥ 0}, we consider two problems situ-
ated at duality: z(ξ) = 〈pξ〉 →maxω (the P-problem) and z̃(y) = 〈by〉 →minω̃ (the D-
problem), where ξ, p ∈ R(n), b, y ∈ R(m) and matrices A and A� are conjugated. Denote
ξ∗, y∗ and z∗ = z(ξ∗), z̃∗ = z̃(y∗), correspondingly, their optimal solutions and their
optimal values.

Theorem 4.1 (existence of solutions) (see [17, page 89]). Two linear problems (primary
and dual ones) either coincidentally possess optimal solutions x∗ and y∗ and then z(ξ∗)=
z̃(y∗) or the P- and D-problems are not solvable at the same time. In the first case, the
solving process finished for one of these problems has been finished also for another problem.
It is evident that z∗ = z∗(b, p) and z̃∗ = z̃∗(b, p) and then z∗ = z̃∗.

4.3. perturbation of the pair of conjugated dual problems. Suppose that one of two
dual problems has the solution, that is, ω �=∅ and there exists ξ0 ∈ ω such that |z∗| <∞
(or ω̃ �=∅ and |z̃∗| <∞), then the following theorem holds.

Theorem 4.2 (perturbation of the minimum) (see [7, page 41]). Under conditions and
suppositions enumerated in this section on the primary and dual problems,

∂z∗(b)
∂bi

= y∗i = y∗i (b),
∂z̃∗(p)
∂pj

= ξ∗j = ξ∗j (p), (4.1)

correspondingly for i= 1, . . . ,m and j = 1, . . . ,n.

5. Digitalization of the problem

Note that in what follows, the boundary points only are subjected to variation.

5.1. Approximation of space, its elements, and the BVP. The symbol ·̂ sets up a cor-
respondence between the same concepts of the initial problem and its digitalized fi-

nite dimensional analogies: Bp ⇒ B̂p = R(np), P ⇒ P̂ ⊂ R(np), f ⇒ f̂ , D ⇒ D̂, ωp ⇒ ω̂p,

Π(p)⇒ Π̂( p̂), u⇒ û∈ Ŵ (1,2) = R(nu), g ⇒ ĝ, γ⇒ ĝ, μ0⇒ μ̂0, Θ⇒ Θ̂⊂ R(nθ). Note that all
suppositions Λ�

� taken in the initial BVP have been conserved or enhanced in the digital-
ized BVP, that is, Λ̂�

� �Λ�
�, in particular, D̂, as a rule, is a positive and bounded operator;

since D̂−1 exists and it is a completely continuous operator. Let digitalization method
taken by us for the problem (Φ) be sufficiently regular, stable, and consistent in some
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sense—(Λ(1)
(dig))—in other words, conditions on the step of the mesh and approximation

of functions. Then we have û(x, p̂(ν))⇀ u(x, p) uniformly on x and F(û, p̂(ν))→ F(u, p)
by ν→∞ and p̂(ν) → p uniformly on u, for example, finite element method (FEM) and
finite differences method (FDM). In addition, we suppose that the domains ω0 and ωp

have been partitioned by the same strongly regular mesh depending on the digitalization
parameter δ. As a result, we obtain the polygonal sets ω̂0 and ω̂p ⊂ ωp.

5.2. The numerical solution of D̂û= f̂ . Here D̂ is a nondegenerate operator. Then û=
û(ξ)= ûp̂(ξ)=∑nθ

i=1 û
(i)( p̂)ξi, ξ ∈ R(nθ) (a digital analogy of the PDE solution (2.1)).

5.3. Approximation of the object functional. F̂(ξ, p̂)=∑nθ
i=1 b̂

(i)
0 (ξi, p̂)μ̂0

i is approximat-
ing the given object functional.

5.4. Approximation of the initial constraints. (a) To simplify consideration, we assume

thatm= 1 in (2.3). Then the integral constraint similar to (2.3) is
∑nθ

i=1 b̂
(i)
1 (ξi)≤ e1, where

b̂(i)
1 is a numerical result of the locally linearized function b1. (b) Pointwise state con-

straints similar to (2.4) are 〈ĉ( j)ξ〉 =∑nθ
i=1 ĉ ji(ξi)≤ π̂ j( p̂) for j = 1,K , where ĉ( j) is digitally

linearized vector-function c(·) and K is the number of the considered points inside ω̂p.

5.5. The digital analogy (Φ̂) = (Φ̂(ω̂p)) of the problem (Φ) = (Φωp). The set of feasi-

ble points in the problem (Φ̂) is denoted as Θ̂ = {ξ ∈ R(nθ) :
∑nθ

i=1 aji(ξi, p̂) ≤ pj , j =
1;M(δ)} combining [5.4a], [5.4b], and [5.5] to the same form with unified designations.
It is evident that Θ̂ = Θ̂( p̂,δ). Then we obtain the following digital optimization prob-

lem: (Φ̂) : ξ∗ = argminξ∈Θ̂{F̂(ξ) = F̂(ξ, p̂,δ) = ∑nθ
i β̂0i(ξi, p̂) : ξ ∈ Θ̂}, where the func-

tion F̂(ξ) is convex in view of Λ(1)
(b0). In this point, essence digitalization of all the ini-

tial problem has been completed. In Section 6.1, we define special additional constraints
to the problem (Φ̂) motivated by our algorithm. Let {ω(ν) = ω(p(ν),δ)}(∞)

ν=1 be such that
limν→∞ω(p(ν),δ)= ω∗(δ)∈Ωp and Θ̂(ν) and Θ̂∗(δ) are digital analogies for Θ(ν) and Θ∗.
Then the following theorem holds.

Theorem 5.1 (existence of solutions in (Φ̂)). Let under the conditions of Theorem 2.3

there exist the digital analogies of all suppositions of this theorem and the condition Λ(1)
(dig) is

valid. Then the problem (Φ̂) has the solution.

The theorem proof is similar to the proof of Theorem 2.3.

6. Algorithm

6.1. Control constraints-sensors. Fundamental role in the recursive process belongs
to the procedure of correction of the DV (parameters). The special linearized sensi-
tive constraints-sensors are in the heart of this procedure. These constraints have been
introduced into the considered problem with the controlled parameter ε̂1 > 0, that is,
−ε1 < p̂i − p̂(ν)

i < ε1 for i = 1,np, where ν is the recursion number. These constraints
have generated some sequence of the new admissible sets-sensors �̂(ν), ν = 0;∞ such
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that �̂(ν) ∩ �̂(ν+1) �= ∅ for all ν. Here the set �̂(ν)(δ) = �̂(ν) = {ξ ∈ R(nu) : |ξi − ξ̃(ν)
i | ≤

ε̂1, i = 1;nu} is sufficiently little in the Lebesgue’s measure L defined on Θ̂( p̂) ⊂ R(nu),
that is, L(�̂(ν))� L(ω̂(δ)) for little δ. The controlled parameter ε (or ε1) defines con-
ceptually the real step of recursion process and it can be big enough. Thus in parallel

with the macroproblems (Φ̂ω̂p), that is, F̂(ξ)=∑nu
i=1 β̂0i(ξi)→minξ∈ω̂, we consider the se-

quence of auxiliary microproblems connected with ν, that is, Φ�(ν) (δ) under constraints
[5.4a], [5.4b], [5.5], [6.1] unified to a standard form on the admissible set �(ν) with the
new object function (a local linearization of the function Φ̂(·) with respect to the cur-

rent center ξ̃(ν)) and a locally linearized constraints on the same center, that is, L̂(ν)(ξ)=
∑nθ

i=1 β̂
(ν)
0i ξi →minξ∈�(ν) , where �(ν) = �̂(ν) ∩ Θ̂, that is, �(ν) = {ξ ∈ R(nθ) :

∑nθ
i=1 aji( p̂)ξi ≤

pj , j = 1;M(δ), |ξi− ξ̃(ν)
i | ≤ ε̂1, i= 1,nu}, where ξ̃(ν) is a center of �(ν).

6.2. The digital auxiliary problem (Φ̂(ν))= (Φ̂�(ν) ) for recursion. We obtain the follow-

ing problem (Φ̂(ν)) : ξ∗ = argminξ∈�(ν){L̂(ξ; p̂)=∑nθ
i=1 β̂0i( p̂)ξi : ξ ∈ �(ν)}.

6.3. Construction of the algorithm. The following stages produce one step of the re-

cursion process generating some sequence of points {ξ̃(ν)}∞ν=0 ⊂ R̂(nθ) (centers of �(ν))

improving the object function value ξ̃(ν) = ξ(ν−1)∗, where ξ(ν)∗ is the solution of the P-
problem (Φ̂(ν−1)).

(a) Reconstruction of special subsidiary constraints-sensors around the point {ξ̃(ν)}
on every step of the recursive process; in other words, correction of all the constraints-
sensors by (4.1), in essence, the change-over from �(ν−1) to �(ν). It is clear from the con-
struction of �(ν) that �̂(ν−1)∩ �̂(ν) �=∅.

(b) Generation of pair linear programming (LP) P- and D-problems.
(c) Using special simplex procedure of LP to solve simultaneously the problem (Φ̂(ν))=

(Φ̂�(ν) ); in essence, two dual problems—the P-problems (in the space R̂(nθ)) and the cor-
responding D-problem (Theorem 4.1).

(d) Analysis of the LP-solutions obtained for the P- and D-problems in order to find the
location of the next set-sensor �(ν+1) (Theorem 4.2).

(e) Searching of the new point p̂(ν) ∈ R(np)—the new value of the parameter p̂ corre-
sponding to going from the point ξ(ν−1) to the next one ξ(ν). This stage is motivated by
the following local linearization all functions involved in the solution process.

(f) Linearization of the object function, constraints, and inclusions with respect to the
current center ξ(ν)( p̂) ∈ R̂(nθ) (the linearization has been corrected on every step of the
recursion).

(g) Checking of the (Φ̂�(ν) )-solution for the completion of the recursion process.
(h) Transition to one of the following stage: whole repetition of all stages of one recur-

sion or completion of the process.

Recall the analogies Λ̂(�)
(�) of the corresponding initial suppositions Λ(�)

(�) (the assump-

tions list Λ̂): Λ̂(1)
(P̂)

—P̂ is a convex compact, Λ̂(1)
(Π̂)

—Π̂ is a nondegenerate positive operator,

Λ̂(1)

( f̂ )
— f̂ is a smooth function, Λ̂(1)

(b̂0)
, Λ̂(1)

(b̂1)
, Λ̂(1)

(c) —the functions b̂0, b̂1, ĉ are smooth and

convex, Λ̂(1)
(D̂)

—D̂ is a nondegenerate operator, and Λ̂(1)
(ĝ)—ĝ is a continuous function.
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Theorem 6.1 (convergence). Suppose that the list of assumptions (Λ̂) presented above and

Λ(1)
(dig) are valid. Let the sequence {ξ̃(ν)}∞ν=1 of the centers of sets�(ν) be such that ξ̃(ν) = ξ(ν−1)∗,

where ξ(ν)∗ is the solution of the problem Φ̂(ν). Then

lim
ν→∞ F̂

(
ξ(ν), p̂(ν))= min

ξ∈Θ̂, p̂∈P̂
F̂(ξ, p̂)= min

ξ( p̂)∈Θ̂, p̂∈P̂
F̂1( p̂). (6.1)

Proof. (a) It follows from Λ(1)
(Π) and Λ(1)

(P) that Θ̃ is a convex compact. The characteristics

Λ(1)
(b1) and Λ(1)

(c) in the initial problem imply conservation of convexity of the admissible

set Θ (see (2.5)). There exists δ̂ > 0 such that additional conditions Λ̂(1)
(Π̂)

and Λ̂(1)
(P̂)

retain

convexity and compactness of Θ̂. Λ̂(1)
(b0) involves convexity of the object function F̂(·),

besides, Θ�=∅, whence it follows that Θ̂�=∅. Thus there exists ξ∗ = argminξ∈Θ̂ F̂(ξ).
(b) Taking ε̂1 > 0 sufficiently small, it can easily be shown that in view of the assump-

tions list (Λ̂), there exists the solution ξ(ν)∗ of each problem (Φ̂�(ν) ), besides, |F̂(ξ)−
L̂(ξ)| = O(ε̂2

1) (see Λ̂(1)
(D̂)

). On the sequence {ξ(ν)∗}∞ν=1, the function (·̂) decreases mono-

tonically. Assume that limν→∞ ξ(ν) = ξ∗∗ and ξ∗ �= ξ∗∗, besides F̂(ξ∗) < F̂(ξ∗∗). We came
to contradiction. In fact, on the one hand, the segment [ξ∗;ξ∗∗]⊂ Θ̂, on the other hand,
there exists the point ξ̇ ∈ [ξ∗;ξ∗∗] inside the set �̂(ν) such that F̂(ξ̇) < F̂(ξ∗∗). �
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ON NONLINEAR SCHRÖDINGER EQUATIONS INDUCED
FROM NEARLY BICHROMATIC WAVES

S. KANAGAWA, B. T. NOHARA, A. ARIMOTO, AND K. TCHIZAWA

We consider a bichromatic wave function ub(x, t) defined by the Fourier transformation
and show that it satisfies a kind of nonlinear Schrödinger equation under some conditions
for the spectrum function S(k) and the angular function ω(ξ,η).

Copyright © 2006 S. Kanagawa et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider a wave function defined by the following Fourier transformation:

um(x, t)=
∫∞

−∞
Sm(k)ei{kx−ω(k)t}dk, x ∈R, t ≥ 0, (1.1)

where i = √−1, k is a frequency number, Sm(k) is a spectrum function, and ω(k) is an
angular frequency. From the definition, we can see that um(x, t) is a mixture of some
waves with different frequencies on some bandwidth controlled by the spectrum function
Sm(k). When Sm(k) is a delta function δk0 (·) concentrated on a frequency k0, the wave
function um(x, t) is called the (purely) monochromatic wave u1(x, t), that is,

u1(x, t)=
∫∞

−∞
δk0 (k)ei{kx−ω(k)t}dk

= cos
{
k0x−ω(k)t

}
+ isin

{
k0x−ω(k)t

}
.

(1.2)

On the other hand, um(x, t) is called a nearly monochromatic wave function if Sm(k)
is a unimodal function with a small compact support. As to some application of nearly
monochromatic waves, see, for example [6]. In this paper, we focus on the envelope func-
tion defined by

Am(x, t)= um(x, t)
u1(x, t)

, (1.3)

Hindawi Publishing Corporation
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478 Nonlinear Schrödinger equations

and show that the envelope function Am(x, t) satisfies Schrödinger equation under some
conditions for the spectrum function Sm(k) and the angular function ω(k). Furthermore,
we deal with the cases when the spectrum function is a bimodal function Sb(k) with a
compact support which constructs a bichromatic wave function ub(x, t) and the angular
frequency is a two-dimensional function ω(k,·), respectively. In these cases, we show
that the envelope function satisfies a kind of nonlinear Schrödinger equation under some
conditions for the spectrum function and the angular function. As for the details of the
nearly monochromatic waves, see, for example, [6]. Further, for more applications of
nearly monochromatic waves and bichromatic waves, see [1–5].

2. Profile of nearly monochromatic waves

For analyzing the envelope function Am(x, t), we first introduce a profile of it which ap-
proximates Am(x, t) by the Taylor expansion of ω(k) or ω(k,·) in um(x, t).

Definition 2.1. Suppose that an angular function ω(k)∈ C∞ can be represented by

ω(k)=
∞∑

j=0

ω( j)
(
k0
)

j!

(
k− k0

) j
(2.1)

from the Taylor expansion. The nth-order profile of the envelope function of nearly
monochromatic wave is defined by

Ãnm(x, t)=
∫
KSm(k)exp

[
i
{
kx−∑n

j=0

(
ω( j)

(
k0
)
/ j!
)(
k− k0

) j
t
}]
dk

u1(x, t)
, (2.2)

where K is a compact support of Sm(k).

Theorem 2.2. The second-order profile

Ã2
m =

1
u1(x, t)

∫

K

(
k− k0

)2
S(k)ei{kx−

∑2
j=0(ω( j)(k0)/ j!)t}dk (2.3)

satisfies the linear Schrödinger equation

i

{
∂Ã2

m(x, t)
∂t

+ω′
(
k0
)∂Ã2

m(x, t)
∂x

}

+
1
2!
ω′′
(
k0
)∂2Ã2

m(x, t)
∂x2

= 0. (2.4)

Before proving the theorem, we show the following lemma. The proof of the lemma
can be obtained by a simple calculation and is omitted.

Lemma 2.3. Let α(x,k, t) = ei[(k−k0)x−{ω′(k0)(k−k0)+(1/2)ω′′(k0)(k−k0)2}]. Then α(x,k, t) satisfies
the equation

i
{
∂

∂t
α(x,k, t) +ω′

(
k0
) ∂

∂x
α(x,k, t)

}

+
1
2!
ω′′
(
k0
) ∂2

∂x2
α(x,k, t)= 0. (2.5)

Proof of Theorem 2.2. Since K is a compact support and S(k) and α(x,k, t) are bounded
and continuous, we can change the order of differentiation and integration. Hence, by
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Lemma 2.3, we have
∫

K
S(k)

[

i
{
∂

∂t
α(x,k, t) +ω′

(
k0
) ∂

∂x
α(x,k, t)

}

+
1
2!
ω′′
(
k0
) ∂2

∂x2
α(x,k, t)

]

dk

= i
{
∂

∂t

∫

K
S(k)α(x,k, t)dk+ω′

(
k0
) ∂

∂x

∫

K
S(k)α(x,k, t)dk

}

+
1
2!
ω′′
(
k0
) ∂2

∂x2

∫

K
S(k)α(x,k, t)dk

= i
{
∂Ã2

m(x, t)
∂t

+ω′
(
k0
)∂Ã2

m(x, t)
∂x

}

+
1
2!
ω′′
(
k0
)∂2Ã2

m(x, t)
∂x2

= 0.

(2.6)

�

3. Bichromatic waves and nearly bichromatic waves

Put S2(k)= (δk0 (k) + δk1 (k))/2 for some frequencies k0 and k1 with |k1− k0| = O(Δ) for
sufficiently small positive constant Δ. Then the (purely) bichromatic wave is defined by

u2(x, t)=
∫∞

−∞
S2(k)ei{kx−ω(k)t}dk = 1

2

[
ei{k0x−ω(k0)t} + ei{k1x−ω(k1)t}

]
. (3.1)

Furthermore, let Sb(k) be a bimodal and continuous spectrum function taking two lo-
cal maximal values at k = k0 and k = k1, respectively. Suppose that Sb(k) has a compact
support K whose length is |K| =O(Δ). Let ub(x, t) be a nearly bichromatic wave defined
by

ub(x, t)=
∫

K
Sb(k)ei{kx−ω(k)t}dk (3.2)

and let Ab(x, t) be the envelope function of ub(x, t) defined by

Ab(x, t)=

⎧
⎪⎪⎨

⎪⎪⎩

ub(x, t)
u2(x, t)

,
∣
∣
(
k1− k0

)
x
∣
∣�= nπ, n= 1,2, . . . ,

0, otherwise.
(3.3)

Furthermore Ãnb(x, t) is the nth-order profile of Ãb(x, t) defined by

Ãnb(x, t)=
∫
KSb(k)ei{kx−

∑n
j=0(ω( j)(k0)/ j!)(k−k0) j t}dk
ũn(x, t)

= 1
ũn(x, t)

∫

K
Sb(k)ei{kx−ωn(k)t}dk,

(3.4)

where

ũ2(x, t)= 1
2

[
ei{k0x−ωn(k0)t} + ei{k1x−ωn(k1)t}

]
,

ωn(k)=
n∑

j=0

ω( j)
(
k0
)

j!
.

(3.5)



480 Nonlinear Schrödinger equations

Theorem 3.1. The second-order profile of the envelope function of nearly bichromatic waves

Ã2
b =

1
ũ2(x, t)

∫

K
Sb(k)ei{kx−ω2(k)t}dk (3.6)

satisfies the Ginzburg-Landau-type equation

∂Ã2
b(x, t)
∂t

+
{

ω′
(
k0
)

+
(
k1− k0

)
ω′′
(
k0
) eig(x,t)

1 + eig(x,t)

}
∂Ã2

b(x, t)
∂x

= i

2!
ω′′
(
k0
)∂2Ã2

b(x, t)
∂x2

,

(3.7)

where

g(x, t)= (k1− k0
)
x−

{
(
k1− k0

)
ω′
(
k0
)

+
1
2!

(
k1− k0

)2
ω′′
(
k0
)
}

t. (3.8)

For the proof of the theorem, we show the next lemma.

Lemma 3.2. Since Sb is a bounded continuous spectrum function with a compact support K ,

1
ũ1

∫

K

(
k− k0

)
Sb(k)ei{kx−ω2(k)t}dk

=− i
2

∂Ã2
b

∂x

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
+

1
2
Ã2
b

(
k− k0

)
ei{(k−k0)x−(ω2(k)−ω(k0))t},

1
ũ1

∫

K

(
k− k0

)2
Sb(k)ei{kx−ω2(k)t}dk

=−1
2
∂2Ã2

b

∂x2

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
− ∂Ã2

b

∂x

(
k− k0

)
ei{(k−k0)x−(ω2(k)−ω2(k0))t}

+
1
2
Ã2
b

(
k− k0

)2
ei{(k−k0)x−(ω2(k)−ω2(k0))t}.

(3.9)

Proof. By changing the order of integration and differentiation, we obtain

1
2
∂

∂x

{
Ã2
b

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)}

= 1
2

∂Ã2
b

∂x

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
+

1
2
Ã2
b

∂

∂x

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)

= 1
2

∂Ã2
b

∂x

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
− i

2
Ã2
b

(
k− k0

)
ei{(k−k0)x−(ω2(k)−ω2(k0))t},

∂

∂x

{
1

ũ1(x, t)

∫

K
Sb(k)ei{kx−ω2(k)t}dk

}

=
∫

K
Sb(k)

∂

∂x
ei{(k−k0)x−(ω2(k)−ω2(k0))t}dk

=
∫

K
i
(
k− k0

)
Sb(k)ei{(k−k0)x−(ω2(k)−ω2(k0))t}dk.

(3.10)
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On the other hand, since

ũ2(x, t)= 1
2

(
ei{k0x−ω2(k0)t} + ei{k1x−ω2(k1)t}

)

= 1
2
ei{k0x−ω2(k0)t}

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)

= 1
2
ũ1(x, t)

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
,

(3.11)

we have

1
ũ1(x, t)

∫

K
Sb(k)ei{kx−ω2(k)t}dk = 1

2
Ã2
b

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
. (3.12)

By differentiation of the both sides of (3.12), we have from (3.10) that

1
ũ1

∫

K

(
k− k0

)
Sb(k)ei{kx−ω2(k)t}dk

=− i
2

∂Ã2
b

∂x

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
+

1
2
Ã2
b

(
k− k0

)
ei{(k−k0)x−(ω2(k)−ω(k0))t}.

(3.13)

The rest of the proof is similar to the above and is omitted. �

Proof of Theorem 3.1. Put ũ1(x, t)= ei{k0x−ω2(k0)t}. Since

ũ2(x, t)= 1
2
ũ1(x, t)

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
, (3.14)

we have

1
2
Ã2
b

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)

= 1
2

∫
KSb(k)ei{kx−ω2(k)t}dk

ũ2(x, t)

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)

=
∫
KSb(k)ei{kx−ω2(k)t}dk

ũ1(x, t)
.

(3.15)

Hence,

1
2
∂

∂t

{
Ã2
b

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)}

= 1
2
∂Ã2

b

∂t

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
+

1
2
Ã2
b

∂

∂t

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)

= 1
2

∂Ã2
b

∂t

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)
− i

2
Ã2
b

(
ω(k)−ω(k0

))
ei{(k−k0)x−(ω2(k)−ω2(k0))t}.

(3.16)
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Therefore, combining (3.9), (3.15), and (3.16), we have

1
2
∂Ã2

b

∂t

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)

= i

2
Ã2
b

(
ω
(
k1
)−ω(k0

))
ei{(k−k0)x−(ω2(k)−ω2(k0))t}

− i

ũ1

∫

K

(
ω2
(
k1
)−ω2

(
k0
))
Sb(k)ei{kx−ω2(k)t}dk

= i

2
Ã2
b

{

ω′
(
k0
)(
k1− k0

)
+

1
2!
ω′′
(
k0
)(
k1− k0

)2
}

ei{(k−k0)x−(ω2(k)−ω2(k0))t}

− i

ũ1

∫

K

{

ω′
(
k0
)(
k1− k0

)
+

1
2!
ω′′
(
k0
)(
k− k0

)2
}

Sb(k)ei{kx−ω2(k)t}dk

= i

2
Ã2
b

{

ω′
(
k0
)(
k1− k0

)
+

1
2!
ω′′
(
k0
)(
k1− k0

)2
}

ei{(k−k0)x−(ω2(k)−ω2(k0))t}

− iω′(k0
)
∫

K

(
k1− k0

)
Sb(k)ei{(k−k0)x−(ω2(k)−ω2(k0))t}dk

− i

2
ω′′
(
k0
)
∫

K

(
k1− k0

)2
Sb(k)ei{(k−k0)x−(ω2(k)−ω2(k0))t}dk

= i

2
Ã2
b

{

ω′
(
k0
)(
k1− k0

)
+

1
2!
ω′′
(
k0
)(
k1− k0

)2
}

ei{(k−k0)x−(ω2(k)−ω2(k0))t}

− iω′(k0
)
[

− i

2

∂Ã2
b

∂x

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)

+
1
2
Ã2
b

(
k1− k0

)
ei{(k−k0)x−(ω2(k)−ω(k0))t}

]

− i

2
ω′′
(
k0
)
[

− 1
2
∂2Ã2

b

∂x2

(
1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}

)

− ∂Ã2
b

∂x

(
k− k0

)
ei{(k−k0)x−(ω2(k)−ω2(k0))t}

]

− i

2
ω′′
(
k0
)
Ã2
b

(
k1− k0

)2
ei{(k−k0)x−(ω2(k)−ω2(k0))t}

= ∂Ã2
b

∂x

{

− 1
2
ω′
(
k0
)(

1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}
)

− 1
2
ω′′
(
k0
)(
k1− k0

)
ei{(k−k0)x−(ω2(k)−ω2(k0))t}

}

+
i

4
∂Ã2

b

∂x
ω′′
(
k0
)(

1 + ei{(k−k0)x−(ω2(k)−ω2(k0))t}
)
.

(3.17)
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Hence, we obtain

∂Ã2
b

∂t
= ∂Ã2

b

∂x

{−ω′(k0
)−ω′′(k0

)(
k1− k0

)}
+
i

2

∂Ã2
b

∂x
ω′′
(
k0
)
, (3.18)

which implies (3.7) and concludes the proof of the theorem. �

Applying Theorems 2.2 and 3.1, we can show a kind of integral-type wave equation in
the following sections.

4. Nearly monochromatic waves with ω(ξ,η)

We next consider the wave equation given by

ûm(x, t)=
∫

K
Sm(k)ei{kx−ω(k,|Âm(x,t)|)t}dk, (4.1)

where ω(ξ,η) is a two-dimensional angular frequency function and

Âm(x, t)= ûm(x, t)
u1(x, t)

(4.2)

is the envelope function of ûm(x, t). Since the above equation is a kind of an integral
equation and it is difficult to obtain its exact solution, we give a relation between the
integral equation and nonlinear Schrödiger equation to investigate the solution.

Theorem 4.1. Assume the following conditions hold:
(1) Δ > 0 is small enough;
(2) all partial derivatives of ω(ξ,η) less than third degree are uniformly bounded in a

neighborhood of (k0,0);
(3) Sm(k) is bounded and its bound is independent of the following.
Then for 0≤ t ≤ ConstΔ, as Δ→ 0,

i

{
∂Âm(x, t)

∂t
+ωξ

(
k0,0)

∂Âm(x, t)
∂x

}

+
1
2!
ωξξ

(
k0
)∂2Âm(x, t)

∂x2

−ωη
(
k0,0

)∣
∣Âm(x, t)

∣
∣2
Âm(x, t)=O(Δ4).

(4.3)

5. Nearly bichromatic waves with ω(ξ,η)

We next consider the wave equation

ûb(x, t)=
∫

K
Sb(k)ei{kx−ω(k,|Âb(x,t)|)t}dk, (5.1)
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where Âb(x, t) is the envelope function of ûb(x, t) defined by

Âb(x, t)= ûb(x, t)
u2(x, t)

. (5.2)

Similarly to Âm(x, t), the above wave equation means an integral equation and it is diffi-
cult to obtain the exact solution. From the next theorem, we can see the exact equation
as the solution of nonlinear Schrödinger equation.

Theorem 5.1. Suppose all assumptions of Theorem 4.1 hold. If |k1− k0| = O(Δ2), then
Âb(x, t) satisfies the same nonlinear Schrödinger equation in Theorem 4.1,

i

{
∂Âb(x, t)

∂t
+ωξ

(
k0,0

)∂Âb(x, t)
∂x

}

+
1
2!
ωξξ

(
k0
)∂2Âb(x, t)

∂x2

−ωη
(
k0,0

)∣
∣Âb(x, t)

∣
∣2
Âb(x, t)=O(Δ4),

(5.3)

for 0≤ t ≤ ConstΔ, as Δ→ 0.

Theorem 5.2. Suppose all assumptions of Theorem 4.1 hold. If |k1− k0| = O(Δ), then
Âb(x, t) satisfies the following nonlinear Schrödinger equation:

i
{
∂Âb(x, t)

∂t
+
(

ωξ
(
k0,0

)
+

1
2
ωξξ

(
k0,0

)∣
∣k1− k0

∣
∣
)
∂Âb(x, t)

∂x

}

+
1
2!
ωξξ

(
k0
)∂2Âb(x, t)

∂x2
−ωη

(
k0,0

)∣
∣Âb(x, t)

∣
∣2
Âb(x, t)=O(Δ4),

(5.4)

for 0≤ t ≤ ConstΔ, as Δ→ 0.
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VOLTERRA INTEGRAL EQUATION METHOD FOR
THE RADIAL SCHRÖDINGER EQUATION

SHEON-YOUNG KANG

A new Volterra-type method extended from an integral equation method by Gonzales
et al. for the numerical solution of the radial Schrödinger equation is investigated. The
method, carried out in configuration space, is based on the conversion of differential
equations into a system of integral equations together with the application of a spectral-
type Clenshaw-Curtis quadrature. Through numerical examples, the Volterra-type inte-
gral equation method is shown to be superior to finite difference methods.

Copyright © 2006 Sheon-Young Kang. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

This paper extends the integral equation method for solving a single channel one-dimen-
sional Schrödinger equation presented by Gonzales et al. [6] to the Volterra-type method.
The advantage of using the Volterra-type rather than non-Volterra type integral equation
is the reduced complexity. The usual disadvantage of integral equation method is that
the associated matrices are not sparse, making the numerical method computationally
“expensive,” in contrast to differential techniques, which lead to sparse matrices. In the
method presented here the “big” matrix is entirely lower triangular, and hence the so-
lution for the coefficients A and B required to get the solution of (1.1) can be set up as
simple recursion, which is more efficient and requires less memory. The Volterra method
is thus preferred, especially in the case of large scale systems of coupled equations.

The radial Schrödinger equation is one of the most common equations in mathemat-
ical physics. Its solution gives the probability amplitude of finding a particle moving in a
force field. In the case of the radial Schrödinger equation which models the quantum me-
chanical interaction between particles represented by spherical symmetric potentials, the
corresponding three-dimensional partial differential equation can be reduced to a family
of boundary value problems for ordinary differential equation,

[

− d2

dr2
+
l(l+ 1)
r2

+ V̄(r)
]

Rl(r)= k2Rl(r), 0 < r <∞, (1.1)

Rl(0)= 0. (1.2)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 487–500



488 Volterra integral equation method

Here l is the angular momentum number, k is the wave number, V̄(r) is the given po-
tential, and Rl(r) is the partial radial wave function to be determined, corresponding to
l. Assume here that V̄ is continuous on (0,∞) and has the following behavior at the end
points: it tends to zero as fast or faster than 1/r2, as r →∞, and as r → 0 it does not grow
faster than 1/r. Most of the physically meaningful potentials except the Coulomb poten-
tial satisfy these conditions. However, the Coulomb potential also can be handled by the
method described here. Under these conditions on V̄(r), the initial value problem (1.1)
has a unique bounded solution on (0,∞) (see [4]), satisfying asymptotic condition

lim
r→∞

(

Rl(r)− sin
(

kr− lπ

2

)

−ωei(kr−lπ/2)
)

= 0, (1.3)

where ω is an unknown constant uniquely determined by the problem, together with the
solution Rl(r). A more detailed description of the Schrödinger equation and its reduction
to a family of ordinary differential equation can be found in [12, 14]. The Volterra-type
integral equation transformed from (1.1) is as follows:

φT(r) +
1
k

cos(kr)
∫ r

0
sin(kr′)V(r′)φT(r′)dr′ − 1

k
sin(kr)

∫ r

0
cos(kr′)V(r′)φT(r′)dr′

=
[

1− 1
k

∫ T

0
cos(kr′)V(r′)φT(r′)dr′

]

sin(kr)= αsin(kr),

(1.4)

where α = 1− (1/k)
∫ T

0 cos(kr′)V(r′)φT(r′)dr′, and V(r) = V̄(r) + l(l+ 1)/r2. As is ex-
plained in detail later in the text, the solution φT(r) of (1.4) differs from the solution
Rl(r) of the boundary value problem (1.1) by constant multiple which can be calculated
numerically without any difficulty from the asymptotic condition (1.3) for a sufficiently
large T . The kernel of the integral equation is obtained from Green’s functions multiplied
by the potential V(r). The former is written in terms of simple sine and cosine functions
of the wave number k times radial distance r. The method can be described briefly as fol-
lows. The interval [0,T] is divided into m subintervals. The restricted integral equation
on each subintervals i (i= 1,2, . . . ,m) is solved to get two local solutions yi(r) and zi(r).
It is shown that the global solution φT(r) of (1.4) is a linear combination of the local
solutions for the r restricted to any subinterval i, namely,

φT(r)= A(i)yi(r) +B(i)zi(r), (1.5)

where A(i) and B(i) are constants yet to be determined. These unknown coefficients A(i)

and B(i) can be found by simple recursion. The local solutions yi(r) and zi(r) are cal-
culated at Chebyshev support points in the ith subinterval using Clenshaw-Curtis quad-
rature. The value of φT at T or any other point in [0,T] can be found using Chebyshev-
Fourier coefficients in any subinterval [bi−1,bi] and recursion formula of Chebyshev poly-
nomials as described in Section 4.
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In this paper the Numerov algorithm is chosen as a generic finite difference method
because it is easy to implement, often produces satisfactory solutions, and is a widely used
method, although there are more advanced finite difference methods such as the recently
developed exponentially fitted methods, see [15, 16] and references therein. The method
has its drawback common to all explicit finite difference methods, namely, round-off er-
ror accumulations cause to put a limit on acceptable step size. Therefore, if it is required
to have high accuracy, this method and other finite difference methods may not be appro-
priate. The Volterra-type integral equation method described here provides an alternative
method for the solution of radial Schrödinger equation which gives high accuracy at a cost
comparable to that of the Numerov method. The method is based on the transformation
of the boundary value problem (1.1) into Volterra-type integral equation which is then
discretized with the Clenshaw-Curtis quadrature [3]. Greengard [8] and Greengard and
Rokhlin [9] proposed this integral equation method. Gonzales et al. [6] then improved
and adapted the method to the specific features of the Schrödinger equation. The method
described in their paper is a superalgebraic-type numerical technique, provided that the
function being approximated is indefinitely differentiable. The author and Koltracht [11]
then introduced a new spectral-type numerical technique for Fredholm integral equa-
tions of the second kind whose kernel is either “discontinuous” or “not smooth” along
the main diagonal. This technique is shown to be applicable to the Schrödinger equation
with “nonsmooth potential” V(r,r′) such as Yukawa and Perey-Buck potentials. It is also
shown to be applicable to the case which models the nonlocalities corresponding to a
nucleon-nucleon interaction.

In Section 2 the integral equation and normalization constant formulation are pre-
sented. It is described in Section 3 that the global solution can be found as a linear com-
bination of local solutions of integral equations restricted to small subintervals of the
partition of the whole radial interval. The discretization techniques for local solutions
and interpolating technique for the numerical values at any point other than Chebyshev
points are presented in Section 4. In Section 5 the results of numerical experiments and
comparison with the results obtained via the Numerov method are shown.

2. Integral equation formulation

The radial Schrödinger equation with E > 0 to be solved is as follows:

[

− �2

2m
d2

dr2
+

�2l(l+ 1)
2mr2

+ ν(r)
]

Rl(r)= ERl(r), (2.1)

subject to the conditions (1.2) and (1.3). Here r is the radial distance of the particle of
mass m to the scattering center, E is the energy, l is the angular momentum number, ν is
the potential, and � is Planck’s constant divided by 2π. With k = √2mE/�, (2.1) can be
rewritten as

[
d2

dr2
+ k2

]

Rl(r)=V(r)Rl(r), (2.2)
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where V(r) = l(l + 1)/r2 + V̄(r) with V̄(r) = (2m/�2)ν(r). The following proposition
shows that the solution of integral equation is a constant multiple of the solution of the
differential equation.

Proposition 2.1. Let Rl(r) be the unique solution of (1.1)–(1.3), and let

Φ(r)= Rl(r)sin(kr) +
1
k

cos(kr)− 1
k

∫ r

0
cos(kr′)V(r′)Rl(r′)dr′. (2.3)

For a fixed 0 < T <∞,
(i) if Φ(T) �= 0, then the integral equation

φT(r) +
1
k

cos(kr)
∫ r

0
sin(kr′)V(r′)φT(r′)dr′ − 1

k
sin(kr)

∫ r

0
cos(kr′)φT(r′)dr′ = sin(kr)

(2.4)

has a unique solution

φT(r)= 1
Φ(T)

Rl(r); (2.5)

(ii) if Φ(T)= 0, then (2.4) has no solution, while the homogeneous equation

φT(r) +
1
k

cos(kr)
∫ r

0
sin(kr′)V(r′)φT(r′)dr′ − 1

k
sin(kr)

∫ r

0
cos(kr′)φT(r′)dr′ = 0

(2.6)

has a nontrivial solution. Each such solution is a constant multiple of Rl(r).

The detailed proof of Proposition 2.1 can be found in [10].
How small T can be taken so that the asymptotic constantω in (1.3) can be determined

to a given accuracy depends on the range of the potential ν(r). Since ν(r) decays faster
than 1/r2, there is no need to go to distances where 1/r2 is negligible. Indeed, if ν(r) is
negligible, then RL(r) satisfies the differential equation

[
d2

dr2
− l(l+ 1)

r2
+ k2

]

Rl(r)≈ 0, (2.7)

and therefore Rl(r) can be represented as a linear combination of the Riccati-Bessel func-
tions [1] which are two linearly independent solutions of (2.7),

Fl(r)= z jl(z)=
√
πz

2
Jl+1(z), Gl(r)=−zyl(z)=

√
πz

2
Yl+1(z), (2.8)

where z = kr. Since φT(r) is a constant multiple of Rl(r), it can be expressed as a linear
combination of Fl and Gl, for T sufficiently large and r ≈ T . Thus let

φT(r)= αFl(r) +βGl(r). (2.9)
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The constants α and β can be determined numerically as follows. Set T1 = T and T2 near
T and get

φ
(
T1
)= αFl

(
T1
)

+βGl
(
T1
)
, φ

(
T2
)= αFl

(
T2
)

+βGl
(
T2
)
. (2.10)

Therefore, α and β can be calculated solving

[
α
β

]

=
[
Fl
(
T1
)

Gl
(
T1
)

Fl
(
T2
)

Gl
(
T2
)

]−1[
φT
(
T1
)

φT
(
T2
)

]

. (2.11)

The values of Fl and Gl are readily available from the recursive relations of the type satis-
fied by Bessel functions. The value φT(r) for r = T1 or r = T2 can also be found using the
recursion satisfied by Chebyshev polynomials,

Tk+1(x)= 2xTk(x)−Tk−1(x), (2.12)

because φT(r) is obtained numerically as a linear combination of them. Given α and β,
one can find the normalization constant λ for which λφT(r) satisfies the condition (1.3).
Asymptotically, the Riccati-Bessel functions Fl(r) and GL(r) behave like sin(kr − lπ/2)
and cos(kr− lπ/2), respectively. Hence, from

λαsin
(

kr− lπ

2

)

+ λβcos
(

kr− lπ

2

)

∼ (1 + iω)sin
(

kr− lπ

2

)

+ωcos
(

kr− lπ

2

)

,

(2.13)

equations for λ and α are obtained: λα= 1 + iω and λβ = ω. Thus, λ= (α+ iβ)/(α2 + β2)
and ω = β(α+ iβ)/(α2 +β2).

3. Local solutions

Because of the structure of the kernel of the integral equation (1.4), the Clenshaw-Curtis
quadrature, which gives at no extra cost the whole antiderivative function, is for this
reason the most appropriate method for discretizing (1.4). In order to avoid working
with high-degree polynomials, the composite Clenshaw-Curtis quadrature is suggested
by Greengard and Rokhlin [9] by partitioning the interval [0,r] into sufficiently small
subintervals. Each partition will be denoted by the subscript, i, i= 1,2, . . . ,m.

Consider the family of the restricted integral equation in each partition, i,

yi(r) +
1
k

cos(kr)
∫ r

bi−1

sin(kr′)V(r′)yi(r′)dr′ − 1
k

sin(kr)
∫ r

bi−1

cos(kr′)V(r′)yi(r′)dr′

= sin(kr), bi−1 < r < bi,
(3.1)

zi(r) +
1
k

cos(kr)
∫ r

bi−1

sin(kr′)V(r′)zi(r′)dr′ − 1
k

sin(kr)
∫ r

bi−1

cos(kr′)V(r′)zi(r′)dr′

= cos(kr), bi−1 < r < bi,
(3.2)
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where b0 < b1 < ··· < bm−1 < bm = T is some partitioning of the interval [0,T]. For a suf-
ficiently small interval, these equations have unique solutions yi and zi. It is now observed
that the solution φT(r) of (2.4) on [bi−1,bi] is a linear combination of yi and zi. Indeed,
it follows from (2.4) that for bi−1 ≤ r ≤ bi,

φT(r) +
1
k

cos(kr)
∫ r

bi−1

sin(kr′)V(r′)φT(r′)dr′ − 1
k

sin(kr)
∫ r

bi−1

cos(kr′)V(r′)φT(r′)dr′

=
[

1 +
1
k

∫ bi−1

0
cos(kr′)V(r′)φT(r′)dr′

]

sin(kr)

+
[

− 1
k

∫ bi−1

0
sin(kr′)V(r′)φT(r′)dr′

]

cos(kr)

=A(i) sin(kr) +B(i) cos(kr),
(3.3)

where

A(i) = 1 +
1
k

∫ bi−1

0
cos(kr′)V(r′)φT(r′)dr′, (3.4)

B(i) =−1
k

∫ bi−1

0
sin(kr′)V(r′)φT(r′)dr′. (3.5)

It follows from (3.1) and (3.2) that the global solution, for r in the ith subinterval, is a
linear combination of the local solutions,

φT(r)=A(i)yi(r) +B(i)zi(r). (3.6)

Assuming that yi and zi are known, the coefficients A(i), B(i) are found from a simple re-
cursion, rather than solving a block-tridiagonal system of equations as in [6]. The proce-
dure to findA(i) and B(i) is as follows. Based on φT(r)= A( j)yj(r) +B( j)zj(r), on [bj−1,bj],
A(i) of (3.4) can be rewritten as

A(i) = 1 +
1
k

i−1∑

j=1

∫ bj

bj−1

cos(kr′)V(r′)φT(r′)dr′ = 1 +
i−1∑

j=1

[
A( j)(cy) j +B( j)(cz) j

]
, (3.7)

where

(cy) j = 1
k

∫ bj

bj−1

cos(kr′)V(r′)yj(r′)dr′, (cz) j = 1
k

∫ bj

bj−1

cos(kr′)V(r′)zj(r′)dr′.

(3.8)

Similarly, B(i) =−∑i−1
j=1[A( j)(sy) j +B( j)(sz) j] with

(sy) j = 1
k

∫ bj

bj−1

sin(kr′)V(r′)yj(r′)dr′, (sz) j = 1
k

∫ bj

bj−1

sin(kr′)V(r′)zj(r′)dr′.

(3.9)
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Note that A(1) = 1 and B(1) = 0, and for k = 2, . . . ,m,

A(k) = 1 +
[(
A(1)(cy)1 +B(1)(cz)1

)
+ ···+

(
A(k−1)(cy)k−1 +B(k−1)(cz)k−1

)]
, (3.10)

B(k) = [(A(1)(sy)1 +B(1)(sz)1
)

+ ···+
(
A(k−1)(sy)k−1 +B(k−1)(sz)k−1

)]
. (3.11)

The integral equation method for the Schrödinger equation proposed in [6] contains a
huge block-triangular linear system of equations requiring both time and memory to get
the coefficients A(i) and B(i). These difficulties are overcome by replacing the Fredholm
integral equation by Volterra integral equation which requires a simple recursion. Apart
from making the whole algorithm more efficient and accurate, it also simplifies substan-
tially the corresponding C++ code.

4. Discretization of local solutions

In this section the numerical technique to discretize the local equations (3.1) and (3.2) is
presented. It is based on the Clenshaw-Curtis quadrature which is well suited for com-
puting antiderivatives and hence for discretizing integrals presented in (3.1) and (3.2).
Before getting into discretizing the local equations, consider a more general equation

x(r) +
∫ r

a
f (r,r′)x(r′)dr′ +

∫ r

a
g(r,r′)x(r′)dr′ = y(r′), (4.1)

where x(r) ∈ C
p
[a,b] and y(r) ∈ C

q
[a,b], p,q > 1. Without loss of generality, assume that

a=−1, b = 1, and let

F(r)=
∫ r

−1
f (r,r′)x(r′)dr′, F̃(r,λ)=

∫ λ

−1
f (r,r′)x(r′)dr′, (4.2)

such that F(r)= F̃(r,r), and let

G(r)=
∫ r

−1
g(r,r′)x(r′)dr′, G̃(r,λ)=

∫ λ

−1
g(r,r′)x(r′)dr′. (4.3)

Further, assume that f (rk,r′)x(r′) can be expanded in a finite set of polynomials,
that is,

f
(
rk,r′

)
x(r′)=

n∑

i=0

αkiTi(r′), Ti(r)= cos
(
iarccos(r)

)
, i= 0,1, . . . ,n (4.4)

are the Chebyshev polynomials. Clenshaw and Curtis [3] showed that if

F̃
(
rk,λ

)=
n+1∑

j=0

βk jTj(λ), (4.5)
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then

[
βk0,βk1, . . . ,βkn+1

]T = SL
[
αk0,αk1, . . . ,αkn

]T
, (4.6)

where

SL =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 −1 1 ··· (−1)n

1 0

1

. . .

0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0

1 0 −1
2

1
4

0 −1
4

. . . 1
(2n− 1)

0 − 1
2(n− 1)

0
1

2n
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.7)

is the so-called left spectral integration matrix. Here [ν]T denotes the transpose of the
column vector ν. One can find the Chebyshev-Fourier coefficients, αk j , of f (rk,r′)x(r′)
as follows. Let τk, k = 0, . . . ,n, denote the zeros of Tn+1, viz., τk = cos(2k+ 1)π/2(n+ 1) so
that

Tj
(
τk
)= cos

(2k+ 1) jπ
2(n+ 1)

, k, j = 0, . . . ,n. (4.8)

Substituting r′ = τk, k = 0, . . . ,n, into (4.5), we obtain that

[
f
(
rk,τ0

)
x
(
τ0
)
, . . . , f

(
rk,τn

)
x
(
τn
)]T = C

[
αk0, . . . ,αkn

]T
, (4.9)

where C is a discrete cosine transform matrix whose elements are specified by Ck j =
Tj(τk), k, j = 0, . . . ,n. Note that CTC= diag(n,n/2, . . . ,n/2), and C−1 = diag(1/n,2/n, . . . ,
2/n)CT . Moreover, the matrix C (as well as CT and C−1) can be applied to a vector at
the cost of O(n logn) arithmetic operations. These and other properties of discrete cosine
transforms can be found in C (Golub and Van Loan [5]). Thus the vector

[
αk0,αk1, . . . ,αkn

]T = C−1 diag
(
f
(
rk,τ0

)
, f
(
rk,τ1

)
, . . . , f

(
rk,τn

))[
x
(
τ1
)
, . . . ,x

(
τn
)]T

(4.10)

can be written in terms of f (rk,τi) and x(τi), i = 0,1, . . . ,n. Substituting λ = τk, k =
0,1, . . . ,n, into (4.5), we obtain that

[
F̃
(
rk,τ0

)
, . . . , F̃

(
rk,τn

)]T = CSLC−1 diag
(
f
(
rk,τ0

)
, . . . , f

(
rk,τn

))[
x
(
τ0
)
, . . . ,x

(
τn
)]T

.
(4.11)
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The author wants to remark that in writing the equality sign in (4.6), βn+1 = 0 is assumed.
This is an acceptable assumption because in practical approximations the kernel f (r,r′)
and the right-hand side y(r′) are not polynomials and equality (4.4) is only approximate.
In fact, following Clenshaw and Curtis [3], we use the size of αn’s and βn’s, as a readily
available tool, to control the accuracy of approximation, and choose n large enough such
that αn’s and βn’s are less than a prescribed tolerance. Therefore setting βn+1 to zero does
not affect the overall accuracy. Since F(τk)= F̃(τk,τk), we get

F
(
τk
)= [0, . . . ,1, . . . ,0

]
CSLC−1 diag

(
f
(
τk,τ0

)
, . . . , f

(
τk,τn

))[
x
(
τ0
)
, . . . ,x

(
τn
)]T

= [wk0,wk1, . . . ,wkn
]

diag
(
x
(
τ0
)
, . . . ,x

(
τn
))[

f
(
τk,τ0

)
, . . . , f

(
τk,τn

)]T
,

(4.12)

where [wk0, . . . ,wkn] is the (k + 1)th row of the matrix W
def= CSLC−1. We need now the

following identity which can be verified by direct calculation.

Lemma 4.1. Let A and B be n × n matrices and c = [c1, . . . ,cn]T . Then (A ◦ B)c =
diag(Adiag(c1, . . . ,cn)BT), where A ◦B denotes the Schur product of A and B, (A ◦B)i j =
ai jbi j , i, j = 1, . . . ,n.

Using this lemma one can find that

[
F
(
τ0
)
, . . . ,F

(
τn
)]T = diag

(
Wdiag

(
x
(
τ0
)
, . . . ,x

(
τn
))

FT
)

= (W◦F)
[
x
(
τ0
)
, . . . ,x

(
τn
)]T

,
(4.13)

where F= ( f (τi,τj))ni, j=0. Similarly,

[
G
(
τ0
)
,G
(
τ1
)
, . . . ,G

(
τn
)]T = (W◦G)

[
x
(
τ0
)
, . . . ,x

(
τn
)]T

, (4.14)

where G = (g(τi,τj))ni, j=0. The formula (4.13) can be generalized for an interval [a,b]
other than [−1,1] by the linear change of variables, h(τ) = (1/2)(b− a)τ + (1/2)(a+ b).
Thus if ηj = h(τj), j = 0,1, . . . ,n, and with the notation Fa(r)=∫ ra f (r,r′)x(r′)dr′, Ga(r)=∫ r
a g(r,r′)x(r′)dr′, we have

[
Fa
(
η0
)
,Fa
(
η1
)
, . . . ,Fa

(
ηn
)]T = b− a

2
(W◦F)

[
x
(
η0
)
,x
(
η1
)
, . . . ,x

(
ηn
)]T

, (4.15)

[
Ga
(
η0
)
,Ga

(
η1
)
, . . . ,Ga

(
ηn
)]T = b− a

2
(W◦G)

[
x
(
η0
)
,x
(
η1
)
, . . . ,x

(
ηn
)]T

. (4.16)

Using (4.15) and (4.16) one can now discretize (4.1) as follows:

[

I +
b− a

2
W◦ (F + G)

]

x̄ = ȳ, (4.17)
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where I is the identity matrix of an appropriate size, x̄ = [x(η0), . . . ,x(ηn)]T , and ȳ =
[y(η0), . . . , y(ηn)]T . Using (4.17) one can now discretize the local equation (3.1) as

[

I +
bi− bi−1

2k
W◦ (F−G)

]

ȳi = s̄i, (4.18)

where

W= CSLC−1, F=
(

cos
(
kτ(i)

j

)
sin
(
kτ(i)

k

)
V
(
τ(i)
k

))n

j,k=0
,

s̄i =
[

sin
(
kτ(i)

0

)
, . . . , sin

(
kτ(i)

n

)]
, ȳi =

[
y
(
τ(i)

0

)
, . . . , y

(
τ(i)
n

)]
.

(4.19)

In the same way,

[

I +
bi− bi−1

2k
W◦ (F−G)

]

z̄i = c̄i, (4.20)

where G = (sin(kτ(i)
j )cos(kτ(i)

k )V(τ(i)
k ))nj,k=0. The solution of (4.18) and (4.20) can be

done using standard software, for example, Gaussian elimination with partial pivoting
at the cost of O(n3) arithmetic operations. The solutions ȳi and z̄i give the approximate
values to the local solutions yi(r) and zi(r) at the Chebyshev nodes in each of the subinter-
vals [bi−1,bi], i= 1, . . . ,m. We now estimate the accuracy of approximation of the integral
equation (4.1) with the linear system of (4.17). The following property of Chebyshev ex-
pansions can be derived along the lines of an argument by Gottlieb and Orszag [7, page
29].

Proposition 4.2. Let f ∈ Cr[−1,1], r > 1, and let

f (t)=
∞∑

j=0

αjTj(t), −1≤ t ≤ 1. (4.21)

Then

∣
∣αj

∣
∣≤ 2

π

∫ π

0

∣
∣
∣
∣
dr

dθr
f (cosθ)

∣
∣
∣
∣dθ

1
jr
= c

jr
,

∣
∣
∣
∣ f (t)−

n∑

j=0

αjTj(t)
∣
∣
∣
∣≤

c

r− 1
1

nr−1
.

(4.22)

It implies that if f (r) is analytic, then the convergence of Chebyshev expansions is su-
peralgebraic. Let now Fl(x)= ∫ x−1 f (t)dt. The following result can be found by Greengard
and Rokhlin [9].

Proposition 4.3. Suppose that f ∈ Cr[−1,1], r > 1, and that f̄ = ( f (τ0), . . . , f (τn))T , is the
vector of the function values at the roots of Tn+1(x). Suppose further that F̄l is defined by

F̄l =
(
Fl
(
τ0
)
, . . . ,Fl

(
τn
))T

. (4.23)
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Then

∥
∥F̄l −CSLC−1 f̄

∥
∥∞ =O

(
1

nr−1

)

. (4.24)

Furthermore, all elements of the matrix CSLC−1 are strictly positive.

Let now

F̄a =
(
Fa
(
η0
)
, . . . ,Fa

(
ηn
))T

. (4.25)

It follows from Proposition 4.3 that

∥
∥
∥
∥F̄a−

b− a
2

(W◦F)x̂
∥
∥
∥
∥
∞
=O

(
1

nr−1

)

. (4.26)

Theorem 4.4. Let x̄ be a solution vector of (4.17), and x̂ the vector of values of the solu-
tion x(t) at t = ηi, i = 0,1, . . . ,n. Suppose y(t) ∈ Cq

[a,b] and that (4.1) defines an invertible
operator on Cr[a,b], where r =min{p,q} > 1. Then,

∥
∥
∥
∥

(

I +
b− a

2
W◦ (F + G)

)
(

x̂− x̄
)
∥
∥
∥
∥
∞
=O

(
1

nr−1

)

. (4.27)

It follows from the collectively compact operator theory, see Anselone [2], that for
sufficiently large n the matrices I + ((b− a)/2)W ◦ (F−G), which depend on n, are in-
vertible and their inverses are uniformly bounded. Therefore Theorem 4.4 implies that,
for increasing n, the convergence of x̄ to x̂ is of order O(n1−r). The detailed discretization
technique for the inner products (3.8) and (3.9) can be obtained in [10]. The overall cost
of the computation is dominated by theO(n3m) cost of solving local equations (4.18) and
(4.20). The cost of solving local equations can be reduced by the use of parallel processors
since the calculation of ȳi and z̄i on each subinterval is independent. Using sparseness of
SL and the fast implementation of the discrete cosine transformation, one may also try to
reduce the cost of solving (4.18) and (4.20) by the use of iterative algorithms.

After coefficients A(i) and B(i) of linear combination of the local solutions are deter-
mined by the recursions (3.10) and (3.11), the value of φ(t) for t �= τk can be found as
follows. Applying C−1, one can find “Chebyshev-Fourier” coefficients of φ(t), [α0,α1, . . . ,
αn]T = C−1[φ(τ0),φ(τ1), . . . ,φ(τn)]T . Thus, φ(t) ∼=∑n

j=0αjTj(h(t)), bk ≤ t ≤ bk+1, where
h(t) = (2/(bk+1− bk))t − (bk − bk+1)/(bk+1− bk). The value of Tj(t) for t �= τk is found
now using the recursion satisfied by Chebyshev polynomials, Tj+1(t)= 2tTj(t)−Tj−1(t).

5. Numerical examples

In this section the author reports the numerical properties such as accuracy of the numer-
ical solution and stability of the algorithm of Volterra-type integral equation method. In
the examples presented in the section Volterra-type method is compared with a finite
difference method, so as to obtain a comparison of accuracy of both methods. The finite
difference method used is the Numerov algorithm [17], along with the more sophisti-
cated variable step-size method of Raptis and Cash [13], based on fourth-order Numerov
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Figure 5.1. Error comparison of the numerical calculation of a Ricatti-Bessel function.

and sixth order of their own for numerical comparisons. The author would like to em-
phasize once more that the purpose of the numerical experiments in this paper is mainly
to illustrate the new features characteristic to Volterra type opposed to Fredholm integral
equation method, rather than comparing the accuracy of numerical methods. He chooses
here the Numerov method as a generic finite difference method because it is easy to im-
plement, reliable, and widely used method, although he is now aware of more advanced
finite difference methods such as the recently developed exponentially fitted methods, see
[15, 16] and references therein. In order to compare the Volterra-type method’s accuracy
with finite difference methods, the author calculated the solution of the corresponding
differential equation (d2/dr2− l(l+ 1)/r2 + κ2)Rl(r)= 0. The comparison of the accuracy
of the numerical solution of the first case, l = 6, κ = 1 f m−1, and T = 50 f m is given in
Figure 5.1. The error is obtained by comparison with a Bessel function called through the
IMSL library. All computations were done on a DELL workstation with operating sys-
tem RedHat Linux 7.1 in double precision. The accuracy of Numerov’s method, which
is of O(h4) (see [17, page 540]), is shown by means of the hexagon in Figure 5.1. It is
clearly shown from the figure that the accuracy in Numerov’s method increases much
less quickly with the number of points than the Volterra-type method. The best accu-
racy in Numerov’s method of 2.3× 10−9 is reached for 12,800 points, which is 32 times
more than the number required by the Volterra-type method to reach its best accuracy
of 1.5× 10−14. The variable step-size method of Raptis and Cash is also compared with
the Volterra-type method. As expected, being a high-order variable step-size method, it
achieves better accuracy at fewer mesh points than the Numerov method but still is not
able to achieve the accuracy of the Volterra method.

Table 5.1 demonstrates the stability of the algorithm of the Volterra method with re-
spect to the change of T . Adopted number of uniform partitions is m= 25, the number
of points at each subinterval n = 16, angular momentum l = 6, and the wave number



Sheon-Young Kang 499

Table 5.1

T 48 49 50 51 52

Error 4.36e− 15 4.11e− 15 3.89e− 15 4.66e− 15 7.1e− 15

is κ = 1 f m−1. This result supports the insensitivity of the Volterra method to round off

errors. The accuracy of each of the local functions can be determined by the size of the
coefficients of the highest order Chebyshev polynomials, as recommended by Clenshaw
and Curtis [3]. One can use as a measure of the accuracy of the Volterra method the
magnitude of the last three Chebyshev expansion coefficients of the solution φ(r) in each
partition which is automatically obtained during the calculation. If the last three coeffi-
cients are sufficiently small, then the remaining coefficients may be considered negligible.
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NUMERICAL SOLUTION OF A TRANSMISSION LINE
PROBLEM OF ELECTRODYNAMICS IN A CLASS
OF DISCONTINUOUS FUNCTIONS

TURHAN KARAGULER AND MAHIR RASULOV

A special numerical method for the solution of first-order partial differential equation
which represents the transmission line problem in a class of discontinuous functions is
described. For this, first, an auxiliary problem having some advantages over the main
problem is introduced. Since the differentiable property of the solution of the auxiliary
problem is one order higher than the differentiability of the solution of the main problem,
the application of classical methods to the auxiliary problem can easily be performed.
Some economical algorithms are proposed for obtaining a numerical solution of the aux-
iliary problem, from which the numerical solution of the main problem can be obtained.
In order to show the effectiveness of the suggested algorithms, some comparisons between
the exact solution and the numerical solution are carried out.

Copyright © 2006 T. Karaguler and M. Rasulov. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. The Cauchy problem

It is known from the electromagnetic field and the circuit theories that the equations for
a current and potential in a transmission line have the following form [1, 3, 4]:

L
∂i(x, t)
∂t

+
∂v(x, t)
∂x

+Ri(x, t)= 0, (1.1)

C
∂v(x, t)
∂t

+
∂i(x, t)
∂x

+Gv(x, t)= 0. (1.2)

Here v(x, t) and i(x, t) are potential and current at any points x and t, R is resistance
per unit length, L is inductance per unit length, C is capacitance per unit length, and G is
conductance per unit length. These line parameters are taken constant since the medium
is assumed as linear and homogeneous.

The initial condition for (1.1), (1.2) are

i(x,0)= i0(x), (1.3)

v(x,0)= v0(x), (1.4)

where i0(x) and v0(x) are given as continuous or piecewise continuous functions.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 501–508



502 Numerical solution of transmission line problem

From the Biot-Savard law of electromagnetic theory, when a wire carrying a current
produces a magnetic field around it [1], if this magnetic field changes, the source of it,
which is the current, changes too. This results with a wave which travels through the wire.
This wave will be examined in the frame of transmission line problem.

Heaviside showed that if G/C = R/L equality exsists between the parameter of the
transmission line, then (1.1), (1.2) are reduced to the well-known second-order wave
equation such that

∂2u

∂t2
= a2 ∂

2u

∂x2
, (1.5)

where a= 1/
√
LC.

Using the general solution of (1.5) which is obtained from D’Alembert’s formula for
both unknown functions i(x, t) and v(x, t), we have (see, [2, 4])

v(x, t)= e−(R/L)t[φ(x− at) +ψ(x+ at)
]
, (1.6)

i(x, t)=
√
C

L
e−(R/L)t[φ(x− at)−ψ(x+ at)

]
. (1.7)

Here, the arbitrary functions ϕ(ξ) and ψ(ξ) are found from the initial conditions such as
v(x,0)= f (x) and i(x,0)= √(C/L)F(x).

When the transmission line is too long, which is the common case in practice, then the
following problem occurs. The functions F(x) and f (x) are definite in the (0, l) interval,
however, the solutions obtained with the formulas of (1.6) and (1.7) require values of
f (x) and F(x) functions for arbitrary x values. This will enforce the extension of f (x)
and F(x) functions beyond the interval of (0, l).

On the other hand, it is known from the literature that the solution of (1.5) has weak
discontinuity on the characteristics. This means that the solution is on the characteristics,
and continuously differentiable, but its first-order derivatives are piecewise continously
differentiable. This property prevents applying well-known numerical methods in the lit-
erature to the equation of type (1.5) such as the system of (1.1) and (1.2). Furthermore, if
the initial functions posses the singular points, the numerical methods mentioned above
fail even worst. The weak solutions of the problem of (1.1)–(1.4) are defined as follows.

Definition 1.1. The functions i(x, t), v(x, t) satisfying the initial conditions (1.3), (1.4) are
called the weak solutions of the problem (1.1)–(1.4) if for any test functions f (x, t) which
are equal to zero at the value t = T and at the boundary of the plane t+ | x |, the integral
relations

∫

DT

(
Li(x, t) ft + v(x, t) fx −Ri(x, t)

)
dxdt+L

∫ +∞

−∞
i0(x) f (x,0)dx = 0,

∫

DT

(
Cv(x, t) ft + i(x, t) fx −Gv(x, t)

)
dxdt+C

∫ +∞

−∞
v0(x) f (x,0)dx = 0

(1.8)

hold.

As seen from (1.8), i(x, t) and v(x, t) are not necessarily to be countinous.
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1.1. Auxiliary problem. As it is known, the derivatives of the solutions of (1.1), (1.2)
with respect to x and t are discontinuous on the characteristics of the equations. This
requires that the applied method to find the numerical solution must have high accuracy.
Because of this, in this paper, a new numerical method to obtain the weak solution of the
problem (1.1)–(1.4) in a class of discontinuous functions is suggested. For this aim, along
with the references [4–7], a special auxiliary problem, as below,

L
∂I(x, t)
∂t

+V(x, t) +RI(x, t)= 0, (1.9)

C
∂V(x, t)
∂t

+ I(x, t) +GV(x, t)= 0, (1.10)

I(x,0)= I0(x), (1.11)

V(x,0)=V0(x) (1.12)

is introduced. Here I0(x) and V0(x) are any continuously differentiable functions which
satisfy the equations of dI0(x)/dx = i0(x) and dV0(x)/dx = v0(x).

The auxiliary problem has the following advantages.
(1) When to employ the i(x, t) and v(x, t), no need to use their derivatives with respect

to x and t.
(2) The differentiability property of I(x, t), V(x, t) functions is one degree higher than

differentiability property of i(x, t) and v(x, t) functions.
One of the most significant advantages of the auxiliary problem is that the well-known

methods are applicable to it. Even on the basis of auxiliary problem, the higher-order
finite-differences scheme are allowed to develop.

Theorem 1.2. If I(x, t) and V(x, t) are the solutions of the problem (1.9)–(1.12), then the
functions i(x, t) and v(x, t) defined by

i(x, t)= ∂I(x, t)
∂x

, (1.13)

v(x, t)= ∂V(x, t)
∂x

(1.14)

expressions are the weak solutions of the problem (1.1)–(1.4) only in a sense of (1.8).

As it is obvious from (1.9), (1.10) that the equations are freed from the time and space
derivative terms of i(x, t) and v(x, t). Therefore the functions i(x, t) and v(x, t) can be
discontinuous too. This would make it possible to develop accurate and economical algo-
rithms for obtaining the solution which represent the physical properties of the problem.

2. Initial-boundary value problem for transmission line equation

As usual, we denote R+ = {(x, t), x > 0, t > 0}. In this section, by adding the following
boundary conditions, we will investigate the considered initial value problem:

i(0, t)= i1(t), (2.1)

v(0, t)= v1(t). (2.2)
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Here, i1 and v1 are known functions. In general, we assume that the functions ik and
vk (k = 1,2) can be discontinuous too. The weak solution of the problem is specified in
the following definition as follows.

Definition 2.1. The functions i(x, t) and v(x, t) satisfy the (1.3)-(1.4) initial, and the (2.1)
and (2.2) boundary conditions are called the weak solutions of the initial-boundary value
problem if for any test function f (x, t) satisfying f (x,T)= 0 and is equal to zero on the
boundary of the t+ x half-space, the integral relations

∫

Rt

(
Li(x, t) ft(x, t) + v(x, t) fx(x, t)−Ri(x, t)

)
dxdt

+L
∫∞

0
i0(x) f (x,0)dx+

∫ T

0
v1(t) f (0, t)dt = 0,

∫

Rt

(
Cv(x, t) ft(x, t) + i(x, t) fx(x, t)−Gv(x, t)

)
dxdt

+C
∫∞

0
v0(x) f (x,0)dx+

∫ T

0
i1(t) f (0, t)dt = 0

(2.3)

hold.

According to [5, 6], the auxiliary problem for the initial-boundary value problem
which is shown above can be written as

L
∂

∂t

∫ x

0
i(ξ, t)dξ + v(x, t) +R

∫ x

0
i(ξ, t)dξ = v(0, t), (2.4)

C
∂

∂t

∫ x

0
v(ξ, t)dξ + i(x, t) +G

∫ x

0
v(ξ, t)dξ = i(0, t). (2.5)

The initial conditions for the auxiliary equations (2.4), (2.5) will be the same as the
boundary conditions of the main problem (1.3)-(1.4).

3. Finite-differences schema and numerical experiments

In order to obtain the numerical solution of the problem (1.1)–(1.4), at first, we cover the
domain of definition of the definition of the solutions by the following grid as

ωh,τ =
{(
xi, tk

) | xi = ih; tk = kτ, i= 0,±1,±2, . . . ; k = 0,1,2, . . . ; h > 0, τ > 0
}
. (3.1)

Here, h and τ are the steps of the grid ωh,τ with respect to x and t variables, respectively.
Then the auxiliary problem (1.9)–(1.12) is approximated at any grid point (i,k),

Ii,k+1 = Ii,k − τ

L

(
vi,k +RIi,k

)
, (3.2)

Vi,k+1 =Vi,k − τ

C

(
ii,k +GVi,k

)
, (3.3)

Ii,0 = I0
(
xi
)
, (3.4)

Vi,0 =V0
(
xi
)
. (3.5)
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Here, Ii,k and Vi,k represent the approximate values of the functions I(x, t) and V(x, t)
at the point (i,k) of the wh,τ grid.

Theorem 3.1. If the mesh functions Ii,k and Vi,k are the numerical solutions of the auxiliary
problem (3.2)–(3.5), then

ii,k = Ix̄,

vi,k =Vx̄
(3.6)

are the numerical solutions of the main problem.

Equations (3.2), (3.3) suggest that the algorithm is very simple and economical. Fur-
thermore, on the basis of auxiliary equations (1.9), (1.10), higher-order finite-difference
schemes with respect to t can be developed.

In order to approximate the auxiliary equations (2.4), (2.5) by means of finite-differ-
ence method, the quadrature formula is applied to the

∫ x
0 φ(z)dz as

∫ x

0
φ(z)dz ≈ hΣij=1φ(zj). (3.7)

Considering (3.7), (2.4), and (2.5) can be approximated by means of finite difference
as

Ii,k+1 = ht
L

(
V1
(
tk
)−RIi,k −Vi,k

)−
i−1∑

j=0

(
I j,k+1− I j,k

)
+ Ii,k,

Vi,k+1 = ht
C

(
I1
(
tk
)− Ii,k −GVi,k

)−
i−1∑

j=0

(
Vj,k+1−Vj,k

)
+Vi,k.

(3.8)

In order to demonstrate the effectiveness of the suggested algorithm, firstly, we investi-
gate (1.5) with the initial conditions (1.3), (1.4). As initial functions, we have a piecewise
differentiable functions given as

f (x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < x1,

u1

x3− x1

(
x− x1

)
, x1 ≤ x ≤ x3,

u1

x3− x2

(
x− x2

)
, x3 ≤ x ≤ x2,

0, x > x2,

F(x)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x < x1,

c0, x1 ≤ x ≤ x2,

0, x > x2.

(3.9)

The numerical experiments have been carried out for the data x1 = −2.0, x2 = 2.0, x3 =
0.0, u1 = 1.0, c0 = 2.0.
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Figure 3.1. The graphs of the exact solution at T = 40 for (a) the case f (x) �= 0 and F(x)= 0; (b) the
case f (x)= 0 and F(x) �= 0.

In order to implement the auxiliary problem, at first the functions I0, V0 are obtained
as follows:

I0(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < x1,

A

(
x− x1

)3

6
, x1 ≤ x ≤ x3,

B

6

(
x− x2

)3
+
u1

2

(
x− x1

)
x+E, x3 ≤ x ≤ x2,

u1

2
x
(
x2− x1

)
, x > x2,

V1(x)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, x < x1,

c0

(
x− x1

)2

2
, x1 ≤ x ≤ x2,

c0x
(
x2− x1

)
+
c0

2

(
x2

1 − x2
2

)
, x > x2.

(3.10)

Here A= u1/(x3− x1), B = u1/(x3− x2), E = (B/6)x2
1 + x3(x2− x1)− x2

2.
In Figure 3.1, the solution of the Cauchy problem of (1.5) defined by the D’Alembert’s

formula is illustrated. Figure 3.2 shows the solution of the auxiliary problem having the
same initial data as the main problem.

As these graphs, Figures 3.1 and 3.2 illustrate that the solutions of the auxiliary and
main problems match very well. This clearly proves the usefulness of the auxiliary prob-
lem. The graphics of solutions obtained by the auxiliary problem are given in Figure 3.3.
Comparing the results shown in Figures 3.1(a) and 3.3(b), we observe that the numer-
ical solution obtained from the auxiliary problem is very much similar to the solutions
obtained from the classical methods.

The graphs of solutions of the problem (1.5) with the data f (x) = 2cosx, F(x) =
10cosx, R= 0.02, L= 2.5 · 105, C = 105, G= 0.2 are demonstrated in Figure 3.4.
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Figure 3.2. (a) The time evolution of the solution of the auxiliary problem; (b) the graph of u(x, t)=
∂2v(x, t)/∂x2, f (x) �= 0, F(x)= 0 at T = 40.
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Figure 3.3. The time evolution of the numerical solution obtained by using the auxiliary problem
f (x) �= 0, F(x)= 0. (a) Solution of the auxiliary problem; (b) the graph of Ui,k =Vxx̄ .

0 5 10 15

x

−2

−3

−1

1

3

5

v(
x,
t)

Data 1
Data 2

(a)

0 5 10 15

x

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

i(
x,
t)

Data 1
Data 2

(b)

Figure 3.4. The graphs of v(x, t) and i(x, t) solutions.
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4. Conclusion

Introduction of the auxiliary problem has several advantages over the main problem.
Firstly, the well-known numerical methods can easily be applied to the auxiliary problem.
Further, the auxiliary problem lets higher-order finite-differences schemes be used. This
leads to developing simple algorithms.
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INHOMOGENEOUS MAPS: THE BASIC THEOREMS
AND SOME APPLICATIONS

GEORGY P. KAREV

Nonlinear maps can possess various dynamical behaviors varying from stable steady
states and cycles to chaotic oscillations. Most models assume that individuals within a
given population are identical ignoring the fundamental role of variation. Here we de-
velop a theory of inhomogeneous maps and apply the general approach to modeling het-
erogeneous populations with discrete evolutionary time step. We show that the behavior
of the inhomogeneous maps may possess complex transition regimes, which depends
both on the mean and the variance of the initial parameter distribution. The examples of
inhomogeneous models are discussed.

Copyright © 2006 Georgy P. Karev. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Statement of the problem and basic theorem

Let us assume that a population consists of individuals, each of those is characterized by
its own parameter value a = (a1, . . . ,ak). These parameter values can take any particular
value from set A. Let nt(a) be the density of the population at the moment t. Then the
number of individuals having parameter values in set Ã⊆ A is given by Ñt =

∫
Ãnt(a)da,

and the total population size is Nt =
∫

Ant(a)da.
The theory of inhomogeneous models of populations with continuous time was de-

veloped earlier (see, e.g., [2, 3]). Here we study the inhomogeneous model of population
dynamics with discrete time of the form

nt+1(a)=W(Nt,a
)
nt(a), Nt =

∫

A
nt(a)da, (1.1)

where W ≥ 0 is the reproduction rate (fitness); we assume that the reproduction rate
depends on the specific parameter value a and the total size of the population Nt, but
does not depend on the particular densities nt.

Let us denote pt(a)= nt(a)/Nt the current probability density of the vector-parameter
a at the moment t. We have a probability space (A,Pt) where the probability Pt has the

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 509–517
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density pt(a), and model (1.1) defines a transformation of the initial probability den-
sity p0(a) with time. Below we show that problem (1.1) can be reduced to a nonau-
tonomous map on I ⊆ R1 under supposition that the reproduction rate has the form
W(N ,a)= f (a)g(N), so that the model takes the form

nt+1(a)= nt(a) f (a)g
(
Nt
)
, Nt =

∫

A
nt(a)da, (1.2)

for the given initial density n0(a).

Theorem 1.1. Let p0(a) be the density of the initial probability distribution of the vector-
parameter a for inhomogeneous map (1.2). Then

(i) the population size Nt satisfies the recurrence relation

Nt+1 = Et[ f ]Ntg
(
Nt
)
; (1.3)

(ii) the current mean of f can be computed by the formula

Et[ f ]= E0
[
f t+1

]

E0
[
f t
] ; (1.4)

(iii) the density of the current distribution is

pt(a)= p0(a) f t(a)
E0
[
f t
] . (1.5)

Proof. Rewriting the first equation in (1.2) as nt+1(a)/nt(a) = f (a)g(Nt), we obtain
nt(a)= n0(a) f t(a)Gt−1, where Gt = g(N0) · ··· · g(Nt). Then

Nt =
∫

A
nt(a)da=

∫

A
n0(a) f t(a)Gt−1da=N0E0

[
f t
]
Gt−1, (1.6)

where E0[ f k]= ∫A f k(a)p0(a)da. So one has pt(a)= nt(a)/Nt = p0(a)( f t(a)/E0[ f t]).
Integrating over a the equation nt+1(a)= f (a)pt(a)Ntg(Nt) impliesNt+1=Et[ f ]Ntg(Nt)

where Et[ f ]=∫A f (a)pt(a)da. Next,

Et[ f ]= 1
E0
[
f t
]

∫

A
f t+1(a)p0(a)da= E0

[
f t+1

]

E0
[
f t
] . (1.7)

�

2. Dynamics of the parameter distributions

The problem of the evolution of parameter distribution due to inhomogeneous model
(1.1) is of special interest. Formally, assertion (iii) of Theorem 1.1 contains complete de-
scription of pt(a). Roughly, the density pt(a) tends to 0 if f (a) < 1 and tends to ∞ if
f (a) > 1 at t→∞. The following proposition that immediately follows from Theorem 1.1
gives some additional useful relations.
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Proposition 2.1.

pt+1(a)= pt(a)
f (a)
Et[ f ]

;
pt(a1)
pt
(

a2
) = p0

(
a1
)

p0
(

a2
)

[
f
(

a1
)

f
(

a2
)

]t
. (2.1)

Corollary 2.2. If f (a1) < f (a2) and p0(a2) > 0, then pt(a1)/pt(a2)→ 0 at t→∞.

The density independent component of the reproduction rate f (a) can be consid-
ered as a random variable on the probability space (A,Pt). Let p f (t;x) be the probability
density function (pdf) of this random variable f (a); then Et[ f ] = ∫∞−∞ xp f (t;x)dx and
Vart[ f ]=Et[ f 2]−(Et[ f ])2=E0[ f t+2]/E0[ f t]− (E0[ f t+1]/E0[ f t])2 according to Theorem
1.1(ii).

Proposition 2.3. Et+1[ f ]= Et[ f 2]/Et[ f ], Et+1[ f ]/Et[ f ]= 1 + Vart[ f ]/(Et[ f ])2.

Corollary 2.4. ΔEt[ f ]=Vart[ f ]/Et[ f ].

Hence, Et+1[ f ] > Et[ f ] for all t and Et+1[ f ] = Et[ f ] if and only if Vart[ f ] = 0, that
is, if f (a) = const for almost all a over the probability Pt. Remark that this corollary is
a version of the Fisher fundamental theorem of natural selection within a framework of
model (1.2).

Next, let us explore the evolution of the distribution of f (a) in detail.

Theorem 2.5. Let the initial pdf of f (a) be
(1) Gamma-distribution with the parameters (s,k), that is,

p f (0;x)= skxk−1 exp[−xs]
Γ(k)

(2.2)

for x ≥ 0, where s, k are positive, Γ(k) is the Γ-function. Then

p f (t;x)= st+kxt+k−1 exp[−xs]
Γ(k+ t)

(2.3)

is again the Gamma-distribution with the parameters (s,k + t); its mean is Et[ f ] =
(k+ t)/s and variance Vart[ f ]= (k+ t)2/s2;

(2) exponential, that is, p f (0;x)= sexp[−xs], s≥ 0 is a parameter. Then

p f (t;x)= sexp[−xs](sx)t

t!
(2.4)

is the density of Gamma-distribution with the parameters (s,1 + t);
(3) Beta-distribution with positive parameters (α,β), that is to say, p f (0;x)= Γ(α+β)/

(Γ(α)Γ(β))xα−1(1− x)β−1, 0 < x < 1. Then

p f (t;x)= Γ(α+ t+β)
Γ(α+ t)Γ(β)

xα+t−1(1− x)β−1 (2.5)

is again the density of Beta-distribution with parameters (α+ t,β); its mean is Et[ f ]=
(α+ t)/(α+ t+β) and variance Vart[ f ]= (α+ t)β/[(α+ t+β)2(α+ t+β+ 1)];
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(4) hyper-exponential, that is, p f (0;x)=∑m
k=1αksk exp[−skx], x ≥ 0. Then

p f (t;x)= xt
∑m

k=1αksk exp
[− skx

]

(
t!
∑m

k=1αk/s
t
k

) ; (2.6)

(5) log-normal, that is, p f (0;x)= 1/(xσ
√

2π)exp{−(lnx−m)2/2σ2}, x > 0. Then

p f (t;x)= xt−1

σ
√

2π
exp

{

− (lnx−m)2

2σ2
− t2σ2

2
− tm

}

; (2.7)

(6) Pareto distribution with the parameters α, x0, that is, p f (0;x) = α/x0(x/x0)−α−1,
x > x0 > 0. Then

p f (t;x)= α− t
x0

(
x

x0

)−α−1+t

(2.8)

is again the Pareto distribution for t < α with the parameters α− t, x0;
(7) Veibull distribution with the parameters (k,s), that is, p f (0;x) = ksxk−1 exp[−sxk],

x > 0. Then

p f (t;x)= ks1+t/kxt+k−1 exp
[− sxk]

Γ(t/k+ 1)
; (2.9)

(8) uniform distribution in the interval [0,B]. Then

p f (t;x)= (t+ 1)xt

Bt+1
. (2.10)

Proof. (1) If p f (0;x) = skxk−1 exp[−xs]/Γ(k), then E0[ f t] = Γ(k + t)/(stΓ(k)). According
to formula (1.5), p f (t;x)= p f (0;x)xt/E0[ f t]= st+kxt+k−1 exp[−xs]/Γ(k + t), and p f (t;x)
is again the Gamma-distribution with the parameters (s,k+ t).

(2) If p f (0;x)= sexp[−xs], then E0[ f t]= t!/st. Hence,

p f (t;x)= p f (0;x)xt

E0
[
f t
] = sexp[−xs](sx)t

t!
. (2.11)

Remark that under fixed value of x the last formula defines (up to normalized constant
1/s) the Poissonian distribution over time instants with the parameter sx.

(3) If p f (0;x) = Γ(α+β)/(Γ(α)Γ(β))xα−1(1 − x)β−1, then E0[ f t] = Γ(α+ t)Γ(α+β)/
Γ(α)Γ(α+ t+β). Hence,

p f (t;x)= p f (0;x)xt

E0
[
f t
] = Γ(α+ t+β)

Γ(α+ t)Γ(β)
xα+t−1(1− x)β−1 (2.12)

is the Beta-distribution with the parameters (α+ t,β).
(4) If p f (0;x)=∑m

k=1αksk exp[−skx], then E0[ f t]= t!∑m
k=1αk/s

t
k. Hence,

p f (t;x)= xt
∑m

k=1αksk exp
[− skx

]

(
t!
∑m

k=1αk/s
t
k

) . (2.13)
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(5) If p f (0;x)= 1/(xσ
√

2π)exp{−(lnx−m)2/2σ2}, then E0[ f t]= exp{(t2σ2/2) + tm}.
Hence,

p f (t;x)= p f (0;x)xt

E0
[
f t
] = xt−1

σ
√

2π
exp

{

− (lnx−m)2

2σ2
− t2σ2

2
− tm

}

. (2.14)

(6) If p f (0;x)= α/x0(x/x0)−α−1, then E0[ f t]= α/(α− t)xt0 for t < α. Hence,

p f (t;x)= (α− t)
x0
(
x/x0

)−α−1+t . (2.15)

(7) If p f (0;x)= ksxk−1 exp[−sxk], then E0[ f t]= s−t/kΓ(t/k+ 1), hence

p f (t;x)= ks1+t/kxt+k−1 exp
[− sxk]

Γ(t/k+ 1)
. (2.16)

(8) If p f (0;x)= 1/B, then E0[ f t]= Bt/(t+ 1), hence

p f (t;x)= (t+ 1)xt

Bt+1
. (2.17)

�

Evolution of other initial distributions of the fitness can be explored similarly.

3. Examples

Example 3.1 (Malthusian model of the population growth). Inhomogeneous version of
the Malthusian model reads n(t + 1,a) = f (a)n(t,a). Even in this simplest case the dy-
namics of the mean fitness and the evolution of the fitness distribution over the individ-
uals dramatically depend on the initial distribution of the fitness. Let us consider some
important examples.

(A1) Let the initial pdf p f (0;x) of f (a) be the Gamma-distribution with the parameters
s, k. Then, according to Theorem 2.5, (1) p f (t;x) is again the Gamma-distribution
with the parameters s, k+ t; its mean is Et[ f ]= (k+ t)/s, Vart[ f ]= (k+ t)2/s2, and
Nt+1 = Et[ f ]Nt = (k+ t)/sNt. Hence in this case the mean fitness increases linearly
with time, while Nt =N0Γ(k+ t)/(stΓ(k)).

(A2) Let p f (0;x) be the Beta-distribution in interval [0,B]. Then Et[ f ]= B(α+ t)/(α+
t+β)∼= B. Next, Nt+1 = Et[ f ]Nt = B(α+ t)/(α+ t+β)Nt, so

Nt =N0B
t Γ(α+ t− 1)Γ(α+β)
Γ(α+β+ t− 1)Γ(α)

∼N0B
t Γ(α+β)

Γ(α)
t−β. (3.1)

Hence, the fate of a population dramatically depends on the value of B: if B ≤ 1, the
population goes extinct; if B > 1, the size of the population increases indefinitely.
In the case B = 1 the mean fitness tends to 1 and one could expect that the total
population size tends to a stable nonzero value in course of time, but actually the
population goes extinct with a power rate.

(A3) Let p f (0;x) be the uniform distribution in the interval [0,B]. Then E0[ f t] = Bt/
(t+ 1), hence Et[ f ]= B(t+ 1)/(t+ 2)∼= B, and Nt =N0Bt/(t+ 1).
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Similar to the previous example, the fate of the population depends on the value
of B: if B ≤ 1, the population goes extinct; if B > 1, the size of the population in-
creases indefinitely.

(A4) Let p f (0;x) be the log-normal distribution. Then Et[ f ] = exp{(σ2/2)(2t + 3) +
m}∼ exp{σ2t} and ΔEt[ f ]= exp{σ2t+ 3/2σ2 +m}(1− exp{−σ2}). The mean fit-
ness increases exponentially with time. Next, Nt+1 = Et[ f ]Nt = exp{(σ2/2)(2t +
3) +m}Nt, so

Nt =N0 exp
{

1
2
σ2(t2 + 2t

)
+mt

}

∼N0 exp
{

1
2
σ2t2

}

. (3.2)

Example 3.2 (Ricker’s model). The Ricker model is the map of the following form Nt+1 =
Ntλexp(−βNt), λ,β > 0 are parameters.

Consider the inhomogeneous version of this model with distributed parameter λ,

nt+1(a)= nt(a)F
(

a,Nt
)= nt(a)λ0 f (a)exp

(−βNt
)
, (3.3)

where λ0 is the scaling multiplier. Let the initial pdf of f (a), p f (0;x) be the Gamma-
distribution with the parameters (s,k). Then, according to Theorem 1.1, p f (t;x) is the
Gamma-distribution with parameters (s,k+ t), and Et[F]= λ0(k+ t)/sexp(−βNt). So,

Nt+1 = Ntλ0(k+ t)
s

exp
(−βNt

)
. (3.4)

The coefficient λ0(k+ t)/s, which determines the dynamics of the Ricker model, increases
indefinitely with time and hence after some time moment the population size begins to
oscillate with increasing amplitude (according to the theory of the plain Ricker’s model).
If the parameter λ0 is small and/or s is large, then the sequence {λ0(k + t)/s, t = 0,1, . . .}
takes the values close to all bifurcation values of the coefficient λ of the plain Ricker’s
model. A notable phenomenon thus follows: “almost complete” (with the step λ0/s) se-
quence of all possible bifurcations of the Ricker model is realized in frameworks of unique
inhomogeneous Ricker’s model, see Figure 3.1. The trajectory {Nt}0∞ in some sense mim-
ics the bifurcation diagram of the plain Ricker’s model. The model’s evolution does go
through different stages with the speed depending on λ0/s.

We can observe the similar phenomenon for any initial distribution of the parameter
with unbounded range of values of f (a). For example, if p f (0;x) is the log-normal distri-
bution, then corresponding version of inhomogeneous model readsNt+1 =Ntλ0 exp{(σ2/
2)(2t+ 3) +m−βNt}.

The model shows another behavior if the range of values of f (a) is bounded. It is clear
(see Corollary 2.2) that the final dynamics at t→∞ of models with any initial distribution
and bounded range of values of f (a) is determined by the maximal possible value of f (a).

Let, for example, p f (0;x) be the uniform distribution in the interval [0,1]. Then

Nt+1 = Ntλ0(t+ 1)
(t+ 2)

exp
(−βNt

)
. (3.5)
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Figure 3.1. The trajectory of the inhomogeneous Ricker’s model with Gamma-distributed parameter.
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Figure 3.2. The trajectory of the inhomogeneous Ricker’s model with Beta-distributed parameter,
λ0 = 14, α= 3, β = 20. The final dynamics of the model is 4-cycle.

If p f (0;x) is the Beta-distribution in [0,1] with the parameters (α,β), then, as it was
shown above, p f (t;x) is again the Beta-distribution with parameters (α+ t,β) and hence

Nt+1 = Ntλ0(t+α)
(t+α+β)

exp
(−βNt

)
. (3.6)

Choosing appropriate value of λ0, we will observe as the final dynamics behavior any
possible behavior of the model. Figure 3.2 illustrates this assertion.

Inhomogeneous versions of other well-known maps such as logistic, Skellam’s model,
and so forth can be explored the same way.

Example 3.3 (nonhomogeneous model of natural rotifer population). The mathemati-
cal model of zooplankton populations, extracted as deterministic dynamics components
from noisy ecological time series and studied systematically in [1], is of the form

Nt+1 =Nt exp
{

− a+
1
Nt
− γ

N2
t

}

. (3.7)
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Figure 3.3. The behavior of total population size Nt in model (3.8) with b = 0 and γ = 0.046.

Here a is the parameter characterizing the environment quality, and γ is the species-
specific parameter. Assuming that parameter a is distributed, we have the model in the
form (1.2) with f (a) = exp{−a}, and g(N) = exp{1/N − γ/N2}. Let us assume that the
initial distribution of a is a Gamma-distribution with parameters b, k, s, p0(a) =
(sk/Γ(k))(a− b)k−1 exp{−(a− b)s}. Then E0[ f t] = exp{−bt}sk/(s + t)k; from Theorem
1.1, the dynamics of the total population size is governed by the recurrence equation

Nt+1 =Nt exp{−b}
[

s+ t
s+ t+ 1

]k
exp

{
1
Nt
− γ

N2
t

}

. (3.8)

Possible dynamical behavior of the population is shown in Figure 3.3.
Figure 3.3 shows that the total size of the population on its way to a stable state can

experience dramatically different behavior with time from apparently chaotic oscillations
to oscillatory-like changes and then to smooth changes. The “moving in the opposite
direction” from the smooth changes to chaotic oscillations is also possible dependent on
the particular parameter distribution and the initial values of the parameter γ and the
population size.

The main peculiarity of the inhomogeneous model (3.8) compared to the homoge-
neous one, (3.7), is that the complex transition behavior can exist. The inhomogeneous
versions of model (3.7) are explored in detail in [4].

4. Discussion

We have shown that inhomogeneous maps possess some essential new dynamical behav-
iors comparing with their homogeneous counterparts. Nonhomogeneity of the popula-
tion together with the natural selection lead to changing of the structure of population
with time. As a result, typical trajectory of an inhomogeneous map mimics in some sense
the bifurcation diagram of the corresponding homogeneous map.
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It is well known that mathematical models constructed in the framework of nonlin-
ear maps can describe some surprising phenomena in behavior of biological populations
(see, e.g., [5]). Most models assume that individuals within a given population are iden-
tical; equivalently, these models operate with the mean value of the reproduction rate.
We have shown that modeling of inhomogeneous population dynamics on the basis of
only the mean value of the reproduction rate without taking into account its distribution
or at least variance is likely to be substantially incorrect. Indeed, even the dynamics of
simplest inhomogeneous maps of the Malthusian type with the same initial mean value
of the Malthusian parameter can be very different depending on the initial distribution
of the parameter (see Theorem 2.5 and Example 3.1).

The complex transition behaviors of inhomogeneous maps are the consequence of in-
terplay of two independent factors: heterogeneity of the population and density-depend-
ent regulatory mechanism. Let us emphasize that the evolution of the distribution of
the parameter (i.e., the behavior of frequencies of different type individuals) is regular
and completely described by Theorem 1.1. In many important cases (see Theorem 2.5)
the distribution of parameters is of the same “type” as the initial one (i.e., Gamma- or
Beta-distributions), but with changing in time parameters. Let us point out that all real
populations are inhomogeneous.
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We present and further develop the concept of a universal contingent claim introduced by
the author in 1995. This concept provides a unified framework for the analysis of a wide
class of financial derivatives. Those, for example, include Bermudan and American con-
tingent claims. We also show that the value of a universal contingent claim is determined,
generally speaking, by an impulsive semilinear evolution equation also introduced by the
author in 1995.
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and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We present and further develop the concept of a universal contingent claim introduced
by the author in [4, 5, 8, 9]. This concept provides a unified framework for the analysis of
a wide class of financial derivatives in a general market environment. Those, for example,
include Bermudan and American contingent claims. We also show that the value of a
universal contingent claim is determined, generally speaking, by an impulsive semilinear
evolution equation introduced by the author in [4–6, 8, 9].

2. Market environment

In this section we present the framework of a market environment in which contingent
claims are being priced that was introduced by the author in [4, 5, 8]. For the sake of
financial clarity, but without loss of generality, we only consider the case of a single un-
derlying security throughout the article. Consider an economy without transaction costs
in which trading is allowed at any time in a trading time set �, an arbitrary subset of the
real numbers R. Denote by st > 0 the unit price of the (only) underlying security at time t
in �. Whenever ambiguity is unlikely, we will write s in place of st. Denote by Π the vector
space of all real-valued functions on the set of positive real numbers R++. Equipped with
the partial order generated by the nonnegative cone Π+ consisting of all nonnegative real-
valued functions on R++, Π is a partially ordered vector space. Moreover, equipped with

Hindawi Publishing Corporation
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the lattice operations of supremum ∨ and infimum ∧ defined as pointwise maximum
and minimum, Π is a vector lattice.

Definition 2.1. A European contingent claim with inception time t, expiration time T (t
and T in � with t ≤ T), and payoff g in Π is a contract that gives the right, but not the
obligation, to receive the payoff g+(sT) and the obligation to deliver the payoff g−(sT)
at the expiration time T , where g+ and g− in Π+ are the nonnegative and nonpositive
parts of g in Π defined by g+ = g ∨ 0 and −g− = g ∧ 0, so that g = g+− g−. A European
contingent claim with payoff g in Π+ is called a European option.

For each t and T in � with t ≤ T , denote by V(t,T) the operator that maps the payoff

g of a European contingent claim with inception time t and expiration time T to its
value E(t,T ,g)= E(t,T ,g)(st) at inception time t as a function in Π of the price st of the
underlying security at this time t:

E(t,T ,g)=V(t,T)g. (2.1)

Definition 2.2. For each t and T in � with t ≤ T , the operator V(t,T) on Π is called
[4, 5, 8] a valuation or evolution operator.

It can be shown [4, 5, 8] that, by the no-arbitrage argument, V(t,T) is a linear operator
on Π that preserves the nonnegative cone Π+ in Π, that is, V(t,T) is a nonnegative linear
operator on Π. Moreover, V(t,T) is the identity operator on Π whenever t = T .

Definition 2.3. A market environment [4, 5, 8] is the family of evolution operators V =
{V(t,T) : Π→Π | t,T ∈�, t ≤ T} such that the following intervention or intertemporal
no-arbitrage condition holds V(t,T) = V(t,τ)V(τ,T) for each t, τ and T in � with t ≤
τ ≤ T .

A market environment V such that its trading time set � is an interval, either finite or
infinite, of nonnegative real numbers and its evolution operators V(t,T) are sufficiently
smooth functions of time, admits the following characterization introduced by the author
in [4, 5, 8].

Definition 2.4. The one-parameter family of linear operators L= {L(t) : Π→Π | t ∈�}
is said [4, 5, 8] to generate a market environment V if for each t and T in the trading time
set � with t ≤ T and for each admissible payoff vT in Π the function V(t,T)vT of t is a
solution, possibly generalized, of the Cauchy problem for the evolution equation:

d

dt
v+L(t)v = 0, t < T ,

v(T)= vT .
(2.2)

An operator L(t) in the family L is called a generator at time t, or simply a generator.

It is clear that according to the definition of the evolution operator V(t,T) in (2.1),
the Cauchy problem in (2.2) determines the value of a European contingent claim with
inception time t, expiration time T , and payoff vT .
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Following [4, 5, 8] we present an example of one of the major market environments,
the Black-Scholes market environment, that corresponds to the Black-Scholes model.

Definition 2.5. A market environment VBS = {VBS(t,T) : Π→Π | t,T ∈�, t ≤ T} gen-
erated by the family LBS = {LBS(t) : Π→ Π | t ∈�} with the generator LBS(t) at time t
defined by

LBS(t)= 1
2
σ2(s, t)s2

∂2

∂s2
+
(
r(s, t)−d(s, t)

)
s
∂

∂s
− r(s, t) (2.3)

is called a Black-Scholes market environment, where σ(s, t) is the volatility, r(s, t) is the
continuously compounded interest rate, and d(s, t) is the continuously compounded div-
idend yield in terms of the underlying security being a stock.

Further in the article we will need the values of European call and put options, Euro-
pean cash-or-nothing call and put options, and European asset-or-nothing call and put
options in the special case of the Black-Scholes market environment with σ(s, t), r(s, t),
and d(s, t) being independent of the price s of the underlying security. (For the derivation
of these values and related financial terminology see, e.g., [1, 10].)

The values CBSσ ,d,r(t,T ,st ,X) and PBSσ ,d,r(t,T ,st,X) of the European call and put options
with inception time t, expiration time T , and strike price X are given by the Black-Scholes
formulas:

CBSσ ,d,r

(
t,T ,st ,X

)= ste−d(T−t)N
(
d+
)−Xe−r(T−t)N(d−

)
,

PBSσ ,d,r

(
t,T ,st ,X

)= Xe−r(T−t)N(−d−
)− ste−d(T−t)N

(−d+
)
,

(2.4)

where

d± = ln(st/X) +
(
r−d± (1/2)σ2

)
(T − t)

σ
√
T − t , N(x)= 1√

2π

∫ x

−∞
e−y

2/2dy,

σ2 = 1
T − t

∫ T

t
σ2(τ)dτ, r = 1

T − t
∫ T

t
r(τ)dτ, d = 1

T − t
∫ T

t
d(τ)dτ.

(2.5)

The values CONCBS
σ ,d,r(t,T ,st ,X) and CONPBSσ ,d,r(t,T ,st,X) of the European cash-or-

nothing call and put options with inception time t, expiration time T , and strike price X
are given by

CONCBS
σ ,d,r

(
t,T ,st ,X

)= e−r(T−t)N(d−
)
,

CONPBSσ ,d,r

(
t,T ,st ,X

)= e−r(T−t)N(−d−
)
.

(2.6)

Finally, the values AONCBS
σ ,d,r(t,T ,st ,X) and AONPBSσ ,d,r(t,T ,st ,X) of the European

asset-or-nothing call and put options with inception time t, expiration time T , and strike
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price X are given by

AONCBS
σ ,d,r

(
t,T ,st ,X

)= ste−d(T−t)N
(
d+
)
,

AONPBSσ ,d,r

(
t,T ,st ,X

)= ste−d(T−t)N
(−d+

)
.

(2.7)

3. Bermudan and American contingent claims

In order to motivate the introduction of the concept of a universal claim, we first con-
sider the following practically important examples of Bermudan and American contin-
gent claims.

Assume that for t and T in the trading time set � with t ≤ T , the exercise time set
E = {ti : i= 0,1, . . . ,n} with t ≤ t0 < t1 ··· < tn−1 < tn = T is contained in �.

Definition 3.1. A Bermudan contingent claim [4, 5, 8] with inception time t, expiration
time T , exercise time set E, and (time-dependent) payoff g : E→Π is a contract that gives
the right, but not the obligation, to receive the payoff gτ(sτ) at any time τ in the exercise
time set E except for the expiration time T , and the right, but not the obligation, to receive
the payoff g+

T (sT) and the obligation to deliver the payoff g−T (sT) at the expiration time T .
A Bermudan contingent claim with payoff g : E→Π+ is called a Bermudan option.

For a Bermudan contingent claim with inception time t, expiration time T , exercise
time set E, and payoff g, denote by B(t,T ,E,g)=B(t,T ,E,g)(st), its value at the incep-
tion time t as a function in Π of the price st of the underlying security at this time t. It
can be shown [8] that in a market environment V the value B(t,T ,E,g) of a Bermudan
contingent claim is given by

B
(
t,T ,E,g

)=V
(
t, t0
)

Mgt0 V
(
t0, t1

)
Mgt1 V

(
t1, t2

)···Mgtn−1
V
(
tn−1,T

)
gT , (3.1)

where the nonlinear operator Mh : Π→Π, h in Π, is given by Mh f = h∨ f .
Now assume that for t and T in the trading time set � with t ≤ T , the interval [t,T] is

contained in �.

Definition 3.2. An American contingent claim [4, 5, 8] with inception time t, expiration
time T , and (time-dependent) payoff g : [t,T]→Π is a contract that gives the right, but
not the obligation, to receive the payoff gτ(sτ) at any time τ in [t,T] except for the expi-
ration time T , and the right, but not the obligation, to receive the payoff g+

T (sT) and the
obligation to deliver the payoff g−T (sT) at the expiration time T . An American contingent
claim with payoff g : [t,T]→Π+ is called an American option.

For an American contingent claim with inception time t, expiration time T , and payoff

g, denote by A(t,T ,g)=A(t,T ,g)(st) its value at the inception time t as a function of the
price st of the underlying security at this time t. Let the exercise time set E = {ti : i =
0,1, . . . ,n} be a net of the interval [t,T], that is, let t = t0 < t1 ··· < tn−1 < tn = T . Then it
can be shown [8] that in a market environment V the value A(t,T ,g) of the American
contingent claim can be viewed as a limit of the values B(t,T ,E,g|E) of the Bermudan
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contingent claims when the norm ‖E‖ =max{ti− ti−1 : i= 1, . . . ,n} of E as a net tends to
zero, where g|E : E→Π is the restriction of g : [t,T]→Π to the exercise time set E.

4. Universal contingent claims

We present the definition of a universal contingent claim introduced by the author in
[4, 5, 8, 9] and show that the value of a universal contingent claim is determined, generally
speaking, by an impulsive semilinear evolution equation introduced by the author in [4–
6, 8, 9].

Assume that for t and T in the trading time set � with t ≤ T , the activation time set
J = {ti : i= 0,1, . . . ,n} with t ≤ t0 < t1 ··· < tn−1 < tn < T is contained in �. Let O=O(Π)
be the set of all, not necessarily linear, operators on Π.

Definition 4.1. A discretely activated universal contingent claim [8, 9] with inception time
t, expiration time T , activation operator A : J →O, and payoff p in Π is a contract whose
value �(t,T ,A, p) in Π for a market environment V is given by

�(t,T ,A, p)=V
(
t, t0
)
A
(
t0
)

V
(
t0, t1

)
A
(
t1
)

V
(
t1, t2

)···A(tn
)

V
(
tn,T

)
p. (4.1)

Assume that for t and T in the trading time set � with t ≤ T , the interval [t,T] is
contained in �. Let n = {ti : i = 0,1, . . . ,n} with t = t0 < t1 < ··· < tn−1 < tn = T be a net
of the interval [t,T] with the norm ‖n‖ =max{ti − ti−1 : i = 1, . . . ,n}. Denote by Jn the
activation time set defined by Jn = n \T .

Definition 4.2. A continously activated universal contingent claim [8, 9] with inception
time t, expiration time T , activation operator A : [t,T)→O, and payoff p in Π is a con-
tract whose value �(t,T ,A, p) in Π for a market environment V is given by

�(t,T ,A, p)= lim
‖n‖→0

�
(
t,T ,A |Jn , p

)
, (4.2)

where �(t,T ,A |Jn , p) is the value of the discretely activated universal contingent claim
with inception time t, expiration time T , activation operator A |Jn , and payoff p with
A |Jn being the restriction of A : [t,T)→O to the activation time set Jn.

We comment that Bermudan and American contingent claims presented earlier in the
article are examples of a discretely and continously activated universal contingent claim.

It can be shown [4–6, 8, 9] that in a market environment V generated by the family
of linear operators L, the value �(t,T ,A, p) of a universal contingent claim is a solution,
possibly generalized, of the Cauchy problem for the following semilinear evolution equa-
tion:

d

dt
v+L(t)v+F(t,v)= 0, t < T ,

v(T)= p,
(4.3)
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where the nonlinear term F(t,v) is the Lie derivative

F(t,v)=−Ft(t,v) + Fv(t,v)
(
L(t)v

)
, (4.4)

of the payoff operator F : [t,T)→O defined by

A(τ)= I + F(τ), τ ∈ [t,T), (4.5)

with I being the identity operator on Π, and where the subscripts denote suitably in-
terpreted partial derivatives. We note that in the case of a discretely activated universal
contingent claim the equation in (4.3) is an impulsive semilinear evolution equation.

It can be shown [4–6, 8, 9] that the semilinear evolution equation for an American
contingent claim with inception time t, expiration time T , and payoff g introduced by
the author in [2–5, 8] is a special case of the preceeding semilinear evolution equation in
(4.3) with v(T)= gT and the nonlinear term F(t,v) in (4.4) of the form

F(t,v)(s)=
(

−
(
∂

∂t
gt +L(t)v

))+

(s)H
(
gt(s)− v(s)

)
, (4.6)

where gt is the value in Π at time t of the payoff g : [t,T]→Π, and H(x) is the Heaviside
function, that is, H(x)= 1 for x ≥ 0 and H(x)= 0 for x < 0. In the Black-Scholes market
environment, since the generators LBS(t) in (2.3) are local operators, the nonlinear term
in (4.6) in the semilinear evolution equation for American contingent claims takes the
following form [2–5, 8]:

F(t,v)(s)=
(

−
(
∂

∂t
gt +LBS(t)gt

))+

(s)H
(
gt(s)− v(s)

)
. (4.7)

For example, in the special case of American call and put options with inception time t,
expiration time T , and strike price X , the nonlinear term in (4.7) is of the form [2–5, 8]:

Fcall(t,v)(s)= (d(s, t)s− r(s, t)X)+
H
(
(s−X)+− v(s)

)
,

Fput(t,v)(s)= (r(s, t)X −d(s, t)s
)+
H
(
(X − s)+− v(s)

)
,

(4.8)

with vcall(T ,sT)= (sT −X)+ and vput(T ,sT)= (X − sT)+, where x+ =max{x,0}. The non-
linear terms in (4.8) can also be represented [2–5, 8] in terms of the optimal exercise
boundaries sc(t) and sp(t) for American call and put options as follows:

Fcall(t,v)(s)= (d(s, t)s− r(s, t)X)+
H
(
s− sc(t)

)
,

Fput(t,v)(s)= (r(s, t)X −d(s, t)s
)+
H
(
sp(t)− s).

(4.9)
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We comment that the nonlinear term F(t,v) in the semilinear evolution equation in
(4.3) can be financially interpreted [2–6, 8, 9] as a cash flow that should be paid or re-
ceived during the life of a universal contingent claim. For example, the nonlinear term
F(t,v) of the form (4.6) in the semilinear evolution equation in (4.3) in the special case
of American contingent claims can be financially interpreted [2–5, 8] as a cash flow that
should be received to compensate for the losses due to holding an American contingent
claim unexercised in the exercise region.

We also comment that the semilinear evolution equation for universal contingent
claims in (4.3) can be represented [4–6, 8, 9] as the following integral equation:

v(t)=V(t,T)p+
∫ T

t
V(t,τ)F

(
τ,v(τ)

)
dτ, t ≤ T. (4.10)

In view of the relationship in (2.1) the proceeding integral equation in (4.10) can be
financially interpreted [4–6, 8, 9] as a representation of the value �(t,T ,A, p) of a uni-
versal contingent claim with inception time t, expiration time T , activation operator A,
and payoff p as the sum of two summands. The first summand is the value V(t,T)p
of the European contingent claim with inception time t, expiration time T , and pay-
off p, and the second summand is value

∫ T
t V(t,τ)F(τ,v(τ))dτ at time t of the cash flow

F(τ,v(τ)) with t ≤ τ ≤ T . Moreover, in view of the proceeding integral equation in (4.10),
a universal contingent claim with the value �(t,T ,A, p) can be financially interpreted
as a portfolio that consists of long positions on the European contingent claim with
the value V(t,T)p and the continuous strip of European contingent claims with values
V(t,τ)F(τ,v(τ)), t ≤ τ ≤ T . This allows for the static replication in a general market en-
vironment of universal contingent claims by portfolios of European contingent claims.
This also allows for the dynamic replication in a general market environment of univer-
sal contingent claims viewed as portfolios of European contingent claims, provided that
these European contingent claims can be dynamically replicated.

For example, the proceeding integral equation in (4.10) with F(t,v) of the form (4.6),
that is, in the special case of American contingent claims, can be financially interpreted
[4, 5, 8] as the early exercise premium representation of the value A(t,T ,g) of an American
contingent claim with inception time t, expiration time T , and payoff g as the sum of two
summands. The first summand is the value V(t,T)gT of the European contingent claim
with inception time t, expiration time T , and payoff gT , and the second summand is the

early exercise premium
∫ T
t V(t,τ)F(τ,v(τ))dτ. Moreover, in view of the proceeding inte-

gral equation in (4.10) with F(t,v) of the form (4.6), an American contingent claim with
the value A(t,T ,g) can be financially interpreted [4, 5, 8] as a portfolio that consists of
long positions on the European contingent claim with the value V(t,T)gT and the contin-
uous strip of European contingent claims with values V(t,τ)F(τ,v(τ)), t ≤ τ ≤ T . This al-
lows [4, 5, 8] for the static replication in a general market environment of American con-
tingent claims by portfolio of European contingent claims. This also allows [4, 5, 8] for
the dynamic replication in a general market environment of American contingent claims
viewed as portfolios of European contingent claims, provided that these European con-
tingent claims can be dynamically replicated. For example, in the special case of American
call and put options in the Black-Scholes market environment with price-independent
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σ(s, t), r(s, t), and d(s, t), the proceeding integral equation in (4.10) with F(t,v) of the
form (4.8) and hence (4.9) can be represented [4, 5, 8] with the help of (2.4)–(2.7) as

�BS
σ ,d,r

(
t,T ,st ,X

)

= CBSσ ,d,r

(
t,T ,st ,X

)

+
∫ T

t

(
d(τ)AONCBS

σ ,d,r

(
t,τ,st,sc(τ)

)− r(τ)XCONCBS
σ ,d,r

(
t,τ,st ,sc(τ)

))
dτ,

�BS
σ ,d,r

(
t,T ,st ,X

)

= PBSσ ,d,r

(
t,T ,st ,X

)

+
∫ T

t

(
r(τ)XCONPBSσ ,d,r

(
t,τ,st ,sp(τ)

)−d(τ)AONPBSσ ,d,r

(
t,τ,st ,sp(τ)

))
dτ,

(4.11)

where �BS
σ ,d,r(t,T ,st ,X) and �BS

σ ,d,r(t,T ,st ,X) are the values of the American call and put
options with inception time t, expiration time T , and strike price X . Therefore, in view of
(4.11), the American call (put) option with the value �BS

σ ,d,r(t,T ,st ,X) (�BS
σ ,d,r(t,T ,st ,X))

can be financially interpreted [4, 5, 8] as a portfolio of a long position on the European
call (put) option with the value CBSσ ,d,r(t,T ,st ,X) (PBSσ ,d,r(t,T ,st ,X)), a long position on the
continuous strip of d(τ) units of the European asset-or-nothing call options with the
value AONCBS

σ ,d,r(t,τ,st ,sc(τ)) (r(τ)X units of the European cash-or-nothing put options
with the value CONPBSσ ,d,r(t,τ,st ,sp(τ))), and a short position on the continuous strip of
r(τ)X units of the European cash-or-nothing call options with the value CONCBS

σ ,d,r(t,τ,
st,sc(τ)) (d(τ) units of the European asset-or-nothing put options with the value
AONPBSσ ,d,r(t,τ,st ,sp(τ))), t ≤ τ ≤ T . We comment that an American call (put) option can
also be financially interpreted [4, 5, 8] as a portfolio of long positions on the European
call (put) option and a continuous strip of European gap call (put) options.

We note [4–9] that, in general, the successive approximations

vn+1(t)=V(t,T)p+
∫ T

t
V(t,τ)F

(
τ,vn(τ)

)
dτ, n= 0,1,2 . . . , (4.12)

do not converge to the exact solution v(t) of the integral equation in (4.10). However, for a
suitable initial approximation v0(t) such as the value V(t,T)p of the European contingent
claim with inception time t, expiration timeT and payoff p the successive approximations
in (4.12) can provide us [4–9] with relatively simple approximations as well as lower and
upper bounds for the exact solution v(t) of the integral equation in (4.10).

For example [4–9], in the special case of American call and put options in the Black-
Scholes market environment with price-independent σ(s, t), r(s, t), and d(s, t), if the ini-
tial approximations c0(t) = c0(t,st) and p0(t) = p0(t,st) are chosen as admissible subso-
lutions (supersolutions) of the integral equation in (4.10) with F(τ,v) of the form (4.8),
then the successive approximations cn(t)= cn(t,st) and pn(t)= pn(t,st) are subsolutions
(supersolutions) for even n and supersolutions (subsolutions) for odd n. Moreover, the
corresponding approximations s(n)

c (t) and s(n)
p (t) for the optimal exercise boundaries sc(t)
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and sp(t) obtained as solutions of the following equations:

cn
(
t,s(n)

c (t)
)
=
(
s(n)
c (t)−X

)+
, pn

(
t,s(n)

p (t)
)
=
(
X − s(n)

p (t)
)+

, (4.13)

are such that s(n)
c (t)≤ sc(t) and s(n)

p (t)≥ sp(t) (s(n)
c (t)≥ sc(t) and s(n)

p (t)≤ sp(t)) for even

n, and s(n)
c (t)≥ sc(t) and s(n)

p (t)≤ sp(t) (s(n)
c (t)≤ sc(t) and s(n)

p (t)≥ sp(t)) for odd n.

We note [4–9] that, given approximations s(n)
c (t) and s(n)

p (t) for the optimal exercise
boundaries, we can find approximations cn+1(t) and pn+1(t) for the values of the Amer-

ican call and put options by replacing sc(t) and sp(t) with max{s(n)
c (t),r(t)/d(t)X ,X}

and min{s(n)
p (t),r(t)/d(t)X ,X} in the right-hand sides of relationships (4.11), and find

s(n+1)
c (t) and s(n+1)

p (t) by solving (4.13), and so on. In this way, we can directly start with

suitable initial approximations s(0)
c (t) and s(0)

p (t) for the optimal exercise boundaries to

obtain the approximations cn(t), pn(t) and s(n)
c (t), s(n)

p (t) for n > 0. For example, if the

initial approximations s(0)
c (t) and s(0)

p (t) are such that s(0)
c (t) ≤ sc(t) and s(0)

p (t) ≥ sp(t)

(s(0)
c (t)≥ sc(t) and s(0)

p (t)≤ sp(t)), then the successive approximations cn(t) and pn(t) are
subsolutions (supersolutions) for even n and supersolutions (subsolutions) for odd n.
Moreover, the approximations s(n)

c (t) and s(n)
p (t) are such that s(n)

c (t)≤ sc(t) and s(n)
p (t)≥

sp(t) (s(n)
c (t) ≥ sc(t) and s(n)

p (t) ≤ sp(t)) for even n, and s(n)
c (t) ≥ sc(t) and s(n)

p (t) ≤ sp(t)

(s(n)
c (t)≤ sc(t) and s(n)

p (t)≥ sp(t)) for odd n.
Finally, we note [4–9] that, in general, the successive approximations

s(n,l+1)
c (t)= X + cn

(
t,s(n,l)

c (t)
)

, s(n,l+1)
p (t)= X − pn

(
t,s(n,l)

p (t)
)

, (4.14)

with l = 0,1,2 . . . , do not converge to the exact solutions s(n)
c (t) and s(n)

p (t) of the equa-
tions in (4.13). However, for suitable cn(t) and pn(t) and suitable initial approximations

s(n,0)
c (t) and s(n,0)

p (t) such as s(n−1)
c (t) and s(n−1)

p (t) for n > 0 and X for n= 0, the successive
approximations in (4.14) can provide us [4–9] with relatively simple approximations as

well as lower and upper bounds for the exact solutions s(n)
c (t) and s(n)

p (t) of the equations
in (4.13). For example, it can be shown [4–9] that for c0(t)= c0(t,st) and p0(t)= p0(t,st)
chosen as subsolutions CBSσ ,d,r(t,T ,st ,X) and PBSσ ,d,r(t,T ,st ,X), the values of the European

call and put options, the successive approximations s(0,l)
c (t) and s(0,l)

p (t) in (4.14) with

the initial approximations s(0,0)
c (t) = X and s(0,0)

p (t) = X converge to the exact solutions

s(0)
c (t) and s(0)

p (t) of the equations in (4.13) for n = 0. Moreover, s(0,1)
c (t) and s(0,1)

p (t) are
explicitely given by

s(0,1)
c (t)= X +CBSσ ,d,r(t,T ,X ,X), s(0,1)

p (t)= X −PBSσ ,d,r(t,T ,X ,X), (4.15)

and s(0,1)
c (t)≤ sc(t) and s(0,1)

p (t)≥ sp(t).
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ON NONLINEAR BOUNDARY VALUE PROBLEMS
FOR HIGHER-ORDER ORDINARY
DIFFERENTIAL EQUATIONS

I. KIGURADZE

Sufficient conditions are established for the solvability and unique solvability of nonlin-
ear boundary value problems of the type u(n) = f (t,u, . . . ,u(n−1)),

∑n
k=1(αik(u)u(k−1)(a) +

βik(u)u(k−1)(b)) = γi(u) (i = 1, . . . ,n), where f : [a,b]×Rn → R is a function from the
Carathéodory class, and αik,βik : Cn−1→R (i,k = 1, . . . ,n) are nonlinear continuous func-
tionals.

Copyright © 2006 I. Kiguradze. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Statement of the problem and formulation of the main results

We investigate the nonlinear differential equation

u(n) = f
(
t,u, . . . ,u(n−1)) (1.1)

with the nonlinear boundary conditions

n∑

k=1

(
αik(u)u(k−1)(a) +βik(u)u(k−1)(b)

)= γi(u) (i= 1, . . . ,n). (1.2)

Throughout the paper, we assume that −∞ < a < b < +∞, Cn−1 is the space of n− 1
times continuously differentiable functions u : [a,b]→R with the norm

‖u‖
Cn−1 =max

{ n∑

k=1

∣
∣u(k−1)(t)

∣
∣ : a≤ t ≤ b

}

, (1.3)

f : [a,b]×Rn→R is a function, satisfying the local Carathéodory conditions, αik : Cn−1→
R, βik : Cn−1 → R (i,k = 1, . . . ,n) are functionals, continuous, and bounded on every
bounded set of the space Cn−1, and γi : Cn−1→R (i= 1, . . . ,n) are continuous functionals
such that

sup
{∣
∣γi(v)

∣
∣ : v ∈ Cn−1} < +∞ (i= 1, . . . ,n). (1.4)

Hindawi Publishing Corporation
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By a solution of (1.1) we mean the function u ∈ Cn−1 having absolutely continuous
(n− 1)th derivative and almost everywhere on [a,b] satisfying (1.1).

A solution of (1.1) satisfying the conditions (1.2) is called a solution of the problem
(1.1), (1.2).

Set

νn
(
x1, . . . ,xn; y1, . . . , yn

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m∑

k=1

(−1)k
(
xn−k+1xk − yn−k+1yk

)
for n= 2m,

m∑

k=1

(−1)k
(
xn−k+1xk − yn−k+1yk

)− (−1)m

2

(
x2
m+1− y2

m+1

)
for n= 2m+ 1.

(1.5)

Below we will consider the case when there exist numbers j ∈ {1,2} and μ > 0 such that
for any xi ∈ R, yi ∈ R (i = 1, . . . ,n) and v ∈ Cn−1 the functionals αik, βik (i,k = 1, . . . ,n)
satisfy the inequalities

(−1)m+ jνn
(
x1, . . . ,xn, y1, . . . , yn

)≤ μ
n∑

k=1

(∣
∣xk

∣
∣+

∣
∣yk

∣
∣
) n∑

i=1

∣
∣
∣
∣
∣

n∑

k=1

(
αik(v)xk +βik(v)yk

)
∣
∣
∣
∣
∣
.

(1.6 j)

As for the function f , on the set [a,b]×Rn it satisfies the condition

p(t)h
(∣
∣x1

∣
∣
)− q(t)≤ (−1)m+ j f

(
t,x1, . . . ,xn

)
sgnx1 ≤ p∗

(
t,
∣
∣x1

∣
∣
)
, (1.7 j)

where p and q : [a,b]→ [0,+∞[ are integrable functions, h : [0,+∞[→ [0,+∞[ is a non-
decreasing function, and p∗ : [a,b]× [0,+∞[→ [0,+∞[ is an integrable in the first argu-
ment and nondecreasing in the second argument function. Moreover,

∫ b

a
p(t)dt > 0, lim

x→+∞h(x)= +∞. (1.8)

For n= 2m, the problems

αi(u)u(i−1)(a) +αm+i(u)u(n−i)(a)= γi(u),

βi(u)u(i−1)(b) +βm+i(u)u(n−i)(b)= γm+i(u) (i= 1, . . . ,m),
(1.9)

u(i−1)(a)= ηi(u)u(i−1)(b) + γi(u), u(n−i)(a)= u(n−i)(b)
ηi(u)

+ γm+i(u) (i= 1, . . . ,m)

(1.10)

are considered separately.
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For n= 2m+ 1, to the boundary conditions (1.9) (to the boundary conditions (1.10))
we add one of the following two conditions:

u(m)(a)= η(u)u(m)(b) + γn(u) (1.11 j)

or

u(m)(b)= η(u)u(m)(a) + γn(u). (1.112)

Here, αi : Cn−1 → R, βi : Cn−1 → R (i = 1, . . . ,2m), ηi : Cn−1 → R (i = 1, . . . ,m), and η :
Cn−1→R are continuous and bounded on every bounded set of the space Cn−1 function-
als such that

(−1)m+i+ jαi(v)αm+i(v)≥ 0, (−1)m+i+ jβi(v)βm+i(v)≤ 0,

inf
{∣
∣αi(v)

∣
∣+

∣
∣αm+i(v)

∣
∣ : v ∈ Cn−1} > 0,

inf
{∣
∣βi(v)

∣
∣+

∣
∣βm+i(v)

∣
∣ : v ∈ Cn−1} > 0 (i= 1, . . . ,m);

(1.12 j)

inf
{∣
∣ηi(v)

∣
∣ : v ∈ Cn−1} > 0 (i= 1, . . . ,m), (1.13)

∣
∣η(v)

∣
∣≤ 1 (1.14)

for any v ∈ Cn−1.
The class of boundary conditions under consideration involves the well-known

boundary conditions

u(i−1)(b)= u(i−1)(a) + ci (i= 1, . . . ,n), (1.15)

u(n−i)(b)= c1i (i= 1, . . . ,m+ j− 1), u(n−i)(a)= c2i (i= 1, . . . ,n−m− j + 1),
(1.16 j)

u(i−1)(a)= c1i (i= 1, . . . ,m+ j− 1), u(i−1)(b)= c2i (i= 1, . . . ,n−m− j + 1),
(1.17 j)

u(i−1)(b)= c1i (i= 1, . . . ,m+ j− 1), u(n−i)(a)= c2i (i= 1, . . . ,n−m− j + 1),
(1.18 j)

where ci, c1i, and c2i ∈R. A vast literature is devoted to the problems (1.1), (1.15); (1.1),
(1.16 j); (1.1), (1.17 j), and (1.1), (1.18 j) (see, e.g., [1–13, 15–20] and the references there-
in), but the problem (1.1), (1.2) in the general case remains still studied insufficiently.
The present paper is devoted to fill this gap.

Theorem 1.1. Let n = 2m, j = 1 (n = 2m+ 1, j ∈ {1,2}), and let the conditions (1.4),
(1.6 j), (1.7 j), and (1.8) be fulfilled. Then the problem (1.1), (1.2) has at least one solution.

Corollary 1.2. Let n = 2m, and let the conditions (1.4), (1.7 j), (1.8), and (1.12 j) (the
conditions (1.4), (1.7 j), (1.8), and (1.13)) be fulfilled. Then the problem (1.1), (1.9) (the
problem (1.1), (1.10)) has at least one solution.
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Corollary 1.3. Let n = 2m + 1, j ∈ {1,2}, and let the conditions (1.4), (1.7 j), (1.8),
(1.12 j), and (1.14) (the conditions (1.4), (1.7 j), (1.8), (1.13), and (1.14)) be fulfilled. Then
the problem (1.1), (1.9), (1.11 j) (the problem (1.1), (1.10), (1.11 j)) has at least one solution.

Corollary 1.4. Let n = 2m, j = 1 (n = 2m+ 1, j ∈ {1,2}) and let the conditions (1.7 j)
and (1.8) be fulfilled. Then every one of the problems (1.1), (1.15); (1.1), (1.16 j); (1.1),
(1.17 j), and (1.1), (1.18 j) has at least one solution.

We will now proceed to considering the case when the right part of (1.1) does not con-
tain intermediate derivatives, and the functionals αik, βik, γi, αi, βi, ηi, and η are constant,
that is, when (1.1) and the above-mentioned boundary conditions have, respectively, the
form

u(n) = f (t,u), (1.19)

n∑

k=1

(
αiku

(i−1)(a) +βiku(i−1)(b)
)= γi (i= 1, . . . ,n); (1.20)

αiu
(i−1)(a) +αm+iu

(n−i)(a)= γi, βiu
(i−1)(b) +βm+iu

(n−i)(b)= γm+i (i= 1, . . . ,m);
(1.21)

u(i−1)(a)= ηiu(i−1)(b) + γi, u(n−i)(a)= u(n−i)(b)
ηi

+ γm+i, (i= 1, . . . ,m); (1.22)

u(m)(a)= ηu(m)(b) + γn; (1.23 j)

u(m)(b)= ηu(m)(a) + γn. (1.232)

As for the inequalities (1.6 j) and (1.12 j), they take the form

(−1)m+ jνn
(
x1, . . . ,xn; y1, . . . , yn

)≤ μ
n∑

k=1

(∣
∣xk

∣
∣+

∣
∣yk

∣
∣
) n∑

i=1

∣
∣
∣
∣
∣

n∑

k=1

(
αikxk +βik yk

)
∣
∣
∣
∣
∣

; (1.24 j)

(−1)m+i+ jαiαm+i ≥ 0, (−1)m+i+ jβiβm+i ≤ 0,

∣
∣αi
∣
∣+

∣
∣αm+i

∣
∣ > 0,

∣
∣βi
∣
∣+

∣
∣βm+i

∣
∣ > 0 (i= 1, . . . ,m).

(1.25 j)

Just as above, we assume that f : [a,b]×R→ R is the function from the Carathéodory
class, satisfying on [a,b]×R the inequality

(−1)m+ j f (t,x)sgnx ≥ p(t)h
(|x|)− q(t), (1.26 j)

where p and q : [a,b]→ [0,+∞[ are integrable, and h : [0,+∞[→ [0,+∞[ is a nondecreas-
ing function. Moreover,

(−1)m+ j( f (t,x)− f (t, y)
)
> 0 for x > y. (1.27 j)
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Theorem 1.5. Let n = 2m, j = 1 (n = 2m+ 1, j ∈ {1,2}), and let the conditions (1.24 j),
(1.26 j), (1.27 j), and (1.8) be fulfilled. Then the problem (1.19), (1.20) has one and only one
solution.

Corollary 1.6. Let n= 2m, and let the conditions (1.26 j), (1.27 j), and (1.8) be fulfilled.
If, moreover, the inequalities (1.25 j) (the inequalities ηi 	= 0 (i = 1, . . . ,m)) hold, then the
problem (1.19), (1.21) (the problem (1.19), (1.22)) has one and only one solution.

Corollary 1.7. Let n = 2m + 1, j ∈ {1,2}, and let the conditions (1.26 j), (1.27 j), and
(1.8) be fulfilled. If, moreover, |η| ≤ 1 and the inequalities (1.25 j) (the inequalities ηi 	=
0 (i = 1, . . . ,m)) hold, then the problem (1.19), (1.21), (1.23 j) (the problem (1.19), (1.22),
(1.23 j)) has one and only one solution.

Corollary 1.8. Let n= 2m, j = 1 (n= 2m+ 1, j ∈ {1,2}), and let the conditions (1.26 j),
(1.27 j), and (1.8) be fulfilled. Then every one of the problems ((1.19), (1.15); (1.19), (1.16 j);
(1.19), (1.17 j), and (1.19), (1.18 j)) has one and only one solution.

As an example, let us consider the differential equation

u(n) = g0(t) f0(u) + g(t), (1.28)

where g0 and g : [a,b]→R are integrable and f0 :R→R is a continuous, increasing func-
tion. By Corollary 1.8, if n= 2m, j = 1 (n= 2m+ 1, j ∈ {1,2}),

(−1)m+ jg0(t) > 0 for a < t < b,

lim
x→−∞ f0(x)=−∞, lim

x→+∞ f0(x)= +∞,
(1.29)

then each of the problems (1.28), (1.15); (1.28), (1.16 j); (1.28), (1.17 j), and (1.28), (1.18 j)
has one and only one solution. On the other hand, it is clear that if

∣
∣ f0(x)

∣
∣≤ � for x ∈R, g(t) > �

∣
∣g0(t)

∣
∣ for a < t < b, (1.30)

then just as the problem (1.28), (1.15), the problem (1.28), (1.16 j) has no solution.
The above example shows that the restriction (1.8) in Theorems 1.1, 1.5 and in their

corollaries is in some sense optimal and cannot be weakened.

2. Auxiliary propositions

2.1. Lemmas on a priori estimates. Consider the system of differential inequalities:

(−1)m+ ju(n)(t)sgnu(t)≥ p(t)h
(∣
∣u(t)

∣
∣
)− q(t), (2.1 j)

∣
∣u(n)(t)

∣
∣≤ p∗

(
t,
∣
∣u(t)

∣
∣
)

(2.2)
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with the boundary condition

(−1)m+ jνn
(
u(a), . . . ,u(n−1)(a);u(b), . . . ,u(n−1)(b)

)≤ μ0‖u‖. (2.3 j)

Here, n= 2m, j = 1 (n= 2m+ 1, j ∈ {1,2}), μ0 ≥ 0, p, and q : [a,b]→ [0,+∞[ are inte-
grable functions, p∗ : [a,b]× [0,+∞[→ [0,+∞[ is a function, integrable in the first and
nondecreasing in the second argument, and νn is a function given by the equality (1.5).

By a solution of the problem (2.1 j), (2.2), (2.3 j), we mean the function u∈ Cn−1 hav-
ing absolutely continuous (n− 1)th derivative and satisfying both the system of differen-
tial inequalities (2.1 j), (2.2) almost everywhere on [a,b] and the condition (2.3 j).

Lemma 2.1. If the condition (1.8) holds, then there exists a positive constant r such that an
arbitrary solution u of the problem (2.1 j), (2.2), (2.3 j) admits the estimate

‖u‖ ≤ r. (2.4)

Proof. By virtue of (1.8), there exist numbers δ ∈]0,1[, ak ∈ [a,b[, bk ∈]ak,b] (k = 1, . . . ,
n), and r1 > 0 such that

ak+1− bk > δ (k = 1, . . . ,n− 1), (2.5)

h
(
r1
)
∫ bk

ak
p(t)dt > ε (k = 1, . . . ,n), (2.6)

where

ε = δn−1(1 + b− a)1−n
(

2(n+ 2)!
(
1 +μ1

))−1
(2.7)

and μ1 = μ0 + 2
∫ b
a q(t)dt. Suppose

r2 = 2
(
1 +μ1

)
r1

ε
, r =

2r1

(
1 +

∫ b
a p

∗(t,r2
)
dt
)

ε
. (2.8)

Let u be a solution of the problem (2.1 j), (2.2), (2.3 j). Then almost everywhere on
[a,b] the inequality

η(t)
def= (−1)m+ ju(n)(t)u(t)− p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣+ q(t)

∣
∣u(t)

∣
∣≥ 0 (2.9)

is satisfied.
On the other hand, according to (1.5), we have

∫ b

a
u(n)(t)u(t)dt = (−1)mσn

∫ b

a

∣
∣u(m)(t)

∣
∣2
dt

+ νn
(
u(a), . . . ,u(n−1)(a);u(b), . . . ,u(n−1)(b)

)
,

(2.10)
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where σn = 1 for n= 2m, and σn = 0 for n= 2m+ 1. Therefore,

∫ b

a

∣
∣u(n)(t)u(t)

∣
∣dt ≤

∫ b

a

(
η(t) + p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣
)
dt+

∫ b

a
q(t)

∣
∣u(t)

∣
∣dt,

∫ b

a
p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣dt ≤

∫ b

a

(
η(t) + p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣
)
dt

= (−1)m+ j
∫ b

a
u(n)(t)u(t)dt+

∫ b

a
q(t)

∣
∣u(t)

∣
∣dt

≤ (−1)m+ jν
(
u(a), . . . ,u(n−1)(a);u(b), . . . ,u(n−1)(b)

)
+‖u‖

∫ b

a
q(t)dt.

(2.11)

Taking now into account the inequality (2.3 j), we can see that

∫ b

a
p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣dt ≤ μ1‖u‖, (2.12)

∫ b

a

∣
∣u(n)(t)u(t)

∣
∣dt ≤ μ1‖u‖. (2.13)

For every k ∈ {1, . . . ,n}, we choose tk ∈ [ak,bk] so that

∣
∣u
(
tk
)∣
∣=min

{∣
∣u(t)

∣
∣ : ak ≤ t ≤ bk

}
. (2.14)

If |u(tk)| ≥ r1, then by (2.6), we have

∫ bk

ak
p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣dt ≥ ∣∣u(tk

)∣
∣h
(
r1
)
∫ bk

ak
p(t)dt >

∣
∣u
(
tk
)∣
∣

ε
. (2.15)

Consequently,

∣
∣u
(
tk
)∣
∣ < r1 + ε

∫ b

a
p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣dt (k = 1, . . . ,n). (2.16)

On the other hand, it follows from (2.5) that

tk+1− tk > δ (k = 1, . . . ,n− 1). (2.17)
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Therefore,

min
{∣
∣u(i−1)

∣
∣(t)

∣
∣ : a≤ t ≤ b}

≤ i!δ1−imax
{∣
∣u
(
tk
)∣
∣ : k = 1, . . . ,n

}

< i!δ1−i
(

r1 + ε
∫ b

a
p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣dt

)

(i= 1, . . . ,n),

(2.18)

‖u‖ < (n+ 2)!(1 + b− a)n−1δ1−n
(

r1 + ε
∫ b

a
p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣dt

)

+n(1 + b− a)n−1
∫ b

a

∣
∣u(n)(t)

∣
∣dt.

(2.19)

With regard for (2.7) and (2.19), from (2.12), we find

∫ b

a
p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣dt

<
r1

2ε
+

1
2

∫ b

a
p(t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣dt+

r1

2ε

∫ b

a

∣
∣u(n)(t)

∣
∣dt

(2.20)

and consequently,

∫ b

a
p(t)h

(∣
∣u(t)

∣
∣
)|u(t)|dt <

(
1 +

∫ b
a

∣
∣u(n)(t)

∣
∣dt

)
r1

ε
. (2.21)

By virtue of the above estimate and the equality (2.7), from (2.13) and (2.19), we
obtain

‖u‖ <
(

1 +
∫ b
a

∣
∣u(n)(t)

∣
∣dt

)
r1

ε
, (2.22)

∫ b

a

∣
∣u(n)(t)u(t)

∣
∣dt ≤

(
1 +

∫ b
a

∣
∣u(n)(t)

∣
∣dt

)
μ1r1

ε
. (2.23)

Let

I1 =
{
t ∈ [a,b] :

∣
∣u(t)

∣
∣≤ r2

}
, I2 =

{
t ∈ [a,b] :

∣
∣u(t)

∣
∣ > r2

}
. (2.24)

Then by means of (2.2) and (2.23), we get

∫ b

a

∣
∣u(n)(t)

∣
∣dt =

∫

I1

∣
∣u(n)(t)

∣
∣dt+

∫

I2

∣
∣u(n)(t)

∣
∣dt

≤
∫

I1
p∗
(
t,r2

)
dt+

1
r2

∫

I1

∣
∣u(n)(t)u(t)

∣
∣dt

<
∫ b

a
p∗
(
t,r2

)
dt+

1
2

+
1
2

∫ b

a

∣
∣u(n)(t)

∣
∣dt

(2.25)
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and consequently,

∫ b

a

∣
∣u(n)(t)

∣
∣dt < 1 + 2

∫ b

a
p∗
(
t,r2

)
dt. (2.26)

According to the latter inequality, from (2.22) follows the estimate (2.4), where r is the
positive, independent of u constant given by the equalities (2.8). �

Let n= 2m, j = 1 (n= 2m+ 1, j ∈ {1,2}), and let p : [a,b]→ [0,+∞[ be an integrable
function, different from zero on the set of positive measure. For arbitrary ci ∈ R (i =
1, . . . ,n), v ∈ Cn−1 and integrable function g : [a,b]→ R, consider the linear boundary
value problem

u(n) = (−1)m+ j p(t)u+ g(t), (2.27)

n∑

k=1

(
αik(v)u(k−1)(a) +βik(v)u(k−1)(b)

)= ci (i= 1, . . . ,n). (2.28)

Analogously to Lemma 2.1 we can prove the following lemma.

Lemma 2.2. Let the condition (1.6 j) be fulfilled, where μ is an independent of xk, yk (k =
1, . . . ,n), and v constant. Then there exists an independent of ci (i= 1, . . . ,n), v, and g positive
constant r0 such that an arbitrary solution u of the problem (2.27), (2.28) admits the estimate

‖u‖ ≤ r0

( n∑

i=1

∣
∣ci
∣
∣+

∫ b

a

∣
∣g(t)

∣
∣dt

)

. (2.29)

2.2. Lemma on the solvability of the problem (1.1), (1.2). From [14, Theorem 1] and
Lemma 2.2, we have the following lemma.

Lemma 2.3. Let n = 2m, j = 1 (n = 2m + 1, j ∈ {1,2}), and let p : [a,b]→ [0,+∞[ be
an integrable function, different from zero on the set of positive measure. Let, moreover, the
condition (1.6 j) be fulfilled and there exists a positive constant r such that for every λ∈]0,1[
an arbitrary solution u of the boundary value problem

u(n) = (−1)m+ j(1− λ)p(t)u+ λ f
(
t,u, . . . ,u(n−1)), (2.30)

n∑

k=1

(
αik(u)u(k−1)(a) +βik(u)u(k−1)(b)

)= λγi(u) (i= 1, . . . ,n) (2.31)

admits the estimate (2.4). Then the problem (1.1), (1.2) has at least one solution.

3. Proof of the main results

Proof of Theorem 1.1. By the condition (1.7 j), without loss of generality, we can assume
that on [a,b]×Rn the inequalities

h
(∣
∣x1

∣
∣
)≤ ∣∣x1

∣
∣,

∣
∣ f
(
t,x1, . . . ,xn

)∣
∣+ p(t)|x1| ≤ p∗

(
t,
∣
∣x1

∣
∣
)

(3.1)
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are satisfied. On the other hand, by (1.4), we have

μ0 = 2μsup

{ n∑

i=1

∣
∣γi(v)

∣
∣ : v ∈ Cn−1

}

< +∞. (3.2)

Let λ ∈]0,1[, and let u be an arbitrary solution of the problem (2.30), (2.31). Then
by virtue of the conditions (1.6 j), (1.7 j), (3.1), and (3.2), the function u is likewise the
solution of the problem (2.1 j), (2.2), (2.3 j). From the above reasoning, by Lemma 2.1 we
obtain the estimate (2.4), where r is the positive constant, independent of u and λ. Using
now Lemma 2.3, it is not difficult to see that Theorem 1.1 is valid. �

Proof of Theorem 1.5. By Theorem 1.1, the conditions (1.24 j), (1.26 j), and (1.8) guaran-
tee the solvability of the problem (1.19), (1.20). Therefore it remains to prove that this
problem does not have more than one solution. Assume the contrary that the problem
(1.19), (1.20) has two different solutions u1 and u2. Suppose

u(t)= u2(t)−u1(t), g(t)= (−1)m+ j( f
(
t,u2(t)

)− f
(
t,u1(t)

))
u(t). (3.3)

Then

g(t)= (−1)m+ ju(n)(t)u(t), (3.4)

m∑

k=1

(
αiku

(k−1)(a) +βiku(k−1)(b)
)= 0 (i= 1, . . . ,n). (3.5)

Integrating both parts of the identity (3.4) from a to b, by virtue of the conditions
(1.24 j), (1.27 j), and (3.5), we find that

0 <
∫ b

a
g(t)dt = (−1)m+ jνn

(
u(a), . . . ,u(n−1)(a);u(b), . . . ,u(n−1)(b)

)≤ 0. (3.6)

The obtained contradiction proves the theorem. �

Proof of Corollary 1.2. We choose a number δ ∈]0,1[ such that for arbitrary v ∈ Cn−1 and
k ∈ {1, . . . ,m} the inequalities

∣
∣αk(v)

∣
∣+

∣
∣αm+k(v)

∣
∣≥ 2δ,

∣
∣βk(v)

∣
∣+

∣
∣βm+k(v)

∣
∣≥ 2δ

(∣
∣ηk(v)

∣
∣≥ δ) (3.7)

are satisfied.
For arbitrarily fixed xk ∈R, yk ∈R (k = 1, . . . ,n), and v ∈ Cn−1, we put

αk(v)xk +αm+k(v)xn−k+1 = zk, βk(v)yk +βm+k(v)yn−k+1 = zm+k (k = 1, . . . ,m),

(

xk −ηk(v)yk = zk, xn−k+1− yn−k+1

ηk(v)
= zm+k (k = 1, . . . ,m)

)

.
(3.8)
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Then by virtue of the conditions (1.12 j) and (3.7), we have

(−1)m+1+k(xn−k+1xk − yn−k+1yk
)

≤ δ−1(∣∣xk
∣
∣+

∣
∣xn−k+1

∣
∣+

∣
∣yk

∣
∣+

∣
∣yn−k+1

∣
∣
)(∣
∣zk

∣
∣+

∣
∣zm+k

∣
∣
)
,

(∣
∣xn−k+1xk − yn−k+1yk

∣
∣≤ (1 + δ−1)(∣∣xk

∣
∣+

∣
∣yn−k+1

∣
∣
)(∣
∣zk

∣
∣+

∣
∣zm+k

∣
∣
))
.

(3.9)

Hence with regard for the notation (1.5), we find

(−1)m+1+kν
(
x1, . . . ,xn; y1, . . . , yn

)≤ μ
n∑

k=1

(∣
∣xk

∣
∣+

∣
∣yk

∣
∣
) n∑

i=1

∣
∣zi
∣
∣, (3.10)

where μ= 1 + δ−1 is the constant, independent of xk, yk (k = 1, . . . ,n), and v.
Applying now Theorem 1.1, the validity of Corollary 1.2 becomes obvious. �

Corollaries 1.3, 1.6, and 1.7 can be proved analogously.
Corollary 1.4 follows directly from Corollaries 1.2 and 1.3, while Corollary 1.8 follows

from Corollaries 1.6 and 1.7.
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ON DOUBLY PERIODIC SOLUTIONS OF QUASILINEAR
HYPERBOLIC EQUATIONS OF THE FOURTH ORDER

T. KIGURADZE AND T. SMITH

The problem on doubly periodic solutions is considered for a class of quasilinear hyper-
bolic equations. Effective sufficient conditions of solvability and unique solvability of this
problem are established.

Copyright © 2006 T. Kiguradze and T. Smith. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

The problem on periodic solutions for second-order partial differential equations of hy-
perbolic type has been studied rather intensively by various authors [1–9, 11–14]. Anal-
ogous problem for higher-order hyperbolic equations is little investigated. In the present
paper for the quasilinear hyperbolic equations

u(2,2) = f0(x, y,u) + f1(y,u)u(2,0) + f2(x,u)u(0,2) + f
(
x, y,u,u(1,0),u(0,1),u(1,1)

)
, (1)

u(2,2) = f0(x, y,u) +
(
f1(x, y,u)u(1,0)

)(1,0)
+
(
f2(x, y,u)u(0,1)

)(0,1)

+ f
(
x, y,u,u(1,0),u(0,1),u(1,1)

) (2)

we consider the problem on doubly periodic solutions

u
(
x+ω1, y

)= u(x, y), u
(
x, y +ω2

)= u(x, y) for (x, y)∈R2. (3)

Here ω1 and ω2 are prescribed positive numbers,

u( j,k)(x, y)= ∂j+ku(x, y)
∂x j∂yk

, (4)

f0(x, y,z), f1(y,z), f2(x,z), f1(x, y,z), f2(x, y,z), and f (x, y,z,z1,z2,z3) are continuous
functions, ω1-periodic in x, and ω2-periodic in y.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 541–553
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This problem was studied thoroughly for the linear equation

u(2,2) = p0(x, y)u+ p1(x, y)u(2,0) + p2(x, y)u(0,2) + q(x, y) (5)

in [10]. The goal of the present paper is on the basis of the methods developed in [10] to
obtain effective sufficient conditions of solvability, unique solvability, and well-posedness
of problems (1), (3) and (2), (3).

Throughout the paper, we will use the following notation:

sgn(z)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, z > 1,

0, z = 0,

−1, z < 0.

(6)

Cm,n
ω1ω2

(R2) is the space of continuous functions z :R2 →R ω1-periodic in the first and
ω2-periodic in the second arguments, having the continuous partial derivatives u( j,k) j ∈
{0, . . . ,m}, k ∈ {0, . . . ,n}, with the norm

‖z‖Cm,n
ω1ω2
= sup

{ m∑

j=0

n∑

k=0

∣
∣
∣z( j,k)(x, y)

∣
∣
∣ : (x, y)∈R2

}

. (7)

L2
ω1ω2

(R2) is the space of locally square-integrable functions z :R2→R, ω1-periodic in
the first and ω2-periodic in the second arguments, with the norm

‖z‖L2
ω1ω2
=
(∫ ω1

0

∫ ω2

0

∣
∣z(s, t)

∣
∣2
dsdt

)1/2

. (8)

Hm,n
ω1ω2

(R2) is the space of functions z ∈ L2
ω1ω2

(R2), having the generalized partial
derivatives u( j,k) ∈ L2

ω1ω2
(R2), j ∈ {0, . . . ,m}, k ∈ {0, . . . ,n}, with the norm

‖z‖Hm,n
ω1ω2
=

m∑

j=0

n∑

k=0

∥
∥
∥u( j,k)

∥
∥
∥
L2
ω1ω2

. (9)

By a solution of problem (1), (3) (problem (2), (3)), we understand a classical solution,
that is, a function u∈ C2,2

ω1ω2
(R2) satisfying (1) (equation (2)) everywhere in R2.

Theorem 1. Let there exists a positive constant δ such that

f1(y,z)≥ δ, f2(x,z)≥ δ for (x, y,z)∈R3. (10)



T. Kiguradze and T. Smith 543

Moreover let the functions f1, f2, f0, and f satisfy the conditions
(
f1(y,z)− f1(y,z)

)
sgn(z− z)sgn(z)≥ 0 for y ∈R, zz ≥ 0, (11)

(
f2(x,z)− f2(x,z)

)
sgn(z− z)sgn(z)≥ 0 for x ∈R, zz ≥ 0, (12)

f0(x, y,z)sgn(z) < 0 for (x, y)∈R2, z �= 0,

lim
z→∞sgn(z)

∫ ω1

0

∫ ω2

0
f0(x, y,z)dxdy =−∞,

(13)

lim
z→∞

f
(
x, y,z,z1,z2,z3

)

f0(x, y,z)
= 0 uniformly on R2×R4. (14)

Then problem (1), (3) is solvable.

Theorem 2. Let f1 and f2 be continuously differentiable functions such that

f1(x, y,z)≥ δ, f2(x, y,z)≥ δ for (x, y,z)∈R3 (15)

for some positive δ. Moreover, let the functions f0 and f satisfy the conditions of Theorem 1.
Then problem (2), (3) is solvable.

Remark 1. Note that conditions (10) and (15) are optimal in a sense that we cannot take
δ = 0. Indeed, consider the problems

u(2,2) =−F(u) +
(
F′(u)u(1,0)

)(1,0)
+u(0,2) +π sinx, (16)

u(x+ 2π, y)= u(x, y), u(x, y + 2π)= u(x, y), (17)

where F(z)= z3, or F(z)= arctan(z). Problem (16), (17) satisfies all of the conditions of
Theorem 2 except condition (15). Instead of (15), we have that F′(z) is nonnegative and
vanishes at 0, or at∞ only.

Let us show that problem (16), (17) has no solution. Assume the contrary: let u be a
solution of (16), (17), and set v(x, y)= u(0,2)(x, y)−F(u(x, y)). Then for every y ∈R, the
function v(·, y) is a solution to the periodic problem

v′′ = v+π sinx, v(x+ 2π)= v(x). (18)

This problem has a unique solution v(x) = −π/2sinx. Therefore, problem (16), (17) is
equivalent to the problem

u(0,2) = F1(u)− π

2
sinx, u(x, y + 2π)= u(x, y). (19)

However, problem (19) has no more than one solution. Indeed, let u1 and u2 be arbitrary
solutions to problem (19). Then one easily gets the identity
∫ ω2

0

((
u(0,1)

1 (x, t)−u(0,1)
2 (x, t)

)2
+
(
F
(
u1(x, t)

)−F(u2(x, t)
))(

u1(x, t)−u2(x, t)
))
dt ≡ 0,

(20)

whence it follows that u1(x, y)≡ u2(x, y).
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Due to uniqueness, a solution of problem (19) should be independent of y. So finally
we arrive to the functional equation

F(u)= π

2
sinx, (21)

whence we get

u(x, y)= 3

√
π

2
sinx for F(z)= z3,

u(x, y)= tan
(
π

2
sinx

)

for F(z)= arctan(z).

(22)

In the first case u is not differentiable at πk, k ∈ Z, while in the second case u itself is a
discontinuous function, because it blows up at points π/2 +πk, k ∈ Z.

Thus, it is clear that of problem (16), (17) has no solutions in the both cases.

Remark 2. The conditions of Theorem 1 (as well as Theorem 2) do not guarantee the
uniqueness of a solution. Indeed, for the equation

u(2,2) =−un +u(2,0) +u(0,2)−
( n∏

k=1

(u− k)−un
)

, (23)

all of the conditions of Theorem 1 (and Theorem 2) are fulfilled. Nevertheless, it has at
least n solutions uk(x, y)≡ k (k = 1,2, . . . ,n) satisfying conditions (3).

We will give a uniqueness theorem for the equations

u(2,2) = f0(x, y,u) +
(
f1(x, y)u(1,0)

)(1,0)
+
(
f2(x, y)u(0,1)

)(0,1)
, (24)

u(2,2) = f0(x, y,u) +
(
f1(x, y)u(1,0)

)(1,0)
+
(
f2(x, y)u(0,1)

)(0,1)

+ ε f
(
x, y,u,u(1,0),u(0,1),u(1,1),u(2,0),u(0,2),u(2,1),u(1,2)

)
.

(25)

Theorem 3. Let there exists δ > 0 such that

f1(x, y)≥ δ, f2(x, y)≥ δ for (x, y)∈R2, (26)
(
f0(x, y,z)− f0(x, y,z)

)
sgn(z− z)≤−δ|z− z| for (x, y)∈R2, z,z ∈R. (27)

Then problem (24), (3) is uniquely solvable. Moreover, for every f (x, y,z1,z2,z3,z4,z5,z6,
z7,z8) that is Lipschitz continuous with respect to the last eight phase variables, there exists a
positive ε0 such that problem (25), (3) is uniquely solvable for every ε ∈ (−ε0,ε0).

To prove Theorems 1–3, we will need the following lemmas.
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Lemma 1. Let p0, p1, p2, and q ∈ Cω1ω2 (R2), and let there exist a positive constant δ and a
nondecreasing continuous function η : [0,+∞)→ [0,+∞), η(0)= 0 such that

p1(x, y)≥ δ, p2(x, y)≥ δ, (28)
∣
∣p1

(
x1, y1

)− p1
(
x2, y2

)∣
∣+

∣
∣p2

(
x1, y1

)− p2
(
x2, y2

)∣
∣

≤ η(∣∣x1− x2
∣
∣+

∣
∣y1− y2

∣
∣
)

for
(
xi, yi

)∈R2 (i= 1,2).
(29)

Then an arbitrary solution u of problem (5), (3) admits the estimate

∫ ω1

0

∫ ω2

0

(∣
∣
∣u(2,0)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(0,2)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(2,1)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(1,2)(x, y)

∣
∣
∣

2
)

dxdy

≤M
∫ ω1

0

∫ ω2

0

(
∣
∣u(x, y)

∣
∣2

+
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(0,1)(x, y)

∣
∣
∣

2
+ q2(x, y)

)

dxdy,

(30)

where the constant M > 0 depends on δ, ‖p0‖Cω1ω2
, and the function η.

Proof. Let u be a an arbitrary solution of problem (5), (3). For any h > 0, set

pih(x, y)= 1
h2

∫ x+h

x

∫ y+h

y
pi(s, t)dsdt (i= 1,2),

Qh[u](x, y)= (p1(x, y)− p1h(x, y)
)
u(2,0)(x, y) +

(
p2(x, y)− p2h(x, y)

)
u(0,2)(x, y).

(31)

Then u satisfies the equation

u(2,2) = p0(x, y)u+ p1h(x, y)u(2,0) + p2h(x, y)u(0,2) +Qh[u](x, y) + q(x, y). (32)

Multiplying successively (32) by u(x, y), u(2,0), and u(0,2), integrating over the rectangle
[0,ω1]× [0,ω2], and using integration by parts, we observe that

∫ ω1

0

∫ ω2

0

(

p1h(x, y)
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2
+ p2h(x, y)

∣
∣
∣u(0,1)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(1,1)(x, y)

∣
∣
∣

2
)

dxdy

=
∫ ω1

0

∫ ω2

0

(

Qh[u](x, y)− p(1,0)
1h (x, y)u(1,0)(x, y)− p(0,1)

2h (x, y)u(0,1)(x, y)

+ p0(x, y)u(x, y) + q(x, y)
)

u(x, y)dxdy,

(33)
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∫ ω1

0

∫ ω2

0

(

p1h(x, y)
∣
∣
∣u(2,0)(x, y)

∣
∣
∣

2
+ p2h(x, y)

∣
∣
∣u(1,1)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(2,1)(x, y)

∣
∣
∣

2
)

dxdy

=
∫ ω1

0

∫ ω2

0

(

p(0,1)
2h (x, y)u(2,0)(x, y)u(0,1)(x, y)− p(1,0)

2h (x, y)u(1,1)(x, y)u(0,1)(x, y)
)

dxdy

−
∫ ω1

0

∫ ω2

0

(
Qh[u](x, y) + p0(x, y)u(x, y) + q(x, y)

)
u(2,0)(x, y)dxdy,

(34)
∫ ω1

0

∫ ω2

0

(

p1h(x, y)
∣
∣
∣u(1,1)(x, y)

∣
∣
∣

2
+ p2h(x, y)

∣
∣
∣u(0,2)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(1,2)(x, y)

∣
∣
∣

2
)

dxdy

=
∫ ω1

0

∫ ω2

0

(
p(1,0)

1h (x, y)u(0,2)(x, y)u(1,0)(x, y)− p(0,1)
1h (x, y)u(1,1)(x, y)u(1,0)(x, y)

)
dxdy

−
∫ ω1

0

∫ ω2

0

(
Qh[u](x, y) + p0(x, y)u(x, y) + q(x, y)

)
u(0,2)(x, y)dxdy.

(35)

However,

∫ ω1

0

∫ ω2

0

∣
∣
∣Qh[u](x, y)

∣
∣
∣
(∣
∣u(x, y)

∣
∣+

∣
∣
∣u(2,0)(x, y)

∣
∣
∣+

∣
∣
∣u(0,2)(x, y)

∣
∣
∣
)
dxdy

≤ 2η(h)
(

‖u‖2
L2
ω1ω2

+
∥
∥
∥u(2,0)

∥
∥
∥

2

L2
ω1ω2

+
∥
∥
∥u(0,2)

∥
∥
∥

2

L2
ω1ω2

)

,
(36)

∫ ω1

0

∫ ω2

0

(∣
∣p0(x, y)

∣
∣
∣
∣u(x, y)

∣
∣+

∣
∣q(x, y)

∣
∣
)(∣
∣u(x, y)

∣
∣+

∣
∣
∣u(2,0)(x, y)

∣
∣
∣+

∣
∣
∣u(0,2)(x, y)

∣
∣
∣

)

dxdy

≤
(

2
ε

∥
∥p0

∥
∥
Cω1ω2

+ 2ε
)

‖u‖2
L2
ω1ω2

+
2
ε
‖q‖2

L2
ω1ω2

+ 2ε
(∥
∥
∥u(2,0)

∥
∥
∥

2

L2
ω1ω2

+
∥
∥
∥u(0,2)

∥
∥
∥

2

L2
ω1ω2

)

,

(37)
∫ ω1

0

∫ ω2

0

(∣
∣
∣p(0,1)

2h (x, y)
∣
∣
∣
∣
∣
∣u(2,0)(x, y)

∣
∣
∣
∣
∣
∣u(0,1)(x, y)

∣
∣
∣

+
∣
∣
∣p(1,0)

2h (x, y)
∣
∣
∣
∣
∣
∣u(1,1)(x, y)

∣
∣
∣
∣
∣
∣u(0,1)(x, y)

∣
∣
∣

)

dxdy

≤ 2η(h)
h

ε
(∥
∥
∥u(2,0)

∥
∥
∥

2

L2
ω1ω2

+
∥
∥
∥u(1,1)

∥
∥
∥

2

L2
ω1ω2

)

+
2η(h)
hε

∥
∥
∥u(0,1)

∥
∥
∥

2

L2
ω1ω2

,

(38)

∫ ω1

0

∫ ω2

0

(∣
∣
∣p(1,0)

1h (x, y)
∣
∣
∣
∣
∣
∣u(0,2)(x, y)

∣
∣
∣
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

+
∣
∣
∣p(0,1)

1h (x, y)
∣
∣
∣
∣
∣
∣u(1,1)(x, y)

∣
∣
∣
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

)

dxdy

≤ 2η(h)
h

ε
(∥
∥
∥u(0,2)

∥
∥
∥

2

L2
ω1ω2

+
∥
∥
∥u(1,1)

∥
∥
∥

2

L2
ω1ω2

)

+
2η(h)
hε

∥
∥
∥u(1,0)

∥
∥
∥

2

L2
ω1ω2

.

(39)

Now taking h > 0 and ε > 0 sufficiently small from (33)–(39), we immediately get estimate
(30). �

The following lemma immediately follows from [10, Lemma 2.7].
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Lemma 2. Let p0, p1, p2, and q ∈ Cω1ω2 (R2), and let p1 and p2 satisfy conditions (28). Then
an arbitrary solution u of problem (5), (3) admits the estimate

‖u‖C2,2
ω1ω2
≤ r

(∫ ω1

0

∫ ω2

0

(
∣
∣u(x, y)

∣
∣+

∣
∣
∣u(2,0)(x, y)

∣
∣
∣+

∣
∣
∣u(0,2)(x, y)

∣
∣
∣

)

dxdy +‖q‖Cω1ω2

)

,

(40)

where r is a positive constant depending on δ, ‖p0‖Cω1ω2
, ‖p1‖Cω1ω2

, and ‖p2‖Cω1ω2
only.

Lemma 3. Let p1, p2 ∈ Cω1ω2 (R2) satisfy the conditions of Lemma 1. Then there exist λ > 0
and Mλ > 0 depending on δ, ‖p1‖Cω1ω2

, ‖p2‖Cω1ω2
, and the function η such that for every

q ∈ Cω1ω2 (R2), the equation

u(2,2) =−λu+ p1(x, y)u(2,0) + p2(x, y)u(0,2) + q(x, y) (41)

has a unique solution u satisfying conditions (3), and

‖u‖C2,2
ω1ω2
≤Mλ‖q‖Cω1ω2

. (42)

Proof. This lemma easily follows from Lemmas 1 and 2. Indeed, let u be an arbitrary
solution of problems (41), (3). Multiplying successively (41) by u(x, y), u(2,0), and u(0,2),
integrating over the rectangle [0,ω1]× [0,ω2], and using integration by parts, we get

λ
(
‖u‖2

L2
ω1ω2

+
∥
∥u(1,0)

∥
∥2
L2
ω1ω2

+
∥
∥u(0,1)

∥
∥2
L2
ω1ω2

)

≤
(

1 +
∥
∥p1

∥
∥2
Cω1ω2

+
∥
∥p2

∥
∥2
Cω1ω2

)(
‖u‖2

L2
ω1ω2

+
∥
∥u(2,0)

∥
∥2
L2
ω1ω2

+
∥
∥u(0,2)

∥
∥2
L2
ω1ω2

)
+‖q‖2

L2
ω1ω2

.

(43)

Validity of Lemma 3 immediately follows from estimates (30), (40), and (43). �

Consider the linear equation

u(2,2) = p0(x, y)u+
(
p1(x, y)u(1,0)

)(1,0)
+
(
p2(x, y)u(0,1)

)(0,1)
+ q(x, y). (44)

If p1 and p2 satisfy (28), then by g1(·,·,x) : R2 → R and g2(·,·, y) : R2 → R, respec-
tively, denote Green’s functions of the problems

d2z

dy2
= p1(x, y)z, z

(
y +ω2

)= z(y),

d2z

dx2
= p2(x, y)z, z

(
x+ω1

)= z(x),

(45)

(see [10, Lemmas 2.1 and 2.2]).
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Lemma 4. Let u be a solution of problem (44), (3). Then the following representation is valid

u(2,0)(x, y)= p2(x, y)u

+
∫ y+ω2

y
g1(y, t,x)

((
p0(x, t) + p1(x, t)p2(x, t)

)
u(x, t)

+ p(1,0)
1 (x, t)u(1,0)(x, t) + q(x, t)

)
dt,

u(0,2)(x, y)= p1(x, y)u

+
∫ x+ω1

x
g2(x,s, y)

((
p0(s, y) + p1(s, y)p2(s, y)

)
u(s, y)

+ p(0,1)
2 (s, y)u(0,1)(s, y) + q(s, y)

)
ds,

u(x, y)=
∫ y+ω2

y

∫ x+ω1

x
g1(y, t,x)g2(x,s, t)

((
p0(s, t) + p1(s, t)p2(s, t)

)
u(s, t)

+ p(0,1)
2 (s, t)u(0,1)(s, t) + q(s, t)

)
dsdt.

(46)

We omit the proof of Lemma 4, since it is similar to the proof of [10, Lemma 2.7].
Let

ϕρ(z)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for |z| ≤ ρ,

ρ+ 1−|z| for |z| ∈ [ρ,ρ+ 1],

0 for |z| ≥ ρ+ 2,

χρ(z)=
∫ z

0
ϕρ(s)ds, (47)

and let Φρ : C1
ω1ω2

→R be a continuous nonlinear functional defined by the equality

Φρ(u)= ϕρ
(
‖u‖C1

ω1ω2

)
. (48)

Consider the equation

u(2,2) = f0
(
x, y,χρ(u)

)
+ f1

(
y,Φρ(u)u

)
u(2,0) + f2

(
x,Φρ(u)

)
u(0,2)

+Φρ(u) f
(
x, y,u,u(1,0),u(0,1),u(1,1)

)
− λu+ λχρ(u).

(49)

Lemma 5. Let λ > 0 and ρ > 0. Then every solution u of problem (49), (3) admits the esti-
mates

∫ ω1

0

∫ ω2

0

(
∣
∣ f0

(
x, y,χρ

(
u(x, y)

)∣
∣
∣
∣u(x, y)

∣
∣+

∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2

+
∣
∣
∣u(0,1)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(1,1)

∣
∣
∣

2
)

dxdy ≤ r0,
(50)

where r0 is a positive constant independent of ρ, λ, and u.
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Proof. Let u be a solution of problems (49), (3). Multiplying (49) by u(x, y), integrating
over the rectangle [0,ω1]× [0,ω2], and using integration by parts, we get

∫ ω1

0

∫ ω2

0

(
(− f0

(
x, y,χρ

(
u(x, y)

))
+ λu− λχρ(u)

)
u(x, y)− f1

(
y,u(x, y)

)
u(2,0)(x, y)u(x, y)

− f2
(
x,u(x, y)

)
u(0,2)(x, y)u(x, y) +

∣
∣
∣u(1,1)(x, y)

∣
∣
∣

2
)

dxdy

=
∫ ω1

0

∫ ω2

0
Φρ(u) f

(

x, y,u(x, y),u(1,0)(x, y),u(0,1)(x, y),u(1,1)(x, y)
)

u(x, y)dxdy.

(51)

By conditions (13) and (14), we have

(− f0
(
x, y,χρ

(
u(x, y)

))
+ λ
(
u(x, y)− χρ

(
u(x, y)

)))
u(x, y)

≥ ∣∣ f0
(
x, y,χρ

(
u(x, y)

))
u(x, y)

∣
∣,

(52)

Φρ(u)
∣
∣
∣ f
(
x, y,u(x, y),u(1,0)(x, y),u(0,1)(x, y),u(1,1)(x, y)

)∣
∣
∣
∣
∣u(x, y)

∣
∣

≤ r1 +
1
2

∣
∣ f0

(
x, y,χρ

(
u(x, y)

))∣
∣
∣
∣u(x, y)

∣
∣,

(53)

where r1 is a positive constant independent of ρ, λ, and u.
For h > 0, set

f1h(y,z)= 1
h

∫ z+h

z
fi(y,ξ)dξ. (54)

Then by condition (11), we have

−
∫ ω1

0

∫ ω2

0
f1h
(
y,Φρ(u)u(x, y)

)
u(x, y)u(2,0)(x, y)dxdy

=
∫ ω1

0

∫ ω2

0
f1h
(
y,Φρ(u)u(x, y)

)∣∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy

+
Φρ(u)

h

∫ ω1

0

∫ ω2

0

(
f1
(
y,Φρ(u)

(
u(x, y) +h

)

− f1
(
y,Φρ(u)u(x, y)

))
u(x, y)

∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy

≥
∫ ω1

0

∫ ω2

0
f1h
(
y,Φρ(u)u(x, y)

)∣∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy

−Φρ(u)
∫∫

Dh

∣
∣ f1

(
y,Φρ(u)

(
u(x, y) +h

)− f1
(
y,Φρ(u)u(x, y)

∣
∣
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy,

(55)
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where Dh = {(x, y)∈ [0,ω1]× [0,ω2] : |u(x, y)| ≤ h}. Hence we immediately get that

−
∫ ω1

0

∫ ω2

0
f1
(
y,Φρ(u)u(x, y)

)
u(x, y)u(2,0)(x, y)dxdy

≥
∫ ω1

0

∫ ω2

0
f1
(
y,Φρ(u)u(x, y)

)∣∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy.

(56)

In the same way, we show that

−
∫ ω1

0

∫ ω2

0
f2
(
x,Φρ(u)u(x, y)

)
u(x, y)u(0,2)(x, y)dxdy

≥
∫ ω1

0

∫ ω2

0
f2
(
y,Φρ(u)u(x, y)

)∣∣
∣u(0,1)(x, y)

∣
∣
∣

2
dxdy.

(57)

Taking into account (52)–(57), from (51), we immediately get (50) with r0 = (2 + δ−1)r1.
�

Proof of Theorem 1. Let v ∈ C1,1
ω1ω2

(R2) be an arbitrary function. Set

p1[v](x, y)= f1
(
y,Φρ(v)v(x, y)

)
, p2[v](x, y)= f2

(
x,Φρ(v)v(x, y)

)
,

q[v](x, y)= f0
(
X , y,χρ

(
v(x, y)

))

+Φρ(v) f
(
x, y,v(x, y),v(1,0)(x, y),v(0,1)(x, y),v(1,1)(x, y)

)
.

(58)

Consider the equation

u(2,2) =−λu+ p1[v](x, y)u(2,0) + p2[v](x, y)u(0,2) + λχρ
(
v(x, y)

)
+ q[v](x, y). (59)

Note that due to definitions of p1 and p2 for every ρ > 0, there exists a continuous func-
tion ηρ : [0,+∞)→ [0,+∞), ηρ(0)= 0 such that

∣
∣p1[v]

(
x1, y1

)− p2[v]
(
x2, y2

)∣
∣+

∣
∣p2[v]

(
x1, y1

)− p2[v]
(
x2, y2

)∣
∣

≤ ηρ
(∣
∣x1− x2

∣
∣+

∣
∣y1− y2

∣
∣
)
.

(60)

By Lemma 3, there exist λ > 0 and Mλ > 0 depending on ρ, δ, and the function ηρ only,
such that for every v ∈ C1,1

ω1ω2
(R2), problem (59), (3) has a unique solution u[v] admitting

the estimate

∥
∥u[v]

∥
∥
C2,2
ω1ω2
≤Mλ

(∥
∥q[v]

∥
∥
Cω1ω2

+ λρ
)
. (61)

It is easy to see that the operator � : v→ u[v] is a continuous operator from C1,1
ω1ω2

(R2)
into C2,2

ω1ω2
(R2), and therefore it is a completely continuous operator from C1,1

ω1ω2
(R2) into

C1,1
ω1ω2

(R2). Moreover,

∥
∥�(v)

∥
∥
C2,2
ω1ω2
≤Mλ

(∥
∥q[v]

∥
∥
Cω1ω2

+ λρ
)≤Mλcρ, (62)

where cρ is a positive constant independent of v.
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By Schauder’s fixed point theorem, the operator � has a fixed point u ∈ C2,2
ω1ω2

(R2),
which is a solution of the functional differential equation (49).

By Lemma 5, u admits estimate (50). Conditions (13) and (50) imply the estimate

‖u‖H1,1
ω1ω2
≤ r1, (63)

where r1 is a positive constant independent of ρ, λ, and u. On the other hand, one can
easily establish the inequalities

‖u‖Cω1ω2
≤Ω‖u‖H1,1

ω1ω2
, (64)

∣
∣u
(
x1, y1

)−u(x2, y2
)∣
∣≤Ω‖u‖H1,1

ω1ω2

(√∣
∣x1− x2

∣
∣+

√∣
∣y1− y2

∣
∣
)

, (65)

where

Ω= 1√
ω1

+
1√
ω2

+
1√
ω1ω2

+
√
ω1 +

√
ω2. (66)

Choosing ρ >Ωr1, we observe that u is a solution of the equation

u(2,2) = f0(x, y,u) + f1
(
y,Φρ(u)u

)
u(2,0) + f2

(
x,Φρ(u)

)
u(0,2)

+Φρ(u) f
(
x, y,u,u(1,0),u(0,1),u(1,1)

)
.

(67)

Due to (63) and (65), there exists a nondecreasing continuous function η : [0,+∞)→
[0,+∞), η(0)= 0 independent of ρ such that
∣
∣ f1

(
y1,Φρ(u)u

(
x1, y1

))− f1
(
y2,Φρ(u)u

(
x2, y2

))∣
∣

+
∣
∣ f2

(
x1,Φρ(u)u

(
x1, y1

))− f2
(
x2,Φρ(u)u

(
x2, y2

))∣
∣≤ η(

∣
∣x1− x2

∣
∣+

∣
∣y1− y2

∣
∣
)
.

(68)

By Lemma 1 and inequality (68), there exists a positive constantM independent of ρ such
that u admits the estimate (30). Choosing ρ >Ω(r1 +M), we get that an arbitrary solution
of problems (67), (3) satisfies the inequality

‖u‖C1
Ω1ω2

< ρ. (69)

Consequently u is a solution of problem (1), (3) too. �

We omit the proof of Theorem 2, since it can be proved in much the same way. The
only difference is that instead of Lemmas 1–3 one should use Lemma 4 to get necessary a
priori estimates.

Proof of Theorem 3. Let q ∈ Cω1ω2 (R2). Consider the equation

u(2,2) = f0(x, y,u) +
(
f1(x, y)u(1,0)

)(1,0)
+
(
f2(x, y)u(0,1)

)(0,1)
+ q(x, y). (70)

By Theorem 2, problems (70), (3) are solvable. Let u1 and u2 be two arbitrary solutions
of problems (70), (3), and let v(x, y)= u1(x, y)− u2(x, y). Then applying (27), we easily
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get the inequality

∫ ω1

0

∫ ω2

0

(

δv2(x, y) + f1(x, y)
∣
∣
∣v(1,0)(x, y)

∣
∣
∣

2
+ f2(x, y)

∣
∣
∣v(0,1)(x, y)

∣
∣
∣

2
)

dxdy ≤ 0. (71)

Hence it follows that u1(x, y)≡ u2(x, y).
Thus for every q ∈ Cω1ω2 (R2), problem (70), (3) has a unique solution u[q]. Applying

Lemmas 1 and 2, one can easily show that the operator � : q → u[q] is a continuous
operator from Cω1ω2 (R2) into C2,2

ω1ω2
(R2) and that

∥
∥�

(
q1
)−�

(
q2
)∥
∥
C2,2
ω1ω2
≤ a∥∥q1− q2

∥
∥
Cω1ω2

, (72)

where a is a positive constant independent of q1 and q2. Therefore problem (25), (3) is
equivalent to the operator equation

u(x, y)=�
(
ε f
(
x, y,u,u(1,0),u(0,1),u(1,1),u(2,0),u(0,2),u(2,1),u(1,2)

))
(x, y)=�ε(u)(x, y).

(73)

Due to Lipschitz continuity of the function f , there exists a positive constant b such that

∣
∣ f
(
x, y,z1, . . . ,z8

)− f
(
x, y,z1, . . . ,z8

)∣
∣≤ b

8∑

i=1

∣
∣zi− zi

∣
∣. (74)

From (72) and (74), it is clear that for ε ∈ (−1/ab,1/ab), the operator �ε is a contractive
operator from C2,2

ω1ω2
(R2) into C2,2

ω1ω2
(R2). Hence (73), and consequently, problem (25),

(3) is uniquely solvable. �
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SYMMETRIES OF THE PLANE PLASTICITY SYSTEM
WITH A GENERAL YIELD CRITERION

PETR KIRIAKOV AND ALEXANDER YAKHNO

Some classes of invariant solution for the system of two-dimensional plasticity with gen-
eral yield criterion are considered. In particular, the system with Coulomb law is inves-
tigated from the point of view of symmetry analysis. Moreover, the classification of the
groups of point transformations admitted by the system with respect to the function of
plasticity is realized. The mechanical sense of obtained invariant solutions is discussed.

Copyright © 2006 P. Kiriakov and A. Yakhno. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In general, the processes of plastic deformations of materials are expressed by the systems
of nonlinear differential equations. For such systems, the numerical methods are used
widely for resolving of the concrete boundary value problems. But as for the exact solu-
tion, there is a lack of them, because of strong nonlinearity of stress-strain relations. In
this case, the symmetry (group) analysis of differential equations is a powerful method of
the construction of exact solutions. It seems that the first application of these methods to
the plasticity theory was made in [2].

The equations of plane plasticity describe stresses of deformed region, when the plastic
flow is everywhere parallel to a given plane (usually x1Ox2 plane). This system consists of
two equilibrium equations [4],

∂σx1

∂x1
+
∂τx1x2

∂x2
= 0,

∂σx2

∂x2
+
∂τx1x2

∂x1
= 0, (1.1)

and the law defining the limit of elasticity under some combination of stresses which is
called the yield criterion p(σ ,τ)= 0, where σxi , τx1x2 are the components of stress tensor,
σ is the hydrostatic pressure, and τ is the shear stress:

σ =
(
σx1 + σx2

)

2
, τ2 =

(
σx1 − σx2

)2

4
+ τ2

x1x2
. (1.2)

Hindawi Publishing Corporation
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Considering the angle θ = (1,x1)− π/4, where tan2(1,x1) ≡ tan2φ = (2τx1x2 )/(σx1 −
σx2 ) is a slope of principal axes of stress with respect to the x1 − axis, and making the
change of variables:

σx1 = σ − τ(σ ,θ)sin2θ,

σx2 = σ + τ(σ ,θ)sin2θ,

τx1x2 = τ(σ ,θ)cos2θ,

(1.3)

we will obtain that the system (1.1) has the form

∂σ

∂x1
− 2τ

(
∂θ

∂x1
cos2θ +

∂θ

∂x2
sin2θ

)

= ∂τ

∂x1
sin2θ− ∂τ

∂x2
cos2θ,

∂σ

∂x2
− 2τ

(
∂θ

∂x1
sin2θ− ∂θ

∂x2
cos2θ

)

=− ∂τ

∂x1
cos2θ− ∂τ

∂x2
sin2θ.

(1.4)

The system (1.4) in the polar coordinates {r,ϕ} takes the form

r
(

1− sin2θ
∂τ

∂σ

)
∂σ

∂r
+ cos2θ

∂τ

∂σ

∂σ

∂ϕ
− r ∂

∂θ
(τ sin2θ)

∂θ

∂r
+
∂

∂θ
(τ cos2θ)

∂θ

∂ϕ
= 2τ sin2θ,

r cos2θ
∂τ

∂σ

∂σ

∂r
+
(

1 + sin2θ
∂τ

∂σ

)
∂σ

∂ϕ
+
∂

∂θ
(τ cos2θ)

∂θ

∂r
+
∂

∂θ
(τ sin2θ)

∂θ

∂ϕ
=−2τ cos2θ,

(1.5)

and the components of the stress tensor are the following:

σr = σ − τ(θ +ϕ)sin2θ,

σϕ = σ + τ(θ +ϕ)sin2θ,

τrϕ = τ(θ +ϕ)cos2θ,

(1.6)

here θ = (1,r)− π/4 = ψ − π/4, and ψ means the angle between principal axes of stress
with respect to the radius-vector r.

The plastic state of concrete material is described by an appropriated form of the func-
tion τ:

(i) von Mises’ criterion [4]: τ2 = k2 = const is used for plastic metals. In [8] the com-
plete analysis of groups of symmetries was performed. There were constructed
invariant solutions and all conservation laws of this system were described;

(ii) the linear criterion [5]: τ = aσ + b and, in particular, Coulomb’s criterion [3]:
τ2 = (σ sinΦ+ k cosΦ)2, (a,b,k,Φ= consts) are used for the free-flowing (gran-
ular) media [9];

(iii) nonlinear generalizations of the function τ [10]: τ = τ(σ) are used for the soil
media and low-plastic metals. The special criterion of Sokolovsky τ = k sin((σ −
σ0)/k) and the “parabolic” one τ = (1/2)(ak− σ2/(ak)) are between them;

(iv) general form: τ = τ(σ ,θ) can be used to describe a plastic state of anisotropic
media. In particular, one can find a plastic anisotropy in some polycrystals and
metals after a critical sequence of mechanical and heat treatments, and so forth.
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The paper is structured as follows. In Section 2, the complete analysis of point trans-
formations for the plane plasticity with Coulomb’s criterion is presented and invariant
solutions are constructed. Section 3 is devoted to the symmetry analysis of the system
(1.4) when τ = τ(θ). Using the well-known method of [6], the group classification of
such a system will be done. The basic group of point transformations (kernel) admitted
by this system for any form of τ is calculated, and specifications of τ for which there is an
extension of basic group are shown. For every Lie algebra of admitted operators, we per-
formed the classification of nonsimilar subalgebras and determined the corresponding
invariant solutions using the method of [7].

2. Plasticity with Coulomb’s criterion

2.1. Point transformations. Let us consider the yield criterion of Coulomb [3]: τ =
σ sinΦ + k cosΦ, where Φ ∈ (−π/2,π/2) is a constant angle of internal friction, k is a
constant of the coupling. For convenience, let us introduce the angle α = −Φ/2 + π/4,
then sinΦ = cos2α, α ∈ (0,π/2), and now τ = σ cos2α+ k sin2α. If Φ = 0, then we have
Mises’ criterion, for which the complete symmetry analysis was made in [8], so we assume
α�= π/4. The system (1.4) will have the form

(sec2α+ cos2φ)σx1 + sin2φσx2 = 2τ sec2α
(

sin2φφx1 − cos2φφx2

)
,

sin2φσx1 + (sec2α− cos2φ)σx2 =−2τ sec2α
(

cos2φφx1 + sin2φφx2

)
.

(2.1)

Hereafter, the indices mean the derivation with respect to corresponding variables. The
system (2.1) will be investigated in this section. This system is a hyperbolic one, and by
passing to characteristic variables

ξ = 1
2cos2α

ln(cot2ασ + k)− φ

sin2α
,

η = 1
2cos2α

ln(cot2ασ + k) +
φ

sin2α
,

(2.2)

the system (2.1) takes the form

ξx1 + ξx2 tan(φ−α)= 0, ηx1 +ηx2 tan(φ+α)= 0. (2.3)

Moreover, by applying the hodograph transformations x1 = x1(ξ,η), x2 = x2(ξ,η) (where
the Jacobian D(ξ,η)/D(x1,x2)�= 0) and by changing variables

u=
√

cot2ασ + k
(
x1 sin(φ+α)− x2 cos(φ+α)

)
,

v =
√

cot2ασ + k
(− x1 sin(φ−α) + x2 cos(φ−α)

)
,

(2.4)

the system (2.3) is reduced to the following:

uξ +
v

2
= 0, vη +

u

2
= 0. (2.5)
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The Lie algebra of admissible operators for the system (2.5) is known [8] and is formed
by

Z1 = ∂ξ , Z2 = ∂η, Z3 = ξ∂ξ −η∂η +
u

2
∂u− v

2
∂v,

Z4 = u∂u + v∂v, Z∞ = h1(ξ,η)∂u +h2(ξ,η)∂v,
(2.6)

where (h1,h2) is an arbitrary solution of the system (2.5). Using the known formulas
for the transformation of operators under the change of coordinates, we will obtain the
Lie algebra L = 〈X1,X2,X3,X4〉 ⊕ 〈X∞〉 = L4 ⊕ L∞ of symmetries admitted by the initial
system (2.1):

X1 = ω1∂x1 +ω2∂x2 − sin2α tan2α ln(σ cot2α+ k)∂φ− 4τφ∂σ ,

X2 = x1∂x2 − x2∂x1 + ∂φ, X3 = τ∂σ ,

X4 = x1∂x1 + x2∂x2 , X∞ = F(σ ,φ)∂x1 +G(σ ,φ)∂x2 ,

(2.7)

where (F,G) is an arbitrary solution of the linear system,

(1 + cos2αcos2φ)Gφ− cos2αsin2φFφ =−2τ
(

sin2φGσ + cos2φFσ
)
,

cos2αsin2φGφ− (1− cos2αcos2φ)Fφ = 2τ
(

cos2φGσ − sin2φFσ
)
,

(2.8)

and the coefficients w1, w2 are the following:

ω1 = x1 sin2φ− 2x2 cos(φ−α)cos(φ+α) + x1φ2cos2α+ x2 sin2α tan2α ln(σ cot2α+ k),

ω2 = 2x1 sin(φ−α)sin(φ+α)− x2 sin2φ− x1 sin2α tan2α ln(σ cot2α+ k) + x2φ2cos2α.
(2.9)

2.2. Optimal system and invariant solutions. The Lie algebra L4 constructed in Section
2.1 has the following nonzero commutators: [X1,X2]= 4X3, [X1,X3]= sin2 2αX2; there-
fore X4 is a center of this algebra. X∞ is an infinite-dimensional ideal of L, the finite
algebra L4 is a solvable one.

The optimal system of one-dimensional subalgebras for L4 consists of four classes:
〈X1 + aX4〉, 〈X2 + aX3 + bX4〉, 〈aX3 +X4〉, 〈X3〉, where a, b are arbitrary constants. The
first three classes satisfy to the necessary condition of the existence of invariant solution.

(1) 〈X1 + aX4〉. The calculation of the basis of invariants leads to representation in the
form

J1 = ξη, J2 = uη(1/2+a), J3 = vξ(1/2−a), (2.10)

where ξ, η, u, v are defined by the formulas (2.2), (2.4). The variables are not separated,
but if we take u, v as new dependent variables, and ξ, η as new independent variables, then
the system (2.1), is reduced to the system (2.5). With respect to the system (2.5), the vari-
ables in (2.10) are separated and the invariant solution has the form u= û(ξη)η(−1/2−a),
v = v̂(ξη)ξ(−1/2+a). Substituting it to (2.5) and resolving obtained factor system, we have
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the following invariant solution:

u= ξ1/2+a
[
C1 I−a−1/2

(√
ξη
)

+C2 K−a−1/2

(√
ξη
)]

,

v = η1/2−a
[
C1 I−a+1/2

(√
ξη
)

+C2 K−a+1/2

(√
ξη
)]

,
(2.11)

where Iν(x), Kν(x) are the Bessel functions of the first and the second kind of an imaginary
argument, C1, C2 are arbitrary constants.

If a is an integer number, then the solution is expressed by the elemental functions.
For example, if a= 0, then

u=
(
C1e
√
ξη +C2e−

√
ξη
)

√
η

, v =
(
−C1e

√
ξη +C2e−

√
ξη
)

√
ξ

. (2.12)

(2) 〈∂x1 + aX3〉. For convenience, let us make the change of variable σ + k tan2α= σ̃ in
the system (2.1). After the deleting of the tilde, the operator X3 takes the form X3 = σ∂σ .

Let us take F = 1, G= 0 as the solution of the system (2.8), and let us construct the in-
variant solution on the subalgebra ∂x1 +aX3. The form of the solution is σ=exp(ax1)χ(x2),
φ = φ(x2). Substituting this form to (2.1) and resolving the corresponded factor system,
we will obtain the invariant solution

x2 +C1 = cos2α

asin2 2α
(2φcos2α− sin2φ), σ = C2 exp

(
ax1 + cos2φ

)
. (2.13)

This invariant solution is an analog of Prandtl’s solution of ideal plane plasticity and
can be interpreted as a compression of the thin layer of free-flowing (granular) media by
two parallel plates. The corresponding characteristic lines (slip lines on the theory of the
plane plasticity) have the form

ax1 =±2φcot2α+
cos2α

asin2 2α
cos2φ+ const,

x2 = 2φcot2 2α− cos2α

asin2 2α
sin2φ.

(2.14)

(3) 〈aX3 +X4〉. The system (1.5) with Coulomb’s condition τ = σ cos2α+ k sin2α has
the form

r(1 + cos2αcos2ψ)σr + cos2αsin2ψσθ

= 2(σ cos2α+ sin2αk)
(
r sin2ψψr − cos2ψ

(
ψθ + 1

))
,

r cos2αsin2ψσr + (1− cos2αcos2ψ)σθ

=−2(σ cos2α+ sin2αk)
(
r cos2ψψr + sin2ψ

(
ψθ + 1

))
.

(2.15)

The operator X4 in polar coordinates {r,ϕ} looks like X4 = r∂r . The form of invariant
solution is σ = raχ(ϕ), ψ = ψ(ϕ). Resolving the corresponding factor system, taking ψ a
new independent variable, and denoting ν = (asin2 2α)/(2cos2α)− cos2α, we have the
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invariant solution of (2.15):

ϕ−C1 =−ψ +
(1 + cos2α)

2tanψ
(ν= 1),

ϕ−C1 = cos2α+ ν√
1− ν2

arccot

(√
ν− 1
ν + 1

tanψ

)

−ψ (ν > 1),

ϕ−C1 = cos2α+ ν√
1− ν2

arctanh

(√
1− ν

1 + ν
tanψ

)

−ψ (ν < 1).

(2.16)

The second function looks like χ = C2|cos2ψ + ν|a/2. These integrals where obtained by
Sokolovsky [9].

The corresponding characteristic lines have the form

raχ exp
(∓ (ϕ+ψ)cot2α

)= const . (2.17)

This solution contains two arbitrary constants and permits to investigate the limit equi-
librium of weightless wedge of ideal-granular media, when the stress is distributed by the
potential law.

(4) 〈X2 + aX3 + bX4〉. The operator X2 in polar coordinates has the form X2 = ∂ϕ. The
form of invariant solutions is σ = exp(bϕ)χ(t), ψ = ψ(t), t = r exp(−αϕ). From the cor-
responding factor system, it follows that one can find the functions ψ, χ by quadratures
from the system of ODE:

t
dψ

dt
= acos2ψ + sin2ψ− acos2α+ b/2sin2α tan2α
(
a2− 1

)
cos2ψ + 2asin2ψ− (a2 + 1

)
cos2α

,

dχ

dψ
=− χ

(
ab(cos2α− cos2ψ)− b sin2ψ− 2cos2α

)

a(cos2ψ− cos2α) + sin2ψ + b/2sin2α tan2α
.

(2.18)

This solution can be used for description of plastic flow in curvilinear channel bounded
by logarithmic spirals.

3. Angular anisotropy

In the case when τ = τ(θ) (“angular anisotropy”) the system (1.4) has the form

σx1 − θx1 (τ sin2θ)′θ + θx2 (τ cos2θ)′θ = 0,

σx2 + θx1 (τ cos2θ)′θ + θx2 (τ sin2θ)′θ = 0,
(3.1)

and is a hyperbolic one for any form of the function τ; such kind of dependence is used
widely in the mathematical theory of plasticity [5]. Further we will investigate the system
(3.1).

The group analysis of the system (3.1) gives the following results.
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3.1. τ(θ) is an arbitrary function. In this case Lie algebra has the form Lk = L2⊕L∞:

L2 =
〈
X3,X4

〉= 〈∂σ ,x1∂x1 + x2∂x2

〉
,

L∞ =
〈
X∞
〉= 〈h1(σ ,θ)∂x1 +h2(σ ,θ)∂x2

〉
,

(3.2)

where h1(σ ,θ), h2(σ ,θ) is any solution of the system

h1
θ = h1

σ(τ sin2θ)′ −h2
σ(τ cos2θ)′,

h2
θ =−h1

σ(τ cos2θ)′ −h2
σ(τ sin2θ)′.

(3.3)

3.2. τ = 1/ sin2θ. After appropriate calculus, we conclude that Lie algebra of symmetries
of the system (3.1) with such form of dependence is formed by the following operator:

Y∞ = ( f + g)∂x1 + ( f − g)∂x2 +

(
η2 +η1

)

2
∂σ +

sin2 2θ
(
η2−η1

)

4
∂θ , (3.4)

where f (x1,x2,T), g(x1,x2,S), η1(x1,x2,S), η2(x1,x2,T) is any solution of the linear system
(S= σ + cot2θ, T = σ − cot2θ):

fx1 − fx2 = 0, gx2 − gx1 = 0,

η1
x1

+η1
x2
= 0, η2

x1
−η2

x2
= 0.

(3.5)

Such kind of dependence of τ has not a mechanic sense because of the presence of singular
points; therefore we will not investigate this case.

3.3. If τ is any solution of classification equationA=w′ + τ′(2w− 1)/τ = const�= 0, then
we have two additional operators to the L2 of the kernel (3.2):

X1 =
[
x1
(−w(τ sin2θ)′ −Aσ)

2
+
(

− σ +
w(τ cos2θ)′

2

)

x2

]

∂x1

+
[(

σ +
w(τ cos2θ)′

2

)

x1 +
x2
(
w(τ sin2θ)′ −Aσ)

2

]

∂x2

+

[
Aσ2 +w2

(
4τ2 + τ′2

)
/A
]

2
∂σ + σw∂θ ,

X2 =−x2∂x1 + x1∂x2 +Aσ∂σ +w∂θ , w(θ)= 4τ2 + τ′2

4τ2 + 2τ′2− ττ′′ .

(3.6)

Nonzero commutators of Lie algebra are

[
X2,X1

]= AX1,
[
X4,X1

]= AX2− A2

2X3
,

[
X4,X2

]= AX4. (3.7)

Without loss of generality, let A= 1. Using the classic method of classification of non-
conjugate subalgebras [7], it is easy to demonstrate that optimal system of one-dimen-
sional subalgebras looks like

Θ1 :
〈
X1 +βX4 +αX3

〉
, β = {0,1}, 〈

X2 +αX3
〉

,
〈
X3
〉

, α= const . (3.8)
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Brief analysis of Θ2 shows that there are no interesting invariant solutions. From Θ1, all
subalgebras satisfy to the necessary condition of the existence of invariant solution. The
specification of an arbitrary element is τ = eCθ , this form of τ could be taken as a criterion
for anisotropic material because it is reduced to von Mises’ law when the anisotropy is
vanishing small. The corresponding factor system is obtained by substituting this form of
τ and the form of invariant solution to (3.1). Let us consider some of them.

(1) Let β = 0 for the first subalgebra of Θ1, that is, subalgebra has the form H1 =
〈X1 +αX3〉. Here we can apply the procedure like the one in Section 2.1. Let C = 2, pass-
ing to characteristic coordinates ξ = σ − e2θ

√
2, η = σ + e2θ

√
2, applying hodograph trans-

formation, and changing of variables

u= x1 cos
(

θ− π

8

)

+ x2 sin
(

θ− π

8

)

,

v =−x1 sin
(

θ− π

8

)

+ x2 cos
(

θ− π

8

)

,
(3.9)

the initial system (3.1) is reduced to the following one:

uξ = v
(
2(ξ −η)

) , vη = u
(
2(ξ −η)

) . (3.10)

For the system (3.10), the invariant solution looks like

u= e−α/ηû(t)
η

, v = e−α/ξ v̂(t)
ξ

, t = (η− ξ)
(ξη)

. (3.11)

From the corresponding factor system of ODEs, one can obtain the general form of û:

û(t)= C1 W−1/2,i/2(αt)t−1/2e(α/2)t +C2
√
te−(α/2)t

[

I(i−1)/2

(
αt

2

)

+ I(1+i)/2

(
αt

2

)]

, (3.12)

where Wμ,ν(z) is the Whittaker function and Iν(x) is the Bessel function of the first kind
[1]. The function v is reconstructed from (3.10).

When α= 0, the solution takes the simple form

û(t)= C1 cos
(

ln
√
t
)

+C2 sin
(

ln
√
t
)
, v̂(t)=−C1 sin

(
ln
√
t
)

+C2 cos
(

ln
√
t
)
.

(3.13)

(2) SubalgebraH2 = 〈X3〉 in polar coordinates {r,ϕ} has the form 〈r∂r〉, and the initial
system (3.1) looks like

rσr − rθr(τ sin2θ)′ + θϕ(τ cos2θ)′ = 2τ sin2θ,

σϕ + rθr(τ cos2θ)′ + θϕ(τ sin2θ)′ = −2τ cos2θ.
(3.14)

Invariant solution has the form σ = σ(ϕ), θ = θ(ϕ). After substituting this form of so-
lution to the system (3.14), we can determine it by quadratures from the corresponding
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factor system:

θ′(C cos2θ− 2sin2θ)= 2sin2θ,

σ ′ + θ′τ(C sin2θ + 2cos2θ)=−2τ cos2θ.
(3.15)

(3) Let us take solution of the system (3.3) in the form h1 = 1, h2 = 0. Then X∞ = ∂x1 .
Let us consider subalgebra 〈∂x1 + α∂σ〉. The invariant solution has the form σ = σ(x2) +
αx1, θ = θ(x2). Resolving correspnding factor system, we obtain that

σ =−eCθ sin2θ +αx1 +C2, x2 = −e
Cθ

α
cos2θ +C1, (3.16)

which is an analog of the well-known solution of Prandtl for a plastic region in a thin
block compressed between perfectly rough plates. Here the constant 2/α plays the role of
the height of the block.

The corresponding characteristics are (for C = 2)

x1 = ∓
√

2tan2 θ(tanθ + 1)± (2∓√2
)
(tanθ− 1)

2
(

tan2 θ + 1
)(

tanθ + 1±√2
) +Ki, Ki = const,

x2 =−e
2θ

α
cos2θ.

(3.17)

3.4. If A= 0, then we need to add two operators to L2 of the kernel Lk:

X1 =
[−x1w(τ sin2θ)′

2
+ x2

(

− σ +
w
(
τ cos2θ)′

2

)]

∂x1

+
[

x1

(

σ +
w(τ cos2θ)′

2

)

+
x2w(τ sin2θ)′

2

]

∂x2 +
[

K
∫
dθ

w

]

∂σ + σw∂θ ,

X2 =−x2∂x1 + x1∂x2 +w∂θ , K =w2(4τ2 + τ′2
)= const > 0.

(3.18)

The representative is τ = 1/(cos2θ +
√

1 + cos2 2θ). Such kind of the function τ could be
used for description of some materials because it is not equal to zero for any θ.

In this case, the nonzero commutators are: [X2,X1]= KX4, [X4,X1]= X2, and Lie al-
gebra is a solvable one. The optimal system of nonsimilar one-dimensional subalgebras
looks like

Θ1 :
〈
X1 +αX3

〉
,
〈
X4 +αX3

〉
,
〈
X2 +βX4 +αX3

〉
,
〈
X3
〉

, β2 = {K ,0}, α= const . (3.19)

(1) To construct the invariant solution for the subalgebra H1 = 〈X1 + αX3〉 as in a
previous case for any form of τ, we have to pass to characteristic variables and make
hodograph transformations, because of complicity of operator X1 in terms of original
variables.

(2) In polar coordinates, the subalgebraH2 = 〈X4 +αX3〉 looks like 〈∂σ +αr∂r〉. Invari-
ant solution has the form σ = σ(ϕ) + lnr1/α, θ = θ(ϕ), α�= 0. If α= 0, there is no invariant
solution.
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(3) For subalgebra H3 = 〈X2 +βX4 +αX3〉 in polar system of coordinates one can find
the form of invariant solution from

σ = σ(re−αϕ)+βϕ,
∫
dθ

w
= θ(re−αϕ)+ϕ. (3.20)

Here it should be noted for the other specification τ = 2k cos2θ by change of variables
θ = θ̄/2 that the initial system (3.1) is reduced to the system of isotropic plasticity (τ =
k = const). One can construct the analogs of all known invariant solutions.
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DYNAMICS OF A DISCONTINUOUS PIECEWISE LINEAR MAP

V. L. KOCIC

Our aim in this paper is to investigate the global asymptotic behavior, oscillation, and
periodicity of positive solutions of difference equation: xn+1 = (a− bh(xn− c))xn, where
a, b, and c are positive constants such that 0 < b < 1 < a < b+ 1, h is Heaviside function
and the initial condition is nonnegative. The above equation appears in the discrete model
of West Nile epidemics when the spraying against mosquitoes is conducted only when the
number of mosquitoes exceeds some predefined threshold level.

Copyright © 2006 V. L. Kocic. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

In this paper we study the global asymptotic behavior, oscillation, and periodicity of pos-
itive solutions of the following difference equation:

xn+1 =
(
a− bh(xn− c

))
xn, (1.1)

where x0 ≥ 0, a, b, and c are positive constants such that

0 < b < 1 < a < b+ 1, (1.2)

and h is Heaviside function:

h(t)=
⎧
⎨

⎩

0 if t < 0,

1 if t ≥ 0.
(1.3)

The motivation for studying the dynamics of (1.1) comes from the discrete model of
the West Nile-like epidemics [1, 5]. The model consists of a system of twelve nonlin-
ear difference equations and it describes the spread of epidemics among population of
mosquitoes, birds, and humans. One of the equations which describes the total number

Hindawi Publishing Corporation
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of mosquitoes is

TM(n+ 1)= (1 + rm−dm− s(n)
)
TM(n), (1.4)

where TM(n) denotes the number of mosquitoes in the week n, rm and dm are mosquito
birth rate and death rate, respectively, and s(n) is a spraying function representing the rate
of mosquito deaths due to spraying. Assuming that the spraying will occur in the week n
if the total population of mosquitoes in the same week exceeds the threshold level T and
that the death rate due to spraying is constant S (when spraying is applied) we arrive to
the following model:

TM(n+ 1)= (1 + rm−dm− Sh
(
TM(n)−T))TM(n). (1.5)

Clearly 1 + rm − dm > 1, 0 < S < 1, 1 + rm − dm − S > 0. By putting xn = TM(n), a = 1 +
rm−dm, b = S, and c = T , we obtain (1.1).

The map f (x)= (a− bh(x− c))x is a piecewise linear discontinuous map, so standard
techniques for studying the dynamics of one-dimensional maps could not be directly
applied. Discontinuous maps have applications in neural networks [4, 3, 8, 9] and in
flip-flop processes in the Lorenz flow [6, 7].

A sequence {xn} is said to oscillate about zero or simply to oscillate if the terms xn
are neither eventually all positive nor eventually all negative. Otherwise the sequence is
called nonoscillatory. A sequence {xn} is said to oscillate about x̄ if the sequence {xn− x̄}
oscillates. A positive semicycle of {xn} with respect to x̄ consists of a “string” of terms
C+ = {xl+1,xl+2, . . . ,xm}, such that xi ≥ x̄ for i = l + 1, . . . ,m with l ≥ −k and m ≤∞ and
such that either l = −k or l ≥ 0 and xl < x̄ and either m = ∞ or m <∞ and xm+1 < x̄.
A negative semicycle of {xn} with respect to x̄ consists of a “string” of terms C− = {xj+1,
xj+2, . . . ,xl}, such that xi < x̄ for i= j + 1, . . . , l, with j ≥−k and l ≤∞ and such that either
j =−k or j ≥ 0 and xj ≥ x̄ and either l =∞ or l <∞ and xl+1 ≥ x̄. The first semicycle of a
solution starts with the term x0 and is positive if x0 ≥ x̄ and negative if x0 < x̄. A solution
may have a finite number of semicycles or infinitely many.

In recent years, the study of semicycles of oscillatory solutions played an important
role in the analysis of asymptotic behavior of solutions of nonlinear difference equations.
In particular the analysis of the length and position of extreme terms in semicycles led
to a number of results about the global asymptotic stability and attractivity in nonlinear
difference equations (see, e.g., [2]). In the context of the West Nile epidemics model, the
semicycles of the number of mosquitoes {TM(n)} with respect to the threshold T have a
very important practical meaning. Namely, the positive semicycles correspond to weeks
when the spraying is applied, while the negative semicycles correspond to weeks when
there are no spraying. So, the goal in controlling the epidemics is to maximize the length
of negative semicycles and minimize the length of positive semicycles or to minimize
spraying.

2. Boundedness and persistence

The following technical lemma will be useful in the sequel.
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Lemma 2.1. Assume (1.2) holds and let

f (x)= (a− bh(x− c))x, (2.1)

where h is the Heaviside function. Then the following statements are true.
(i) x̄ = 0 is the only nonnegative equilibrium of (1.1).

(ii) xn = 0, for all n= 0,1, . . ., if and only if x0 = 0.
(iii) f is discontinuous at x = c.
(iv) f satisfies the negative feedback condition:

(
f (x)− x)(x− c) < 0 for x > 0, x �= c. (2.2)

Proof. The proof is omitted. �

The next result establishes the existence of an invariant interval for f .

Theorem 2.2. Assume (1.2) holds and let f be defined by (2.1). Then the following state-
ments are true.

(i) The interval

I = [(a− b)c,ac
]

(2.3)

is invariant under f ; that is, f ([(a− b)c,ac])⊆ [(a− b)c,ac].
(ii) Equation (1.1) does not have positive convergent solutions.

(iii) All positive solutions of (1.1) become trapped in an interval I .
(iv) Equation (1.1) is permanent.

Proof. (i) From (1.2) it follows that (a− b)ac ∈ [(a− b)c,ac]. If x ∈ [(a− b)c,c), then
f (x)∈ [(a− b)ac,ac)⊆ [(a− b)c,ac]. Similarly, if x ∈ [c,ac], then f (x)∈ [(a− b)c, (a−
b)ac)⊆ [(a− b)c,ac] and the proof of part (i) is complete.

(ii) Assume, for the sake of contradiction, that {xn} is a positive convergent solution of
(1.1). Then limn→∞ xn = x ≥ 0. If x = 0, then for sufficiently large n, 0 < xn < c, for n > N0.
Furthermore, we get xn+1 = axn > xn, and that is, impossible since {xn} converges to 0.
Let x > 0. If 0 < x < c, for sufficiently large n, we have xn+1 = axn, and x = ax which is
a contradiction. The case when x > c is similar. So it remains the case when x = c. Let
{x′k} and {x′′k } be subsequences of {xn} such that x′k < c, and x′′k ≥ c. Clearly limk→∞ x′k =
limk→∞ x′′k = c and at least one of these two subsequences has infinite number of terms.
Then at least one of the following two conditions must be satisfied:

c = ac or c = (a− b)b (2.4)

and this is impossible.
(iii) Assume, for the sake of contradiction, that {xn} is a positive solution of (1.1)

which is not trapped in an invariant interval I = [(a− b)c,ac]. Then, for every n, xn /∈ I .
Let {x′k} and {x′′k } be subsequences of {xn} such that x′k < (a− b)c, and x′′k > ac. Clearly,
at most one of the subsequences {x′k} and {x′′k } may have only a finite number of terms
or no terms at all. Assume that {x′′k } has a finite number of terms. Then, for sufficiently
large n, xn < (a− b)c. Then xn+1 = axn > xn, and the sequence {xn} converges, which is
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a contradiction. The similar conclusion follows in the case when {x′k} has only a finite
number of terms. So the remaining case is when both {x′k} and {x′′k } have infinitely many
terms. Let xm < (a− b)c and xm+1 > ac. Then xm+1 = axm < ac(a− b) and ac < ac(a− b)
or a > b+ 1. This contradicts (1.2) and the proof of part (iii) is complete.

(iv) This part directly follows from (i) and (iii). The proof of the theorem is complete.
�

3. Oscillation

In this section we study the oscillation character of solution of (1.1). First, we will consider
the sequences {αn} and {βn} defined as

αk is the unique root in (1,b+ 1) of fk(x)= xk(x− b)− 1; (3.1)

βk is the unique root in (b,b+ 1) of gk(x)= x(x− b)k − 1. (3.2)

Clearly, since fk(1)=−b < 0, fk(b+ 1)= (b+ 1)k − 1 > 0, gk(b)=−1 < 0, gk(b+ 1)= b >
0, and fk, gk are increasing on (b,∞), it follows that indeed both fk and gk have unique
roots in (b,∞). The next lemma establishes some properties of sequences {αn} and {βn}.
Lemma 3.1. Assume (1.2) holds and let {αn} and {βn} be defined by (3.1) and (3.2), respec-
tively. Then the following statements are true.

(i) α1 = β1 = (b+
√
b2 + 4)/2.

(ii) {αn} is a decreasing sequence and {βn} is an increasing sequence.
(iii)

lim
n→∞αn = 1, lim

n→∞α
n
n =

1
1− b , lim

n→∞βn = b+ 1, lim
n→∞

(
βn− b

)n = 1
1 + b

. (3.3)

Proof. (i) It follows from the fact that f1(x)= g1(x)= x(x− b)− 1.
(ii) Since fk+1(x) = xk+1(x − b) − 1 = x( fk(x) + 1) − 1, we obtain fk+1(αk) =

αk( fk(αk) + 1)− 1 = αk − 1 > 0. The function fk+1 is increasing and fk+1(αk+1) = 0, so
we have αk+1 < αk. The proof that {βn} increases is similar and will be omitted.

(iii) The sequence {αn} is bounded and therefore convergent. Let

lim
n→∞αn = α≥ 1. (3.4)

Assume α > 1. Then, there is ε > 0, such that for sufficiently large n, αn > α− ε > 1. Hence
αnn > (α− ε)n, and limn→∞αnn =∞. On the other hand, fn(αn) = 0 implies αnn = 1/(αn −
b) wherefrom follows limn→∞αnn = 1/(α− b) which is impossible. Therefore, α = 1 and
limn→∞αnn = 1/(1− b). Similarly one may prove the remaining part of the lemma. �

Lemma 3.2. Assume (1.2) holds. Then all positive solutions of (1.1) strictly oscillate about c.

Proof. Otherwise, there exists a nonoscillatory solution {xn}. Assume xn < c for suffi-
ciently large n. Then xn+1 = axn > xn and {xn} converges which is impossible. The case
when xn ≥ c for sufficiently large n is similar. �
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The following theorem represents a “trichotomy” result about the semicycles of length
one for (1.1).

Theorem 3.3. Assume (1.2) holds and let {xn} be a positive solution of (1.1). Then the
following statements are true.

(i) If a > (b+
√
b2 + 4)/2, then every negative semicycle relative to c, except perhaps the

first one, has exactly one term.
(ii) If a < (b+

√
b2 + 4)/2, then every positive semicycle relative to c, except perhaps the

first one, has exactly one term.
(iii) If a= (b+

√
b2 + 4)/2, then every semicycle relative to c, except perhaps the first one,

has exactly one term.

Proof. We will consider only the case when a ≥ (b+
√
b2 + 4)/2. Clearly (i) and the part

of (iii) follow from this case. The proof in the case a≤ (b+
√
b2 + 4)/2, which implies (ii)

and the remaining part of (iii) is similar and will be omitted.
Let xk be the last term in a positive semicycle such that xk ∈ [c,c/(a− b)) ⊂ [c,ac].

Then xk+1 = (a− b)xk ∈ [(a− b)c,c) ⊂ [c/a,c) belongs to a negative semicycle. Further-
more, xk+2 = axk+1 ∈ [c,ac) so it belongs to a positive semicycle. To complete the proof it
remains to show that the last term of any positive semicycle always belongs to the interval
[c,c/(a− b)). Assume, for the sake of contradiction, that xk ∈ [c/(a− b),ac] be the last
term of a positive semicycle. Then xk+1 = (a− b)xk ∈ [c,a(a− b)c]⊂ [c,ac] also belongs
to the positive semicycle. This is a contradiction and the proof is complete. �

Next, we will further study the semicycles of solutions of (1.1).

Lemma 3.4. Assume (1.2) holds and let

αk+1 < a < αk for some positive integer k. (3.5)

Furthermore, let {pi}k+1
i=0 and {qi}k+1

i=0 be finite sequences defined by

pi = c(a− b)ai, qi = ca−k+i, i= 0,1, . . . ,k+ 1, (3.6)

and let

Pi =
[
pi,qi

)
, i= 0, . . . ,k+ 1, Qi =

[
qi, pi+1

)
, i= 0, . . . ,k. (3.7)

Then the following statements are true.
(i) p0 = c(a− b), qk = c, qk+1 = ac, so the invariant interval for (1.1) is I = [p0,qk+1].

(ii) For fk is defined by (3.1):

fk(a)= ak(a− b)− 1 < 0, fk+1(a)= ak+1(a− b)− 1 > 0. (3.8)

(iii) pi < qi < pi+1 < qi+1 for i= 0,1, . . . ,k.
(iv) Pi∩Qj =∅, i�= j and (

⋃k+1
i=0 Pi)∪ (

⋃k
i=0Qi)∪{qi+1} = I .
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Proof. Part (i) follows directly from (3.6). From (3.1) it follows that fk(x) < 0, for 1 <
x < αk, and fk(x) > 0, for αk < x < b+ 1, which implies (ii). Since pi < qi is equivalent to
fk(a) < 0, and qi < pi+1 is equivalent to fk+1(a) > 0, so (iii) follows. Finally, (iv) follows
from (i)–(iii) and (3.7). �

Lemma 3.5. Assume (1.2), (3.5) hold and let the sequences {pi}k+1
i=0 and {qi}k+1

i=0 and intervals
Pi, Qi be defined by (3.6) and (3.7), respectively. Let {xn} be a positive solution of (1.1), then
the following statements are true.

(i) If xn ∈ Pi, then xn+1 ∈ Pi+1, i= 0,1, . . . ,k.
(ii) If xn ∈Qi, then xn+1 ∈Qi+1, i= 0,1, . . . ,k− 1.

(iii) If xn ∈ Pk+1, then xn+1 ∈ P0∪Q0.
(iv) If xn ∈Qk, then xn+1 ∈ P0∪Q0.
(v) If xn ∈ P0, then

xn+i ∈ Pi ⊂
[
c(a− b),c

)
, i= 0,1, . . . ,k,

xn+k+1 ∈ Pk+1 ⊂ [c,ac),

xn+k+2 ∈ P0∪Q0 ⊂
[
c(a− b),c

)
, xn+k+2 > xn.

(3.9)

(vi) If xn ∈Q0, then

xn+i ∈Qi ⊂
[
c(a− b),c

)
, i= 0,1, . . . ,k− 1,

xn+k ∈Qk ⊂ [c,ac),

xn+k+1 ∈ P0∪Q0 ⊂
[
c(a− b),c

)
, xn+k+1 < xn.

(3.10)

(vii) If xn = qk+1, then xn+i = pi, i= 1, . . . ,k+ 1.

Proof. (i) Since pi ≤ xn < qi ≤ c, then xn+1 = axn and pi+1 = api ≤ xn+1 < aqi = qi+1.
(ii) The proof is similar to (i) and will be omitted.
(iii) Since c < c(a− b)ak+1 = pk+1 ≤ xn ≤ qk+1 = ac, then xn+1 = (a− b)xn and from

(3.8) it follows that p0 = c(a− b) < c(a− b)2ak+1 = (a− b)pk+1 ≤ xn+1 and xn+1 ≤ (a−
b)qk+1 = c(a− b)a= p1.

(iv) Similarly as in (iii), c = qk ≤ xn < pk+1 = c(a− b)ak+1 < ac and (3.8) imply that
xn+1 = (a − b)xn, p0 = c(a − b) = (a − b)qk ≤ xn+1, and xn+1 ≤ (a − b)pk+1 = c(a −
b)2ak+1 < c(a− b)a= p1.

(v) From (i) it follows that xn ∈ P0 implies xn+1 ∈ P1, xn+2 ∈ P2, . . . ,xn+k ∈ Pk, and
xn+k+1 ∈ Pk+1. Furthermore, from (iii) we get xn+k+2 ∈ P0∪Q0. Since xn, . . . ,xn+k < c and
xn+k+1 > c, we get

xn+k+2 = ak+1(a− b)xn > xn. (3.11)

The proof of (vi) is similar to (v) and is omitted. Finally, (vii) follows directly from the
definition of {pi}k+1

i=0 and {qi}k+1
i=0 . �

The following two lemmas are analog to Lemmas 3.4 and 3.5 and we formulate them
without proof.
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Lemma 3.6. Assume (1.2) holds and let

βk < a < βk+1 for some positive integer k. (3.12)

Furthermore, let {ri}k+1
i=0 and {si}k+1

i=0 be finite sequences defined by

ri = c(a− b)−k+i, si = ca(a− b)i, i= 0,1, . . . ,k+ 1, (3.13)

and let Ri = [ri,si), i= 0, . . . ,k+ 1 and Sj = [s j+1,r j), j = 0, . . . ,k.
Then the following statements are true.

(i) rk+1 = c(a− b), rk = c, s0 = ac, so the invariant interval for (1.1) is I = [rk+1,s0].
(ii) For gk is defined by (3.2),

gk(a)= a(a− b)k − 1 > 0,

gk+1(a)= a(a− b)k+1− 1 < 0.
(3.14)

(iii) ri+1 < si+1 < ri < si for i= 0,1, . . . ,k.
(iv) Ri∩ Sj =∅, i�= j, and (

⋃k+1
i=0 Ri)∪ (

⋃k
i=0 Si)∪{s0} = I .

Lemma 3.7. Assume (1.2), (3.12) hold and let the sequences {ri}k+1
i=0 and {si}k+1

i=0 be defined
by (3.13). Let {xn} be a positive solution of (1.1), then the following statements are true.

(i) If xn ∈ Ri, then xn+1 ∈ Ri+1, i= 1, . . . ,k+ 1.
(ii) If xn ∈ Si, then xn+1 ∈ Si+1, i= 1, . . . ,k.

(iii) If xn ∈ Rk+1, then xn+1 ∈ R0∪ S0.
(iv) If xn ∈ Sk, then xn+1 ∈ R0∪ S0.
(v) If xn ∈ R0, then

xn+i ∈ Ri ⊂ [c,ac), i= 0,1, . . . ,k,

xn+k+1 ∈ Rk+1 ⊂
[
c(a− b),c

)
,

xn+k+2 ∈ R0∪ S0 ⊂ [c,ac), xn+k+2 < xn.

(3.15)

(vi) If xn ∈ S0, then

xn+i ∈ Si+1 ⊂ [c,ac), i= 0,1, . . . ,k− 1,

xn+k ∈ Sk ⊂
[
c(a− b),c

)
,

xn+k+1 ∈ R0∪ S0 ⊂ [c,ac), xn+k+1 > xn.

(3.16)

(vii) If xn = s0, then xn+i = si, i= 1, . . . ,k+ 1.

The following theorem follows directly from Lemmas 3.5 and 3.7.
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Theorem 3.8. Assume (1.2) holds and let {xn} be a positive solution of (1.1). Then the
following statements are true.

(i) If (3.5) holds, then every positive semicycle, except perhaps the first one, has the
length one, and every negative semicycle, except perhaps the first one, has the length
equal to either k or k+ 1.

(ii) If (3.12) holds, then every negative semicycle, except perhaps the first one, has the
length one, and every positive semicycle, except perhaps the first one, has the length
equal to either k or k+ 1.

Theorem 3.9. Assume (1.2) holds and let {xn} be a positive solution of (1.1). Then the
following statements are true.

(i) If a = αk, then {xn} is eventually periodic with period k + 1. Moreover, every pos-
itive semicycle, except perhaps the first one, has the length one, and every negative
semicycle, except perhaps the first one, has the length k.

(ii) If a = βk, then {xn} is eventually periodic with period k + 1. Moreover, every neg-
ative semicycle, except perhaps the first one, has the length one, and every positive
semicycle, except perhaps the first one, has the length k.

Proof. We will prove only the part (i). The proof of the part (ii) is similar and will be
omitted. Since every solution of (1.1) becomes eventually trapped in an invariant interval
I , we need only to show xk+1 = x0, for every x0 ∈ I . Since a= αk, then ak(a− b)= 1 and
we have I = (

⋃k−1
i=0 [cai(a− b),cai+1(a− b)))∪ [c,ca]. Without loss of generality, we may

assume x0 ∈ [c(a− b),ca(a− b)). Then

x1 = ax0 ∈
[
ca(a− b),ca2(a− b)

)
,

x2 = a2x0 ∈
[
ca2(a− b),ca3(a− b)

)
,

...

xk−1 = ak−1x0 ∈
[
cak−1(a− b),cak(a− b)

)= [cak−1(a− b),c
)
,

xk = akx0 ∈ [c,ca).

(3.17)

Finally, xk+1 = (a− b)xk = ak(a− b)x0 = x0 and the proof is complete. �

4. Computer simulation

The previous results are illustrated with some computer simulations displayed in Figures
4.1 and 4.2. Table 4.1 contains numerical values for the first ten terms of both sequences
{αn} and {βn} when b = 0.6.

Software Phaser 2.1 was used for computer simulations and to generate time series
graph representing first 100 terms of the sequence {xn} and corresponding stair case dia-
grams. Two different values of the parameter a are used: a= 1.1 and a= 1.4. In both cases
b = 0.6 and c = 4. In the case a= 1.1, from Table 4.1, we find α8 < a < α7, so according to
Theorem 3.8(i), every positive semicycle, except perhaps the first one, has length 1, and
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6
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(b)

Figure 4.1. (a) Time series graph and (b) the stair case diagram for a= 1.1, b = 0.6, c = 4.

xn

8

n
100

(a)

y

6

x
6

(b)

Figure 4.2. (a) Time series graph and (b) the stair case diagram for a= 1.4, b = 0.6, c = 4.

Table 4.1

k 1 2 3 4 5 6 7 8 9 10

αk 1.344 1.2451 1.1914 1.1574 1.1338 1.1164 1.1031 1.0926 1.0840 1.0769

βk 1.344 1.4348 1.4779 1.5031 1.5197 1.5314 1.5402 1.5469 1.5523 1.5567

every negative semicycle, except perhaps the first one, has length either 7 or 8. Similarly
when a= 1.4, we have β1 < a < β2. Again, from Theorem 3.8(ii) it follows that every neg-
ative semicycle, except perhaps the first one, has length 1, and every positive semicycle,
except perhaps the first one, has length either 1 or 2.

Figure 4.3 contains typical bifurcation diagrams in the cases: (i) a and c are constants
and b varies; (ii) b and c are constants and a varies.
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xn

8

b
10.1

(a)

xn

8

a
1.61

(b)

Figure 4.3. Bifurcation diagrams for a= 1.1, b ∈ (0.1,1), c = 4 and a∈ (1,1.6), b = 0.6, c = 4.
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ASYMPTOTIC ANALYSIS OF TWO COUPLED
REACTION-DIFFUSION PROBLEMS

DIALLA KONATE

The current paper is a contribution to the attempt to have a systematic and mathemat-
ically rigorous method to solve singularly perturbed equations using asymptotic expan-
sions. We are dealing with a system of coupled and singularly perturbed second-order
evolution equations. This problem has not collected much efforts in the literature yet.
Starting from the classical outer expansion (the current problem exhibits two disjoint
boundary layers), using the Hilbert spaces approach, we develop a systematic and rigor-
ous method to construct a higher-order corrector which results in a uniform approxima-
tion solution to any prescribed order which is valid throughout the geometric domain of
interest, say Ω. To solve the given problem, the literature provides a dedicated numerical
method of Shiskin-type (cf. [9]). The system of equations under consideration is related
to actual problems arising in physics, chemistry, and engineering where the use of new
scientific instruments requires highly accurate approximation solutions which are out of
reach of known numerical methods. This makes it necessary and useful to develop analyt-
ical solutions which are easy to computerize. The author has developed and successfully
applied the strategy used in the current paper to various classes of problems (cf. [5–7]).
This strategy works very well on linear problems of all types thanks to the availability of
a priori estimates. In this regard the current paper is self-contained. For more on a pri-
ori estimates related to some other families of singularly perturbed problems, the reader
may refer to Gartland [2, 3], Geel [4]. The reader who is not very familiar with singular
perturbation may get some basics from Eckhaus [1], Lions [8], and O’Malley [10].

Copyright © 2006 Dialla Konate. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the problem

�εU(x)=

⎛

⎜
⎜
⎝

−ε d
2

dx2
0

0 −ε d
2

dx2

⎞

⎟
⎟
⎠U(x) +A(x)U(x)= F,

Hindawi Publishing Corporation
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U(0)= (
u1(0),u2(0)

)T
,

U(1)= (
u1(1),u2(1)

)T
,

(1.1)

where

A(x)=
⎛

⎝
a1,1(x) a1,2(x)

a2,1(x) a2,2(x)

⎞

⎠ ; U(x)=
(
u1(x)

u2(x)

)

;

F(x)=
(
f1(x)

f2(x)

)

.

(1.2)

We make the following assumptions:

ai, j(x)∈ C0(Ω), fi(x)∈ L2(Ω), i, j = 1,2;

0 < ε� 1;

a1,1(x) >max
[
1,
∣
∣a1,2(x)

∣
∣
]
, a2,2(x) >max

[
1,
∣
∣a2,1(x)

∣
∣
]
, x ∈Ω;

a1,2(x)≤ 0, a2,1(x)≤ 0, x ∈Ω.

(H .1)

Throughout this article, we assume that hypotheses (H .1) hold true.
We consider the usual Lebesgue space L2(Ω) equipped with the usual scalar product

and its associated norm which are

〈 f ,g〉 =
∫

Ω
f (x)g(x)dx; | f |L2 =

(∫

Ω

(
f (x)

)2
dx
)1/2

, (1.3)

while the space L2 = L2(Ω)×L2(Ω) is equipped with the following scalar product and its
associated norm:

〈〈F,G〉〉 = 〈
f1,g1

〉
+
〈
f2,g2

〉
; |F|2 =

∣
∣ f1

∣
∣

L2 +
∣
∣ f2

∣
∣

L2 , (1.4)

with F = ( f1, f2)T ∈ L2 and G = (g1,g2)T ∈ L2. The Sobolev space made of functions,
which together with their first derivatives (in the sense of distribution) are in L2(Ω), is
denoted H1(Ω) while H1 =H1(Ω)×H1(Ω). We also make use of the following notations:

H0 =
{
v ∈H1(Ω); v(0)= 0; v(1)= 0

}
;

V0 =
{
V ∈H1; V(0)= (0,0)T ; V(1)= (0,0)T

}
;

W0 =
{

V = (
v1,v2

)T ∈ L2;
d2

dx2
v1 ∈ L2(Ω);

d2

dx2
v2 ∈ L2(Ω)

}

.

(1.5)
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The spaces H1(Ω) and H1 are, respectively, equipped with the following norms:

‖ f ‖H1 =
⎡

⎣
(| f |L2

)2
+

(∣
∣
∣
∣
d

dx
f
∣
∣
∣
∣

L2

)2
⎤

⎦

1/2

,

‖F‖1 =
[(∥
∥ f1

∥
∥

H1

)2
+
(∥
∥ f2

∥
∥

H1

)2
]1/2

,

(1.6)

that is,

‖F‖1 =
⎡

⎣
(∣
∣ f1

∣
∣

L2

)2
+
(∣
∣
∣
∣
d

dx
f1

∣
∣
∣
∣

L2

)2

+
(∣
∣ f2

∣
∣

L2

)2
+

(∣
∣
∣
∣
d

dx
f2

∣
∣
∣
∣

L2

)2
⎤

⎦

1/2

. (1.7)

Under hypotheses (H .1), the following problem well posed in L2 is also of interest and is
called the formal limiting problem to (1):

AW = F. (1.8)

We set

� =

⎛

⎜
⎜
⎝

− d2

dx2
0

0 − d2

dx2

⎞

⎟
⎟
⎠ . (1.9)

We also define the following bilinear form:

�(Y ,V)= ε〈〈�Y ,V〉〉+ 〈〈AY ,V〉〉; Y ∈V0, V ∈V0. (1.10)

2. Existence of a unique solution U

We state the following theorem.

Theorem 2.1. Assume U(0)= (0,0)T and U(1)= (0,0)T . Then problem (1) has a unique
solution U ∈V0∩W0.

Proof of Theorem 2.1. Thanks to the classical Lax-Milgram theorem, to prove Theorem
2.1 it suffices to show that the bilinear form � defined by equation (1.10) is symmetric,
continuous, and coercitive.

Consider Y = (y1, y2)T and V = (v1,v2)T are two generic elements in V0 ∩W0. We
have

ε〈〈�Y ,V〉〉 = −ε
〈
d2

dx2
y1,v1

"

− ε
〈
d2

dx2
y2,v2

"

,

ε〈〈�Y ,V〉〉 = ε
〈
d

dx
y1,

d

dx
v1

"

+ ε
〈
d

dx
y2,

d

dx
v2

"

,

(2.1)
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which, thanks to the Schwarz inequality and the inequality |a| ≤ [|a|2 + |b|2]1/2, leads to

|ε〈〈�Y ,V〉〉| ≤ ε‖Y‖1‖V‖1. (2.2)

Then the same token leads to

〈〈AY ,V〉〉 = 〈
a1,1y1 + a1,2y2,v1

〉
+
〈
a2,1y1 + a2,2y2,v2

〉
, (2.3)

which goes to

|〈〈AY ,V〉〉| ≤ α‖Y‖1‖V‖1, (2.4)

where α=max[a1,1,a2,2] and a=maxx∈Ω |a(x)|. Put together, inequalities (2.2) and (2.4)
result in

∣
∣�(Y ,V)

∣
∣= ∣

∣ε〈〈�Y ,V〉〉+ 〈〈AY ,V〉〉∣∣≤ α‖Y‖1‖V‖1, (2.5)

where inequality (2.5) says that the bilinear form � is continuous.
For a typical element V = (v1,v2)T in V0∩W0, we have

ε〈〈�V ,V〉〉 = ε
∣
∣
∣
∣
d

dx
v1

∣
∣
∣
∣

2

L2
+ ε

∣
∣
∣
∣
d

dx
v2

∣
∣
∣
∣

2

L2
, (2.6)

〈〈AV ,V〉〉 =
∫

Ω
a1,1v

2
1 +

(
a1,2 + a2,1

)
v1v2 + av2

2dx, (2.7)

which implies

〈〈AV ,V〉〉 ≥ β
∫

Ω

(
v1− v2

)2
dx ≥ 0, (2.8)

where β =Min[a1,1,a2,2] where a(x)= infx∈Ω |a(x)|. Taking equalities (2.6) and inequal-
ity (2.8) into account, we get

ε〈〈�V ,V〉〉+ 〈〈AV ,V〉〉+ |V |22 ≥ ε‖V‖2
1. (2.9)

Inequality (2.9) says that the bilinear form � is coercitive. Therefore problem (1) has a
unique solution U ∈V0∩W0, and Theorem 2.1 is proved true. �

3. Existence of a boundary layer

We state the following theorem.

Theorem 3.1. (i) The solution W = (w1,w2)T to the formal limiting problem (1.8) is such
that

|W|2 ≤ β−1|F|2. (3.1a)

(ii) Assume U ∈V0∩W0. Then

|U|2 ≤ β−1|F|2,

‖U‖1 ≤ ε−1β−1|F|2.
(3.1b)
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(iii) Assume U ∈H1∩W0, and U /∈V0. Then

|U|2 ≤ β−1max[1,3α]
(|F|2 +

∣
∣U(0)

∣
∣+

∣
∣U(1)

∣
∣
)
,

‖U‖1 ≤ ε−1β−1max[1,3α]
(|F|2 +

∣
∣U(0)

∣
∣+

∣
∣U(1)

∣
∣
)
,

(3.1c)

where |U(x)| =max[|u1(x)|,|u2(x)|].

Proof of Theorem 3.1. We have

〈〈AW ,W〉〉 =
∫

Ω
a1,1w

2
1 +

(
a1,2 + a2,1

)
w1w2 + a2,2w

2
2dx. (3.2)

The quadratic integrand in the right-hand side term is such that

a1,1w
2
1 +

(
a1,2 + a2,1

)
w1w2 + a2,2w

2
2

= a1,1

[

w1 +

(
a1,2 + a2,1

)
w2

2a1,1

]2

+
[

a2,2−
(
a1,2 + a2,1

)

2a1,1

]

w2
2

≥
[

a2,2−
(
a1,2 + a2,1

)

2a1,1

]

w2
2 .

(3.3)

Since the coefficients a1,1 and a2,2 are playing similar roles in the quadratic form, then, by
using the same token, one gets

a1,1w
2
1 +

(
a1,2 + a2,1

)
w1w2 + a2,2w

2
2 ≥

[

a1,1−
(
a1,2 + a2,1

)

2a2,2

]

w2
1 . (3.4)

Since −(a1,2 + a2,1)≥ 0, then

[

a1,1−
(
a1,2 + a2,1

)

2a2,2

]

≥ a1,1 ≥ β,

[

a2,2−
(
a1,2 + a2,1

)

2a1,1

]

≥ a2,2 ≥ β.
(3.5)

So, putting together equations (3.3), (3.4), and (3.5) leads to

2〈〈AW ,W〉〉 ≥ 2β
∫

Ω

(
w2

1 +w2
2

)
dx, (3.6)

that is,

〈〈AW ,W〉〉 ≥ β|W|22. (3.7)

Applying the Schwarz inequality to the right-hand side term of the equality

〈〈AW ,W〉〉 = 〈〈F,W〉〉 (3.8)

leads to

〈〈AW ,W〉〉 ≤ |F|2|W|2. (3.9)
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From equations (3.7) and (3.9), we get

β|W|2 ≤ |F|2 (3.10)

which is inequality (3.1a).
Next, we have to show that points (ii) and (iii) of Theorem 3.1 hold true.
Consider the functions P(x)= (p1(x), p2(x))T , where

p1(x)= (
u1(1)−u1(0)

)
x+u1(0),

p2(x)= (
u2(1)−u2(0)

)
x+u2(0).

(3.11)

The function Y(x)=U(x)−P(x) is such that Y ∈|VAO∩W0. Y satisfies

ε�Y +AY = F − (a1,1p1(x) + a1,2p2(x), a2,1p1(x) + a2,2p2(x)
)T
. (3.12)

Multiplying this equality by a generic element V ∈V0∩W0, we get

ε〈〈�Y ,V〉〉+ 〈〈AY ,V〉〉 = 〈〈G,V〉〉, (3.13)

where

G= F − (a1,1p1(x) + a1,2p2(x), a2,1p1(x) + a2,2p2(x)
)T
. (3.14)

This variational equality remains valid when we set V = Y since Y ∈ V0 ∩W0. Taking
into account inequality (3.7), we have

〈〈G,Y〉〉 = ε〈〈�Y ,Y〉〉+ 〈〈AY ,Y〉〉,
〈〈AY ,Y〉〉 ≥ β|Y |22.

(3.15)

Applying the Schwarz inequality to the 〈〈AY ,Y〉〉, this chain of inequalities leads to

β|Y |22 ≤ 〈〈AY ,Y〉〉 ≤ |G|2|Y |2, (3.16)

which proves the first segment of (3.1b). The chain of inequalities above put together
with the coercitivity of � and an appropriate use of the Schwarz inequality (Y ∈V0 so |
〈〈G,Y〉〉| ≤ |G|2‖Y‖1) leads to

ε‖Y‖2
1 ≤

∣
∣〈〈G,Y〉〉∣∣≤ |G|2‖Y‖1, (3.17)

which achieves the proof of point (ii).
According to point (ii), since Y ∈V0∩W0, we have

|Y |2 ≤ β−1|G|2,

‖Y‖1 ≤ ε−1β−1|G|2,
(3.18)

in which we are going to evaluate |G|2 with

G= (
g1,g2

)T = F − (a1,1p1(x) + a1,2p2(x), a2,1p1(x) + a2,2p2(x)
)T
. (3.19)
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We have

∣
∣gi

∣
∣2

L2 ≤
∣
∣ fi

∣
∣2

L2 + 2α2(∣∣p1
∣
∣2

L2 +
∣
∣p2

∣
∣2

L2

)
,

∣
∣pi

∣
∣2

L2 ≤ 3
(∣
∣ui(0)

∣
∣2

+
∣
∣ui(1)

∣
∣2
)
.

(3.20)

These two inequalities, put together with the fact that the application x→√x is concave
over its domain of definition, lead to

|G|2 ≤max[3α,1]
(|F|2 +

∣
∣U(0)

∣
∣+

∣
∣U(1)

∣
∣
)
, (3.21)

where |U(x)| =max[|u1(x)|,|u2(x)|]. Then take inequality (3.21) into the system (3.18)
to prove point (iii) and achieve the proof of Theorem 3.1. �

We state the following theorem.

Theorem 3.2. (i) Assume W the solution to the formal limiting problem (1.8) is such that

W ∈H1,

W /∈V0∩W0,
(3.22)

then,

β|U −W|2 ≤
(
1 +αβ−1)|F|2. (3.23)

(ii) Assume W the solution to the formal limiting problem (1.8) is such that

W ∈H1∩W0. (3.24)

Then (U −W) converges strongly to zero in L2 and more precisely

β|U −W|2 ≤ ε
∣
∣
∣
∣
d2

dx2
W
∣
∣
∣
∣

2
,

‖U −W‖1 ≤
∣
∣
∣
∣
d2

dx2
W
∣
∣
∣
∣

2
.

(3.25)

Remark 3.3. The loss of the boundary conditions on W solution of the formal limiting
problem (1.8) causes the loss of its strong convergence to U solution to problem (1) all
over Ω. The subregion of the domain Ω, over which the loss of convergence occurs, is
called the boundary layer.

Proof of Theorem 3.2. We have

∀V ∈ L2; 〈〈AW ,V〉〉 = 〈〈F,V〉〉. (3.26)

Since (W −U)∈ L2, equality (3.26) is still valid when we set V =W −U to get

〈〈AW ,W −U〉〉 = 〈〈F,W −U〉〉, (3.27)
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that is,

〈〈A(W −U),W −U〉〉 = 〈〈F,W −U〉〉− 〈〈AU ,W −U〉〉. (3.28)

We make use of inequations (3.7) and the Schwarz inequality to get

β|U −W|22 ≤
[|F|2 +α|U|2

]|U −W|2, (3.29)

which combined with inequality (3.1b) results in inequality (3.23) and achieves the proof
of point (i) of Theorem 3.2.

If W ∈H1∩W0, then for any generic element V ∈H1∩W0, we have

〈〈�U ,V〉〉+ 〈〈AU ,V〉〉 = 〈〈F,V〉〉,
〈〈AW ,V〉〉 = 〈〈F,V〉〉 (3.30)

in which we set V = U −W before taking the difference between the two equations of
(3.30) to get

〈〈�U ,U −W〉〉+ 〈〈A(U −W),U −W〉〉 = 0, (3.31)

that is,

〈〈�(U −W),U −W〉〉+ 〈〈A(U −W),U −W〉〉 = −〈〈�W ,U −W〉〉. (3.32)

Making use of (2.6), inequations (3.7), and the Schwarz inequality, (3.32) leads to

ε‖U −W‖2
1 ≤ ε

∣
∣
∣
∣
d2

dx2
W
∣
∣
∣
∣

2
‖U −W‖1. (3.33)

This proves the second inequalities of the system (3.25).
In equality (3.32), since 〈〈�(U −W), U −W〉〉 ≥ 0, then we have

〈〈A(U −W),U −W〉〉 ≤ −〈〈�W ,U −W〉〉. (3.34)

Calling again inequalities (3.7) and the Schwarz inequality, we get from (3.34) that

β|U −W|22 ≤ ε
∣
∣
∣
∣
d2

dx2
W
∣
∣
∣
∣

2
|U −W|2 (3.35)

which is the first inequality of system (3.25). The proof of Theorem 3.2 is achieved. �

4. Weak corrector and thickness of the boundary layers

Consider the following regular function Θ(x)= (θ1(x),θ2(x))T , such that

θ1(x)= (
u1(0)−w1(0)

)
exp

(

− x√
ε

)

+
(
u1(1)−w1(1)

)
exp

(

− 1− x√
ε

)

,

θ2(x)= (
u2(0)−w2(0)

)
exp

(

− x√
ε

)

+
(
u2(1)−w2(1)

)
exp

(

− 1− x√
ε

)

.

(4.1)

We need to define the notion of threshold of acceptance and by the following definition.



Dialla Konate 583

Definition 4.1. A real constant η such that 0 < η� 1 and ε ln(η−1)� 1 is called a thresh-
old of acceptance if

∀x ∈ R; |x| ≤ η =⇒ x = 0. (4.2)

Remark 4.2. Set M = max[M1,M2] where M1 = max[|(u1(0) − w1(0))|, |(u2(0) −
w2(0))|]; M2 = max[|(u1(1)−w1(1))|, |(u2(1)−w2(1))|]; and Ωε = Ωε,0 ∪Ωε,1; Ωo =
Ω \Ωε whereΩε,0 = {x ∈Ω; x ≤√ε ln(Mη−1)} andΩε,1 = {x ∈Ω; 1− x≤√ε ln(Mη−1)}.

That is,

Ωε,0 =
{
x ∈Ω; 0≤ x ≤√ε ln

(
Mη−1)},

Ωε,1 =
{
x ∈Ω; 1−√ε ln

(
Mη−1)≤ x ≤ 1

}
.

(4.3)

Set xε =√ε ln(Mη−1).
With regard to Definition 4.1, we have

Θ(x)= (0,0)T ; x ∈Ωo,

Θ(0)= (
u1(0)−w1(0),u2(0)−w2(0)

)T
,

Θ(1)= (
u1(1)−w1(1),u2(1)−w2(1)

)T
.

(4.4)

We state the following theorem.

Theorem 4.3. In addition to hypotheses (H .1), assume

W ∈H1∩W0. (4.5)

Then the boundary-layer-type function Θ is such that

∣
∣U − (W +Θ)

∣
∣

2 ≤ Cε1/2, (4.6)

where C is a constant which is independent from ε.

Proof of Theorem 4.3. SetK1,1=u1(0)−w1(0);K1,2 = u1(1)−w1(1);K2,1 = u2(0)−w2(0);
K1,2 = u2(1)−w2(1).

By virtue of Remark 4.2, we have (U − (W+))(0)= (0,0)T . Then,

⎛

⎜
⎜
⎝

−ε d
2

dx2
0

0 −ε d
2

dx2

⎞

⎟
⎟
⎠
(
U − (W+)

)
(x) +A(x)

(
U − (W+)

)
(x)=G,

(
U − (W+)

)
(0)= (0,0)T ,

(
U − (W+)

)
(1)= (0,0)T ,

(4.7)

where G=−�W −�Θ−AΘ.
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Multiplying the first equation of system (4.7) by V ∈ V0 ∩W0, we get the following
expressions:

〈〈�(
U − (W +Θ)

)
,V〉〉+ 〈〈A(U − (W +Θ)

)
,V〉〉, (4.8)

−〈〈�W ,V〉〉− 〈〈�Θ,V〉〉− 〈〈AΘ,V〉〉 (4.9)

with expression (4.8)= expression (4.9). Expression (4.9) is equal to 〈〈G,V〉〉. Use the
properties of the bilinear form � established in Section 2 and the Schwarz inequality to
bound above expression (4.8) as follows:

∣
∣〈〈�W ,V〉〉+ 〈〈�Θ,V〉〉+ 〈〈AΘ,V〉〉∣∣

≤ ε
∣
∣
∣
∣
d2

dx2
W
∣
∣
∣
∣

2
|V |2 + ε

∣
∣
∣
∣
d2

dx2
Θ

∣
∣
∣
∣

2
|V |2 +α|Θ|2|V |2.

(4.10)

Both expression (4.8) and expression (4.10) remain valid when we set V = (U − (W +
Θ)) ∈ V0 ∩W0. Again, use the properties of the bilinear form �, to bound expression
(4.8) below to get

β|V |22 ≤ 〈〈�V ,V〉〉+ 〈〈AV ,V〉〉; V = (
U − (W +Θ)

)
. (4.11)

Putting together inequalities (4.10) and (4.11), we get

β
∣
∣
(
U − (W +Θ)

)∣
∣

2 ≤ ε
∣
∣
∣
∣
d2

dx2
W
∣
∣
∣
∣

2
+ ε

∣
∣
∣
∣
d2

dx2
Θ

∣
∣
∣
∣

2
+α|Θ|2. (4.12)

Each expression in the right-hand side of inequality (4.12) may be bounded as follows:

∣
∣
∣
∣
d2

dx2
Θ

∣
∣
∣
∣

2
≤
[∫ xε

0
ε−1M exp

(− xε−1/2)+
∫ 1

1−xε
ε−1M exp

(− xε−1/2)
]1/2

≤√2ε−1Mε1/4( ln
(
Mη−1))1/2

,

(4.13)

|Θ|2 ≤
[∫ xε

0
M exp

(− xε−1/2)+
∫ 1

1−xε
M exp

(− xε−1/2)
]1/2

≤Mε1/4( ln
(
Mη−1))1/2

.

(4.14)

Putting together inequalities (4.12), (4.13), and (4.14), we get

β
∣
∣
(
U − (W +Θ)

)∣
∣

2 ≤ C1ε
1/4, (4.15)

where C1 = 3max[1,α]M(ln(Mη−1))1/2 is a constant which is independent of ε, and
Theorem 4.3 is proved true with constant C = β−1C1 independent of ε. �

Definition 4.4. The boundary layer function Θ will be called a zero-order weak corrector
for problem (1). The common width of Ωε,0 and Ωε,1 is called the thickness of the bound-
ary layers Ωε,0 and Ωε,1, subsets of Ω over which the corrector is needed to secure a weak
convergence over Ω to zero of (U − (W +Θ)).
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5. Existence of an outer expansion

We need to explore the existence of an outer asymptotic solution to problem (1). Con-
sider a qth-order regular expansion to U , say U , such that U = (u1,u2)T = (

∑q
i=0 ε

iu1,i,∑q
i=0 ε

iu2,i)T . Set

�1Y =−ε d
2

dx2
y1 + a1,1y1 + a1,2y2,

�2Y =−ε d
2

dx2
y2 + a2,1y1 + a2,2y2,

Y = (
y1, y2

)T
,

(5.1)

and Ui = (u1,i,u2,i)T , so U =∑q
i=0 ε

iUi. We state the following theorem.

Theorem 5.1. For any given and arbitrary natural number q, there exists a qth-order outer
expansion U = (

∑q
i=0 ε

iu1,i,
∑q

i=0 ε
iu2,i)T to U such that the coefficient functions (u1,i,u2,i)T

satisfy

a1,1u1,0 + a1,2u2,0 = f1,

a2,1u1,0 + a2,2u2,0 = f2,

a1,1u1,i + a1,2u2,i = d2

dx2
u1,i−1,

a2,1u1,i + a2,2u2,i = d2

dx2
u2,i−1,

1≤ i≤ q.

(5.2)

Furthermore,

q∑

i=0

εi�1Ui = f1− εq+1 d
2

dx2
u1,q,

q∑

i=0

εi�2Ui = f2− εq+1 d
2

dx2
u2,q,

(5.3a)

or

�ε(U)= F − εq+1
(
d2

dx2
u1,q,

d2

dx2
u2,q

)T
, (5.3b)

and, consequently,

�1(U −U)= εq+1 d
2

dx2
u1,q, �2(U −U)= εq+1 d

2

dx2
u2,q, (5.4a)

or

�ε(U −U)= εq+1
(
d2

dx2
u1,q,

d2

dx2
u2,q

)T
. (5.4b)
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Proof of Theorem 5.1. Replace U with U in problem (1) and apply the classical WKB
principle in matching the alike power terms in the parameter ε. We get system (5.2).
Each coefficient function is solution of a two-by-two subsystem whose determinant is
det(A)= a1,1a2,2− a1,2a2,1. The fact that A is a strictly diagonal dominant matrix (cf. hy-
potheses (H .1)) secures det(A) > 0. This secures the existence of the coefficient functions
(u1,u2)T .

From system (5.2) we get

�1U0 =−ε d
2

dx2
u1,0 + a1,1u1,0 + a1,2u2,0 = f1− ε d

2

dx2
u1,0,

ε�1U1 = ε
[

− ε d
2

dx2
u1,1 + a1,1u1,1 + a1,2u2,1

]

= ε d
2

dx2
u1,0− ε2 d

2

dx2
u1,1,

ε2�1U2 = ε2
[

− ε d
2

dx2
u1,2 + a1,1u1,2 + a1,2u2,2

]

= ε2 d
2

dx2
u1,1− ε3 d

2

dx2
u1,2,

...

εi�1Ui = εi
[

− ε d
2

dx2
u1,i + a1,1u1,i + a1,2u2,i

]

= εi d
2

dx2
u1,i−1− εi+1 d

2

dx2
u1,i,

...

εq�1Uq = εq
[

− ε d
2

dx2
u1,q + a1,1u1,q + a1,2u2,q

]

= εq d
2

dx2
u1,q−1− εq+1 d

2

dx2
u1,q,

(5.5)

that is,

�1U0 = f1− ε d
2

dx2
u1,0,

ε�1U1 = ε d
2

dx2
u1,0− ε2 d

2

dx2
u1,1,

ε2�1U2 = ε2 d
2

dx2
u1,1− ε3 d

2

dx2
u1,2,

...

εi�1Ui = εi d
2

dx2
u1,i−1− εi+1 d

2

dx2
u1,i,

...

εq�1Uq = εq d
2

dx2
u1,q−1− εq+1 d

2

dx2
u1,q.

(5.6)

Sum up the left-hand side terms and sum up the right-hand side terms of system (5.6) to
get

q∑

i=0

εi�Ui = f1− εq+1 d
2

dx2
u1,q, (5.7)
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which is the first equality of system (5.3). Alike reasoning based on �2Ui leads to the
second inequality of system (5.3).

In another hand, the string of equalities

�1U =�1

( q∑

i=0

εiUi

)

=−ε d
2

dx2

[ q∑

i=0

εiu1,i

]

+ a1,1

[ q∑

i=0

εiu1,i

]

+ a1,2

[ q∑

i=0

εiu2,i

]

=−ε
[ q∑

i=0

εi
d2

dx2
u1,i

]

+

[ q∑

i=0

εia1,1u1,i

]

+

[ q∑

i=0

εia1,2u2,i

]

= εi
[

− ε d
2

dx2
u1,i + a1,1u1,i + a1,2u2,i

]

=
q∑

i=0

εi�1(Ui)

(5.8)

says that

�1(U)=
q∑

i=0

εi�1(Ui). (5.9)

Also we have another string of equalities

�1(U)−�1(U)

=−ε d
2

dx2
u1 + a1,1u1 + a1,2u2−

[

− ε d
2

dx2
u1 + a1,1u1 + a1,2u2

]

=−ε d
2

dx2

(
u1−u1

)
+ a1,1

(
u1−u1

)
+ a1,2

(
u2−u2

)=�1(U −U)

(5.10)

which says

�1(U)−�1(U)=�1(U −U). (5.11)

Putting together �1(U)= f1, system (5.3), and equality (5.11), we get to the first equality
of system (5.4). Alike reasoning based on the operator �2 leads to the second equality of
system (5.4) and achieves the proof of Theorem 5.1. �

6. Higher-order strong corrector and approximation

Consider two qth-order regular expansions, say Ψ(τ) and Φ(ρ), such that

Ψ(τ)= (
ψ1(τ),ψ2(τ)

)T =
( q∑

i=0

εiexp(−τ)ψ1,i(τ),
q∑

i=0

εiexp(−τ)ψ2,i(τ)

)T

, (6.1)
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where τ = x/√ε, and

Φ(ρ)= (
φ1(ρ),φ2(ρ)

)T =
( q∑

i=0

εiexp(−ρ)φ1,i(ρ),
q∑

i=0

εiexp(−τ)φ2,i(ρ)

)T

, (6.2)

where ρ = (1− x)/
√
ε.

Set Ψi = (ψ1,i(τ),ψ2,i(τ))T and Φi = (φ1,i(ρ),φ2,i(ρ))T , so Ψ(τ)=∑q
i=0 ε

iexp(−τ)Ψi(τ)
and Φ(ρ)=∑q

i=0 ε
iexp(−ρ)Φi(ρ). We state the following theorem.

Theorem 6.1. There exist some coefficient functions

(
ψ1,i(τ),ψ2,i(τ)

)T =Ψi,

(
φ1,i(ρ),φ2,i(ρ)

)T =Φi,
0≤ i≤ q, (6.3)

such that

�ε(Ψ)= 0,

�ε(Φ)= 0.
(6.4)

More precisely, these coefficient functions (ψ1,i(τ),ψ2,i(τ))T and (φ1,i(ρ),φ2,i(ρ))T , 0≤ i≤ q,
satisfy

�Ψi + 2�Ψi +A−Ψi = (0,0)T , (6.5)

�Φi + 2�Φi +A−Φi = (0,0)T , (6.6)

where

�=

⎛

⎜
⎜
⎝

d

dx
0

0
d

dx

⎞

⎟
⎟
⎠ ,

A− =
⎛

⎝
a1,1(x)− 1 a1,2(x)

a2,1(x) a2,2− 1(x)

⎞

⎠ .

(6.7)

Proof of Theorem 6.1. At first, for 1≤ j ≤ 2; 0≤ i≤ q, we have

d

dx
ψ j(τ)= ε−1/2

[

−
q∑

i=0

εiψj,i(τ) +
q∑

i=0

εi
d

dx
ψj,i(τ)

]

exp(−τ),

d2

dx2
ψ j(τ)= ε−1

[ q∑

i=0

εi
d2

dx2
ψj,i(τ)− 2

q∑

i=0

εi
d

dx
ψj,i(τ) +

q∑

i=0

εiψj,i(τ)

]

exp(−τ).

(6.8)
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A straightforward application of the matching principle to the equality

�εΨ= (0,0)T (6.9)

leads to

− d2

dx2
ψ1,i(τ) + 2

d

dx
ψ1,i(τ) +

(
a1,1− 1

)
ψ1,i(τ) + a1,2ψ2,i(τ)= 0,

− d2

dx2
ψ2,i(τ) + 2

d

dx
ψ2,i(τ) + a2,1ψ1,i(τ) +

(
a1,2− 1

)
ψ2,i(τ)= 0,

0≤ i≤ q.

(6.10)

The system (6.10) is equivalent to equality (6.5) and to equality (6.9) when we rewrite it
using the operator matrices.

A reasoning similar to what is above leads to the equivalence between (6.6) and equal-
ity

�εΦ= 0, (6.11)

− d2

dx2
φ1,i(ρ) + 2

d

dx
φ1,i(ρ) +

(
a1,1− 1

)
φ1,i(ρ) + a1,2φ2,i(ρ)= 0,

− d2

dx2
φ2,i(ρ) + 2

d

dx
φ2,i(ρ) + a2,1φ1,i(ρ) +

(
a1,2− 1

)
φ2,i(ρ)= 0,

0≤ i≤ q.

(6.12)

We have now to ascertain the existence of the coefficient functions in equalities (6.5) and
(6.6). We multiply system (6.10) by V ∈V0∩W0 to get

〈〈�Ψi,V〉〉+ 2〈〈�Ψi,V〉〉+ 〈〈A−Ψi,V〉〉 = (0,0)T . (6.13)

We take into account the fact that forV ∈V0∩W0 we have vi(0)= vi(1)= 0; i= 1,2, and
so

2
∫ 1

0

d

dx
vi(x)vi(x)dx = v2

i (1)− v2
i (0)= 0 (6.14)

to see that the bilinear form

�−(Y ,V)= 〈〈�Y ,V〉〉+ 〈〈�Y ,V〉〉+ 〈〈AY ,V〉〉, (6.15)

which is associated with (6.13) and so with the systems (6.9) and (6.10), is, alike �, con-
tinuous and coercitive under hypotheses (H .1) (a1,1− 1 > 0; a2,2− 1 > 0). The continuity
and the coercitivity of �− lead to the existence of coefficient functions (Ψ1,Ψ2)T and
(Φ1,Φ2)T . This ends the proof of Theorem 6.1. �
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Next we ascertain the uniqueness of the coefficient functions Ψi = (ψ1,i(τ),ψ2,i(τ))T

and Φi=(φ1,i(ρ),φ2,i(ρ))T by supplementing systems (6.10) and (6.12) with some bound-
ary conditions at t = 0 and t = 1:

ψ1,0(0)= u1(0)−u1,0(0),

ψ1,i(0)=−u1,i(0); 0≤ i≤ q,

ψ2,0(0)= u2(0)−u2,0(0),

ψ2,i(0)=−u2,i(0); 0≤ i≤ q,

φ1,0(1)= u1(1)−u1,0(1),

φ1,i(1)=−u1,i(1); 0≤ i≤ q,

φ2,0(1)= u2(1)−u2,0(1),

φ2,i(1)=−u2,i(1); 0≤ i≤ q.

(6.16)

In fact, we select the components of these coefficient functions which are rapidly decay-
ing. A consequence of this choice is that

Ψi(1)= (0,0)T ,

Φi(0)= (0,0)T .
(6.17)

The boundary conditions set in equalities (6.16) and (6.17) make it

W(0)=U(0),

W(1)=U(1).
(6.18)

Next, we state as follows the main result of this paper.

Theorem 6.2. Set W =U +Ψ+Φ. Then

‖U −W‖1 ≤ Cεq, (6.19a)

which is to say that

U(x)=U(x) +Ψ(τ) +Φ(ρ) + �(εq). (6.19b)

Proof of Theorem 6.2. Set Z =U −W = (U −U)−Ψ−Φ. By construction, we have �εΨ
= (0,0)T and �εΦ= (0,0)T . Thus equality (5.4b) leads to

�εZ =�ε(U −W)= εq+1
(
d2

dx2
u1,q,

d2

dx2
u2,q

)T
. (6.20)

Thanks to the equalities (6.18), the conditions to apply point (ii) of Theorem 3.1 are
satisfied. Inequality (3.1b) says that

‖U −W‖1 ≤ C · εq, (6.21)

where the constant C is independent of ε. This achieves the proof of Theorem 6.2. �
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Definition 6.3. The regular expansion Θ=Ψ+Φ is called the qth-order strong corrector
to U .

7. Numerical validation

For a numerical validation purpose, we consider the following problem:

�εU(x)=

⎛

⎜
⎜
⎝

−ε d
2

dx2
0

0 −ε d
2

dx2

⎞

⎟
⎟
⎠U(x) +A(x)U(x)= F(x),

U(0)= (1,2)T , U(1)= (2,1)T ,

(7.1)

where

A(x)=
(

2 0

0 2

)

; U(x)=
(
u1(x)

u2(x)

)

;

F(x)=
(

cos(x)

sin(x)

)

.

(7.2)

The conditions of hypotheses (H .1) are satisfied. Set

μ=
√

2
ε

; d = exp(−μ)− exp(μ). (7.3)

This problem is very difficult to solve directly. The outer expansion U = (u1,u2)T =
(
∑q

i=0 ε
iu1,i,

∑q
i=0 ε

iu2,i)T is such that

u1,i = (−1)i
1

2i+1
cos(t);

u2,i = (−1)i
1

2i+1
sin(t).

(7.4)

The qth-order strong corrector Θ=Ψ+Φ with

Ψ(τ)= (
ψ1(τ),ψ2(τ)

)T =
( q∑

i=0

εiexp(−τ)ψ1,i(τ),
q∑

i=0

εiexp(−τ)ψ2,i(τ)

)T

, (7.5)

where τ = x/√ε and

Φ(ρ)= (
φ1(ρ),φ2(ρ)

)T =
( q∑

i=0

εiexp(−ρ)φ1,i(ρ),
q∑

i=0

εiexp(−τ)φ2,i(ρ)

)T

, (7.6)
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is such that

exp(−τ)ψ1,i(τ)= αi exp(−μx); exp(−τ)ψ2,i(τ)= βi exp(−μx),

α0 = u1(0)− 1
2
= 1− 1

2
; αi = (−1)i+1 1

2i+1
,

β0 = u2(0)= 2; βi = 0,

1≤ i≤ q,

exp(−ρ)φ1,i(ρ)= γi exp
(−μ(1− x)

)
; exp(−ρ)ψ2,i(ρ)= δi exp

(−μ(1− x)
)
,

γ0 = u1(1)− 1
2

cos(1)= 2− 1
2

cos(1); γi = (−1)i+1 1
2i+1

cos(1),

δ0 = u2(1)− 1
2

sin(1)= 1− 1
2

sin(1); δi = (−1)i+1 1
2i+1

sin(1),

1≤ i≤ q.
(7.7)

The thickness of the boundary layers is xε = √ε ln(2η−1) for any choice of ε and η. This
method provides a very accurate solution.
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PROBABILISTIC SOLUTIONS OF THE DIRICHLET
PROBLEM FOR ISAACS EQUATION

JAY KOVATS

In this expository paper, we examine an open question regarding the Dirichlet problem
for the fully nonlinear, uniformly elliptic Isaacs equation in a smooth, bounded domain
in Rd. Specifically, we examine the possibility of obtaining a probabilistic expression for
the continuous viscosity solution of the Dirichlet problem for the nondegenerate Isaacs
equation.

Copyright © 2006 Jay Kovats. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Question

Let D ⊂ Rd be a bounded domain whose boundary satisfies a uniform exterior sphere
condition. What is the general form of the continuous viscosity solution of the Dirichlet
problem for the uniformly elliptic Isaacs equation

min
z ∈ Z

max
y∈Y

{
Ly,zv(x) + f (y,z,x)

}= 0 in D,

v = g on ∂D,
(∗)

where Ly,zu = Ly,z(x)u := tr[a(y,z,x)uxx] + b(y,z,x) · ux − c(y,z,x)u? Here, we assume
that our coefficients, a, b, c, f , are continuous, uniformly bounded, and Lipschitz con-
tinuous in x (uniformly in y, z), c ≥ 0, and g(x) is Lipschitz continuous in D̄. Y , Z are
compact sets in Rp, Rq, respectively.

The Isaacs equation, which comes from the theory of differential games, is of the form
F[v](x) := F(vxx,vx,v,x)= 0, where F : �×Rd ×R×D→Rd is given by

F(m, p,r,x)=min
z ∈ Z

max
y∈Y

{
tr
[
a(y,z,x) ·m]+ b(y,z,x) · p− c(y,z,x)r + f (y,z,x)

}
,

(1.1)

and by the structure of this equation, that is, our conditions on our coefficients as well as
the nondegeneracy of a (uniform ellipticity), we know by Ishii and Lions (see [10]) that

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 593–604



594 Probabilistic solutions of the Dirichlet problem for Isaacs equation

there exists a unique viscosity solution v ∈ C(D̄) to this Dirichlet problem. Hence if we
find a C(D̄) viscosity solution to (∗), it must be the solution.

2. Definitions, examples

Definition 2.1. F : �×Rd ×R×D→ R is uniformly elliptic in D if there exist constants
0 < λ≤Λ such that for all m∈�, p ∈Rd, r ∈R, x ∈D,

λ‖n‖ ≤ F(m+n, p,r,x)−F(m, p,r,x)≤Λ‖n‖, ∀n≥ 0, (2.1)

where for a ∈ �, ‖a‖ = supe∈Rd ,|e|=1 |ae|. Here, � denotes the space of real symmetric
d×d matrices.

Hence uniformly elliptic equations are generalizations of linear equations in nondi-
vergence form L(x)u(x) + f (x)= 0, where

L(x)u := tr
[
a(x) ·uxx

]
+ b(x) ·ux − c(x)u (2.2)

and a(x)∈� satisfies λId ≤ a(x)≤ΛId, for all x ∈D.

(i) Bellman equation. This equation comes from the theory of controlled diffusion pro-
cesses (see [12]) and is the prototypical convex second-order uniformly elliptic equation

F[u](x) := sup
α∈A

{
tr
[
a(α,x)uxx

]
+ b(α,x) ·ux − c(α,x)u+ f α(x)

}= 0, (2.3)

where for all α∈A, x ∈D, λId ≤ a(α,x)≤ΛId. From the elementary inequalties

inf
α
h1
α− inf

α
h2
α ≤ inf

α

(
h1
α−h2

α

)≤ sup
α
h1
α− sup

α
h2
α ≤ sup

α

(
h1
α−h2

α

)
, (2.4)

it follows that the Bellman equations are uniformly elliptic with ellipticity constants λ,
dΛ.

(ii) Isaacs equations. These equations come from the theory of stochastic differential
games (see [5, 7, 9]). The upper Isaacs equation F+ and the lower Isaacs equation F− are
defined by

F+[u](x) :=min
z ∈ Z

max
y∈Y

{
tr
[
a(y,z,x)uxx

]
+ b(y,z,x) ·ux − c(y,z,x)u+ f (y,z,x)

}= 0,

F−[u](x) :=max
y∈Y

min
z ∈ Z

{
tr
[
a(y,z,x)uxx

]
+ b(y,z,x) ·ux − c(y,z,x)u+ f (y,z,x)

}= 0,

(2.5)

where for all y ∈ Y , z ∈ Z, x ∈ D, λId ≤ a(y,z,x) ≤ ΛId. The Isaacs equations are uni-
formly elliptic with ellipticity constants λ, dΛ, yet neither convex nor concave on �.

Equations (2.3) and (2.5) are fully nonlinear (i.e., nonlinear in second-order deriva-
tives) and their corresponding Dirichlet problems do not, in general, have C2 solutions.
Hence we need the notion of weak or viscosity solution.
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Definition 2.2. We say that u∈ C(D) is a viscosity subsolution of the equation

F
(
uxx,ux,u,x

)= 0, x ∈D, (2.6)

if for any x0 ∈D, and ϕ∈ C2(D), if u−ϕ has a local maximum at x0, then

F
(
ϕxx

(
x0
)
,ϕx

(
x0
)
,u
(
x0
)
,x0
)≥ 0. (2.7)

Viscosity supersolutions are defined similarly. Finally, u∈ C(D) is a viscosity solution if it
is both a viscosity subsolution and supersolution.

Remark 2.3. Wanting to characterize solutions of the Dirichlet problem for the nonde-
generate Isaacs equation is justified because (i) any uniformly elliptic equation of the
form F(uxx,x)= 0 can be shown to be of Isaacs type (see [1]) and (ii) the Isaacs equation
is an example of a second-order partial differential equation which is, in general, neither
convex nor concave in uxx, (i.e., the Isaacs operator F(m, p,r,x) is neither convex nor
concave in m). And the C2+α regularity theory has not been extended to solutions of even
the simplest such equations F(uxx)= 0, that is, F = F(m).

We recall (1982) the Evans-Krylov theorem (see [4, 14]) which states that if u∈ C2(B)
satisfies the uniformly elliptic equation F(uxx) = 0, where F = F(m) is either convex or
concave, then ∃α∈ (0,1) for which u∈ C2+α

loc (B). In 1989, Caffarelli (see [2, 3]) extended
this result to continuous viscosity solutions of F(uxx) = 0. That is, if u ∈ C(B) is a vis-
cosity solution of the uniformly elliptic equation F(uxx)= 0, where F is either convex or
concave, then u is actually a classical solution and u∈ C2+α

loc (B).
But, for example, what can be said about the regularity of viscosity solutions of

Δv+
(
vx1x1

)
+−

(
vx2x2

)
− = 0 in B,

v = g on ∂B,
(2.8)

for arbitrary g ∈ C(∂B)? This equation is of Isaacs type, since it can be written as

max
1≤y≤2

min
1≤z≤2

tr
[
a(y,z)vxx

]= 0, where a(y,z)=

⎛

⎜
⎜
⎜
⎝

y
z

1
. . .

1

⎞

⎟
⎟
⎟
⎠
. (2.9)

Observe that the operator in (2.8) is of the form

min
{

max
{
L1v,L2v

}
,max

{
L3v,L4v

}}
, (2.10)

where L1v = Δv = (1,1,1), L2v = (2,1,1), L3v = (1,2,1), L4v = (2,2,1) and not of the “3-
operator” form min{L1v,max{L2v,L3v}}, to which recentC2+α regularity results (see [1])
apply. Any viscosity solution of Δv+ (vx1x1 )+− (vx2x2 )− = 0 must be locally C1,α for some
α∈ (0,1), but do there exist viscosity solutions that are not C1,1?

An interesting variation of the above is provided, for ε ∈ [0,1], by the uniformly ellip-
tic equation

Δv+ ε
(
vx1x1

)
+− (1− ε)(vx2x2

)
− = 0, (2.11)
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which is of Isaacs type, since it can be expressed as

max
0≤y≤1

min
0≤z≤1

tr
[
aε(y,z)vxx

]= 0, where aε(y,z)=
⎛

⎜
⎝

1 + εy
1 + (1− ε)z

1

⎞

⎟
⎠ . (2.12)

Observe that this is a concave Bellman equation for ε = 0, a convex Bellman equation
for ε = 1, yet neither convex nor concave for ε ∈ (0,1). The Dirichlet problems (contin-
uous boundary values) for the two Bellman equations corresponding to the cases ε = 0,
ε = 1 are both locally solvable in C2,α(B). Let us look to “probabilistic” solutions of our
problems.

3. Probabilistic solutions

We recall from the theory of linear equations that the probabilistic solution of the Dirich-
let problem

Lv+ f = 0 in D,

v = g on ∂D,
(3.1)

(as usual L(x)u := tr[a(x)uxx] + b(x) ·ux − c(x)u) is given by the expression

v(x)= E

[∫ τ(x)

0
f
(
xr(x)

)
e−ϕr (x)dr + g

(
xτ(x)(x)

)
e−ϕτ(x)(x)

]

, (3.2)

where for x ∈D, τ(x)= τD(x) := inf{t ≥ 0 : xt(x) /∈D} and for any x ∈D and t ≥ 0, xt(x)
is the solution of the stochastic integral equation

xt = x+
∫ t

0
σ
(
xr
)
dwr+

∫ t

0
b
(
xr
)
dr,

where a(x) := 1
2
σ(x)σ(x)∗, ϕt(x) :=

∫ t

0
c
(
xr(x)

)
dr.

(3.3)

Here, σ(x) is a Lipschitz continuous d× d1 matrix and wt is a d1-dimensional Wiener
process defined on a probability space (Ω,�t,P). By Itô’s theorem and the Lipschitz and
boundedness conditions on σ and b, such a solution exists and is unique (up to indistin-
guishability).

It follows immediately from Itô’s formula that if ∃u∈ C2(D)∩C(D̄) solution of (3.1),
then u = v. (hence the term probabilistic solution). Indeed, since xτ(x)(x) ∈ ∂D a.s., we
have

Exg
(
xτ
)
e−ϕτ = Exu

(
xτ
)
e−ϕτ = u(x) + Ex

∫ τ

0
Lu
(
xr
)
e−ϕr dr = u(x)−Ex

∫ τ

0
f
(
xr
)
e−ϕr dr,

(3.4)

and transposing gives v(x)= u(x). Hence we have uniqueness in the class C2(D)∩C(D̄)
for the Dirichlet problem (3.1). In particular, if a(x) is nondegenerate and the coefficients
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are locally Hölder (certainly satisfied by Lipschitz coefficients) in D, where D satisfies an
exterior sphere condition, then by the Schauder theory (see [8, Chapter 6.3]), we have that
our probabilistic solution v in (3.2) is the unique solution to (3.1) belonging toC2+α(D)∩
C(D̄).

Remark 3.1. The exit time τD(x) is, in general, discontinuous in x. Even in the linear case,
the probabilistic solution v(x) given by (3.2) will be discontinuous, unless additional re-
strictions (e.g., nondegeneracy) are imposed. There are examples in which v is discontin-
uous even for constant coefficients b ≡ c ≡ f ≡ 0. In cases where v is continuous, a direct
proof of this fact uses the strong Markov property of solutions of (3.3).

The probabilistic solution of the Dirichlet problem for the Bellman equation (see [11,
12, 15–18]),

sup
α∈A

{
Lα(x)v+ f α(x)

}= 0 in D,

v = g on ∂D,
(3.5)

where Lα(x)u := tr[a(α,x)uxx] + b(α,x) ·ux − c(α,x)u, is given by the payoff function

v(x)= sup
α∈�

Eαx

[∫ τ

0
f αr
(
xr
)
e−ϕr dr + g

(
xτ
)
e−ϕτ

]

, (3.6)

where for any strategy α= {αt} ∈�, x ∈D, τα(x) := inf{t ≥ 0 : xα,x
t /∈D} and xα,x

t is the
solution of the stochastic integral equation

xt = x+
∫ t

0
σ
(
αr ,xr

)
dwr +

∫ t

0
b
(
αr ,xr

)
dr,

where a(α,x) := 1
2
σ(α,x)σ(α,x)∗, ϕα,x

t :=
∫ t

0
c
(
αr ,xα,x

r

)
dr.

(3.7)

Again, if ∃u∈ C2(D)∩C(D̄) solution of (3.5), we can show u= v. Similarly, if we assume
a priori v ∈ C2(D), we can show v satisfies (3.5). Note that by definition (3.6), v = g on
∂D. But in general, solutions of (3.5) will not be C2. If we assume v ∈ C(D), we can show
that v is a viscosity solution of (3.5). This is done using Bellman’s principle, Itô’s formula
(applied to the test function), and an interior uniform bound (in α, x) on Pα

x{τ ≤ h}
by any positive power of h. Bellman’s principle (or the dynamic programming principle
(DPP)) allows us to rewrite the payoff function v, for any h > 0, as

v(x)= sup
α∈�

Eαx

[∫ h∧τ

0
f αr
(
xr
)
e−ϕr dr + v

(
xh∧τ

)
e−ϕh∧τ

]

. (3.8)

The difficulty lies in verifying that v(x) is continuous. (From the linear case, we know
this will not be true in general.) In cases where smoothness assumptions on coefficients,
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and so forth, do guarantee continuity of v, one can verify continuity by using a “strong”
version of Bellman’s principle, which allows us to substitute for h in (3.8) any Markov
time (with respect to �t). In the nondegenerate case, other approaches are available (see
[19]). As in the linear case, this strong Markov version of Bellman’s principle follows from
the strong Markov property of solutions of stochastic equations with bounded, Lipschitz
coefficients. The smoothness of the payoff function (3.6) was studied independently by
Krylov and Lions in [11–13, 15–18] (see also [19]) and their results even covered the case
of degenerate equations. In [15], Krylov exhaustively examined the smoothness of the
payoff function, covering all cases of interest.

4. Stochastic differential games and Isaacs equations

For controls y, z (controlled by players I, II, resp.) and x ∈ Rd, we have a solution x
y,z,x
t

of the stochastic equation

xt = x+
∫ t

0
σ
(
yr ,zr ,xr

)
dwr +

∫ t

0
b
(
yr ,zr ,xr

)
dr. (4.1)

We assume that the coefficients σ and b (as well as c, f below) are continuous, uniformly
bounded in (y,z,x), and uniformly Lipschitz in x. For each choice of controls for the
diffusion process (4.1) above, we associate a functional

J(y,z,x) := E
∫∞

0
f
(
yr ,zr ,x

y,z,x
r

)
e−λrdr

= E
y,z
x

∫∞

0
f
(
yr ,zr ,xr

)
e−λrdr.

(4.2)

(For convenience, we are assuming c(y,z,x)≡ λ > 0.)
The idea is this: a game is played between two players, I and II. Player I chooses controls

y for (4.1) in order to maximize J , while player II chooses controls z for (4.1) to minimize
J . Players choose strategies based on knowledge of how the other has previously chosen.
There are 2 values for this game—an “upper” value (of J) in which player I has the ad-
vantage and a “lower” value in which player II has the advantage. The differential game is
said to have value if the upper and lower values are equal.

Definition 4.1. An admissible control for player I (resp., II) is a process yt(ω) (resp.,
zt(ω)), progressively measurable with respect to a system of σ-algebras of {�t}, having
values in a compact metric space Y (resp., Z). The set of all admissible controls for player
I (resp., II) is denoted by � (resp., �). Controls are identified up to indistinguishability.
That is, controls ξ and η are equal on [0, t] if P{sup0≤s≤t |ξs−ηs| > 0} = 0.

Definition 4.2. An admissible strategy for player I (resp., II) is a mapping α : � →�
(resp., β : �→�) which preserves indistinguishability of controls. That is, if z1,z2 ∈�,
and z1 = z2 on [0, t], then α[z1] = α[z2] on [0, t]. The set of all admissible strategies for
player I (resp., II) is denoted by Γ (resp., Δ).
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Definition 4.3. We define the lower value v− of the differential game by

v−(x) := inf
β ∈ Δ

sup
y∈�

J
(
y,β[y],x

)

= inf
β ∈ Δ

sup
y∈�

E
y,β[y]
x

∫∞

0
f
(
yr ,β[y]r ,xr

)
e−λrdr

(4.3)

and the upper value v+ of the differential game by

v+(x) := sup
α∈Γ

inf
z ∈�

J
(
α[z],z,x

)

= sup
α∈Γ

inf
z ∈�

Eα[z],z
x

∫∞

0
f
(
α[z]r ,zr ,xr

)
e−λrdr.

(4.4)

It follows from Fleming and Souganidis (see [6]) that both v+ and v− satisfy a dy-
namic programming principle. From this it can be shown that v+ is the unique bounded
viscosity solution of the upper Isaacs equation F+[v] = 0 in Rd and v− is the unique
bounded viscosity solution of the lower Isaacs equation F−[v] = 0 in Rd. Hence if the
Isaacs condition holds, that is, F+ = F−, we immediately have that v+ = v− and the differ-
ential game has value (see also Świȩch [21]). For λ > 0, the assumption of nondegeneracy
is not needed. Actually, in [6], the authors looked at the Cauchy problem for the parabolic
Isaacs equation in a strip HT := [0,T)×Rd, with terminal data function g(x), where the
coefficients depended on t and x (as well as controls y, z). Their results were obtained for
this setting, yet the elliptic analogues follow.

In [20], Nisio studied the same Cauchy problem using semigroup methods, hence with
coefficients independent of t. Under the Isaacs condition F+ = F−, she showed that both
v+(t,x) and v−(t,x) are viscosity solutions of the Isaacs equation F[v]− vt = 0 in the strip
HT . Nondegeneracy was required for a uniqueness result.

Remark 4.4. Note that in the definitions of v+ and v−, the upper limit of integration in
each of the integrals inside the expectation is +∞. In this situation, verifying continuity
is straightforward, by the uniform Lipschitz continuity of f . We will show in Section 4
(Theorem 5.2) that the value functions are actually Lipschitz continuous in Rd when the
discount factor λ in (4.2) is appropriately large.

Let us return to our original Dirichlet problem

F[v]= 0 in D,

v = g on ∂D,
(4.5)

where, say, F = F+ is the upper Isaacs operator and D satisfies an exterior sphere condi-
tion. The question is: if J(y,z,x) from (4.2) is defined instead by

J(y,z,x) := E
y,z
x

[∫ τ

0
f
(
yr ,zr ,xr

)
e−ϕr dr + g

(
xτ
)
e−ϕτ

]

, where ϕ
y,z,x
t =

∫ t

0
c
(
ys,zs,x

y,z,x
s

)
ds

(4.6)
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and the process (4.1) is nondegenerate, will

v+(x) := sup
α∈Γ

inf
z ∈�

J
(
α[z],z,x

)

= sup
α∈Γ

inf
z ∈�

Eα[z],z
x

[∫ τ

0
f
(
α[z]r ,zr ,xr

)
e−ϕr dr + g

(
xτ
)
e−ϕτ

] (4.7)

be a C(D̄) viscosity solution of (4.4)? If so, then by Ishii’s uniqueness result, it will be
the only one. The analogous question, of course, holds for v− and F−. In (4.6), τ y,z,x =
τ
y,z,x
D := inf{t ≥ 0 : x

y,z,x
t /∈D}, where x

y,z,x
t is the solution of our stochastic integral equa-

tion (4.1).
A reasonable approach would be to establish a DPP (see (3.8)) for v+ and then use

standard probabilistic techniques to show that under the assumption v+ ∈ C(D), it is a
viscosity solution of F+[v] = 0. But one must still show that v+ ∈ C(D̄) and for this, it
would be sufficient to prove a strong version of the DPP (see the comments following
(3.8)) so that the proof of the continuity of v+ would proceed like the proof of the conti-
nuity of the payoff function (3.6). It is also reasonable to expect that, by using a semigroup
approach as in [20], we can circumvent establishing a DPP and directly show that v+ is
a viscosity solution of F+[v]= 0. Nonetheless, the continuity issue seems to be the most
profound one.

5. Continuity of the value function inRd

We close this note by giving a proof of the continuity of the value function(s) in Rd with
an expression for v+ and v− slightly more general than in (4.3), (4.4) as seen in [6] or [21].
In those papers, the discount factor c(y,z,x)≡ λ is constant. Here, in our (easier) setting
of the whole space, (see Remark 4.4) the assumption of nondegeneracy is not required.
We simply require that the lower bound of the discount factor is large compared to the
Lipschitz constant for coefficients σ and b, (see assumption (5.5) below). Our Lemma 5.1
below is an easier version of [19, Lemma 2.6]. Under these assumptions, we establish the
Lipschitz continuity of the upper value function v+. The proof for v− is exactly the same.
As in (4.2), we define a functional

J(y,z,x) := E
∫∞

0
f
(
yr ,zr ,x

y,z,x
r

)
e−ϕ

y,z,x
r dr = E

y,z
x

∫∞

0
f
(
yr ,zr ,xr

)
e−ϕr dr, (5.1)

where

ϕ
y,z,x
t =

∫ t

0
c
(
ys,zs,x

y,z,x
s

)
ds. (5.2)

We now define the upper value function v+ by the formula

v+(x) := sup
α∈Γ

inf
z ∈�

J
(
α[z],z,x

)

= sup
α∈Γ

inf
z ∈�

Eα[z],z
x

∫∞

0
f
(
α[z]r ,zr ,xr

)
e−ϕr dr.

(5.3)
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We assume
∣
∣h(y,z,x)−h(y,z,x′)

∣
∣≤ K1|x− x′|,

∣
∣h(y,z,x)

∣
∣≤ K for h= f ,c, (5.4)

inf
bx∈Rd

(y,z)∈�×�

c(y,z,x)= c0 > μ0,

where μ0 = sup
x,x′∈Rd

(y,z)∈�×�

{
1
2

tr
[(
σ(y,z,x)− σ(y,z,x′)

)(
σ(y,z,x)− σ(y,z,x′)

)∗]

|x− x′|2

+

(
b(y,z,x)− b(y,z,x′)

) · (x− x′)
|x− x′|2

}

.

(5.5)

Lemma 5.1. For all admissible controls y ∈�, z ∈�, and any t ≥ 0,

Ey,z
[∣
∣xxt − xx

′
t

∣
∣2
e−2μ0t

]
≤ |x− x′|2. (5.6)

Proof. Observe that the process z
y,z,x,x′
t = xy,z,x

t − xy,z,x′
t satisfies a.s.

zt = x− x′ +
∫ t

0

[
σ
(
yr ,zr ,xxr

)− σ(yr ,zr ,xx′r
)]
dwr +

∫ t

0

[
b
(
yr ,zr ,xxr

)− b(yr ,zr ,xx′r
)]
dr.

(5.7)

The definition of μ0 and Itô’s formula applied to the function z→ |z|2 and the process

z
y,z,x,x′
t yields

Ey,z
[∣
∣xxt − xx

′
t

∣
∣2
e−2μ0t

]

= |x−x′|2 +Ey,z
∫ t

0

{
tr
[(
σ
(
yr ,zr ,xxr

)−σ(yr ,zr ,xx′r
))(

σ
(
yr ,zr ,xxr

)−σ(yr ,zr ,xx′r
))∗]

+ 2
(
b
(
yr ,zr ,xxr

)− b(yr ,zr ,xx′r
)) · (xxr − xx

′
r

)

− 2μ0
∣
∣xxr − xx

′
r

∣
∣2
}
e−2μ0rdr ≤ |x− x′|2.

(5.8)
�

Theorem 5.2. Under the above assumptions, there is a constant C = C(K ,K1,c0,μ0) such
that for any x,x′ ∈Rd,

∣
∣v+(x)− v+(x′)

∣
∣≤ C|x− x′|. (5.9)

Proof. For any x,x′ ∈Rd,

∣
∣v+(x)− v+(x′)

∣
∣=

∣
∣
∣
∣sup
α∈Γ

inf
z ∈�

J
(
α[z],z,x

)− sup
α∈Γ

inf
z ∈�

J
(
α[z],z,x′

)
∣
∣
∣
∣

≤ sup
α∈Γ

sup
z∈�

∣
∣J
(
α[z],z,x

)− J(α[z],z,x′
)∣
∣.

(5.10)
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For any y ∈�, z ∈�,

J(y,z,x)− J(y,z,x′)= Ey,z
∫∞

0

[
f
(
yt,zt,xxt

)
e−ϕ

x
t − f

(
yt,zt,xx

′
t

)
e−ϕ

x′
t
]
dt

= Ey,z
∫∞

0
f
(
yt,zt,xxt

)[
e−ϕ

x
t − e−ϕx′t ]dt

+ Ey,z
∫∞

0
e−ϕ

x′
t
[
f
(
yt,zt,xxt

)− f
(
yt,zt,xx

′
t

)]
dt.

(5.11)

By Fubini’s theorem and the fact that f is bounded and Lipschitz, we have

∣
∣J(y,z,x)− J(y,z,x′)

∣
∣≤ K

∫∞

0
Ey,z

∣
∣e−ϕ

x
t − e−ϕx′t ∣∣dt+K1

∫∞

0
Ey,z[e−ϕ

x′
t
∣
∣xxt − xx

′
t

∣
∣
]
dt.

(5.12)

By the mean value theorem, e−ϕ
y,z,x
t − e−ϕy,z,x′

t = e−ξ(ϕy,z,x′
t −ϕy,z,x

t ), for some random func-

tion ξ(y,z, t,x,x′) on the segment between ϕ
y,z,x′
t , ϕ

y,z,x
t . More precisely, for some r ∈

(0,1), ξ = (1− r)ϕy,z,x′
t + rϕ

y,z,x
t = ∫ t0[(1− r)c(ys,zs,xy,z,x′

s ) + rc(ys,zs,x
y,z,x
s )]ds ≥ c0t, by

(5.5). Moreover, |ϕy,z,x′
t − ϕy,z,x

t | ≤ ∫ t0 |c(ys,zs,xy,z,x′
s ) − c(ys,zs,xy,z,x

s )|ds ≤ K1
∫ t

0 |xy,z,x
s −

x
y,z,x′
s |ds. Hence

Ey,z
∣
∣e−ϕ

x
t − e−ϕx′t ∣∣≤ Ey,z[e−ξ

∣
∣ϕx

′
t −ϕxt

∣
∣
]≤ K1e

−c0t

∫ t

0
Ey,z

∣
∣xxs − xx

′
s

∣
∣ds. (5.13)

By Lemma 5.1, Ey,z|xxt − xx
′
t |2e−2μ0t ≤ |x − x′|2, and hence by Cauchy’s inequality,

Ey,z|xxt − xx′t | ≤ |x− x′|eμ0t. This immediately yields, by the above inequality,

Ey,z
∣
∣e−ϕ

x
t − e−ϕx′t ∣∣≤ K1

μ0
|x− x′|e(μ0−c0)t . (5.14)

From this, the fact that e−ϕ
y,z,x′
t ≤ e−c0t, and our assumption that c0 > μ0, we get

∣
∣J(y,z,x)− J(y,z,x′)

∣
∣

≤ K K1

μ0
|x− x′|

∫∞

0
e(μ0−c0)tdt+K1|x− x′|

∫∞

0
e(μ0−c0)tdt = K1|x− x′|

c0−μ0

{
K

μ0
+ 1
}

.

(5.15)

But for z ∈� and α∈ Γ, α[z]∈�. Hence

∣
∣v+(x)− v+(x′)

∣
∣≤ sup

α∈Γ
sup
z∈�

∣
∣J
(
α[z],z,x

)− J(α[z],z,x′
)∣
∣

≤ sup
y∈�

sup
z∈�

∣
∣J(y,z,x)− J(y,z,x′)

∣
∣≤ C|x− x′|. (5.16)

�
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tions. Collège de France Seminar, Vol. V (Paris, 1981/1982), Res. Notes in Math., vol. 93, Pitman,
Massachusetts, 1983, pp. 95–205.

[19] P.-L. Lions and J.-L. Menaldi, Optimal control of stochastic integrals and Hamilton-Jacobi-Bellman
equations. I, II, SIAM Journal on Control and Optimization 20 (1982), no. 1, 58–81, 82–95.

[20] M. Nisio, Stochastic differential games and viscosity solutions of Isaacs equations, Nagoya Mathe-
matical Journal 110 (1988), 163–184.



604 Probabilistic solutions of the Dirichlet problem for Isaacs equation
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ON AN ESTIMATE FOR THE NUMBER OF SOLUTIONS
OF THE GENERALIZED RIEMANN BOUNDARY
VALUE PROBLEM WITH SHIFT

V. G. KRAVCHENKO, R. C. MARREIROS, AND J. C. RODRIGUEZ

An estimate for the number of linear independent solutions of a generalized Riemann
boundary value problem with the shift α(t)= t+h, h∈R, on the real line, is obtained.

Copyright © 2006 V. G. Kravchenko et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In L̃2(R), the real space of all Lebesgue measurable complex valued functions on R with
p = 2 power, we consider the generalized Riemann boundary value problem.

Find functions ϕ+(z) and ϕ−(z) analytic in Imz > 0 and Imz < 0, respectively, satisfy-
ing the condition

ϕ+ = aϕ− + bϕ−(α) + cϕ− +dϕ−(α), ϕ−(∞)= 0, (1.1)

imposed on their boundary values on R, where

α(t)= t+h, h∈R, (1.2)

is the shift on the real line, and a,b,c, and d are continuous functions on
◦
R= R∪{∞},

the one point compactification of R.
This kind of problems was studied during the last fifty years. Specially, during the six-

ties and seventies of the last century the theory of this type of boundary value problems
was intensively developed, and apparently stimulated by Vekua’s book [14], in 1959 (1st
ed.). In this book, in particular, it was shown that the problem of rigidity of a closed
surface which consists of two glued pieces, under additional conditions, leads to the solv-
ability of (1.1) (see [14, pages 363–366]).

In the mentioned decades the Fredholm theory of the boundary value problems with
the so-called Carleman shift, that is, a shift whose iterations form a finite group, was con-
structed. However, more fine (and interesting for applications) questions about solvabil-
ity of boundary value problems, with shift, were only considered under very restrictive

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 605–614



606 Generalized Riemann boundary value problem with shift

conditions for the respective coefficients. These results are included in Litvinchuk’s book
[11].

Recently, successful development in the theory of singular integral operators with lin-
ear fractional Carleman shift and conjugation (see, e.g., [3, 6–8]) makes possible the con-
struction of the solvability theory for the related boundary value problems (see [12]).
However, the question about the solvability of boundary value problems of the type (1.1)
is still open, in the case of non-Carleman shift, that is, shift whose iterations define an
infinite group.

In the present paper we construct an estimate for the number of linear independent
solutions of a generalized Riemann boundary value problem (1.1).

2. Preliminaries

Let U : L̃2(R)→ L̃2(R) be the shift operator

(Uϕ)(t)= ϕ(t+h), (2.1)

and C : L̃2(R)→ L̃2(R) the bounded operator of complex conjugation

Cϕ= ϕ. (2.2)

The operators U and C enjoy the properties

C2 = I , CU =UC, UP± = P±U , CP± = P∓C, (2.3)

where P± : L̃2(R)→ L̃2(R) are the complementary projection operators

P± = 1
2

(I ± S), (2.4)

generated by S : L̃2(R)→ L̃2(R), the singular integral operator with Cauchy kernel

(Sϕ)(t)= 1
πi

∫

R

ϕ(τ)
τ − t dτ. (2.5)

We consider the paired operator

T1 =−P+ + (aI + bU + cC+dUC)P−; (2.6)

it is clear that

n= dimkerT1, (2.7)

where n is the number of linear independent solutions of the boundary value problem
(1.1).

In the sequel, L̃m2 (R) denotes the space [L̃2(R)]m, and by abuse of notation we use
the same symbols, P± : L̃m2 (R)→ L̃m2 (R), equivalent to the projection operators P±Em :
L̃m2 (R)→ L̃m2 (R), where Em is the m×m identity matrix.
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Proposition 2.1. Let T2 : L̃2
2(R)→ L̃2

2(R) be the paired operator with shift

T2 =
(
�1I + �2U

)
P+ +

(
�3I + �4U

)
P−, (2.8)

where �i, i= 1,4, are the matrix functions

�1 =
(−1 c

0 a

)

, �2 =
(

0 d

0 b

)

,

�3 =
(
a 0
c −1

)

, �4 =
(
b 0

d 0

)

,

(2.9)

then

n= 1
2

dimkerT2. (2.10)

Proof. It is well known (see, e.g., [12]) that using (2.3) holds the following relation:

Mdiag
(
T1, T̃1

)
M−1 = T2, (2.11)

between the operators T2,T1 and its companion operator

T̃1 =−P+ + (aI + bU − cC−dUC)P−, (2.12)

where M : L̃2
2(R)→ L̃2

2(R) is the invertible operator M = 1/
√

2( I I
C −C ). Since T1 and T̃1 are

similar operators, we have (2.10). �

3. The case b ≡ 0

If the continuous scalar function a enjoys the property

a(t)
= 0, t ∈ ◦
R, (3.1)

the coefficients of the paired operator (2.8) are invertible, that is, the functional operators
�1I + �2U and �3I + �4U are invertible and then the operator (2.8) is Fredholm in
L̃2

2(R) (see, e.g., [9]).
Let

T̃2 =
(
�3I + �4U

)−1
T2, (3.2)

then

T̃2 =
(
�0I + �1U + �2U

2)P+ +P−, (3.3)
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where

�0 = a−1

(−1 c

−c |c|2−|a|2
)

, (3.4)

�1 =
(

0 da−1

−da−1(α) cda−1 +da−1(α)c(α)

)

, (3.5)

�2 =
(

0 0
0 f

)

,

f = a−1(α)dd(α).

(3.6)

Due to (2.10) and (3.2), we have

n= 1
2

dimker T̃2. (3.7)

Proposition 3.1. Let T3 : L̃3
2(R)→ L̃3

2(R) be the paired operator

T3 =
(
�0I + �1U

)
P+ +P−, (3.8)

where �0 and �1 are the matrix functions

�0 =

⎛

⎜
⎜
⎜
⎝

�0
... 01×2

··· ··· ···
02×1

... 1

⎞

⎟
⎟
⎟
⎠

, �1 =

⎛

⎜
⎜
⎜
⎜
⎝

�1
...

0
f

··· ··· ···
0 −1

... 0

⎞

⎟
⎟
⎟
⎟
⎠

, (3.9)

and �0, �1, and f are given, respectively, by (3.4), (3.5), and (3.6), then

n= 1
2

dimkerT3. (3.10)

Proof. By N : L̃3
2(R)→ L̃3

2(R), we denote the invertible operator

N =
⎛

⎜
⎝

I 0 0
0 I 0
0 UP+ I

⎞

⎟
⎠ ; (3.11)

it is easy to see that

T3N =

⎛

⎜
⎜
⎜
⎜
⎝

T̃2
...

0
f UP+

··· ··· ···
02×1

... I

⎞

⎟
⎟
⎟
⎟
⎠

, (3.12)
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where T̃2 is the paired operator (3.2). From (3.7), the statement of the proposition is
straightforward. �

It is known that (see, e.g., [13]; see also [1, 4, 5]) if �0 ∈ C2×2(
◦
R) verifies det�0 
= 0,

for all t ∈ ◦R, then the continuous matrix function �0 admits the (right) factorization in
L2×2

2 (R):

�0 =�−Λ�+, (3.13)

where

(t− i)−1�±1
− ∈

[
L̂−2 (R)

]2×2
, (t+ i)−1�±1

+ ∈
[
L̂+

2 (R)
]2×2

,

Λ= diag
(
θκ1 ,θκ2

)
, θ(t)= t− i

t+ i
,

(3.14)

κ j ∈ Z, j = 1,2, with κ1 ≥ κ2, L̂±2 are the spaces of the Fourier transforms of the func-
tions of L±2 , respectively, and, as usual, L+

2 = P+L2,L−2 = P−L2⊕C. Moreover, we assume
that (t− i)−1�±1− , (t + i)−1�±1

+ ∈ L2×2∞ (R). The numbers κ j , j = 1,2, being uniquely de-
termined by the matrix function �0, are called the partial indices of �0.

Proposition 3.2. Let a∈ C(
◦
R) be a scalar function with the property (3.1) and

a= a−θκaa+, κa = ind
◦
R

a, (3.15)

a factorization of a in L2(R), then the partial indices of the matrix function (3.4) are

κ1 =−κa + κ, κ2 =−κa− κ, (3.16)

where κ is a multiplicity of 1 as an eigenvalue of the operator

P+u−P−u−P+, (3.17)

and u− = P−u, u= c−(a−a+)−1, c− = P−c.
Proof. �0 can be expressed as the following product:

�0 = θ−κa�−��+, (3.18)

where

�− =
(

1 0

c+ 1

)(
a−1− 0

0 a+

)(
1 0

u+ 1

)

,

�+ =
(

1 u+

0 1

)(
a−1

+ 0

0 a−

)(−1 c+

0 1

)

,

� =
(

1 u−
u− |u−|2− 1

)

,

(3.19)

and c± = P±c, u± = P±u.
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Then, in order to construct the factorization in L2×2
2 (R) of the matrix function �0, we

need to factorize the central factor �. It is well known (see, e.g., [12]) that the Hermitian
matrix function � admits the following factorization in L2×2

2 (R):

� =�−diag
(
θκ,θ−κ

)
�+, (3.20)

in which κ is a multiplicity of 1 as an eigenvalue of a selfadjoint operator (3.17). The last
equality means that

�0 =�−�−diag
(
θ−κa+κ,θ−κa−κ

)
�+�+ (3.21)

is a factorization in L2×2
2 (R) of the matrix function �0 and the integers (3.16) are its

partial indices. �

It must be remarked that in the case when the matrix function � admits a canonical
factorization (κ= 0) in L2×2

2 (R), the explicit formulas for the external factors �± can be
found in [2].

Next let us introduce some notations:

κ j = κ+
j + κ−j , j = 1,2, (3.22)

where κ±j = 1/2(κ j ±|κ j|), respectively, then

Λ=Λ−Λ+, Λ± = diag
(
θκ

±
1 ,θκ

±
2
)
. (3.23)

Lemma 3.3. If the scalar function a∈ C(
◦
R) satisfies (3.1), �1 is the matrix function defined

in (3.9), �± and κ1,2 are, respectively, the external factors and the partial indices of the
factorization in L2×2

2 (R) of the matrix function (3.4), then

n≤ 1
2

(dimkerT + 2k), (3.24)

where T : L̃3
2(R)→ L̃3

2(R) is the paired operator

T = [I + �U]P+ +P−, (3.25)

� is the matrix function

�= diag
(
Λ−1
− �−1

− ,1
)
�1 diag

(
�−1

+ (α)Λ−1
+ (α),1

)
, (3.26)

k =−κ−1 −κ−2 . (3.27)

Proof. The operator (3.8) admits the following factorization:

T3 = diag
(
�−,1

)
TΛ
[

diag
(
�+,1

)
P+ + diag

(
�−1
− ,1

)
P−
]
, (3.28)
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where

TΛ =
[

diag(Λ,1)I + �̃U
]
P+ +P−,

�̃= diag
(
�−1
− ,1

)
�1 diag

(
�−1

+ (α),1
)
.

(3.29)

The following equalities hold:

TΛT− = diag
(
Λ−,1

)
T̃ , (3.30)

T̃ = TT+, (3.31)

where

T− = P+ + diag
(
Λ−,1

)
P−, T+ = diag

(
Λ+,1

)
P+ +P−,

T̃ = [diag
(
Λ+,1

)
I + diag

(
Λ−1
− ,1

)
�̃U

]
P+ +P−,

(3.32)

and T is the paired operator (3.25). From (3.30) it is possible to conclude that

dimkerTΛ ≤ dimker T̃ + dimcokerT−, (3.33)

and using (3.31),

dimker T̃ ≤ dimkerT. (3.34)

Since the external factors in the factorization (3.28) are invertible operators, we have

n= 1
2

dimkerTΛ ≤ 1
2

(
dimkerT + dimcokerT−

)
. (3.35)

Finally, it is well known (see, e.g., [13]) that in L̃3
2(R)

dimcokerT− = −2
(
κ−1 + κ−2

)
. (3.36)

�

Let T+ stand for the interior of the unit circle T. The following two propositions can
be found in [10].

Proposition 3.4. For any continuous matrix function �∈ Cm×m(
◦
R) such that

σ
[
�(∞)

]⊂ T+, (3.37)

there exist an induced matrix norm ‖ · ‖0 and a rational matrix � satisfying the following
conditions:

(i) the entries have the form ri j = pi j(θ), where pi j is a polynomial;

(ii) max
t∈ ◦R‖���−1(α)‖0 < 1;

(iii) P+�±1P+ =�±1P+.

Let R� be the set of all rational matrices � satisfying the conditions (i), (ii), and (iii).
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Proposition 3.5. If �∈ Cm×m(
◦
R) satisfies the condition (3.37), then the estimate

dimkerT ≤ l(�) (3.38)

holds, where T : Lm2 (R)→ Lm2 (R) is the singular integral operator:

T = [I + �U]P+ +P−; (3.39)

l(�) is the constant:

l(�)=min
R�

( m∑

i=1

max
j=1,m

li, j

)

, (3.40)

and li, j is the degree of the polynomial pi j , corresponding to ri, j = pi, j(θ), the i j-entry of the
m×m rational matrix �∈ R�.

These results can be used to improve the estimate for the number of solutions of the
boundary value problem (1.1).

Lemma 3.6. Let T be the operator (3.25) and a∈ C(
◦
R) a scalar function with the property

(3.1), then

dimkerT ≤ 2l(�). (3.41)

Proof. Taking into account the last proposition, for the proof, it is sufficient to show that
the matrix function (3.26) enjoys the property (3.37). In fact, if �± are the external fac-
tors of the factorization (3.13) of the matrix function (3.4), then �0(∞)=�−(∞)�+(∞),
so

�(∞)= diag
(
�−1
− (∞),1

)
�1(∞)diag

(
�−1

0 (∞)�−(∞),1
)
. (3.42)

The last equality means that the matrices �(∞) and

�1(∞)diag
(
�−1

0 (∞),1
)= |a|−2

⎛

⎜
⎜
⎝

cd −d 0

d|a|2 + (c)2d −cd a|d|2
−ac a 0

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣∞

(3.43)

are similar, that is, �(∞) is nilpotent. �

Using Lemmas 3.3 and 3.6 we can state our main result.

Theorem 3.7. If the scalar function a∈ C(
◦
R) enjoys (3.1), then the number of linear inde-

pendent solutions in L̃2(R) of the generalized Riemann boundary value problem (1.1) admits
the estimate

n≤ l(�) + max
(
κa + κ,0

)
+ max

(
κa− κ,0

)
, (3.44)
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where � is the matrix function defined by (3.26), l(�) is the constant introduced in Propo-
sition 3.5, κa = ind ◦

R
a, and κ is a multiplicity of 1 as an eigenvalue of operator (3.17).

Remark 3.8. Taking α̃(t)= t−h and

ψ+ = ϕ+
(
α̃
)
, ψ− = ϕ−, ã= b(α̃), c̃ = d(α̃), d̃ = c(α̃), (3.45)

it is possible to see that the boundary value problem

ϕ+ = bϕ−(α) + cϕ− +dϕ−(α), ϕ−(∞)= 0, (3.46)

is equivalent to the problem (1.1), in case b ≡ 0. Then it is easy to obtain the analogue of
Theorem 3.7 for the case a≡ 0.
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Appl., vol. 142, Birkhäuser, Basel, 2003, pp. 189–211.

[8] , Factorization of singular integral operators with a Carleman shift via factorization of ma-
trix functions: the anticommutative case, to appear in Mathematische Nachrichten.

[9] V. G. Kravchenko and G. S. Litvinchuk, Introduction to the Theory of Singular Integral Operators
with Shift, Mathematics and Its Applications, vol. 289, Kluwer Academic, Dordrecht, 1994.

[10] V. G. Kravchenko and R. C. Marreiros, On the kernel of some one-dimensional singular integral
operators with shift, to appear in International Workshop on Operator Theory and Applications
(IWOTA ’04), Operator Theory: Advances and Applications.

[11] G. S. Litvinchuk, Boundary Value Problems and Singular Integral Equations with Shift, Nauka,
Moscow, 1977.

[12] , Solvability Theory of Boundary Value Problems and Singular Integral Equations with
Shift, Mathematics and Its Applications, vol. 523, Kluwer Academic, Dordrecht, 2000.



614 Generalized Riemann boundary value problem with shift

[13] G. S. Litvinchuk and I. M. Spitkovskii, Factorization of Measurable Matrix Functions, Operator
Theory: Advances and Applications, vol. 25, Birkhäuser, Basel, 1987.
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MONOTONICITY RESULTS AND INEQUALITIES
FOR SOME SPECIAL FUNCTIONS

A. LAFORGIA AND P. NATALINI

By using a generalization of the Schwarz inequality we prove, in the first part of this
paper, Turán-type inequalities relevant to some special functions as the psi-function, the
Riemann ξ-function, and the modified Bessel functions of the third kind. In the second
part, we prove some monotonicity results for the gamma function.

Copyright © 2006 A. Laforgia and P. Natalini. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the first part of this paper, we prove new inequalities of the following type:

fn(x) fn+2(x)− f 2
n+1(x)≤ 0, (1.1)

with n = 0,1,2, . . . , which have importance in many fields of mathematics. They are
named, by Karlin and Szegö, Turánians because the first type of inequalities was proved
by Turán [13]. More precisely, by using the classical recurrence relation [11, page 81]

(n+ 1)Pn+1(x)= (2n+ 1)xPn(x)−nPn−1(x), n= 0,1, . . . ,

P−1(x)= 0, P0(x)= 1,
(1.2)

and the differential relation [11, page 83]

(
1− x2)P′n(x)= nPn−1(x)−nxPn(x), (1.3)

he proved the following inequality:

∣
∣
∣
∣
∣
∣

Pn(x) Pn+1(x)

Pn+1(x) Pn+2(x)

∣
∣
∣
∣
∣
∣
≤ 0, −1≤ x ≤ 1, (1.4)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 615–621
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where Pn(x) is the Legendre polynomial of degree n (the equality occurs only if x =±1).
This classical result has been extended in several directions: ultraspherical polynomials,
Laguerre and Hermite polynomials, Bessel functions of first kind, modified Bessel func-
tions, and so forth.

For example, Lorch [9] established Turán-type inequalities for the positive zeros cνk,
k = 1,2, . . . , of the general Bessel function

Cν(x)= Jν(x)cosα−Yν(x)sinα, 0≤ α < π, (1.5)

where Jν(x) and Yν(x) denote the Bessel functions of the first and the second kinds, re-
spectively, while the corresponding results for the positive zeros c′νk, ν ≥ 0, k = 1,2, . . . ,
of the derivative C′ν(x) = (d/dx)Cν(x) and for the zeros of ultraspherical, Laguerre and
Hermite polynomials have been established in [2, 3, 7], respectively.

Recently, in [8], we proved Turán-type inequalities for some special functions, as well
as the polygamma and the Riemann zeta-functions, by using the following generalization
of the Schwarz inequality:

∫ b

a
g(t)

[
f (t)

]m
dt ·

∫ b

a
g(t)

[
f (t)

]n
dt ≥

[∫ b

a
g(t)

[
f (t)

](m+n)/2
dt
]2

, (1.6)

where f and g are two nonnegative functions of a real variable and m and n belong to a
set S of real numbers, such that the integrals in (1.6) exist.

As mentioned in [8], this approach represents an alternative method with respect to
the classical ones used by the above cited authors and based, prevalently, on the Sturm
theory.

In Section 2 of this paper, by using again (1.6), we will give three results. In the first
one, we will use the well-known psi-function defined by

ψ(x)= Γ′(x)
Γ(x)

, x > 0, (1.7)

with the usual notation for the gamma function.
In the second one, we will use the so-called Riemann ξ-function which can be defined

(see [12, page 16], cf. [10, page 285]) by

ξ(s)= 1
2
s(s− 1)π−s/2Γ

s

2
ζ(s), (1.8)

where ζ is the Riemann ζ-function. This function has the following representation (see
[5]):

ξ
(

s+
1
2

)

=
∞∑

k=0

bks
2k, (1.9)
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where the coefficients bk are given by the formula

bk = 8
22k

(2k)!

∫∞

0
t2kΦ(t)dt, k = 0,1, . . . , (1.10)

Φ(t)=
∞∑

n=1

(
2π2n4e9t − 3πn2e5t)e−πn

2e4t
. (1.11)

In [1], the following Turán-type inequality was proved:

b2
k −

k+ 1
k

bk+1bk−1 ≥ 0, k = 0,1, . . . , (1.12)

relevant to the theory of the Riemann ξ-function (see [5]).
In the third one, we will use the modified Bessel functions of the third kind Kν(x),

x > 0, defined as follows:

Kν(x)= π

2
I−ν(x)− Iν(x)

sinνπ
, ν �= 0,±1,±2, . . . ,

Kn(x)= lim
ν→nKν(x), n= 0,±1,±2, . . . ,

(1.13)

where

Iν(x)=
∞∑

k=0

(x/2)ν+2k

k!Γ(ν + k+ 1)
(1.14)

are the modified Bessel functions of the first kind.
The second part of the paper is devoted to the study of monotonicity properties of the

function xα[Γ(1 + 1/x)]x, for real α and positive x, where, as usual, Γ denotes the gamma
function defined by

Γ(a)=
∫∞

0
e−tta−1dt, a > 0. (1.15)

Kershaw and Laforgia [6] investigated some monotonicity properties of the above
function and, in particular, they proved that for x > 0 and α= 0 the function [Γ(1 + 1/x)]x

decreases with x, while when α= 1 the function x[Γ(1 + 1/x)]x increases. Moreover they
also showed that the values α= 0 and α= 1, in the properties mentioned above, cannot
be improved if x ∈ (0,+∞).

In this paper, we continue the investigation on the monotonicity properties for the
gamma function proving, in Section 3, the following theorem.

Theorem 1.1. The functions f (x) = Γ(x + 1/x), g(x) = [Γ(x + 1/x)]x, and h(x) = Γ′(x +
1/x) decrease for 0 < x < 1, while increase for x > 1.



618 Monotonicity results and inequalities for some special functions

2. Turán-type inequalities

Theorem 2.1. For n= 1,2, . . . , denote by hn =
∑n

k=1(1/k) the partial sum of the harmonic
series. Let

an = hn− logn, (2.1)

then
(
an− γ

)(
an+2− γ

)≥ (an+1− γ
)2

, (2.2)

where γ is the Euler-Mascheroni constant defined by

γ =−ψ(1)= 0,5772156649 . . . . (2.3)

Proof. For the psi-function we use the following expression:

ψ(n+ 1)=
n∑

k=1

1
k
− γ, n= 1,2, . . . , (2.4)

and the following integral representation:

ψ(z+ 1)=
∫∞

0

(
e−t

t
− e−zt

e−t − 1

)

dt, 	ez > 0. (2.5)

By putting z = n in (2.5), for n= 1,2, . . . , we obtain from (2.4) and (2.5)

n∑

k=1

1
k
− γ =

∫∞

0

(
e−t

t
− e−nt

e−t − 1

)

dt

=
∫∞

0

e−t − e−nt
t

dt+
∫∞

0
e−nt

et − 1− t
t
(
et − 1

) dt.

(2.6)

Since
∫∞

0

e−t − e−nt
t

dt = logn, (2.7)

we have
n∑

k=1

1
k
− logn− γ =

∫∞

0

et − 1− t
t
(
et − 1

) e−ntdt. (2.8)

By (1.6) with g(t)= (et − 1− t)/t(et − 1), f (t)= e−t, and a= 0, b = +∞, we get

∫∞

0

et − 1− t
t
(
et − 1

) e−ntdt ·
∫∞

0

et − 1− t
t
(
et − 1

) e−(n+2)tdt ≥
[∫∞

0

et − 1− t
t
(
et − 1

) e−(n+1)tdt
]2

, (2.9)

that is, the inequality (2.2). �

Theorem 2.2. For k = 1,2, . . . , let bk (k = 1,2, . . .) be the coefficients in (1.9), then

b2
k −

(2k+ 1)(k+ 1)
k(2k− 1)

bk+1bk−1 ≤ 0, k = 1,2, . . . . (2.10)
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Proof. By (1.10) and (1.6), with g(t)= 8Φ(t), f (t)= (2t)2 and a= 0, b = +∞, we get

∫∞

0
8Φ(t)(2t)2k+2dt ·

∫∞

0
8Φ(t)(2t)2k−2dt ≥

[∫∞

0
8Φ(t)(2t)2kdt

]2

. (2.11)

Dividing (2.11) by (2k)! this inequality becomes

(2k+ 2)!
(2k)!

bk+1
(2k− 2)!

(2k)!
bk−1 ≥ b2

k, k = 1,2, . . . , (2.12)

from which, since ((2k + 2)!/(2k)!)((2k − 2)!/(2k)!) = (2k+ 1)(k+ 1)/k(2k− 1), we ob-
tain the conclusion of Theorem 2.2. �

Remark 2.3. It is important to note that inequalities (2.10) and (1.12) together give

k+ 1
k

bk+1bk−1 ≤ b2
k ≤

k+ 1
k

2k+ 1
2k− 1

bk+1bk−1, k = 1,2, . . . . (2.13)

Theorem 2.4. Let Kν(x), x > 0, be the modified Bessel function of the third kind. Then, for
ν >−1/2 and μ >−1/2,

Kν(x) ·Kμ(x)≥ K2
(ν+μ)/2(x). (2.14)

Proof. By (1.6) with g(t)= e−β/t−γt, f (t)= t−1 and a= 0, b = +∞, we get

∫∞

0
tm−1e−β/t−γtdt ·

∫∞

0
tn−1e−β/t−γtdt ≥

[∫∞

0
t(m+n)/2−1e−β/t−γtdt

]2

. (2.15)

Using the following formula (see [4, integral 3.471(9)]):

∫∞

0
tν−1e−β/t−γtdt = 2

(
β

γ

)ν/2

Kν

(
2
√
βγ
)

, ν >−1
2

, (2.16)

from (2.15) we have

Kν

(
2
√
βγ
)
·Kμ

(
2
√
βγ
)
≥ K2

(ν+μ)/2

(
2
√
βγ
)

, (2.17)

which, putting x = 2
√
βγ, is equivalent to the conclusion of Theorem 2.4.

In the particular case μ= ν + 2, we find

Kν(x) ·Kν+2(x)≥ K2
ν+1(x), ν >−1

2
. (2.18)

�
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Remark 2.5. By means of (1.6) we can establish Turán-type inequalities for many other
complicated integrals as well as, for example, sn =

∫ π
0 (logsinx)ndx (n= 0,1, . . .) for which

we have

sn(x)sn+2(x)≥ s2n+1(x). (2.19)

3. Proof of Theorem 1.1

It is easy to note that minx>0(x + 1/x) = 2, consequently Γ′(x + 1/x) > 0 for every x > 0.
We have

f ′(x)=
(

1− 1
x2

)

Γ′
(

x+
1
x

)

. (3.1)

Since f ′(x) < 0 for x ∈ (0,1) and f ′(x) > 0 for x > 1, it follows that f (x) decreases for
0 < x < 1, while increases for x > 1.

Now consider G(x)= log[g(x)]. We have G(x)= x log[Γ(x+ 1/x)]. Then

G′(x)= log
[

Γ
(

x+
1
x

)]

+
(

x− 1
x

)

ψ
(

x+
1
x

)

,

G′′(x)= 2ψ
(

x+
1
x

)

+
(

x− 1
x

)(

1− 1
x2

)

ψ′
(

x+
1
x

)

.

(3.2)

SinceG′(1)= 0 andG′′(x) > 0 for x > 0, it follows thatG′(x) < 0 for x ∈ (0,1) andG′(x) >
0 for x ∈ (1,+∞). Therefore G(x), and consequently g(x), decreases for 0 < x < 1, while
increases for x > 1.

Finally

h′(x)=
(

1− 1
x2

)

Γ′′
(

x+
1
x

)

. (3.3)

Since Γ′′(x+ 1/x) > 0, hence h′(x) < 0 for x ∈ (0,1) and h′(x) > 0 for x > 1. It follows that
h(x) decreases on 0 < x < 1, while increases for x > 1.
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POSITIVE CHARACTERISTIC VALUES AND
OPTIMAL CONSTANTS FOR THREE-POINT
BOUNDARY VALUE PROBLEMS

K. Q. LAN

The smallest characteristic value μ1 of the linear second-order differential equation of the
form u′′(t) +μ1g(t)u(t)= 0, a.e. on [0,1], subject to the three-point boundary condition
z(0) = 0, αz(η) = z(1), 0 < η < 1, and 0 < α < 1/η is investigated. The upper and lower
bounds for μ1 are provided, namely, m < μ1 < M(a,b), where m and M(a,b) are com-
putable definite integrals related to the kernels arising from the above boundary value
problem. When g ≡ 1, the minimum values for M(a,b) for some a,b ∈ (0,1] with a < b
are discussed. All of these values obtained here are useful in studying the existence of
nonzero positive solutions for some nonlinear three-point boundary value problems.

Copyright © 2006 K. Q. Lan. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.

1. Introduction

We estimate the nonzero positive characteristic value μ1 with positive eigenfunctions of
the second-order linear differential equation of the form

u′′(t) +μ1g(t)u(t)= 0 a.e on [0,1], (1.1)

with the three-point boundary condition

z(0)= 0, αz(η)= z(1), 0 < η < 1, 0 < α <
1
η
. (1.2)

The problems are motivated by the study of the existence of positive solutions for the
nonlinear boundary value problem

u′′(t) + g(t) f
(
u(t)

)= 0 a.e on [0,1], (1.3)

with (1.2), where f : R+ → R+ is continuous. It is known that if there exists ρ > 0 such
that the following condition holds.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 623–633



624 Three-point boundary value problems

(H) f (u) <mρ for all u∈ [0,ρ] andM(a,b) < liminfu→0+ f (u)/u≤∞, then (1.2)-(1.3)
has one nonzero positive solution, where m and M(a,b) are definite integrals related to
the product of g and Green’s function k to −z′′ = 0 subject to (1.2) (see [11]). The result
remains valid if (1.1)-(1.2) has a unique nonzero positive characteristic value μ1 with
positive eigenfunctions and M(a,b) is replaced by μ1 (see [19]). It is proved in [19] that
m ≤ μ1 ≤M(a,b) for a,b ∈ (0,1] with a < b. We refer to [2, 4–6, 13, 14, 16, 17] for the
study of (1.2)-(1.3).

In this paper, we show that the above inequalities are strict. According to these inequal-
ities and the condition (H) in the results on the existence of positive solutions mentioned
above, one expectsM(a,b) as small as possible. Therefore, we are interested in finding the
minimum values for M(a,b). We will seek the minimum values for M(a,b) when g ≡ 1.
We refer to [10, 17, 18] for the study of similar optimal values for other boundary value
problems.

2. Positive characteristic values

It is known that Green’s function k : [0,1]× [0,1]→R+ is defined by

k(t,s)= 1
1−αη

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
[
1−αη− (1−α)s

]
if t ≤ s≤ η,

s
[
1−αη− (1−α)t

]
if s≤ t, s≤ η,

t(1− s) if t ≤ s, η < s,
(1−αη)s− (s−αη)t if η < s≤ t.

(2.1)

For 0 < α≤ 1, we define

Φ(s)= k(s,s)= 1
1−αη

⎧
⎪⎨

⎪⎩

s
[
1−αη− (1−α)s

]
if s≤ η,

s(1− s) if s > η,

c(t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
{

t,1− 1−α
1−αη t

}

if 0≤ t ≤ η,

min
{

t,1− 1−α
1−αη t,

αη

t

}

if η ≤ t ≤ 1.

(2.2)

For 1 < α < 1/η, we define

Φ(s)= 1
1−αη

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α(1−η)s if s≤ η,

αη(1− s) if η < s≤ αη,

s(1− s) if s > αη,

c(t)=

⎧
⎪⎪⎨

⎪⎪⎩

t, if 0≤ t ≤√αη,

αη

t
if √αη ≤ t ≤ 1.

(2.3)
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The following results which can be found in [11, Theorem 2.1] provide upper and
lower bounds of k.

Theorem 2.1. The kernel k has the following properties:
(i) c(t)Φ(s) ≤ k(t,s) ≤ Φ(s) for t,s ∈ [0,1]. Moreover, the inequalities are strict for

t,s∈ (0,1);
(ii) Φ(s)≥ ξs(1− s) for s∈ [0,1], where

ξ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1−η
1−αη if 0 < α≤ 1,

min
{
αη,α(1−η)

}

1−αη if 1 < α <
1
η
.

(2.4)

Let a,b ∈ (0,1] with a < b and let

c(a,b)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
{

a,
1−αη− (1−α)b

1−αη ,
αη

b

}

if 0 < α≤ 1,

min
{

a,
αη

b

}

if 1 < α <
1
η
.

(2.5)

Let P = {u ∈ C[0,1] : u ≥ 0} denote the standard cone of nonnegative continuous
functions defined on [0,1]. Using the constant c(a,b) defined above, we define the fol-
lowing cone:

K = {u∈ P : q(u)≥ c(a,b)‖u‖}, (2.6)

where q(u) =min{u(t) : t ∈ [a,b]} is continuous from P to R+. This type of cone has
been extensively used, for example, in [3, 7–9, 11, 12].

Throughout this paper, we assume that g satisfies the following conditions:
(C1) g : [0,1]→R+ is measurable such that

∫ 1
0 s(1− s)g(s)ds <∞;

(C2) there exist a,b ∈ (0,1] with a < b such that
∫ b
a s(1− s)g(s)ds > 0.

Recall that μ1 > 0 is called a positive characteristic value of the following linear com-
pact operator L from P into K :

Lu(t) :=
∫ 1

0
k(t,s)g(s)u(s)ds, (2.7)

if there exists u∈ K with u�= 0 such that u= μ1Lu. It is shown in [19] that under (C1)-
(C2), μ1 = 1/r(L) is the smallest positive characteristic value of L, where r(L) =
limn→∞‖Ln‖1/n is the radius of the spectrum of L and is the largest eigenvalue of L (see
[15]). If g ≡ 1, L satisfies the so-called (UPE), that is, r(L) is the only positive eigenvalue
of L with an eigenfunction in the cone P. It is not clear whether L satisfies UPE for a gen-
eral function g �≡ 1. The smallest positive characteristic value of L has been widely used
to study some boundary value problems, for example, see [1, 19].



626 Three-point boundary value problems

Notation 2.2. Let

m=
(

max
t∈[0,1]

∫ 1

0
k(t,s)g(s)ds

)−1

, M(a,b)=
(

min
t∈[a,b]

∫ b

a
k(t,s)g(s)ds

)−1

. (2.8)

It is well known that the following inequalities hold (see [19]):

m≤ μ1 ≤M(a,b). (2.9)

By Theorem 2.1(ii) and (C2), M(a,b) is well defined for a,b ∈ (0,1] with a < b.

The following new result shows that the inequalities in (2.9) are strict.

Theorem 2.3. Assume that there exist a1,b1 ∈ [a,b] such that g(s) > 0 a.e on [a1,b1]. Then
m< μ1 <M(a,b) for a,b ∈ [0,1].

Proof. Let d = ∫ 1
0 Φ(s)g(s)(1− ϕ1(s))ds, where ϕ1 ∈ K with ‖ϕ1‖ = 1 and ϕ1 = μ1Lϕ1.

Then d > 0. In fact, if d = 0, then Φ(s)g(s)(1−ϕ1(s))= 0 a.e. on [a1,b1] and ϕ1(s)= 1 a.e.
on [a1,b1]. Since ϕ′′1 (s) = −μ1g(s)ϕ1(s) a.e. on [a1,b1], we have g(s) = 0 a.e on [a1,b1],
which contradicts our hypothesis. Let t0 ∈ [0,1] satisfy ϕ1(t0) = ‖ϕ1‖ = 1. Then t0 > 0
since ϕ1(0)= 0, and thus we have c(t0) > 0. By Theorem 2.1(i), we have

1
m
≥
∫ 1

0
k
(
t0,s

)
g(s)ds=

(
1
μ1

)

ϕ1
(
t0
)

+
∫ 1

0
k
(
t0,s

)
g(s)

(
1−ϕ1(s)

)
ds

≥ 1
μ1

+ c
(
t0
)
∫ 1

0
Φ(s)g(s)

(
1−ϕ1(s)

)
ds=

(
1
μ1

)

c
(
t0
)
d >

1
μ1
.

(2.10)

Let d(a,b)= c(a,b)ξ
∫ b
a s(1− s)g(s)(ϕ1(s)− q(ϕ1))ds. We prove that d(a,b) > 0. In fact,

if d(a,b)= 0, then
∫ b1

a1
s(1− s)g(s)(ϕ1(s)− q(ϕ1))ds= 0. This, together with the hypothe-

sis g(s) > 0 a.e on [a′,b′] and continuity of ϕ1, implies that ϕ1(s)= q(ϕ1) for s∈ [a1,b1].
Since ϕ′′1 (s) = −μ1g(s)ϕ1(s) a.e. on [a1,b1], q(ϕ1) ≥ c(a,b) > 0, we have g(s) = 0 a.e on
[a1,b1], which contradicts our hypothesis.

By Theorem 2.1(i) and (ii), we have for t ∈ [0,1],

∫ b

a
k(t,s)g(s)

(
ϕ1(s)− q(ϕ1

))
ds≥ c(t)

∫ b

a
Φ(s)g(s)

(
ϕ1(s)− q(ϕ1

))
ds≥ d(a,b) > 0.

(2.11)

This implies that
∫ b
a k(t,s)g(s)ϕ1(s)ds≥ d(a,b) +

∫ b
a k(t,s)g(s)q(ϕ1)ds. Therefore,

(
1
μ1

)

ϕ1(t)=
∫ 1

0
k(t,s)g(s)ϕ1(s)ds≥

∫ b

a
k(t,s)g(s)ϕ1(s)ds

≥ d(a,b) + q
(
ϕ1
)
∫ b

a
k(t,s)g(s)ds≥ d(a,b) +

q
(
ϕ1
)

M(a,b)
.

(2.12)
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Taking minimum over [a,b] gives

(
1
μ1

)

q
(
ϕ1
)≥ d(a,b) +

q
(
ϕ1
)

M(a,b)
>

q
(
ϕ1
)

M(a,b)
. (2.13)

This implies that μ1 <M(a,b). �

The following result gives an upper bound of μ1 which is independent of a, b.

Theorem 2.4. If there exist a1,b1 ∈ [a,b] such that g(s) > 0 a.e on [a1,b1], then

μ1 <
[

c
(
t1)
∫ 1

0
Φ(s)g(s)c(s)ds

]−1

, (2.14)

where c(t1)=max{c(t) : t ∈ [0,1]}.
Proof. Let d1 =

∫ 1
0 [k(t1,s)− c(t1)Φ(s)]g(s)ds. Then d1 > 0. In fact, if not, then

0= d1 ≥
∫ b1

a1

[
k
(
t1,s

)− c(t1
)
Φ(s)

]
g(s)ds. (2.15)

This implies that [k(t1,s)− c(t1)Φ(s)]g(s) = 0 a.e on [a1,b1]. By Theorem 2.1, we have
g(s)= 0 a.e on [a1,b1], a contradiction. It follows from Theorem 2.1 that ϕ1(s)≥ c(s) for
s∈ [0,1] and

1
μ1
≥
(

1
μ1

)

ϕ1
(
t1
)≥ c(t1

)
∫ 1

0
Φ(s)g(s)ϕ1(s)ds+d1

≥ c(t1
)
∫ 1

0
Φ(s)g(s)c(s)ds+d1 > c

(
t1
)
∫ 1

0
Φ(s)g(s)c(s)ds.

(2.16)

The result follows. �

3. Optimal constants

As mentioned in the introduction, we want M(a,b) as small as possible. In this section,
we consider the minimum values for M(a,b) when g ≡ 1. In this case, we have

M(a,b)=
(

min
t∈[a,b]

∫ b

a
k(t,s)ds

)−1

, (3.1)
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where k is defined in (2.1). It is shown in [11] that

M(a,b)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(1−αη)
a(b− a)

[
2(1−αη)− (1−α)(a+ b)

] if a < b≤ η,

(

min

{∫ b

a
k(a,s)ds,

∫ b

a
k(b,s)ds

})−1

if a≤ η ≤ b,

2(1−αη)
a(b− a)(2− a− b)

if η ≤ a < b, a+ b≤ 1 +αη,

2(1−αη)
(b− 1 +αη)a2− 2abαη+ (1 +αη− b)b2

if η ≤ a < b, a+ b > 1 +αη.

(3.2)

Now, we can find the minimum values of M(a,b) for the following three cases: (i)
0 < a < b ≤ η; (ii) η ≤ a < b, a+ b≤ 1 +αη, and (iii) η ≤ a < b, a+ b > 1 +αη.

Theorem 3.1. Let 0 < a < b ≤ η. Then

M(a,b)≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
(
η

2
,η
)

= 4
η2

if α= 1,

M
(
a0,η

)= 2(1−αη)
a0
(
η− a0

)[
2−η−αη− (1−α)a0

] if α < 1,

M
(
a3,η

)= 2(1−αη)
a3
(
η− a3

)[
2−η−αη− (1−α)a3

] if α > 1,

(3.3)

where a0 = (2(1 − αη) −
√

3(1−η)2 + (1−αη)2)/3(1−α) and a3 = (−2(1 − αη) +
√

3(1−η)2 + (1−αη)2)/3(α− 1).

Proof. Let S∗ = {(a,b) : a∈ (0,η] and b∈ (a,1]} and

h(a,b)= a(b− a)
[
2(1−αη)− (1−α)(a+ b)

]
for (a,b)∈ S∗. (3.4)

Then we have for each a∈ (0,η],

∂h

∂b
(a,b)= 2a

[
(1−αη)− (1−α)b

]
. (3.5)

Note that if α ≤ 1, then (1− αη)− (1− α)b ≥ (1− αη)− (1− α)η ≥ 0 and if α ≥ 1, (1−
αη)− (1− α)b ≥ 0. Hence, (∂h/∂b)(a,b) ≥ 0 and h(a,b) ≤ h(a,η) for (a,b) ∈ S∗. Let
g(a)= h(a,η)= (ηa− a2)[2−η−αη− (1−α)a] for a∈ (0,η]. We consider the following
three cases.

(i) If α= 1, then g(a)= 2a(η− a)(1−η) and g′(a)= 2(1−η)(η− 2a) for a∈ (0,η].
This implies that g(a)≤ g(η/2) and h(a,b)≤ h(η/2,η)= η2(1−η)/2 for (a,b)∈
S∗. Hence, we have M(a,b)≥ 4/η2 for (a,b)∈ S∗. It is easy to verify that if α�= 1,
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then

g′(a)= 3(1−α)

⎡

⎣

(

a− 2(1−αη)
3(1−α)

)2

− 3(1−η)2 + (1−αη)2

9(1−α)2

⎤

⎦ for a∈ (0,η]. (3.6)

(ii) If α < 1, then g′(a)= 0 has two solutions:

a0 =
2(1−αη)−

√
3(1−η)2 + (1−αη)2

3(1−α)
,

a1 =
2(1−αη) +

√
3(1−η)2 + (1−αη)2

3(1−α)
.

(3.7)

It is easy to verify that a0 ∈ (0,η], a1 > η, and g is increasing on (0,a0] and de-
creasing on [a0,η]. This implies that g(a)≤ g(a0) for (0,η] and

h(a,b)≤ h(a0,η
)= a0

(
η− a0

)[
2−η−αη− (1−α)a0

]
for (a,b)∈ S∗,

M(a,b)≥ 2(1−αη)
h
(
a0,η

) for (a,b)∈ S∗.
(3.8)

(iii) If α > 1, then it follows from (3.6) that g′(a)= 0 has two solutions:

a3 =
−2(1−αη) +

√
3(1−η)2 + (1−αη)2

3(α− 1)
,

a4 =
−2(1−αη)−

√
3(1−η)2 + (1−αη)2

3(α− 1)
.

(3.9)

Note that a3 ∈ (0,η], a4 < 0, and g(a) ≤ g(a3) for a ∈ (0,η]. This implies that
M(a,b)≥M(a3,η) for (a,b)∈ S∗. �

Theorem 3.2. Let η ≤ a < b and a+ b ≤ 1 +αη.
(1) If α≤ 1, then

M(a,b)≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M

(
1 +αη

4
,
3(1 +αη)

4

)

= 16
(1 +αη)2

if η ≤ 1
4−α ,

M
(
η,1− (1−α)η

)= 2
η(1− 2η+αη)

if η ≥ 1
4−α .

(3.10)
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(2) If 1 < α < 1/η, then

M(a,b)≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M

(
1 +αη

4
,
3(1 +αη)

4

)

= 16
(1 +αη)2

if αη ≤ 1
3

,

M
(

1
3

,1
)

= 27
2

(1−αη) if η ≤ 1
3

, αη ≥ 1
3

,

M(η,1)= 2(1−αη)
η(1−η)2

if η ≥ 1
3
.

(3.11)

Proof. Let h(a,b)= a(b− a)(2− a− b) for a,b ∈ (0,1). Then h(a,·) is increasing on (0,1)
for each a∈ (0,1). Then we have

M(a,b)= 2(1−αη)
h(a,b)

for (a,b)∈ S. (3.12)

Let S= {(a,b) : η ≤ a < b and a+ b≤ 1 +αη}.
(1) If α≤ 1, then S= {(a,b) : η ≤ a≤ (1 +αη)/2 and a < b ≤ 1 +αη− a} and

h(a,b)≤ h(a,1 +αη− a)= (1−αη)a(1 +αη− 2a) for a∈
[

η,
1 +αη

2

]

. (3.13)

Let g(a) = (1− αη)a(1 + αη− 2a) for a ∈ [0,1]. Then g′(a) = (1− αη)(1 + αη− 4a) for
a ∈ [0,1]. Note that η ≤ 1/(4−α) if and only if η ≤ (1 +αη)/4. Then we have for a ∈
[η, (1 +αη)/2],

g(a)≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g
(

1 +αη
4

)

= (1−αη)(1 +αη)
8

if η ≤ 1 +αη
4

,

g(η)= (1−αη)η(1 +αη− 2η) if η >
1 +αη

4
.

(3.14)

The result (1) follows from (3.12), (3.13), and (3.14).
If 1 < α < 1/η, then S= S1∪ S2, where S1 = {(a,b) : η ≤ a < αη and a < b ≤ 1} and S2 =

{(a,b) : αη ≤ a < (1 +αη)/2 and a < b ≤ 1 + αη− a}. Since h(a,·) is increasing on (0,1)
for each a∈ (0,1), we have

h(a,b)≤
⎧
⎨

⎩

h(a,1) if (a,b)∈ S1,

h(a,1 +αη− a) if (a,b)∈ S2.
(3.15)

Let g(a) = a(1− a)2 for a ∈ [0,1]. Then g(a) = h(a,1) for a ∈ [η,αη]. Note that g is in-
creasing on [0,1/3] and decreasing on [1/3,1]. Hence, we have for a∈ [η,αη],

g(a)≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(αη)= αη(1−αη)2 if αη ≤ 1
3

,

g
(

1
3

)

= 4
27

if η ≤ 1
3

, αη ≥ 1
3

,

g(η)= η(1−η)2 if η >
1
3
.

(3.16)
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Therefore, we have for (a,b)∈ S1,

M(a,b)≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(αη,1)= 2
αη(1−αη)

if αη ≤ 1
3

,

M
(

1
3

,1
)

= 27
2

(1−αη) if η ≤ 1
3

, αη ≥ 1
3

,

M(η,1)= 2(1−αη)
η(1−η)2

if η ≥ 1
3
.

(3.17)

Let ω(a) = (1− αη)a(1 + αη− 2a) for a ∈ [0,1]. Then ω(a) = h(a,1 + αη− a) for αη ≤
a ≤ (1 +αη)/2 and ω is increasing on [0,(1 +αη)/4] and decreasing on [(1 +αη)/4,1].
Note that αη ≤ (1 +αη)/4 if and only if αη ≤ 1/3. Hence, we have for a∈ [αη, (1 +αη)/2],

ω(a)≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω
(

1 +αη
4

)

= (1−αη)(1 +αη)2

8
if αη ≤ 1

3
,

ω(αη)= αη(1−αη)2 if αη ≥ 1
3
.

(3.18)

Therefore, we have for (a,b)∈ S2,

M(a,b)≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M

(
1 +αη

4
,
3(1 +αη)

4

)

= 16
(1 +αη)2

if αη ≤ 1
3

,

M(αη,1)= 2
αη(1−αη)

if αη ≥ 1
3
.

(3.19)

Comparing (3.17) and (3.19), we obtain the result (2). �

Theorem 3.3. Let η ≤ a < b ≤ 1 and a+ b≥ 1 +αη. Then

M(a,b)≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M
(

(1 +αη)
4

,
3(1 +αη)

4

)

= 16
(1 +αη)2

if αη ≤ 1
3

,

M(αη,1)= 2
αη(1−αη)

if αη ≥ 1
3
.

(3.20)

Proof. Let S′ = {(a,b) : η ≤ a < b ≤ 1 and a+ b≥ 1 +αη} and let

h(a,b)= (b− 1 +αη)a2− 2abαη+ (1 +αη− b)b2 for (a,b)∈ S′. (3.21)

Then M(a,b) = 2(1−αη)/h(a,b) for (a,b) ∈ S′. It is easy to verify that S′ = {(a,b) : b ∈
[(1 +αη)/2,1] and a∈ [1 +αη− b,b)}. Let b ∈ [(1 +αη)/2,1]. Then we have

∂h

∂a
(a,b)= 2(b− 1 +αη)a− 2bαη for a∈ [1 +αη− b,b). (3.22)
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Note that if b− 1 + αη > 0, then (b− 1 + αη)a− bαη ≤ (b− 1 + αη)b− bαη ≤ 0. Hence,
(∂h/∂a)(a,b)≤ 0 for a∈ [1 +αη− b,b) and

h(a,b)≤ h(1 +αη− b,b) for a∈ [1 +αη− b,b). (3.23)

Let g(b)= h(1 + αη− b,b)= (1 + αη− b)[(αη)2− 1 + 2(1−αη)b] for b ∈ [(1 +αη)/2,1].
Then g′(b)= (1−αη)[3(1 +αη)− 4b] for b ∈ [(1 +αη)/2,1]. This implies that

g(b)≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g

(
3(1 +αη)

4

)

if αη ≤ 1
3

,

g(1) if αη ≥ 1
3
.

(3.24)

Hence, we have

h(a,b)≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h

(
(1 +αη)

4
,
3(1 +αη)

4

)

= (1−αη)(1 +αη)2

8
if αη ≤ 1

3
,

h(αη,1)= αη(1−αη)2 if αη ≥ 1
3

,

(3.25)

and the result follows. �
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WELL-POSEDNESS AND BLOW-UP OF SOLUTIONS TO WAVE
EQUATIONS WITH SUPERCRITICAL BOUNDARY SOURCES
AND BOUNDARY DAMPING

IRENA LASIECKA AND LORENA BOCIU

We present local and global existence of finite-energy solutions of the wave equation
driven by boundary sources with critical and supercritical exponents. The results pre-
sented depend on the boundary damping present in the model. In the absence of bound-
ary “overdamping,” finite-time blow-up of weak solutions is exhibited.

Copyright © 2006 I. Lasiecka and L. Bociu. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let Ω⊂Rn be a bounded domain with sufficiently smooth boundary Γ. We consider the
following model of semilinear wave equation with nonlinear boundary/interior mono-
tone dissipation and nonlinear boundary/interior sources

utt + g0
(
ut
)= Δu+ f (u) in Ω× [0,∞),

∂νu+ cu+ g
(
ut
)= h(u) in Γ× [0,∞),

u(0)= u0 ∈H1(Ω), ut(0)= u1 ∈ L2(Ω).

(1.1)

Our main aim is to discuss the well-posedness of the system given by (1.1), with c ≥ 0,
on a finite-energy space H =H1(Ω)× L2(Ω). This includes existence and uniqueness of
both local and global solutions and also blow-up of the solutions with nonpositive initial
energy. The main difficulty of the problem is related to the presence of the boundary
nonlinear term h(u), and it has to do with the fact that Lopatinski condition does not
hold for the Neumann (c = 0) or Robin (c > 0) problem, that is, the linear map h→
U(t)= (u(t),ut(t)), where U(t) solves

utt = Δu in Ω× [0,∞),

∂νu+ cu= h in Γ× [0,∞),

u(0)= u0 ∈H1(Ω), ut(0)= u1 ∈ L2(Ω),

(1.2)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 635–643



636 Well-posedness and blow-up of solutions

is not bounded from L2(Σ)→H1(Ω)×L2(Ω), unless the dimension of Ω is equal to one
or initial data are compactly supported [12, 20]. In fact, the maximal amount of regularity
that one obtains is in general H2/3(Ω)×H−1/3(Ω) [13, 21]. The above lack of regularity
is a major predicament in studying nonlinear problems, within finite-energy framework,
with nonlinearity located at the boundary. Indeed, no matter how smooth or regular the
nonlinearity h(u) is, the effect of this nonlinear source is not only non-Lipschitz with
respect to the phase space but also non-Lipschitz with respect to the weak semigroup
formulation of solutions [8] (unlike Dirichlet problem for which Lopatinski condition is
satisfied [18]). In fact, the results in the past literature on local existence of finite-energy
solutions that are driven by boundary sources assumed that initial data are suitably small.
The corresponding theory, developed within the framework of potential well theory [15],
provides existence results for undamped equation (1.1) with g0 = g = 0, f = 0. In such
case, the issue of Lopatinski condition does not enter the picture, since the candidate
solutions remain invariant within the well. However, this approach is totally inadequate
for studying local or global existence of solutions without any restrictions on the size of
initial data. For initial data of an arbitrary size, [10] develops theory based on “sharp”
regularity H2/3(Ω)×H1/3(Ω) of the Neumann map [12, 13], which gives well-posedness
of solutions to the semilinear boundary problem without any dissipation (g = g0 = 0) and
within the framework of spaces just above finite-energy level.

Thus the difficulties implied by not having Lopatinski condition satisfied have been
recognized a long time ago and have been dealt with (particularly in the context of control
theory) by exploiting boundary dissipation as a sort of “regularization” [14]. In fact, even
linear dissipation g(ut) = α2ut changes the problem to the one where Lopatinski con-
dition is satisfied. As a consequence, (1.2) with added linear dissipation on the bound-
ary (∂/∂ν)u+ cu+ α2ut = h has finite-energy solutions with L2 boundary input, that is,
h∈ L2(Σ). This property has been since used in control theory of PDEs, particularly in the
context of boundary stabilization and well-posedness of Riccati equations with boundary
nonlinearities [14]. In [11], it was shown that finite-energy solutions do exist locally for
locally Lipschitz functions f , h of subcritical growth and for any dissipation g that is con-
tinuous, monotone, and bounded linearly at infinity. This last condition on linear bound
of dissipation g(s) at infinity was dictated by the main goal of [11], which was obtaining
uniform decay rates for solutions (for which such a condition is necessary).

Most recently, [23] revisited the problem by proving local existence of finite-energy
solutions to (1.1) with g0 = 0, f = 0, boundary damping g(ut), and source h(u) of poly-
nomial structures. More specifically, h(u) = |u|k−1u, g(u) = |u|q−1u, under the restric-
tions

2≤ k+ 1 <
2(n− 1)
n− 2

, k <
2(n− 1)q

(n− 2)(q+ 1)
. (1.3)

The proof given in [23] uses Schauder’s fixed point theorem, which is based on com-
pactness of Sobolev’s embeddings and excludes critical and supercritical exponents in the
nonlinear sources considered. By “critical” we mean sources for which potential energy
is well defined on H1(Ω) solutions. Since the energy function associated with (1.1) and
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polynomial sources takes the form

E(t)= 1
2

∫

Ω

[
|∇u|2 +

∣
∣ut
∣
∣2
]
dx− 1

k+ 1

∫

Γ
|u|k+1dx (1.4)

on the strength of Sobolev embeddings H1/2(Γ) ⊂ L2(n−1)/(n−2)(Γ), the value k + 1 =
2(n− 1)/(n− 2) becomes critical. Thus the values for parameter k assumed in (1.3) are
subcritical. On the other hand, local existence of finite-energy solutions should not de-
pend on criticality of k (though the method might, as it does in [23]). This is particularly
true if one considers high powers for the damping operator. Indeed, by taking q→∞, one
should be able to obtain local existence of solutions assuming only k < 2(n− 1)/(n− 2),
that is, k may be “supercritical.” Thus, a question becomes whether the “subcriticality”
assumption imposed on k in [23] is intrinsic to the problem or rather to the method.

It turns out that techniques developed in [11], and based on a combination of mon-
otonicity-regularization methods, lead to a positive answer to that question. In addition,
these methods are considerably simpler and more powerful than compactness methods
used in [23]. They handle not only critical and supercritical cases, but they also allow for
a much larger range of nonlinear sources/dampings to be considered.

The present paper is a continuation and expansion of some results and techniques
developed in [11]. By using monotone operator theory techniques, we will extend the
existing results in order to incorporate more general damping terms and more general
sources of supercritical nature. The main novel contribution of the present manuscript
can be summarized as follows:

(i) local existence theory for critical and supercritical boundary/interior sources;
(ii) global existence theory exploiting boundary/interior overdamping;

(iii) blow-up of finite-energy solutions with boundary/interior damping.
Thus, the results presented in this paper extend those obtained recently in the litera-

ture [23], where boundary sources dampings subject to polynomial structure of subcriti-
cal exponents were considered. In addition, our proofs are considerably simpler. Finally,
we demonstrate sharpness of local and global existence theories by exhibiting blow-up
phenomenon in the complementary (to global existence) region.

Remark 1.1. We note that the use of the damping as a tool to control local existence is well
established in the study of quasilinear hyperbolic equations, see [1, 9]. The use of the in-
terior overdamping as a control mechanism for longevity of solutions (global solutions)
is also well known [7]. However, the smoothing effect of the damping in the semilinear-
boundary hyperbolic problem has different mechanism as it relates to Lopatinski condi-
tion not being satisfied. This aspect of the problem was addressed in [11], where for the
first time it was shown that boundary damping is critical for local existence of solutions
driven by nonlinear subcritical terms on the boundary. One of the aims in this paper is to
fully exhibit the role of the boundary damping played in both local and global existence
theories. The issue of exploiting the damping as a mechanism for controlling long-time
behavior (including stability and attractors) in the presence of the boundary sources in-
volves different technical aspects [5, 6, 11], and will be relegated to another paper.
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2. Main results

Our main results are formulated below. Due to space limitations, we provide only brief
ideas about the proofs. Complete proofs are given in [3].

2.1. Local existence. Our first result deals with the case where the dissipation is assumed
to be strongly monotone. Later on, we will consider the problem without a strong mono-
tonicity assumption.

Theorem 2.1 (local existence and uniqueness). With reference to model (1.1), assume that
(1) g(s) and g0(s) are continuous and monotone increasing functions. In addition, the

following strong monotonicity condition is imposed on g, that is, there exists m0 > 0
such that (g(s)− g(v))(s− v)≥m0|s− v|2;

(2) f is locally Lipschitz: H1(Ω)→ L2(Ω);

(3) ĥ(u)≡ h(u|Γ) is locally Lipschitz: H1(Ω)→ L2(Γ).
Then there exists a local unique solution U ∈ C[(0,TM),H], where TM (maximal time of

existence) depends on initial data |U(0)|H, local Lipschitz constants corresponding to h, f ,
and the constant m1 such that g(s)s≥m1|s|2, |s| ≥ 1.

The proof of Theorem 2.1 is based on an extended monotonicity method developed
in [11]. The boundary value problem is formulated as a locally Lipschitz perturbation of
an m-monotone problem. This is accomplished by a suitable use of semigroup theory,
allowing the representation of boundary conditions via a singular variation of parameter
formula [10, 11, 14]. Maximal monotone operator theory is then extended in order to
incorporate locally Lipschitz perturbations (see [6, Theorem 7.1]).

Remark 2.2. Note here that the maximal time of existence TM depends on the constant
m1 generated by the growth condition imposed on g, but does not depend on m0, the
constant of strong monotonicity. This feature will allow us to eliminate the strong mono-
tonicity assumption.

Theorem 2.3 (local existence revisited). With reference to (1.1), assume that
(1) g, g0 are monotone increasing and continuous. In addition, the following growth

conditions at infinity are satisfied. There exist positive constants mq,Mq, lm,Lm such
that for |s| > 1,mq|s|q+1 ≤ g(s)s≤Mq|s|q+1 and lm|s|m+1 ≤ g0(s)s≤ Lm|s|m+1 with
q > 0, m≥ 0 positive;

(2) f is locally Lipschitz: H1(Ω) → L2(Ω) when m ≤ 1 and H1(Ω) → Lr(Ω), r ≤
(m+ 1)/m when m> 1;

(3) h(u|Γ) is locally Lipschitz from H1−ε(Ω)→ L(q+1)/q(Γ).
Then there exists a local in-time weak solution U ∈ C[(0,TM),H], where the maximal

time of existence TM depends on initial data |U(0)|H, locally Lipschitz constants, and mq, lm
when r > 2. The solution may not be unique in this case.

Theorem 2.4 (uniqueness). Solutions referred to in Theorem 2.3 are unique provided that
the first 2 assumptions of Theorem 2.3 are the same and h is assumed locally Lipschitz:
H1/2(Γ)→ L2(Γ) and also h∈ C2(R).

Remark 2.5. As evidenced by assumption (3), the local existence result of Theorem 2.3
depends (as in [11]) on the presence of coercive boundary damping g(s)s ≥ mq|s|q+1.
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A less regular nonlinear term and more damping (overdamping) are necessary to coun-
teract the nonlinearity. The role of interior damping, however, is much less critical. As
long as the interior source is bounded in L2(Ω), there is no need for any interior damp-
ing. The interior damping becomes critical once the interior source is exiting in the L2(Ω)
space.

The proof of Theorem 2.3 relies on the following idea. We first approximate the origi-
nal problem by the regularized one which falls into the framework of Theorem 2.1. Limit
passage exploiting monotonicity of the damping allows us to construct the sought after
solutions as weak limits of the regularized problem. The important feature of the proof is
the approximation of the boundary damping, where g(s) is replaced by

gn(s)= 1
n
s+ g(s), n−→∞, (2.1)

which, for each n, readily satisfies hypotheses of Theorem 2.1. Two level approxima-
tions of h (resp., f ) by a sequence hn,K (resp., fn,K ), n,K →∞, are introduced next. hn,K

(resp., fn,K ) for each fixed n are locally Lipschitz from H1(Ω)→ L2(Γ). The parameter K
controls Lipschitz behavior. Since the function gn satisfies the strong coercivity assump-
tion of Theorem 2.1 and the functions hn,K , fn,K satisfy the necessary requirements of
Theorem 2.1, existence of local solutions un,K (t) follows from that theorem. The final so-
lution to the problem is obtained via the limit process. For this, suitable a priori bounds
are necessary. An important feature of the proof is to control the time of local existence
Tn,K uniformly with respect to the parameters. This is accomplished by exploiting the
damping parameter q and condition (3) in Theorem 2.3. It is at this stage when the role
of the damping is critical for local existence. Similar phenomena have been observed and
taken advantage of in [11]. Having established a priori bounds, the ultimate passage with
the limit is accomplished by exploiting the monotonicity method along with convergence
properties of regularizations.

Remark 2.6. In the particular case when the function h∈ C1(R) is polynomially bounded
at infinity with the bound

∣
∣h(s)

∣
∣≤ C|s|k, |s| ≥ 1, 0≤ k < 2(n− 1)q

(n− 2)(q+ 1)
, (2.2)

then Sobolev’s embeddings along with standard methods of nonlinear analysis show that
condition (3) holds, hence Theorem 2.3 applies. Thus, the result of Theorem 2.3 extends
those of [23] not only in allowing more general structure of the damping functions
and sources h, f , but it allows us to obtain a larger domain of parameters k,q: 0 ≤ k <
2(n− 1)q/(n− 2)(q+ 1), while the domain of parameters in [23] is 1≤ k <min[n/(n− 2),
2(n− 1)q/(n− 2)(q+ 1)].

Remark 2.7. The uniqueness result of Theorem 2.4 is completely new. The only avail-
able results on uniqueness so far are when the damping g satisfies assumption (1) of
Theorem 2.1, that is, the strong monotonicity condition.
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2.2. Global existence

Theorem 2.8 (global existence). Solutions referred to in Theorem 2.3 are global and defined
for all 0 ≤ t ≤ T with an arbitrary T <∞ provided the following bounds are satisfied for
|s| ≥ 1.

(1) f (s)s≤M|s|2, or | f (s)| ≤M|s|p, p+ 1≤ 2n/(n− 2), and p ≤m, when p > 1.
(2) h(s)s≤Ms2 or |h(s)|≤M|s|k, k+ 1≤2(n− 1)/(n− 2), and k≤max[q,2q/(q+ 1)].

We note that the conditions for global existence put more stringent assumptions on
the source parameter k. Indeed, when q →∞, Theorem 2.3 allows k < 2(n− 1)/(n− 2)
while Theorem 2.8 demands that k + 1 < 2(n− 1)/(n− 2). This is due to the fact that the
arguments in Theorem 2.8 exploit the structure of “potential energy,” which must be well
defined. In addition, the damping parameter q serves as a barrier to control global be-
havior of solutions. This particular use of damping at the level of global theory has been
introduced earlier in [2, 7, 19] in the context of global solutions with internal sources.

Remark 2.9. It may be interesting to note the dual role of boundary damping as a carrier
for both local and global existence. Not only does local solvability depend on boundary
damping, but it is also responsible for extending the life span of local solutions. In that
sense, the problem with boundary sources is very different from that with interior sources
where the role of the damping is mostly at the global level [7]. Local theory depends on
interior damping only when the sources are not in L2(Ω) [2, 17, 19].

Our second global existence result is obtained for initial data confined to a potential
well defined below. Let |u|p,Ω ≡ |u|Lp(Ω) and ‖u‖s,Ω ≡ |u|Hs(Ω).

Define BΩ = supu∈H1(Ω), u�=0 |u|p,Ω/‖u‖1,Ω <∞ and BΓ = supu∈H1(Ω), u�=0 |u|k,Γ/‖u‖1,Ω <

∞. Let F(λ)= (1/2)λ2− (1/p)B
p
Ωλ

p− (1/k)BkΓλ
k for λ > 0 and let λ∞ be the smallest criti-

cal point of F, that is, λ∞ �= 0 is the smallest value that satisfies the equation 1= BpΩλp−2 +
BkΓλ

k−2. Finally, let d ≡ F(λ∞). Then potential well set W is W = {(u0,u1)∈H | ‖u0‖1,Ω <
λ∞, E(0) < d}.
Theorem 2.10. Under the hypotheses of Theorem 2.3 imposed on the damping functions
g0(s),g(s), consider the initial value problem (1.1) with

f (u)= |u|p−1u, p > 1, p+ 1≤ 2n
n− 2

,

h(u)= |u|k−1u, k > 1, k+ 1≤ 2(n− 1)
n− 2

.

(2.3)

If the initial conditions are confined to the potential well W(as defined above), then finite-
energy solutions for (1) obtained in Theorem 2.3 exist globally, that is, for all T <∞.

The proof of Theorem 2.10 follows from local existence, Theorem 2.3, and a priori
bounds generated by the parameters of the potential well. Potential well solutions, in
the context of boundary and internal sources, have been studied by many authors [15–
17, 22, 23]. A result close in the spirit to Theorem 2.10 is given in [23] for (1.1) with
g0 = 0, f = 0. In that case, potential well solutions are established for subcritical values
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of the parameter k, k + 1 < 2(n− 1)/(n− 2). Thus the result obtained in Theorem 2.10
extends that of [23] to include the critical value of k.

Remark 2.11. The restriction k < 2(n− 1)q/(n− 2)(q+ 1), assumed (implicitly) in Theo-
rem 2.10, results from the fact that we consider solutions obtained in “local” Theorem 2.3.
On the other hand, since the solutions considered are “small,” one may conjecture that
the presence of damping may not be necessary. And, indeed, this is the case. By having
initial data confined to the potential well, one can directly prove (using only Theorem 2.1
applied to regularization (2.1), with g = 0) local and global existence of finite-energy so-
lutions with internal/boundary sources up to critical exponents and without any damp-
ing. Thus, the statement of Theorem 2.10 is still valid with g = g0 = 0 and p,k satisfying
strict inequalities formulated in Theorem 2.10. In the case when f = 0 and g = g0 = 0,
the corresponding result was proved in [15].

2.3. Blow-up of solutions

Theorem 2.12. For the initial boundary value problem (1.1) with f (u) = u|u|p−1 and
h(u)= u|u|k−1, where the parameters k,q,m, and p satisfy

(1) p > 1 and k > 1, along with Sobolev embedding restrictions p+ 1≤ 2n/(n− 2) and
k+ 1≤ (2n− 2)/(n− 2);

(2) k > q and p > m, all weak solutions (established in Theorem 2.3), whose initial en-
ergy is negative (i.e., E(0) < 0), blow-up in finite time.

Remark 2.13. (1) The blow-up result for a potential well solution without damping and
with f = 0 has been established in [15]. It was also shown in [15] that for k > 1, finite
energy E(t) tends to minus infinity. However, convexity methods of [15] do not apply
to the problems with damping. In addition, the result in [15] is a nonexistence result
rather than a blow-up result (it is a blow-up result for potential well solutions only). In
light of this, Theorem 2.12 is the first result exhibiting blow-up of solutions applicable
to all local weak solutions (not necessarily from a potential well) and with the boundary
damping/source combination. In particular, it shows that the presence of the boundary
dissipation does extend the life span of local solutions (k ≤ q), however the value k = q is
critical. In other words, k > q with an incremental interior source p > 1 causes solutions
to blow-up.

(2) One could also consider blow-up of solutions corresponding to positive initial en-
ergy taken from the complement of a potential well. Indeed, in the case of internal source
and boundary damping, such result was proved in [22]. Extension of that result which
incorporates boundary sources as well is given in [4]. However, the blow-up result pre-
sented in [5, 22] requires high singularity of the internal sources, rather than of boundary
sources, as in Theorem 2.12.

(3) Whether one can obtain the same result with p ≤ 1 is an open question.

3. Conclusions

For an illustration, we summarize our results in the case where we assume polynomial
structures for the boundary damping g, no interior damping g0 = 0, and source h (where
q is the exponent for g and k is the exponent for h). The dimension of Ω : n= 3.
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1
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k

k = 4q/(q + 1)

k = 2q/(q + 1)

k = q
k = 3

Figure 3.1

Figure 3.1 above illustrates the following phenomena:
(1) local existence when k < 4q/(q+ 1): note here that this is an improvement to the

results obtained in [23], where local existence was obtained under the additional
restriction k < 3;

(2) global existence when k ≤ 3, k ≤ 2q/(q+ 1), and q ≤ 1, k ≤ q, and 1≤ q ≤ 3;
(3) blow-up of solutions in finite time when k > 1, k > q and k < 4q/(q+ 1).

Thus, as evidenced above, the existence-nonexistence results are optimal, as they cover
the complementary regions k ≤ q (global existence) and k > q (blow-up).
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ON A GENERAL MINIMIZATION PROBLEM
WITH CONSTRAINTS

VY K. LE AND DUMITRU MOTREANU

The paper studies the existence of solutions and necessary conditions of optimality for
a general minimization problem with constraints. We focus mainly on the case where
the cost functional is locally Lipschitz. Applications to an optimal control problem and
Lagrange multiplier rule are given.

Copyright © 2006 V. K. Le and D. Motreanu. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The paper deals with the following general minimization problem with constraints:

inf
v∈S

Φ(v). (P)

Here,Φ : X →R∪{+∞} is a function on a Banach spaceX and S is an arbitrary nonempty
subset of X . We suppose that S∩ dom(Φ)�=∅, where the notation dom(Φ) stands for
the effective domain of Φ, that is,

dom(Φ)= {x ∈ X : Φ(x) < +∞}. (1.1)

First, we discuss the existence of solutions to problem (P). Precisely, we give an exis-
tence result making use of a new type of Palais-Smale condition formulated in terms of
tangent cone to the set S and of contingent derivative for the function Φ. As a particular
case, one recovers the global minimization result for a locally Lipschitz functional satis-
fying the Palais-Smale condition in the sense of Chang (cf. [7]). Then, by means of the
notion of generalized gradient (see Clarke [8]), we obtain necessary conditions of op-
timality for problem (P) in the case where the cost functional Φ is locally Lipschitz. A
specific feature of our optimality conditions consists in the fact that the set of constraints
S is basically involved through its tangent cone. In addition, the costate variable provided
by the given necessary conditions makes use essentially of the imposed tangency hypoth-
esis. Finally, we present two applications of the necessary conditions of optimality that

Hindawi Publishing Corporation
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demonstrate the generality of our results. The first application concerns the minimiza-
tion of a locally Lipschitz functional subject to a boundary value problem for semilinear
elliptic equations depending on a parameter that runs in a function space. If this param-
eter is a control variable, the result can be interpreted as a maximum principle for the
stated optimal control problem. The second application of the abstract result concerning
the necessary conditions of optimality shows that the Lagrange multiplier rule fits into
this setting. In particular, the Lagrange multiplier rule for locally Lipschitz functionals is
derived.

The approach relies on various methods including Ekeland’s variational principle,
Palais-Smale condition, tangency, generalized subdifferential calculus, orthogonality re-
lations, Nemytskii operators, and semilinear elliptic equations. In this respect, it is worth
to mention that a related work has been developed in [2–4] in the context of nonlinear
mathematical programming problems. Here, the basic idea is represented by a kind of lin-
earizing for the set of constraints S which allows to handle S locally by taking advantage
of a continuous linear operator related to the tangent cone. This treatment has a unifying
effect and can be applied to different problems in the optimization theory.

The rest of the paper is organized as follows. Section 2 is devoted to the existence
of solutions to problem (P). Sections 3 presents our necessary conditions of optimality.
Section 4 contains an example in solving an optimal control problem subject to a semi-
linear elliptic equation. Section 5 deals with an application to the Lagrange multiplier
rule.

2. Existence of solutions

In the following, we make use of the notion of tangent vector to the set S at a given point
v ∈ S. Precisely, the tangent cone TvS to S at v ∈ S (TvS is sometimes called the contingent
cone to S at v) is defined as

TvS=
{

w ∈ X : liminf
t↓0

1
t
d(v+ tw,S)= 0

}

, (2.1)

where the notation d(·,S) stands for the distance function to the subset S in X . It is well
known that TvS is a closed cone in X . If S is a convex subset of X , then for every v ∈ S a
very convenient description for TvS holds:

TvS= cl

(
⋃

t>0

1
t

(S− v)

)

, (2.2)

where cl means the strong closure of a set in X . For further information on the tangent
cone, we refer to [5, Chapter 6].

Another useful tool in our approach is the contingent derivative ΦD(u;v) of a function
Φ : X →R∪{+∞} at a point u∈ dom(Φ) in any direction v ∈ X which is defined by

ΦD(u;v)= limsup
t↓0
w→0

1
t

(
Φ
(
u+ t(v+w)

)−Φ(u)
)
. (2.3)

The following example points out a significant particular case.
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Example 2.1. If the function Φ : X →R∪{+∞} is locally Lipschitz at a point u∈ X , then
one has

ΦD(u;v)=Φo(u;v), ∀v ∈ X , (2.4)

where Φo means the generalized directional derivative in the sense of Clarke (cf. [8]),
that is,

Φo(u;v)= limsup
t↓0
x→u

1
t

(
Φ(x+ tv)−Φ(x)

)
. (2.5)

This is clearly seen due to the locally Lipschitz property of Φ near u because then we may
write

limsup
t↓0
w→0

1
t

(
Φ
(
u+ t(v+w)

)−Φ(u)
)

= limsup
t↓0
w→0

1
t

(
Φ(u+ tw+ tv)−Φ(u+ tw)

)
+ lim

t↓0
w→0

1
t

(
Φ(u+ tw)−Φ(u)

)

= limsup
t↓0
x→u

1
t

(
Φ(x+ tv)−Φ(x)

)
.

(2.6)

We now introduce a new type of Palais-Smale condition for nonsmooth functionals
involving the tangent cone and contingent derivative.

Definition 2.2. The functional Φ : X →R∪{+∞} is said to satisfy the Palais-Smale condi-
tion (for short, (PS)) at the level c (c ∈R) on the subset S of X if every sequence (un)⊂ S
such that

Φ
(
un
)−→ c, (2.7)

ΦD
(
un;v

)≥−εn‖v‖, ∀v ∈ TunS, (2.8)

for a sequence εn→ 0+, contains a strongly convergent subsequence in X .

Note that in our existence result below (Theorem 2.4), we only need the (PS) con-
dition at the level c = infSΦ. The next example establishes that the (PS) condition in
Definition 2.2 reduces to the usual Palais-Smale condition in the case of locally Lipschitz
functionals.

Example 2.3. If Φ : X → R∪ {+∞} is locally Lipschitz and S = X , then Definition 2.2
becomes. Every sequence (un) in X such that (2.7) holds and

λ
(
un
)

:= inf
z∈∂Φ(un)

‖z‖ −→ 0 as n−→∞ (2.9)

possesses a strongly convergent subsequence. This equivalence follows readily from Defi-
nition 2.2, Example 2.1, and the definition of generalized gradient

∂Φ
(
un
)= {z ∈ X∗ : 〈z,v〉 ≤Φo

(
un;v

)
, ∀v ∈ X}. (2.10)
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We present our existence result in solving problem (P).

Theorem 2.4. Let S be a closed subset of X and Φ : X → R∪{+∞} a function such that
S∩ dom(Φ)�=∅. Assume that Φ|S is lower semicontinuous and bounded from below, and
Φ satisfies the (PS) condition in Definition 2.2 on S at the level c = infSΦ. Then problem (P)
has at least a solution u∈ S and it is a critical point of Φ on S in the following sense:

ΦD(u;v)≥ 0, ∀v ∈ TuS. (2.11)

Proof. Applying Ekeland’s variational principle (cf. [9]) to the function Φ|S yields a se-
quence (un)⊂ S such that (2.7) and

Φ(y)≥Φ
(
un
)− 1

n

∥
∥y−un

∥
∥, ∀y ∈ S. (2.12)

hold. Fix any v ∈ TunS. By (2.1) there exist sequences tk → 0+ in R and wk → 0 in X as
k→∞ such that un + tk(v+wk)∈ S for all k. Plugging in (2.12) gives

1
tk

(
Φ
(
un + tk

(
v+wk

))−Φ
(
un
))≥−1

n

∥
∥v+wk

∥
∥. (2.13)

Letting k→∞ shows that

liminf
k→∞

1
tk

(
Φ
(
un + tk

(
v+wk

))−Φ
(
un
))≥−1

n
‖v‖, ∀v ∈ TunS. (2.14)

It turns out that (2.8) is verified with εn = 1/n. Therefore, the (PS) condition as formu-
lated in Definition 2.2 provides a relabelled subsequence satisfying un → u in X . More-
over, we have that u∈ S because S is closed. Taking into account that Φ is lower semicon-
tinuous on S, we conclude Φ(u)= infSΦ.

In order to check (2.11), let v ∈ TuS. By (2.1) there exist sequences tk → 0+ in R and
wk → 0 in X as k →∞ such that u + tk(v +wk) ∈ S for all k. Since Φ(u+ tk(v +wk)) ≥
Φ(u), we readily obtain (2.11) that completes the proof. �

We illustrate the applicability of Theorem 2.4 by deriving the existence result of Chang
[7, Theorem 3.5].

Corollary 2.5. Assume that Φ : X → R is a locally Lipschitz function on a Banach space
X , Φ is bounded from below and satisfies the Palais-Smale condition in the sense of Chang
in [7]. Then there exists u∈ X such that Φ(u)= infXΦ and u is a critical point of Φ, that
is, it solves the inclusion problem

0∈ ∂Φ(u), (2.15)

where ∂Φ(u) stands for the generalized gradient of Φ at u.

Proof. By Example 2.3 we know that the (PS) condition in the sense of Definition 2.2 is
fulfilled with S= X . Then it is straightforward to deduce the result by applying Theorem
2.4 �
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3. Necessary conditions of optimality

From now on we assume that the function Φ : X → R entering problem (P) is locally
Lipschitz on a Banach space X and S is an arbitrary nonempty subset of X . We formulate
the following condition on the set S.

(H) For every v ∈ S, there exists a (possibly unbounded) linear operator

Av :D
(
Av
)⊂ X −→ Yv, (3.1)

where Yv is a Banach space, such that the domain D(Av) of Av is dense in X , Av
is a closed operator (i.e., its graph is closed in X ×Yv), and

the range R
(
Av
)

is closed in Yv. (3.2)

Moreover, the null space N(Av) of Av satisfies

N
(
Av
)⊂ TvS, (3.3)

where TvS stands for the tangent cone to S at v as introduced in (2.1).

Theorem 3.1. Under hypothesis (H), if u ∈ S is a solution of problem (P) (at least lo-
cally), then the following necessary condition of optimality holds. There exists an element
p ∈D(A∗u ) such that

A∗u (p)∈ ∂Φ(u), (3.4)

where A∗u :D(A∗u )⊂ Y∗u → X∗ is the adjoint operator of Au and ∂Φ(u) denotes the general-
ized gradient of Φ at u.

Proof. Fix any z ∈N(Au). It follows from (3.3) that

z ∈ TuS. (3.5)

Taking into account (2.1), we deduce from (3.5) that there exist sequences tn → 0+ in R
and xn→ 0 in X such that

u+ tn
(
z+ xn

)∈ S, ∀n. (3.6)

Using the optimality of u∈ S, we obtain

Φ
(
u+ tn

(
z+ xn

))≥Φ(u), ∀n, (3.7)

that leads to

liminf
n→∞

1
tn

[
Φ
(
u+ tn

(
z+ xn

))−Φ(u)
]≥ 0. (3.8)
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In particular, according to (2.5), inequality (3.8) implies that

Φo(u;z)≥ 0, ∀z ∈N(Au
)
. (3.9)

On the basis of (3.9), we may apply the Hahn-Banach theorem to obtain the existence of
some ξ ∈ X∗ with the properties

〈ξ,z〉X∗,X = 0, ∀z ∈N(Au
)
, (3.10)

〈ξ, y〉X∗,X ≤Φo(u; y), ∀y ∈ X. (3.11)

We see from (3.11) that

ξ ∈ ∂Φ(u), (3.12)

while (3.10) ensures that

ξ ∈ [N(Au
)]⊥

. (3.13)

Because [N(Au)]⊥ = R(A∗u ) (see, e.g., [6]), in view of (3.2), relation (3.13) reads

ξ ∈ R(A∗u
)= R(A∗u

)
(3.14)

(note that because R(Au)= R(Au), we also have R(A∗u )= R(A∗u ), see again [6]).
Combining relations (3.12), (3.13), and (3.14), we arrive at the desired conclusion. �

Remark 3.2. (a) By Theorem 3.1, we have the system

u∈ S,

A∗u (p)∈ ∂Φ(u)
(3.15)

formed by two relations with two unknowns u and p which eventually permit to deter-
mine the optimal solution u.

(b) We consider here the problem with the functional Φ being locally Lipschitz, which
is a good and convenient model for our calculations. However, it could be possible to
study such problem with other types of functionals and subdifferentials (see, e.g., [8, 10,
11, 13]).

4. An example

For an example of the general result in Theorem 3.1, let us consider the problem of mini-
mizing the functional Φ(v,w) subject to the following conditions expressed as a Dirichlet
problem:

(v,w)∈ [H2(Ω)∩H1
0 (Ω)

]×L2(Ω),

−Δv = f (x,v) +w in Ω,

v = 0 on ∂Ω.

(4.1)



V. K. Le and D. Motreanu 651

Interpreting the parameter w as a control variable, this is in fact an optimal control prob-
lem. Here, Φ is a locally Lipschitz functional defined on X = L2(Ω)× L2(Ω), f : Ω×
R→R is a Carathéodory function with f (·,0)∈ L2(Ω). Moreover, the partial derivative
(∂ f /∂v)(x,v) exists for a.e. x ∈Ω, all v ∈ R with ∂ f /∂v being a bounded Carathéodory
function, that is,

∣
∣
∣
∣
∂ f

∂v
(x,v)

∣
∣
∣
∣≤ c for a.e. x ∈Ω, all v ∈R, (4.2)

for some constant c > 0. Notice that the considered problem is of the general form (P) in
Section 1 with

S= {(v,w)∈ X :−Δv = f (x,v) +w in Ω, v = 0 on ∂Ω
}
. (4.3)

Let us prove that under the above conditions, hypothesis (H) holds. Specifically, for
any (v,w)∈ S, let

Y(v,w) = L2(Ω)×L2(Ω), (4.4)

and let

A(v,w) :
[
H2(Ω)∩H1

0 (Ω)
]×L2(Ω)−→ L2(Ω)×L2(Ω) (4.5)

be given by

A(v,w)(z,q)=
(

−Δz− ∂ f

∂v
(·,v)z,q

)

(4.6)

whenever (z,q) ∈ [H2(Ω)∩H1
0 (Ω)]× L2(Ω). From (4.2) and the classical results of Ag-

mon in [1] on linear elliptic operators , we see that the range of the operator

z �−→−Δz− ∂ f

∂v
(·,v)z

(∈ L2(Ω)
)

(4.7)

is closed in L2(Ω) (cf., e.g., [12, Theorem 8.41]). It follows immediately that the range
R(A(v,w)) of A(v,w) is closed in L2(Ω)×L2(Ω). Condition (3.2) is thus verified.

In order to check (3.3), let (z,0)∈N(A(v,w)). Because

−Δv = f (x,v) +w in Ω, (4.8)

−Δz− ∂ f

∂v
(·,v)z = 0 in Ω, (4.9)

by multiplying (4.9) by t > 0 and adding with (4.8), we obtain

−Δ(v+ tz)= f (x,v+ tz) +w+ tq(t), (4.10)
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where

q(t)=−1
t

[

f (·,v+ tz)− f (·,v)− t ∂ f
∂v

(·,v)z
]

, ∀t > 0. (4.11)

Assumption (4.2) guarantees that

q(t)−→ 0 in L2(Ω) as t −→ 0+. (4.12)

Consequently, setting

p(t)= (0,q(t)
)∈ L2(Ω)×L2(Ω), (4.13)

we see from (4.10) that condition (3.3) is fulfilled since

(v,w) + t
[
(z,0) + p(t)

]= (v,w) + t
[
(z,0) +

(
0,q(t)

)]∈ S, ∀t > 0. (4.14)

We have checked all assumptions of Theorem 3.1. According to that theorem, if Φ has
a local minimum at (v,w), then there exists a pair (p1, p2)∈ L2(Ω)×L2(Ω) such that

p1 ∈H2(Ω)∩H1
0 (Ω),

(

−Δp1− ∂ f

∂v
(·,v)p1, p2

)

∈ ∂Φ(v,w)
(4.15)

(p2 is not significant for our purpose).

Remark 4.1. If the constant c in (4.2) is less than the first eigenvalue λ1 of −Δ on H1
0 (Ω),

then the range of A(v,w) is in fact the whole space L2(Ω)×L2(Ω). In this case, we observe
that the auxiliary variable p1 can be explicitly determined. Consequently, the necessary
condition of optimality can be expressed only with the local solution (v,w).

5. Application to Lagrange multiplier rule

Assume now that the subset S in problem (P) is given by

S=
⋃

j∈J
G−1
j (0). (5.1)

Here, for each j ∈ J , Gj : X → Yj is a C1 mapping with Yj being a Banach space and 0 a
regular value ofGj , that is, the differentialG′j(x) : X → Yj is surjective andN[G′j(x)] has a
topological complement wheneverGj(x)= 0. Moreover, assume that the setsG−1

j (0) ( j ∈
J) are mutually disjoint, that is,

G−1
i (0)∩G−1

j (0)=∅ if i�= j. (5.2)
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We check that hypothesis (H) is satisfied. In fact, for any v ∈ S, there is a unique j ∈ J
such that v ∈ G−1

j (0). Let Yv = Yj and Av = G′j(v). Then we have R(Av)= Yv, so (3.2) is
verified. Moreover, we know that

N
(
Av
)=N[G′j(v)

]= Tv
[
G−1
j (0)

]= TvS, (5.3)

because G−1
j (0) is a C1-submanifold of X , which implies (3.3). Consequently, Theorem

3.1 can be applied, ensuring the existence of p ∈ Y∗j with the property that whenever
u∈ S is a solution of (P) with u∈G−1

j (0), then

[
G′j(u)

]∗
(p)∈ ∂Φ(u). (5.4)

In the particular case where J is a singleton, that is,

S=G−1(0), (5.5)

and G is a mapping from X to R (also 0 is a regular value of G), then (5.4) becomes

λG′(u)∈ ∂Φ(u) (5.6)

for some λ ∈ R. This is the classical Lagrange multiplier rule for locally Lipschitz func-
tionals.
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REARRANGEMENT ON THE UNIT BALL FOR FUNCTIONS
WITH MEAN VALUE ZERO WITH APPLICATIONS
TO SOBOLEV AND MOSER INEQUALITIES

MARK LECKBAND

A rearrangement and properties are discussed, as well as the application to the proof of
the corresponding Sobolev and Moser inequalities.

Copyright © 2006 Mark Leckband. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Rearranging a function to a more simpler form is a standard tool of analysis. The rear-
ranged function is normally equimeasurable to the original function, hence the Lp norms
for 1 ≤ p <∞ are the same. Another desirable property is that the rearrangement of a
function reduces the gradient, usually in the sense of reducing the Lp norm of the gradi-
ent.

We are interested in Moser and Sobolev inequalities with sharp constants and whether
there are extremals. The two properties of equimeasurability and “gradient reduction”
make the rearrangement an indispensible tool. We begin with some standard notation.

Let Bn = {y ∈Rn : |y| ≤ 1} be the unit ball for n≥ 2. The boundary of Bn is the unit

sphere, and we set ωn−1 = |∂Bn|. Let W
1,p
0 (Bn), 1≤ p ≤ n, be the Sobolev space obtained

from the space of C∞ functions compactly supported in Bn by completion in the norm
∫
Bn |∇u|p <∞. Let W1,p(Bn) be the Sobolev space obtained from the space of C∞ func-

tions with
∫
Bn u= 0 by completion using the same norm.

The functions ofW
1,p
0 (Bn) vanish at the boundary and thus are said to have the Dirich-

let condition. The mean value zero property of functions ofW1,p(Bn) is sometimes called
the Neumann condition. Since such functions are allowed to amass at the boundary, the
boundary of a domain plays a critical role. We consider the simplest of all bounded do-
mains: the unit ball Bn.

Let us state three important and well-known theorems for Sobolev functions estab-
lished using the notion of rearrangement. Our objective is to discuss a rearrangement for
their analogs on W1,p(Bn).

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 655–660



656 Mean value zero rearrangement

2. Carleson-Chang, Moser, and Sharp Sobolev inequalities

Theorem 2.1 (Aubin [1], Talenti [7]). Let u be sufficiently smooth on Rn, n≥ 2, and de-
caying fast enough at infinity. Then, for 1≤ p < n and q = np/(n− p),

‖u‖q ≤ C(n, p)‖∇u‖p, 1 < p < n, ‖u‖n/(n−1) ≤ C(n,1)‖∇u‖1. (2.1)

For 1 < p < n, the extremal functions are translations and dilations of

u(x)= c
(

1
μ+ |x|p/(p−1)

)(n−p)/p

, (2.2)

where c,μ > 0. For p = 1, the extremal functions are the characteristic functions of balls and

C(n,1)= 1
n

(
n

ωn−1

)

, (2.3)

the isoperimetric constant of Rn. The value of C(n, p), 1 < p < n, can be found in the
references.

There are two important observations of this theorem. First, translation and dila-

tion imply the same sharp constants for functions of W
1,p
0 (Bn), 1 ≤ p < n, or for any

other bounded domain, and that there are no extremals. Second, an easy corollary of this
theorem is for the upper half space Rn

+ = {x : xn ≥ 0}. An analogous theorem holds for
constants 21/nC(n, p), 1 ≤ p < n, and the corresponding extremals are “centered” on the
boundary ∂Rn

+ = {x : xn = 0}.
Theorem 2.2 (Moser’s inequality [6]). Let u be sufficiently smooth on a bounded open set
Ω⊂Rn, n≥ 2, and vanishing at the boundary ∂Ω. Let ‖∇u‖n ≤ 1. Then,

∫

Ω
eα|u|

n/(n−1) ≤ An (2.4)

for α≤ αn = n(ωn−1)1/(n−1). The constant αn is sharp in the sense that the above integral can
be made arbitrarily large for α > αn.

Observe that Moser’s inequality says the supremum of its exponential integral is
bounded on the unit ball ofW1,n

0 (Ω). The value ofAn is not known at this time. However,
the next theorem says this supremum is attained for Ω= Bn.

Theorem 2.3 (Carleson-Chang [3]). Moser’s inequality on W
1,p
0 (Bn) has extremals for

n≥ 2.

Unfortunately the corresponding variational equation does not allow a simple formula
for the extremals.

3. Rearrangement

The classical rearrangement is defined as the essential inverse of the distribution func-
tion λu(t) = |{x : |u(x)| > t}|, that is, u∗(t) = inf{s : λu(s) ≤ t}. The associated spherical
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rearrangement is u#(x)= u∗((ωn−1/n)|x|n) which is equivalent to (and better and for our
purpose)

u#(x)= inf
{
s : λu(s)≤ ∣∣B(x)

∣
∣
}

, (3.1)

where B(x)= {y : |y| ≤ |x|} and |B(x)| = (ωn−1/n)|x|n.
The spherical rearrangement u# has a much simpler form than the original function.

For example, u#(x) is radially nonincreasing and ∇u#(x) = (∂/∂r)u#(r), r = |x|. More-
over, equimeasurability gives

‖u‖p =
∥
∥u∗

∥
∥
p, (3.2)

and we have a gradient reducing property expressed by the following inequality:
∥
∥∇u#

∥
∥
p ≤ ‖∇u‖p. (3.3)

Standard proofs of the above use the following equation of geometric measure theory.
This equation shows how the gradient reducing property is intimately related to the
boundary of minimum area for a given volume:

∫

f |∇u| =
∫∞

−∞

∫

u−1(t)
f dn−1ydt. (3.4)

Surfaces of minimal area are spheres which give us the inequality |(u#)−1(t)| ≤ |u−1(t)|
essential for deriving the above gradient reducing property (for more details see Talenti
[7]).

3.1. Rearrangement on the unit ball for functions with mean value zero. Our objec-
tive is to find a rearrangement that is equimeasurable, preserves mean value of zero, and
reduces the p-norm of the gradient. The property of mean value zero results is not in-
cluding the boundary of Bn in computing |u−1(t)|. In other words, we need to know what
the minimum surfaces are for the open ball, Bn\∂Bn = {x : |x| < 1}.

The minimum boundary for a given volume of Bn\∂Bn is [2, 4]
an arc of a circle intersecting the boundary of Bn orthogonally, n = 2,
a cap of an n− 1 sphere intersecting the boundary of Bn orthogonally,
n≥ 2.

These will be the boundaries of the level sets of our new rearrangement.
Recall that circles, or n− 1 spheres, are the boundaries of the level sets of the spherical

rearrangement and they are centered at the origin parametrized by their radius r. To set
up the analogous situation for the mean value zero preserving rearrangement, we begin
by choosing two axes denoted by the x1-axis and the xn-axis. The boundaries of the level
sets of the rearrangement will be the circular arcs, or n− 1 spherical caps, symmetric with
respect to the x1-axis parametrized by θ, 0≤ θ ≤ π, measured from the positive x1-axis to
the point of intersection in the x1,xn-plane. It may be helpful to visualize the n= 2 case.

The n− 1 sphere of radius r encloses a ball of radius r, B(r), where

∣
∣B(r)

∣
∣= ωn−1

n
rn. (3.5)
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The n− 1 spherical cap of angle θ encloses a volume A(θ), where

∣
∣A(θ)

∣
∣= ωn−1

n

θn

2
+O

(
θn−1). (3.6)

We define the rearrangement for mean value zero functions on the unit ball as

v(θ)= inf
{
s : λu(s)≤ ∣∣A(θ)

∣
∣
}

, (3.7)

where λu(s) = |{xεBn : u(x) > s}|. There are many close analogies and comparisons be-
tween this rearrangement and the spherical rearrangement. We now list a few of them.

The spherically symmetric rearrangement has volume element ωn−1rn−1dr, and so

∫

Ω
Φ(u)=

∫ R

0
Φ
(
u#(r)

)
ωn−1r

n−1dr. (3.8)

The mean value zero rearrangement has volume element ρ(θ)dθ and so

∫

Bn
Φ(u)=

∫ π

0
Φ
(
v(θ)

)
ρ(θ)dθ, (3.9)

where 0≤ θ ≤ π/2 and is symmetric about θ = π/2.
For the spherically symmetric rearrangement we have for 1≤ p <∞,

∥
∥∇u#

∥
∥p
p =

∫ R

0

∣
∣
∣
∣
∂

∂r
u#(r)

∣
∣
∣
∣

p

ωn−1r
n−1dr ≤

∫

Ω
|∇u|p. (3.10)

For our mean value zero rearrangement we have for 1≤ p <∞,

∫ π

0

∣
∣v′(θ)

∣
∣pρ(θ)dθ ≤

∫

Bn
|∇u|p. (3.11)

For more details and information please see Leckband [5].

4. Applications of the mean-value preserving rearrangemnt on Bn

The mean-value preserving rearrangement was used by Leckband [5] in proving the fol-
lowing Moser inequality.

Theorem 4.1. Let n≥ 2 be an integer. For functions u such that ‖∇u‖n ≤ 1 and
∫
Bn u= 0,

there is a bound An that depends only upon n such that

∫

Bn
eβ|u|

n/(n−1) ≤ An (4.1)

for β ≤ βn = n(ωn−1/2)1/(n−1). The constant βn is sharp in the sense that the above integral
can be made arbitrarily large for β > βn.
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The mean-value preserving rearrangement can also provide an easy proof of the fol-
lowing Sobolev inequality.

Theorem 4.2 (Sobolev’s inequality). Let u be sufficiently smooth on B = {x|‖x‖ ≤ 1} with
mean value zero. Then,

‖u‖q ≤A(n, p)‖∇u‖p, 1 < p < n,

‖u‖n/(n−1) ≤ A(n,1)‖∇u‖1,
(4.2)

The sharp values of the constants A(n, p) and A(n,1) are presently unknown.

Proof. Let u be any sufficiently smooth radial function onRn. Then, Theorem 2.1 implies

(
ωn−1

∫ r
0

∣
∣u(y)−u(r)

∣
∣q|y|n−1dy

)1/q

(
ωn−1

∫ r
0

∣
∣∇u(y)

∣
∣p|y|n−1dy

)1/p , (4.3)

is bounded independent of u, and r > 0. We need this result below for r = π/2.
Let v(θ) be the mean-value preserving rearrangement of u∈W1,p(Bn). Then,

‖u‖q
‖∇u‖p ≤

[∫ π
0

∣
∣v(θ)

∣
∣qρ(θ)dθ

]1/q

[∫ π
0

∣
∣v′(θ)

∣
∣pρ(θ)dθ

]1/p . (4.4)

�

We now show |v(π/2)| ≤ C[
∫ π

0 |v′(θ)|pρ(θ)dθ]1/p.

v
(
π

2

)

= 1
∣
∣Bn

∣
∣

∫ π

0

(

v
(
π

2

)

− v(s)
)

ρ(s)ds (4.5)

≤ 1
∣
∣Bn

∣
∣

∫ π

π/2

(

v
(
π

2

)

− v(s)
)

ρ(s)ds (4.6)

= 1
∣
∣Bn

∣
∣

∫ π

π/2

(∫ s

π/2

∣
∣v′(t)

∣
∣dt
)

ρ(s)ds (4.7)

= 1
∣
∣Bn

∣
∣

∫ π

π/2

∣
∣v′(t)

∣
∣
(∫ π

t
ρ(s)ds

)

dtds (4.8)

≤ 1
∣
∣Bn

∣
∣‖v′‖p,ρ

(∫ π

π/2

(∫ π
t ρ(s)ds

)p′

ρ(t)p′/p
dt
)1/p′

. (4.9)

Statement (4.8) and the above give v(π/2)≤ C‖v′‖p,ρ. A similar argument shows v(π/2)≥
−C‖v′‖p,ρ.

Thus ‖u‖q/‖∇u‖p ≤ [
∫ π

0 |v(θ) − v(π/2)|qρ(θ)dθ]1/q/[
∫ π

0 |v′(θ)|pρ(θ)dθ]1/p + C. We

may assume without loss of argument that
∫ π

0 |v(θ)− v(π/2)|qρ(θ)dθ ≤ 2
∫ π/2

0 |v(θ)−
v(π/2)|qρ(θ)dθ.
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Then, using the asymptotic estimate for ρ(θ), we have the above is bounded by

C
[
ωn−1

∫ π/2
0

∣
∣v(θ)− v(π/2)

∣
∣q(θ)n−1dθ

]1/q

[
ωn−1

∫ π/2
0

∣
∣v′(θ)

∣
∣p(θ)n−1dθ

]1/p +C. (4.10)

As previously noted, this is bounded independent of v.
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FAST CONVERGENT ITERATIVE METHODS FOR SOME
PROBLEMS OF MATHEMATICAL BIOLOGY

HENRYK LESZCZYŃSKI

We investigate how fast some iterative methods converge to the exact solution of a differ-
ential-functional von Foerster-type equation which describes a single population depen-
dent on its past time, state densities, and on its total size.

Copyright © 2006 Henryk Leszczyński. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Von Foerster and Volterra-Lotka equations arise in biology, medicine and chemistry, see
[1, 9]. The independent variables xj and the unknown function u stand for certain fea-
tures and densities, respectively. It follows from this natural interpretation that xj ≥ 0
and u≥ 0. We are interested in von Foerster-type models, which are essentially nonlocal,
because there are included also the total sizes of population

∫
u(t,x)dx.

Existence results for certain von Foerster-type problems have been established by
means of the Banach contraction principle, the Schauder fixed point theorem or itera-
tive method, see [2–5]. These theorems are closely related to direct iterations for a natu-
ral integral fixed point operator. Because of nonlocal terms, these methods demand very
thorough calculations and a proper choice of subspaces of continuous and integrable
functions. Sometimes, it may cost some simplifications of the real model. On the other
hand, there is a very consistent theory of first-order partial differential-functional equa-
tions in [7], based on properties of bicharacteristics and on fixed point techniques with
respect to the uniform norms. Our research group has also obtained some convergence
results for the direct iterative method under nonlinear comparison conditions.

In the present paper, we find natural conditions which guarantee L∞ ∩L1-convergence
of iterative methods of Newton type. These conditions are preceded by analogous (slightly
weaker) conditions for direct iterations, however, we do not formulate any convergence
results for them (this will be stated in another paper).

Let τ = (τ1, . . . ,τn) ∈ Rn
+, τ0 > 0, where R+ := [0,+∞). Define B = [−τ0,0]× [−τ,τ],

where [−τ,τ]= [−τ1,τ1]×···× [−τn,τn] and E0 = [−τ0,0]×Rn, E = [0,a]×Rn, a > 0.

Hindawi Publishing Corporation
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For each function w defined on [−τ0,a], we have the Hale functional wt (see [6]), which
is the function defined on [−τ0,0] by

wt(s)=w(t+ s)
(
s∈ [− τ0,0

])
. (1.1)

For each function u defined on E0 ∪ E, we similarly write a Hale-type functional u(t,x),
defined on B by

u(t,x)(s, y)= u(t+ s,x+ y) for (s, y)∈ B. (1.2)

(see [7]). Let Ω0 = E×C([−τ0,a],R+) and Ω = E×C(B,R+)×C([−τ0,a],R+). Take v :
E0 → R+ and cj : Ω0 → R, λ : Ω→ R ( j = 1, . . . ,n). Consider the differential-functional
equation

∂u

∂t
+

n∑

j=1

cj
(
t,x,z[u]t

) ∂u

∂xj
= u(t,x)λ

(
t,x,u(t,x),z[u]t

)
, (1.3)

where

z[u](t) :=
∫

Rn
u(t, y)dy, t ∈ [− τ0,a

]
, (1.4)

with the initial conditions

u(t,x)= v(t,x), (t,x)∈ E0, x = (x1, . . . ,xn
)∈Rn. (1.5)

We are looking for Caratheodory’s solutions to (1.3)–(1.5), see [2, 3, 8]. The functional
dependence includes a possible delayed and integral dependence of the Volterra type.
The Hale functional z[u]t takes into consideration the whole population within the time
interval [t− τ0, t], whereas the Hale-type functional u(t,x) shows the dependence on the
density u locally in a neighborhood of (t,x). The functional dependence demands some
initial data on a “thick” initial set E0, which means that a complicated ecological niche
must be observed for some time and (perhaps) in some space in order to determine and
predict its further evolution.

2. Bicharacteristics

First, for a given function z ∈ C([−τ0,a],R+), consider the bicharacteristic equations for
problem (1.3), (1.5):

η′(s)= c(s,η(s),zs
)
, η(t)= x. (2.1)

Denote by η = η[z](·; t,x) the bicharacteristic curve passing through (t,x) ∈ E, that is,
the solution to the above problem. Next, we consider the following equation:

d

ds
u
(
s,η[z](s; t,x)

)= u(s,η[z](s; t,x)
)
λ
(
s,η[z](s; t,x),u(s,η[z](s;t,x)),zs

)
, (2.2)
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with the initial condition u(0,η[z](0; t,x))= v(0,η[z](0; t,x)). For any given function z ∈
C([−τ0,a],R+), a solution of the equation along bicharacteristics is a solution of (1.4).
Their initial conditions correspond to each other. Assume that

(V0) v ∈ CB(E0,R+) (nonnegative, bounded, and continuous function);
(V1) z[v]∈ C([−τ0,0],R+), where

z[v](t)=
∫

Rn
v(t,x)dx; (2.3)

(V2) the function v satisfies the Lipschitz condition

∣
∣v(t,x)− v(t, x̄)

∣
∣≤ Lv‖x− x̄‖ on E0 (2.4)

with some constant Lv > 0;
(C0) cj : Ω0→R are continuous in (t,x,q) and

∥
∥c(t,x,q)− c(t, x̄, q̄)

∥
∥≤ Lc‖x− x̄‖+L∗c ‖q− q̄‖. (2.5)

For the sake of simplicity, we assume that L∗c = 0, that is, c does not depend on
the last variable.

(Λ0) λ : Ω→R is continuous in (t,x,w,q) and

∣
∣λ(t,x,w,q)− λ(t, x̄,w̄, q̄)

∣
∣≤Mλ

(‖x− x̄‖+‖w− w̄‖+‖q− q̄‖). (2.6)

(Λ1) There exists a function Lλ ∈ L1([0,a],R+), such that

λ(t,x,w,q)≤ Lλ(t) (2.7)

for (t,x)∈ E, w ∈ C(B,Rm
+ ), q ∈ C([−τ0,a],Rm

+ ).
Denote W(t,x,w,q) = λ(t,x,w,q) + tr∂xc(t,x,q) for (t,x) ∈ E, w ∈ C(B,R+), q ∈

C([−τ0,a],R+), where tr∂xc stands for the trace of the matrix ∂xc = [∂xk c j] j,k=1,...,n.
(W0) There exists MW ∈R+, such that

∣
∣W(t,x,w,q)−W(t, x̄,w̄, q̄)

∣
∣≤MW

(‖x− x̄‖+‖w− w̄‖+‖q− q̄‖). (2.8)

(W1) There exists a function LW ∈ L1([0,a],R+), such that

W(t,x,w,q)≤ LW (t) (2.9)

for (t,x)∈ E, w ∈ C(B,R+), q ∈ C([−τ0,a],R+).
Let Lλ ≤ LW and LW (s)= 0 for s∈ [−τ0,0]. Define

Z(t)= max
−τ0≤s≤0

{‖v‖∞,
∥
∥v(s,·)∥∥1

}
exp

(∫ t

0
LW (s)ds

)

, (2.10)

and �= {z ∈ CB([−τ0,a],R+) : z(t)≤ Z(t)}.
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Lemma 2.1. If the conditions (V0), (Λ1) are satisfied, then any solution u of the equation
along bicharacteristics has the estimate

0≤ u(t,x)≤ ∥∥v(0,·)∥∥∞ exp
(∫ t

0
Lλ(s)ds

)

on E. (2.11)

Consider the operator � : �→� given by the formula

�[z](t)=
∫

Rn
u[z](t,x)dx for t ≥ 0, (2.12)

where u= u[z]∈ C(E,R+) is the solution of the equation along bicharacteristics with the
initial condition u[z](t,x)= v(t,x) on E0. The function u= u[z] has on E the following
integral representation:

u[z](t,x)= v(0,η(0)
)

exp
(∫ t

0
λ
(
s,η(s),u(s,η(s)),zs

)
ds
)

, (2.13)

where η(s) = η[z](s; t,x). By the representation of solutions along bicharacteristics, we
write the operator in the following way:

�[z](t)=
∫

Rn
v
(
0,η(0)

)
exp

(∫ t

0
λ
(
s,η(s),u(s,η(s)),zs

)
ds
)

dx (2.14)

for t ≥ 0. Notice that the bicharacteristics admit the following group property y = η[z](0;
t,x)⇔ η[z](s; t,x) = η[z](s;0, y), that is, any bicharacteristic curve passing through the
points (0, y) and (t,x) has the same value at s∈ [0,a].

If we change the variables y = η[z](0; t,x), then, by the Liouville theorem, the Jacobian
J = det[∂c/∂x] is given by the formula

J(0; t,x)= exp
(

−
∫ t

0
tr∂xc

(
s,ηi[z](s;0, y),zs

)
ds
)

. (2.15)

Hence the integral operator can be written in the form

�[z](t)=
∫

Rn
v(0, y)exp

(∫ t

0
W
(
s,η(s),u(s,η(s)),zs

)
ds
)

dy, (2.16)

where η(s)= η[z](s;0, y).

Lemma 2.2. If the conditions (V0), (V1), and (W1) are satisfied, then

0≤�[z](t)≤ Z(t) < +∞ for t ∈ [0,a]. (2.17)

The respective fixed point equation for bicharaceristics η = η[z] has the form

η(s; t,x)= x−
∫ t

s
c
(
ζ ,η(ζ ; t,x),zζ

)
dζ. (2.18)
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3. Iterative methods

We sketch direct iterative method and some faster iterative methods of the Newton type.
Define the iterative method by z(k+1) =�[z(k)] with an arbitrary function z(0) ∈�. This
scheme uniformly converges under natural assumptions on the given functions (see
Section 2). The algorithm splits into three stages: (1) finding η(k) = η[z(k)], given by the
fixed point equation for bicharacteristics, (2) finding u(k) = u[z(k)] as a solution of the
equation along bicharacteristics, (3) calculating z(k+1) = �[z(k)]. In this way, there are
given the integral equations

η(k)(s; t,x)= x−
∫ t

s
c
(
ζ ,η(k)(ζ ; t,x),z(k)

ζ

)
dζ ,

u(k)(t,x)= v(0,η(k)(0; t,x)
)

exp
(∫ t

0
λ
(
Q(k)(s)

)
ds
)

,

z(k+1)(t)=
∫

Rn
v(0, y)exp

(∫ t

0
W
(
Q(k)(s)

)
ds
)

dy,

(3.1)

where Q(k)(s)= (s,η(k)(s; t,x),u(k)
(s,η(k)(s;t,x)),z

(k)
s ).

Assume now that L∗c = 0, that is, c does not depend on q, thus we write c(t,x). This
simplifies stating and analyzing faster techniques. The Newton-type method is defined in
the following way:

∂u(k+1)

∂t
+

n∑

j=1

cj(t,x)
∂uk+1

∂xj

= u(k)(t,x)λ
(
R(k)(t,x)

)
+Δu(k)(t,x)λ

(
R(k)(t,x)

)

+u(k)(t,x)
[
∂wλ

(
R(k)(t,x)

)
Δu(k)

(t,x) + ∂qλ
(
R(k)(t,x)

)
Δz(k)

t

]
,

(3.2)

where R(k)(t,x)= (t,x,u(t,x),z[u]t), Δu(k) = u(k+1)−u(k),

z(k)(t) :=
∫

Rn
u(k)(t, y)dy, t ∈ [− τ0,a

]
, (3.3)

with the initial conditions u(k+1)(t,x)= v(t,x) on E0.
Added to the assumptions of Section 2, we need the following regularity assumption

on the Frechet derivatives ∂wλ and ∂qλ.
(∂Λ) There are positive constants γ0,γ1 and monotone, positive, integrable functions

Lww,L∗ww such that

∣
∣∂wλ(t,x,w,q)w̄

∣
∣≤ γ0

{∣
∣w̄(0,0)

∣
∣+Lww(x)‖w̄‖∗

}
,

∣
∣Δw∂wλ(t,x,·,q)w̄

∣
∣≤ γ1

{∣
∣w(0,0)

∣
∣‖w̄‖∗ +‖w‖∗

∣
∣w̄(0,0)

∣
∣+L∗ww(x)‖w‖∗‖w̄‖∗

}
,

(3.4)
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where Δw indicates an increment w with respect to the functional variable, and

‖w‖∗ = ‖w‖∞ + sup
s

∫

[−τ,τ]
|w(s, y)dy. (3.5)

Similar inequalities are assumed on ∂qλ.

Theorem 3.1. Under the assumptions of Section 2 and (∂Λ) there is a positive constant C
such that

∥
∥Δu(k+1)(t,·)∥∥∗ ≤ C

∫ t

0

{∥
∥Δu(k+1)

|s
∥
∥∗ +

∥
∥Δu(k)

|s
∥
∥2
∗
}
ds, (3.6)

where the norm ‖ · ‖∗ is analogously defined as in Assumption (∂Λ).

Proof. One writes error equations for Δu(k+1) and Δz(k+1) similarly as in a convergence
proof for the Newton method. �

Remark 3.2. The above theorem implies a local in t convergence, since the kth error can
be estimated by const·(t · const)2k .

Remark 3.3. Theorem 3.1 indicates that the cost of Newton-type speed is quite serious.
This is due to the complicated nonlocal nature of the problem on an unbounded domain.
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CONVERGENCE OF SERIES OF TRANSLATIONS
BY POWERS OF TWO

GUODONG LI

We will give a necessary and sufficient condition on c = (cn) such that
∑
cn f {2nx} con-

verges in L2-norm for all f ∈ L0
2 or L2.

Copyright © 2006 Guodong Li. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let f (x) be a real or complex function defined on the interval [0,1]. Let {x} = x mod (1).
Hence, f {x}means f ({x}). Let L2 be the space of all square integrable functions on [0,1]
and L0

2 is the space of all zero-mean functions in L2. Let L2(2) be the set of all functions
in L2 with Fourier coefficients supported by powers of 2, that is,

L2(2)=
{

f (x)=
∞∑

k=−∞
ak exp

(
sign(k)2πi2|k|x

)
: a= (an

)∈ l2
}

. (1.1)

Let L0
2(2) denote the set of functions in L2(2) with a0 = 0 and let l02 denote the set of

sequences a= (an)∈ l2 with a0 = 0.
Diophantine approximations have been well studied by many authors. It is well known

that (1/n)
∑n

k=1 f {nx} converges in L2-norm to
∫ 1

0 f (x)dx. Khinchin conjectured that
(1/n)

∑n
k=1 f {nx} converges almost everywhere to

∫ 1
0 f (x)dx for all f ∈ L∞. But this was

disproved by Marstrand (see [4]). Let cn be a sequence of real or complex numbers. The
consideration of a.e. convergence and L2-norm convergence of series

∑
cn f {nx} is an-

other natural problem in Diophantine approximations. Some sufficient conditions for
this series to converge are given in [5] and category counterexamples can be found in
[2]. There are similar considerations in ergodic theory, too. Several authors have used
Rokhlin’s lemma and inductive constructions to provide counterexamples to the conver-
gence of this series (see [2, 5, 3, 1]).

The series
∑
cn f {2nx} is a lacunary series, which is clearly closely related to the Dio-

phantine series
∑
cn f {nx}. Using the techniques in [5], it is easy to give a sufficient

Hindawi Publishing Corporation
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condition that series
∑
cn f {2nx} converges a.e. and in the L2-norm. If cn ≥ 0 and

∑
cn =

∞, category counterexamples to these convergences can be constructed (see [2]). We
will explore necessary and sufficient conditions of the L2-norm convergence of series
∑
cn f {2nx}. A necessary and sufficient condition on c = (cn) such that

∑
cn f {2nx} con-

verges in L2-norm for all f ∈ L0
2 or L2 is obtained (see Section 2). Indeed,

limN→∞
∑N

n=−N cn f {sign(n)2|n|x} converges in the L2-norm for all f ∈ L0
2 if and only

if
∑∞

n=1 cn f {2nx} and
∑∞

n=1 c−n f {−2nx} converge in L2-norm for all f ∈ L0
2. Moreover,

∑∞
n=1 cn f {2nx} converges in the L2-norm for all f ∈ L0

2 if and only if partial sums
∑N

n=1 cne
2πinx are uniformly bounded in N and x (see Section 2).

2. Necessary and sufficient conditions on given sequences c = (cn)

The function sign(x) denotes the regular sign function. For a given sequence of complex
numbers c = (cn), the operator S1,N on L0

2(2) is defined by

S1,N f (x)=
N∑

k=−N
ck f

{
sign(k)2|k|x

}
(2.1)

for any f ∈ L0
2(2). Then S1,N is a linear bounded operator from L0

2(2) to L0
2(2). It is also

well defined on L2 and is a linear bounded operator from L2 to L2, which is denoted by
SN or S2,N . We will assume that c0 = 0 and a0 = 0.

Assume that a = (an) ∈ �2. Then the function f (x) =∑+∞
n=−∞ an exp(sign(n)2πix2|n|)

is well defined in L2(2) since it is convergent in L2-norm. Then

S1,N f (x)=
+N∑

n=−N

+∞∑

k=−∞
akcn exp

(
sign(nk)2πix2|n|+|k|

)

=
+∞∑

k=−∞
bN ,k exp

(
sign(k)2πix2|k|

)
.

(2.2)

Since S1,N f (x) is a sum of finite numbers of convergent Fourier series, the above expres-
sion is well defined in the sense of the L2-norm.

Lemma 2.1. The coefficients bN ,k in the expression above are given by

bN ,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(N ,k)∑

l=0

(
clak−l + c−la−(k−l)

)
if k > 0, k ≤N ,

min(N ,|k|)∑

l=0

(
clak+l + c−la−(k+l)

)
if k < 0, |k| ≤N ,

N∑

k=−N
cka0 if k = 0.

(2.3)
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For a given sequence of complex numbers c = (cn), define gc(x) as

gc(x)=
∑

0<|n|<+∞
cn exp

(
sign(n)2πix2|n|

)
. (2.4)

Then, clearly, gc(x)∈ L2(2)⊂ L2. Define the operator Ω1,N on l2 by

(
Ω1,Na

)
(x)=

N∑

k=−N
akgc

{
sign(k)2|k|x

}
(2.5)

for any a= (an)∈ l2. Then Ω1,N is a linear bounded operator from l2 to L2(2).

Lemma 2.2. Ω1,N can be rewritten as

(
Ω1,Na

)
(x)=

+∞∑

k=−∞
b′N ,k exp

(
sign(k)2πix2|k|

)
, (2.6)

where bN ,k is defined by

b′N ,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(N ,k)∑

l=0

(
alck−l + a−lc−(k−l)

)
if k > 0, k ≤N ,

min(N ,|k|)∑

l=0

(
alck+l + a−lc−(k+l)

)
if k < 0, |k| ≤N ,

∑N
k=−N akc0 if k = 0.

(2.7)

For a given sequence of complex numbers c = (cn), the operator S3,N from l2 to l2 is
defined by

(
S3,Na

)
(k)= bk, (2.8)

for any a= (an)∈ l2, where b = (bn) is defined by

bk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑

l=0

(
alck−l + a−lc−(k−l)

)
if k > 0, k ≤N ,

|k|∑

l=0

(
alck+l + a−lc−(k+l)

)
if k < 0, |k| ≤N ,

a0c0 if k = 0,

0 otherwise.

(2.9)

Lemma 2.3. Assume that a0 = 0 and c0 = 0. With the above notations,
∥
∥S3,N

∥
∥≤ ∥∥S1,N

∥
∥≤ ∥∥S2,N

∥
∥,

∥
∥S3,N

∥
∥≤ ∥∥Ω1,N

∥
∥,

(2.10)

where ‖ · ‖ is the operator norm on the corresponding spaces
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Proof. For a given sequence c = (cn), fix an element a= (an)∈ l2 with ‖a‖2 = 1. Then we
can define a function f ∈ L2(2) by

f (x)=
+∞∑

n=−∞
an exp

(
sign(n)2πix2|n|

)
(2.11)

with ‖ f ‖2 = 1. Thus

∥
∥S3,Na

∥
∥2 =

N∑

k=1

∣
∣
∣
∣
∣

k∑

l=0

(
alck−l + a−lc−(k−l)

)
∣
∣
∣
∣
∣

2

+
−1∑

k=−N

∣
∣
∣
∣
∣

−k∑

l=0

(
alck+l + a−lc−(k+l)

)
∣
∣
∣
∣
∣

2

=
N∑

k=1

∣
∣
∣
∣
∣

min(N ,k)∑

l=0

(
alck−l + a−lc−(k−l)

)
∣
∣
∣
∣
∣

2

+
−1∑

k=−N

∣
∣
∣
∣
∣

min(N ,−k)∑

l=0

(
alck+l + a−lc−(k+l)

)
∣
∣
∣
∣
∣

2

≤
∞∑

k=1

∣
∣
∣
∣
∣

min(N ,k)∑

l=0

(
alck−l + a−lc−(k−l)

)
∣
∣
∣
∣
∣

2

+
−1∑

k=−∞

∣
∣
∣
∣
∣

min(N ,−k)∑

l=0

(
alck+l + a−lc−(k+l)

)
∣
∣
∣
∣
∣

2

=
∞∑

k=−∞

∣
∣b′N ,k

∣
∣2 = ∥∥Ω1,N f

∥
∥2 ≤ ∥∥Ω1,N

∥
∥2 ≤ ∥∥Ω2,N

∥
∥2

,

(2.12)

which implies that

∥
∥S3,N

∥
∥≤ ∥∥Ω1,N

∥
∥. (2.13)

Similarly, we can prove that

∥
∥S3,N

∥
∥≤ ∥∥S1,N

∥
∥≤ ∥∥S2,N

∥
∥. (2.14)

�

Lemma 2.4. If L2 and L2(2) are complex spaces, then

∥
∥S2,N

∥
∥≥ ∥∥S1,N

∥
∥≥ 1√

2
sup
x

⎛

⎝

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

N∑

k=1

c−ke2πikx

∣
∣
∣
∣
∣

2
⎞

⎠

1/2

. (2.15)

Proof. Fix an integer n > 2N and set

ak =
⎧
⎪⎨

⎪⎩

1√
2N + 1

e−2πikx if n− 2N ≤ k ≤ n,

0 otherwise.
(2.16)
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Clearly, ‖a‖2 = ‖(ak)‖2 = 1. By using this a = (an), we can define a function f in L2 by
(2.11). For this function f , we have ‖ f ‖2 = 1 and

∥
∥S2,N

∥
∥≥ ∥∥S1,N

∥
∥≥ ∥∥S1,N f

∥
∥

2 =
∞∑

k=−∞

∣
∣bN ,k

∣
∣2

≥
n∑

k=n−N

∣
∣
∣
∣
∣

N∑

l=0

(
clak−l + c−la−(k−l)

)
∣
∣
∣
∣
∣

2

+
−(n−N)∑

k=−n

∣
∣
∣
∣
∣

N∑

l=0

(
clak+l + c−la−(k+l)

)
∣
∣
∣
∣
∣

2

≥
n∑

k=n−N

∣
∣
∣
∣
∣

N∑

l=0

cl
1√

2N + 1
e−2πi(k−l)x

∣
∣
∣
∣
∣

2

+
−(n−N)∑

k=−n

∣
∣
∣
∣
∣

N∑

l=0

cl
1√

2N + 1
e−2πi(k+l)x

∣
∣
∣
∣
∣

2

= N + 1
2N + 1

⎛

⎝

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

N∑

k=1

c−ke2πikx

∣
∣
∣
∣
∣

2
⎞

⎠

≥ 1
2

⎛

⎝

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

N∑

k=1

c−ke2πikx

∣
∣
∣
∣
∣

2
⎞

⎠ ,

(2.17)

which gives the lemma. �

Lemma 2.5. If L2 and L2(2) are real spaces, then

∥
∥S2,N

∥
∥≥ ∥∥S1,N

∥
∥≥ 1

2
√

2
sup
x

⎛

⎝

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

N∑

k=1

c−ke2πikx

∣
∣
∣
∣
∣

2
⎞

⎠

1/2

. (2.18)

Proof. Let f (x) = f1(x) + i f2(x) and ‖ f ‖2 ≤ 1, where f1(x) and f2(x) are real functions.
Clearly, ‖ f1‖2 ≤ 1 and ‖ f2‖2 ≤ 1. Denote the norm on the corresponding complex space
by ‖S1,N‖C. Then

∥
∥S1,N f

∥
∥
c ≤

∥
∥S1,N f1

∥
∥

2 +
∥
∥S1,N f2

∥
∥

2 ≤
∥
∥S1,N

∥
∥
∥
∥ f1

∥
∥

2 +
∥
∥S1,N

∥
∥
∥
∥ f2

∥
∥

2 ≤ 2
∥
∥S1,N

∥
∥. (2.19)

Hence,

∥
∥S1,N

∥
∥≥ 1

2

∥
∥S1,N

∥
∥
C. (2.20)

By Lemma 2.4, the lemma follows. �

Lemma 2.6.

∥
∥S1,N

∥
∥≤ ∥∥S2,N

∥
∥≤ sup

x

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣

+ sup
x

∣
∣
∣
∣
∣

N∑

k=1

c−ke2πikx

∣
∣
∣
∣
∣
. (2.21)
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Proof. Let f ∈ L2 and ‖ f ‖2 ≤ 1. Then

∥
∥SN f

∥
∥

2 =
∥
∥S2,N f

∥
∥

2 ≤
∥
∥
∥
∥
∥

N∑

k=1

ck f
{

2kx
}
∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

N∑

k=1

c−k f
{− 2kx

}
∥
∥
∥
∥
∥

2

. (2.22)

The operator T defined by T : f (x)→ f {2x} is a contraction operator. But it is not a
unitary operator since T−1 does not exist. However, by the dilation theorem (see [7, page
11]), there exist a Hilbert space H , an orthogonal projection P : H → L2, and a unitary
operator U : H →H such that L2 is a closed subspace of H and PUl f = Tl f for all l ≥ 0
and f ∈ L2. Hence, by using the spectral representation of a unitary operator, we have

∥
∥
∥
∥
∥

N∑

k=1

ck f
{

2kx
}
∥
∥
∥
∥
∥

2

2

=
∥
∥
∥
∥
∥

N∑

k=1

ckT
k f

∥
∥
∥
∥
∥

2

2

=
∥
∥
∥
∥
∥

N∑

k=1

ckPU
k f

∥
∥
∥
∥
∥

2

2

≤ ‖P‖ ·
∥
∥
∥
∥
∥

N∑

k=1

ckU
k f

∥
∥
∥
∥
∥

2

2

=
∥
∥
∥
∥
∥

N∑

k=1

ckU
k f

∥
∥
∥
∥
∥

2

2

=
∫ 1

0

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣

2

dμ f ≤ sup
x

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣

2

.

(2.23)

Similarly, we have

∥
∥
∥
∥
∥

N∑

k=1

c−k f
{− 2kx

}
∥
∥
∥
∥
∥

2

2

≤ sup
x

∣
∣
∣
∣
∣

N∑

k=1

c−ke2πikx

∣
∣
∣
∣
∣

2

. (2.24)

Combining (2.23) and (2.24) gives the lemma. �

Theorem 2.7. Suppose that c = (cn) is a sequence of complex numbers. Then

lim
N→∞

N∑

k=−N
ck f

{
sign(k)2|k|x

}
(2.25)

converges in L2-norm for all f ∈ L0
2 if and only if there is a constant M such that

sup
N ,x

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣
≤M, sup

N ,x

∣
∣
∣
∣
∣

N∑

k=1

c−ke2πikx

∣
∣
∣
∣
∣
≤M. (2.26)

If either of two suprema in (2.26) is unbounded, then there is a dense Gδ subset G of L0
2 (or

L2, or L0
2(2), or L2(2)) such that supN ‖SN f ‖2 =∞ for all f ∈G.

Proof. Let Lc be the subset of L2, in which limN→∞
∑N

k=−N ck f {sign(k)2kx} converges in
the L2-norm. Assume that there is a constant M such that

sup
N ,x

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣
≤M, sup

N ,x

∣
∣
∣
∣
∣

N∑

k=1

c−ke2πikx

∣
∣
∣
∣
∣
≤M, (2.27)
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which imply that c = (cn)∈ l2 and ‖c‖2 ≤ 2M. Hence, the series

N∑

k=1

ck exp
(
2πim2kx

)
+

N∑

k=1

c−k exp
(− 2πim2kx

)
(2.28)

converges in L2-norm for any integer m �= 0. Thus, e2πimx ∈ Lc for any integer m �= 0.
However, {e2πimx : m �= 0} is a base generating L0

2. Hence, Lc = L0
2 since Lc is a closed

linear subspace of L0
2. �

If either of two suprema in (2.12) is unbounded, without loss of generality, we may
assume that

sup
N ,x

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣
=∞. (2.29)

By Lemmas 2.4 and 2.5, we have supN ‖SN‖2 =∞. The rest of Theorem 2.7 follows from
the Banach-Steinhaus theorem (see [6, page 98]).

Corollary 2.8. limN→∞
∑N

k=−N ck f {sign(k)2|k|x} converges in L2-norm for all f ∈ L0
2 if

and only if
∑∞

k=1 ck f {2kx} and
∑∞

k=1 c−k f {−2kx} converge in L2-norm for all f ∈ L0
2.

An important consequence is that
∑∞

k=1 ck f {2nkx} converges in L2-norm for all f ∈ L2

or L0
2 if and only if there is a constant M such that supN ,x |

∑N
k=1 cke

2πinkx| ≤M.

Corollary 2.9. If g(x)=∑∞k=1 cke
2πikx is of bounded variation, then

∑∞
k=1 ck f {2kx} con-

verges in the L2-norm for all f ∈ L0
2.

Proof. For a bounded variation function, partial sums of Fourier series are uniformly
bounded, which allow us to apply Theorem 2.7. �

Corollary 2.10. Assume that {nk} is a lacunary sequence. Then the following statements
are equivalent:

(1)
∑∞

k=1 ck f {2nkx} converges in L2-norm for all f ∈ L2 or L0
2;

(2)
∑∞

k=1 ck f {2nkx} converges almost everywhere for all f ∈ L2 or L0
2;

(3)
∑∞

k=1 |ck| <∞.

Proof. By Theorem 2.7,
∑∞

k=1 ck f {2nkx} converges in the L2-norm for all f ∈ L0
2 if and

only if for some constant M,

sup
N ,x

∣
∣
∣
∣
∣

N∑

k=1

cke
2πinkx

∣
∣
∣
∣
∣
≤M. (2.30)

Since
∑∞

k=1 cke
2πinkx is a lacunary series, partial sums are uniformly bounded if and only if

∑∞
k=1 |ck| < ∞, which implies (2). That (2) implies (1) follows from Corollary 2.8,

Lemma 2.5, and the proof of Theorem 2.7. �

Corollary 2.11.
∑∞

k=1 ck f {2kx} converges in L2-norm for all f ∈ L0
2 if and only if

∑∞
k=1 ckγ

k f {2kx} converges in L2-norm for all f ∈ L0
2 and all γ with |γ| = 1.
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Corollary 2.12. If
∑∞

k=1 ck f {2kx} diverges in L2-norm for some f ∈ L0
2, then for any γ

with |γ| = 1,
∑∞

k=1 ckγ
k f {2kx} diverges in L2-norm for a residual set of functions f ∈ L2.

Corollary 2.13.
∑∞

k=1 ((−1)k/k) f {2kx} diverges in L2-norm for a residual set of functions
f ∈ L0

2.

Corollary 2.14. If
∑∞

k=1 ck f {2kx} converges in L2-norm for all f ∈ L0
2, then

∑∞
n=1 |∑n

k=1 ckan−k|2 converges in L2-norm for all a∈ l2.

Proof. It can be proved similarly as for Theorem 2.7. �

Lemma 2.15. Assume that one of two suprema in (2.26) is unbounded. Then for any ε > 0
and K > 0, there exists a function f ∈ L0

2 with ‖ f ‖2 ≤ 1 such that

m

(

x : sup
N

∣
∣
∣
∣
∣

N∑

k=−N
ck f

{
sign(k)2|k|x

}
∣
∣
∣
∣
∣
≥ K

)

≥ 1− ε. (2.31)

Proof. By Theorem 2.7, there is a function f ∈ L0
2 such that supN ‖SN f ‖2 = +∞. Let

f (x) =∑+∞
n=−∞ an exp(sign(n)2πix2|n|) ∈ L2(2), where a0 = 0. Then by a theorem in [8]

(see [8, page 203, volume I]), for any set E ⊂ [0,1) with m(E) > 0, we can find λ1(E) > 0
and λ2(E) > 0, and N0 > 0 such that

λ2(E)
∞∑

|k|=N0

∣
∣bN ,k

∣
∣2 ≤

∫

E

∣
∣
∣
∣
∣

∞∑

|k|=N0

ck f
{

sign(k)2|k|x
}
∣
∣
∣
∣
∣

2

dx ≤ λ1(E)
∞∑

|k|=N0

∣
∣bN ,k

∣
∣2
. (2.32)

Since supN ‖SN f ‖2 = +∞, so limN→∞
∑∞
|k|=N0

|bN ,k|2 = +∞. Hence,

lim
N→∞

∫

E

∣
∣SN f (x)

∣
∣2
dx = +∞, (2.33)

which gives

m

(

x : sup
N

∣
∣
∣
∣
∣

N∑

k=−N
ck f

{
sign(k)2|k|x

}
∣
∣
∣
∣
∣
≥ K

)

≥ 1− ε (2.34)

for any ε > 0 and K > 0. Suppose not, then let

E =
{

x : sup
N

∥
∥SN f

∥
∥ < K

}

(2.35)

and we have m(E)≥ ε. Hence,
∫

E

∣
∣SN f (x)

∣
∣2
dx ≤ Km(E) < +∞. (2.36)

The contradiction proves the lemma. �

Theorem 2.16. If either of two suprema in (2.26) is unbounded, then there is a dense Gδ

subset G of L0
2 (or L2, or L0

2(2), or L2(2)) such that supN |SN f | = ∞ almost everywhere for
all f ∈G.
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Proof. It follows from [2, Lemma 2.7 and Theorem 1.1]. �

Theorem 2.17. Suppose that c = (cn) is a sequence of numbers. Then

lim
N→∞

N∑

k=−N
ck f

{
sign(k)2|k|x

}
(2.37)

converges in L2-norm for all f ∈ L2 if and only if there is a constant M such that

sup
N ,x

∣
∣
∣
∣
∣

N∑

k=1

cke
2πikx

∣
∣
∣
∣
∣
≤M, sup

N ,x

∣
∣
∣
∣
∣

N∑

k=1

c−ke2πikx

∣
∣
∣
∣
∣
≤M, (2.38)

and limn→∞
∑N

k=−N ck converges.

The next theorem is an immediate consequence of Theorem 2.7.

Theorem 2.18. The series
∑∞

n=1 cn f {2nx} is (C,1)-convergent in L2-norm if and only if
g(x)=∑∞n=1 cne

2πinx is a bounded function.

Proof. Similar to the proof of Theorem 2.7, we have
∑∞

n=1 cn f {2nx} is (C,1)-convergent
in L2-norm if and only if there is a constant M > 0 such that

∣
∣σN (x)

∣
∣≤M, (2.39)

where

σN (x)= 1
N + 1

N∑

k=1

k∑

n=1

cne
2πinx =

N∑

n=1

(

1− n

N + 1

)

cne
2πinx. (2.40)

If g(x) is bounded, |σN (x)| ≤ |g(x)| ≤M for all integer N and real x. If g(x) is un-
bounded, that is, ‖g‖∞ =∞, it is not hard to prove that

sup
N ,x

∣
∣σN (x)

∣
∣=∞. (2.41)

�
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SMOOTH SOLUTIONS OF ELLIPTIC EQUATIONS
IN NONSMOOTH DOMAINS

GARY M. LIEBERMAN

We discuss some situations in which the solution of an elliptic boundary value problem
is smoother than the regularity of the boundary.

Copyright © 2006 Gary M. Lieberman. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this lecture, we examine a special regularity result for solutions of second-order elliptic
equations. We ask when the solution of a boundary value problem for such an equation
is smoother than the boundary of the domain in which the problem is posed.

To see the significance of this question, we first recall that classical Schauder theory
(see [6, Chapter 6]) says that if ∂Ω∈ Ck,α for some integer k ≥ 2 and some α∈ (0,1), then
solutions of any of the standard boundary value problems (i.e., the Dirichlet problem, the
Neumann problem, or the oblique derivative problem) with sufficiently smooth data are
also in Ck,α. Specifically, if the elliptic operator L has the form

Lu= ai jDi ju+ biDiu+ cu (1.1)

with ai j , bi, and c all in Ck−2,α(Ω), then any solution of the Dirichlet problem

Lu= f in Ω, u= ϕ on ∂Ω (1.2)

with f ∈ Ck−2,α(Ω) and ϕ∈ Ck,α(∂Ω) is in Ck,α(Ω) with similar results for the Neumann
and oblique derivative problems. In addition, if we only assume that ∂Ω ∈ C1,α, then
any solution of one of the boundary value problems (with appropriate smoothness on
the other data) is also in C1,α (see [5] for a precise statement of the result in the case
of Dirichlet data and [9] in the case of Neumann or oblique derivative data). Moreover,
this result is optimal in the following sense: given k and α, we can find a domain Ω with
∂Ω∈ Ck,α and Dirichlet data ϕ∈ Ck,α such that the solution of

Δu= 0 in Ω, u= ϕ on ∂Ω, (1.3)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 677–682



678 Smooth solutions in nonsmooth domains

is not inCm,β form+β > k+α (whereΔ denotes the Laplacian); similar results are true for
the Neumann problem. Nonetheless, we will see that for some boundary value problems,
the solutions are smoother than the boundary.

We first note that our concern is only with regularity measured in Hölder spaces.
For information on regularity issues for nonsmooth domains in other spaces, especially
Sobolev spaces, see [7] or [8]. We also point out that we are not going to consider trivial
examples, such as noting that the solution of the boundary value problem Δu = 0 in Ω,
u= 0 on ∂Ω always has the unique solution u≡ 0, regardless of the smoothness of Ω. Fi-
nally, we state our results for two-dimensional domains. This restriction simplifies many
of the regularity issues. In fact, all of our results in two-dimensional piecewise smooth
domains are very close to the results in [7, Chapter 6]. There are two important dis-
tinctions to be made, however: first, Grisvard only considers two-dimensional problems
while we present two-dimensional versions of results that are given in spaces with an ar-
bitrary number of dimensions in the references cited, and second, we refer to results for
problems in which the coefficients of the differential operators may be less smooth than
the ones in [7].

2. Simple results in piecewise smooth domains

It is well known that regularity of solutions of elliptic equations is a purely local matter, so
we only need to see how a solution behaves near a point on the boundary. For piecewise
smooth two-dimensional domains, we only look in a neighborhood of a corner point,
which we may take to be the origin.

The case of Dirichlet data is the most straightforward. In [1, 2], Azzam proved the
following result: at a convex corner, the solution is in C1,α for some α determined only
by the angle at the corner and the behavior of the coefficient matrix [ai j(0)]. Rather than
writing the formula for α down directly, we first investigate a harmonic function that
leads to many of the results (in [2], Azzam obtained a precise form for α while [1] only
asserts that there is some such α).

To see how this estimate arises (and for future reference), we use (r,θ) to denote polar
coordinates in the complex plane. Then, for any δ > 0, the function w = rδ cos(δθ) is
harmonic in any simply connected subset of the plane which does not include the origin.
In particular, if Ω is the sector {0 < r <∞, |θ| < θ0} for some θ0 > 0 with δθ0 < π/2, then
w is harmonic and positive in Ω, continuous in Ω, and it vanishes only at the origin
(which is the only point at which ∂Ω is nonsmooth). If the corner at the origin is convex,
then θ0 < π/2, so we can take δ > 1. Using w as a comparison function, it can be shown
that (for this choice of θ0 and δ) u∈ C1,α for α= δ− 1. Note that decreasing θ0 leads to
better regularity. If θ0 < π/4, then u∈ C2,α for some α > 0, and so on.

For a general operator, we first make a linear change of independent variable to con-
vert [ai j(0)] into the identity matrix and compute the angle θ0 at the nonsmooth point in
this new coordinate system. (If the corner is originally convex, it remains convex.) A per-
turbation argument (spelled out in [1]) shows that the solution of the general problem is
in C1,α for any α∈ (0,π/(2θ0)).

When the angle θ0 has the form π/(2n) for some positive integer n, the situation is
somewhat more complicated because the function w (with δθ0 = π/2) is now analytic
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even at the origin. As shown in [3], the regularity of solutions for the Dirichlet problem
in this case is determined by some compatibility conditions on the data. The necessity
of such conditions is easily seen for solutions of Laplace’s equation in the first quadrant.
Then uxx(0) and uyy(0) are determined only by the boundary data, but they must also
satisfy the differential equation if the solution is to be C2 at the origin.

A similar argument in [4] shows that if the boundary data are of mixed Dirichlet-
Neumann type at the corner, then the solution is in C1,α for some α > 0 if the angle θ0

at the corner (after the linear change of independent variable to convert [ai j(0)] into the
identity matrix) is less than π/4. Here (although this point is not well explained in [4]),
the Neumann condition has the form

ai jγ jDiu= g, (2.1)

where γ is the unit inner normal vector to ∂Ω. In fact, a simple geometric interpretation
of the condition which implies that solutions of the mixed Dirichlet-oblique derivative
problem are C1,α was given in [12]. To state this condition, we suppose that the domain
Ω is given locally as the wedge 0 < θ < θ1 and that the boundary conditions are

u= ϕ on
{
θ = θ1

}
,

β ·Du= ψ on {θ = 0}, (2.2)

where β=(β1,β2) is a smooth vector field with β2>0. We also assume that β0= limx→0β(x,
0) exists. If the vector β0 with initial point 0 points inside Ω, then the solution is Cα for
some α > 0 (but not C1 in general) and if this vector points outside Ω, then the solution is
C1,α for some α > 0. The proof of these facts (in [12]) is similar to the corresponding re-
sults for the Dirichlet-Neumann problem (from [4]), but more care is taken in matching
the comparison function to the boundary condition.

3. The oblique derivative problem in Lipschitz and C1,α domains with continuous
directional derivative

It is possible to prescribe the boundary condition β ·Du= ψ on the boundary of an ar-
bitrary domain. If we want to prescribe this condition in a useful way, however, then
we need some conditions on the vector β which match it in a suitable way with the do-
main Ω. The following definitions are taken from [14]. We say that a vector field β is
oblique on ∂Ω if at every point x0 ∈ ∂Ω, there is an open finite cone with vertex at x0 and
axis parallel to β(x0) which is a subset of Ω. We say that a vector field β defined on ∂Ω
has modulus of obliqueness δ near x0 ∈ ∂Ω if for any ε > 0, there is a coordinate system
(x′,xn)= (x1, . . . ,xn) centered at x0 such that βn(x0) is parallel to the positive xn-axis and
if there is a Lipschitz function ω defined on some (n− 1)-dimensional ball Bn−1(x0,R)
such that

Ω∩B(x0,R
)= {x ∈Rn : xn > ω(x′), |x| < R}, (3.1)

sup|Dω|sup
( |β′|
βn

)

≤ δ + ε. (3.2)
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Here β′ = (β1, . . . ,βn−1). The theory developed in [14] shows that if β has modulus of
obliqueness δ ∈ (0,1), then the Hölder norm of the solution of the oblique derivative can
be estimated in terms of certain pointwise information on the coefficients without any
assumptions of smoothness of the coefficients. Of course, in this case, the boundary con-
dition β ·Du= ψ must be interpreted to mean that an appropriate directional derivative
is prescribed, that is,

∣
∣β
(
x0
)∣
∣ lim
h→0+

u
(
x+hβ

(
x0
)
/
∣
∣β
(
x0
)∣
∣
)−u(x0

)

h
= ψ(x0

)
(3.3)

for each x0 ∈ ∂Ω. Unlike the Neumann problem for Laplace’s equation, this problem re-
quires that the boundary condition be satisfied at every point on the boundary (examples
in [13] show what happens if the boundary condition fails to hold at just one point).

Amazingly, this definition of obliqueness allows a statement of the boundary value
problem with solutions that are smoother than the boundary of the domain. Specifically,
if Ω has Lipschitz boundary and if the vector field β is Hölder continuous on ∂Ω, then
solutions of the boundary value problem

Lu= f in Ω, β ·Du= ψ on ∂Ω, (3.4)

have Hölder continuous gradient. This startling fact was proved almost simultaneously
via two different methods by Lieberman [10] and Pipher [16]. The method in [10] was
refined in [15], but the underlying principle in all three works is as follows. First, the
regularity question is reduced to considering the operator L = Δ and the function f is
zero and the vector field β is a unit vector field in the xn direction with ∂Ω the graph of
a Lipschitz function as in (3.1). In this situation, the boundary condition is considered
as a Dirichlet condition for the new unknown function v = ∂u/∂xn. Then v is Hölder
continuous by previously known results, and the proof is completed by showing that
the other components of the gradient are also Hölder continuous. The main difference
between [10, 15, 16] is in the details of the last step.

The methods of these papers also show that if ∂Ω, β, and ψ are in C1,α for some α ∈
(0,1) (and if the coefficients in the differential equation are all in Cα), then u ∈ C2,α.
An alternative approach to this result, which also applies to a large class of nonlinear
problems, is given in [17].

4. The oblique derivative problem with discontinuous directional derivative

When β is discontinuous, the situation becomes more complicated. The only case known
to the author which gives C1,α regularity is that in which β has only jump discontinuities
on lower-dimensional subsets of ∂Ω. In two dimensions, this will be the case if and only
if the discontinuities are isolated. Moreover, at a discontinuity, the limits of β from two
sides must be different. Thus, we need only to look in a neighborhood of a discontinuity
of β, which we take as the origin. To illustrate the basic idea, we assume that there are
numbers R > 0 and θ1 ∈ (0,π] such that

Ω∩B(R)= {0 < r < R, 0 < θ < θ1
}
. (4.1)
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(Note that θ1 = π is allowed, so the domain need not have a singularity at the origin.)
To see more clearly what is going on, we assume that β is constant on the two segments
which meet at the origin. Specifically, there are constants ω0 and ω1 such that

β = (cosω0, sinω0
)

on θ = 0,

β = (cosω1, sinω1
)

on θ = θ1.
(4.2)

For brevity, we write βi = (cosωi, sinωi) for i= 0,1 and we assume that β0 
= β1. To guar-
antee that β is oblique for θ = 0 and θ = θ1, we suppose first that

0 < ω0 < π, θ1−π < ω1 < θ1. (4.3)

Next, we need a condition which guarantees that β is oblique at the origin. Before giving
the condition, we note that if u is C1 at the origin, then the boundary conditions on θ = 0
and θ = θ1 give β0 ·Du(0) and β1 ·Du(0). Since these directional derivatives are given
for linearly independent directions, it follows that we also are given Du(0). A complete
analysis of this problem takes advantage of the maximum principle, so we wish to choose
β(0) in such a way that inequalities on β0 ·Du(0) and β1 ·Du(0) imply a corresponding
inequality for β(0) ·Du(0). For this reason, we take β(0) to be a (suitable) positive linear
combination of β0 and β1.

Now suppose also that ω1 < ω0. (This inequality is true, for example, if β0 and β1 are
the unit inner normals to Ω.) In this case, we take ω to be any number in

(
ω1,ω0

)∩ (0,θ1
)

(4.4)

and set β(0) = (cosω, sinω). The intersection is nonempty because ω0 > 0 and ω1 < θ1.
It then follows that there is some α ∈ (0,1) such that u ∈ C1,α. A proof is given in [11].
Although that work claims that the proof also works for ω0 < ω1, a simple example shows
that such a claim is false: suppose that ω0 = π/2, θ1 = π, and ω1 = 3π/4. If u has the
form u(x, y) = rδ cos(δθ) with δ = 3/4, then u satisfies Δu = 0 for r > 0 and 0 < θ < π.
Moreover, β ·Du = 0 on θ = 0 or θ = π. Since u = 0 for θ = 2π/3, it follows that β(0) ·
Du(0)= 0 for

β(0)=
(

cos
2π
3

,sin
2π
3

)

. (4.5)

Therefore, there is a solution which is not C1 if ω0 < ω1. Fortunately, the proof in [11] is
valid for ω1 < ω0; the difficulty is that the argument there uses a homotopy between the
normal derivative problem for Laplace’s equation (assuming that θ1 < π) and the general
problem. In brief, uniform estimates must be made for problems of the form

tLu+ (1− t)Δu= f in Ω, tβ ·Du+ (1− t)γ ·Du= g on ∂Ω, (4.6)

which are independent of the parameter t ∈ [0,1]. If ω0 < ω1, then for some choice of
t, the direction of the two directional derivatives must be the same, and the regularity
argument in [11] breaks down whenever the directions are the same.
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ON MINIMAL (MAXIMAL) COMMON FIXED POINTS
OF A COMMUTING FAMILY OF DECREASING
(INCREASING) MAPS

TECK-CHEONG LIM

We prove that in a complete partially ordered set, every commutative family of decreasing
maps has a minimal common fixed point.

Copyright © 2006 Teck-Cheong Lim. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Let (X ,≤) be a partially ordered set. We call X complete if every linearly ordered subset of
X has a greatest lower bound in X .

A mapping f : X → X is called a decreasing (resp., increasing) if f (x)≤ x (resp., f (x)≥
x) for every x ∈ X . A family � of mappings of X into X is called commutative if f ◦ g =
g ◦ f for every f ,g ∈�, where ◦ denotes the composition of maps.

A subset S of (X ,≤) is a directed set if every two, and hence finitely many, elements of
S have a lower bound in S. For a set S, |S| denotes the cardinality of S.

We will use the following known fact whose proof can be found in [2].

Proposition 1. Let (X ,≤) be a complete partially ordered set. Then every directed subset
of X has a greatest lower bound in X .

Now we prove the following theorem.

Theorem 2. Let (X ,≤) be a nonempty complete partially ordered set. Let � be a commu-
tative family of decreasing maps of X into X . Then � has a minimal common fixed point.

Proof. First we prove that � has a common fixed point. Let x0 be an arbitrary element of
X . Let � be the (commutative) semigroup generated by �. It is clear that each member
of � is also decreasing. Let

D =�
(
x0
)= {s(x0

)
: s∈�

}
. (1)

D is a directed subset of X , since s(x0)≤ x0 and t(x0)≤ x0 imply that s◦ t(x0)= t ◦ s(x0)≤
t(x0),s(x0) for any s, t ∈�. By completeness assumption and Proposition 1, �(x0) has a
greatest lower bound, which we denote by

∧
�(x0).
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Define x1 =
∧

�(l). Suppose that xα have been defined for α < γ such that xα ≤ xβ for
α < β < γ. If γ has a predecessor γ− 1, we define xγ =

∧
�(xγ−1) (the greatest lower bound

exists since �(xγ−1) is a directed set as in the case for x0 = l). If γ is a limit ordinal, we
define xγ =

∧{xα : α < γ}. By transfinite induction, xα is defined for all ordinal α and
satisfies xα ≤ xβ for α < β.

Let κ be an ordinal with |κ| > |X|. Then xα, α < κ, cannot be all distinct, so there exist
α1,β with α1 < β such that xα1 = xβ. This implies that xα1 = xα1+1. It follows from the
definition of xα1+1 and the decreasingness of members of � that

s
(
xα1

)= xα1 (2)

for all s∈�, that is, xα1 is a common fixed point of � and hence of �.
Now we let K be the set of common fixed points of �, which is nonempty by the

above proof. Let C be a chain in K . By completeness, C has a (greatest) lower bound c0

in X which may not be a common fixed point of �. The set L= {x ∈ X : x ≤ c0} with the
order induced by the order of X is complete and is S-invariant, that is, s(x) ∈ L for all
x ∈ L. So by the above proof, there is a common fixed point of S in L, which is smaller
than or equal to every member of C. Hence by Zorn’s lemma, the set C has a minimal
element. This completes the proof. �
Corollary 3. Let (X ,≤) be a nonempty complete partially ordered set and let f be a de-
creasing map from X into X . Then f has a minimal fixed point.

By considering the dual of X , we obtain the following theorem and its corollary.

Theorem 4. Let (X ,≤) be a nonempty partially ordered set such that every chain in X has
a least upper bound. Let � be a commutative family of increasing maps of X into X . Then �
has a maximal common fixed point.

Corollary 5. Let (X ,≤) be a nonempty partially ordered set such that every chain in X has
a least upper bound, and let f be an increasing map from X into X . Then f has a maximal
fixed point.

Remark 6. (1) Note that in the last corollary, f may not have a minimal fixed point as er-
roneously stated in [1, page 188, Theorem 8.23]. For example, letX = {−∞, . . . ,−2,−1,0}
with the usual ordering, and let f (−∞) = 0, f (x) = x for all x �= −∞. Then f is clearly
increasing and has no minimal fixed point.

(2) It is clear from the proofs that all results above remain valid if one uses well-ordered
sets instead of chains in definitions of completeness.
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INTEGRAL ESTIMATES FOR SOLUTIONS
OF A-HARMONIC TENSORS

BING LIU

We first discuss some properties of a class ofAr,λ weighted functions. Then we prove a new
version of weak reverse Hölder inequality, local versions of the Poincaré inequality and
Hardy-Littlewood inequality with Ar,λ double weights, and Hardy-Littlewood inequality
with Ar,λ double weights on δ-John domain for solutions of the A-harmonic equation.

Copyright © 2006 Bing Liu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.

1. Introduction and notation

In his book Bounded Analytic Functions [5], John Garnett showed that the Ar condition is
one of the necessary and sufficient conditions for both Hardy-Littlewood maximal oper-
ator and Hilbert transform to be bounded on Lr(μ) space. Then Neugebauer introduced
Ar,λ condition and discussed its properties, see [6]. Since then, there have been many
studies on inequalities with weighted norms that are related to either Ar or Ar,λ con-
ditions, see [1–4]. In this paper we discuss some properties of Ar,λ double weights. We
prove a new version of weak reverse Hölder inequality, local versions of the Poincaré in-
equality and Hardy-Littlewood inequality with Ar,λ-double weights. As an application,
we prove Hardy-Littlewood inequality on δ-John domain with the Ar,λ double weights
for solutions of the A-harmonic equation. First, we introduce some notations.

We denoteΩ as a connected open subset ofRn. The weighted Lp-norm of a measurable
function f over E is defined by

‖ f ‖p,E,w =
(∫

E

∣
∣ f (x)

∣
∣pw(x)dx

)1/p

. (1.1)

The space of differential l-forms is denoted as D′(Ω,∧l). We write Lp(Ω,∧l) for the l-
forms ω(x) =∑I ωI(x)dxI =

∑
ωi1i2...il(x)dxi1 ∧ dxi2 ∧ ··· ∧ dxil with ωI ∈ Lp(Ω,R) for

all ordered l-tuples I . Then Lp(Ω,∧l) is a Banach space with norm

‖ω‖p,Ω =
(∫

Ω

∣
∣ω(x)

∣
∣pdx

)1/p

=
⎛

⎝
∫

Ω

(
∑

I

∣
∣ωI(x)

∣
∣2
)p/2

dx

⎞

⎠

1/p

. (1.2)
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Similarly, W1
p(Ω,∧l) is the space of differential l-forms on Ω whose coefficients are in the

Sobolev space W1
p(Ω,R). The A-harmonic equation for differential forms is

d∗A(x,dω)= 0, (1.3)

where A : Ω×∧l(Rn)→∧l(Rn) satisfies the following conditions:

∣
∣A(x,ξ)

∣
∣≤ a|ξ|p−1,

〈
A(x,ξ),ξ

〉≥ |ξ|p (1.4)

for almost every x ∈ Ω and all ξ ∈ ∧l(Rn). Here a > 0 is a constant and 1 < p <∞ is a
fixed exponent associated with (1.3). A solution to (1.3) is an element of the Sobolev
space W1

p,loc(Ω,∧l−1) such that

∫

Ω

〈
A(x,dω),dϕ

〉= 0 (1.5)

for all ϕ∈W1
p(Ω,∧l−1) with compact support. We call u an A-harmonic tensor in Ω if u

satisfies the A-harmonic equation (1.3) in Ω. A differential l-form u∈D′(Ω,∧l) is called
a closed form if du= 0 in Ω.

2. A class of double weights

Definition 2.1. A pair of weights (w1(x),w2(x)) is said to satisfy the Ar,λ(Ω) condition in
a set Ω⊂Rn, for some λ≥ 1 and 1 < r <∞ with 1/r + 1/r′ = 1, if

sup
B⊂Ω

(
1
|B|

∫

B

(
w1
)λ
dx
)1/λr

(
1
|B|

∫

B

(
1
w2

)λr′/r
dx

)1/λr′

<∞. (2.1)

The class of Ar,λ weights appears in [6] and it is an extension of the usual Ar weights
[5].

The following is the general Hölder inequality.

Lemma 2.2. Let 0 < p <∞ and 0 < q <∞ with r−1 = p−1 + q−1. If f and g are measurable
functions on Rn, then

‖ f g‖r,Ω ≤ ‖ f ‖p,Ω‖g‖q,Ω (2.2)

for any Ω⊂Rn.

Lemma 2.3. If 1≤ λ1 < λ2 <∞, then Ar,λ2 ⊂Ar,λ1 .

Proof. Let (w1,w2)∈Ar,λ2 . By general Hölder’s inequality,

(∫

B
wλ1

1 dx
)1/λ1

≤
(∫

B
wλ2

1 dx
)1/λ2(∫

B
dx
)(λ2−λ1)/λ1λ2

= |B|(λ2−λ1)/λ1λ2

(∫

B
wλ2

1 dx
)1/λ2

.

(2.3)
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Thus,

1
|B|

(∫

B
wλ1

1 dx
)1/λ1

≤
(

1
|B|

∫

B
wλ2

1 dx
)1/λ2

. (2.4)

Similarly,

(∫

B

(
1
w2

)λ1/(r−1)

dx

)(r−1)/λ1

≤ |B|(r−1)(λ2−λ1)/λ1λ2

(∫

B

(
1
w2

)λ2/(r−1)

dx

)(r−1)/λ2

(2.5)

gives

(
1
|B|

∫

B

(
1
w2

)λ1/(r−1)

dx

)(r−1)/λ1

≤
(

1
|B|

∫

B

(
1
w2

)λ2/(r−1)

dx

)(r−1)/λ2

. (2.6)

From (2.4) and (2.6) we get

⎛

⎝
(

1
|B|

∫

B
wλ1

1 dx
)1/λ1

(
1
|B|

∫

B

(
1
w2

)λ1/(r−1)

dx

)(r−1)/λ1
⎞

⎠

1/r

≤
⎛

⎝
(

1
|B|

∫

B
wλ2

1 dx
)1/λ2

(
1
|B|

∫

B

(
1
w2

)λ2/(r−1)

dx

)(r−1)/λ2
⎞

⎠

1/r

<∞.

(2.7)

�

With a similar proof, we have the following lemma.

Lemma 2.4. If 1 < s < r <∞, then Ass,λ ⊂ Arr,λ.
Combining Lemmas 2.3 and 2.4, we have the following theorem.

Theorem 2.5. If 1≤ λ1 < λ2, 1 < s < r <∞, then

Ass,λ2
⊂Arr,λ1

. (2.8)

Proof. For 0≤ λ1 < λ2 and 1 < s < r, (r− 1)/λ1 > (s− 1)/λ2. Thus,

(∫

B

(
1
w2

)λ1/(r−1)

dx

)(r−1)/λ1

≤ |B|(r−1)/λ1−(s−1)/λ2

(∫

B

(
1
w2

)λ2/(s−1)
)(s−1)/λ2

. (2.9)

Combining (2.4), we proved Theorem 2.5. �
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3. Some inequalities with double weights

The following reverse Hölder’s inequality and Poincaré inequality are proved in [7].

Theorem 3.1. Let u be an A-harmonic tensor in Ω, let σ > 1, and let 0 < s, t <∞. Then
there exists a constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,σB (3.1)

for all balls or cubes B with σB ⊂Ω.

Theorem 3.2. Let u∈D′(Q,∧l) and let du∈ Lp(Q,∧l+1). Then there exists a closed form
uQ, defined in Q, such that u−uQ is in W1

p(Q,∧l) with 1 < p <∞ and

∥
∥u−uQ

∥
∥
p,Q ≤ C(n, p)|Q|1/n‖du‖p,Q (3.2)

for Q a cube or a ball in Rn, l = 0,1, . . . ,n.

We extend Theorems 3.1 and 3.2 to the double weighted versions.

Theorem 3.3. Let u∈D′(Ω,∧l), l = 0,1, . . . ,n, be an A-harmonic tensor in a domain Ω⊂
Rn, σ > 0. Assume that 0 < s, t <∞ and (w1,w2)∈ Ar,λ(Ω) for some r > 1 and λ≥ 1. Then
there exists a constant C, independent of u, such that

(∫

B
|u|swα

1dx
)1/s

≤ C|B|(t−s)/st
(∫

σB
|u|twαt/s

2 dx
)1/t

(3.3)

for all balls B with σB ⊂Ω and any α with λ > α > 0.

Proof. For any given s > 0, λ≥ 1, and λ > α > 0, choose δ = sλ/(λ−α), then δ > s and by
general Hölder inequality

(∫

B
|u|swα

1dx
)1/s

=
(∫

B

(|u|wα/s
1

)s
dx
)1/s

≤
(∫

B
|u|δdx

)1/δ(∫

B
wαδ/(δ−s)

1 dx
)(δ−s)/sδ

.

(3.4)

By the weak reverse Hölder inequality (Theorem 3.1), there exists constant C1, such that

(∫

B
|u|δdx

)1/δ

≤ C1|B|(ξ−δ)/δξ
(∫

σB
|u|ξdx

)1/ξ

, (3.5)
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where 0 < ξ = λst/(αt(r− 1) + λ). Here ξ < t since r > 1. Thus

(∫

σB
|u|ξdx

)1/ξ

=
(∫

σB

(|u|wα/s
2 w−α/s2

)ξ
dx
)1/ξ

≤
(∫

σB

(|u|wα/s
2

)t
dx
)1/t

(∫

σB

(
1
w2

)(α/s)(ξt/(t−ξ))

dx

)(t−ξ)/ξt

=
(∫

σB
|u|twαt/s

2 dx
)1/t

(∫

σB

(
1
w2

)(α/s)(ξt/(t−ξ))

dx

)(t−ξ)/ξt

.

(3.6)

Substitute (3.5) and (3.6) into (3.4), we have

(∫

B
|u|swα

1dx
)1/s

≤ C2|B|(ξ−δ)/δξ+(δ−s)/sδ+(t−ξ)/ξt
(∫

σB
|u|twαt/s

2 dx
)1/t

,

(
1
|B|

∫

σB
wαδ/(δ−s)

1 dx
)(δ−s)/sδ( 1

|B|
∫

σB

(
1
w2

)(α/s)(ξt/(t−ξ))

dx

)(t−ξ)/ξt

.

(3.7)

Because of our choices of δ and ξ, we have

(
1
|B|

∫

σB
wαδ/(δ−s)

1 dx
)(δ−s)/sδ( 1

|B|
∫

σB

(
1
w2

)(α/s)(ξt/(t−ξ))

dx

)(t−ξ)/ξt

=
(

1
|B|

∫

σB
wλ

1dx
)α/sλ( 1

|B|
∫

σB

(
1
w2

)λ/(r−1)

dx

)α(r−1)/sλ

=
⎡

⎣
(

1
|B|

∫

σB
wλ

1dx
)1/rλ

(
1
|B|

∫

σB

(
1
w2

)λ/(r−1)

dx

)(r−1)/rλ
⎤

⎦

αr/s

< C3.

(3.8)

Note that (ξ − δ)/δξ + (δ− s)/sδ + (t− ξ)/ξt = (t− s)/ts, (3.7) is reduced to

(∫

B
|u|swα

1dx
)1/s

≤ C4|B|(t−s)/ts
(∫

σB
|u|twαt/s

2 dx
)1/t

. (3.9)

Thus, Theorem 3.3 is proved. �

Next, we prove the double weighted version of Poincaré inequality for A-harmonic
tensors.

Theorem 3.4. Let u∈D′(Ω,∧l) be an A-harmonic tensor in a domain Ω⊂Rn and du∈
Ls(Ω,∧l+1), l = 0,1, . . . ,n. Assume that σ > 1, 1 < s <∞, and (w1,w2)∈ Ar,λ for some r > 1
and λ≥ 1. Then there exists a constant C, independent of u, such that

(
1
|B|

∫

B

∣
∣u−uB

∣
∣swα

1dx
)1/s

≤ C(n,s)|B|1/n
(

1
|B|

∫

σB
|du|swα

2dx
)1/s

(3.10)

for all balls B with σB ⊂Ω and any α with 0 < α < λ.
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Proof. For any given λ≥ 1 and s > 1, choose t = λs/(λ−α), then 1 < s < t, and 1/s= 1/t+
(t− s)/st. By the general Hölder’s inequality, we have

∥
∥u−uB

∥
∥
s,B,wα

1
=
(∫

B

(∣
∣u−uB

∣
∣wα/s

1

)s
dx
)1/s

≤
(∫

B

∣
∣u−uB

∣
∣tdx

)1/t(∫

B

(
wα/s

1

)st/(t−s)
dx
)(t−s)/st

= ∥∥u−uB
∥
∥
t,B ·

(∫

B
wλ

1dx
)α/sλ

.

(3.11)

Since uB is a closed form, by Theorems 3.1 and 3.2, we obtain

∥
∥u−uB

∥
∥
t,B ≤ C1(n, t)|B|1/n‖du‖t,B ≤ C2|B|1/n+(m−t)/mt‖du‖m,σB, (3.12)

wherem= λs/(λ+α(r− 1)), and by the choice ofm,m< s. Also notice that t = λs/(λ−α),
we have

‖du‖m,σB =
(∫

σB

(|du|wα/s
2 w−α/s2

)m
dx
)1/m

≤ C3

(∫

σB
|du|swα

2dx
)1/s

(∫

σB

(
1
w2

)αm/(s−m)

dx

)(s−m)/ms

= C3

(∫

σB
|du|swα

2dx
)1/s

(∫

σB

(
1
w2

)λ/(r−1)

dx

)α(r−1)/λs

(3.13)

for all balls B with σB ⊂Ω. Thus, from (3.11) and (3.13)

(∫

σB
wλ

1dx
)α/sλ(∫

σB

(
1
w2

)λ/(r−1)

dx

)(r−1)α/λs

≤ C4|σB|−rα/λs
(

1
|σB|

∫

σB
wλ

1dx
)α/sλ( 1

|σB|
∫

σB

(
1
w2

)λ/(r−1)

dx

)(r−1)α/λs

≤ C5|B|−rα/λs.

(3.14)

Substituting (3.12), (3.13), and (3.14) into (3.11) and noticing that (m− t)/mt−rα/λs=0,
we have

∥
∥u−uB

∥
∥
s,B,wα ≤ C5|B|1/n‖du‖s,σB,wα

2
. (3.15)

Thus the proof of Theorem 3.4 is completed. �

The following local version of Hardy-Littlewood inequality was also proved in [7].
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Theorem 3.5. Let u, v be conjugate A-harmonic tensors in Ω ⊂ Rn, let σ > 1, and let
0 < s, t <∞. There exists a constant C, independent of u and v, such that

∥
∥u−uQ

∥
∥
s,Q ≤ C|Q|β

∥
∥v− c1

∥
∥q/p
t,σQ,

∥
∥v− vQ

∥
∥
t,Q ≤ C|Q|−βp/q

∥
∥u− c2

∥
∥p/q
s,σQ

(3.16)

for all cubes Q with σQ ⊂Ω. Here c1 is any form in W1
p,loc(Ω,∧) with d∗c1 = 0. c2 is any

form in W1
q,loc(Ω,∧) with dc2 = 0 and

β = 1
n

+
1
s
− q

p

(
1
t

+
1
n

)

. (3.17)

We extend Theorem 3.5 to the double weighted version.

Theorem 3.6. Let u and v be conjugate A-harmonic tensors in a domain Ω ⊂ Rn and let
(w1,w2) ∈ Ar,λ(Ω). Let s =Φ(t) as in (3.19). Then there exists a constant C, independent
of u and v, such that

(∫

B

∣
∣u−uB

∣
∣swα

1dx
)1/s

≤ C
(∫

σB
|v− c|twαpt/qs

2 dx
)q/pt

(3.18)

for all cubes B with ρB ⊂Ω⊂Rn and σ > 1. Here c is any form inW1
q,loc(Ω,∧) with d∗c = 0,

0 < α < t, and α < λ, where λ≥ 1 is defined in Definition 2.1, and

s=Φ(t)= npt

nq+ t(q− p)
. (3.19)

Proof. The proof is similar as the proof of the Poincaré inequality. Let δ = sλ/(λ−α) then
δ > s, and

(∫

B

∣
∣u−uB

∣
∣swα

1dx
)1/s

=
(∫

B

(∣
∣u−uB

∣
∣wα/s

1

)s
dx
)1/s

≤
(∫

B

∣
∣u−uB

∣
∣δdx

)1/δ(∫

B
wαδ/(δ−s)

1 dx
)(δ−s)/sδ

= ∥∥u−uB
∥
∥
δ,B

(∫

B
wαδ/(δ−s)

1 dx
)(δ−s)/sδ

.

(3.20)

By Theorem 3.5, for q ≤ p and 0 < δ,ξ <∞,

∥
∥u−uB

∥
∥
δ,B ≤ C1|B|β

∥
∥v− c1

∥
∥q/p
ξ,σB, (3.21)

where β = 1/δ + 1/n− (1/ξ + 1/n)q/p and where we have chosen 0 < ξ = stλq/((sq −
αp)t + λsq). Note that α < t leads to qs > pt, and it implies qs > pα, so that condition
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(3.19) gives ξ < t. Then by general Hölder inequality

∥
∥v− c1

∥
∥q/p
ξ,σB =

(∫

σB

(∣
∣v− c1

∣
∣w

αp/sq
2 w

−αp/sq
2

)ξ
dx
)q/ξ p

≤ C2

⎡

⎣
(∫

σB

(∣
∣v− c1

∣
∣w

αp/sq
2

)t
dx
)1/t

(∫

σB

(
1
w2

)(αp/sq)(ξt/(t−ξ))

dx

)(t−ξ)/ξt
⎤

⎦

q/p

.

(3.22)

Substitute (3.21) and (3.22) into (3.20), then

(∫

B

∣
∣u−uB

∣
∣swα

1dx
)1/s

≤ C3|B|β
(∫

σB

(∣
∣v− c1

∣
∣w

αp/sq
2

)t
dx
)q/pt

,

(∫

σB

(
1
w2

)(αp/sq)(ξt/(t−ξ))

dx

)(t−ξ)q/ξtp(∫

B
wαδ/(δ−s)

1 dx
)(δ−s)/sδ

.

(3.23)

By the choice of δ and ξ, and by sq/αp > 1, after denoting r = sq/αp we have

(∫

σB

(
1
w2

)(αp/sq)(ξt/(t−ξ))

dx

)(t−ξ)q/ξtp(∫

B
wαδ/(δ−s)

1 dx
)(δ−s)/sδ

≤ C4|σB|β1

(
1
|σB|

∫

σB

(
1
w2

)αpλ/(sq−αp)

dx

)(sq−αp)/λsp(
1
|σB|

∫

σB
wλ

1dx
)α/sλ

≤ C5|B|β1

⎡

⎣

(
1
|σB|

∫

σB

(
1
w2

)λ/(r−1)

dx

)(r−1)/rλ(
1
|σB|

∫

σB
wλ

1dx
)1/λr

⎤

⎦

q/p

≤ C6|B|β1 ,

(3.24)

where β1 = (1/ξ − 1/t)q/p+ (1/s− 1/δ). Substitute (3.24) into (3.23) and notice that β+
β1 = 1/δ + 1/n− (1/ξ + 1/n)q/p+ (1/ξ − 1/t)q/p+ (1/s− 1/δ)= 0 if s=Φ(t) as in (3.19).
We finally get

(∫

B

∣
∣u−uB

∣
∣swα

1dx
)1/s

≤ C6

(∫

σB

∣
∣v− c1

∣
∣tw

αpt/sq
2 dx

)q/pt
. (3.25)

�

As an application of Theorem 3.6, we show a global result on δ-John domain.

Definition 3.7. Ω, a proper subdomain of Rn, is called a δ-John domain, δ > 0, if there
exists a point x0 ∈Ω which can be joined with any other point x ∈Ω by a continuous
curve γ ⊂Ω so that

d(ξ,∂Ω)≥ δ|x− ξ| (3.26)

for each ξ ∈ γ. Here d(ξ,∂Ω) is the Euclidean distance between ξ and ∂Ω.
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A δ-John domain has the following properties; see [7].

Lemma 3.8. Let Ω⊂Rn be a δ-John domain. Then there exists a coveringW of Ω consisting
of open cubes such that

(i)
∑

Q∈W χσQ(x)≤NχΩ(x), x ∈Rn,
(ii) there is a distinguished cubeQ0 ∈W (called the central cube) which can be connected

with every cube Q ∈W by a chain of cubes Q0,Q1, . . . ,Qk =Q from W such that for
each i= 0,1, . . . ,k− 1,

Q ⊂NQi. (3.27)

There is a cube Ri ⊂ Rn (this cube does not need to be a member of W) such that Ri ⊂
Qi∩Qi+1, and Qi∪Qi+1 ⊂NRi.
Lemma 3.9. If 1≤ s <∞, 0 < ρ <∞, {Q} is an arbitrary collection of cubes in Rn and {aQ}
are nonnegative numbers, then there is a constant C, depending only on s, n, and ρ, such that

(∫

Rn

(
∑

Q∈W
aQχρQ

)s

dx

)1/s

≤ C
(∫

Rn

(
∑

Q∈W
aQχQ

)s

dx

)1/s

. (3.28)

The following theorem (Theorem 3.10) is proved by Nolder, see [7].

Theorem 3.10. Let u∈D′(Ω,∧0) and v ∈D′(Ω,∧2) be conjugate A-harmonic tensors. If
Ω is δ-John, q ≤ p, v− c ∈ Lt(Ω,∧2), and

s=Φ(t)= npt

nq+ t(q− p)
, (3.29)

then u− uQ0 ∈ Ls(Ω,∧0) and moreover, there exists a constant C, independent of u and v,
such that

∥
∥u−uQ0

∥
∥
s,Ω ≤ C‖v− c‖

q/p
t,Ω . (3.30)

Here c is any form in W1
p,loc(Ω,∧) with d∗c = 0 and Q0 is the distinguished cube of Lemma

3.8.

We prove the following theorem.

Theorem 3.11. Let u∈D′(Ω,∧0) and v ∈D′(Ω,∧2) be conjugate A-harmonic tensors. If
Ω is δ-John, q ≤ p, v− c ∈ Lt(Ω,∧2), and s =Φ(t) as in (3.29), α > 0, weight (w1,w2) ∈
Ar,λ as in Definition 2.1, then

∥
∥u−uQ0

∥
∥
s,Ω,wα

1
≤ C‖v− c‖q/p

t,Ω,w
αpt/qs
2

, (3.31)

where c is any form in W1
q,loc(Ω,∧) with d∗c = 0 and Q0 is the distinguished cube of Lemma

3.8.
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Proof. The proof is similar to the proof of [2, Theorem 3.4]. There is a modified Whitney
cover of cubes W = {Qi} for Ω with max(|Qi|,|Qi+1|)≤N|Qi∩Qi+1| for i=0,1, . . . ,k−1,
see [7], described in (ii) of Lemma 3.8. Note that |a+ b|s ≤ 2s(|a|s + |b|s) for all s > 0, we
have

∫

Ω

∣
∣u−uQ0

∣
∣swα

1dx =
∫

Ω

(∣
∣u−uQ0

∣
∣wα/s

1

)s
dx

≤ 2s
∫

Ω

(∣
∣u−uQ

∣
∣wα/s

1

)s
dx+ 2s

∫

Ω

(∣
∣uQ−uQ0

∣
∣wα/s

1

)s
dx

≤ 2s
∑

Q∈W

∫

Q

(∣
∣u−uQ

∣
∣wα/s

1

)s
dx+ 2s

∑

Q∈W

∫

Q

(∣
∣uQ−uQ0

∣
∣wα/s

1

)s
dx.

(3.32)

The first sum can be estimated by Theorem 3.6 and condition (i) of Lemma 3.8:

∑

Q∈W

∫

Q

(∣
∣u−uQ

∣
∣wα/s

1

)s
dx ≤ C1

∑

Q∈W

(∫

σQ
|v− c|twαpt/qs

2 dx
)qs/pt

= C1

∑

Q∈W

(∫

Ω
|v− c|twαpt/qs

2 χσQdx
)qs/pt

≤ C2N
(∫

Ω
|v− c|twαpt/qs

2 dx
)qs/pt

.

(3.33)

To estimate the second sum in (3.32), letQ ∈W be a fixed cube and letQ0,Q1, . . . ,Qk =Q
be the chain in (ii) of Lemma 3.8. Then

∣
∣uQ−uQ0

∣
∣≤

k−1∑

i=0

∣
∣uQi −uQi+1

∣
∣. (3.34)

Because of max(|Qi|,|Qi+1|) ≤ N|Qi ∩Qi+1| for i = 0,1, . . . ,k − 1, and |uQi − uQi+1|s ≤
2s(|uQi −u|s + |u−uQi+1|s), also by Theorem 3.6, we have

∣
∣uQi −uQi+1

∣
∣swα

1 =
1

∣
∣Qi∩Qi+1

∣
∣

∫

Qi∩Qi+1

∣
∣uQi −uQi+1

∣
∣swα

1dx

≤ N

max
(∣
∣Qi

∣
∣,
∣
∣Qi+1

∣
∣
)

∫

Qi∩Qi+1

∣
∣uQi −uQi+1

∣
∣swα

1dx

≤ C3

i+1∑

j=i

1
∣
∣Qj

∣
∣

∫

Qj

∣
∣u−uQj

∣
∣swα

1dx

≤ C4

i+1∑

j=i

1
∣
∣Qj

∣
∣

(∫

σQj

|v− c|twαpt/qs
2 dx

)qs/pt
.

(3.35)
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Since Q ⊂NQj for j = i, i+ 1, 0≤ i≤ k− 1, from (ii) of Lemma 3.8, we have

∣
∣uQi −uQi+1

∣
∣swα

1χQ(x)≤ C4

i+1∑

j=i

χNQj (x)
∣
∣Qj

∣
∣

(∫

σQj

|v− c|twαpt/qs
2 dx

)qs/pt
, (3.36)

and by (3.34)

∣
∣uQ−uQ0

∣
∣s ≤

( k−1∑

i=0

∣
∣uQi −ui+1

∣
∣

)s

≤ 2s
k−1∑

i=0

∣
∣uQi −uQi+1

∣
∣s. (3.37)

Thus by (3.36),

∣
∣uQ−uQ0

∣
∣swα

1χQ(x)≤ 2s
k−1∑

i=0

∣
∣uQi −ui+1

∣
∣swα

1χQ(x)

≤ 2s
k−1∑

i=0

C4

[ i+1∑

j=i

χNQj∣
∣Qj

∣
∣

(∫

σQj

|v− c|twαpt/qs
2 dx

)qs/pt]

≤ C5

∑

R∈W

1
|R|

(∫

σR
|v− c|twαpt/qs

2 dx
)qs/pt

· χNR(x)

(3.38)

for every x ∈Rn. Thus,

∣
∣uQ−uQ0

∣
∣wα/s

1 χQ(x)≤ C6

[
∑

R∈W

1
|R|

(∫

σR
|v− c|twαpt/qs

2 dx
)qs/pt

χNR(x)

]1/s

≤ C7

∑

R∈W

[
1
|R|

(∫

σR
|v− c|twαpt/qs

2 dx
)qs/pt]1/s

· χNR(x)

(3.39)

for every x ∈Rn. Hence

∑

Q∈W

∫

Q

∣
∣uQ−uQ0

∣
∣swα

1dx

≤ C8

∫

Rn

∣
∣
∣
∣
∣
∣

∑

R∈W

[
1
|R|

(∫

σR
|v− c|twαpt/qs

2 dx
)qs/pt]1/s

· χNR(x)

∣
∣
∣
∣
∣
∣

s

dx.

(3.40)
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If 0≤ s≤ 1, then by inequality |∑ ti|s ≤
∑|ti|s, and by (i) of Lemma 3.8,

∑

Q∈W

∫

Q

∣
∣uQ−uQ0

∣
∣swα

1dx ≤ C9

∫

Rn

∑

R∈W

1
|R|

(∫

σR
|v− c|twαpt/qs

2 dx
)qs/pt

χNR(x)dx

≤ C10

∑

R∈W

(∫

σR
|v− c|twαpt/qs

2 dx
)qs/pt

= C10

∑

R∈W

(∫

Ω
|v− c|twαpt/qs

2 χσRdx
)qs/pt

≤ C10

(∫

Ω
|v− c|twαpt/qs

2

∑

R∈W
χσRdx

)qs/pt

≤ C11

(∫

Ω
|v− c|twαpt/qs

2 dx
)qs/pt

.

(3.41)

If 1≤ s <∞, by (3.40) and Lemma 3.9, we have

∑

Q∈W

∫

Q

∣
∣uQ−uQ0

∣
∣swα

1dx

≤ C12

∫

Rn

∣
∣
∣
∣
∣
∣

∑

R∈W

[
1
|R|

(∫

σR
|v− c|twαpt/qs

2 dx
)qs/pt]1/s

· χR(x)

∣
∣
∣
∣
∣
∣

s

dx.

(3.42)

Since
∑

R∈W χR(x)≤∑R∈W χσR(x)≤NχΩ(x) and |∑N
i=1 ti|s ≤Ns−1

∑N
i=1 |ti|s, we have

∑

Q∈W

∫

Q

∣
∣uQ−uQ0

∣
∣swα

1dx ≤ C13

∫

Rn

[
∑

R∈W

1
|R|

(∫

σR
|v− c|twαpt/qs

2 dx
)qs/pt

· χR(x)

]

dx

= C13

∑

R∈W

(∫

σR
|v− c|twαpt/qs

2 dx
)qs/pt

≤ C14
(∫

Ω
|v− c|twαpt/qs

2 dx
)qs/pt

.

(3.43)

By (3.32), (3.33), (3.41), and (3.43), we have the theorem proved for any s =Φ(t) with
0≤ s <∞. �
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BOUNDEDNESS OF SOLUTIONS OF FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH
STATE-DEPENDENT IMPULSES

XINZHI LIU AND QING WANG

This paper studies the boundedness of functional differential equations with state-de-
pendent impulses. Razumikhin-type boundedness criteria are obtained by using Lya-
punov functions and Lyapunov functionals. Some examples are also given to illustrate
the effectiveness of our results.

Copyright © 2006 X. Liu and Q. Wang. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Impulsive differential equations have attracted lots of interest in recent years due to their
important applications in many areas such as aircraft control, drug administration, and
threshold theory in biology [2, 3, 5, 7]. There has been a significant development in the
theory of impulsive differential equations in the past decade, especially in the area where
impulses are fixed. However, the corresponding theory of impulsive functional differen-
tial has been less developed because of numerous theoretical and technical difficulties. Re-
cently, the existence and continuability results of solutions for differential equations with
delays and state-dependent impulses have been presented in [1, 4], while some stability
results of nontrivial solutions of delay differential equations with state-dependent im-
pulses have been stated in [6]. In this paper, we will establish some boundedness criteria
for the functional differential equations with state-dependent impulses. Some examples
are also discussed to illustrate the effectiveness of our results.

2. Preliminaries

Let R denote the set of real numbers, R+ the set of nonnegative real numbers, and Rn the
n-dimensional Euclidean linear space equipped with the Euclidean norm ‖ · ‖.

For a,b ∈R with a < b and for S⊂Rn, define

PC
(
[a,b],S

)= {φ : [a,b]−→ S | φ(t+)= φ(t), ∀t ∈ [a,b); φ
(
t−
)

exists in S, ∀t ∈ (a,b] and φ
(
t−
)= φ(t) for all

but at most a finite number of points t ∈ (a,b]
}

;

(2.1)

Hindawi Publishing Corporation
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700 Boundedness of solutions of FDEs

PC
(
[a,b),S

)= {φ : [a,b)−→ S | φ(t+)= φ(t), ∀t ∈ [a,b); φ
(
t−
)

exists in S, ∀t ∈ (a,b) and φ
(
t−
)= φ(t) for all

but at most a finite number of points t ∈ (a,b)
}

;

(2.2)

PC
(
[a,∞),S

)= {φ : [a,∞)−→ S | ∀c > a, φ|[a,c] ∈ PC
(
[a,c],S

)}
. (2.3)

Here we use the abbreviated notation x(t+) = lims→t+ x(s) and x(t−) = lims→t− x(s) to
refer to right-hand and left-hand limits, respectively.

Given a constant r > 0 representing an upper bound on the time delay of our sys-
tem, we equip the linear space PC([−r,0],Rn) with the norm ‖ · ‖r defined by ‖ψ‖r =
sup−r≤s≤0‖ψ(s)‖. If x ∈ PC([t0 − r,∞),Rn), where t0 ∈ R+, then for each t ≥ t0, we de-
fine xt ∈ PC([−r,0),Rn) by xt(s)= x(t+ s) for −r ≤ s≤ 0.

Let J ⊂ R+ be an interval of the form [a,b) where 0 ≤ a < b ≤∞ and let D ⊂ Rn be
an open set. Given f ,I : J ×PC([−r,0],D)→ Rn, and τk ∈ C(D,R+). Consider the delay
differential system with state-dependent impulses

x′(t)= f
(
t,xt

)
, t �= τk

(
x
(
t−
))

,

Δx(t)= I(t,xt−
)
, t = τk

(
x
(
t−
))

, k = 0,1, . . . .
(2.4)

The initial condition for system (2.4) is given by

xt0 = φ, (2.5)

where t0 ∈R+ and φ ∈ PC([−r,0],Rn).
Throughout this paper, we assume the following hypotheses hold.
(A1) f (t,ψ) is composite-PC, that is, if for each t0 ∈ J and 0 < α ≤∞, where [t0, t0 +

α) ⊂ J , if x ∈ PC([t0 − r, t0 + α),D), then the composite function g defined by
g(t)= f (t,xt) is an element of the function class PC([t0, t0 +α),Rn).

(A2) f (t,ψ) is continuous in ψ, that is, if for each fixed t ∈ J , f (t,ψ) is a continuous
function of ψ on PC([−r,0],F).

(A3) f (t,ψ) is quasibounded, that is, if for each t0 ∈ J and α > 0 where [t0, t0 +α]⊂ J ,
and for each compact set F ⊂D, there exists some M > 0 such that | f (t,ψ)| ≤M
for all (t,ψ)∈ [t0, t0 +α]×PC([−r,0],F).

(A4) τk ∈ C1(D,R+) for k = 0,1, . . . , and for each t∗ ∈ J , there exists some δ > 0, where
[t∗, t∗ + δ]⊂ J such that

∇τk
(
ψ(0)

) · f (t,ψ)�= 1 (2.6)

for all (t,ψ)∈ (t∗, t∗ + δ]×PC([−r,0],D) and k = 0,1, . . . .

Remark 2.1. It is shown in [4, Corollary 3.1] that if conditions (A1)–(A4) hold, the initial
value problem (2.4)-(2.5) has a solution x(t, t0,φ) existing in a maximal interval I .

Definition 2.2. The solution x(t) of system (2.4) is said to be
(B1) uniformly bounded if for every B1 > 0, there exists some B2 = B2(B1) > 0 such

that if t0 ∈ R+, φ ∈ PC([−r,0],Rn) with ‖φ‖r ≤ B1 and x(t) = x(t, t0,φ) is any
solution of system (2.4), then x(t, t0,φ) is defined and ‖x(t, t0,φ)‖ ≤ B2 for all
t ≥ t0;
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(B2) uniformly ultimately bounded with bound B if (B1) holds and for every B3 > 0,
there exists some T = T(B3) > 0 such that if φ∈ PC([−r,0],Rn) with ‖φ‖r ≤ B3,
then for any t0 ∈R+, ‖x(t, t0,φ)‖ ≤ B for t ≥ t0 +T .

Definition 2.3. Given a function V : J ×D → R+, the upper right-hand derivative of V
with respect to system (2.4) is defined by

D+
(2.4)V

(
t,ψ(0)

)= limsup
h→0+

1
h

[
V
(
t+h,ψ(0) +h f (t,ψ)

)−V(t,ψ(0)
)]

(2.7)

for (t,ψ)∈ PC([−r,0],D).

We may drop the subscript and simply write D+V(t,ψ(0)), where it is obvious which
system the derivative of V is with respect to. Note that D+V(t,ψ(0)) is a functional,
whereas V is a function.

We remark that if V(t,x) has continuous partial derivatives with respect to t and x,
then (2.7) reduces to

D+
(2.4)V

(
t,ψ(0)

)= ∂V
(
t,ψ(0)

)

∂t
+∇xV

(
t,ψ(0)

) · f (t,ψ). (2.8)

Definition 2.4. A function V(t,x) : J ×Rn→R+ belongs to class ν0 if
(H1) V is continuous on each of the sets [tk−1, tk)×Rn, and for all x ∈ Rn and k =

0,1, . . . , lim(t,y)→(t−k ,x)V(t, y)=V(t−k ,x) exists;
(H2) V(t,x) is locally Lipschitz in x ∈Rn and V(t,0)≡ 0.

Definition 2.5. A functional V(t,ψ) : J × PC([−r,0],Rn)→ R+ belongs to class ν0(·) (a
set of Lyapunov-like functionals) if

(B1) V is continuous on [tk−1, tk) × Rn for each k = 0,1, . . . , and for all ψ,ϕ ∈
PC([−r,0],Rn) and k = 0,1, . . . , the limit lim(t,ψ)→(t−k ,ϕ)V(t,ψ)=V(t−k ,ϕ) exists;

(B2) V(t,ψ) is locally Lipschitz in ψ in each compact set in Rn and V(t,0)≡ 0.

Definition 2.6. A functional V(t,ψ) : J × PC([−r,0],Rn)→ R+ belongs to class ν∗0 (·), if
V(t,ψ)∈ ν0(·) and for any x ∈ PC([t0− r,∞),Rn), V(t,xt) is continuous for t ≥ t0.

Let us define the following notations for later use:

K0 =
{
g ∈ C(R+,R+

) | g(0)= 0 and g(s) > 0 for s > 0
}

,

K = {g ∈ K0 | g is strictly increasing in s
}

,

K1 =
{
g ∈ K | g(s)−→∞ as s−→∞}.

(2.9)

3. Boundedness criteria

Our first two results utilize the Lyapunov-Razumkhin technique and the last result em-
ploys the Lyapunov functional method.

Theorem 3.1. Assume that there exist V(t,x)∈ ν0, W1,W2 ∈ K1, W3 ∈ K0 such that
(i)

W1
(‖x‖)≤V(t,x)≤W2

(‖x‖); (3.1)
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(ii) for any x ∈Rn and τk ∈ C1(Rn,R+),

V
(
τk(x),x+ I

(
τk(x),x

))≤ (1 + bk
)
V
(
τ−k (x),x

)
, k = 0,1, . . . , (3.2)

where bk ≥ 0 with
∑∞

k=1 bk <∞;
(iii) there exists some constant ρ > 0 such that for any solution x(t) of system (2.4)

D+
(2.4)V

(
t,x(t)

)≤−W3
(‖x(t)‖) (3.3)

whenever ‖x(t)‖ ≥ ρ and P(V(t,x(t))) > V(s,x(s)) for s ∈ [t − r, t] and t ≥ t0,
where P ∈ C(R+,R+) and P(s) >Ms for s > 0, where M =∏∞k=1(1 + bk);

then the solutions of (2.4) are uniformly bounded and uniformly ultimate bounded.

Proof. We first show uniform boundedness.
Let B1 > 0 and assume, without loss of generality, that B1 ≥ ρ. Choose B2 =

W−1
2 ((1/M)(B1)). For any t0 ∈ R+ and ‖ϕ‖r ≤ B1, let x(t) = x(t, t0,ϕ) be a solution of

(2.4)-(2.5), which exists in a maximal interval I = [t0− r, t0 + β). If β <∞, then there ex-
ists some t ∈ (t0, t0 + β) for which ‖x(t)‖ > B2. We will prove that ‖x(t)‖ ≤ B2 which in
turn will imply that β =∞ and hence the solutions of (2.4)-(2.5) are uniformly bounded.

For simplicity, let τ0 = t0 ∈ R+ be the initial time and denote impulsive moments
τk(x(τ−k )) for k = 1,2, . . . by τk in case of not causing confusion.

In order to prove uniform boundedness, we first show

V(t) <
1
M

(
1 + b0

)···(1 + bm
)
W1
(
B2
)
, τm ≤ t < τm+1,

V
(
τm+1

)≤ 1
M

(
1 + b0

)···(1 + bm
)(

1 + bm+1
)
W1
(
B2
)
, m= 0,1, . . . ,

(3.4)

where V(t)=V(t,x(t)) and b0 = 0.
Now we will show (3.4) holds for m= 0, that is,

V(t) <
1
M
W1
(
B2
)
, τ0 ≤ t < τ1. (3.5)

For τ0− r ≤ t ≤ τ0, we have

W1
(∥
∥x(t)

∥
∥
)≤V(t)≤W2

(∥
∥x(t)

∥
∥
)
<W2

(
B1
)= 1

M
W1
(
B2
)
. (3.6)

If (3.5) does not hold, then there is some t̄ ∈ (τ0,τ1) such that

V(t̄)= 1
M
W1
(
B2
)
, V(t)≤ 1

M
W1
(
B2
)
, τ0− r ≤ t ≤ t̄, (3.7)

V ′
(
t̄
)≥ 0. (3.8)

Thus

P
(
V
(
t̄
))
>MV

(
t̄
)≥V(s), t̄− r ≤ s≤ t̄, (3.9)
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and from W2(‖x(t̄)‖)≥V(t̄)= (1/M)W1(B2)=W2(B1) we have

∥
∥x
(
t̄
)∥
∥≥ B1 ≥ ρ, (3.10)

then by assumption (iii) we obtain

V ′
(
t̄
)≤−W3

(∥
∥x
(
t̄
)∥
∥
)
< 0, (3.11)

which contradicts with (3.8), and hence we have (3.5) holds. By (3.5) and assumption (ii)
we have

V
(
τ1
)=V(τ1,x

(
τ−1
)

+ Im
(
τ1,x

(
τ−1
)))

≤ (1 + b1
)
V
(
τ−1 ,x

(
τ−1
))= (1 + b1

)
V
(
τ−1
)

≤ 1
M

(
1 + b1

)
W1
(
B2
)
,

(3.12)

which implies that (3.4) holds for m= 0.
Now suppose that (3.4) holds for m ≤ i− 1 for i = 1,2, . . . , we prove that (3.4) holds

for m= i, that is,

V(t) <
1
M

(
1 + b0

)···(1 + bi
)
W1
(
B2
)
, τi ≤ t < τi+1,

V
(
τi+1

)≤ 1
M

(
1 + b0

)···(1 + bi
)(

1 + bi+1
)
W1
(
B2
)
, i= 1,2, . . . .

(3.13)

First we prove that

V(t)≤ 1
M

(
1 + b0

)···(1 + bi
)
W1
(
B2
)
, τi ≤ t < τi+1. (3.14)

If (3.14) does not hold, then there is some t̄ ∈ (τi,τi+1) such that

V
(
t̄
)
>

1
M

(
1 + b0

)···(1 + bi
)
W1
(
B2
)≥V(τi

)
, (3.15)

and so there exists a t∗ ∈ (τi, t̄] such that

V
(
t∗
)≥ 1

M

(
1 + b0

)···(1 + bi
)
W1
(
B2
)
, V(t)≤V(t∗), t∗ − r ≤ t ≤ t∗, (3.16)

V ′
(
t∗
)≥ 0. (3.17)

Then we get

P
(
V
(
t∗
))
>MV

(
t∗
)≥V(s), t∗ − r ≤ s≤ t∗,

∥
∥x
(
t∗
)∥
∥≥ B1 ≥ ρ

(3.18)
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since W2(‖x(t∗)‖) ≥ V(t∗) ≥M−1(1 + b0)···(1 + bi)W1(B2) ≥M−1W1(B2) =W2(B1).
By assumption (iii),

V ′
(
t∗
)≤−W3

(∥
∥x
(
t∗
)∥
∥
)
< 0, (3.19)

which contradicts (3.17) and so (3.14) holds.
From (3.14) and assumption (ii), we have

V
(
τi+1

)≤V(τ−i+1

)(
1 + bi+1

)≤ 1
M

(
1 + b0

)···(1 + bi+1
)
W1
(
B2
)
, (3.20)

which implies that (3.13) holds for m= i, and hence (3.4) holds for all m= 0,1, . . . .
Therefore, we have

W1
(∥
∥x(t)

∥
∥
)≤V(t)≤W1

(
B2
)
, t ≥ τ0. (3.21)

This proves uniform boundedness.
Now we will prove uniformly ultimate boundedness. Let

B =W−1
1

(
MW2(ρ)

)
(3.22)

and then

W1(B)=MW2(ρ). (3.23)

Let B3 ≥ ρ be given. By the preceding arguments, we could find a B4 > B such that ‖ϕ‖r ≤
B3 implies

V(t)≤W1
(
B4
)
, t ≥ τ0. (3.24)

Let

0 < d < inf
{

P(s)−Ms :
1
M
W1(B)≤ s≤W1

(
B4
)
}

(3.25)

and N be the first positive integer such that

W1(B) +Nd ≥MW1
(
B4
)
. (3.26)

Set γ = infρ≤s≤B4 W3(s). Then γ > 0. We first show that

V(t)≤W1(B) + (N − 1)d, t ≥ τ0 +h, (3.27)

where ρ =max{(1 +A)W1(B4)/γ,r}, A=∑∞k=1 bk.
Suppose, for all t ∈ I1 = [τ0,τ0 +h],

V(t) >
1
M

[
W1(B) + (N − 1)d

]
. (3.28)
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Then M−1W1(B) < V(t)≤W1(B4) for t ∈ I1. Thus, for t ∈ I1, we have

P
(
V(t)

)
>MV(t) +d >

M

M

[
W1(B) + (N − 1)d

]
+d

=W1(B) +Nd ≥W1
(
B4
)≥V(s), t− r ≤ s≤ t,

∥
∥x(t)

∥
∥≥ ρ

(3.29)

since W2(‖x(t)‖)≥V(t) >M−1W1(B)=W2(ρ). By assumption (iii), we have, for t ∈ I1,

V ′(t)≤−W3
(∥
∥x(t)

∥
∥
)≤−γ, (3.30)

and so

V(t)≤V(τ0
)− γ(t− τ0

)
+
∑

τ0<τj≤t

[
V
(
τj
)−V(τ−j

)]

≤W1
(
B4
)− γ(t− τ0

)
+
∑

τ0<τj≤t
b jV

(
τ−j
)

≤W1
(
B4
)− γ(t− τ0

)
+AW1

(
B4
)
.

(3.31)

Let t = τ0 +h, we have

V
(
τ0 +h

)≤ (1 +A)W1
(
B4
)− γ · (1 +A)W1

(
B4
)

γ
= 0. (3.32)

It is a contradiction, thus there is a t∗ ∈ I1 such that

V
(
t∗
)≤ 1

M

[
W1(B) + (N − 1)d

]
. (3.33)

Let q = inf{k ∈ Z+ : τk > t∗}. We claim that

V(t)≤ 1
M

[
W1(B) + (N − 1)d

]
, t∗ ≤ t < τq. (3.34)

Otherwise, there is a t̄ ∈ (t∗,τq) such that

V
(
t̄
)
>

1
M

[
W1(B) + (N − 1)d

]≥V(t∗). (3.35)

This implies that there is a t̂ ∈ (t∗, t̄] such that

V
(
t̂
)≥ 1

M

[
W1(B) + (N − 1)d

]
,

V ′
(
t̂
)≥ 0.

(3.36)

Thus

P
(
V
(
t̂
))
>MV

(
t̂
)

+d ≥W1(B) + (N − 1)d+d

=W1(B) +Nd ≥W1
(
B4
)≥V(s), t̂− r ≤ s≤ t̂,

∥
∥x
(
t̂
)∥
∥≥ ρ

(3.37)
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since W2(‖x(t̂ )‖)≥V(t̂ )≥M−1W1(B)=W2(ρ). By assumption (iii),

V ′
(
t̂
)≤−W3

(∥
∥x
(
t̂
)∥
∥
)
< 0. (3.38)

This is a contradiction and so (3.34) holds. From (3.34) and assumption (ii), we have

V
(
τq
)≤ (1 + bq

)
V
(
τ−q
)≤ 1

M

(
1 + bq

)[
W1(B) + (N − 1)d

]
. (3.39)

Similarly, we could prove that

V(t)≤ 1
M

(
1 + bq

)[
W1(B) + (N − 1)d

]
, τq ≤ t < τq+1,

V
(
τq+1

)≤ 1
M

(
1 + bq

)(
1 + bq+1

)[
W1(B) + (N − 1)d

]
.

(3.40)

By induction, we could prove in general that

V(t)≤ 1
M

(
1 + bq

)···(1 + bq+i
)[
W1(B) + (N − 1)d

]
, τq+i ≤ t < τq+i+1,

V
(
τq+i+1

)≤ 1
M

(
1 + bq

)···(1 + bq+i+1
)[
W1(B) + (N − 1)d

]
, i= 0,1,2, . . . .

(3.41)

Thus (3.27) holds. Similarly, we may prove that

V(t)≤W1(B) + (N − 2)d, t ≥ τ0 + 3h, (3.42)

and by the induction, we have

V(t)≤W1(B) + (N − j)d, t ≥ τ0 + (2 j− 1)h, j = 1,2, . . . ,N. (3.43)

Thus we obtain

W1
(∥
∥x(t)

∥
∥
)≤V(t)≤W1(B), t ≥ τ0 + (2N − 1)h. (3.44)

Let T = (2N − 1)h, then

∥
∥x(t)

∥
∥≤ B, t ≥ τ0 +T. (3.45)

This proves uniformly ultimate boundedness. The proof is now completed. �

Due to page limitation, the proofs of the following theorems are omitted.
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Theorem 3.2. Assume that there exist V1(t,x)∈ν0, V2(t,φ)∈ν∗0 (·), and W1,W2,W3∈K1

such that
(i) W1(‖φ(0)‖)≤V(t,φ)≤W2(‖φ‖r), where V(t,φ)=V1(t,φ(0)) +V2(t,φ)∈ν0(·);

(ii) for each x ∈Rn and τk ∈ C1(Rn,R+), k ∈ Z+,

V1
(
τk(x),x+ I

(
τk(x),x

))≤ (1 + bk
)
V1
(
τ−k (x),x

)
, (3.46)

where bk ≥ 0 with
∑∞

k=1 bk <∞;
(iii) for any solution x(t)= x(t, t0,ϕ) with t0 ∈R+, ϕ∈ PC([−r,0],Rn),

V ′
(
t,xt

(
t0,ϕ

))≤A if V
(
t,xt

(
t0,ϕ

))≥W2
(‖ϕ‖r

)
for t0 ≤ t ≤ t0 + r;

V ′
(
t,xt

(
t0,ϕ

))≤A−W3
(
V
(
t,xt

(
t0,ϕ

)))
if P
(
V
(
t,xt

(
t0,ϕ

)))
> V

(
s,xs

(
t0,ϕ

))

for t ≥ t0 + r, t− r ≤ s≤ t,
(3.47)

where A > 0 is a constant, P(s) is defined the same as in Theorem 3.1;
then the solutions of (2.4) are uniform bounded and ultimately uniform bounded.

Theorem 3.3. Assume that there exist V(t,φ) ∈ ν∗0 (·), W1,W2 ∈ K1, W3 ∈ C(R+,R+),
and constants dk,ek ≥ 0 with

∑∞
k=1dk <∞ and e =∑∞k=1 ek <∞ such that

(i)

W1
(∥
∥φ(0)

∥
∥
)≤V(t,φ)≤W2

(‖φ‖r
)
; (3.48)

(ii) for each x ∈Rn and τk ∈ C1(Rn,R+), k ∈ Z+,

V
(
τk(x),x+ I

(
τk(x),x

))≤ (1 +dk
)
V
(
τ−k (x),x

)
+ ek (3.49)

for all τk > t0;
(iii) for any solution x(t)= x(t, t0,ϕ) with t0 ∈R+, ϕ∈ PC([−r,0],Rn),

D+
(2.4)V

(
t,xt

)≤−W3
(∥
∥φ(0)

∥
∥
)
; (3.50)

then the solutions of (2.4) are uniformly bounded. If, in addition, we have W3 ∈ K , and
liminf s→∞W3(s) > 0; τk − τk−1 > L for some L > 0 and for all k = 1,2, . . . ; and f maps R+×
(bounded subsets of PC([−r,0],Rn)) into bounded subsets of Rn, then solutions of (2.4) are
uniformly ultimately bounded.

4. Examples

To illustrate the application of the preceding theorems we discuss the following examples.

Example 4.1. Consider the scalar equation

x′(t)= A(t)x(t) +
∫ t

t−τ
C(t− s)x(s)ds+ f (t), t �= x(t) + k,

x
(
tk
)− x(t−k

)= bkx
(
t−k
)
, t = x(t) + k, k ∈ Z+,

(4.1)
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where A,C, and f are continuous functions, | f (t)| ≤ L for some L > 0. For the impulsive
perturbations, we assume that bk ≥ 0 and

∑∞
k=1 bk <∞. Suppose A(t) < 0 and

A(t) +M
∫ τ

0

∣
∣C(u)

∣
∣du≤−α, (4.2)

where α > 0 and M =∏∞k=1(1 + bk). Let V(t,x)= |x| and q > 1 such that

A(t) +Mq
∫ τ

0

∣
∣C(u)

∣
∣du≤−α

2
, (4.3)

and let P(s)=Mqs. Then for any solution x(t)= x(t, t0,ϕ) such that

P
(
V
(
t,x(t)

))
> V

(
s,x(s)

)
for t ≥ σ , t− τ ≤ s≤ t, (4.4)

we have

V ′
(
t,x(t)

)≤A(t)
∣
∣x(t)

∣
∣+ q

∫ τ

0

∣
∣C(u)

∣
∣
∣
∣x(t−u)

∣
∣du+

∣
∣ f (t)

∣
∣

≤ L− α

2

∣
∣x(t)

∣
∣≤−α

4

∣
∣x(t)

∣
∣ if

∣
∣x(t)

∣
∣≥H = 4L

α
,

V
(
τk,x+ I

(
τk,x

))= ∣∣x+ bkx
∣
∣= (1 + bk

)
V
(
τ−k ,x

)
.

(4.5)

By Theorem 3.1, we obtain uniform boundedness and ultimately uniform boundedness
for (4.1).

Example 4.2. Consider the scalar impulsive delay differential equation

x′ = −p(t)x(t) + q(t)x(t− r) +w(t), t �= x3(t) + 2k,

Δx(t)= hkx(t), t = x3(t) + 2k,
(4.6)

where r > 0, p,q ∈ PC(R+,R), w is a square integrable function on R+ (i.e.,
∫∞

0 w2(t)dt <
∞), hk > 0 for k = 1,2, . . . and

∑∞
k=1hk <∞. Assume that for some M1 > 1/2 and 0 <M2 <

M1 − 1/2, p(t) ≥M1 and |q(t)| ≤M2 for all t ∈ �+. We will show that the conditions
of Theorem 3.3 are satisfied and thereby conclude that solutions of this impulsive delay
differential equation are uniformly ultimately bounded.

To begin with we note that f clearly satisfies the conditions given in Theorem 3.3: f
maps R+× (bounded subsets of PC([−r,0],Rn)) into bounded subsets of R.

Define the Lyapunov functional V by

V(t,ψ)= ψ2(0) +M2

∫ 0

−r
ψ2(s)ds+

∫∞

t
w2(s)ds. (4.7)
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Clearly,V satisfies condition (i) of Theorem 3.3 withW1(s)=s2 andW2(s)=(1 +M2r)s2 +
∫∞

0 w2(t)dt. Differentiating V along solutions of (4.6) gives us

D+
(4.6)V(t,ψ)= 2ψ(0)

[− p(t)ψ(0) + q(t)ψ(−r) +w(t)
]

+M2
[
ψ2(0)−ψ2(−r)]−w2(t)

≤ (− 2M1 +M2
)
ψ2(0) + 2M2

∣
∣ψ(0)ψ(−r)∣∣

+ 2ψ(0)w(t)−M2ψ
2(−r)−w2(t)

≤ (− 2M1 +M2 + 1
)
ψ2(0) + 2M2

∣
∣ψ(0)ψ(−r)∣∣

−M2ψ
2(−r)

≤−Kψ2(0),

(4.8)

where K=2M1−2M2−1>0. Thus condition (iii) of Theorem 3.3 is satisfied with W3(s)=
Ls2.

Finally, let us check condition (ii). If t0 ∈R+ and x ∈ PC([t0− r,∞),R) with disconti-
nuities occurring only at impulse times, then

V
(
t,xt

)= x2(t) +M2

∫ t

t−r
x2(s)ds+

∫∞

t
w2(s)ds (4.9)

is also continuous at all points except possibly impulse times. Moreover,

V
(
τk,xτt

)= (1 +hk
)2
x2(τk

)
+M2

∫ τk

τk−r
x2(s)ds+

∫∞

τk
w2(s)ds

≤ (1 +hk
)2
V
(
τk,xτk

)= (1 +dk
)
V
(
τk,xτk

)
,

(4.10)

where dk = 2hk +h2
k > 0. Since

∑∞
k=1hk <∞, then

∑∞
k=1dk <∞ also.

We can therefore conclude in light of Theorem 3.3 that solutions of system (4.6) are
uniformly ultimately bounded. Note that in this example, the boundedness conclusion is
independent of the delay term r. Also, what is interesting is that solutions are uniformly
ultimately bounded despite the fact that the state x increases in magnitude at each impulse
time.
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MIXED RATIONAL-SOLITON SOLUTIONS
TO THE TODA LATTICE EQUATION
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We present a way to solve the Toda lattice equation using the Casoratian technique, and
construct its mixed rational-soliton solutions. Examples of the resulting exact solutions
are computed and plotted.

Copyright © 2006 Wen-Xiu Ma. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Differential and/or difference equations serve as mathematical models for various phe-
nomena in the real world. The study of differential and/or difference equations enhances
our understanding of the phenomena they describe. One of important fundamental ques-
tions in the subject is how to solve differential and/or difference equations.

There are mathematical theories on existence and representations of solutions of linear
differential and/or difference equations, especially constant-coefficient ones. Soliton the-
ory opens the way to studies of nonlinear differential and/or difference equations. There
are different solution methods for different situations in soliton theory, for example, the
inverse scattering transforms for the Cauchy problems, Bäcklund transformations for ge-
ometrical equations, Darboux transformations for compatibility equations of spectral
problems, Hirota direct method for bilinear equations, and truncated series expansion
methods (including Painlevé series, and sech and tanh function expansion methods) for
Riccati-type equations.

Among the existing methods in soliton theory, Hirota bilinear forms are one of the
most powerful tools for solving soliton equations, a kind of nonlinear differential and/or
difference equations. In this paper, we would like to construct mixed rational-soliton so-
lutions to the Toda lattice equation:

ȧn = an
(
bn−1− bn

)
, ḃn = an− an+1, (1.1)

where ȧn = dan/dt and ḃn = dbn/dt. The approach we will adopt to solve this equation
is the Casoratian technique. Its key is to transform bilinear forms into linear systems

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 711–720



712 Mixed rational-soliton solutions to the Toda lattice

of solvable differential-difference equations. For the Toda lattice equation (1.1), we will
present the general solutions to the corresponding linear systems and further generate
mixed rational-soliton solutions.

2. Constructing solutions using the Casoratian technique

Let us start from the Toda bilinear form. Under the transformation

an = 1 +
d2

dt2
logτn = τn+1τn−1

τ2
n

, bn = d

dt
log

τn
τn+1

= τ̇nτn+1− τnτ̇n+1

τnτn+1
, (2.1)

the Toda lattice equation (1.1) becomes

[

D2
t − 4sinh2

(
Dn

2

)]

τn · τn = 0, (2.2)

where Dt and Dn are Hirota’s operators. That is,

τ̈nτn−
(
τ̇n
)2− τn+1τn−1 + τ2

n = 0. (2.3)

In the Casoratian formulation, we use the Casorati determinant

τn = Cas
(
φ1,φ2, . . . ,φN

)=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(n) φ1(n+ 1) ··· φ1(n+N − 1)
φ2(n) φ2(n+ 1) ··· φ2(n+N − 1)

...
...

. . .
...

φN (n) φN (n+ 1) ··· φN (n+N − 1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.4)

to construct exact solutions, and we call such solutions Casoratian solutions. It is known
[7] that such a τ-function τn solves the bilinear Toda lattice equation (2.3) if

φi(n+ 1) +φi(n− 1)= 2εi
(

coshαi
)
φi(n),

(
φi(n)

)
t = φi(n+ 1), (2.5)

where εi =±1, αi are nonzero constants and (φi(n))t = ∂tφi(n)= ∂tφi(n, t). The resulting
solutions are negatons, that is, a kind of solutions only involving exponential functions
of the space variable n.

There are other type solutions such as rational solutions [3], positons [5, 8], and com-
plexitons [2]. Similar to [2, 3], we can prove that τn is a solution to the bilinear Toda
lattice equation (2.3) if

φi(n+ 1) +φi(n− 1)=
N∑

j=1

λi jφj(n),
(
φi(n)

)
t = ζφi(n+ δ), (2.6)

where ζ = ±1, δ = ±1 (i.e., |ζ| = |δ| = 1, ζ ,δ ∈ R), and λi j are arbitrary constants. Un-
der the transformation t→−t, the bilinear Toda lattice equation (2.3) is invariant, and
(φi(n))t = φi(n+ δ) becomes (φi(n))t =−φi(n+ δ). Therefore, we only need to consider
one of the cases ζ =±1 while constructing solutions, since the replacement of t with −t
generates solutions from one case to the other. We will only consider the case of ζ = 1
below.
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Let us now begin to analyze the system of differential-difference equations (2.6) with
ζ = 1. The corresponding system can be compactly written as

ΦN (n+ 1, t) +ΦN (n− 1, t)=ΛΦN (n, t),
(
ΦN (n, t)

)
t =ΦN (n+ δ, t), (2.7)

where ΦN =ΦN (n, t) := (φ1(n, t), . . . ,φN (n, t))T and Λ := (λi j)N×N . Note that a constant
similar transformation for the coefficient matrix Λ does not change the resulting Caso-
ratian solution. Actually, if we have M = P−1ΛP for an invertible constant matrix P, then
Φ̃N = PΦN satisfies

Φ̃N (n+ 1, t) + Φ̃N (n− 1, t)=MΦ̃N (n, t),
(
Φ̃N (n, t)

)
t = Φ̃N (n+ δ, t). (2.8)

Obviously, the Casorati determinants generated from ΦN and Φ̃N have just a constant-
factor difference, and thus the transformation (2.1) leads to the same Casoratian solutions
from ΦN and Φ̃N . Therefore, as in the KdV case [4], we can focus on the following two
types of Jordan blocks of Λ:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λi 0
1 λi
...

. . .
. . .

0 ··· 1 λi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

ki×ki

,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ai 0
I2 Ai
...

. . .
. . .

0 ··· I2 Ai

⎤

⎥
⎥
⎥
⎥
⎥
⎦

li×li

, Ai =
[
αi −βi
βi αi

]

, (2.9)

where λi, αi and βi > 0 are all real constants, I2 is the identity matrix of order 2, and ki
and li are positive integers. A Jordan block of the first type has the real eigenvalue λi with
algebraic multiplicity ki, and a Jordan block of the second type has the pair of complex
eigenvalues λi,± = αi±βi

√−1 with algebraic multiplicity li.

Case ki = 1 of type 1. The representative systems read as follows:

φi(n+ 1) +φi(n− 1)= λiφi(n),
(
φi(n)

)
t = φi(n+ δ), (2.10)

where δ =±1 and λi = consts. Their eigenfunctions are classified as

φi = C1iε
n
i eεit +C2i

(
n+ εiδt

)
εni eεit, λi = 2εi, εi =±1,

φi = C1iet cosαi cos
(
αin+ δt sinαi

)

+C2iet cosαi sin
(
αin+ δt sinαi

)
, λi = 2cosαi, αi �=mπ, m∈ Z,

φi = C1iε
n
i eαin+εiteδαi +C2iε

n
i e−αin+εite−δαi , λi = 2εi coshαi, αi �= 0,

(2.11)

where C1i and C2i are arbitrary constants. The above three sets of eigenfunctions generate
rational solutions, positon solutions, and negaton solutions, respectively.

Generally, the following two results provide ways to solve the linear system (2.6). The
detailed proof will be published elsewhere.
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Theorem 2.1 (λi =±2). Let ε=±1 and δ =±1 (i.e., |ε|=|δ| = 1, ε,δ ∈R). If ( f (n, t))t =
f (n+ δ, t), then the nonhomogeneous system

φ(n+ 1, t) +φ(n− 1, t)= 2εφ(n, t) + f (n, t),
(
φ(n, t)

)
t = φ(n+ δ, t), (2.12)

has the general solution

φ(n, t)=
[

α(n)t+β(n) +
∫ t

0

∫ s

0
f (n+ δ,r)e−εrdr ds

]

eεt, (2.13)

where α(n) and β(n) are determined by

α(n+ δ)− εα(n)= f (n+ δ,0), β(n+ δ)− εβ(n)= α(n). (2.14)

Theorem 2.2 (λi �=±2). Let λ�=±2 and δ =±1.
(a) The homogeneous system

φ(n+ 1, t) +φ(n− 1, t)= λφ(n, t),
(
φ(n, t)

)
t = φ(n+ δ, t), (2.15)

has its general solution

φ(λ;c,d)(n)= cωnetω
δ

+dω−netω
−δ

, (2.16)

where c and d are arbitrary constants, and

λ= ω+ω−1, (2.17)

that is,

ω2− λω+ 1= 0. (2.18)

(b) Define fk = φ(λi;ck,dk), 1 ≤ k ≤ ki, where ck and dk are arbitrary constants. The
nonhomogeneous system

φk(n+ 1, t) +φk(n− 1, t)= λiφk(n, t) +φk−1(n, t),
(
φk(n, t)

)
t = φk(n+ δ, t),

(2.19)

where 1≤ k ≤ ki and φ0 = 0, has its general solution

φk =
k−1∑

p=0

1
p!

∂p fk−p
∂λ

p
i

=
k−1∑

p=0

1
p!

∂pφ
(
λi;ck−p,dk−p

)

∂λ
p
i

, 1≤ k ≤ ki. (2.20)

Remark 2.3. The soliton case of λi = 2coshαi (αi �= 0) corresponds to ωi = eαi in (a). The
nonhomogeneous system in (b) is associated with one Jordan block of type 1.

Begin with

Λ=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2ε 0
∗ 2ε
...

. . .
. . .

∗ ··· ∗ 2ε

⎤

⎥
⎥
⎥
⎥
⎥
⎦

ki×ki

, ∗-arbitrary consts., (2.21)
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where ε =±1. By the general solution formula in Theorem 2.1, we can have

φi(n, t)= εneεtψi(n, t), 1≤ i≤N , (2.22)

where ψi(n, t) are polynomials in n and t. Thus,

τn = Cas
(
ψ1, . . . ,ψN

)
(2.23)

presents polynomial solutions to the bilinear Toda lattice equation (2.3) and thus rational
solutions to the Toda lattice equation (1.1) through (2.1).

Theorem 2.4. The Jordan block of type 1 with λi = ±2 leads to rational solutions to the
Toda lattice equation (1.1).

This adds one case of λ=−2 to the result in [3]. A few examples of rational solutions
associated with one Jordan block case with λ= 2 were presented in [3].

3. Mixed rational-soliton solutions

Let us now show a way to construct mixed rational-soliton solutions. We use the following
procedure.

Step 1. Solve the triangular systems whose coefficient matrices possess Jordan blocks of
type 1 with λi =±2 or λi = 2coshαi (αi �= 0) to form a set of eigenfunctions (φ1, . . . ,φN ).

Step 2. Evaluate the τ-function τn = Cas(φ1, . . . ,φN ).

Step 3. Evaluate an and bn by the transformation (2.1), to obtain mixed rational-soliton
solutions to the Toda lattice equation (1.1).

The τ-functions generated above are quite general. In what follows, we would like to
present two sets of special eigenfunctions required in forming such τ-functions.

Special eigenfunctions yielding rational solutions. We take two specific Taylor expansions
as in [9]:

φ+(n, t)= ekn+tek + e−kn+te−k =
∞∑

i=0

ai+1(n, t)k2i,

φ−(n, t)= ekn+tek − e−kn+te−k =
∞∑

i=0

ai+1(n, t)k2i+1,

(3.1)

the coefficients of which satisfy

ai(n+ 1, t) + ai(n− 1, t)=
i∑

j=0

2
(2 j)!

ai− j+1(n, t),
(
ai(n, t)

)
t = ai(n+ 1, t), (3.2)

where i≥ 1. These two sets of functions are given by

ai+1(n, t)= et
2i∑

j=0

2n2i− j

(2i− j)!
βj(t), ai+1(n, t)= et

2i+1∑

j=0

2n2i+1− j

(2i+ 1− j)!
βj(t), (3.3)
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respectively. The functions βj(t) above are defined by

∞∑

j=0

βj(t)k j =
∞∑

p=0

tp

p!

( ∞∑

q=1

1
q!
kq
)p

. (3.4)

This is a rational solution case, since λii = 2, 1≤ i≤N .

Special eigenfunctions yielding solitons. We start from the same eigenfunctions

φ+(n, t)= ekn+tek + e−kn+te−k = 2et coshk cosh(kn+ t sinhk),

φ−(n, t)= ekn+tek − e−kn+te−k = 2et sinhk cosh(kn+ t sinhk),
(3.5)

which solve

φ(n+ 1, t) +φ(n− 1, t)= 2(coshk)φ(n, t),
(
φ(n, t)

)
t = φ(n+ δ, t). (3.6)

Computing derivatives of the above system with the parameter k leads to a set of eigen-
functions as follows:

bi(n, t)= ∂i−1
k φ(n, t), 1≤ i≤N , (3.7)

which satisfies

bi(n+ 1, t) + bi(n− 1, t)=
i∑

j=1

λi jbj(n, t),
(
bi(n, t)

)
t = bi(n+ δ, t), (3.8)

where 1 ≤ i ≤ N and λi j = 2( i−1
j−1 )(∂i− jk coshk ). This is a soliton case if k �= 0, since λii =

2coshk, 1≤ i≤N .

Examples of mixed rational-soliton solutions. Mixed rational-soliton solutions can now
be computed, for example, by

τn = Cas
(
e±ta1, . . . , e±tap,b1, . . . ,bN−p

)
. (3.9)

In particular (in the case of φ+), we have

τn = Cas
(
e−ta1,b1

)= 4et coshk{cosh
[
k(n+ 1) + t sinhk

]− cosh(kn+ t sinhk)
}

,

τn = Cas
(
e−ta1,e−ta2,b1

)

= 4et coshk{2(n+ t+ 1)cosh
[
k(n+ 2) + t sinhk

]

− 4(2n+ 2t+ 1)cosh
[
k(n+ 1) + t sinhk

]

+ (2n+ 2t+ 3)cosh(kn+ t sinhk)
}
.

(3.10)
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Figure 3.1. 3D and density plots of an.
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Figure 3.2. 3D and density plots of bn.
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Figure 3.3. Contour plots of (a) an and (b) bn.

The solution from τn = Cas(e−ta1,b1) with k = 1 is depicted in Figures 3.1, 3.2, and 3.3,
and the solution from τn = Cas(e−ta1,e−ta2,b1) with k =−1 in Figures 3.4, 3.5, and 3.6.
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Figure 3.4. 3D and density plots of an.
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Figure 3.5. 3D and density plots of bn.
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Figure 3.6. Contour plots of (a) an and (b) bn.

4. Discussions

A careful analysis based on Theorems 2.1 and 2.2 can prove that the Jordan blocks of type
1 with λi =±2, |λi| > 2, and |λi| < 2 generate rational solutions, negatons, and positons,
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respectively; and that the Jordan blocks of type 2, which possess complex eigenvalues,
generate complexitons. Moreover, we can have another case of conditions on eigenfunc-
tions:

φi(n+ 1) +φi(n− 1)=
N∑

j=1

λi jφj(n),

(
φi(n, t)

)
t =

1
2
ζ
(
φi(n+ 1, t)−φi(n− 1, t)

)
,

(4.1)

where ζ =±1 and λi j are arbitrary constants. An analysis is left for future publication, on
this case of conditions and its representative system

φ(n+ 1, t) +φ(n− 1, t)= λφ(n, t) + f (n, t),

(
φ(n, t)

)
t =

1
2
φ(n+ 1, t)− 1

2
φ(n− 1, t),

(4.2)

where ( f (n, t))t = 1/2 f (n + 1, t)− (1/2) f (n− 1, t), which will lead to different mixed
rational-soliton solutions to the Toda lattice equation (1.1).

The above construction of mixed rational-soliton solutions is direct and much easier
than the existing approach by computing long-wave limits of soliton solutions [1, 6].
The basic idea can also be applied to other integrable lattice equations, for example, the
Volterra lattice equation:

u̇n = un
(
un+1−un−1

)
. (4.3)

The transformation of un = τn+2τn−1/τn+1τn puts the Volterra lattice equation into the
following bilinear form:

τ̇n+1τn− τn+1τ̇n− τn+2τn−1 + τn+1τn = 0. (4.4)

The Casorati determinant τn = Cas(φ1, . . . ,φN ) solves this equation if

φi(n+ 1, t) +φi(n− 1, t)=
N∑

j=1

λi jφj(n, t),
(
φi(n, t)

)
t = φi(n+ 2, t), (4.5)

where 1 ≤ i ≤ N and λi j are arbitrary constants. Therefore, this allows us to construct
Casoratian solutions to the Volterra lattice equation in a simple and direct way. The details
of constructing Casoratian solutions will be published elsewhere.
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MODELLING THE EFFECT OF SURGICAL STRESS
AND BACTERIAL GROWTH IN HUMAN CORNEA

D. ROY MAHAPATRA AND R. V. N. MELNIK

This paper reports a mathematical model and finite-element simulation of the dynamic
piezoelectricity in human cornea including the effect of dehydration and stress generated
due to incision and bacterial growth. A constitutive model is proposed for the numeri-
cal characterization of cornea based on the available experimental data. The constitutive
model is then employed to derive the conservation law for the dynamic piezoelectric-
ity supplemented by the time-dependent equation for the electromagnetic field. The re-
sulting system of partial differential equations is solved numerically with finite-element
methodology. Numerical results presented here demonstrate promising applications of
the developed model in aiding refractive surgery and a better understanding of regenera-
tive processes in cornea.

Copyright © 2006 D. R. Mahapatra and R. V. N. Melnik. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Cornea is one of the most delicate and active tissue systems in human and several other
species. Any major change in the equilibrium stress in the sclera and cornea due to in-
cision, excessive swelling, and bacterial growth can cause deterioration of the refractive
performance of the cornea. Cornea consists of a complex architecture of the collagen fib-
rils dispersed in the matrix containing proteoglycans. The anisotropic structure of this
composite system is distributed over the stromal layer. Computer models for surgical aid
in the past had been developed, these models neglected the effect of complex tissue archi-
tecture and the resulting constitutive behavior in the long-term tissue remodelling. The
role of these factors in context of surgical procedures has been brought into focus only
recently and mathematical model has been proposed (see [6]).

Apart from the collagen orientation-dependent anisotropy in cornea, it may be noted
that the dynamic nature of the refractive property, which is very little understood in the
case of cornea as compared to the sclera, is dependent on the electrical permittivity,

Hindawi Publishing Corporation
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magnetic permeability, and the piezoelectric constants of the cell-matrix composition.
Complication arises because of the piezoelectricity of collagen tissue. Mechanics of colla-
gen tissue in corneal fibroblast has been studied extensively by several researchers. Petroll
et al. [5] studied the correlation between the movement of cell-matrix adhesion sites
and the force generation in corneal fibroblasts. A detailed discussion of the mechanism
of cell-regulated collagen tissue remodelling in stromal fibroblasts can be found in the
work of Girard et al. [3]. The experimental studies indicate a strong influence of stress-
induced charge transport on the site-specific remodelling of the collagen structure in
cornea. The resulting piezoelectricity is due to anisotropy of the collagen lattice [2, 8]. In
cornea, stroma is the basic collagen fibril structure over which the extrafibrilar matrix is
found with significant anisotropy. The cell-matrix adhesion is mainly controlled by the
cross-linking agent (proteoglycans) which are negatively charged. The complex structure
transforms or breaks down due to change in the concentration of H2O. Thus, the state
of hydration and the anisotropy of collagen fibrils are two interlinked and important fac-
tors that affect the piezoelectric property and hence the long-term tissue remodelling in
cornea under various environmental and surgical conditions. As a fundamental cause
of piezoelectricity, the structural transformation in collagen during dehydration was re-
ported by Pratzl and Daxer [7]. Although mathematical models for characterizing the
collagen structure, as observed in the X-ray diffraction results, have been reported re-
cently by Pinsky et al. [6], not many mathematical modelling studies are found in the
literature which can be applied to characterize the influence of piezoelectricity on the
delicate dynamic activity in cornea. Furthermore, it is highly desirable to incorporate the
residual stress generation into new mathematical models when analyzing the bacterial
growth-induced effects on the cornea.

Experimental studies of the influence of the directional effect of the collagen structure
in human cornea have been carried out in the work of Jayasuriya et al. [4]. These stud-
ies show a significant influence of the orientation of the collagen fibers on the stiffness
and the piezoelectric coefficients of the cell-matrix composition. Furthermore, the stiff-
ness increases and the piezoelectric constants decrease as functions of the dehydration
over time. Although the related experimental investigations involve specially prepared
laboratory samples, in which the mechanical states of stress and deformation are already
changed compared to that in living cornea, they essentially describe the long-term behav-
ior of the mechanical and piezoelectric properties. Also, the anisotropic collagen structure
in three dimensions is difficult to characterize experimentally and one can obtain only the
correlated response using optical and X-ray measurements. Because of the above com-
plexities, in order to provide a detailed characterization of the collagen structure and the
resulting piezoelectricity, one requires comprehensive mathematical models that incor-
porate the important effects such as the anisotropy, the dehydration, and the small-scale
dynamics of the cell-matrix adhesion.

In the present paper, we develop a mathematical model for the dynamic piezoelec-
tricity of the corneal membrane and analyze the electric polarization of the composi-
tion due to circumferential stresses produced by bacterial growth or incision. The experi-
mentally measured mechanical and piezoelectric properties reported in the work of Jaya-
suriya et al. [4] are used to construct the constitutive model. A mechanism of long-term
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Figure 2.1. Schematic representation of (a) cornea model geometry and (b) angular orientation of
the samples used in measuring the directional properties.

dehydration based on the experimental observations is included in the model. Coupling
between the elastodynamics and the electromagnetics is dealt with in a systematic man-
ner. A phenomenological approach to introduce the bacterial and antibiotic stress is dis-
cussed. Numerical results on the effect of circumferential stress is reported.

2. Constitutive model

Electromechanical characterization of the cornea tissue properties generally involves
static and dynamic testing of samples with controlled state of dehydration and different
cut angles (θ) from the cornea as schematically shown in Figure 2.1. In the published liter-
ature, some results on the corneal tissue invasive measurements are available, for example
[4]. Such measurements are made by taking into consideration the effect of the cut angle
θ on the anisotropic constitutive relation. They provide further insight into orthotropic
properties (stiffness and piezoelectric constants) in the plane (x, y) assuming “no out-
of-the-plane curvature.” However, the collagen structure in various layers in the stroma
and the type of anisotropy of the extrafibrilar structure are different. An experimental
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electromechanical characterization of these differences would involve multiaxially con-
trolled measurements which are not available at present in the published literature. Also,
the site-dependence of the piezoelectric properties is most likely influenced by the pres-
ence of fibroblasts and cell-regulated processes. This would make the constitutive model
dependent on the high-angle X-ray data (see discussions in [6]) that reveals the struc-
tural details as some function of (x, y,z), z ∈ [hi,h0], where hi and h0 stand for the inner
and the outer surfaces, respectively. However, at present, due to the lack of experimental
data, we have not included such details in the developed mathematical model. Another
important aspect is the variation of the electromechanical properties as functions of de-
hydration over time. In our proposed constitutive model, we introduce these details at
the extent available from experimental observations.

Here, we first introduce a general mathematical setting for our problem. First we de-
fine the Cartesian components of stress (σ), strain (ε), electric charge displacement (D),
electric field intensity (E), magnetic flux (B), and the magnetic field intensity (H) in
(x, y,z). The general objective is to construct a constitutive model

σ = cε−σ p(E), (2.1a)

D = εE+P(ε), (2.1b)

B = μH +μ0M(ε), (2.1c)

where c is the stiffness, σ p is the electric polarization induced stress, ε is the dielectric per-
mittivity, P is the electrical polarization vector due to transformation and deformation
of the macromolecular structure, μ is the magnetic permeability, and M is the magnetic
polarization vector due to molecular spin. Splitting the total charge density ρtotal and the
total conduction current J total as

ρtotal = ρc + ρp, J total = J + J p + Jm, (2.2)

where ρc is the true charge density, ρp is the bound charge density, J is the true conduction
current, J p is the conduction current due to bound charge, Jm is the molecular current
density, we have the local conservation laws:

∇·P =−ρp, ∇×M = Jm, (2.3)

and the local continuity condition

∇· J p =−ρ̇p. (2.4)

In order to characterize the constitutive mechanism that is likely to influence the refrac-
tive property most significantly, we consider the horizontal (θ = 0), the vertical (θ = 90◦),
and the diagonal (θ = 45◦) cuts as discussed in [4]. Dynamics of the horizontal cut sample
involves (σxx,Ez) so that the longitudinal stiffness is obtained as

c11 = c0
11e

t/τ1 , τ1 > 0, (2.5a)



D. R. Mahapatra and R. V. N. Melnik 725

and the piezoelectric coefficient under transverse electric polarization is obtained as

d31 = d0
31e

t/τ′1 , τ′1 > 0, (2.5b)

where the superscript 0 indicates the corresponding quantities at some initial state at time
(t = t0) and τn, τ′n (with n = 1,2, . . .) are the time constants that are estimated from the
time-resolved measurements of the corresponding quantities. Similarly, for the vertical
cut, which involves (σyy ,Ez), one can write

c22 = c0
22e

t/τ2 , τ2 > 0, (2.6a)

d32 = d0
32e

t/τ′2 , τ′2 > 0. (2.6b)

With simple assumptions of aligned collagen fibers undergoing transverse electric polar-
ization in the diagonal cut, which involves measurements in the transformed coordinate
system (r,s,z) (see Figure 2.1), it is reasonable to write

σrr = crrεrr −d3rEz, (2.7a)

crr = c0
rre
−t/τ3 , τ3 > 0, (2.7b)

d3r = d0
3re
−t/τ′3 , τ′3 > 0, (2.7c)

where

σrr = σxx cos2 θ + σyy sin2 θ− 2σxy sinθ cosθ, (2.7d)

σtt = 0= σxx sin2 θ− σyy cos2 θ− 2σxy sinθ cosθ, (2.7e)

so that the orientation-dependent properties are obtained from experiments as

c12 = (crr − c11)cot2 θ, c21 = (crr − c22) tan2 θ, (2.7f)

d36 = d3r −d31 cos2 θ−d32 sin2 θ

2sinθ cosθ
. (2.7g)

Note that the properties estimated in this method are the effective properties of the com-
position. The underlying mechanism of viscopiezoelasticity may be postulated as follows.
Let us consider a representative volume element (RVE) of the cell-matrix composition
and assume that the volume fraction (vh) of the fluid phase is governed by a convection-
diffusion process and can be expressed as

vh = v0
he
−t/τ0 (2.8)

and the piezoelectricity is only due to the structural transformation of the collagen fibers.
Then the true charge density can be approximated as

ρc = vheh, (2.9)
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where eh is the specific electric dipole. Equation (2.1a) takes the form

σ = [vhch +
(
1− vh

)
c f
][

1−αb(t)
]
ε− (1− vh

)
e f E, (2.10)

where ch is the stiffness of the fluid phase, c f is the stiffness of the oriented collagen fiber,
e f = e denotes the electromechanical coupling coefficient matrix due to piezoelectricity
in the collagen fibers. Here we introduce the influence of the bacterial growth in the
stress generation through the bacterial concentration b(t), where α denotes the volume
occupied by the bacterial cells within the RVE. Equation (2.1b) takes the form

D = [vhεh +
(
1− vh

)
ε f
]
E+

(
1− vh

)
eTε+ ε0χ

(
ωj
)
E, (2.11)

where ε0 is the dielectric constant of air, εh and ε f are, respectively, the electric permit-
tivity for fluid phase and the collagen fibers, χ(ωj) is the electric susceptibility due to the
potentially active macromolecules if present in the RVE with resonant frequencies ωj .
Setting M = 0 in (2.1c) leads to B = μH . In our numerical simulation, we drop the above
molecular susceptibility term due to unavailability of experimental data. To this end, we
further simplify the general anisotropic nature of the constitutive model by neglecting
certain elastic constants and certain electromechanical coupling terms, which gives fi-
nally the constitutive equations in the following matrix-vector form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
σyz
σzx
σxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 c16

c21 c22 c23 0 0 c26

c31 c32 c33 0 0 c36

0 0 0 c44 c45 0
0 0 0 c54 c55 0
c16 c26 c36 0 0 c66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
εyz
εzx
εxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

−
⎡

⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
e31 e32 e33 0 0 e36

⎤

⎥
⎦

T ⎧
⎪⎨

⎪⎩

Ex
Ey
Ez

⎫
⎪⎬

⎪⎭
,

(2.12)

where

ei j = cjkdik (2.13)

with Einstein’s summation in tensorial index k. Having obtained an explicit form of the
constitutive model, the electromechanical conservation equations are derived in the next
section.

In context of (2.10) and (2.11), note that we have introduced the effect of bacterial
cells or antibiotic agents through the variable b(t). For simplicity, it is assumed here that
these external agents do not alter the electrical polarization properties of the macro-
molecules responsible for piezoelectricity. However, such an assumption may not hold
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in real situations and a more detailed model may need to be developed in such cases. On
the other hand, introduction of the variable b(t) can also be useful in analyzing the long-
term remodelling of site-specific collagen structure. The associated evolution law can be
written as

∂b

∂t
=∇(�(b)∇b)+βndb−μdb, (2.14)

where the first term in the right-hand side represents the remodelling mechanism of bac-
terial cell movement with �(b)=�0bk, k > 0, and �0 constants. The second term repre-
sents the dosimetric effect, that is, consumption of nutrients with concentration nd(x, t)
and β a nutrient-cell conversion factor. The third term represents formation of stationary
cell-tissue structure. A detailed experimental observation of bacterial growth in chemi-
cally inert environment based on the above evolution law can be found in [1]. Since not
much detailed information related to corneal collagen growth or dosimetric parameters
is available, in the present study we do not couple (2.14) in the computational model, but
assume various spatiotemporal states of b in (2.10) with the following distribution:

b(r,θ, t)= α′(t)e−k′(R−r)
[

1−α′′e−k′′(θ2−θ2
0 )
]

, (2.15)

where (r,θ) are the polar coordinates in the projected plane, R is the radius of the corneal
anterior on the projected plane, θ0 is the angular orientation of the active site, α′(t) is
prescribed at a given time assuming a different time scale for growth as compared to the
dehydration, and k′, α′′, k′′ are constants.

3. Dynamic piezoelectricity

The momentum conservation equation is derived in the usual manner, which is given by

ρ
∂2u

∂t2
−∇ · (c∇u)= f (∇E), (3.1)

where the effective mass density is

ρ = vhρh +
(
1− vh

)
ρ f , (3.2)

and the components of the right-hand electrical source term are written as

fx =−e31
∂Ez
∂x
− e36

∂Ez
∂y

, fy =−e36
∂Ez
∂x
− e32

∂Ez
∂y

, fz =−e33
∂Ez
∂y

. (3.3a)

We note that f is a function of only the transverse electric field Ez. This is due to the par-
ticular form of electromechanical coupling assumed in (2.12). For practical applications,
this is a reasonably simple type of electromechanical coupling, yet an important one to
analyze the direct influence of piezoelectricity on the refraction of incident ray Ez → E⊥ at
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the outer surface z = ho, with the constitutive model defined in (x, y,z) and transformed
to (x, y,z⊥), where the subscript⊥ denotes the outer surface normal. In the finite-element
computations that follow, the deformations at the surfaces and at the annular base (see
Figure 2.1) have to satisfy the appropriate boundary conditions in a weak sense.

The transverse electric field in (3.3a) has to satisfy Maxwell’s equations for the electro-
magnetic field:

∇×E =−Ḃ, (3.4a)

∇×H = Ḋ+ σcE+ J , (3.4b)

∇·D = ρc, (3.4c)

∇·B = 0, (3.4d)

where σc is the effective conductivity of the RVE. The associated general impedance
boundary conditions (GIBCs) are

n× (E−E⊥
)=−J sm, n× (H −H‖

)= J s (3.5a)

at surfaces z⊥ = ho, hi, and

n ·D = ρs, n ·B = 0 (3.5b)

at the annular base near the corneal anterior and scleral interface with ρs as the surface
charge, n is the unit outward surface normal.

By using the constitutive model derived in Section 2, Maxwell’s equations in (3.4a)–
(3.4d) are combined into the following system of coupled hyperbolic equations:

με
∂2E

∂t2
+ σcμ

∂E

∂t
−∇2E+μeT

∂2ε

∂t2
−ε−1∇∇ · (eTε)= ε−1∇ρc +μJ̇ , (3.6a)

με
∂2H

∂t2
+ σcμ

∂H

∂t
−∇2H −∇×

(

eT
∂ε

∂t

)

=−∇× J , (3.6b)

where the right-hand-side terms in (3.6a)-(3.6b) are governed by the equation of the
conduction of true charge, that is,

∇ · J =−ρc. (3.7)

In the finite-element simulations reported next, we have omitted the conduction part,
for the sake of simplicity, while analyzing the direct piezoelectric effect. Due to this
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simplification, we finally have

με
∂2E

∂t2
+ σcμ

∂E

∂t
−∇2E = gE

(
∂tt,∇,ε

)
, (3.8a)

με
∂2H

∂t2
+ σcμ

∂H

∂t
−∇2H = gH

(
∂t,∇,ε

)
, (3.8b)

where the components of the right-hand-side source terms, which are coupled with (3.1),
are given by

gEx = ε−1
11

∂2P̄

∂x∂z
, gEy = ε−1

22
∂2P̄

∂y∂z
, gEz = ε−1

33
∂2P̄

∂2z
−μ33

∂2P̄

∂t2
, (3.9a)

gHx =
∂2P̄

∂y∂t
, gHy =−

∂2P̄

∂x∂t
, gHz = 0, (3.9b)

and P̄ is the effective polarization (a scalar quantity) due to piezoelectricity, which is given
by

P̄ = e31εxx + e32εyy + e33εzz + e36εxy. (3.10)

We solve the coupled system of hyperbolic equations (3.1), (3.8a), and (3.8b), supple-
mented by associated boundary conditions in {u,E,H} by using a three-dimensional
finite-element discretization of the domain shown in Figure 2.1(a). COMSOL has been
used for the solution where the constitutive model and the coupled system of equations
have been implemented with the boundary conditions as weak constraints. Tetrahedral
Lagrangian finite-elements and the second-order accurate time-stepping scheme have
been used for computation.

4. Results and discussions

For numerical simulations, we consider a model of (x, y) cut of the corneal section as
shown in Figure 2.1(a). It contains most of the usual geometric features with inner radius
5.685 mm and outer radius 7.259 mm. The conic-angle at the focal point is assumed to
be 2× 59.434◦ with hi = 2.794 mm, h0−hi = 0.449 mm at (x, y)= (0,0). Thickness at the
annular base is assumed to be 1.574 mm. A 100 Hz harmonic shear stress with amplitude
of 10 MPa is applied at the base along x. A residual stress pattern over a circumferential
arc segment can also be used to study the effect of incision. Figures 4.1(a) and 4.1(b), re-
spectively, show the deformation contours without any circumferential activity and with
bacterial growth, αα′ = 0.1, k′ = 10/R, α′′ = 0. The contour of transverse electric field in
Figure 4.2 reveals the possible regions of refractive property modification as under the
deformation pattern shown in Figure 4.1(b). Attention has been paid to avoid the spuri-
ous effect due to mesh discretization error. The results presented here have been obtained
for a refined mesh with 11987 tetrahedral elements and nonuniform time-stepping set by
the direct nonsymmetric sparse matrix solver used. It can be seen from Figure 4.1(b) that
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Figure 4.1. Deformation contours (
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Figure 4.2. Sliced contour of transverse electric field E3.

the residual stress at the circumferences due to bacterial growth (or incision) significantly
alters the deformation profile and this observation is in close agreement with the studies
reported in [6]. Further detailed analysis of the realistic situation of tunneling incision
and astigmatism will be studied based on the present model in future research.
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PURELY VECTOR GROUND STATE FOR A NONLINEAR
NONAUTONOMOUS SCHRÖDINGER SYSTEM
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Existence of a positive purely vector ground state solution is established, via variational
methods, for a nonautonomous system of weakly coupled nonlinear Schrödinger equa-
tions.

Copyright © 2006 Liliane de Almeida Maia et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

This paper is concerned with the existence of nontrivial solutions and among them,
ground state solutions for systems of coupled nonlinear Schrödinger equations. Such sys-
tems arise in several branches of mathematical physics, in particular in describing the
interaction between waves of different frequencies and also the interaction between or-
thogonally polarized components in nonlinear optical fibers (see [6, 13]). After perform-
ing suitable simplifications and variable rescaling, such models are written as systems of
partial differential equations of the form

iφt +φxx +
(|φ|2 + b|ψ|2)φ= 0,

iψt +ψxx +
(|ψ|2 + b|φ|2)ψ = 0,

(1.1)

where φ and ψ represent the complex amplitudes of two-wave packets and b is a real-
valued cross-phase modulation coefficient. Looking for standing wave solutions of (1.1),
that is, solutions of the form

φ(x, t)= eiω2
1tu(x), ψ(x, t)= eiω2

2tv(x), (1.2)

and performing a rescaling of variables, one obtains that u and v satisfy the following
system:

−uxx +u= |u|2u+ b|v|2u in R, −vxx +ω2v = |v|2v+ b|u|2v in R, (1.3)

where ω2 = ω2
2/ω

2
1. The existence of vector solitary waves (1.2) as solutions to (1.1) has

been investigated by theoretical and numerical means, as reviewed in [13]. If b = 0, in

Hindawi Publishing Corporation
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734 Purely vector ground state

(1.3) are two copies of a single nonlinear Schrödinger equations which is integrable; when
b = 1, (1.3) is known as the Manakov system (see [11]) which is also integrable. Our pur-
pose here is to consider the following nonautonomous weakly coupled nonlinear elliptic
system which generalizes (1.3):

−Δu+u= |u|2q−2u+ b(x)|v|q|u|q−2u in RN ,

−Δv+ω2v = |v|2q−2v+ b(x)|u|q|v|q−2v in RN .
(1.4)

This nonlinear Schrödinger system has the same peculiarities of (1.3). Indeed, also for
(1.4) there exist scalar solutions (u0,0) or (0,v0) where u0 and v0 are the unique positive
radial solutions (see [3]), respectively, of the following equations:

−Δu+u= |u|2q−2u, −Δv+ω2v = |v|2q−2v in RN . (1.5)

Brezis and Lieb in [4] proved the existence of a solution (u,v)�= (0,0) for a general class
of autonomous systems which contains (1.4) as a particular case, when b is constant.
Furthermore, they have shown that, among the nontrivial solutions, there is one that
minimizes the associated action. A more general system of (1.4) with b constant has been
also studied in [7], again by concentration compactness arguments, and the study proved
the existence and the regularity of a ground state solution (u,v)�= (0,0).

In [10] we showed that for b constant and sufficiently large, the ground state solution
of (1.4) is a vector solution (u,v) with both components u and v strictly positive. As far
as we know ours is one of the first results on necessary and sufficient conditions that pro-
vides a vector minimal action solution for this problem (see also [1] for related results).
Our main aim here is to search for a purely vector solitary wave for the nonautonomous
system (1.4), that is, a solution (u,v) with both u, v nontrivial.

We consider the nonautonomous system (1.4) where b is a positive funcion of the
variable x and we apply variational methods to obtain a nontrivial least action solution
(see Theorem 3.1). A main difficulty in treating the nonautonomous problem inRN is the
possible lack of compactness. Working under appropriate restrictions on the function b
at infinity, we are able to prove that the associated functional in fact satisfies Palais-Smale
condition and to recover some compactness for the problem. We may again find solutions
which are positive in both components and of minimal action, using some comparison
argument with the autonomous problem at infinity.

The paper is organized as follows. In Section 2 we state the definitions and preliminary
results and recall our main results for the autonomous system. In Section 3 we give the
proofs of our existence results for the nonautonomous problem.

2. Preliminary results

In order to find a solution of problem (1.4) we will use variational methods. Therefore,
we consider the following Hilbert space:

E =H1(RN
)×Eω, ‖w‖2

E =
∥
∥(u,v)

∥
∥2
E = ‖u‖2 +‖v‖2

ω,

Eω =H1(RN
)

with (v | v)ω = ‖v‖2
ω = ‖∇v‖2

2 +ω2‖v‖2
2,

(2.1)
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where ‖ · ‖ stands for the norm in H1(RN ), ‖ · ‖p denotes the standard norm in Lp(RN )
and ‖(·,·)‖p = (‖ · ‖pp +‖ · ‖pp)1/p is the norm of a vector in Lp(RN )×Lp(RN ).

Let us consider a measurable function b :RN →R, such that the following hypothesis
is satisfied:

b = b1 + b2 ∈ L∞
(
RN

)
+Lm

(
RN

)
with m= N

N − q(N − 2)
, b ≥ 0, b �≡ 0, (2.2)

and let us define the functional I : E→R by

I(u,v)= 1
2

∥
∥(u,v)

∥
∥2
E−

1
2q

∥
∥(u,v)

∥
∥2q

2q−
1
q

∫

RN
b(x)|u|q|v|q, (2.3)

where ω is a constant and q is such that

2 < 2q < 2∗ =
⎧
⎪⎨

⎪⎩

+∞ if N = 1,2,

2N
N − 2

if N ≥ 3.
(2.4)

First notice that hypotheses (2.4) and (2.2) imply that I is of class C1, so that its differ-
ential is given by

〈
I′(u,v),(ϕ,ψ)

〉= (u | φ) + (v | ψ)w −
∫

RN

[|u|2q−2uϕ+ |v|2q−2vψ
]

−
∫

RN
b(x)

[|v|q|u|q−2uϕ+ |u|q|v|q−2vψ
]
.

(2.5)

Hence, the critical points of I in E are the weak solutions of (1.4) and by standard regu-
larity theory are, in fact, classical solutions.

Moreover, we can define the Nehari manifold

� := {w ∈ E \ {0} :
〈
I′(w),w

〉= 0
}
. (2.6)

We have proved the following results in [10] for system (1.4) with b > 0 constant.

Theorem 2.1. Assume (2.4). Then, for every constant b > 0 there exists a least energy solu-
tion (ground state) w = (u,v)�= (0,0) of problem (1.4), with u≥ 0, v ≥ 0, and both u and v
radial.

Theorem 2.2. Assume (2.4) and suppose that

b ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
f (ω)− 1 if ω ≥ 1,

1
2
f (1/ω)− 1 if ω ≤ 1,

(2.7)

where

f (ω)=
[

1 +
N

2

(

1− 1
q

)

+
1
ω2

(

1− N

2

(

1− 1
q

))]q
ω2q−N(q−1). (2.8)

Then there exists a least energy solution w = (u,v) with u > 0 and v > 0.
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In order to work out those results we have defined

c� := inf
�
I(w), (2.9)

c1 := inf
w∈E\{0}

max
t≥0

I(tw), (2.10)

c := inf
Γ

max
[0,1]

I
(
γ(t)

)
, (2.11)

where

Γ= {γ : [0,1]−→ E, γ is continuous and γ(0)= 0, I
(
γ(1)

)
< 0
}
. (2.12)

Moreover, for any w = (u,v)∈ E \ {0} and t > 0, let

g(t) := I(tw)= I((tu, tv)
)
, (2.13)

then there exists t = t(w) > 0 such that

g(t)=max
t>0

g(t), (2.14)

and every positive critical point t of g satisfies the following equation:

∥
∥(u,v)

∥
∥2
E− t2q−2

[
∥
∥(u,v)

∥
∥2q

2q + 2
∫

RN
b(x)|u|q|v|q

]

= 0, (2.15)

so that, as q > 1, the point t = t(w) is the unique value of t > 0 at which t(w)w ∈�.
The following result is proved in [12] for functionals associated to a single equation

and in [10] for the system.

Lemma 2.3. One has c� = c1 = c.
In order to find a solution (u,v) with u≥ 0 and v ≥ 0, the following result was used.

Lemma 2.4. Let w ∈� and I(w)= c, where c is defined in (2.11). Then, w is a critical point
of I .

3. Nonautonomous systems

In this section the nonautonomous system will be studied.

−Δu+u= |u|2q−2u+ b(x)|v|q|u|q−2u in RN ,

−Δv+ω2v = |v|2q−2v+ b(x)|u|q|v|q−2v in RN ,

u,v ∈H1(RN
)
,

(3.1)

where q satisfies (2.4). We will consider a general function b(x), and we will prove the
counterpart of Theorem 2.2 for the nonautonomous case. More precisely, we will show
that there exists a least energy solution with both nontrivial components under suitable
hypotheses on b (see Theorem 3.1).
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Theorem 3.1. Assume (2.4), (2.2). Moreover, suppose that the following conditions are sat-
isfied.

There exists

lim
|x|→∞

b1(x)=: b∞ > 0, (3.2)

b(x) > b∞. (3.3)

Then, the following conclusions hold.
(i) There exists a least energy solution w = (u,v)�≡ (0,0) of (3.1), with u≥ 0, v ≥ 0.

(ii) If b∞ satisfies (2.7), then u > 0 and v > 0.

In order to prove Theorem 3.1 we will show that Palais-Smale condition holds at some
suitable level for the functional (2.3). Let us first give some notions we will use in the
sequel. We define the functional I∞ : E→R by

I∞(u,v)= 1
2

∥
∥(u,v)

∥
∥2
E−

1
2q

∥
∥(u,v)

∥
∥2q

2q−
b∞
q
‖uv‖qq. (3.4)

Moreover, denoting by �∞ the Nehari manifold associated to I∞, we set

c∞ = inf
�∞

I∞(u,v). (3.5)

We can now state a compactness result.

Lemma 3.2. Assume (2.4), (2.2), and (3.2). Then, Palais-Smale condition holds at every
level c such that

c < c∞. (3.6)

Proof. Let us take (un,vn) a Palais-Smale sequence, that is, a sequence wn = (un,vn) such
that

I
(
wn
)−→ c, (3.7)

I′
(
wn
)−→ 0 strongly in E′. (3.8)

By arguing as in the proof of Theorem 2.2 and taking into account (2.2) we get that
there exists (u,v) such that

(
un,vn

)
⇀ (u,v) weakly in E,

(
un,vn

)−→ (u,v) strongly in L
p
loc(RN )×Lploc(RN )∀ p ∈ [1,2∗),

(
un,vn

)−→ (u,v) almost everywhere in RN

(3.9)

are satisfied. Then (u,v) is a weak solution of problem (3.1).



738 Purely vector ground state

In order to prove that (u,v)�= (0,0), we will show the strong convergence of (un,vn) in
E following the argument in [9]. There are only two possibilities for (un,vn):

(a) for every δ > 0, there exists R > 0, such that for every n > R, it holds

∫

|x|≥R

∣
∣∇un

∣
∣2

+
∣
∣un

∣
∣2

+
∣
∣∇vn

∣
∣2

+ω2
∣
∣vn

∣
∣2
< δ; (3.10)

(b) there exists δ0, such that for every R > 0, there exists n= n(R)≥ R with

∫

|x|≥R

∣
∣∇un

∣
∣2

+
∣
∣un

∣
∣2

+
∣
∣∇vn

∣
∣2

+ω2
∣
∣vn

∣
∣2 ≥ δ0. (3.11)

Case (a) corresponds to the case in which we can recover some compactness. Indeed,
if (a) holds, it results in

lim
n→∞

∫

RN

∣
∣b(x)

(∣
∣unvn

∣
∣q−|uv|q)∣∣= 0. (3.12)

Indeed, Young and Sobolev inequalities and (3.10) yield

lim
n→∞

∫

RN

∣
∣b(x)

(∣
∣unvn

∣
∣q−|uv|q)∣∣≤ cδ + lim

n→∞

∫

{|x|<R}

∣
∣b(x)

(∣
∣unvn

∣
∣q−|uv|q)∣∣,

(3.13)

so that (3.12) follows from (2.4), (2.2), and from the arbitrariness of δ. In an analogous
way it is possible to prove that (un,vn)→ (u,v) strongly in L2q(RN )×L2q(RN ). These facts
and (3.8) imply that (un,vn)→ (u,v) in E.

Let us now rule out case (b). For every ε > 0, we can fix R0 such that

∫

|x|≥R0

|∇u|2 + |u|2 + |∇v|2 +ω2|v|2 < ε,
[∫

|x|≥R0

∣
∣b2(x)

∣
∣m
]1/m

< ε,

b1(x)≤ b∞ + ε for |x| ≥ R0.

(3.14)

If case (b) occurs, we can construct a subsequence (unk ,vnk ) and we find R > R0 such
that (see [9] for more details)

∫

|x|≥R

∣
∣∇unk

∣
∣2

+
∣
∣unk

∣
∣2

+
∣
∣∇vnk

∣
∣2

+ω2
∣
∣vnk

∣
∣2
> δ0, (3.15)

∫

{R≤|x|<R+1}

∣
∣∇unk

∣
∣2

+
∣
∣unk

∣
∣2

+
∣
∣∇vnk

∣
∣2

+ω2
∣
∣vnk

∣
∣2
< ε. (3.16)
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Next, we take a cutoff function ρ∈ C∞c (RN ) such that

ρ(x)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, |x| ≤ R,

0, |x| ≥ R+ 1,

0,≤ ρ≤ 1, R≤ |x| ≤ R+ 1,

|∇ρ| ≤ 2, ∀x ∈RN , (3.17)

and we set

uk = ρ(x)unk , vk = ρ(x)vnk ,

uk =
(
1− ρ(x)

)
unk , vk =

(
1− ρ(x)

)
vnk .

(3.18)

By applying (3.8), and by using (2.2), (3.16), and Sobolev inequality we obtain

o(1)= 〈I′(unk ,vnk
)
,
(
uk,vk

)〉

= ∥∥(uk,vk
)∥
∥2
E−

∥
∥
(
uk,vk

)∥
∥2q

2q− 2
∫

RN
b1(x)

∣
∣uk

∣
∣q
∣
∣vk

∣
∣q

− 2
∫

{|x|>R}
b2(x)

(∣
∣unk

∣
∣q−2

unkuk
∣
∣vnk

∣
∣q +

∣
∣vnk

∣
∣q−2

vnkvk
∣
∣unk

∣
∣q
)

+O(ε),

(3.19)

where o(1) is a quantity that tends to zero as k→∞ and O(ε) is a quantity that tends to
zero as ε→ 0. Since R > R0, from (3.14) one obtains

∥
∥
(
uk,vk

)∥
∥2 = ∥∥(uk,vk

)∥
∥2q

2q + 2
∫

RN
b1(x)

∣
∣uk

∣
∣q
∣
∣vk

∣
∣q +O(ε) + o(1). (3.20)

If we take (uk,vk) as test function in (3.8) and argue in an analogous way, we deduce

∥
∥
(
uk,vk

)∥
∥2 = ∥∥(uk,vk

)∥
∥2q

2q + 2
∫

RN
b(x)

∣
∣uk

∣
∣q
∣
∣vk

∣
∣q +O(ε) + o(1) (3.21)

which, together with (2.4), yields

I
(
uk,vk

)= 1
2

(

1− 1
q

)
∥
∥
(
uk,vk

)∥
∥2

+O(ε) + o(1)≥O(ε) + o(1). (3.22)

Moreover, we take into account (2.2), (3.16), and (3.18) in (3.7) we obtain

c+ o(1)= I(unk ,vnk
)= I(uk,vk

)
+ I
(
uk,vk

)
+O(ε). (3.23)
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Let t(uk,vk) be the unique positive real number such that I∞(t(uk,vk)(uk,vk)) =
max I∞(t(uk,vk)) then t(uk,vk) satisfies (2.15) for b ≡ b∞. From (2.15), (3.14), and (3.20)
we deduce the following estimate:

(
t
(
uk,vk

))2q−2 ≤ 1 +O(ε)
1

∥
∥uk

∥
∥2q

2q +
∥
∥vk

∥
∥2q

2q + 2b∞
∥
∥ukvk

∥
∥q
q

. (3.24)

On the other hand, (3.15) and (3.20) imply that for ε sufficiently small, the following
inequality holds:

∥
∥uk

∥
∥2q

2q +
∥
∥vk

∥
∥2q

2q + 2b∞
∥
∥ukvk

∥
∥q
q ≥

δ0

2
. (3.25)

When we use this inequality in (3.24), we get

t
(
uk,vk

)≤ 1 +C3ε. (3.26)

Since t(uk,vk)(uk,vk) belongs to �∞, (2.15), (3.20), (3.23), and (3.26) yield

c∞ ≤ I∞
(
t
(
uk,vk

)(
uk,vk

))≤ 1
2

(
1 +C4ε

)
(

1− 1
q

)
∥
∥
(
uk,vk

)∥
∥2
E

= I(uk,vk
)

+C5ε = I
(
unk ,vnk

)− I(uk,vk
)

+O(ε).

(3.27)

The last inequality together with (3.7) and (3.22) yields

c∞ ≤ c−O(ε), (3.28)

which contradicts (3.6). �

Remark 3.3. In order to prove Lemma 3.2, we can assume a weaker hypothesis. Indeed,
take b∞ a positive constant such that

b∞ ≥ limsup
|x|→∞

b1(x). (3.29)

Then, we can follow the same argument of the proof of Lemma 3.2 to deduce that Palais-
Smale condition holds at every level c < c∞.

Proof of Theorem 3.1. In order to prove (i) we apply [2, Mountain-Pass theorem]. Con-
sider the functional I : E→ R defined by (2.3). Let us first notice that we can follow a
standard argument in order to show that (0,0) is a strict local minimum of I , moreover,
(2.2) and (3.3) imply that

I(u,v) < I∞(u,v). (3.30)

Then we can prove that I(Tw) < 0 for every w in E and for T sufficiently large. We con-
sider Γ and c defined in (2.11), (2.12), respectively. In order to get the conclusion we only
have to show that c satisfies (3.6). Lemma 2.3 and (3.30) yield

c < inf
Γ

max
[0,1]

I∞
(
γ(t)

)= inf
�∞

I∞(w)= c∞, (3.31)
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so that (3.6) is satisfied, showing that there exists a solution (u,v)�= (0,0), with I(u,v)= c.
Moreover, we can apply Lemmas 2.3 and 2.4 in order to get that (u,v) is a least energy
solution and u, v ≥ 0.

Finally, if b∞ satisfies (2.7) we have that c∞ is strictly less than the energy level of the
solution (u0,0) and (0,v0), so that (3.31) implies that u�≡ 0 and v �≡ 0. �

Remark 3.4. Consider the following system:

−Δu+u= |u|2q−2u+ bR(x)|v|q|u|q−2u in RN ,

−Δv+ω2v = |v|2q−2v+ bR(x)|u|q|v|q−2v in RN ,

u,v ∈H1(RN
)
,

(3.32)

where q satisfies (2.4) and bR(x) = bη(R|x|), with b > 0 and η a smooth and radially
decreasing function such that η ≡ 1 in B(O,1), η ≡ 1/2 outside B(O,2).

Theorem 3.1 states that (3.32) possesses a least energy solution (uR,vR) �= (0,0) for
any R > 0, since the assumptions (3.2), (3.3) easily hold. Moreover we can state that the
solutions of the system are radial functions, because [5] implies that if uR and vR are
positive functions, then they are radially symmetric with respect to O ∈RN , otherwise if
uR = 0 (or vR = 0), then vR (uR, resp.) is a positive radial function by the results in [8].

Now it is easy to show that we can give an alternative proof of Theorem 2.1. Choose a
sequence Rn tending to +∞ and let (un,vn) be the corresponding least energy solution of
(3.32). We have a bounded sequence in H1(RN ), since, using the weak form of (3.32), it
holds that

1
4

∥
∥
(
un,vn

)∥
∥2
E = I

(
un,vn

)= cn < c∞. (3.33)

So we have a sequence of radial (and radially decreasing) functions in H1(RN ), this kind
of sequence is relatively compact in Lp(RN )× Lp(RN ), for any p ∈ (2,2∗), so passing to
the limit we obtain that its limit (u,v) is a critical point of I∞ (with b∞ = b), moreover the
fact that

1
4

∥
∥
(
u,v

)∥
∥2
E ≤ c∞ (3.34)

shows that the critical point is a least energy solution of (1.4).

Remark 3.5. Actually, we can prove a better result than Theorem 3.1. More precisely, (ii)
holds if b(x) is such that

1
∥
∥u0

∥
∥2

∫

RN
b(x)

∣
∣u0

∣
∣2q

>
2q−1

ω2q−N(q−1) − 1 if ω < 1,

1
∥
∥v0

∥
∥2
ω

∫

RN
b(x)

∣
∣v0

∣
∣2q

> 2q−1ω2q−N(q−1)− 1 if ω > 1,

(3.35)

where u0 and v0 are defined by (1.5), respectively. This result is presented in [10] by
another argument.
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Piazzale Aldo Moro 5, 00185 Roma, Italy
E-mail address: montefusco@mat.uniroma1.it

Benedetta Pellacci: Dipartimento di Scienze Applicate, Università degli Studi di Napoli, Parthenope,
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LIMIT CYCLES OF LIÉNARD SYSTEMS

M. AMAR AND Y. BOUATTIA

We calculate the amplitude and period of the limit cycle of the following classes of Liénard
equations by using the method of Lopez and Lopez-Ruiz: ẍ + ε(x2− 1)ẋ + x2n−1 = 0; ẍ +
ε(x2m − 1)ẋ + x2n−1 = 0; ẍ + ε(|x|n − 1)ẋ + sign(x) · |x|m = 0; ẍ + ε(x2m − 1)ẋ +
x1/(2n−1) = 0, where m,n∈N. We give numerical results.

Copyright © 2006 M. Amar and Y. Bouattia. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Limit-cycle behavior is observed in many physical and biological systems. The problem
of determining when a nonlinear dynamical system exhibits limit cycle has been of great
interest for more than a century. Limit cycles cannot occur in linear systems, conservative
systems, and gradient systems. The limit cycles are caused by nonlinearities. It was found
that many oscillatory circuits can be modeled by the Liénard equation

ẍ+ f (x)ẋ+ g(x)= 0, (1.1)

where

· = d

dt
. (1.2)

It can be interpreted mechanically as the equation of motion for a unit mass subject
to a nonlinear damping force − f (x)ẋ and a nonlinear restoring force −g(x). Applica-
tions of Liénard’s equation can be found in many important examples including chem-
ical reactions, growth of a single species, predator-prey systems, and vibration analysis.
In Section 2, we give the theorem of existence and uniqueness of the limit cycle for the
Liénard equation. In Section 3, we give the method of calculation of the amplitude of the
limit cycle of the perturbed centers (see [2]),

ẋ =−y2l−1 + εP(x, y),

ẏ = x2k−1 + εQ(x, y),
(1.3)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 743–755



744 Limit cycles of Liénard systems

with 0 < |ε| � 1, k, l ∈N. In Section 4, we calculate the amplitude and the period of the
limit cycle of five classes of Liénard equations. In Section 5, we give numerical results of
the limit cycles of some equations.

2. Existence and uniquiness of the limit cycle

We consider the Liénard equation

ẍ+ f (x)ẋ+ g(x)= 0, (2.1)

where f and g are continuous functions, we put

F(x)=
∫ x

0
f (t)dt. (2.2)

Theorem 2.1 (see [1]). Equation (2.1) has one limit cycle if
(i) F is odd ( f is even );

(ii) F(x)= 0 only for x = 0, a, −a for a > 0;
(iii) F(x) −→

x→+∞ +∞, F(x) is increasing monotonically;

(iv) g(x) is odd and g(x) > 0 for x > 0.

3. Method

We consider the perturbed system

ẋ = y + ε f (x, y),

ẏ =−x+ εg(x, y),
0 < |ε|� 1. (3.1)

By putting ẋ(t)= y(x), y′(x)= dy/dx, we obtain

yy′ + x+ ε
[
f (x, y)y′ − g(x, y)

]= 0. (3.2)

We suppose that the origin is the only fixed point of (3.1). We put

β(a)≡
∫ a

−a

[

ḡ
(
x,
√
a2− x2

)
+
x f̄
(
x,
√
a2− x2

)

√
a2− x2

]

dx = 0, (3.3)

where

f̄ (x, y)≡ 1
2

[
f (x, y) + f (x,−y)− f (−x, y)− f (−x,−y)

]
,

ḡ(x, y)≡ 1
2

[
g(x, y)− g(x,−y) + g(−x, y)− g(−x,−y)

]
.

(3.4)

Each solution a > 0 for the equation β(a)= 0 is the amplitude of a limit cycle of the system
(3.1) (see [2]).



M. Amar and Y. Bouattia 745

We consider the perturbed centers

ẋ =−y2l−1 + εP(x, y),

ẏ = x2k−1 + εQ(x, y),
(3.5)

with 0 < |ε|� 1, k, l ∈N.
For ε = 0, we have a center

ẋ =−y2l−1,

ẏ = x2k−1,
(3.6)

we have

x2k

2k
+
y2l

2l
= c. (3.7)

By putting ẋ(t)= y(x), (3.5) becomes

y2l−1 dy

dx
+ x2k−1 + ε

[

Q(x, y)−P(x, y)
dy

dx

]

= 0. (3.8)

We consider the homeomorphism Γ : (x, y)→ (X ,Y):

X = sign(x)
|x|k√
k

,

Y = sign(y)
|y|l√
l

,

(3.9)

which is equivalent to

x = sign(X)
(√
k|X|)1/k

,

y = sign(Y)
(√
l|Y |)1/l

.
(3.10)

It transforms the closed curve

x2k

2k
+
y2l

2l
= c (3.11)

to the circle

X2

2
+
Y 2

2
= c. (3.12)

Equation (3.8), in the new variables (X ,Y), becomes

Y
dY

dX
+X + ε

[ |X|1/k−1

k1−1/2k
Q(x, y)− |Y |

1/l−1

l1−1/2l
P(x, y)

dY

dX

]

= 0 (3.13)
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or

Y
dY

dX
+X + ε

[

− |Y |
1/l−1

l1−1/2l
P(x, y)

dY

dX
+
|X|1/k−1

k1−1/2k
Q(x, y)

]

= 0, (3.14)

where x and y are given by (3.10).
We put

f (X ,Y)=−|Y |
1/l−1

l1−1/2l
P
(

sign(X)
(√
k|X|)1/k

, sign(Y)
(√
l|Y |)1/l

)
,

g(X ,Y)=−|X|
1/k−1

k1−1/2k
Q
(

sign(X)
(√
k|X|)1/k

, sign(Y)
(√
l|Y |)1/l

)
.

(3.15)

Therefore, if A is the amplitude of a limit cycle of (3.14), when ε→ 0, it verifies the equa-
tion

β̄(A)=
∫ A

−A

{

f̄
(
X ,YA(X)

) X

YA(X)
+ ḡ
(
X ,YA(X)

)
}

dX = 0, (3.16)

where YA(X) = √A2−X2 and f̄ , ḡ are given by (3.4). The relation between the ampli-
tudes A and a of the systems (3.14) and (3.5) is given by

a2k = kA2. (3.17)

4. Applications

By applying Theorem 2.1, each of the following equations has one limit cycle:
(1) ẍ+ ε(x2− 1)ẋ+ x3 = 0;
(2) ẍ+ ε(x2− 1)ẋ+ x2n−1 = 0;
(3) ẍ+ ε(x2m− 1)ẋ+ x2n−1 = 0;
(4) ẍ+ ε(

∑m
i=0 b2i · x2i)ẋ+ x2n−1 = 0;

(5) ẍ+ ε(|x|n− 1)ẋ+ sign(x) · |x|m = 0;
(6) ẍ+ ε(x2m− 1)ẋ+ x1/(2n−1) = 0.

(1) ẍ+ ε(x2− 1)ẋ+ x3 = 0 or

ẋ =−y,

ẏ = x3 + ε
(
x2− 1

)
y.

(4.1)

From (3.15), we have

f (X ,Y)= 0,

g(X ,Y)=−2−3/4|X|−1/2(√2|X|− 1
)
Y ,

ḡ(X ,Y)=−21/4|X|−1/2(√2|X|− 1
)
Y ,

β̄(A)=−
∫ A

−A
21/4|X|−1/2(√2|X|− 1

)(
A2−X2)1/2

dX

=−23/4
∫ A

0

(√
2X1/2−X−1/2)(A2−X2)1/2

dX.

(4.2)
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By putting X =Aα1/2, we obtain

β̄(A)=−21/4A3/2
∫ 1

0

[√
2α−1/4(1−α)1/2A−α−3/4(1−α)1/2]dα

=−21/4A3/2
[√

2β
(

3
4

,
3
2

)

A−β
(

1
4

,
3
2

)]

,

β
(

3
4

,
3
2

)

= Γ(3/4)Γ(3/2)
Γ(9/4)

= Γ(3/4)(
√
π/2)

(5/4)(1/4)Γ(1/4)
= 8

5

√
π
Γ(3/4)
Γ(1/4)

= 27/2

5
π3/2

(
1

Γ(1/4)

)2

,

β
(

1
4

,
3
2

)

= 2
3

√
π
Γ(1/4)
Γ(3/4)

=
√

2
3
π−1/2

(

Γ
(

1
4

))2

.

(4.3)

We have used the relations

Γ(x)= 2x−1

√
π
Γ
(
x

2

)

Γ
(
x+ 1

2

)

, x = 1
2

,

Γ(x+ 1)= xΓ(x), β(x, y)= Γ(x)Γ(y)
Γ(x+ y)

,

β̄(A)=−21/4A3/2
[

24

5
π3/2

(
1

Γ(1/4)

)2

A−
√

2
3
π−1/2

(

Γ
(

1
4

))2]

= 0.

(4.4)

We obtain

A= 5
3.27/2π2

(

Γ
(

1
4

))4

(4.5)

a2 =√2A⇒ a= 21/4
√
A⇒

a=
√

5
3

(
Γ(1/4)

)2

23/2π

 1.9098. (4.6)

Calculation of the period T of the limit cycle. We have y(x) = (1/
√

2)
√
a4− x4 and ẋ =

−y⇒ dt =−dx/y⇒

T = 2
∫ a

−a

√
2√

a4− x4
dx = 4

√
2
∫ a

0

(
a4− x4)−1/2

dx. (4.7)

By putting x = at1/4, we obtain

T =
√

2
a

∫ 1

0
t−3/4(1− t)−1/2dt =

√
2
a
β
(

1
4

,
1
2

)

,

T = 2

√
6π
5

 3.8833.

(4.8)

(2) ẍ+ ε(x2− 1)ẋ+ x2n−1 = 0 or

ẋ =−y,

ẏ = x2n−1 + ε
(
x2− 1

)
y.

(4.9)
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From (3.15) and (3.4), we have

f̄ (X ,Y)= 0,

ḡ(X ,Y)=−2n1/2n−1|X|1/n−1(n1/n|X|2/n− 1
)
Y ,

β̄(A)=−4n1/2n−1
∫ A

0
X1/n−1(n1/nX2/n− 1

)√
A2−X2dX.

(4.10)

By putting X =Aα, then t = α2, and we obtain

β̄(A)=−4n1/2n−1A1/n+1(n1/nA2/nI1− I2
)
, (4.11)

where

I1 = 1
2

∫ 1

0
t3/2n−1(1− t)1/2dt = 1

2
β
(

3
2n

,
3
2

)

= n

n+ 3
23/n−2

(
Γ(3/2n)

)2

Γ(3/n)
,

I2 = 1
2

∫ 1

0
t1/2n−1(1− t)1/2dt = 1

2
β
(

1
2n

,
3
2

)

= 21/n−2 n

n+ 1

(
Γ(1/2n)

)2

Γ(1/n)
.

(4.12)

We find

β̄(A)=−21/nn1/2nA1/n+1

(
n1/n

n+ 3
A2/n22/n

(
Γ(3/2n)

)2

Γ(3/n)
− 1
n+ 1

(
Γ(1/2n)

)2

Γ(1/n)

)

. (4.13)

We find

a= n1/2nA1/n = 2−1/n

√
n+ 3
n+ 1

Γ(1/2n)
Γ(3/2n)

√
Γ(3/n)
Γ(1/n)

. (4.14)

If n= 1, we have

2−1
√

2
Γ(1/2)
Γ(3/2)

√
Γ(3)
Γ(1)

= 1
2

√
2
√
π√
π/2

√
2
1
= 2, (4.15)

which is the amplitude of the Van der Pol equation ẍ+ ε(x2− 1)ẋ+ x = 0.
For n= 2, we find the first example

a= 1√
2

√
5
3
Γ(1/4)
Γ(3/4)

√
Γ(3/2)
Γ(1/2)

=
√

5
3

(
Γ(1/4)

)2

23/2π
, (4.16)

n= 3, we find

a= 1
21/3

√
3

2π
Γ(1/6)
√
Γ(1/3)

. (4.17)



M. Amar and Y. Bouattia 749

The period of the limit cycle. y = (1/
√
n)(a2n− x2n)1/2, dt =−dx/y, so

T = 4
∫ a

0

√
n

(
a2n− x2n

)1/2 dx. (4.18)

We put x = at1/2n, and we have

T = 2
√
n

nan−1

∫ 1

0
t1/2n−1(1− t)−1/2dt = 2√

n

(
n+ 1
n+ 3

)(n−1)/2 (Γ(3/2n)
)n−1(

Γ(1/n)
)(n−3)/2

(
Γ(1/2n)

)n−3(
Γ(3/n)

)(n−1)/2 .

(4.19)

(3) ẍ+ ε(x2m− 1)ẋ+ x2n−1 = 0 or

ẋ =−y,

ẏ = x2n−1 + ε
(
x2m− 1

)
y.

(4.20)

From (3.15) and (3.4), we have

f̄ (X ,Y)= 0,

ḡ(X ,Y)=−2n1/2n−1|X|1/n−1(nm/n|X|2m/n− 1
)
Y ,

β̄(A)=−4n1/2n−1
∫ A

0
X1/n−1(nm/nX2m/n− 1

)√
A2−X2dX

=−n1/2n−1A1/n+1
(

nm/nA2m/n
∫ 1

0
t(2m+1)/2n−1(1− t)1/2dt−

∫ 1

0
t1/2n−1(1− t)1/2dt

)

=−2n1/2n−1A1/n+1
(

nm/nA2m/nβ
(

2m+ 1
2n

,
3
2

)

−β
(

1
2n

,
3
2

))

.

(4.21)

The relation between the amplitude is

a2m = nm/nA2m/n,

a= 1
21/n

(
2m+n+ 1
n+ 1

)1/2m( Γ(1/2n)
Γ
(
(2m+ 1)/2n

)

)1/m(Γ
(
(2m+ 1)/n

)

Γ(1/n)

)1/2m

.
(4.22)

If m= n= 1,

a= 2. (4.23)

If n= 1,

a= 2 2m

√
(m+ 1)!m!

(2m)!
. (4.24)

The period of the limit cycle is

T = 2√
n

(
n+ 1

2m+n+ 1

)(n−1)/2m
((

Γ
(
(2m+ 1)/2n

))2

Γ
(
(2m+ 1)/n

)

)(n−1)/2m(
Γ(1/n)

(
Γ(1/2n)

)2

)(n−2m−1)/2m

.

(4.25)
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If n=m= 1,

T = 2π. (4.26)

(4) ẍ+ ε(
∑m

i=0 b2i · x2i)ẋ+ x2n−1 = 0 or

ẋ =−y,

ẏ = x2n−1 + ε

( m∑

i=0

b2i · x2i

)

y.
(4.27)

From (3.15) and (3.4), we have

f̄ (X ,Y)= 0,

ḡ(X ,Y)=−2n1/2n−1|X|1/n−1Y
m∑

i=0

b2i ·ni/n|X|2i/n,

β̄(A)=−4n1/2n−1
m∑

i=0

b2i ·ni/n
∫ A

0
X (2i+1)/n−1

√
A2−X2dX

=−2
√
πn1/2nA(n+1)/n

m∑

i=0

b2i · ni/n

2i+n+ 1
Γ
(
(2i+ 1)/2n

)

Γ
(
(n+ 2i+ 1)/2n

)A2i/n

(4.28)

or A= (1/
√
n)an, therefore

β(a)=−2
√
π

n
an+1

m∑

i=0

b2i

2i+n+ 1
Γ
(
(2i+ 1)/2n

)

Γ
(
(n+ 2i+ 1)/2n

) · a2i. (4.29)

By putting α2i = (b2i/(2i+n+ 1))(Γ((2i+ 1)/2n)/Γ((n+ 2i+ 1)/2n)), we obtain

β(a)=−2
√
π

n
an+1

m∑

i=0

α2i · a2i. (4.30)

The amplitudes are the roots of β(a)= 0.

Remark 4.1. In this case, we have at most m limit cycles.

(5) ẍ+ ε(|x|n− 1)ẋ+ sign(x) · |x|m = 0, with

sign(x)=
⎧
⎨

⎩

1 if x > 0,

−1 if x < 0,
(4.31)

or

ẋ = y,

ẏ =−sign(x) · |x|m− ε(|x|n− 1
)
y.

(4.32)



M. Amar and Y. Bouattia 751

From (3.15) and (3.4), we have

f̄ (X ,Y)= 0,

ḡ(X ,Y)=−2
(
m+ 1

2

)−m/(m+1)((m+ 1
2

)n/(m+1)

|x|(2n−m+1)/(m+1)−|x|(1−m)/(1+m)
)

Y ,

β̄(A)=−4
(
m+ 1

2

)−m/(m+1)((m+ 1
2

)n/(m+1)∫ A

0
x(2n−m+1)/(m+1)

√
A2−X2dX

−
∫ A

0
x(1−m)/(1+m)

√
A2−X2dX

)

=−2A(3+m)/(1+m)
(
m+ 1

2

)−m/(m+1)((m+ 1
2

)n/(m+1)

A2n/(1+m)β
(
n+ 1
m+ 1

,
3
2

)

−β
(

1
m+ 1

,
3
2

))

= 0,

A2n/(m+1) =
(
m+ 1

2

)−n/(m+1)

· β
(
1/(m+ 1),(3/2)

)

β
(
(n+ 1)/(m+ 1),(3/2)

) .

(4.33)

We find

a= 2−2/(m+1)
(

2n+m+ 3
m+ 3

)1/n( Γ
(
1/(m+ 1)

)

Γ
(
(n+ 1)/(m+ 1)

)

)2/n(Γ
(
2(n+ 1)/(m+ 1)

)

Γ
(
2/(m+ 1)

)

)1/n

.

(4.34)

If n=m= 1, we have

a= 3
4
π. (4.35)

If n= 1, m= 3, we have

a= 1
3

(
2
π

)3/2(

Γ
(

1
4

))2

. (4.36)

The period of the limit cycle is

T = 2

√
2

m+ 1

(
2n+m+ 3
m+ 3

)(1−m)/2n((Γ
(
1/(m+ 1)

))2

Γ
(
2/(m+ 1)

)

)(2n−m+1)/2n

×
(
Γ
((

2(n+ 1)
)
/(m+ 1)

)

(
Γ
(
(n+ 1)/(m+ 1)

))2

)(1−m)/2n

.

(4.37)

(6) ẍ+ ε(x2m− 1)ẋ+ x1/(2n−1) = 0.
It is equivalent to the system

ẋ =−y,

ẏ = x1/(2n−1) + ε
(
x2m− 1

)
y.

(4.38)
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From (3.15) and (3.4), we have

f̄ (X ,Y)= 0,

ḡ(X ,Y)=−
(

2n− 1
n

)1/2n

|X|(n−1)/n
((

n

2n− 1

)(m/n)(2n−1)

· |X|(2m/n)(2n−1)− 1
)

Y ,

β̄(A)=−2
(

2n− 1
n

)1/2n

×
∫ A

−A
|X|(n−1)/n

((
n

2n− 1

)(m/n)(2n−1)

· |X|(2m/n)(2n−1)− 1
)√

A2−X2dX.

(4.39)

By putting X =Aα and t = α2, we obtain

β̄(A)=−2
(

2n− 1
n

)1/2n

A(3n−1)/n

×
∫ 1

0
t−1/2n

((
n

2n− 1

)(m/n)(2n−1)

·A(2m/n)(2n−1) · t(m/n)(2n−1)− 1
)

(1− t)1/2dt.

(4.40)

Let λ=−2((2n− 1)/n)1/2nA(3n−1)/n, and we obtain

β̄(A)= λ
((

n

2n− 1

)(m/n)(2n−1)

·A(2m/n)(2n−1) ·β
(

(2m+ 1)(2n− 1)
2n

,
3
2

)

−β
(

2n− 1
2n

,
3
2

))

.

(4.41)

We have

a2m =
(

n

2n− 1

)(m/n)(2n−1)

·A(2m/n)(2n−1). (4.42)

We find from β̄(A)= 0 that

a2m = β
(
(2n− 1)/2n, (3/2)

)

β
(
(2m+ 1)(2n− 1)/2n, (3/2)

) , (4.43)

a= 2−(1/n)(2n−1)
(

(2m+ 1)(2n− 1) +n
3n− 1

)1/2m( Γ
(
(2n− 1)/2n

)

Γ
(
(2m+ 1)(2n− 1)/2n

)

)1/m

×
(
Γ
(
(2m+ 1)(2n− 1)/n

)

Γ
(
(2n− 1)/n

)

)1/2m

.

(4.44)

For n= 2,m= 1, we have the equation

ẍ+ ε(x2− 1)ẋ+ x1/3 = 0,

a= 23/2

5
π
√

231
1

(
Γ(1/4)

)2 
 2.0548.
(4.45)

This equation is studied by Mickens [3].
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The period of the limit cycle. dt =−dx/y, y = (
√

(2n− 1)/n)(a2n/(2n−1)− x2n/(2n−1))1/2,

T = 4
∫ a

0

dx

y
= 4

√
n

2n− 1

∫ a

0

(
a2n/(2n−1)− x2n/(2n−1))−1/2

dx. (4.46)

By putting t = (x/a)2n/(2n−1), we obtain

T = 4
√

n

2n− 1
2n− 1

2n
a(n−1)/(2n−1)

∫ 1

0
t−1/2n(1− t)−1/2dt,

T = 2

√
2n− 1
n

a(n−1)/(2n−1)β
(

2n− 1
2n

,
1
2

)

,

T = 2(2n+1)/nπ

√
n(2n− 1)
n− 1

a(n−1)/(2n−1), where a is defined as (4.44).

(4.47)

5. Numerical results

(1) ẍ+ ε(x2− 1)ẋ+ x3 = 0,

a=
√

5
3

(
Γ(1/4)

)2

23/2π

 1.9098,

T = 2

√
6π
5

 3.8833.

(5.1)

(2) ẍ+ ε(|x|− 1)ẋ+ x3 = 0,

a= 1
3

(
2
π

)3/2(

Γ
(

1
4

))2


 2.2257,

T = 3
4

√
2π 
 3.3322.

(5.2)

(3) ẍ+ ε(|x|− 1)ẋ+ x = 0,

a= 3
4
π 
 2.3562,

T = 2π 
 6.2832.
(5.3)

(4) ẍ+ ε(x2− 1)ẋ+ x1/3 = 0,

a= 23/2

5
π
√

231
1

(
Γ(1/4)

)2 
 2.0548,

T = 25/2π
√

6
(

23/2

5
π
√

231
1

(
Γ(1/4)

)2

)1/3


 55.342.

(5.4)

Conclusion. We remark that in every case, the amplitude is the same (see Figures 5.1, 5.2,
5.3, 5.4).
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Figure 5.1. The limit cycle for ε= 0.01.
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Figure 5.2. The limit cycle for ε= 0.01.
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Figure 5.3. The limit cycle for ε= 0.01.
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Figure 5.4. The limit cycle for ε= 0.01.
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THEORY OF FUNCTIONAL DIFFERENTIAL EQUATIONS
AND SOME PROBLEMS IN ECONOMIC DYNAMICS

V. P. MAKSIMOV

This paper focuses on boundary value problems and control problems for functional
differential equations in the abstract form. Key questions of developing techniques for
the computer-assisted study of such problems are discussed. Within the framework of
the general approach, the problems of impulse and hybrid control are considered with
regard to applications in economic mathematical modeling.

Copyright © 2006 V. P. Maksimov. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Economic dynamics is one of the possible and very actively developing area in applica-
tions of the theory of functional differential equations (FDEs). The subject to study is an
in time developing process as a sequence of the states of an economy system with pos-
sible structural breaks. An essential feature of any economic process is the presence of a
lag which means a period of time between the moment of an external action and a reply
of the system, for instance, between capital investments moment and a moment of an
actual growth in output. Thus a model governing the dynamics of the economic system
under consideration can be written in the form of FDE. First we give below some pre-
liminaries from the theory of FDEs in an abstract form. Those are concerned around
boundary value problems (BVPs) and control problems (CPs). Next some corollaries
from the general theorems are formulated in a form that allows one to apply the results to
some problems that arise in economic dynamics, also some questions of the computer-
assisted study of BVPs and CPs are discussed. Finally, we present two problems from
economic dynamics that are formulated in the form of impulse (hybrid) control prob-
lems.

2. Preliminaries

Let D and B be Banach spaces such that D is isomorphic to the direct product B×Rn (in
what follows we write D� B×Rn).

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 757–765



758 Theory of functional differential equations

The equation

�x = f (2.1)

with a linear bounded operator � : D→ B is called the linear abstract functional dif-
ferential equation (AFDE). The theory of (2.1) was thoroughly treated in [4, 5]. Let us
fix an isomorphism J = {Λ,Y} : B×Rn → D and denote the inverse J−1 = [δ,r]. Here
Λ : B→D, Y :Rn→D and δ : D→ B, r : D→Rn are the corresponding components of J
and J−1:

J{z,α} =Λz+Yα∈D, z ∈ B, α∈Rn,

J−1x = {δx,rx} ∈ B×Rn, x ∈D.
(2.2)

The system

δx = z, rx = α (2.3)

is called the principal boundary value problem (PBVP). Thus, for any {z,α} ∈ B×Rn,

x =Λz+Yα (2.4)

is the solution of (2.3). The representation (2.4) gives the representation of �: �x =
�(Λz+Yα)=�Λz+ �Yα=Qz+Aα, where the so-called principal part of �, Q : B→ B
and the finite-dimensional A :Rn →D are defined by Q =�Λ and A=�Y . The general
theory of (2.1) assumes Q to be a Fredholm operator (i.e., a Noether one with the zero
index).

Consider the general BVP

�x = f , lx = β (2.5)

with l = [l1, . . . , lN ] : D→ RN , linear bounded vector-functional. BVP (2.5) is the central
subject in the theory of AFDE. In the case that N = n and (2.5) is uniquely solvable for
any { f ,β} ∈ B×Rn, we have the representation of the solution in the form

x =G f +Xβ. (2.6)

The operator G : B→ D is called the Green operator, the operator X : Rn → D is called
the fundamental vector. A way to study BVP (2.5) for the unique solvability is as follows.
Suppose that the principal BVP for (2.1)

�x = f , rx = α (2.7)

is uniquely solvable. In such a case, denoting the Green operator of the problem by Gr ,
we have the representation

x =Gr f +Xα (2.8)
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of the general solution to �x = f assuming α to be arbitrary element from Rn. Repre-
sentation (2.8) implies that the unique solvability of (2.5) is equivalent to the unique
solvability of the algebraic system lXα = β− lGr f . Thus BVP (2.5) is uniquely solvable
if and only if the matrix lX is invertible. This condition cannot be verified immediately
because the fundamental vector X cannot be (as a rule) evaluated explicitly. In addition,
even if X were known, then the elements of lX , generally speaking, could not be evalu-
ated explicitly. By the theorem about inverse operators, the matrix lX is invertible if one
can find an invertible matrix Γ such that ‖lX − Γ‖ < 1/‖Γ−1‖. As it has been shown in
[3], such a matrix Γ for the invertible matrix lX can always be found among the matrices
Γ= l̄X̄ , where l̄ : D→Rn is a vector-functional near to l, and X̄ is an approximation of X .
That is why the basis of the so-called constructive study of linear BVPs includes a special
technique of constructing the approximate solutions to FDE with guaranteed explicit er-
ror bounds as well as the reliable computing experiment (RCE), whose theory has been
worked out in [10] (see Section 4).

Consider the abstract control problem

�x = Fu+ f , rx = α, lx = β, (2.9)

where the control u belongs to a Hilbert space H, F : H→ B is the linear bounded oper-
ator, l = [l1, . . . , ln] is the on target vector-functional that defines the aim of controlling:
lx = β. Here we give a theorem that allows us to use the idea of constructive approach as
applied to (2.9).

Let us define the linear bounded functional λi : H→R, i= 1, . . . ,n, by λiu= liGrFu. It
is clear that we can write λiu in the form λiu = 〈μi,u〉, where 〈·,·〉 stands for the inner
product of H and μi means the element of H that generates λi : H→R.

Theorem 2.1. The control problem (2.9) is solvable for any f ∈ B and α,β ∈Rn if and only

if the matrix M
def= {〈μi,μj〉}i, j=1,...,n is invertible. The control u0 =

∑n
i=1μici with col(c1, . . . ,

cn)=M−1[β− lGr f − lXα] solves CP (2.9).

Proof. For any u ∈ H we have the representation u =∑n
i=1μici + v, where v ∈ H is or-

thogonal to the linear span of μ1, . . . ,μn. Let us find a control u that solves CP (2.9) by
searching for coefficients c1, . . . ,cn. By (2.8) we have

x =GrFu+Gr f +Xα (2.10)

for solutions of (2.7). Applying l to both sides of (2.10) and taking into account the con-
ditions lx = β, we obtain the system Mc = β− lGr f − lXα. �

Similarly to the study of BVP, we establish the solvability of (2.9) if we can construct
a matrix M̃ such that it has the inverse M̃−1 and the inequality ‖M − M̃−1‖ < 1/‖M̃−1‖
holds.

In what follows we restrict our attention to the following examples of the spaces D�
B×Rn (see [4] for details).
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(1) Let D = AC be the space of absolutely continuous functions x : [0,T]→ Rn. We
have x(t)= ∫ t0 ẋ(s)ds+ x(0), B= L, the space of Lebesgue summable functions z : [0,T]→
Rn with ‖z‖L =

∫ T
0 ‖z(s)‖Rnds. Thus

(Λz)(t)=
∫ t

0
z(s)ds, Y = E, δx = ẋ, rx = x(0). (2.11)

Here and in what follows, E is the identity matrix. The isomorphism between the space
of absolutely continuous functions x : [0,T]→ Rn and the direct product L×Rn is fun-
damental to many assertions of the theory of FDE and makes it possible to reduce many
problems in the space AC to ones in the space L. The theory of BVPs and CPs in the space
AC is outlined in [3].

(2) Let us fix a collection of points tk ∈ (0,T), 0 < t1 < ··· < tm < T . Consider the space
D=DS(m) of functions x : [0,T]→Rn that are representable in the form

x(t)=
∫ t

0
z(s)ds+ x(0) +

m∑

k=1

χ[tk ,T](t)Δx
(
tk
)
, (2.12)

where z ∈ L, Δx(tk)= x(tk)− x(tk − 0), χ[tk ,T](t) is the characteristic function of the seg-
ment [tk,T]. In this case D� L×Rn+mn with

(Λz)(t)=
∫ t

0
z(s)ds, (Yα)(t)= α0 +

m∑

k=1

χ[tk ,T](t)αk, α= col
(
α0, . . . ,αm

)
,

δx = ẋ, rx = {x(0),Δx
(
t1
)
, . . . ,Δx

(
tm
)}
.

(2.13)

3. Impulsive and hybrid controls

An approach to the study of differential equations with discontinuous solutions is asso-
ciated with the so-called “generalized ordinary differential equations” whose theory was
initiated by Kurzweil [7]. Nowadays this theory is highly developed (see, e.g., [2, 11]). Ac-
cording to the accepted approaches impulsive equations are considered within the class
of functions of bounded variation. In this case the solution is understood as a function
of bounded variation satisfying an integral equation with the Lebesgue-Stieltjes integral
or Perron-Stieltjes one. Integral equations in the space of functions of bounded varia-
tion became the subject of its own interest and are studied in details in [12]. Recall that
the function of bounded variation is representable in the form of the sum of an abso-
lutely continuous function, a break function, and a singular component (a continuous
function with the derivative being equal to zero almost everywhere). The solutions of
equations with impulse impact, which are considered below, do not contain the singu-
lar component and may have discontinuity only at finite number of prescribed points.
We consider these equations on a finite-dimensional extension DS(m) of the traditional
space AC of absolutely continuous functions. This approach to the equations with im-
pulsive impact was offered in [1]. It does not use the complicated theory of generalized
functions, turned out to be rich in content and finds many applications in the cases where
the question about the singular component does not arise, in particular, in certain eco-
nomic dynamics problems that are considered in Section 5 (see [8] for details).
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Consider the functional differential system

(�x)(t)= f (t), t ∈ [0,T], (3.1)

where � : DS(m)→ L is linear bounded and has the principal part of the form

(Qz)(t)= z(t)−
∫ t

0
K(t,s)z(s)ds. (3.2)

Here the elements ki j(t,s) of the kernel K(t,s) are measurable on the set 0 ≤ s ≤ t ≤ T
and such that |ki j(t,s)| ≤ μ(t), i, j = 1, . . . ,n, μ(·) is summable on [0,T]. Notice that the
form of (3.1) covers many classes of dynamic models including differential systems with
distributed or/and concentrated delay and integrodifferential systems.

The space of all solutions to the homogeneous system �x = 0 is finite dimensional,
its dimension equals n+ nm. Let {x1, . . . ,xn+nm} be a basis in this space. The matrix X =
{x1, . . . ,xn+nm} is called a fundamental matrix. We deal with X such that rX = E. The
principal BVP �x = f , rx = σ is uniquely solvable for any f ∈ L,σ ∈Rn+nm, its solution
is representable in the form

x(t)= X(t) · σ +
∫ t

0
C(t,s) f (s)ds, (3.3)

where C(t,s) is the Cauchy matrix. Let l : DS(m) → RN be a linear bounded vector-
functional. There takes place the representation

lx =
∫ T

0
Φ(s)ẋ(s)ds+Ψ0x(0) +

m∑

k=1

ΨkΔx
(
tk
)
, (3.4)

where the elements of measurable N × n-matrix Φ are essentially bounded and Ψk, k =
0, . . . ,m, are N ×n-matrices with real elements.

Consider the control problem

�x = Fu+ f , x(0)= α, lx = β. (3.5)

Here F : L2 → L is a given linear bounded operator, L2 is the space of square summable
functions u : [0,T]→Rr with the inner product (u,v)= ∫ T0 u	(s)v(s)ds, ·	 is the symbol
of transposition. In the problem (3.5), the target of controlling is defined by the vector-
functional l : DS(m)→RN whose value on a trajectory of �x = Fu+ f must reach (under
control) the vector β ∈RN . The problem (3.5) includes in particular the control problem
with L2-control (the case that the condition lx = β includes the equalities Δx(tk)= 0, k =
1, . . . ,m) and the control problem with only impulse control (the case F = 0, where the
role of control actions is played only by the jumps Δxi(tk)). Here we give conditions of
controllability through the hybrid control.

Let us denote

Θ(s)=Φ(s) +
∫ T

s
Φ(τ)C′τ(τ,s)dτ, Ξ=

∫ T

0
Φ(s)Ẋ(s)ds= (Ξ1 | Ξ2

)
, (3.6)
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where Ξ1 is the N ×n-matrix consisting of the first n columns of N × (n+nm)-matrix Ξ;

M =
∫ T

0
[F

∗
Θ](s)[F

∗
Θ]	(s)ds, (3.7)

where F
∗

: L
∗ → L

∗
2 is the adjoint operator to F.

Theorem 3.1. The control problem (3.5) is solvable if and only if the linear algebraic system

[
Ξ2 +

(
Ψ1, . . . ,Ψm

)] · δ +M · γ = β−
∫ T

0
Θ(s) f (s)ds− (Ξ1 +Ψ0

) ·α (3.8)

is solvable in (N + nm)-vector col(δ,γ). Each solution col(δ0,γ0), δ0 = col(δ1
0 , . . . ,δm0 ), of

the system (3.8) defines the control that solves CP (3.5): Δx(tk) = δk0 , k = 1, . . . ,m, u(t) =
[F

∗
Θ]	(t) · γ0.

Some questions of computer-assisted studying CP (3.5) through system (3.8) are dis-
cussed in the next Section.

Notice that the main results and algorithms for CP (3.5) allow extending for the con-
trol problem

�x = Fu+ f , x(0)= α, lx ≤ β (3.9)

with target constraints in the form of functional inequalities (see, e.g., [8]).

4. Reliable computing experiment

The effective study of the original problem (3.5) is based on the use of the corresponding
problem (3.8). In doing so we have to understand that all the parameters of (3.8) can
be only approximately calculated. Thus the study of (3.8) for solvability requests a spe-
cial technique with the use of the so-called reliable computing experiment (RCE) [4, 10].
Both the theoretical background and practical implementation of RCE need the elabo-
ration of some specific constructive methods of investigation based on the fundamental
statements of the general theory with making use of contemporary software. It is rele-
vant to notice that the main destination of such methods is reliable establishing the fact
of the solvability of the problem. If it is done, the next task is to construct an approxi-
mate solution in common with an error bound of quite high quality. RCE as a tool for
the study of differential and integral models is very actively developing during the last 20
years. There are some main directions in this field: the study of the Cauchy problem for
ordinary differential equations (ODEs) as well as for certain classes of partial DEs (PDEs)
(H. Bauch, M. Berz, G. Corliss, B. Dobronetz, E. Kaucher, and W. Miranker); the study of
boundary value problems (BVPs) for ODEs and PDEs (S. Godunov, M. Plum, N. Ronto,
and A. Samoilenko); the study of integral equations (E. Kaucher and W. Miranker, C.
Kennedy, R. Wang); the study of nonlinear operator equations (S. Kalmykov, R. Moor,
Yu. Shockin, Z. Yuldashev). A common idea in these studies is the interval calculus in
finite-dimensional and functional spaces and, as a consequence, the special techniques of
rounding off when calculations are produced by real computer. Our approach allows us
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to consider essentially more wide class of problems that are complicated by such proper-
ties as the property of not being a local operator, the presence of discontinuous solutions,
the presence of the inner superposition operator, as well as the general form of boundary
condition. In addition, we do not use interval calculations, which are characterized by
high speed of the accumulation of rounding errors, but make use of the rational num-
bers arithmetics with a specific technique of definitely oriented rounding. The key idea
of the constructive study is as follows: by the original problem there is being constructed
an auxiliary problem with reliably computable parameters, which allows one to produce
the efficient computer-assisted testing for the solvability. If such a problem is solvable, the
final result depends on the closeness of the original problem and the auxiliary one. The
theorems, which stand for a background of RCE, give efficiently testable (by means of
computer) conditions of the solvability for the original problem. In the case where these
conditions are failed one has to construct a new (and more close to the original problem)
auxiliary problem and then to test the conditions again. The implementation of the con-
structive methods in the form of a computer program (of course, it must be oriented to
quite definite class of problems) allows one to study a concrete problem by a many times
repeated RCE. A theoretical background and some details of the practical implementa-
tion of RCE for the study of functional differential systems are presented in [10]. As to
problem (3.5), the corresponding RCE includes the construction and the successive re-
finement of approximation to C(t,s), Θ(s),M with reliable error bounds. The key point is
the approximate construction of C with a high reliable accuracy. An efficient computer-
aided technique of such a construction under the condition that the kernel K(t,s) admits
a piecewise constant approximation, being as accurate as we wish, is proposed in [9].

5. Some control problems in economic dynamics

First we present a problem of controlling multisectors economic models through bank
loaning. Let the dynamics of a multisector production model under L2-control be gov-
erned by the system (3.1):

(�x)(t)= (Fu)(t), t ∈ [0,T], x(0)= α, (5.1)

(see (3.5)), where u(t) is defined as an intensity of constantly entering investments. Let u :
[0,T]→ L2 be given. Thus there exists a unique trajectory x0 ∈ AC as the solution to (5.1).
Let us assess x0 by the indicators l j : DS(m)→R, j = 1, . . . ,q : l jx0 = βj . The problem is to
provide the increase of l jx on the trajectories x of (5.1) through bank loaning as follows:
using solutions x ∈ DS(m) (with jumps Δxi(tk)), given ρj ≥ 0, j = 1, . . . ,q, find Δxi(tk)
such that the conditions of increasing l jx = (1 + ρj)βj , j = 1, . . . ,q, hold subject to the
constraints Δxi(t1) ≥ 0, i = 1, . . . ,n, (getting banks loans at the moment t1); Δxi(tk) =
−(1 + ri)k−1 · γi,k−1 ·Δxi(t1), k = 2, . . . ,m, i= 1, . . . ,n, (back payment taking into account
the interest rates ri and the weight coefficients 0 ≤ γi,k−1 ≤ 1,

∑m−1
k=1 γi,k−1 = 1). Thus we

have a problem of the form (3.5).
Next let us dwell on a problem of controlling the bank portfolio as it is set in [6].

Denote by x(t) the vector of bank resources at the moment t ∈ [0,T] (cash assets, liq-
uid securities, interest-earning long-term assets, investment portfolio, interbank credits,
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deposits, and so on): x = col{x1, . . . ,xn}, xi is the ith kind of resources. Let us consider
x(·) ∈ DS(m) with tk, k = 1, . . . ,m, being the points in time, at which control is being
brought into operation. In such points a jump-like change of bank resources is possible.
The equation governing the resources dynamics can be written in the form

ẋ(t)= (Vx)(t)− (Wx)(t), t ∈ [0,T], (5.2)

where a given operator V describes an increase of the resources and W a decrease. In
addition to the initial conditions, there are three groups of restrictions with respect to
the desired trajectory: (a) the qualitative restrictions; (b) the restrictions imposed by the
Central Bank; (c) the market restrictions. The restrictions (a) are generated primarily due
to the bank risks. To bound the risk of loss in the liquidity, the restrictions to a minimal
value of the liquid assets are entered. Due to similar reasoning with respect to the credit
risk and the interest risk, certain restrictions are added too. The restrictions (b) include
the balance equations taking into account obligatory reserves at prescribed points in time.
The restrictions (c) are entered to take into account practical possibilities of the bank
resources operation in financial markets. In particular, there are imposed requirements
on a maximum value of investments securities under operation. All the above constraints
can be written in the form of the inequalities lx ≤ β and we obtain a problem (3.9).
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MAXIMUM PRINCIPLES AND DECAY ESTIMATES
FOR PARABOLIC SYSTEMS UNDER ROBIN
BOUNDARY CONDITIONS

M. MARRAS AND S. VERNIER PIRO

We investigate nonlinear parabolic systems when Robin conditions are prescribed on the
boundary. Sufficient conditions on data are imposed to obtain decay estimates for the
solution. In addition, a maximum principle is proved for an auxiliary function, from
which we deduce an exponential decay estimate for the gradient.

Copyright © 2006 M. Marras and S. Vernier Piro. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Reaction diffusion parabolic systems are studied with interest as they provide models
for various chemical and biological problems. Recently some qualitative properties of
their solutions like blow-up and time decay estimates have been studied in [7, 9] (for the
applications, see also the references therein). The aim of this paper is to investigate these
properties for the following system with Robin boundary conditions:

Δu+ f1(v)= ∂u

∂t
in Ω× (t > 0),

Δv+ f2(u)= ∂v

∂t
in Ω× (t > 0),

∂u

∂n
+αu= 0 on ∂Ω× (t > 0),

∂v

∂n
+αv = 0 on ∂Ω× (t > 0),

u(x,0)= h1(x) in Ω,

v(x,0)= h2(x) in Ω,

(1.1)

where Ω is a bounded domain in R2, α > 0, and for i= 1,2, fi(s) are C1 functions which

Hindawi Publishing Corporation
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satisfy

fi(0)= 0, fi(s)≥ 0, f ′i (s)≤ pi(s), s > 0, (1.2)

with pi(s) nondecreasing functions with respect to s > 0.
The functions hi ∈ C1(Ω), (hi �= 0), are positive in Ω with

∂hi
∂n

+αhi = 0, x ∈ ∂Ω. (1.3)

Here ∂/∂n indicates the normal derivative directed outward from Ω.
As a consequence (u,v) will be nonnegative.
In Section 2, we first consider (1.1) in the domain QT = Ω× (0,T), where T is any

time prior to possible blow-up time. We introduce the function

U(x, t) := u2 + v2, (1.4)

the squared norm of the solution (u,v), and for it we prove an exponential decay estimate
in (0,T). Then, with additional restrictions on data, we extend the estimate for all t > 0.

In Section 3, we introduce in Q =Ω× (t > 0) the auxiliary function

Ψ(x, t)=Φ(x, t)−Kt (1.5)

with

Φ(x, t) := {|∇u|2 + |∇v|2 + 2δ
(
u2 + v2)}e2δt, (1.6)

where K and δ are two positive constants which will be specified later on.
We prove that Ψ satisfies a parabolic inequality, and by applying the maximum prin-

ciple (see [2, 3]), we obtain a decay estimate also for the gradient of the solution.
We remark that in [7] the authors consider a nonlinear system similar to (1.1) with

Dirichlet boundary conditions instead of Robin, and derive decay bounds both for solu-
tions and their gradients in a bounded convex domain in RN , under different choices of
the nonlinearities.

In [9], a different class of reaction diffusion systems is investigated, where the Lapla-
cian operator is replaced by an operator in a divergence form and Ω, a bounded domain
in RN , is not required to be convex, while on ∂Ω× (t > 0), Dirichlet-type conditions are
imposed as in [7]. There the author determines explicit restrictions on data which in-
sure that the solution does not blow up in finite time; moreover sufficient conditions are
established to obtain that the solution and its gradient decay exponentially in time.

For the case of only one equation with Dirichlet boundary conditions, decay bounds
have been obtained in [4, 5], and in a series of papers of Payne and Philippin cited in [5].
When the conditions on the boundary are of Robin type or of mixed type, such bounds
are obtained in [6] for the linear heat problem in two space dimensions, and for the
nonlinear in one dimension only.

Throughout the paper, we will use the following notation:

u,i = ∂u

∂xi
, u,ik = ∂2u

∂xi∂xk
, i= 1,2, k = 1,2, (1.7)
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and the repeated index indicates summation over i= 1,2 as in

u,iu,i =
(
∂u

∂x1

)2

+
(
∂u

∂x2

)2

= |∇u|2. (1.8)

2. Exponential decay results for u2 + v2

It is well known that the solution (u,v) of (1.1) may blow up (see [1, 4]). Let T∗ be the
possible blow-up time, which may be finite or infinite. We know that the solution exists
in (0,T), with T < T∗.

In order to derive decay estimate for the solution of (1.1), we first consider (1.1) in the
interval (0,T) and prove the following.

Theorem 2.1. Let (u,v) be a classical solution of (1.1) with t ∈ (0,T). Assume that the
functions fi satisfy (1.2), and let

M := {p1
(
vm
)

+ p2
(
um
)}

(2.1)

with

um :=max
QT

{
u(x, t)

}
, vm :=max

QT

{
v(x, t)

}
. (2.2)

Then U(x, t) satisfies the parabolic inequality

ΔU −U,t +MU ≥ 0, (x, t)∈QT. (2.3)

In fact, using (1.2), the monotonicity of the functions pi, and (2.1), we have

ΔU −U,t ≥−2uv
{
f1(v)
v

+
f2(u)
u

}

≥−(u2 + v2){p1
(
η1
)

+ p2
(
η2
)}≥−MU

(2.4)

with η1 and η2 some intermediate value.
As a consequence of (2.3) and (1.1) in (0,T), U(x, t) satisfies the following initial

boundary value problem:

ΔU −U,t +MU ≥ 0, (x, t)∈QT ,

∂U

∂n
=−2αU , (x, t)∈ ΓT ,

U(x,0)= h(x), x ∈Ω,

(2.5)

with h(x)= h2
1(x) +h2

2(x).
In order to obtain a decay estimate for U(x, t), we introduce the auxiliary function

w(x, t)=U(x, t)e−Mt, which satisfies

Δw−w,t ≥ 0, (x, t)∈QT ,

∂w

∂n
=−2αw, (x, t)∈ ΓT ,

w(x,0)= h(x), x ∈Ω.

(2.6)
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Now if w̃(x, t) is a solution of the following problem:

Δw̃− w̃,t = 0, (x, t)∈QT ,

∂w̃

∂n
=−2αw̃, (x, t)∈ ΓT ,

w̃(x,0)= h(x), x ∈Ω,

(2.7)

from a classical comparison theorem [8], we know that

w(x, t)≤ w̃(x, t). (2.8)

From a result in [6], we can prove the following.

Lemma 2.2. Let w̃ be a classical solution of (2.7). If Ω is a convex domain in R2 and ∂Ω is a
C2+ε surface and h has bounded second derivatives, then

w̃(x, t)≤ Γβe
−βt, (x, t)∈QT , (2.9)

with

Γβ = Γ
√
β

:=max
Ω

√

h2 +
|∇h|2
β

, (2.10)

where the positive constant β is restricted by the conditions
√
βtg
√
βd < 2α,

√
βd <

π

2
, (2.11)

Δh+ 2
(
2α2 +β

)
h≥ 0. (2.12)

In (2.11), d is the radius of the largest disk inscribed in Ω.
To prove Lemma 2.2, we first observe that under the hypotheses introduced, Payne

and Schaefer in [6] prove the more general result

|∇w̃|2 +βw̃2 ≤ Γ2e−2βt in Ω× (t > 0), (2.13)

with

Γ2 =max
Ω

{|∇h|2 +βh2}. (2.14)

From (2.13), we derive (2.9).
Finally for the function U(x, t)=weMt, we get from (2.8) and (2.9) the following esti-

mate:

U(x, t)≤ Γβe
−(β−M)t, (x, t)∈QT. (2.15)

We note that from (2.15), if β−M ≥ 0, we obtain U(x, t)≤ Γβ, and in QT ,

u≤√Γβ, v ≤√Γβ, (2.16)

are valid only in the time interval (0,T).
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Now in order to prove that the solution does not blow up and exists for all t > 0, we
restrict the initial data h1(x) e h2(x) which are present in Γβ.

We start with the following.

Lemma 2.3. Let (u,v) be the solution of problem (1.1) in (0,T). Assume that fi and pi satisfy
(1.2), and the initial data h1(x) and h2(x) satisfy

p1
(√

Γβ
)

+ p2
(√

Γβ
)
< β, (2.17)

where β satisfies (2.11), (2.12), and Γβ is defined in (2.10). Then (u,v) exists for all time
t > 0 and satisfies the inequality

p1
(
v(x, t)

)
+ p2

(
u(x, t)

)
< β, ∀x ∈Ω, t > 0. (2.18)

To prove Lemma 2.3, we suppose that (2.18) does not hold. Lemma 5 in [5], in view
of (2.15), (2.16), and (2.17), we reach a contradiction.

By using Lemma 2.3, (2.15), and (2.1) it is easy to prove the following.

Lemma 2.4. Assume Lemma 2.3 holds. If for some positive constant ξ, the initial data h1(x)
and h2(x) are restricted by the following condition:

p1
(√

Γβ
)

+ p2
(√

Γβ
)≤ β− ξ, (2.19)

then,

U(x, t)≤ Γβe
−ξt, ∀x ∈Ω, t > 0. (2.20)

Formula (2.20) is the wanted estimate, which decays exponentially in time.

3. Maximum principle and decay results for the gradient of the solution

The goal of this section is to establish a decay estimate also for the gradient of the so-
lution. To this end, we introduce an auxiliary function, where both the solution and its
gradient are involved. Then we prove for it a maximum principle, from which we deduce
the wanted estimate.

Let us consider as auxiliary function Ψ(x, t) defined in (1.5), where we select δ = ξ/2.
We prove that Ψ(x, t) satisfies a decay estimate in the following.

Theorem 3.1. Let (u,v) be the solution of (1.1) under the hypotheses of Lemma 2.4 and Ψ
defined in (1.5). If

M ≤ 2δ, M := p1
(√

Γβ
)

+ p2
(√

Γβ
)
, (3.1)

then Ψ(x, t) takes its maximum value either at a boundary point on Γ or at an initial point
(t = 0) on Ω, that is,

Ψ(x, t)≤�, (x, t)∈Q, (3.2)
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where � =max{�0,�1}, with

�0 =max
x∈Ω

{∣
∣∇h1

∣
∣2

+
∣
∣∇h2

∣
∣2

+ 2δ
(
h2

1 +h2
2

)}
, �1 = max

(x,t)∈Γ
Ψ(x, t). (3.3)

Proof. We initially compute ΔΦ−Φ,t, with Φ defined in (1.6). After some standard cal-
culations, we obtain

ΔΦ−Φ,t = e2δt
{

− 2u,iv,i
[
f ′1 (v) + f ′2 (u)

]
+ 2
(
u,iku,ik + v,ikv,ik

)

− 4δuv
[
f1(v)
v

+
f2(u)
u

]

+ 2δ
(|∇u|2 + |∇v|2)− 4δ2(u2 + v2)

}

,

(3.4)

where we used the equations in (1.1).
By hypotheses (1.2) and using (2.1), from (3.4), we obtain

ΔΦ−Φ,t ≥ e2δt{(2δ−M)
(|∇u|2 + |∇v|2)− 2δ(M + 2δ)U

}
. (3.5)

By using (3.1), the first term on the right-hand side of (3.5) is nonnegative and can be
neglected, then with k = 2δ(M + 2δ), we obtain

ΔΦ−Φ,t ≥−kUe2δt. (3.6)

If we replace in (3.6) the estimate of U proved in Lemma 2.4

U(x, t)≤ Γβe
−ξt, (3.7)

since we have assumed δ = ξ/2, we obtain

ΔΦ−Φ,t ≥−kΓβe(2δ−ξ)t =−K (3.8)

with K = kΓβ. This implies that the function Ψ satisfies the inequality

ΔΨ−Ψ,t = ΔΦ− (Φ,t −K
)≥ 0, (3.9)

and from the standard maximum principle [3, 8] Ψ attains its maximum value either at
a point on δΩ for some t > 0, or at a point x ∈Ω at t = 0. Then from the definition of Ψ
we have

|∇u|2 + |∇v|2 + 2δ
(
u2 + v2)e2δt −Kt ≤� (3.10)

with � in (3.2) and (3.3). �
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09123 Cagliari, Italy
E-mail address: svernier@unica.it

mailto:mmarras@unica.it
mailto:svernier@unica.it




STOCHASTIC SIS AND SIR MULTIHOST EPIDEMIC MODELS

ROBERT K. MCCORMACK AND LINDA J. S. ALLEN

Pathogens that infect multiple hosts are common. Zoonotic diseases, such as Lyme dis-
ease, hantavirus pulmonary syndrome, and rabies, by their very definition are animal dis-
eases transmitted to humans. In this investigation, we develop stochastic epidemic models
for a disease that can infect multiple hosts. Based on a system of deterministic epidemic
models with multiple hosts, we formulate a system of Itô stochastic differential equations.
Through numerical simulations, we compare the dynamics of the deterministic and the
stochastic models. Even though the deterministic models predict disease emergence, this
is not always the case for the stochastic models.

Copyright © 2006 R. K. McCormack and L. J. S. Allen. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Most pathogens are capable of infecting more than one host. Often these hosts, in turn,
transmit the pathogen to other hosts. Approximately sixty percent of human pathogens
are zoonotic including diseases such as Lyme disease, influenza, sleeping sickness, rabies,
and hantavirus pulmonary syndrome [18]. Generally, there is only a few species (often
only one species) considered reservoir species for a pathogen. Other species, infected by
the pathogen, are secondary or spillover species, where the disease does not persist. For
example, domestic dogs and jackals in Africa may both serve as reservoirs for the ra-
bies virus [7, 12]. Humans and other wild carnivores are secondary hosts. Hantavirus,
a zoonotic disease carried by wild rodents, is generally associated with a single reser-
voir host [2, 11, 13]. Spillover infection occurs in other rodent species. Human infection
results in either hantavirus pulmonary syndrome or hemorrhagic fever with renal syn-
drome [13].

To study the role played by multiple reservoirs and secondary hosts, in previous re-
search, we developed deterministic epidemic models with multiple hosts and showed
that the disease is more likely to emerge with multiple hosts [10]. In this research, we

Hindawi Publishing Corporation
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776 Stochastic SIS and SIR multihost epidemic models

extend the deterministic models to stochastic models and compare the stochastic and the
deterministic dynamics.

2. Deterministic models

We describe the deterministic multihost epidemic models developed in previous research
and summarize their dynamics [10]. In the first model, known as an SIS epidemic model,
individuals in the host population are either susceptible, S, or infected (and infectious), I .
When individuals recover, they do not develop immunity but become susceptible again.
In the multihost SIS epidemic model, let Sj and I j denote the total number of susceptible
and infected hosts of species j, respectively, j = 1,2, . . . ,n. Then the SIS model is given by
the following system of equations:

dSj
dt
=Njbj − Sjdj

(
Nj
)− Sj

n∑

k=1

(

βjk
(
Nk
) Ik
Nk

)

+ γjI j ,

dIj
dt
=−I jdj

(
Nj
)

+ Sj
n∑

k=1

(

βjk
(
Nk
) Ik
Nk

)

− (γj +αj
)
I j ,

(2.1)

where Sj(0) > 0, I j(0) ≥ 0, and Nj = Sj + I j for j = 1,2, . . . ,n. The parameter bj is the
birth rate, γj is the recovery rate, and αj is the disease-related death rate. All parameters
are positive. The contact rate between an infected individual of species j and a suscep-
tible individual of species k is dependent on the population size of species k: βjk(Nk).
We assume two forms for βjk(Nk): standard incidence, where βjk(Nk) ≡ λjk, and mass
action incidence, where βjk(Nk)≡ λjkNk. The density-dependent natural death rate also
depends on the population size Nj , and satisfies the following assumptions:

(i) dj ∈ C1[0,∞);
(ii) 0 < dj(0) < bj −αj ;

(iii) dj is increasing for Nj ≥ 0;
(iv) there exists Kj > 0 such that dj(Kj)= bj .

In the absence of infection, limt→∞Nj(t)= Kj .
In the multihost SIR epidemic model, let Sj , I j , and Rj denote the total number of

susceptible, infected, and immune hosts of species j, respectively, j = 1,2, . . . ,n. The SIR
epidemic model is given by the following differential equations:

dSj
dt
=Njbj − Sjdj

(
Nj
)− Sj

n∑

k=1

(

βjk
(
Nk
) Ik
Nk

)

,

dIj
dt
=−I jdj

(
Nj
)

+ Sj
n∑

k=1

(

βjk
(
Nk
) Ik
Nk

)

− (γj +αj
)
I j ,

dRj

dt
=−Rjdj

(
Nj
)

+ γjI j ,

(2.2)

where Sj(0) > 0, I j(0) ≥ 0, Rj(0) ≥ 0, and Nj = Sj + I j + Rj for j = 1,2, . . . ,n. All pa-
rameters are interpreted as in the SIS model except that recovered individuals develop
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immunity. It should be noted that the only interaction between the hosts is through con-
tact and spread of disease. Competition and predator-prey interactions are not considered
[5, 6, 8, 15–17].

The basic reproduction number �0 for the multihost SIS and SIR epidemic mod-
els can be defined using the next generation approach of Diekmann et al. [3] and van
den Driessche and Watmough [14]. The multihost SIS and SIR epidemic models have a
unique disease-free equilibrium (DFE), where I j ≡ 0 ≡ Rj and Sj = Kj . The next gener-
ation matrix for a multihost SIS or SIR epidemic model with n hosts is an n× n matrix
Mn = (� jk)nj,k=1, where

� jk =
Kjβjk

(
Kk
)

Kk
(
γk +αk + bk

) (2.3)

is the jk entry in the matrix Mn, j,k = 1,2, . . . ,n. Hence, the basic reproduction number
for the epidemic models is the spectral radius of Mn,

�0 = ρ
(
Mn
)
. (2.4)

The DFE of the multihost SIS and SIR epidemic models is locally asymptotically stable
if �0 < 1 and unstable if �0 > 1 [14]. In addition, it can be shown that as the number of
hosts increases, so does the basic reproduction number. In particular, if one more host is
added to the system and the original parameters do not change, then

ρ
(
Mn
)≤ ρ(Mn+1

)
. (2.5)

This result holds because Mn and Mn+1 are nonnegative matrices and Mn is the leading
principal submatrix of Mn+1 of order n [10]. It also holds for more complex epidemic
models such as a multihost SEIR epidemic model. As a result, multiple reservoirs and
secondary species that become infected and transmit the disease can contribute to persis-
tence of the disease in a multihost system by increasing �0.

3. Stochastic models

We formulate new stochastic differential equation (SDE) models for the multihost SIS
and SIR epidemic models described in the previous section. Variability in the stochastic
models is due to births, deaths, and infections. Let � j , � j , and � j denote continuous
random variables for the susceptible, infected, and immune states, respectively. Random
variables are denoted by calligraphic letters.

The random variables for the SIS model satisfy � j ,� j ∈ [0,∞), where � j + � j =� j

and � j ∈ [0,∞). Let the random vector

�(t)= (�1(t),�2(t), . . . ,�n(t),�1(t),�2(t), . . . ,�n(t)
)T
. (3.1)
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The SDE formulation is based on a Markov chain model with a small time step Δt, where
Δ�(t)=�(t+Δt)−�(t) is approximately normally distributed [1, 9].

First, we make assumptions regarding the probability of a change in state during Δt.
We assume there can be a change of at most one unit,±1, during Δt. Let Δ�(t)= Δ� j(t+
Δt)−� j(t) and Δ�(t)=�(t+Δt)−�(t). Then

Prob
{
Δ� j = 1 |�(t)

}= bj� jΔt+ o(Δt),

Prob
{
Δ� j =−1 |�(t)

}=� jd j
(
� j
)
Δt+ o(Δt),

Prob
{
Δ� j =−1 |�(t)

}= (� jd j
(
� j
)

+αj� j
)
Δt+ o(Δt),

Prob
{
Δ� j = 1, Δ� j =−1 |�(t)

}= γjI jΔt+ o(Δt),

Prob
{
Δ� j =−1, Δ�k = 1 |�(t)

}=� jβ jk
(
�k
)�k

�k
Δt+ o(Δt).

(3.2)

Applying these transition probabilities, the expected rate of change E(Δ�(t)) satisfies

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1b1−�1d1
(
�1
)−�1

n∑

k=1

β1k
(
�k
)�k

�k
+ γ1�1

...

�nbn−�ndn
(
�n
)−�n

n∑

k=1

βnk
(
�k
)�k

�k
+ γn�n

−�1d1
(
�1
)

+ �1

n∑

k=1

β1k
(
�k
)�k

�k
− (γ1 +α1

)
�1

...

−�ndn
(
�n
)

+ �n

n∑

k=1

βnk
(
�k
)�k

�k
− (γn +αn

)
�n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ o(Δt). (3.3)

Denote this 2n vector as μ(�(t))Δt + o(Δt). The stochastic variability for the system
comes from the covariance for the rate of change in the state variables. The 2n× 2n co-
variance matrix C(Δ�(t)) to order Δt is

C
(
Δ�(t)

)=
⎛

⎝
C11 C12

C21 C22

⎞

⎠Δt, (3.4)
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where

C11 = diag

(

� jb j + � jd j
(
� j
)

+ � j

n∑

k=1

βjk
(
�k
)�k

�k
+ γj� j

)

,

C22 = diag

(

� jd j
(
� j
)

+ � j

n∑

k=1

βjk
(
�k
)�k

�k
+
(
γj +αj

)
� j

) (3.5)

are n× n submatrices. Matrix C(�(t)) is symmetric, so that the n× n submatrices C12

and C21 satisfy C12 = CT21 = (cjk), where

cjk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−� jβ jk
(
�k
) �k

�K
− γj� j if j = k,

−� jβ jk
(
�k
) �k

�K
if j �= k.

(3.6)

To order Δt, it follows that

Δ�(t)= E(Δ�(t)
)

+
√
C
(
Δ�(t)

)
. (3.7)

Let

B
(
�(t)

)=
√
√
√
√

(
C11 C12

C21 C22

)

, (3.8)

where theCij are defined by (3.5) and (3.6). Matrix B is the unique positive definite square
root. Taking the limit as Δt→ 0 of (3.7), we obtain a system of Itô SDEs [1, 4, 9],

d�(t)
dt

= μ(�(t)
)

+B
(
�(t)

)d�(t)
dt

, (3.9)

where �(t) = (�1(t), . . . ,�2n(t))T , and each � j(t), j = 1, . . . ,2n, is an independent
Wiener process.

A system of SDEs for the multihost SIR epidemic model can be formulated in a similar
manner. Let �(t) denote the random vector

(
�1(t),�2(t), . . . ,�n(t),�1(t),�2(t), . . . ,�n(t),�1(t),�2(t), . . . ,�n(t)

)T
. (3.10)

The transition probabilities for the multihost SIR model are similar in form to the mul-
tihost SIS model given in (3.2). The expected rate of change E(Δ�(t)) for the SIR model
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satisfies

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1b1−�1d1
(
�1
)−�1

n∑

k=1

β1k
(
�k
)�k

�k

...

�nbn−�ndn
(
�n
)−�n

n∑

k=1

βnk
(
�k
)�k

�k

−�1d1
(
�1
)

+ �1

n∑

k=1

β1k
(
�k
)�k

�k
− (γ1 +α1

)
�1

...

−�ndn
(
�n
)

+ �n

n∑

k=1

βnk
(
�k
)�k

�k
− (γn +αn

)
�n

−�1d1
(
�1
)

+ γ1�1

...

−�ndn
(
�n
)

+ γn�n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ o(Δt). (3.11)

Denote this 3n vector as μ(�(t))Δt+ o(Δt). The covariance matrix for Δ�(t) is a 3n× 3n
matrix satisfying, to order Δt,

C
(
�(t)

)=

⎛

⎜
⎜
⎝

C11 C12 0

C21 C22 C23

0 C32 C33

⎞

⎟
⎟
⎠Δt, (3.12)

where the n×n submatrices are

C11 = diag

(

� jb j + � jd j
(
� j
)

+ � j

n∑

k=1

βjk
(
�k
)�k

�k

)

,

C22 = diag

(

� jd j
(
� j
)

+ � j

n∑

k=1

βjk
(
�k
)�k

�k
+
(
γj +αj

)
� j

)

,

C33 = diag
(
� jd j

(
� j
)

+ γj� j
)
,

C23 = diag
(− γj� j

)= C32.

(3.13)

Submatrices C12 and C21 satisfy C12 = CT21 = (cjk), where

cjk =−� jβ jk
(
�k
)�k

�k
. (3.14)

Let B(�(t))=
√

(Cij). It follows that the system of Itô SDEs for the SIR model is given by
(3.9).
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4. Numerical examples

Two numerical examples illustrate the dynamics of the stochastic and deterministic mod-
els. For both examples, there are three hosts in an SIS epidemic model, one reservoir
species and two spillover species. Standard incidence is used in the first example, βjk(Nk)=
λjk. Mass action incidence is used in the second example, βjk(Nk)= λjkNk. It is reasonable
to assume that the reservoir species ( j = 1) has a greater contact rate and longer period of
infectivity than the spillover species. Therefore, we assume λ11 > λjk, λj1 > λjk, for j �= 1
and k �= 1, and γ1 < γj , j = 2,3 [10].

In the first example, we let λ11 = 3.5, λ1k = 0.3 = λkk, k = 2,3, λ21 = 0.6 = λ31, and
λ23 = 0 = λ32 [10]. The disease is not spread between the spillover species. Hantavirus
in rodents results in very few, if any, disease-related deaths. Therefore, we let αj = 0.01,
j = 1,2,3. All species have the same birth rate, bj = 3= b, j = 1,2,3, but different carrying
capacities, Kj . The recovery rate for the reservoir species is γ1 = 0.55, and for the spillover
species γj = 1, j = 2,3. The natural death rate for each species is given by dj(Nj) = a+
(b− a)Nj/Kj , j = 1,2,3, where a= 0.5, K1 = 500, and Kj = 250, j = 2,3.

The basic reproduction number corresponding to this first model is slightly greater
than one, �0 = 1.0101. There exists a unique locally stable endemic equilibrium,

(S1,I1,S2,I2,S3,I3)≈ (495,5,249.6,0.4,249.6,0.4). (4.1)

The simulation is initiated with a small number of infected individuals: S1(0) = 200,
S2(0)= 100= S3(0), I1(0)= 5, I2(0)= 1, and I3(0)= 0.

The deterministic solution, one stochastic sample path, the mean of 1000 sample
paths, and the frequency distribution at t = 50 for the first example are graphed in Fig-
ures 4.1(a), 4.1(b), 4.1(c), and 4.1(d), respectively. The deterministic solution approaches
the endemic equilibrium given by (4.1). However, the sample paths and the frequency
distribution show that this is not the case for the stochastic model. The means of the
sample paths are close to the DFE: μS1 = 498.9, μS2 = 248.4, μS3 = 248.3, μI1 = 0.0023,
μI2 = 0.0001, and μI3 = 0.0004 (at t = 50). The disease cannot persist even in the reservoir
species. This is due to the variance inherent in the stochastic model and the relatively low
endemic equilibrium values for the infected hosts. In addition, the basic reproduction
number for the reservoir species is less than one (in the absence of the spillover species),
�1

0 = 0.983.
In the second example, all of the parameter values and initial conditions are the same

as in the first example, with the exception of the transmission rates and the carrying
capacities. The carrying capacities are K1 = 1000 and K2 = 500 = K3. The values of the
transmission rates at the carrying capacities satisfy β11(K1)= 3.5, β1k(Kk)= 0.3= βkk(Kk),
k = 2,3, βj1(K1)= 2(β1 j(Kj)), j = 2,3, and β23(K3)= 0= β32(K2), so that they agree with
the preceding example [10]. The basic reproduction number is �0 = 2.0202. There exists
a locally stable endemic equilibrium given by

(
S1,I1,S2,I2,S3,I3

)≈ (483.7,514.3,424.8,74.9,424.8,74.9). (4.2)

The deterministic solution, one stochastic sample path, the mean of 1000 sample
paths, and the frequency distribution at t = 50 for the second example are graphed in
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Figure 4.1. Solutions of the three-host deterministic and stochastic SIS epidemic model with standard
incidence, �0 = 1.0101: (a) solution of the deterministic model; (b) one sample path of the stochastic
model; (c) mean of 1000 sample paths of the stochastic model; (d) frequency distribution of the
stochastic model at t = 50 based on 1000 sample paths.
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Figure 4.2. Solutions of the three-host deterministic and stochastic SIS epidemic model with mass
action incidence, �0 = 2.0202: (a) solution of the deterministic model; (b) one sample path of the
stochastic model; (c) mean of 1000 sample paths of the stochastic model; (d) frequency distribution
of the stochastic model at t = 50 based on 1000 sample paths.

Figures 4.2(a), 4.2(b), 4.2(c), and 4.2(d), respectively. Because of the large reproduction
number and high prevalence of disease, there is less chance for disease extinction than
in the previous example. The means of the sample paths are close to the deterministic
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solution; μS1 = 508.0, μS2 = 427.3, μS3 = 428.0, μI1 = 489.3, μI2 = 71.2, and μI3 = 71.2 (at
t = 50). Because in a few of the sample paths there is disease extinction, the frequency
distribution is bimodal, with one mode at the DFE and another at the endemic equilib-
rium.

In summary, for multihost epidemic models, the deterministic models show that dis-
ease persistence can be enhanced by the presence of secondary or spillover species. How-
ever, if the level of prevalence in these spillover species is relatively low and the reproduc-
tion number in the reservoir host is less than one, the stochastic models show that the
disease does not persist in the multihost system.
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LIPSCHITZ REGULARITY OF VISCOSITY SOLUTIONS
IN SOME NONLINEAR PARABOLIC-FREE
BOUNDARY PROBLEMS

EMMANOUIL MILAKIS

We study the regularity of solutions in Stefan-type free boundary problems. We prove that
viscosity solutions to a fully nonlinear free boundary problem are Lipschitz continuous
across the free boundary, provided that the free boundary is a Lipschitz graph in some
space direction.

Copyright © 2006 Emmanouil Milakis. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We present the author’s result [4, 5] concerning the regularity of the solution to a class of
free boundary problems. More precisely, we study a two-phase Stefan-like free bound-
ary problem in which a fully nonlinear parabolic equation is verified by the solution
in the positive and the negative domains. These problems arise when a state variable,
v, (temperature, an enthalphy concentration) diffuses in any of two given states (solid-
liquid, burnt-unburnt, etc.) but suffers a discontinuity in its behavior across some value
(e.g., v = 0) that indicates state transition. The case of the heat equation was studied by
Athanasopoulos et al. [1, 2].

We start our approach by giving some basic definitions and notations. Denote a point
in Rn+1 by (x, t)= (x′,xn, t) and let � be the space of n×n symmetric matrices. Consider
an operator F : � ⊆ Rn×n → R to be smooth, concave, fully nonlinear, homogeneous of
degree 1, F(0) = 0, and uniformly elliptic. Denote by xn = f (x′, t) a Lipschitz function
with Lipschitz constant L. We give the definition of a viscosity solution.

Definition 1.1. Let v be a continuous function in D1 := B1(0)× (−1,1). Then v is called a
subsolution (supersolution) to a free boundary problem if

(i) F(D2v)− vt ≥ 0 (≤ 0) in Ω+ :=D1∩{v > 0};
(ii) F(D2v−)− (v−)t ≤ 0 (≥ 0) in Ω− :=D1∩{v ≤ 0}o;

(iii) v ∈ C1(Ω
+

) ∩C1(Ω
−

);
(iv) for any (x, t)∈ ∂Ω+∩D1,∇xv+(x, t)
= 0,

Vν ≥−G
(
(x, t),ν,v+

ν ,v−ν
)

(≤) (1.1)

Hindawi Publishing Corporation
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is the speed of the surface �t := ∂Ω+∩{t} in the direction ν :=∇xv+/|∇xv+|. We say that
v is a solution to a free boundary problem if it is both subsolution and supersolution. The
basic requirements on G are continuity in all its arguments, increasing in v+

ν , decreasing
in v−ν , and that G→ +∞ when v+

ν − v−ν → +∞.

Definition 1.2. Assume that u is a continuous function in D1, then u is a viscosity subso-
lution (supersolution) to a free boundary problem if, for any subcylinder Q of D1 and for
every supersolution (subsolution) v in Q, u≤ v (u≥ v) on ∂pQ implies that u≤ v (u≥ v)
in Q.

Let us introduce the following useful notations, for (ξ,τ)∈ {xn = f (x′, t)}, r > 0:

Ar(ξ,τ) := (ξ′,ξn + b0r,τ
)
, Ar(ξ,τ) :=

(

ξ′,ξn + b0r,τ +
3
2
r2
)

,

Ar(ξ,τ) :=
(

ξ′,ξn + b0r,τ − 3
2
r2
)

,

Qr(ξ,τ) := {(x, t)∈Rn+1 :
∣
∣x′ − ξ′∣∣ < r, ∣∣xn− ξn

∣
∣ < b0r, |t− τ| < r2},

Kr(ξ,τ) := {(x, t)∈Rn+1 :
∣
∣x′ − ξ′∣∣ < t, ∣∣xn− ξn

∣
∣ < b0r, |t− τ| < r

}
.

(1.2)

Finally we assume dx,t := inf{dist((x, t),(y, t)) : yn = f (y′, t)} and (0,0)∈ {xn = f (x′, t)}.
We state our main regularity result in the following theorem.

Theorem 1.3. Let u be a viscosity solution of a free boundary problem in B1(0)× (−1,1)
and ∂Ω+ is Lipschitz in some space direction ν with Lipschitz constant L. Assume that
u(A3/4(0,0)) = m > 0 where b0 = max(4L,1) and the free boundary contains the origin.
Then u is Lipschitz continuous.

The paper is organized as follows. Section 1 consists of introduction, preliminaries,
and the statement of the main result. In Section 2 we develop some properties for the
solutions of the problem and finally in Section 3 we sketch the proof of the main Theorem
1.3.

2. Properties of solutions

We start with the usual backward Harnack inequality which may lead us to the Hölder
continuity of the quotient of two solutions as in [4, 5].

Theorem 2.1 (backward Harnack). Let u be a solution in Q1∩Ω for Ω := {xn > f (x′, t)}
and u(A3/4(0,0)) =m > 0 which vanishes locally on Q1 ∩ ∂Ω. Then there exists a constant
C = C(n,L,m/M,λ,Λ) such that

u
(
x, t+ ρ2)≤ Cu(x, t− ρ2) (2.1)

for all (x, t)∈Q1/2∩Ω and for all ρ : 0 < ρ < dx,t/b0.

Proof. Define

Lu≡ αi j(x, t)uxixj (x, t)−ut(x, t), (2.2)
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where

αi j(x, t) :=
∫ 1

0

∂F

∂Ri j

(
sD2u

)
ds. (2.3)

Note that if u is a solution in Q1∩Ω, then Lu= 0 in Q1∩Ω and L has the same ellipticity
constants λ, Λ as F. Let w(x,t) be the L-caloric measure in Q1∩Ω evaluated at (x, t).

For any (x, t)∈Q1/2∩Ω, take (ξ,τ)∈Q1/2∩ ∂Ω and r > 0 such that (x, t)= Ar(ξ,τ)=
Ar and define B := {t =−1}∩Q1∩Ω. Then

u
(
Ar
)=

∫

Σ
udwAr +

∫

B
udwAr =: u1

(
Ar
)

+u2
(
Ar
)
. (2.4)

From [3] we have

u2
(
Ar
)≤ Cu2

(
Ar
)
. (2.5)

On the other hand, if γ := Σ∩{−1 < t <−9/16} and the doubling property of L-caloric
measure [6], we have

w(x,t)(Σ)≤ Cw(x,t)(γ),

u
(
Ar
)=

∫

Σ
udwAr +

∫

B
udwAr ≥

∫

γ
udwAr +

∫

B
udwAr .

(2.6)

Since w(x,t)(γ) is zero on the lateral part of Q1∩Ω except on γ, we get

wAr (γ)≤ CwAr (γ). (2.7)
�

In the following two lemmas we show that u is actually monotone in any direction
entering the domain.

Lemma 2.2. Let u be as in Theorem 2.1.
(a) If Denu≥ 0 in Q1/2∩Ω, then there exists a constant C = C(n,L,λ,Λ,m,M) such that

1
C

u(x, t)
dx,t

≤Denu(x, t)≤ Cu(x, t)
dx,t

(2.8)

for every (x, t)∈Q1/2∩Ω.
(b) In Qδ ∩Ω for some δ = δ(n,L,λ,Λ,m/M), we have

Denu≥ 0. (2.9)

Proof. In order to prove (a) note that since u is an F-solution,

u
(
x+hen, t

)−u(x, t)
h

∈ S (2.10)

for all h > 0 and, in particularDenu∈ S, since S is closed under uniform limits in compact
sets, Harnack principle is valid for Denu. Take (x, t) ∈ Q1/2 ∩Ω and choose r > 0 and
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(ξ,τ)∈Q1/2∩ ∂Ω such that (x, t)=Ar(ξ,τ). Now

u
(
Ar(ξ,τ)

)−u
(

ξ + δen,τ − 3
2
r2
)

=
∫ br

δ
Denu

(

ξ + sen,τ − 3
2
r2
)

ds. (2.11)

By the usual Carleson estimate and Harnack inequality for u, we have

u
(

ξ + δen,τ − 3
2
r2
)

≤ C
(
δ

r

)α
u
(
Ar(ξ,τ)

)
. (2.12)

Now

∫ br

δ
Denu

(

ξ + sen,τ − 3
2
r2
)

ds= (br− δ)Denu
(

ξ +ωen,τ − 3
2
r2
)

≤ brDenu
(

ξ +ωen,τ − 3
2
r2
) (2.13)

for ω ∈ (δ,br). Since Denu∈ S and Denu≥ 0 by Harnack, we get

Denu
(

ξ +ωen,τ − 3
2
r2
)

≤ CDenu
(
Ar(ξ,τ)

)
. (2.14)

On the other hand, using backward Harnack

u
(

ξ + δen,τ − 3
2
r2
)

≤ C
(
δ

r

)α
u
(
Ar(ξ,τ)

)≤ C
(
δ

r

)α
u
(
Ar(ξ,τ)

)≤ C
(
δ

r

)α
u
(
Ar(ξ,τ)

)
,

(2.15)

thus

u
(
Ar(ξ,τ)

)−u
(

ξ + δen,τ − 3
2
r2
)

≥ u(Ar(ξ,τ)
)−

(
δ

r

)α
u
(
Ar(ξ,τ)

)

≥ u(Ar(ξ,τ)
)−

(
δ

r

)α
u
(
Ar(ξ,τ)

)

≥ u(Ar(ξ,τ)
)−

(
δ

r

)α
u
(
Ar(ξ,τ)

)
.

(2.16)

Now choose δ small enough to get

1
2
u
(
Ar(ξ,τ)

)≤ CrDenu
(
Ar(ξ,τ)

)
. (2.17)

For the remaining part use Harnack for ω ∈ (br/2,br),

CrDenu
(
Ar(ξ,τ)

)≤ rDenu
(

ξ +ωen,τ +
3
2
r2
)

,

∫ br

br/2
Denu

(

ξ + sen,τ +
3
2
r2
)

ds= br

2
Denu

(

ξ +ωen,τ +
3
2
r2
)

,

(2.18)
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thus from backward Harnack
∫ br

br/2
Denu

(

ξ + sen,τ +
3
2
r2
)

ds= u
(

ξ + bren,τ +
3
2
r2
)

−u
(

ξ +
br

2
en,τ +

3
2
r2
)

≤ u
(

ξ + bren,τ +
3
2
r2
)

≤ Cu
(

ξ + bren,τ − 3
2
r2
)

≤ Cu(Ar(ξ,τ)
)
,

rDenu
(
Ar(ξ,τ)

)≤ Cu(Ar(ξ,τ)
)
.

(2.19)

Since r ∼ dx,t, the proof is complete. For (b) we refer the reader to [4]. �

Lemma 2.3. Let u as in Theorem 2.1. Then for any direction μ entering into Ω, that is, μ=
αen +βen+1, α2 +β2 = 1, such that 0 < tan−1(β/α) < (1/2)cot−1(L) for some δ = δ(n,L,λ,Λ,
m,M,‖∇u‖L2 ) small enough

Dμu(x, t)≥ 0 (2.20)

for every (x, t)∈Qδ ∩Ω.

A detailed proof of Lemma 2.3 can be found in [4]. Combining Lemmas 2.2 and 2.3
we have the following.

Corollary 2.4. Let u be as in Theorem 2.1. Then there exist ε > 0 and δ > 0 depending on
n, L, λ, Λ such that the functions

w+ := u+u1+ε, w− := u−u1+ε (2.21)

are subsolution and supersolution, respectively, of equation F(D2v)= 0 in the viscosity sense
in Qδ ∩Ω∩{t = 0}.

In the next lemma we examine the behavior of an F-solution near the boundary where
it vanishes.

Lemma 2.5. Let u be an F-solution inK1∩Ω monotone for every μ∈Γ(en,θ) with cot(2θ) >
L. If there is an n-dimensional ball B ⊂ K1 ∩Ω∩ {t = 0} (resp., B ⊂ K1 ∩Ωc ∩ {t = 0})
such that B∩ ∂Ω= {(0,0)}, then

u(x,0)= α(x,ν)+ + o
(|x|) (2.22)

near (0,0) in K1 ∩Ω, for some α ∈ (0,∞] (resp., α ∈ [0,∞)) where ν denotes the inward
(resp., outward) radial direction of B at (0,0).

3. Proof of Theorem 1.3

The object of this section is to present a sketch of the proof of Theorem 1.3. We refer the
reader to [4, 5] for the technical parts.

Proof of Theorem 1.3. Let (x0, t0)∈Ω+ be of distance d from ∂Ω+, where

d <
1
2

dist
((
x0, t0

)
, ∂pD1

)
(3.1)



792 Regularity of solutions in parabolic FBP’s

small enough such that all the previous estimates can be applied. Take h := dist((x0,0),
(0,0)) and set

u
(
x0,0

)=Mh. (3.2)

Using Harnack we can prove

Mh≤ C inf
Bh/4(x0)

w−(x) (3.3)

for k large, small h.
Choose a coordinate system so that x0 = |x0|en and set

R :=
{

x ∈Rn :
∣
∣xi
∣
∣≤ ξh, i= 1, . . . ,n− 1,

∣
∣xn
∣
∣≤ h

8

}

, (3.4)

where ξ is a constant chosen so that

(

x1, . . . ,xn−1,
h

8

)

∈ Bh
(
x0
)
,

(

x1, . . . ,xn−1,−h
8

)

∈ {u < 0} (3.5)

when |xi| ≤ ξh, i= 1, . . . ,n− 1. Observe that R⊂ Bh/2(0) for ξ small.
Integrate w+ along lines parallel to en from the free boundary to the side (x1, . . . ,xn−1,

h/8) of R:

w+

(

x1, . . . ,xn−1,
h

8

)

=
∫

l

(
w+
)
xn
dxn (3.6)

and therefore
∫

l

(
w+
)
xn
dxn =w+

(

x1, . . . ,xn−1,
h

8

)

≥w−
(

x1, . . . ,xn−1,
h

8

)

≥ CMh, (3.7)

thus

C1M
2 ≤

∫

Bh/2

∣
∣∇(w+

)+∣∣2
dx. (3.8)

On the other hand, using the asymptotic development of w+, we have

w+(x,0)=−αx+
n + o

(|x|) (3.9)

for x ∈ Bh/2(0) where α > 0, thus

C2α
2 ≤

∫

Bh/2

∣
∣∇(w+

)−∣∣2
dx. (3.10)

Hence by the monotonicity formula (see [4, Remark 2.2]), we obtain

M2α2 ≤ C. (3.11)

So if M is large, then α is small.
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Let Bρ ⊂ {u > 0} be tangent to Bh(x0) at the origin. Take ρ < h/8 and δ > 0 small such
that u > (1/2)Mx+

n in Bδ(0)∩Bρ and u >−(1/2)α−x−n in Bδ(0) \Bρ, where α− = α if α > 0
and α− is a small positive constant otherwise. Consider functions

ψ(x, t) := 1
3
Mx+

n +β+t+
1

2λ
β+x

2
n− c1

(

t2 +
1
Λn

t|x|2
)

− c2

(
1

4nΛ

∣
∣x′
∣
∣2− 1

λ
x2
n

)

,

φ(x, t) := ψ+(x, t)− 9
2M

α−ψ−(x, t),
(3.12)

where β+ satisfies

M

10
G
(

(0,0),en,
1
3
M,

3
2
α−
)

< β+ <
M

3
G
(

(0,0),en,
1
3
M,

3
2
α−
)

. (3.13)

Choosing c1, c2, it is not hard to prove that φ is a subsolution to a free boundary problem
in Bδ(0)× (0, t0) for t0 small. Taking δ, t0 even smaller we have that

u≥ φ (3.14)

on ∂Bδ(0)× [0, t0] and on Bδ(0)×{0}. Therefore u > φ in Bδ(0)× (0, t0) (u is a viscosity
solution).

On the other hand, ifM is very large (thus α− is small), φ+
t (0,0)/φ+

xn(0,0) becomes very
large and by assumption the free boundary of u is Lipschitz thus u and φ must cross each
other in Bδ(0)× (0, t0), a contradiction. Therefore M is controlled by a constant. �
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A FOURTH-ORDER BVP OF STURM-LIOUVILLE TYPE WITH
ASYMMETRIC UNBOUNDED NONLINEARITIES

F. MINHÓS, A. I. SANTOS, AND T. GYULOV

It is obtained an existence and location result for the fourth-order boundary value prob-
lem of Sturm-Liouville type u(iv)(t) = f (t,u(t),u′(t),u′′(t),u′′′(t)) for t ∈ [0,1]; u(0) =
u(1) = A; k1u′′′(0)− k2u′′(0) = 0; k3u′′′(1) + k4u′′(1) = 0, where f : [0,1]× R4 → R is
a continuous function and A,ki ∈ R, for 1≤ i≤ 4, are such that k1,k3 > 0, k2,k4 ≥ 0. We
assume that f verifies a one-sided Nagumo-type growth condition which allows an asym-
metric unbounded behavior on the nonlinearity. The arguments make use of an a priori
estimate on the third derivative of a class of solutions, the lower and upper solutions
method and degree theory.

Copyright © 2006 F. Minhós et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper it is considered the fourth-order fully nonlinear differential equation

u(iv)(t)= f
(
t,u(t),u′(t),u′′(t),u′′′(t)

)
for t ∈ I = [0,1], (1.1)

with the Sturm-Liouville boundary conditions

u(0)= u(1)= A,

k1u
′′′(0)− k2u

′′(0)= 0, k3u
′′′(1) + k4u

′′(1)= 0,
(1.2)

where A,k1,k2,k3,k4 ∈ R are such that k1,k3 > 0, k2,k4 ≥ 0, and f : [a,b]× R4 → R is a
continuous function verifying one-sided Nagumo-type growth assumption.

This problem generalizes the classical beam equation and models the study of the
bending of an elastic beam simply supported [8, 9, 11].

As far as we know it is the first time, in fourth-order problems, that the nonlinearity f
is assumed to satisfy a growth condition from above but no restriction from below. This
asymmetric type of unboundedness is allowed since f verifies one-sided Nagumo-type

Hindawi Publishing Corporation
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796 A fourth-order BVP of Sturm-Liouville type

condition, that is, there exists a positive continuous function ϕ such that

f
(
t,x0,x1,x2,x3

)≤ ϕ(∣∣x3
∣
∣
)
, ∀(t,x0,x1,x2,x3

)∈ E, (1.3)

on some given subset E ⊂ I ×R4, and
∫ +∞

0 (s/ϕ(s))ds= +∞.
Some boundedness of Nagumo-type plays a key role in these results because, as it is

known for second-order boundary value problems, the existence of well-ordered lower
and upper solutions, by itself, is not sufficient to ensure the existence of solutions (see
[10, 15]).

When a one-sided Nagumo-type condition is assumed, the situation becomes more
delicate since this condition does not provide a priori estimates for the third-order de-
rivative of all solutions of (1.1) which is usually the key point for studying this sort of
problem, as it can be seen in [2, 3, 13, 14].

However, it is still possible to establish a priori bounds for classes Sη of solutions of
(1.1) (see Lemma 2.2). More precisely, if we define for η ≥ 0

Sη =
{
u solution of (1.1) : u′′′(0)≤ η, u′′′(1)≥−η}, (1.4)

we prove that there is r > 0 such that if u∈ Sη, then it satisfies ‖u′′′‖∞ < r.
The existence and location of a solution for problem (1.1)-(1.2) (see Theorem 3.1) are

established by using the method of lower and upper solutions to obtain a priori estima-
tions on a class of solution and some derivatives, which allow us to define an open set
where the topological degree is well defined [12].

This kind of arguments was suggested by [1] for second-order boundary value prob-
lems and by [4–7] for higher-order separated boundary value problems.

2. Preliminaries

In this section we will introduce the main concepts that we will use throughout this paper.
Given y,z ∈ C(I) such that y ≤ z in I , we denote

[y,z] := {x ∈ C(I) : y(t)≤ x(t)≤ z(t), ∀t ∈ I}. (2.1)

In order to obtain an a priori bound for the third-order derivative u′′′(t) of a class of
solutions of problem (1.1)-(1.2), we will introduce the concept of one-sided Nagumo-
type growth condition.

Definition 2.1. Given a subset E ⊂ I × R4, a function f : I × R4 → R is said to satisfy a
one-sided Nagumo-type condition in E if there exists, for some a > 0, ϕ∈ C(R+

0 ,[a,+∞))
such that

f
(
t,x0,x1,x2,x3

)≤ ϕ(∣∣x3
∣
∣
)
, ∀(t,x0,x1,x2,x3

)∈ E, (2.2)

with
∫ +∞

0

s

ϕ(s)
ds= +∞. (2.3)

This asymmetric growth condition will be an important tool in the proof of next lemma.
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Lemma 2.2. Consider, for i= 0,1,2, the functions γi,Γi ∈ C(I ,R) such that γi(t)≤ Γi(t), for
all t ∈ I , and define the set

E = {(t,x0,x1,x2,x3
)∈ I ×R4 : γi(t)≤ xi ≤ Γi(t), i= 0,1,2

}
. (2.4)

Let ϕ : R+
0 → [a,+∞), for some a > 0, be a continuous function such that

∫ +∞

η

s

ϕ(s)
ds >max

t∈I
Γ2(t)−min

t∈I
γ1(t), (2.5)

where η ≥ 0 is given by η =max{Γ2(0)− γ2(1),Γ2(1)− γ2(0)}.
Then there is r > 0 (depending only on ϕ, γ2, and Γ2), such that, for every continuous

function f : I ×R4→ R satisfying one-sided Nagumo-type condition and every solution u(t)
of (1.1) verifying

u′′′(0)≤ η, u′′′(1)≥−η, (2.6)

u(i)(t)∈ [γi,Γi
]

for i= 0,1,2, ∀t ∈ I , (2.7)

satisfies

‖u′′′‖∞ < r. (2.8)

Proof. The proof follows the arguments used in [7] and the technique suggested in [13]
for fourth-order boundary value problems. �

This lemma still holds if condition (2.2) is replaced by

f
(
t,x0,x1,x2,x3

)≥−ϕ(∣∣x3
∣
∣
)
, ∀(t,x0,x1,x2,x3

)∈ E, (2.9)

and (2.7) by u′′′(0)≥−η, u′′′(1)≤ η.
Lower and upper solutions for problem (1.1)-(1.2) must be defined as a pair of func-

tions, in the following way.

Definition 2.3. Consider A,ki ∈ R, for 1 ≤ i ≤ 4, such that k1,k3 > 0 and k2,k4 ≥ 0. The
functions α,β ∈ C4(I) satisfying

α(t)≤ β(t), α′(t)≥ β′(t), α′′(t)≤ β′′(t), ∀t ∈ I , (2.10)

define a pair of lower and upper solutions of problem (1.1)-(1.2) if the following condi-
tions are verified:

(i) α(iv)(t)≥ f (t,α(t),α′(t),α′′(t),α′′′(t)),

α(1)≤ A, k1α
′′′(0)− k2α

′′(0)≥ 0, k3α
′′′(1) + k4α

′′(1)≤ 0; (2.11)

(ii) β(iv)(t)≤ f (t,β(t),β′(t),β′′(t),β′′′(t)),

β(1)≥A, k1β
′′′(0)− k2β

′′(0)≤ 0, k3β
′′′(1) + k4β

′′(1)≥ 0; (2.12)

(iii) α′(1)−β′(1)≥max{β(0)−β(1),α(1)−α(0)}.
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Remark 2.4. (a) Condition (iii) is optimal and cannot be removed, as it will be proved
forward (see counterexample).

(b) If the maximum refereed in (iii) is nonnegative, that is,

α′(1)−β′(1)≥max
{
β(0)−β(1),α(1)−α(0),0

}
, (2.13)

then assumption (2.10) can be replaced by α′′(t)≤ β′′(t) in I , since the other inequalities
can be deduced by integration.

3. Existence and location results

The main result of this work is the following existence and location theorem.

Theorem 3.1. Assume that there exists a pair of lower and upper solutions of problem (1.1)-
(1.2), α(t) and β(t), respectively. Consider the set

E1 =
{(
t,x0,x1,x2,x3

)∈ I ×R4 : α(t)≤ x0 ≤ β(t),

α′(t)≥ x1 ≥ β′(t), α′′(t)≤ x2 ≤ β′′(t)

}

, (3.1)

and let f : I ×R4→ R be a continuous function such that:
(a) f satisfies the one-sided Nagumo-type condition in E1;
(b) for (t,x2,x3)∈ I ×R2, α(t)≤ x0 ≤ β(t) and α′(t)≥ x1 ≥ β′(t)

f
(
t,α,α′,x2,x3

)≥ f
(
t,x0,x1,x2,x3

)≥ f
(
t,β,β′,x2,x3

)
. (3.2)

Then problem (1.1)-(1.2) has at least one solution u(t)∈ C4(I) that satisfies

u∈ [α,β], u′ ∈ [β′,α′], u′′ ∈ [α′′,β′′], ∀t ∈ I. (3.3)

Proof. For λ∈ [0,1], consider the homotopic equation

u(iv)(t)= λ f (t,ξ0
(
t,u(t)

)
,ξ1
(
t,u′(t)

)
,ξ2
(
t,u′′(t)

)
,u′′′(t)

)
+u′′(t)− λξ2

(
t,u′′(t)

)
,

(3.4)

where ξi : I ×R→ R are the auxiliary continuous functions defined by

ξi
(
t,xi
)=max

{
α(i)(t),min

{
xi,β(i)(t)

}}
for i= 0,2,

ξ1
(
t,x1

)=max
{
β′(t),min

{
x1,α′(t)

}} (3.5)

with the boundary conditions

u(0)= u(1)= λA,

u′′′(0)= λ
(
k2

k1

)

u′′(0), u′′′(0)=−λ
(
k4

k3

)

u′′(1).
(3.6)
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Take r1 > 0 large enough such that, for every t ∈ I ,
−r1 < α

′′(t)≤ β′′(t) < r1,

f
(
t,α(t),α′(t),α′′(t),0

)− r1−α′′(t) < 0,
(3.7)

f
(
t,β(t),β′(t),β′′(t),0

)
+ r1−β′′(t) > 0. (3.8)

The proof is deduced from the following four steps.

Step 1. Every solution u(t) of problem (3.4)-(3.6) satisfies |u(i)(t)| < r1, for every t ∈ I
and i= 0,1,2, independently of λ∈ [0,1].

Assume, by contradiction, that the above estimate does not hold for i= 2. So, for λ∈
[0,1], there exist t ∈ I and a solution u of (3.4)-(3.6) such that |u′′(t)| ≥ r1. In the case
u′′(t)≥ r1 define

u′′
(
t0
)

:=max
t∈I

u′′(t)≥ r1. (3.9)

If t0 ∈ (0,1), then u′′′(t0)= 0 and u(iv)(t0)≤ 0. For λ∈ [0,1], by (3.2) and (3.8), the fol-
lowing contradiction is obtained:

0≥ u(iv)(t0
)

≥ λ f (t0,β
(
t0
)
,β′
(
t0
)
,β′′
(
t0
)
,0
)

+u′′
(
t0
)− λβ′′(t0

)

= λ[ f (t0,β
(
t0
)
,β′
(
t0),β′′

(
t0
)
,0
)

+ r1−β′′
(
t0
)]

+u′′
(
t0
)− λr1 > 0.

(3.10)

So t0 /∈ (0,1). If t0 = 0, for λ∈ [0,1], we obtain, by (3.6),

0≥ u′′′(0)= λ
(
k2

k1

)

u′′(0)≥ λ
(
k2

k1

)

r1 ≥ 0. (3.11)

Thus u′′′(0)= 0 and u(iv)(0)≤ 0. Replacing in the above computations t0 by 0, it can
be proved that t0 �= 0. For t0 = 1 the technique is similar and so u′′(t) < r1, for every t ∈ I .
The case u′′(t)≤−r1 follows analogous arguments and then |u′′(t)| < r1, for all t ∈ I .

By (3.4), there exists ξ ∈ (0,1) such that u′(ξ)= 0. Then, integrating on [ξ, t] first and
then on [0, t], we obtain

∣
∣u′(t)

∣
∣=

∣
∣
∣
∣

∫ t

ξ
u′′(s)ds

∣
∣
∣
∣ < r1

∣
∣t− ξ∣∣≤ r1,

∣
∣u(t)

∣
∣=

∣
∣
∣
∣

∫ t

0
u′(s)ds

∣
∣
∣
∣ < r1t ≤ r1. (3.12)

Step 2. There is r2 > 0 such that, for every solution u(t) of problem (3.4)-(3.6), |u′′′(t)| <
r2 in I , independently of λ∈ [0,1].

Consider the set

Er1 =
{(
t,x0,x1,x2,x3

)∈ I ×R4 :−r1 ≤ xi ≤ r1, i= 0,1,2
}

, (3.13)

and, for λ∈ [0,1], the function Fλ : Er1 → R is given by

Fλ
(
t,x0,x1,x2,x3

)= λ f (t,ξ0
(
t,x0

)
,ξ1
(
t,x1

)
,ξ2
(
t,x2

)
,x3
)

+ x2− λξ2
(
t,x2

)
. (3.14)
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As

Fλ
(
t,x0,x1,x2,x3

)≤ λϕ(∣∣x3
∣
∣
)

+ r1− λα′′(t)≤ ϕ
(∣
∣x3
∣
∣
)

+ 2r1, (3.15)

then Fλ satisfies one-sided Nagumo-type condition in Er1 with ϕ replaced by ϕ := 2r1 +
ϕ(t), independently of λ∈ [0,1]. By (3.6) and Step 1, we have

u′′′(0)= λ
(
k2

k1

)

u′′(0)≤ λ
(
k2

k1

)

r1 ≤
(
k2

k1

)

r1 ≤ ρ,

u′′′(1)=−λ
(
k4

k3

)

u′′(1)≥−λ
(
k4

k3

)

r1 ≥−
(
k4

k3

)

r1 ≥−ρ.
(3.16)

So, applying Lemma 2.2 with γi(t)≡−r1, Γi(t)≡ r1, for i= 0,1,2, and

ρ :=max
{(

k2

k1

)

r1,
(
k4

k3

)

r1

}

, (3.17)

there is r2 > 0 such that |u′′′(t)| < r2, for all t ∈ I . As r1 and ϕ do not depend on λ, then r2

is independent of λ.

Step 3. For λ= 1, problem (3.4)-(3.6) has at least a solution u1(t).

Define the operators � : C4(I)⊂ C3(I)→ C(I)×R4 by

�u= (u(iv)−u′′(t),u(0),u(1),u′′(0),u′′(1)
)

(3.18)

and, for λ∈ [0,1], �λ : C3(I)→ C(I)×R4 by

�λu=
(

λ f
(
t,ξ0

(
t,u(t)

)
,ξ1
(
t,u′(t)

)
,ξ2
(
t,u′′(t)

)
,u′′′(t)

)

− λξ2
(
t,u′′(t)

)
,λA,λA,λ

(
k2

k1

)

u′′(0),−λ
(
k4

k3

)

u′′(1)
)

.
(3.19)

As � has a compact inverse, we can define the completely continuous operator �λ :
(C3(I),R)→ (C3(I),R) by

�λ(u)=�−1�λ(u). (3.20)

For r2 given by Step 2, consider the set

Ω=
{
x ∈ C3(I) :

∥
∥x(i)

∥
∥∞ < r1, i= 0,1,2,

∥
∥x′′′

∥
∥∞ < r2

}
. (3.21)

By Steps 1 and 2, for every u solution of (3.4)–(3.6), u /∈ ∂Ω and so the degree d(I −
�λ,Ω,0) is well defined, for every λ∈ [0,1]. By the invariance under homotopy,

d
(
I −�0,Ω,0

)= d(I −�1,Ω,0
)
. (3.22)

Since the equation x =�0(x), equivalent to the problem

u(iv)(t)−u′′(t)= 0,

u(0)= u(1)= u′′′(0)= u′′′(1)= 0,
(3.23)
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has only the trivial solution, then d(I −�0,Ω,0) = ±1. Therefore, by degree theory, the
equation x =�1(x) has at least one solution. That is, the problem

u(iv)(t)= f
(
t,ξ0(t,u),ξ1(t,u′),ξ2(t,u′′),u′′′(t)

)
+u′′(t)− ξ2(t,u′′) (3.24)

with the boundary condition (1.2) has at least one solution u1(t) in Ω.

Step 4. The function u1(t) is a solution of problem (1.1)-(1.2).

We remark that this statement holds if u1(t) verifies (3.3). Assume, by contradiction,
that there is t ∈ I such that u′′1 (t) > β′′(t) and define

(
u1−β

)′′(
t1
)

:=max
t∈I

{(
u1−β

)′′
(t)
}
> 0. (3.25)

If t1 ∈ (0,1), then u′′′1 (t1)= β′′′(t1) and u(iv)
1 (t1)≤ β(iv)(t1). By (b) and (ii), the follow-

ing contradiction is achieved:

u(iv)
1

(
t1
)≥ f

(
t1,β

(
t1
)
,β′
(
t1
)
,β′′
(
t1
)
,β′′′

(
t1
))

+u′′1
(
t1
)−β′′(t1

)

> f
(
t1,β

(
t1
)
,β′
(
t1
)
,β′′
(
t1
)
,β′′′

(
t1
))≥ β(iv)(t1

)
.

(3.26)

If t1 = 0, then (u1−β)′′′(0)≤ 0 so, by (3.6) and Definition 2.1,

0≥ u′′′1 (0)−β′′′(0)=
[
k2u

′′
1 (0)− k1β′′′(0)

]

k1
≥
(
k2

k1

)
[
u′′1 (0)−β′′(0)

]≥ 0. (3.27)

Thus u′′′1 (0) = β′′′(0) and u(iv)
1 (0) ≤ β(iv)(0). Therefore, replacing in the above in-

equality t1 by 0 a contradiction is obtained. By similar arguments it can be proved that
t1 �= 1 and so u′′1 (t)≤ β′′(t), for every t ∈ I . Using an analogous technique, we prove that
α′′(t)≤ u′′1 (t), for all t ∈ I . So u′′1 ∈ [α′′,β′′]. Then, by integration and (iii), we have

β′(1)≤ α(0)−α(1) +α′(1)=
∫ 1

0

∫ 1

t
α′′(s)dsdt ≤

∫ 1

0

∫ 1

t
u′′1 (s)dsdt = u′1(1). (3.28)

As (β−u1)′(t) is nondecreasing, then β′(t)−u′1(t)≤ β′(1)−u′1(1)≤ 0, for every t ∈ I .
By the monotony of (β− u1)(t) and (ii), we have 0 ≤ β(1)− u1(1) ≤ β(t)− u1(t), for all
t ∈ I . The inequalities u′1(t) ≤ α′(t) and u1(t) ≥ α(t), for all t ∈ I , can be deduced in a
similar way. �

If f satisfies the reversed one-sided Nagumo-type condition (2.2), then Theorem 3.1
still holds.

Moreover, if in Definition 2.3 we consider the following new assumptions:

α(t)≤ β(t), α′(t)≤ β′(t), α′′(t)≤ β′′(t), ∀t ∈ I , (3.29)

the initial value inequalities α(0)≤A, β(0)≥ A, and
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(iii′) α′(0)−β′(0)≤min{β(0)−β(1),α(1)−α(0)},
then Theorem 3.1 remains true for

E2 =
{(
t,x0,x1,x2,x3

)∈ I ×R4 : α(t)≤ x0 ≤ β(t),
α′(t)≤ x1 ≤ β′(t), α′′(t)≤ x2 ≤ β′′(t)

}

, (3.30)

and f verifying

f
(
t,α(t),α′(t),x2,x3

)≥ f
(
t,x0,x1,x2,x3

)≥ f
(
t,β(t),β′(t),x2,x3

)
(3.31)

for (t,x2,x3)∈ I ×R2, α(t)≤ x0 ≤ β(t), α′(t)≤ x1 ≤ β′(t).

4. Example and counterexample

Next example shows the applicability and improvement given by Theorem 3.1, since the
nonlinearity considered does not satisfy the usual two-sided Nagumo condition.

Example 4.1. Consider the fully fourth-order differential equation

u(iv)(t)= 8− eu(t) +
[
u′(t)− 4

][
2−u′′(t)]2−∣∣u′′′(t)∣∣θ , t ∈ I , (4.1)

where θ > 2, with the boundary conditions of Sturm-Liouville type

u(0)= u(1)= 0, u′′′(0)− 2u′′(0)= 0, u′′′(1) +u′′(1)= 0. (4.2)

It is easy to see that the continuous functions α, β : I → R given by

α(t)=−t2 + 3t− 2, β(t)= t2− 3t+ 2 (4.3)

define a pair of lower and upper solutions for problem (4.1)-(4.2). On

E =
{(
t,x0,x1,x2,x3

)∈ I ×R4 :−t2 + 3t− 2≤ x0 ≤ t2− 3t+ 2,
3− 2t ≥ x1 ≥ 2t− 3, −2≤ x2 ≤ 2

}

, (4.4)

the continuous function f : E→ R given by

f
(
t,x0,x1,x2,x3

)= 8− ex0 +
(
x1− 4

)(
2− x2

)2−∣∣x3
∣
∣θ , (4.5)

verifies (3.2) and the one-sided Nagumo-type condition with ϕ(x3)≡ 8− e−2.

Therefore, by Theorem 3.1, there is at least a solution u(t) of problem (4.1)-(4.2) such
that, for every t ∈ I ,
−t2 + 3t− 2≤ u(t)≤ t2− 3t+ 2, 3− 2t ≥ u′(t)≥ 2t− 3, −2≤ u′′(t)≤ 2.

(4.6)

Notice that the nonlinearity f given by (4.5) does not verify the two-sided Nagumo-
type condition. In fact, assume, by contradiction, that there is a positive continuous func-
tion ϕ verifying (2.3) and such that

∣
∣ f
(
t,x0,x1,x2,x3

)∣
∣≤ ϕ(∣∣x3

∣
∣
)
, ∀(t,x0,x1,x2,x3

)∈ E. (4.7)
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In particular, − f (t,x0,x1,x2,x3) ≤ ϕ(|x3|), for every (t,x0,x1,x2,x3) ∈ E, and so, for t ∈
[0,1], x0 = 2, x1 = 2, x2 = 0, and x3 ∈ R, we have

− f (t,2,2,0,x3
)= e2 +

∣
∣x3
∣
∣θ ≤ ϕ(∣∣x3

∣
∣
)
. (4.8)

As
∫ +∞

0 (s/(e2 + sθ))ds, with θ > 2, is finite, then we have the following contradiction:

+∞ >
∫ +∞

0

s

e2 + sθ
ds≥

∫ +∞

0

s

ϕ(s)
ds= +∞. (4.9)

Counterexample 4.2. We will show that assumption (iii) in Definition 2.3 cannot be re-
moved. In fact, considering the fourth-order boundary value problem

u(iv)(t)=−2u′′′(t) + 3u′′(t),

u(0)= u(1)= 0,

u′′′(0)−u′′(0)= 0, u′′′(1) + 3u′′(1)= 0,

(4.10)

the functions α(t)=−(t− 1)(3t− 1)/3, β(t)= (1− t)(4− t)/3 are lower and upper solu-
tions of problem (4.10) but condition (iii) does not hold. As (4.10) has only the trivial
solution u(t)≡ 0, then condition (3.3) is not satisfied. In fact, 0 ≡ u(t) < α(t) < β(t), for
t ∈]1/3,1[, and 0≡ u′(t) > α′(t) > β′(t), for t ∈]2/3,1[.
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ON AN ELASTIC BEAM FULLY EQUATION WITH
NONLINEAR BOUNDARY CONDITIONS

F. MINHÓS, T. GYULOV, AND A. I. SANTOS

We study the fourth-order nonlinear boundary value problem u(iv)(t) = f (t,u(t),u′(t),
u′′(t),u′′′(t)) for t ∈ ]0,1[, u(0)= A, u′(0)= B, g(u′′(0),u′′′(0))= 0,h(u′′(1),u′′′(1))=
0, with f : [0,1]×R4 →R is a continuous function verifying a Nagumo-type condition,
A,B ∈ R and g, h : R2 → R are continuous functions with adequate monotonicities. For
this model of the bending of an elastic beam, clamped at the left endpoint, we obtained
an existence and location result by lower- and upper-solution method and degree theory.
Similar results are presented for the same beam fully equation with different types of
boundary conditions.

Copyright © 2006 F. Minhós et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper we considered the fourth-order fully nonlinear differential equation:

u(iv)(t)= f
(
t,u(t),u′(t),u′′(t),u′′′(t)

)
for t ∈ ]0,1[, (1.1)

where f : [0,1]×R4 → R is a continuous function verifying a Nagumo-type growth as-
sumption and the nonlinear boundary conditions:

u(0)=A, u′(0)= B, (1.2)

g
(
u′′(0),u′′′(0)

)= 0, h
(
u′′(1),u′′′(1)

)= 0, (1.3)

withA,B ∈R and g, h :R2→R continuous functions with some monotone assumptions.
This problem models the bending of a single elastic beam and improves [5, 6, 8, 12, 13,

17] where linear boundary conditions are considered, [10] since a more general equation
and nonlinear boundary conditions are assumed, and [16] because weaker lower- and
upper-solution definitions are used. Applications to suspension bridges can be consid-
ered, too (see [1] and the references therein).

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 805–814



806 Beam fully equation with nonlinear boundary conditions

A growth restriction of Nagumo type [14] plays a key role in these results not only
to obtain an a priori bound on the third derivative, but also because, as it is known for
second-order boundary-value problems, the existence of well-ordered lower and upper
solutions, by itself, is not sufficient to ensure the existence of solutions (see [7, 15]).

The existence and location result for problem (1.1)–(1.3) (see Theorem 3.1) is estab-
lished by using lower- and upper-solution method to obtain a priori estimations of the
solution and some derivatives, which allow us to define an open set where the topological
degree is well defined [11]. The arguments used were suggested by [2–4, 9] for higher-
order separated boundary-value problems.

Replacing (1.2) by boundary conditions with data on the right endpoint, that is, by

u(1)=A, u′(1)= B (1.4)

or on both endpoints

u(0)=A, u′(1)= B (1.5)

or

u(1)=A, u′(0)= B, (1.6)

similar existence and location results can be obtained (see Theorems 3.2, 3.4, 3.5). Re-
mark that different definitions and assumptions on the nonlinear part must be consid-
ered in order to obtain well-ordered lower and upper solutions. Even so, in some cases,
the corresponding first and/or second derivatives verify a reversed order.

An application to an elastic beam cantilevered and without bending at the left end-
point and with a nonlinear relation between the shear force and the bending at the right
endpoint will be presented.

2. Definitions and a priori bound

The growth restriction on the nonlinear part of (1.1) is given by a Nagumo-type condi-
tion and it plays an important role in the arguments.

Definition 2.1. Given a subset E ⊂ [0,1]×R4, a function f : [0,1]×R4 → R is said to
satisfy a Nagumo-type condition in E if there exists a continuous function ψE : [0,+∞[→
R+ such that

∣
∣ f
(
t,x0,x1,x2,x3

)∣
∣≤ ψE

(∣
∣x3

∣
∣
)

in E, (2.1)

with

∫ +∞

0

s

ψE(s)
ds= +∞. (2.2)

With the next lemma an a priori estimation for the third-order derivative u′′′(t) of
solutions of problem (1.1)–(1.3) can be obtained.
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Lemma 2.2 ([13, Lemma 2.2]). Let γi,Γi : [0,1]→R, for i= 0,1,2, be continuous functions
such that γi(t)≤ Γi(t), for all t ∈ [0,1], and define the set

E = {(t,x0,x1,x2,x3
)∈ [0,1]×R4 : γi(t)≤ xi ≤ Γi(t), i= 0,1,2

}
. (2.3)

Assume that there exist ψE ∈ C([0,+∞[,R+) such that

∫ +∞

η

s

ψE(s)
ds > max

t∈[0,1]
Γ2(t)− min

t∈[0,1]
γ2(t), (2.4)

where η ≥ 0 is given by η =max{Γ2(0)− γ2(1),Γ2(1)− γ2(0)}. Then, there is r > 0 such
that, for every continuous function f : [0,1]×R4 → R satisfying (2.1) and every solution
u(t) of (1.1) such that

γi(t)≤ u(i)(t)≤ Γi(t) for i= 0,1,2, ∀t ∈ [0,1], (2.5)

we have

∥
∥u′′′

∥
∥∞ < r. (2.6)

Remark 2.3. Notice that the a priori bound is independent of (1.2) and r depends only
on ψE,γ2, and Γ2.

Lower and upper solutions for problem (1.1)–(1.3) can be defined in the following
way.

Definition 2.4. Consider A,B ∈R and g, h :R2→R continuous functions.
(i) A function β(t) ∈ C4(]0,1[)∩C3([0,1]) is an upper solution of problem (1.1)–

(1.3) if

β(iv)(t)≤ f
(
t,β(t),β′(t),β′′(t),β′′′(t)

)
, (2.7)

β(0)≥A, β′(0)≥ B, (2.8)

g
(
β′′(0),β′′′(0)

)≤ 0, h
(
β′′(1),β′′′(1)

)≤ 0. (2.9)

(ii) A function α(t) ∈ C4(]0,1[)∩C3([0,1]) is a lower solution of problem (1.1)–
(1.3) if the reversed inequalities are verified.

3. Existence and location results

In this section several existence and location results are obtained, that is, theorems that
not only prove the existence of a solution but also give some information about its local-
ization and some derivatives.

To assume well-ordered lower and upper solutions for problems with (1.1) and some
different types of boundary conditions, the corresponding definitions must assume dif-
ferent inequalities and the nonlinear part f must have different variations as well.
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Theorem 3.1. Assume that there exist α(t) and β(t) lower and upper solutions of problem
(1.1)–(1.3), respectively, such that α′′(t)≤ β′′(t) for every t ∈ [0,1]. Consider the set

E1 =
{(
t,x0,x1,x2,x3

)∈ [0,1]×R4 : α(i)(t)≤ xi ≤ β(i)(t), i= 0,1,2
}

, (3.1)

and let f : [0,1]×R4→R be a continuous function satisfying Nagumo-type condition in E1

and verifying, for (t,x2,x3)∈ [0,1]×R2, α(t)≤ x0 ≤ β(t), and α′(t)≤ x1 ≤ β′(t),

f
(
t,α,α′,x2,x3

)≥ f
(
t,x0,x1,x2,x3

)≥ f
(
t,β,β′,x2,x3

)
. (3.2)

If g, h : R2 → R are continuous functions nondecreasing and nonincreasing on the second
variable, respectively, then problem (1.1)–(1.3) has at least one solution u(t) ∈ C4([0,1])
such that

α(t)≤ u(t)≤ β(t), α′(t)≤ u′(t)≤ β′(t), α′′(t)≤ u′′(t)≤ β′′(t), (3.3)

for every t ∈ [0,1].

Proof. For i= 0,1,2, consider the continuous truncations

δi
(
t,xi

)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β(i)(t), xi > β(i)(t),

xi, α(i)(t)≤ xi ≤ β(i)(t),

α(i)(t), xi < α(i)(t),

(3.4)

and, for λ∈ [0,1], the homotopic problem composed by the differential equation

u(iv)(t)= λ f (t,δ0(t,u),δ1
(
t,u′

)
,δ2
(
t,u′′

)
,u′′′(t)

)
+u′′(t)− λδ2

(
t,u′′

)
, (3.5)

with the boundary conditions

u(0)= λA, u′(0)= λB,

u′′(0)= λ[g(δ2
(
0,u′′(0)

)
,u′′′(0)

)
+ δ2

(
0,u′′(0)

)]
,

u′′(1)= λ[h(δ2
(
1,u′′(1)

)
,u′′′(1)

)
+ δ2

(
1,u′′(1)

)]
.

(3.6)

Take r2 > 0 large enough such that, for every t ∈ [0,1],

−r2 < α
′′(t)≤ β′′(t) < r2,

f
(
t,α(t),α′(t),α′′(t),0

)− r2−α′′(t) < 0,

f
(
t,β(t),β′(t),β′′(t),0

)
+ r2−β′′(t) > 0,

∣
∣g
(
α′′(0),0) +α′′(0)

∣
∣ < r2;

∣
∣g
(
β′′(0),0

)
+β′′(0)

∣
∣ < r2,

∣
∣h
(
α′′(1),0

)
+α′′(1)

∣
∣ < r2;

∣
∣h
(
β′′(1),0

)
+β′′(1)

∣
∣ < r2.

(3.7)
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Step 1. Every solution u(t) of problem (3.5)-(3.6) verifies

∣
∣u′′(t)

∣
∣ < r2,

∣
∣u′(t)

∣
∣ < r1,

∣
∣u(t)

∣
∣ < r0, (3.8)

with r1 := r2 + |B| and r0 := r1 + |A|, for every t ∈ [0,1], independently of λ∈ [0,1].
Assume, by contradiction, that the first inequality does not hold. So, for λ ∈ [0,1],

there exist t ∈ [0,1] and a solution u of (3.5)-(3.6) such that |u′′(t)| ≥ r2. In the case
u′′(t) ≥ r2 define u′′(t0) :=maxt∈[0,1]u′′(t) ≥ r2. Applying the same technique as in [12]
it can be proved that t0 /∈ (0,1).

If t0 = 0, then u′′(0)≥ r2 and u′′′(0+)= u′′′(0)≤ 0. So, by (3.6), (3.7), and the mono-
tonicity of g, we obtain, for λ∈ [0,1], the following contradiction:

r2 ≤ u′′(0)= λ[g(δ2
(
0,u′′(0)

)
,u′′′(0)

)
+ δ2

(
0,u′′(0)

)]

≤ λ[g(β′′(0),0
)

+β′′(0)
]≤ ∣∣g(β′′(0),0

)
+β′′(0)

∣
∣ < r2.

(3.9)

Thus t0 �= 0 and for t0 = 1, the same technique follows. Therefore u′′(t) < r2 for all t ∈
[0,1]. For the case u′′(t) ≤ −r2, the arguments are similar and so |u′′(t)| < r2 for every
t ∈ [0,1].

Integrating on [0, t], we obtain

∣
∣u′(t)

∣
∣=

∣
∣
∣
∣

∫ t

0
u′′(s)ds+u′(0)

∣
∣
∣
∣ < r2 + |B| := r1,

∣
∣u(t)

∣
∣=

∣
∣
∣
∣

∫ t

0
u′(s)ds+u(0)

∣
∣
∣
∣ < r2 + |B|+ |A| := r0.

(3.10)

Step 2. There is r3 > 0 such that every solution u(t) of (3.5)-(3.6) verifies ‖u′′′(t)‖∞ < r3,
independently of λ∈ [0,1].

Consider the set

E∗ =
{(
t,x0,x1,x2,x3

)∈ [0,1]×R4 :−ri ≤ xi ≤ ri, i= 0,1,2
}

, (3.11)

and, for λ∈ [0,1], the function Fλ : E∗ →R given by

Fλ
(
t,x0,x1,x2,x3

)= λ f (t,δ0
(
t,x0

)
,δ1
(
t,x1

)
,δ2
(
t,x2

)
,x3
)

+ x2− λδ2
(
t,x2

)
. (3.12)

As

∣
∣Fλ

(
t,x0,x1,x2,x3

)∣
∣≤ ψE

(∣
∣x3

∣
∣
)

+
∣
∣x2

∣
∣+

∣
∣δ2

(
t,x2

)∣
∣≤ ψE

(∣
∣x3

∣
∣
)

+ 2r2, (3.13)

then Fλ satisfies Nagumo-type condition in E∗ with ψE replaced by ψE := 2r2 + ψE(t),
independently of λ∈ [0,1].

So, applying Lemma 2.2 with γi(t)≡−ri, Γi(t)≡ ri, for i= 0,1,2, there is r3 > 0 such
that |u′′′(t)| < r3 for all t ∈ [0,1].

Since r2 and ψE are independent of λ, we conclude that r3 is independent of λ, too.
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Step 3. For λ= 1, the problem (3.5)-(3.6) has at least a solution u1(t).
Define the operators � : C4([0,1])⊂ C3([0,1])→ C([0,1])×R4 by

�u= (u(iv),u(0),u′(0),u′′(0),u′′(1)
)

(3.14)

and, for λ∈ [0,1], �λ : C3([0,1])→ C([0,1])×R4 by

�λu=
(
λ f
(
t,δ0

(
t,u(t)

)
,δ1
(
t,u′(t)

)
,δ2
(
t,u′′(t)

)
,u′′′(t)

)
+u′′(t)

− λδ2
(
t,u′′(t)

)
,λA,λB,Cλ,Dλ

) (3.15)

with

Cλ = λ
[
g
(
δ2
(
0,u′′(0)

)
,u′′′(0)

)
+ δ2

(
0,u′′(0)

)]
,

Dλ = λ
[
h
(
δ2
(
1,u′′(1)

)
,u′′′(1)

)
+ δ2

(
1,u′′(1)

)]
.

(3.16)

As �−1 is compact, we can define the completely continuous operator

�λ :
(
C3([0,1]

)
,R)−→ (

C3([0,1]
)
,R
)

(3.17)

by �λ(u)=�−1�λ(u). For ri, i= 0,1,2,3 given by previous steps, consider the open set

Ω= {x ∈ C3([0,1]) :
∥
∥x(i)

∥
∥∞ < ri, i= 0,1,2,3

}
. (3.18)

By Steps 1 and 2, the degree d(�λ,Ω,0) is well defined, for every λ ∈ [0,1], and, by the
invariance under homotopy, d(�0,Ω,0)= d(�1,Ω,0). The equation x =�0(x) is equiv-
alent to the problem

u(iv)(t)= u′′(t),

u(0)= u′(0)= u′′(0)= u′′(1)= 0,
(3.19)

and has only the trivial solution. Thus, by degree theory, d(�0,Ω,0) = ±1. Therefore,
x =�1(x) has at least one solution, that is,

u(iv)(t)= f
(
t,δ0

(
t,u(t)

)
,δ1
(
t,u′(t)

)
,δ2
(
t,u′′(t)

)
,u′′′(t)

)
+u′′(t)− δ2

(
t,u′′(t)

)
,

(3.20)

with the boundary conditions

u(0)= A, u′(0)= B,

u′′(0)= g(δ2
(
0,u′′(0)

)
,u′′′(0)

)
+ δ2

(
0,u′′(0)

)
,

u′′(1)= h(δ2
(
1,u′′(1)

)
,u′′′(1)

)
+ δ2

(
1,u′′(1)

)
,

(3.21)

has at least one solution u1(t) in Ω.
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Step 4. The function u1(t) is a solution of problem (1.1)–(1.3).
Notice that this statement holds if u1(t) verifies (3.3).
Assume, by contradiction, that there is t ∈ [0,1] such that u′′1 (t) > β′′(t) and define

(
u1−β

)′′(
t1
)

:= max
t∈[0,1]

{(
u1−β

)′′
(t)
}
> 0. (3.22)

Following the arguments used in [12] it can be proved that t1 /∈ (0,1).
If t1 = 0 then (u1 − β)′′′(0) ≤ 0. By the monotonicity of g and (2.9), the following

contradiction is obtained:

β′′(0) < u′′1 (0)= g(β′′(0),u′′′1 (0)
)

+β′′(0)≤ g(β′′(0),β′′′(0)
)

+β′′(0)≤ β′′(0).
(3.23)

By similar arguments it can be shown that t1 �= 1 and so u′′1 (t) ≤ β′′(t) for every t ∈
[0,1]. Using an analogous technique, the inequality α′′(t)≤ u′′1 (t) holds, for all t ∈ [0,1],
and so α′′(t)≤ u′′1 (t)≤ β′′(t) for every t ∈ [0,1].

As (β−u1)′(t) is nondecreasing, then, by (2.8),

0≤ β′(0)−u′1(0)≤ β′(t)−u′1(t), ∀t ∈ [0,1]. (3.24)

By the monotony of (β− u1)(t) and (2.8) we have 0≤ β(0)− u1(0)≤ β(t)− u1(t) for all
t ∈ I .

The inequalities α′(t) ≤ u′1(t) and α(t) ≤ u1(t), for all t ∈ [0,1], can be deduced in a
similar way. �

For problem (1.1)-(1.4)-(1.3) upper solutions will be defined as in Definition 2.4 re-
placing (2.8) by

β(1)≥A, β′(1)≤ B, (3.25)

and the corresponding reversed inequalities for lower solutions. Then the following exis-
tence and location result holds.

Theorem 3.2. Assume that α(t) and β(t) are lower and upper solutions of problem (1.1)-
(1.4)-(1.3) such that α′′(t)≤ β′′(t), for every t ∈ [0,1], f verifies a Nagumo-type condition
in

E2 =
{(
t,x0,x1,x2,x3

)
: α(i)(t)≤ xi ≤ β(i)(t), i= 0,2, β′(t)≤ x1 ≤ α′(t)

}
, (3.26)

and, for (t,x2,x3) ∈ [0,1]×R2, α(t) ≤ x0 ≤ β(t), and β′(t) ≤ x1 ≤ α′(t), condition (3.2)
holds. If g(x, y) and h(x, y) are continuous functions, respectively, nondecreasing and non-
increasing on y, then there exists u(t)∈ C4([0,1]) solution of (1.1)-(1.4)-(1.3) such that

α(t)≤ u(t)≤ β(t), β′(t)≤ u′(t)≤ α′(t), α′′(t)≤ u′′(t)≤ β′′(t), ∀t ∈ [0,1].
(3.27)

Consider now the beam equation (1.1) with the boundary conditions on both end-
points, (1.5), then new definitions of lower and upper solutions must be considered.
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Definition 3.3. For A,B ∈R and g, h :R2→R continuous functions:
(i) β(t)∈ C4(]0,1[)∩C3([0,1]) is an upper solution of problem (1.1)-(1.5)-(1.3) if

it verifies

β(iv)(t)≥ f
(
t,β(t),β′(t),β′′(t),β′′′(t)

)
,

β(0)≥ A, β′(1)≥ B,

g
(
β′′(0),β′′′(0)

)≥ 0, h
(
β′′(1),β′′′(1)

)≥ 0;

(3.28)

(ii) α(t) ∈ C4(]0,1[)∩C3([0,1]) is a lower solution of problem (1.1)-(1.5)-(1.3) if
the reversed inequalities are verified.

The corresponding theorem is the following.

Theorem 3.4. Suppose that α(t) and β(t) are lower and upper solutions of (1.1)-(1.5)-(1.3)
such that α′′(t)≥ β′′(t) for every t ∈ [0,1].

Let f : [0,1]×R4→R be a continuous function satisfying Nagumo-type condition in

E3 =
{(
t,x0,x1,x2,x3

)
: α(i)(t)≤ xi ≤ β(i)(t), i= 0,1, β′′(t)≤ x2 ≤ α′′(t)

}
, (3.29)

and, for (t,x2,x3)∈ [0,1]×R2, α(i)(t)≤ xi ≤ β(i)(t), i= 0,1,

f
(
t,α,α′,x2,x3

)≤ f
(
t,x0,x1,x2,x3

)≤ f
(
t,β,β′,x2,x3

)
. (3.30)

If g, h :R2→R are continuous functions such that g(x, y) is nondecreasing on y and h(x, y)
nonincreasing on y, then there is u(t)∈ C4([0,1]) solution of (1.1)-(1.5)-(1.3) such that

α(t)≤ u(t)≤ β(t), α′(t)≤ u′(t)≤ β′(t), β′′(t)≤ u′′(t)≤ α′′(t), ∀t ∈ [0,1].
(3.31)

A similar result can be obtained for problem (1.1)-(1.6)-(1.3) defining upper solutions
as in Definition 3.3, replacing (3.28) by

β(1)≥A, β′(0)≤ B, (3.32)

and the related lower solutions verifying the reversed inequalities.

Theorem 3.5. Suppose that α(t) and β(t) are lower and upper solutions of (1.1)-(1.6)-(1.3)
such that α′′(t)≥ β′′(t) for every t ∈ [0,1]. Let f : [0,1]×R4→R be a continuous function
satisfying Nagumo-type condition in

E4 =
{(
t,x0,x1,x2,x3

)
: α(t)≤ x0 ≤ β(t), β(i)(t)≤ xi ≤ α(i)(t), i= 1,2

}
, (3.33)

and, for (t,x2,x3)∈ [0,1]×R2, α(t)≤ x0 ≤ β(t), and β′(t)≤ x1 ≤ α′(t),

f
(
t,α,α′,x2,x3

)≤ f
(
t,x0,x1,x2,x3

)≤ f
(
t,β,β′,x2,x3

)
. (3.34)
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If g, h :R2→R are continuous functions such that g(x, y) is nondecreasing on y and h(x, y)
nonincreasing on y, then there exists a solution u(t) ∈ C4([0,1]) of (1.1)-(1.6)-(1.3) such
that

α(t)≤ u(t)≤ β(t), β′(t)≤ u′(t)≤ α′(t), β′′(t)≤ u′′(t)≤ α′′(t), ∀t ∈ [0,1].
(3.35)

As an example to show the applicability of Theorem 3.1, consider the following fourth-
order boundary-value problem:

u(iv)(t)= f
(
t,u(t),u′(t),u′′(t),u′′′(t)

)
,

u(0)= u′(0)= 0,

u′′(0)= 0, u′′′(1)= ϕ(u′′(1)
)
,

(3.36)

where f ,ϕ are continuous functions. Notice that (3.36) is a particular case of (1.1)-(1.2)-
(1.3) for g(x, y)=−x and h(x, y)= ϕ(x)− y. In fact, this problem models the deforma-
tion of an elastic beam cantilevered and without bending moment at the left endpoint
and with an eventually nonlinear relation between the shear force (u′′′) and the bending
moment at the right endpoint.

Continuous functions α, β : [0,1]→ R given by α(t) =−θt2 and β(t) = θt2, for some
θ > 0, are lower and upper solutions of (3.36) for θ and ϕ such that ϕ(2θ)≤ 0≤ ϕ(−2θ).

By Theorem 3.1, for every continuous function f that verifies Nagumo-type condition
(e.g., f with a subquadratic growth on u′′′) and such that

f
(
t,−θt2,−2θt,x2,x3

)≥ f
(
t,x0,x1,x2,x3

)≥ f
(
t,θt2,2θt,x2,x3

)
(3.37)

(e.g., f nonincreasing on x0 and x1), there exists a solution u(t) of problem (3.36) such
that

−θt2 ≤ u(t)≤ θt2, −2θt ≤ u′(t)≤ 2θt, −2≤ u′′(t)≤ 2, ∀t ∈ [0,1]. (3.38)
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REMARKS ON THE STABILITY CROSSING CURVES
OF SOME DISTRIBUTED DELAY SYSTEMS

CONSTANTIN-IRINEL MORĂRESCU, SILVIU-IULIAN NICULESCU,

AND KEQIN GU

This paper characterizes the stability crossing curves of a class of linear systems with
gamma-distributed delays with a gap. First, we describe the crossing set, that is, the set of
frequencies where the characteristic roots may cross the imaginary axis as the parameters
change. Then, we describe the corresponding stability crossing curves, that is, the set of
parameters such that there is at least one pair of characteristic roots on the imaginary
axis. Such stability crossing curves divide the parameter space R2

+ into different regions.
Within each such region, the number of characteristic roots on the right-hand complex
plane is fixed. This naturally describes the regions of parameters where the system is sta-
ble.

Copyright © 2006 Constantin-Irinel Morărescu et al. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The stability of dynamical systems in the presence of time-delay is a problem of recurring
interest (see, e.g., [5, 7, 8, 10], and the references therein). The presence of a time-delay
may induce instabilities, and complex behaviors. The problem becomes even more diffi-
cult when the delays are distributed. Systems with distributed delays are present in many
scientific disciplines such as physiology, population dynamics, and engineering.

Cushing [4] studied the population dynamics using a model with gamma-distributed
delay. The linearization of this model is

ẋ(t)=−αx(t) +β
∫ t

−∞
g(t− θ)x(θ)dθ, (1.1)

where the integration kernel of the distributed delay is the gamma distribution

g(ξ)= an+1

n!
ξne−aξ . (1.2)

Hindawi Publishing Corporation
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A Laplace transform of (1.1) with g(ξ) expression (1.2) yields a parameter-dependent
polynomial characteristic equation

D(s, τ̄,n) := (s+α)
(

1 + s
τ̄

n+ 1

)n+1

−β = 0, (1.3)

where τ̄ = (n + 1)/a is the mean delay. Cooke and Grossman [3] discussed the change
of stability of (1.3) when one of the parameters, mean delay value τ̄, or the exponent n,
varies while the other is fixed.

Nisbet and Gurney [11] modified the gamma distribution g(ξ) expressed in (1.2) to
the gamma distribution with a gap

ĝ(ξ)=

⎧
⎪⎪⎨

⎪⎪⎩

0, ξ < τ,

an+1

n!
(ξ − τ)ne−a(ξ−τ), ξ ≥ τ,

(1.4)

to more accurately reflect the reality. See [1, 9] for additional discussions. In this case,
a simple computation shows that the mean delay is τ̂ = τ + (n+ 1)/a. The characteristic
equation becomes a parameter-dependent quasipolynomial equation [1, 2]:

D̂(s, τ̄,τ,n) := (s+α)
(

1 + s
τ̄

n+ 1

)n+1

−βe−sτ = 0. (1.5)

It is interesting to note that some of the earlier results in [1, 3] on stability analysis contain
mistakes as pointed out by Boese [2].

More recently, it was pointed out that such gamma-distributed delays with a gap can
also be encountered in the problem of controlling objects over communication networks
[12]. More explicitly, the overall communication delay in the network is modeled by a
gamma-distributed delay with a gap, where the gap value corresponds to the minimal
propagation delay in the network, which is always strictly positive. The stability prob-
lem of the closed-loop system in [12] reduces to a parameter-dependent characteristic
quasipolynomial equation of the following form:

D(s, τ̄,τ,n) := P(s)
(

1 + s
τ̄

n+ 1

)n+1

+Q(s)e−sτ = 0, (1.6)

where P(s), Q(s) are polynomials. Obviously, (1.5) is a special case of (1.6).
In this paper, we will study the stability of (1.6) as the parameters τ̄ and τ vary. Specif-

ically, we will describe the stability crossing curves, that is, the set of parameters such
that there is at least one pair of characteristic roots on the imaginary axis. Such stability
crossing curves divide the parameter space R2

+ into different regions. Within each such
region, the number of characteristic roots on the right-hand complex plane is fixed. This
naturally describes the regions of parameters where the system is stable.

It should be noted that there have been numerous works in the literature to describe
the stability regions of parameter space, known as stability charts [13, 14]. These descrip-
tions are typically valid for one specific system except that the parameters are allowed to
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vary. In a recent paper, Gu et al. [6] gave a characterization of the stability crossing curves
for systems with two discrete delays as the parameters. One significant difference of [6]
as compared to the stability charts is the fact that such characterization applies to any
systems within the class, that is, any system with two delays. The current paper follows
the line of [6] since our conclusion is valid for any system of the form (1.6).

Due to space constraint, the proofs are omitted.

2. Problem formulation

Consider a system with the following characteristic equation:

D(s,T ,τ)= P(s)(1 + sT)n +Q(s)e−sτ = 0, (2.1)

where the two parameters T and τ are nonnegative. We will try to describe the stability
crossing curves, which is the set of (T ,τ) such that (2.1) has imaginary solutions. We will
denote the stability crossing curves as �. As the parameters (T ,τ) cross the stability cross-
ing curves, some characteristic roots cross the imaginary axis. Therefore, the number of
roots on the right-half complex plane are different on the two sides of the crossing curves,
from which, we may describe the parameter regions of (T ,τ) in R2

+ for the system to be
stable.

Another related useful concept is the crossing set Ω, which is defined as the collection of
all ω > 0 such that there exists a parameter pair (T ,τ) such that D( jω,T ,τ)= 0. In other
words, as the parameters T and τ vary, the characteristic roots may cross the imaginary
axis at jω if and only if ω ∈Ω.

We will restrict our discussions on the systems that satisfy the following assumptions.
(I) deg(Q) < deg(P).

(II) P(0) +Q(0)�= 0.
(III) P(s) and Q(s) do not have common zeros.
(IV) If P(s)= p, Q(s)= q, where p and q are constant real, then |p| �= |q|.
(V) P(0)�= 0, |P(0)| �= |Q(0)|.

(VI) P′( jω)�= 0 whenever P( jω)= 0.
Assumption (I) means that the system represented by (2.1) has retarded delays. While

not discussed here, it is possible to extend the analysis to systems with neutral delays by
relaxing this assumption to also allow deg(Q) = deg(P), as long as lims→∞Q(s)/P(s) < 1
is satisfied. Assumption (II) is made to exclude some trivial cases. If it is not satisfied,
then s = 0 is a solution of (2.1) for arbitrary (T ,τ), and therefore, the system can never
be stable.

Regarding assumption (III), if it is violated, we may find a common factor of the
highest order c(s) �= constant of P(s) and Q(s). This would indicate that D(s,T ,τ) =
c(s)D̂(s,T ,τ), where D̂(s,T ,τ) satisfies assumption (III), and our analysis can still pro-
ceed on D̂(s,T ,τ).

Assumptions (IV) to (VI) are made to exclude some rare singular cases in order to
simplify presentation.

Notice, we have restricted any element ω of the crossing set Ω to satisfy ω > 0. Indeed,
the discussion of ω < 0 is redundant in view of the fact that D(− jω,T ,τ) is the complex
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conjugate of D( jω,T ,τ), and therefore, D(− jω,T ,τ)= 0 if and only if D( jω,T ,τ). Also,
ω = 0 is never an element of Ω in view of assumption (II).

3. Main results

3.1. Crossing set and stability crossing curves. Consider a fixed ω > 0, we first observe
that as T and τ each varies within [0,∞), that is, (T ,τ) vary in R2

+, |1 + jωT|n ∈ [1,∞),
and |e jωτ| = 1, and ∠e jωτ may assume any nonnegative value. From this observation, it is
not difficult to conclude the following proposition.

Proposition 3.1. Given any ω > 0, ω ∈Ω if and only if it satisfies

0 <
∣
∣P( jω)

∣
∣≤ ∣∣Q( jω)

∣
∣. (3.1)

There are only a finite number of solutions to the equations

P( jω)= 0, (3.2)
∣
∣P( jω)

∣
∣= ∣∣Q( jω)

∣
∣, (3.3)

because P and Q are both polynomials satisfying assumptions (I) to (IV). Therefore, Ω
consists of a finite number of intervals. Denote these intervals as Ω1,Ω2, . . . ,ΩN . Then

Ω=
N⋃

k=1

Ωk. (3.4)

Without loss of generality, we may order these intervals from left to right, that is, for any
ω1 ∈Ωi1 , ω2 ∈Ωi2 , i1 < i2, we have ω1 < ω2.

For any given point in the crossing set, ω ∈ Ω, we may calculate the corresponding
points in the stability crossing curves as follows:

T = 1
ω

(∣
∣
∣
∣
Q( jω)
P( jω)

∣
∣
∣
∣

1/n

− 1

)1/2

, (3.5)

τ = 1
ω

(
∠Q( jω)−∠P( jω)−narctan(ωT) +π +m2π

)
,

m= 0,±1,±2, . . . .
(3.6)

We will not restrict ∠Q( jω) and ∠P( jω) to a 2π range. Rather, we allow them to vary con-
tinuously within each interval Ωk. Thus, for each fixed m, (3.5) and (3.6) is a continuous
curve. We denote such as a curve as �k

m. Therefore, corresponding to a given interval Ωk,
we have an infinite number of continuous stability crossing curves �k

m, m= 0,±1,±2, . . . .
It should be noted that, for some m, part or the entire curve may be outside of the range
R2

+, and therefore, may not be physically meaningful. The collection of all the points in
� corresponding to Ωk may be expressed as

�k =
+∞⋃

m=−∞

(
�k
m

⋂
R2

+

)
(3.7)
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Obviously,

�=
N⋃

k=1

�k (3.8)

3.2. Classification of stability crossing curves. Let the left and right end points of inter-
val Ωk be denoted as ωlk and ωrk, respectively. It is not difficult to see that each end point
ωlk or ωrk must belong to one of the following three types.

Type 1. It satisfies (3.3).

Type 2. It satisfies (3.2).

Type 3. It equals 0.

Denote an end point as ω0, which may be either a left end or a right end of an interval
Ωk. Then the corresponding points in �m

k may be described as follows.
If ω0 is of Type 1, then T = 0. In other words, �m

k intersects the τ-axis at ω = ω0.
If ω0 is of Type 2, then as ω→ ω0, T →∞, and

τ −→ 1
ω0

(

∠Q
(
jω0

)±∠
(
d

dω
P( jω)

)

ω=ω0

− nπ

2
+π +m2π

)

, (3.9)

where “+” applies when ω0 is a right end, and “−” applies when it is a left end. In other
words, �m

k approaches a horizontal line.
Obviously, only ωl1 may be of Type 3. Due to nonsingularity assumptions, if ωl1 = 0,

we must have 0 < |P(0)| < |Q(0)|. In this case, as ω→ 0, both T and τ approach ∞. In
fact, (T ,τ) approaches a straight line with slope

τ/T −→
(
∠Q(0)−∠P(0)−narctanα+π +m2π

)

α
, (3.10)

where

α=
(∣
∣
∣
∣
Q(0)
P(0)

∣
∣
∣
∣

1/n

− 1

)1/2

. (3.11)

We say an interval Ωk is of type lr if its left end is of type l and its right end is of type
r. We may accordingly divide these intervals into the following six types.

Type 4. In this case, �m
k starts at a point on the τ-axis, and ends at another point on the

τ-axis.

Type 5. In this case, �m
k starts at a point on the τ-axis, and the other end approaches ∞

along a horizontal line.

Type 6. This is the reverse of Type 5. �m
k starts at ∞ along a horizontal line, and ends at

the τ-axis.
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Type 7. In this case, both ends of �m
k approach horizontal lines.

Type 8. In this case, �m
k begins at∞ with an asymptote of slope expressed in (3.10). The

other end is at the τ-axis.

Type 9. In this case, �m
k again begins at∞ with an asymptote of slope expressed in (3.10).

The other end approaches∞ along a horizontal line.

3.3. Tangents and smoothness. For a given k, we will discuss the smoothness of the
curves in �m

k and thus �=⋃N
k=1

⋃+∞
m=−∞(�m

k

⋂
R2

+). In this part we use an approach based
on the implicit function theorem. For this purpose we consider T and τ as implicit func-
tions of s= jω defined by (2.1). For a given m and k, as s moves along the imaginary axis
within Ωk, (T ,τ)= (T(ω),τ(ω)) moves along �m

k . For a given ω ∈Ωk, let

R0 = Re
(
j

s

∂D(s,T ,τ)
∂s

)

s= jω

= 1
ω

Re
{[
nTP( jω) + (1 + jωT)P′( jω)

]

· (1 + jωT)n−1 +
(
Q′( jω)− τQ( jω)

)
e− jωτ

}
,

I0 = Im
(
j

s

∂D(s,T ,τ)
∂s

)

s= jω

= 1
ω

Im
{[
nTP( jω) + (1 + jωT)P′( jω)

]

· (1 + jωT)n−1 +
(
Q′( jω)− τQ( jω)

)
e− jωτ

}
,

R1 = Re
(

1
s

∂D(s,T ,τ)
∂T

)

s= jω
= Re

(
n(1 + jωT)n−1P( jω)

)
,

I1 = Im
(

1
s

∂D(s,T ,τ)
∂T

)

s= jω
= Im

(
n(1 + jωT)n−1P( jω)

)
,

R2 = Re
(

1
s

∂D(s,T ,τ)
∂τ

)

s= jω
=−Re

(
Q( jω)e− jωτ

)
,

I2 = Im
(

1
s

∂D(s,T ,τ)
∂τ

)

s= jω
=−Im

(
Q( jω)e− jωτ

)
.

(3.12)

Then, since D(s,T ,τ) is an analytic function of s,T , and τ, the implicit function theorem
indicates that the tangent of �m

k can be expressed as

⎛

⎜
⎜
⎜
⎝

dT
dω
dτ
dω

⎞

⎟
⎟
⎟
⎠
= 1
R1I2−R2I1

⎛

⎝
R0I2− I0R2

I0R1−R0I1

⎞

⎠ , (3.13)
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provided that

R1I2−R2I1 �= 0. (3.14)

It follows that �k is smooth everywhere except possibly at the points where either (3.14)
is not satisfied, or when

dT
dω
= dτ

dω
= 0. (3.15)

From the above discussions, we can conclude the following proposition.

Proposition 3.2. The curve Tm
k is smooth everywhere except possibly at the point corre-

sponding to s= jω as a multiple solution of (2.1).

3.4. Direction of crossing. Next we will discuss the direction in which the solutions of
(2.1) cross the imaginary axis as (T ,τ) deviates from the curve �m

k . We will call the di-
rection of the curve that corresponds to increasing ω the positive direction. We will also
call the region on the left-hand side as we head in the positive direction of the curve the
region on the left.

To establish the direction of crossing, we need to consider T and τ as functions of
s= σ + jω, that is, functions of two real variables σ and ω, and partial derivative notation
needs to be adopted. Since the tangent of �m

k along the positive direction is (∂T/∂ω,
∂τ/∂ω), the normal to �m

k pointing to the left-hand side of positive direction is (−∂τ/∂ω,
∂T/∂ω). Corresponding to a pair of complex conjugate solutions of (2.1) crossing the
imaginary axis along the horizontal direction, (T ,τ) moves along the direction (∂T/∂σ ,
∂τ/∂σ). So, if a pair of complex conjugate solutions of (2.1) crosses the imaginary axis to
the right-half plane, then,

(
∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)

s= jω
> 0, (3.16)

that is, the region on the left of �m
k gains two solutions on the right-half plane. If in-

equality (3.16) is reversed, then the region on the left of �m
k loses has two right-half plane

solutions. Similar to (3.13) we can express

⎛

⎜
⎜
⎜
⎝

dT
dσ
dτ
dσ

⎞

⎟
⎟
⎟
⎠

s= jω

= 1
R1I2−R2I1

⎛

⎝
R0R2 + I0I2

−R0R1− I0I1

⎞

⎠ . (3.17)

Using this we arrive at the following proposition.

Proposition 3.3. Let ω ∈ (ωlk,ωrk) and (T ,τ) ∈ Tk such that jω is a simple solution of
(2.1) and D( jω′,T ,τ)�= 0, for all ω′ > 0, ω′ �= ω (i.e., (T ,τ) is not an intersection point of
two curves or different sections of a single curve of T). Then a pair of solutions of (2.1) crosses
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the imaginary axis to the right through s=± jω if R2I1−R1I2 > 0. The crossing is to the left
if the inequality is reversed.

4. Concluding remarks

This paper addressed the stability problem of a class of distributed delay systems. More
specifically, we have characterized the geometry of the stability crossing curves in the
parameter space.
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BOUNDARY VALUE PROBLEMS ON THE HALF-LINE
WITHOUT DICHOTOMIES

JASON R. MORRIS AND PATRICK J. RABIER

Given a piecewise continuous function A :R+ →�(CN ) and a projection P1 onto a sub-
space X1 of CN , we investigate the injectivity, surjectivity and, more generally, the Fred-
holmness of the differential operator with boundary condition (u̇+Au,P1u(0)) acting on
the “natural” space W1,2

A = {u : u̇∈ L2, Au∈ L2}. It is not assumed that A is bounded or
that u̇+Au= 0 has any dichotomy, except to discuss the impact of the results on this spe-
cial case. All the functional properties of interest, including the Fredholm index, can be
related to a selfadjoint solution H of the Riccati differential inequality HA+A∗H − Ḣ ≥
ν(A∗A+H2).

Copyright © 2006 J. R. Morris and P. J. Rabier. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The problem of interest is the existence and possible uniqueness of solutions in Sobolev-
like spaces of the linear boundary value problem on R+ = [0,∞),

u̇+Au= f ,

P1u(0)= ξ,
(1.1)

where A : R+ →�(CN ) is locally bounded and P1 and P2 are the projections associated
with a given splitting CN = X1⊕X2.

When P1 = I , that is, X1 = CN and X2 = {0}, the familiar Cauchy problem is recov-
ered, but, even in this case, the existence question in spaces constraining the possible
behavior of the solutions at infinity (such as W1,2(R+,CN )) does not follow from local
existence and uniqueness and is far from being fully resolved. Furthermore, many con-
crete problems arise in the form (1.1) with P1 �= I . For instance, second-order equations
v̈+Bv̇+Cv = g with Dirichlet condition v(0)= ξ or Neumann condition v̇(0)= ξ corre-
spond to first-order systems (1.1) with N = 2M, CN = CM ×CM , u = (v, v̇), and P1 the
projection onto the first factor (Dirichlet) or the second one (Neumann). We will denote

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 825–833
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by DA the differential operator

DAu := u̇+Au (1.2)

and by ΛA,P1 the differential operator with boundary condition

ΛA,P1u := (DAu,P1u(0)
)= (u̇+Au,P1u(0)

)
, (1.3)

whenever these expressions make sense. With this notation, the system (1.1) may be
rewritten as

ΛA,P1u= ( f ,ξ), (1.4)

so that the solvability of (1.1) is translated by functional properties of the operator ΛA,P1

(surjectivity, injectivity, or Fredholmness).
When A is bounded, the relationship between exponential dichotomies and the Fred-

holmness of DA was clarified by Palmer [10, 11]. In turn, a well-known differential in-
equality characterizes exponential dichotomies when A is bounded (Coppel [2]): DA has
an exponential dichotomy if and only if there is a bounded and locally Lipschitz contin-
uous Hermitian family H(t) such that

HA+A∗H − Ḣ ≥ νI , (1.5)

where ν > 0 is a constant.
Therefore, when A is bounded, there is a relationship between the differential inequal-

ity (1.5) and the Fredholm properties of DA, the connection being made via exponential
dichotomies. The purpose of this paper is to show that in a suitable functional setting,
the “Riccati” variant of (1.5),

HA+A∗H − Ḣ ≥ ν
(
A∗A+H2), (1.6)

still with H Hermitian (and weaker than (1.5) when A and H are bounded) controls the
Fredholmness and even the injectivity or surjectivity of ΛA,P1 for a much larger class of
operators DA than those having dichotomies.

The following sections discuss the functional setting, the Fredholmness and injectivity
of ΛA,P1 , an alternate characterization of the index, and the surjectivity of ΛA,P1 , respec-
tively. No proofs are given due to space limitation, but full details can be found in [9].

2. The function spaces

For brevity, we set W1,2 :=W1,2(R+,CN ) and L2 := L2(R+,CN ), with norms ‖ · ‖1,2 and
‖ · ‖0,2, respectively. Given A :R+→�(CN ) measurable, we define the space

W1,2
A := {u∈�′ : u̇∈ L2, Au∈ L2}, (2.1)
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where �′ is the space of distributions on R+ with values in CN and u̇ denotes the deriv-
ative of u in the sense of distributions. Clearly, the operator DA in (1.2) maps W1,2

A into
L2. This section discusses the properties of the space W1,2

A .
For u∈W1,2

A , we set

‖u‖1,2,A :=
(∥
∥u̇
∥
∥2

0,2 +
∥
∥Au

∥
∥2

0,2

)1/2
. (2.2)

As is customary, we will say that A :R+ →�(CN ) is piecewise continuous if there is a
partition of R+ into countably many consecutive nontrivial intervals In (open, semiopen,
or closed) such that A|In is the restriction of a continuous function on Īn. In particular,
a piecewise continuous A is locally bounded on R+. The subsequent results are obtained
under the extra assumption that

⋂
t≥0 kerA(t)= {0}, a mild restriction in practice.

Theorem 2.1. Assume that A is piecewise continuous and that
⋂
t≥0 kerA(t)= {0}. Then,

‖ · ‖1,2,A is a norm on W1,2
A for which W1,2

A is a Hilbert space and W1,2
A ↩C0(R+) (continu-

ous embedding), where C0(R+) is equipped with the topology of uniform convergence on the
compact subsets of R+. Furthermore, there is a constant C > 0 such that |u(0)| ≤ C‖u‖1,2,A

for every u∈W1,2
A and C depends only upon the restriction of A to some large enough inter-

val [0,T].

The denseness of smooth functions is behind a variety of crucial results in many func-
tion spaces. Such a denseness property is true with W1,2

A .

Theorem 2.2. Assume that A is piecewise continuous and that
⋂
t≥0 kerA(t)= {0}. Then,

(i) C∞0 (R+) is dense in W1,2
A ,

(ii) the closure of C∞0 (R+) in W1,2
A is the space

◦
W1,2

A := {u∈W1,2
A : u(0)= 0}.

In addition to being a natural question, it is also useful to know what features of A
ensure that W1,2

A ⊂ L2. Since nonzero constant functions are not in L2, the condition
⋂
t≥0 kerA(t)= {0} is necessary. A sufficient condition is given in Theorem 2.3. We denote

by rA the function

rA(t) :=
⎧
⎪⎨

⎪⎩

0 if A(t) is not invertible,
1

∣
∣A−1(t)

∣
∣ if A(t) is invertible.

(2.3)

The following result is derived from a general embedding theorem between weighted
Sobolev spaces (Maz’ja [8]).

Theorem 2.3. Assume thatA is piecewise continuous and that
⋂
t≥0 kerA(t)= {0}. Assume

also that there are constants � > 0 and δ > 0 such that ‖rA‖0,2,J ≥ δ whenever J ⊂ R+ is an
interval with |J| ≥ �. Then, W1,2

A ⊂ L2 and the embedding is continuous (and then W1,2
A ⊂

W1,2, with continuous embedding).

It is readily checked that Theorem 2.3 is applicable if there is some constant γ > 0 such
that |A−1(t)| ≤ γ for a.e. t > 0 large enough, or if A is periodic and A(t0) is invertible for
some t0 > 0.
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3. Fredholmness and injectivity

To put things in perspective, recall that the problem

DAu := u̇+Au= 0 (3.1)

is said to have an exponential dichotomy (on R+) if there are a projection Π and positive
constants K ,L,α, and β such that

∣
∣Φ(t)ΠΦ−1(s)

∣
∣≤ Ke−α(t−s), ∀t ≥ s≥ 0, (3.2)

∣
∣Φ(t)(I −Π)Φ−1(s)

∣
∣≤ Ke−β(s−t), ∀s≥ t ≥ 0, (3.3)

where Φ(t) denotes the fundamental matrix of the system (3.1) satisfying Φ(0)= I .
It is well known that the range of Π (though not Π itself) is uniquely determined, that

is, if DA also has an exponential dichotomy with projection Π′, then rgeΠ′ = rgeΠ. For
this and other standard properties of exponential dichotomies, see Coppel [2] or Massera
and Schäffer [7].

As in the introduction, A : R+ → �(CN ) is a given mapping and CN = X1 ⊕X2 is a
splitting with corresponding projections P1 and P2. Recall also the definition of ΛA,P1 in
(1.3).

Part (i) of Lemma 3.1, with A continuous and W1,2 and L2 replaced by BC1 and BC
(bounded C1 functions with bounded derivative and bounded continuous functions, re-
spectively) was first proved by Palmer [10]. Part (ii) and its converse are essentially given
in [1, Theorem 1.1].

Lemma 3.1. Assume thatA∈ L∞ and thatDA has an exponential dichotomy with projection
Π. Then, for every p ∈ [1,∞], the following properties hold.

(i) The operator DA :W1,2→ L2 is surjective and dimkerDA = rankΠ.
(ii) The operator ΛA,P1 : W1,2 → L2 ×X1 is Fredholm of index rankΠ− dimX1. Fur-

thermore, ΛA,P1 is one-to-one if and only if X2
⋂

rgeΠ= {0}. In particular, ΛA,P1 is
an isomorphism ofW1,2 onto L2×X1 if and only if dimX1 = rankΠ andX2

⋂
rgeΠ

= {0}.
(iii) W1,2 =W1,2

A .
Conversely, if A ∈ L∞ and there is p ∈ [1,∞] such that ΛA,P1 : W1,p → Lp ×X1 is semi-

Fredholm, then DA has an exponential dichotomy.

The main shortcoming of part (ii) of Lemma 3.1 is that even whenDA is known to have
an exponential dichotomy, the range of the projection Π is not explicitly available, except
in rather trivial cases. As a result, it is often impossible to check whether X2

⋂
rgeΠ= {0},

and therefore whether ΛA,P1 is one-to-one. Part (ii) of Theorem 3.4 gives a more readily
verifiable criterion for injectivity, also valid in a much broader setting.

Remark 3.2. Of course, X2
⋂

rgeΠ = {0} if X2 = {0}, that is, X1 = CN . If so, P1 = I and
ΛA,I accounts for the initial value problem

u̇+Au= f ,

u(0)= ξ. (3.4)
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From Lemma 3.1, when A ∈ L∞ and DA has an exponential dichotomy, the unique so-
lution of this problem is in W1,2 whenever ( f ,ξ) ∈ L2 ×CN satisfies N − rankΠ linear
compatibility conditions (no condition if Π= I).

We denote by ��(CN ) the space of linear Hermitian operators onCN . The main ingre-
dient is an a priori estimate (Lemma 3.3), obtained by a variational argument, integration
by parts, and careful majorizations.

Lemma 3.3. Assume thatA is piecewise continuous, that
⋂
t≥0 kerA(t)= {0}, and that there

are a constant ν > 0 and a locally Lipschitz continuous function H :R+→��(CN ) such that
(i) HA+A∗H − Ḣ ≥ ν(A∗A+H2) a.e. on R+,

(ii) H(0)|X2 ≤ 0.
Then, for every u∈W1,2

A , the estimate

‖u‖1,2,A ≤
√(

15
ν2

+ 2
)
∥
∥DAu

∥
∥

0,2

+

(√

+
6
∣
∣H(0)

∣
∣

ν
+

12eA
∣
∣H(0)

∣
∣
∣
∣P2

∣
∣

ν

)
∣
∣P1u(0)

∣
∣

(3.5)

holds, where eA > 0 is the smallest constant such that |v(0)| ≤ eA‖v‖1,2,A for every v ∈W1,2
A

(norm of the evaluation map).

With Lemma 3.3 at hand, it is easy to obtain the following criterion for Fredholmness
and injectivity.

Theorem 3.4. Assume that A is piecewise continuous, that
⋂
t≥0 kerA(t) = {0}, and that

there are a constant ν > 0 and a locally Lipschitz continuous function H : R+ → ��(CN )
such that

(i) HA + A∗H − Ḣ ≥ ν(A∗A +H2) a.e. on R+; then, DA : W1,2
A → L2 is onto with

dimkerDA <∞ and ΛA,P1 : W1,2
A → L2 ×X1 is Fredholm with index dimkerDA −

dimX1.
In addition, if

(ii) H(0)|X2 ≤ 0,
thenΛA,P1 :W1,2

A →L2×X1 is one-to-one (hence an isomorphism when dimkerDA=dimX1).

In contrast to the condition X2
⋂

rgeΠ= {0} of Lemma 3.1, condition (ii) of Theorem
3.4 is readily verifiable once a suitable H is known, a point to which we will return to
later. On the other hand, the formula for the index of ΛA,P1 given in part (i) of Theorem
3.4 requires knowing dimkerDA when DA has domain W1,2

A . In dimension N > 1, an
explicit identification of kerDA is often out of reach. In Theorem 4.3, we will obtain a
more convenient characterization of dimkerDA.

Condition (ii) of Theorem 3.4 is of course vacuous when X2 = {0} (standard initial
value problem). Thus, Theorem 3.4 yields a generalization of Remark 3.2 for this exam-
ple under condition (i) alone, without assuming that A is bounded or that DA has an
exponential dichotomy.

In Theorem 3.4, the case when H =A+A∗ yields an especially simple result.
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Corollary 3.5. Assume that A is locally Lipschitz continuous on R+, that
⋂
t≥0 kerA(t)=

{0}, and that
(i) A2 +A∗A− Ȧ≥ ν(A∗A+AA∗) a.e. on R+ for some ν > 0.

Then, the operator DA :W1,2
A → L2 is onto, dimkerDA <∞, and the operator ΛA,P1 : W1,2

A →
L2×X1 is Fredholm of index dimkerDA−dimX1. If also

(ii) A(0)|X2 ≤ 0, thenΛA,P1 :W1,2
A → L2×X1 is one-to-one (hence an isomorphism when

dimkerDA = dimX1).

When A = A∗, condition (i) of Corollary 3.5 is simply that Ȧ ≤ βA2 for some β <
2. Many variants of Corollary 3.5 can be obtained by making other choices for H (e.g.,
AA∗,A∗A,−(A+A∗), or suitable functions of those). These variants implicitly put severe
restrictions on A and will not be discussed further here.

This brings the question whether a more systematic procedure exists to find the de-
sired Hermitian family H , especially since a suitable H may have no obvious relationship
to A, even when N = 1 (see Example 3.8 ). To date, the answer to that question is essen-
tially negative. In principle, it suffices of course that Ḣ −HA−A∗H + νH2 = −νA∗A is
solvable for Hermitian H and small enough ν > 0 (and with H(0)|X2 specified or not).
The applicable existence theorems are rather scarce, because the right-hand side has the
“wrong” sign for classical results (Reid [12]).

When A is real, it follows from the existence theorem of Knobloch and Pohl [5, The-
orem 3.1] that condition (i) of Corollary 3.5 may be replaced by (1/2)A2 + (3/4)A∗A−
(1/4)AA∗ − Ȧ≥ νA∗A a.e. on R+ for some ν > 0. This is only marginally different from,
and not even more general than, condition (i) of Corollary 3.5 (derived from a mere edu-
cated guess). Other existence theorems for Riccati equations are given in the recent survey
by Freiling [4], but they seem to be of limited use for the equation of interest here.

The following examples illustrate various aspects discussed in this section.

Example 3.6. With N = 1 and A(t) = −t, all the hypotheses of Corollary 3.5 hold with
X1 = {0} (hence P1 = 0) and X2 = C as well as with X1 = C (hence P1 = I) and X2 = {0}.
Here, DAu= 0 if and only if u is a scalar multiple of et

2/2, whence kerDA = {0} when DA

has domainW1,2
A . The operator ΛA,0 =DA is an isomorphism in the first case and ΛA,I has

index −1 in the second. Here, DA has an exponential dichotomy, but A is not bounded.

Example 3.7. With N = 1 and A(t)= t, all the hypotheses of Corollary 3.5, except condi-
tion (i), hold with X1 = {0} and X2 = C, so that ΛA,0 =DA. Clearly, kerΛA,0 is generated
by e−t2/2 ∈W1,2

A . Thus, the injectivity breaks down for this example, even though the
missing condition (i) does hold for large enough t.

Example 3.8. WithN=1, A(t)=sin t/4(t+ 1) fails to satisfy condition (i) of Corollary 3.5.
However, all the hypotheses of Theorem 3.4 hold with X1 = C, X2 = {0}, and H(t) =
1/t+ 1. Since e−

∫
sin tdt/4(t+1) ∈W1,2

A , kerDA ⊂W1,2
A is one-dimensional, so that ΛA,I is an

isomorphism. Although A is bounded, DA does not have an exponential dichotomy (in-
deed, 1∈W1,2

A ; see Lemma 3.1).

Example 3.9. With N = 1 and A(t) = sin t, condition (i) of Corollary 3.5 does not hold.
Note that W1,2

A =W1,2 since A is periodic (see the comments following Theorem 2.3).
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Thus, if DA : W1,2
A → L2 were semi-Fredholm, DA would have an exponential dichotomy

by Lemma 3.1. This is not the case since DAu= 0 if and only if u is a multiple of ecos t. As
a result, no locally Lipschitz continuous function H : R+ → R exists such that condition
(i) of Theorem 3.4 holds.

It is easy to find examples in higher dimension.

Example 3.10. With N = 2 and A(t)= ( t 1
1/t+1 −t

)
, all the hypotheses of Corollary 3.5 hold

with X1 = C× {0} and X2 = {0} ×C (a Maple plot shows that ν = 1/4 works in (i); a
much smaller value can also be proved to work). Thus, ΛA,P1 is one-to-one. However, the
calculation of kerDA ⊂W1,2

A , and hence of the index of ΛA,P1 , is not as trivial as in the
previous examples. This issue will be resolved in Example 4.4.

4. Characterization of the index

We now address the issue of finding a more convenient characterization of dimkerDA

when DA is viewed as an operator from W1,2
A to L2. By Theorem 3.4, this also gives a

characterization of the index of ΛA,P1 :W1,2
A → L2×X1.

In what follows, we denote by E+(L), E−(L) the sum of the generalized eigenspaces
of the operator L∈�(CN ) corresponding to the eigenvalues of L with positive (negative)
real part. The main step towards the desired characterization is contained in the following
lemma.

Lemma 4.1. Assume thatA is piecewise continuous, that
⋂
t≥0 kerA(t)= {0}, and that there

are a constant ν > 0 and a locally Lipschitz continuous function H :R+→��(CN ) such that
(i) HA+A∗H − Ḣ ≥ ν(A∗A+H2) a.e. on R+.

Assume also that
(ii) H(t) is invertible for all t ≥ 0.

Then, the null space of DA :W1,2
A → L2 has dimension dimE+(H(0)).

In fact, condition (ii) of Lemma 4.1 is essentially redundant. The general idea in the
proof of the following lemma is taken from Coppel [3].

Lemma 4.2. Assume that A is piecewise continuous, that
⋂
t≥T kerA(t)= {0} for all T ≥ 0,

and that there are a constant ν > 0 and a locally Lipschitz continuous function H : R+ →
��(CN ) such that

HA+A∗H − Ḣ ≥ ν
(
A∗A+H2) a.e. on R+. (4.1)

Then,H(t) is invertible for all t > 0 large enough. In particular, dimE±(H(t)) is independent
of t large enough.

By combining Lemmas 4.1 and 4.2, we get the following theorem.

Theorem 4.3. Assume that A is piecewise continuous, that
⋂
t≥T kerA(t)= {0} for all T ≥

0, and that there are a constant ν > 0 and a locally Lipschitz continuous function H :R+ →
��(CN ) such that

HA+A∗H − Ḣ ≥ ν
(
A∗A+H2) a.e. on R+. (4.2)
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Then,
(a) if t is large enough, d+(H)= dimE+(H(t)) is independent of t,
(b) the operator DA :W1,2

A → L2 is onto and dimkerDA = d+(H),
(c) the operator ΛA,P1 :W1,2

A → L2×X1 is Fredholm of index d+(H)−dimX1.

In practice, it is not difficult to calculate d+(H) since this can be done without finding
the eigenvalues of H(t) (see Jacobi’s criterion [6, page 296]).

Example 4.4. Returning to Example 3.10 where A(t) = ( t 1
1/t+1 −t

)
and condition (i) of

Theorem 4.3 holds with H(t)= A(t) +A∗(t)= ( 2t (2+t)/1+t
(2+t)/1+t −2t

)
, we have d+(H)= 1, so

that dimkerDA = 1 by Theorem 4.3, and hence that ΛA,P1 in Example 3.10 is an isomor-
phism.

Example 4.5. Let N = 3 and A(t) =
(1 t 1
t −1 t
1 t 2

)
. Condition (i) of Theorem 4.3 holds with

H = A and the principal minors of H(t) are 1,−1− t2, and −1− t2. Thus, d+(H)= 2 by
Jacobi’s criterion, and so dimkerDA = 2.

5. Surjectivity

Lastly, we discuss the surjectivity of the operator ΛA,P1 : W1,2
A → L2 ×X1 beyond the in-

vertibility result obtained in Theorem 3.4. When ΛA,P1 is (semi-) Fredholm, this amounts
to the injectivity of Λ∗A,P1

: L2×X1 → (W1,2
A )∗. Under suitable assumptions, this is equiv-

alent to the injectivity of Λ−A∗,P∗2 : W1,2
A∗ → L2 × X⊥1 , for which the criterion given in

Theorem 3.4 is available. With rA(t) given by (2.3), we set

ρA(t) :=
∫ t

0
rA(τ)dτ. (5.1)

Theorem 5.1. Assume thatA is piecewise continuous, that
⋂
t≥0 kerA(t)=⋂t≥0 kerA∗(t)=

{0}, that e−sρAA∈ L∞ for every s > 0, and that there are a constant ν > 0 and locally Lipschitz
continuous functions H ,K :R+→��(CN ) such that

(i) HA+A∗H − Ḣ ≥ ν(A∗A+H2) a.e. on R+,
(ii) KA∗ +AK + K̇ ≥ ν(AA∗ +K2) a.e. on R+,

(iii) K(0)|X⊥2 ≥ 0.
Then, the operator ΛA,P1 :W1,2

A → L2×X1 is surjective. If also
(iv) H(0)|X2 ≤ 0, then ΛA,P1 :W1,2

A → L2×X1 is an isomorphism.

Remark 5.2. It is well known that |A−1(t)| ≤ (2N − 1)(|A(t)|N−1/|detA(t)|) whenever
A(t) is invertible, which shows that rA(t)≥ (1/(2N − 1))(|detA(t)|/|A(t)|N−1) when A(t)
is invertible. This is often useful to check the condition e−sρAA∈ L∞ without calculating
A−1.

When H = K =A+A∗ in Theorem 5.1, we obtain the following corollary.

Corollary 5.3. Assume that A is locally Lipschitz continuous, that
⋂
t≥0 kerA(t) =

⋂
t≥0 kerA∗(t) = {0}, that e−sρAA ∈ L∞ for every s > 0, and that there is a constant ν > 0

such that
(i) A2 +A∗A− Ȧ≥ ν(A∗A+AA∗) a.e. on R+,
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(ii) A2 +AA∗ + Ȧ≥ ν(A∗A+AA∗) a.e. on R+,
(iii) A(0)|X⊥2 ≥ 0.

Then, the operator ΛA,P1 :W1,2
A → L2×X1 is surjective. If also

(iv) A(0)|X2 ≤ 0, then ΛA,P1 :W1,2
A → L2×X1 is an isomorphism.

Example 5.4. LetA be as in Example 4.5. IfX2={0}×C2 andX1 is any (one-dimensional)
direct complement of X2 in C3, conditions (i) to (iv) (and also (vi)) of Corollary 5.3 hold.
Since detA(t) = −t2 − 1 and |A(t)| ≤ C(t + 1) for some constant C > 0, it follows from
Remark 5.2 that rA(t) ≤ c, where c > 0 is a constant. As a result, e−sρA(t) ≤ e−cst, so that
e−sρAA∈ L∞. This shows that ΛA,P1 :W1,2

A → L2×X1 is surjective. Note that condition (v)
fails since A(0) is Hermitian with two positive eigenvalues. Actually, from Example 4.5
and Theorem 4.3, ΛA,P1 :W1,2

A → L2×X1 has index 1, thus cannot be one-to-one.
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POSITIVE SOLUTIONS OF SECOND-ORDER DIFFERENTIAL
EQUATIONS WITH PRESCRIBED BEHAVIOR OF
THE FIRST DERIVATIVE

OCTAVIAN G. MUSTAFA AND YURI V. ROGOVCHENKO

Using Banach contraction principle, we establish global existence of solutions to the
nonlinear differential equation u′′ + f (t,u,u′) = 0 that have asymptotic developments
u(t) = c + o(1) and u(t) = ct + o(td) as t→ +∞ for some c > 0 and d ∈ (0,1). Our theo-
rems complement and improve recent results reported in the literature. As a byproduct,
we derive a multiplicity result for a large class of quasilinear elliptic equations in exterior
domains in Rn, n≥ 3.

Copyright © 2006 O. G. Mustafa and Y. V. Rogovchenko. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The quasilinear elliptic equation

Δu+ f (x,u) + g
(|x|)x ·∇u= 0, |x| > A > 0, (1.1)

describes several important phenomena arising in mathematical physics. Equation (1.1)
has been investigated recently in [1, 2, 4, 15, 16], where existence of eventually posi-
tive and decaying-to-zero solutions was discussed by using approaches based on Banach
contraction principle and exponentially weighted metrics, sub- and supersolutions, and
variational techniques.

Let GA = {x ∈ Rn : |x| > A}, n ≥ 3. Similarly to [14], we assume that the function
f : GA×R→R is locally Hölder continuous and g : [A,+∞)→R is continuously differ-
entiable. Following [2, 4], we also suppose that f satisfies

0≤ f (x, t)≤ a(|x|)w(t), t ∈ [0,+∞), x ∈GA, (1.2)

where a : [A,+∞)→ [0,+∞), w : [0,+∞)→ [0,+∞) are continuous functions,

w(t)≤Mt, t ∈ [0,ε], (1.3)

for certain M, ε > 0, and g takes on only nonnegative values.

Hindawi Publishing Corporation
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Existence of positive and decaying-to-zero solutions to (1.1) in GB, for some B ≥ A,
has been established in [1, 2, 4, 16] under the assumption

∫ +∞

A
sa(s)ds < +∞, (1.4)

and in [15] under a stronger condition

∫ +∞

A
sn−1a(s)ds < +∞. (1.5)

The arguments in [1, 2, 4, 16] make use of the comparison equation

h′′(t) + k1(t)h(t) + k2(t)
(

h′(t)− h(t)
t

)

= 0, t ≥A, (1.6)

where the functions ki : [A,+∞)→ [0,+R) are continuous and such that

∫ +∞

A

[
s
∣
∣k1(s)

∣
∣+

∣
∣k2(s)

∣
∣
]
ds < +∞. (1.7)

The authors of the cited papers exploit the fact that (1.6) has bounded, eventually positive
increasing solutions. Recently, Ehrnström [4] noticed that when assuming that g takes on
only nonnegative values rather than requiring that g satisfies the standard hypothesis
(1.4), one can take in (1.6) k2 ≡ 0. This conclusion is based on the existence of a solution
h(t) of (1.6) satisfying

0 < h′(t) <
h(t)
t

< ε (1.8)

for all t ≥ T0, where T0 ≥A is chosen appropriately, and

h(t)=O(1), h′(t)=O(t−1) as t −→ +∞. (1.9)

Condition (1.8) suggests that the function

Ψ(t)
def= 1

t
W[t,h](t)= 1

t

∣
∣
∣
∣
∣
t h(t)
1 h′(t)

∣
∣
∣
∣
∣
= h′(t)− h(t)

t
(1.10)

plays an important role in the in-depth analysis of asymptotically linear solutions to (1.6),
that is, solutions satisfying, for some a,b ∈R,

h(t)= at+ b+ o(1) as t −→ +∞ (1.11)

(cf. [8, 9]). Properties of the function Ψ(t) were studied by the authors in [12, 13]. Note
that if b < 0, for a solution h(t) satisfying (1.11), one has Ψ(t) > 0, for t ≥ T0, and (1.11)
does not yield (1.8).

The paper is organized as follows. First, we present two theorems inspired by the work
by Hale and Onuchic [5], thus enhancing recent results on asymptotic behavior of solu-
tions of the celebrated Emden-Fowler equation that has many important applications in
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physics [3, 10, 16]. As a byproduct, we improve the standard asymptotic representation
(1.9) (cf. [5–7]), and explore the properties of the function Ψ(t) for solutions of (1.6)
with the asymptotic development

h(t)= at+ o
(
tλ
)

as t −→ +∞, (1.12)

where λ ∈ (0,1) (cf. [9]). Finally, we establish existence of two positive solutions u1(x)
and u2(x) to (1.1) satisfying, respectively,

lim
|x|→+∞

u1(x)= 0, liminf
|x|→+∞

u2(x) > 0. (1.13)

2. Positive solutions to a nonlinear ODE

Consider the second-order nonlinear differential equation

u′′ + f (t,u,u′)= 0, t ∈ I = [t0,+∞), t0 ≥ 1, (2.1)

where the function f , though assumed continuous and locally Lipschitz continuous on
subsets ofR3, might have singularities. We will call a pair (α,β) of nonnegative, bounded,
continuous on I functions satisfying α(t)≤ β(t) for t ∈ I a comparison pair.

Fix a c ∈R and let (α,β) be a comparison pair of integrable functions. Define the sets

Cc =
{

u∈ C(I ,R) | c−
∫ +∞

t
β(s)ds≤ u(t)≤ c−

∫ +∞

t
α(s)ds for all t ∈ I

}

,

D = {v ∈ C(I ,R) | α(t)≤ v(t)≤ β(t) for all t ∈ I}.
(2.2)

Theorem 2.1. Assume that, for all t ∈ I , u,u1,u2 ∈ Cc and v,v1,v2 ∈ D, the function t 
→
f (t,u(t),v(t)) is continuous,

∣
∣ f
(
t,u1,v1

)− f
(
t,u2,v2

)∣
∣≤ k(t)

(∣
∣u1−u2

∣
∣+

∣
∣v1− v2

∣
∣
)
, (2.3)

where k ∈ C(I ,R) is a nonnegative function satisfying (1.4). Suppose further that, for all
t ∈ I , u∈ Cc, and v ∈D,

α(t)≤
∫ +∞

t
f
(
s,u(s),v(s)

)
ds≤ β(t). (2.4)

Then there exists a unique solution u(t) of (2.1), defined on I , such that

lim
t→+∞u(t)= c, α(t)≤ u′(t)≤ β(t), t ∈ I. (2.5)

Furthermore, u(t) is positive provided that

c−
∫ +∞

t0
β(s)ds > 0. (2.6)
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Proof. For a fixed r > 1, introduce the weighted distance between two functions v1,v2 ∈D,

dr
(
v1,v2

)= sup
t∈I

[(∫ +∞

t

∣
∣v1(s)− v2(s)

∣
∣ds+ t0

∣
∣v1(t)− v2(t)

∣
∣
)

exp
(

− r
∫ +∞

t
sk(s)ds

)]

,

(2.7)

and define the operator T :D→D by

T(v)(t)=
∫ +∞

t
f
(

s,c−
∫ +∞

s
v(τ)dτ,v(s)

)

ds, v ∈D, t ∈ I. (2.8)

Similarly to [10, 16], we deduce from Lebesgue’s dominated convergence theorem that the
operator T is a contraction in the complete metric space E = (D,dr) with the coefficient
1/r and, accordingly, T has a fixed point v0 ∈D. Then the function u defined by

u(t)= c−
∫ +∞

t
v0(s)ds, t ∈ I , (2.9)

is a sought for solution of (2.1). �

Remark 2.2. Assume that condition (2.6) in Theorem 2.1 is replaced with a stronger one,

c−
∫ +∞

t
β(s)ds > tβ(t)≥ 0, t ∈ I. (2.10)

Then u(t) satisfies, for all t ∈ I ,

u′(t) <
u(t)
t
. (2.11)

Fix now a,c ≥ 0, b ∈ (0,1], and let (α,β) be a comparison pair. Define the set

Ca,b =
{

u∈ C(I ,R) | at+ c+ t
∫ +∞

t

α(s)
s1+b

ds≤ u(t)

≤ at+ c+ t
∫ +∞

t

β(s)
s1+b

ds for all t ∈ I
}

.

(2.12)

Theorem 2.3. Let f (t,u,u′) = f (t,u), and assume that, for all t ∈ I and u,u1,u2 ∈ Ca,b,
the function t 
→ f (t,u(t)) is continuous,

∣
∣ f
(
t,u1

)− f
(
t,u2

)∣
∣≤ k(t)

∣
∣u1−u2

∣
∣, (2.13)

where k ∈ C(I ,R) is a nonnegative function satisfying

∫ +∞

t0
sk(s)ds < b. (2.14)

Suppose also that, for all t ∈ I and u∈ Ca,b,

α(t)≤ 1
t1−b

∫ t

t0
s f
(
s,u(s)

)
ds≤ β(t). (2.15)
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Then there exists a unique solution u(t) of (2.1) defined on I such that

u(t)= at+O
(
t1−b

)
as t −→ +∞ (2.16)

and, for t ∈ I ,

u(t)≥ c, α(t)≤ tb
[
u(t)− c

t
−u′(t)

]

≤ β(t). (2.17)

Proof. Let

D = {v ∈ C(I ,R) | −t−bβ(t)≤ v(t)≤−t−bα(t) for all t ∈ I}. (2.18)

Introduce the distance between two functions v1,v2 ∈D by

d
(
v1,v2

)= sup
t∈I

[
tb
∣
∣v1(t)− v2(t)

∣
∣
]
, (2.19)

and the operator T :D→D by

t
[
T(v)(t)

]=−
∫ t

t0
s f
(

s,as+ c− s
∫ +∞

s

v(τ)
τ

dτ
)

ds. (2.20)

One can easily check that T is a contraction in the complete metric space E = (D,d) with
the coefficient (1/b)

∫ +∞
t0 sk(s)ds and, accordingly, T has a fixed point v0 ∈ D. Then the

function u(t) defined by

u(t)= at+ c− t
∫ +∞

t

v0(s)
s

ds, t ∈ I , (2.21)

is a solution of (2.1) with the desired properties. �

3. Positive solutions to (1.1)

Existence of two positive solutions to (1.1) can be established similarly to [1, 2, 4, 14, 16]
provided that one proves existence of two subsolutions h−1 ,h−2 and two supersolutions
h+

1 ,h+
2 of (1.1) such that

0≤ h−1 (t)≤ h+
1 (t) < h−2 (t)≤ h+

2 (t), t ≥ T0, (3.1)

and h±i (t)=O(t) as t→ +∞.
Let k2 ≡ 0 in (1.6),

h′′(t) + k1(t)h(t)= 0, t ≥A, (3.2)

and assume that
∫ +∞

A
s
∣
∣k1(s)

∣
∣ds < +∞. (3.3)
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Fix an a∈ (0,ε) and a λ∈ (0,1). Following [11], we deduce that there exist a T0 ≥ A and
a solution h+

2 of (3.2) such that, for all t ≥ T0,

λa <
(
h+

2

)′
(t) <

h+
2 (t)
t

< a. (3.4)

Let now k1 ≡ 0 in (1.6),

h′′(t) + k2(t)
(

h′(t)− h(t)
t

)

= 0, t ≥ A, (3.5)

and suppose that k2 ≥ 0. As noticed in [4], k2 should not necessarily be integrable on
[A,+∞). Furthermore, as opposed to [1], g is not assumed to be bounded. Adapting the
technique from [12], one can show that (3.5) has a solution h−2 ,

h−2 (t)= t
[
h0

T0
+
∫ t

T0

y(s)
s2

ds
]

, (3.6)

where

y(t)=−exp
(

−
∫ t

T0

k2(s)ds
)

, t ≥ T0. (3.7)

For a fixed b∈ (0,1] and T0 large enough, pick an h0 = T1−b/2
0 to make certain that

1

bTb
0

<
h0− 1
T0

,
h0

T0
= T−1

0 +T−b/20 < λa. (3.8)

Then (1.1) has a solution u2(x), defined in GB for some B > T0, such that

h−2 (t)
t
≤ u2(x)≤ h+

2 (t)
t

, t ≥ T0, (3.9)

where

|x| =
(

t

n− 1

)1/(n−2)

≥ B. (3.10)

Furthermore,

liminf
|x|→+∞

u2(x)≥ h0− 1
T0

. (3.11)

Consider again (3.2), assuming that (3.3) holds. In Theorem 2.3, take α≡ 0 and β ≡ 1
as a comparison pair. Choose the numbers b ∈ (0,1/2) and T0 ≥max(e,A) to ensure that
(3.8) is satisfied and to guarantee that

∫ +∞

T0

sk1(s)ds <
b

2
. (3.12)
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Consider the operator T , defined by (2.20), for a= 0 and for some c ∈ (0,b−1T1−b
0 ). Then

one can prove that there exists a solution h+
1 of (3.2) such that

h+
1 (t)≥ c, (

h+
1

)′
(t) <

h+
1 (t)
t
≤ 2
btb

< λa < ε. (3.13)

Finally, let h−1 ≡ 0. Then (1.1) has a solution u1(x), defined inGB for some B > T0, such
that

0 < u1(x)≤ h+
1 (t)
t

, t ≥ T0,

lim
|x|→+∞

u1(x)= 0.
(3.14)

We conclude by mentioning that if (1.5) holds, a multiplicity theorem is presented
in [15]; whereas no similar results are known for the case when (1.4) is satisfied. Fur-
thermore, our investigation reveals that solutions u1(x) and u2(x) of (1.1) have different
asymptotic behaviors, induced by the behavior of h−2 as |x| → +∞. Although existence of
such solutions has been already established in the literature, the arguments employed in
[1, 2, 4, 16] and the choice of sub- and supersolutions in these papers do not allow for the
detailed analysis of the asymptotic behavior of u1(x) and u2(x) undertaken in this paper.
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EXISTENCE AND UNIQUENESS OF AN INTEGRAL
SOLUTION TO SOME CAUCHY PROBLEM
WITH NONLOCAL CONDITIONS

GASTON M. N’GUÉRÉKATA

Using the contraction mapping principle, we prove the existence and uniqueness of an
integral solution to a semilinear differential equation in a Banach space with a nondensely
defined operator and nonlocal conditions.

Copyright © 2006 Gaston M. N’Guérékata. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Preliminaries and notations

The aim of this short note is to prove the existence and uniqueness of an integral solution
to the nonlocal evolution equation in a Banach space E,

du(t)
dt

= Au(t) +F
(
t,Bu(t)

)
, t ∈ [0,T],

u(0) + g(u)= u0,
(1.1)

where A :D(A)⊂ E→ E and B :D(B)→ E are closed linear operators.
We assume that the domain D(A) of A is not dense in E and

(i) F : [0,T]×E→ E is continuous,
(ii) g : C→ E is continuous, where C := C([0,T];E) is the Banach space of all contin-

uous functions [0,T]→ E equipped with the uniform norm topology.
An example of such problem is the following.

Example 1.1. Consider the partial differential equation

∂

∂t
u(t,x)= ∂2

∂x2
u(t,x) + f (t,Bx), (t,x)∈ [0,T]× (0,1),

u(t,0)= u(t,1)= 0, t ∈ [0,T],

u(0,x) +
n∑

i

λiu
(
ti,x
)=Φ(x), x ∈ (0,1),

(1.2)

Hindawi Publishing Corporation
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where u(t,x), f (t,x) are scalar, λi, i= 1, . . . ,n, are some constants, and 0 < t1 ≤ t2 ≤ ··· ≤
T . B is an operator defined by Bv := q(x)v for each v ∈ C with q ∈ L∞(0,T). Here we
write v(t)= u(t,·) regarded as a function of x. If we study (1.2) in E := C[0,T] (the space
of all continuous functions on [0,T] with the sup-norm), and define

Av = v′′, D(A)= {v ∈ C2[0,T] : v(0)= v(T)= 0
}

, (1.3)

then the closure of D(A) is

D(A)= {v ∈ C[0,T] : v(0)= v(T)= 0
}�= C[0,T]; (1.4)

so, A is not densely defined on C[0,T]. Therefore, if we assume that f (t,·)∈ C[0,T] de-
pends continuously on t and bounded onR, then we will be concerned with the evolution
equation (1.2) with the nondensely defined operator A.

Many problems with nondensely defined operators and nonlocal conditions arise in
physics (see, i.e., [7]). Indeed it appears, for instance, that the nonlocal condition u(0) +
g(u) = u0 produces better effects than the classical Cauchy problem with u(o) = u0 for
diffusion phenomenon of small amounts of gas in a transparent tube when

g(u)=
n∑

i=0

λiu
(
ti
)
, (1.5)

where 0 < t1 ≤ t2 ≤ ··· ≤ T and λi, i= 1, . . . ,n, are some given constants.
Several papers investigate the existence and uniqueness of classical or mild solutions

of Cauchy problems with nonlocal conditions; see, for instance, [1, 2, 5–9] and many
references within. Most of these papers deal with a densely defined operator A. In [8], Liu
and Ezzinbi studied the existence and uniqueness of integrated solutions of (1.1) above
where A is nondensely defined on E. The main result (Theorem 2.1) is a generalization of
Theorem 4 in their work [8].

Throughout the paper, L(E) will denote the Banach space of all bounded linear oper-
ators E→ E.

In order to define an integral solution to (1.1), we first present a collection of some
results on the so-called integrated semigroups, a notion introduced by Arendt [3] in the
context of resolvent positive operators. Neubrander then studied n-times integrated semi-
groups, n≥ 0, (see also [4, 10]).

Definition 1.2 [4]. A family (Tt)t≥0 of bounded linear operators on E is called an inte-
grated semigroup if

(i) T0 = 0,
(ii) t→ Tt is strongly continuous,

(iii) TsTt =
∫ s

0(Tt+σ −Tσ)dσ for all t,s≥ 0.

Let us recall some examples from [11].
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Example 1.3. (i) Let (St)t≥0 be aC0-semigroup on a Banach space E. Then (Tt)t≥0, defined
by Tt := ∫ t0 S(s)ds for each t ≥ 0, is an integrated semigroup.

(ii) Let (cos(t))t≥0 be the cosine function on a Banach space E and define the sine
function by sin(t) := ∫ t0 cos(s)ds. Then the 2× 2 matrix Tt := (a(t))i j , where (a(t))11 =
(a(t))22 = sin(t), (a(t))12 =

∫ t
0 sin(s)ds, and (a(t))21 = cos(t)− I , is an integrated semi-

group on E×E.

Remark 1.4. One can check also that

TsTt =
∫ s+t

0
Tσdσ −

∫ s

0
Tσdσ −

∫ t

0
Tσdσ for s, t ≥ 0. (1.6)

Therefore, TsTt = TtTs for s, t ≥ 0.

Definition 1.5. An integrated semigroup (Tt)t≥0 is said to be
(i) locally Lipschitz continuous if for all b > 0, there exists a constant L such that

∥
∥Tt −Ts

∥
∥≤ L|t− s|, t,s∈ [0,b]; (1.7)

(ii) nondegenerate if Ttx = 0 for all t ≥ 0, implies x = 0.

As in the case of the classical semigroup theory, we can define the generator of an
integrated semigroup as follows.

Definition 1.6. A linear operator A is said to be a generator of an integrated semigroup
if there exists ω ∈ R such that (ω,∞) ⊂ ρ(A), the resolvent set of A, and there exists a
strongly continuous exponentially bounded family of bounded linear operators (Tt)t≥0

such that
(i) T0 = 0;

(ii) R(λ;A)= ∫∞0 e−λtTtdt exists for all λ > ω.

Proposition 1.7 [4, Proposition 3.3]. Let A be the generator of an integrated semigroup
(Tt)t≥0. Then for all x ∈D(A) and t ≥ 0, we have

(i)
∫ t

0 Tσxdσ ∈D(A),
(ii) Ttx = A

∫ t
0 Tσxdσ + tx.

We now recall the well-known result.

The Hille-Yosida condition. A linear operator A is said to satisfy a Hille-Yosida condition
if there exist real constant M and ω such that (ω,∞)∈ ρ(A) and

∥
∥(λ−A)−n

∥
∥≤ M

(λ−ω)n
for n∈N, λ > ω. (1.8)

Theorem 1.8 [4]. A is the generator of a nondegenerate, locally Lipschitz continuous semi-
group if and only if A satisfies the Hille-Yosida condition.

Theorem 1.9. Assume A is the generator of an integrated semigroup (Tt)t≥0 and let f ∈
C([0,T],E). Then for each u0 ∈D(A), there exists a unique function u∈ C([0,T],E) such
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that for each t ∈ [0,T], there exist
(i)
∫ t

0 u(σ)dσ ∈D(A),
(ii) u(t)= u0 +A

∫ t
0 u(σ)dσ +

∫ t
0 f (σ)dσ ,

(iii) ‖u(t)‖ ≤Meωt(‖u0‖+
∫ t

0 e
−ωσ‖ f (σ)‖dσ).

Moreover, u satisfies the variation of constant formula

u(t)= T′t u0 +
d

dt

∫ t

0
Tt−σ f (σ)dσ , t ≥ 0. (1.9)

If we define Bλ := λR(λ,A), then for all u∈D(A), Bλu→ u as λ→∞.
It is clear that

d

dt

∫ t

0
Tt−σ f (σ)dσ ∈D(A) for every f ∈ L1(0,T). (1.10)

Therefore

Bλ
d

dt

(∫ t

0
Tt−σ f (σ)dσ

)

−→ d

dt

∫ t

0
Tt−σ f (σ)dσ if λ−→∞. (1.11)

Now by continuity of Bλ, we have

Bλ
d

dt

(∫ t

0
Tt−σ f (σ)dσ

)

= d

dt

(∫ t

0
Tt−σBλ f (σ)dσ

)

. (1.12)

Since Tt is differentiable onD(A), then t→ Tt−σ f (σ) is also differentiable in t for all t ≥ 0.
Using now the fact that T0 = 0, we obtain

d

dt

(∫ t

0
Tt−σBλ f (σ)dσ

)

=
∫ t

0
T′t−σBλ f (σ)dσ. (1.13)

Therefore

u(t)= T′t u0 + lim
λ→∞

∫ t

0
T′t−σBλ f (σ)dσ , t ≥ 0. (1.14)

Finally we give the definition of an integral solution to (1.1).

Definition 1.10. A function u ∈ C([0,T];E) is said to be an integral solution of (1.1) if
the following hold:

(i)
∫ t

0 u(σ)dσ ∈D(A), t ∈ [0,T];
(ii) u(t)= u0− g(u) +A

∫ t
0 u(σ)dσ +

∫ t
0 F(σ ,u(σ))dσ , t ∈ [0,T].
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2. Main results

Now we state and prove the following (compare with [8, Theorem 4]). Unlike [8], T > 0
is an a priori fixed number and ω > 0.

Theorem 2.1. Assume A satisfies a Hille-Yosida condition with ω > 0 and B ∈ L(E) is a
bounded linear operator. Assume further that

(i) ‖F(t,x)−F(t, y)‖ ≤N(t)‖x− y‖, t ∈ [0,T], x, y ∈ E, with N ∈ L1
loc(R, (0,∞)) and

‖N‖L1
loc(R) ≤ (1/M‖B‖L(E))ωe−ωT ;

(ii) g : C→D(A) and ‖g(u)− g(v)‖ ≤ b‖u− v‖C, with b < (1/M)e−2ωT ;
(iii) r > 0 can be chosen such that

MeωT
[
∥
∥u0

∥
∥+K +

1
ω

(

a+
rωe−ωT

M

)
(
1− e−ωT)

]

≤ r, (2.1)

where K = supw∈Br ‖g(w)‖, Br = {w ∈ C : ‖w‖ ≤ r}, and a= supt∈[0,T]‖F(t,0)‖;

(iv) u0 ∈D(A).
Then (1.1) admits a unique integral solution on [0,T].

Proof. Define an operator Γ : C→ C by

Γu(t) := T′t
[
u0− g(u)

]
+
d

dt

∫ t

0
Tt−sF

(
s,Bu(s)

)
ds, t ∈ [0,T]. (2.2)

We like to show that Γ possesses a fixed point in C.
First, we note that Γ is well defined and we can show that ΓBr ⊂ Br .
Indeed, by Theorem 1.9, if u∈ Br , then

∥
∥Γu(t)

∥
∥≤Meωt

[
∥
∥u0

∥
∥+K +

∫ t

0
e−ωs

∥
∥F
(
s,Bu(s)

)∥
∥ds
]

=Meωt
[
∥
∥u0

∥
∥+K +

∫ t

0
e−ωs

∥
∥F
(
s,Bu(s)

)−F(s,0) +F(0,s)
∥
∥ds
]

≤Meωt
[
∥
∥u0

∥
∥+K +

∫ t

0
e−ωs

∥
∥F
(
s,Bu(s)

)−F(s,0)
∥
∥ds+

∫ t

0
e−ωs

∥
∥F(s,0)

∥
∥ds
]

≤Meωt
[
∥
∥u0

∥
∥+K +

∫ t

0
e−ωsN(s)‖B‖L(E)

∥
∥u(s)

∥
∥ds+ a

∫ t

0
e−ωsds

]

≤MeωT
[
∥
∥u0

∥
∥+K +

(
r‖B‖L(E)‖N‖L1

locR
+ a
)
∫ T

0
e−ωsds

]

≤MeωT
[
∥
∥u0

∥
∥+K +

1
ω

(
r‖B‖L(E)‖N‖L1

locR
+ a
)(

1− e−ωT)
]

<MeωT
[
∥
∥u0

∥
∥+K +

1
ω

(

a+
rωe−ωT

M

)
(
1− e−ωT)

]

≤ r.
(2.3)
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Now if u,v ∈ Br , then we get

∥
∥Γu(t)−Γv(t)

∥
∥≤

∥
∥
∥
∥T

′
t

[

g(u)− g(v) +
d

dt

∫ t

0
Tt−s

[
F
(
s,Bu(s)

)−F(s,Bv(s)
)]
ds
]∥
∥
∥
∥

≤Meωt
[

b‖u− v‖C +
∫ t

0
e−ωs

∥
∥F
(
s,u(s)

)−F(s,v(s)
)∥
∥ds
]

≤MeωT
[

b+‖B‖L(E)‖N‖L1
loc(R)

(
1− e−ωT) 1

ω

]

‖u− v‖C
=Θω,M,T‖u− v‖C,

(2.4)

where the constant

Θω,M,T < 1. (2.5)

Hence by the contraction mapping principle, Γ has a unique fixed point u(t), that is,

u(t)= T′t
[
u0− g(u)

]
+
d

dt

∫ t

0
Tt−sF

(
s,u(s)

)
ds, t ∈ [0,T], (2.6)

which is an integral solution to (1.1). �
We also have the following whose proof is straightforward.

Corollary 2.2. Assume A satisfies a Hille-Yosida condition with ω > 0. Assume further
that

(i) F(t,x) is Lipschitzian in x uniformly in t and the Lipschitz constant L satisfies the
inequality L < (1/M)ωe−ωT ;

(ii) g : C → D(A) with g(u) = ∑n
i=0 λiu(ti), where 0 < t1 ≤ t2 ≤ ··· ≤ T and λi, i =

1, . . . ,n, are some given constants and
∑n

i |λi| < (1/M)e−2ωT ;
(iii) r > 0 can be chosen such that

MeωT
[
∥
∥u0

∥
∥+K +

1
ω

(

a+
rωe−ωT

M

)
(
1− e−ωT)

]

≤ r, (2.7)

where K = supw∈Br ‖g(w)‖, Br = {w ∈ C | ‖w‖ ≤ r}, and a= supt∈[0,T]‖F(t,0)‖;

(iv) u0 ∈D(A).
Then (1.1) admits a unique integral solution on [0,T].

Proof. It is straightforward from Theorem 2.1. �
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AN H1-GALERKIN MIXED FINITE ELEMENT METHOD
FOR LINEAR AND NONLINEAR PARABOLIC PROBLEMS

NEELA NATARAJ AND AMBIT KUMAR PANY

An H1-Galerkin mixed finite element method is proposed to approximate the solution
as well as flux of one-dimensional linear and nonlinear parabolic initial boundary value
problems. Error estimates have been given and the results of numerical experiments for
two examples have been shown.

Copyright © 2006 N. Nataraj and A. K. Pany. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In [9], an H1-Galerkin mixed finite element method is proposed to solve linear parabolic
problems. Contrary to the standard H1-Galerkin finite element method [6, 10], the C1-
continuity condition in the definition of the finite element spaces for approximating the
solution has been relaxed in this method.

The standard mixed finite element procedure demands the satisfaction of the LBB
condition by the approximating finite element subspaces. This restricts the choice of the
finite element spaces for approximating u and its flux. This bottle neck has been overcome
in this method and the approximating finite element spaces Vh and Wh are allowed to be
of different polynomial degrees. Also, the quasiuniformity condition on the finite element
mesh need not be imposed in this method.

In this paper, first of all, an implementation of the H1-Galerkin mixed finite element
method [9] which gives a simultaneous approximation to the solution as well as its flux
for linear parabolic problems has been done. Secondly, an interesting application of this
mixed method for approximating the solution and flux of Burgers’ equation has been
described. The unknown and its derivative are approximated simultaneously using glob-
ally continuous piecewise linear elements in the discrete level. Error estimate results have
been stated and results of some numerical experiments are presented.

Burgers’ equation, being a simplified form of Navier-Stokes equation and also due
to its immense physical applications, has attracted researcher’s attention since the past
few decades. Numerical methods like finite difference, finite element, as well as spectral

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 851–860
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and mixed finite element methods (see [1, 2, 4, 7], and the references therein) have been
developed in the past to solve this equation.

An outline of the paper is as follows. In Section 2, the H1-Galerkin continuous mixed
variational formulation, and finite element formulation has been discussed. A priori error
estimates results for the mixed finite element scheme have been stated. In Section 3, a
fully discrete scheme has been described. Results of the numerical experiments performed
are discussed in Section 4. The numerical experiments confirm the theoretical rate of
convergence obtained.

2. H1-Galerkin mixed finite element method

2.1. A linear parabolic initial boundary value problem. We consider the following
problem. Find u such that

ut −
(
aux
)
x + bux + cu= f (x, t), (x, t)∈ (0,1)× J , (2.1)

with Dirichlet boundary conditions u(0, t) = u(1, t) = 0 for all t ∈ J̄ and initial condi-
tion u(x,0) = u0(x) for all x ∈ I where I = (0,1), J = (0,T] with T < ∞, ut = ∂u/∂t,
ux = ∂u/∂x. The coefficients a,b,c are smooth functions of x, and a is bounded below
by a positive constant, say a0.

Introduce a new variable v = aux to reduce (2.1) to the following 1st order system:

ux = α(x)v,

ut − vx +βv+ cu= f .
(2.2)

Here α(x) = 1/a(x), β(x)= α(x)b(x). Denote the natural inner product in L2(I) as (·,·)
and the standard Sobolev spaces H1(I), H1

0 (I) as H1 and H1
0 , respectively. After multiply-

ing the first equation in (2.2) by χx with χ ∈H1
0 and the second equation in (2.2) by −wx

with w ∈ H1, we integrate the second equation by parts. Using the Dirichlet boundary
conditions, we obtain the H1-Galerkin mixed formulation as follows.

Find {u,v} : (0,T]→H1
0 ×H1 such that

(
ux,χx

)= (α(x)v,χx
)
, ∀χ ∈H1

0 ,

(
αvt,w

)
+
(
vx,wx

)= (βv,wx
)

+
(
cu,wx

)− ( f ,wx
)
, ∀w ∈H1.

(2.3)

LetVh andWh be the finite-dimensional subspaces ofH1
0 andH1, respectively, defined

by

Vh =
{
χh : χh ∈ C0(Ī), χh|I j ∈ Pk

(
I j
)∀I j ∈�h, χh(0)= χh(1)= 0

}
, (2.4)

Wh =
{
wh :wh ∈ C0(Ī), wh|I j ∈ Pr

(
I j
)∀I j ∈�h

}
, (2.5)
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where �h is a partition of Ī = [0,1] intoNh subintervals I j = [xj ,xj+1], j = 0,1,2, . . . , (Nh−
1), hj = xj+1− xj , h=max0≤ j≤Nh−1hj , Vh ⊂H1

0 , Wh ⊂H1, and Pm(I j) denotes the poly-
nomials of degree less than or equal to m in I j .

The semidiscrete H1-Galerkin mixed finite element method for (2.2) is determined by
a pair (uh,vh)∈Vh×Wh such that

(
uhx,χhx

)= (α(x)vh,χhx
)
, ∀χ ∈Vh, (2.6)

(
αvht,wh

)
+
(
vhx,whx

)= (βvh,whx
)

+
(
cuh,whx

)− ( f ,whx
)
, ∀wh ∈Wh, (2.7)

with given (uh(0),vh(0)). The above system of equations yields a system of differential al-
gebraic equations. This is of index one since the stiffness matrix associated with (uhx,χhx)
is positive definite. Therefore, the system (2.6)-(2.7) is uniquely solvable for a consistent
initial condition [3].

2.2. A nonlinear parabolic initial boundary value problem. We consider Burgers’ equa-
tion

∂u

∂t
− ν

∂2u

∂x2
+u

∂u

∂x
= 0 in I × J (2.8)

with Dirichlet boundary conditions u(0, t)= u(1, t)= 0 for all t ∈ J̄ and initial condition
u(x,0) = u0(x) for all x ∈ I where I = (0,1), J = (0,T] with T <∞, u is the unknown
velocity, ν= 1/Re is the viscosity of the fluid, Re being Reynolds’ number, and u0(x) is a
given function.

Proceeding as in the linear case, we introduce a new variable v = ux, and obtain the
H1-Galerkin mixed method corresponding to (2.8) as follows.

Find {u,v} : (0,T]→H1
0 ×H1 such that

(
ux,χx

)= (v,χx
)
, ∀χ ∈H1

0 ,

(
vt,w

)
+ ν
(
vx,wx

)= (uv,wx
)
, ∀w ∈H1.

(2.9)

The semidiscrete H1-mixed finite element scheme is defined as follows.
Find {uh,vh} : [0,T]→Vh×Wh such that for t ∈ (0,T],

(
uhx,χhx

)= (vh,χhx
)
, ∀χh ∈Vh, (2.10)

(
vht,wh

)
+ ν
(
vhx,whx

)= (uhvh,whx
)
, ∀wh ∈Wh, (2.11)

where uh(0) and vh(0) are approximations of u0 and u0x, respectively, and Vh and Wh

are the finite-dimensional spaces defined in (2.4)-(2.5). The above system of equations
yields a system of differential algebraic equations of index one. Therefore, this system is
uniquely solvable for a consistent initial condition.
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The error estimate results for the semidiscrete scheme for both linear and nonlinear
cases are stated now. The proof for the linear case is given in [9], and that for the nonlinear
case is given in [8].

Theorem 2.1. Let v(0) = u0x. Then there exist positive constants C > 0, independent of h
such that

∥
∥
(
u−uh

)
(t)
∥
∥+

∥
∥
(
v− vh

)
(t)
∥
∥+h

∥
∥
(
u−uh

)
(t)
∥
∥

1

≤ Chmin(k+1,r+1)
{
‖u‖L∞(Hk+1) +‖v‖L∞(Hr+1) +

∥
∥vt
∥
∥
L2(Hr+1)

}
,

∥
∥
(
v− vh

)
(t)
∥
∥

1

≤ Chmin(k+1,r)
{
‖u‖L∞(Hk+1) +

∥
∥ut
∥
∥
L2(Hk+1) +‖v‖L∞(Hr+1) +

∥
∥vt
∥
∥
L2(Hr+1)

}
,

(2.12)

and for 2≤ p ≤∞,

∥
∥
(
u−uh

)
(t)
∥
∥
Lp +

∥
∥
(
v− vh

)
(t)
∥
∥
Lp

≤ Chmin(k+1,r+1)
{
‖u‖L∞(Wk+1,p) +

∥
∥ut
∥
∥
L2(Hk+1) +‖v‖L∞(Wr+1,p) +

∥
∥vt
∥
∥
L2(Hr+1)

}
.

(2.13)

3. A fully discrete scheme

We first describe a fully discrete scheme corresponding to (2.6)-(2.7) (resp.,
(2.10)-(2.11)). We use the backward Euler method for approximating vht. Let 0= t0 < t1 <
··· < tM = T be a given partition of the time interval [0,T] with step length Δt = T/M
for some positive integer M. For a smooth function φ on [0,T], define φn = φ(tn) and
∂̄φn = (φn−φn−1)/Δt. Let Un and Vn be the approximations of uh and vh at t = tn.

The fully discrete schemes corresponding to (2.6)-(2.7), respectively, (2.10)-(2.11), can
be defined as follows.

Given Vn−1, find {Un,Vn} ∈Vh×Wh such that

(
Un
x ,χhx

)= (αVn−1,χhx
)
, ∀χh ∈Vh,

(
αVn,wh

)
+Δt

(
Vn
x ,whx

)= Δt
(
βVn−1,whx

)
+Δt

(
cUn,whx

)

+
(
αVn−1,wh

)−Δt
(
f ,whx

)
, ∀wh ∈Wh.

(3.1)

Respectively, given Vn−1, find {Un,Vn} ∈Vh×Wh such that

(
Un
x ,χhx

)= (Vn−1,χhx
)
, ∀χh ∈Vh,

(
Vn,wh

)
+ νΔt

(
Vn
x ,whx

)= Δt
(
UnVn−1,whx

)
+
(
Vn−1,wh

)
, ∀wh ∈Wh.

(3.2)
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The error estimate results for the fully discrete scheme for both linear [9] and nonlinear
[8] cases are stated now.

Theorem 3.1. Under the assumptions V 0 = vh(0) with v(0) = u0x, there exists a positive
constant C > 0, independent of h and Δt such that for 0 < Δt ≤ Δt0 and J = 0,1, . . . ,M,

∥
∥u
(
tJ
)−UJ

∥
∥+

∥
∥v
(
tJ
)−VJ

∥
∥+h

∥
∥u
(
tJ
)−UJ

∥
∥

1

≤ Chmin(k+1,r+1)
{
‖u‖L∞(Hk+1) +‖v‖L∞(Hr+1) +

∥
∥vt
∥
∥
L2(Hr+1)

}
+CΔt

∥
∥vtt

∥
∥
L2(L2).

(3.3)

Moreover,

∥
∥v
(
tJ
)−VJ

∥
∥

1 ≤ Chmin(k,r)
{
‖u‖L∞(Hk+1) +

∥
∥ut
∥
∥
L2(Hk+1) +‖v‖L∞(Hr+1) +

∥
∥vt
∥
∥
L2(Hr+1)

}

+CΔt
∥
∥vtt

∥
∥
L2(L2).

(3.4)

4. Numerical experiments

The mixed finite element approximation scheme is implemented for a linear and a non-
linear parabolic initial boundary value problem.

In our implementation scheme, we have assumed that continuous piecewise linear
polynomials are used to approximate the finite-dimensional spaces Vh and Wh.

Example 4.1 (a linear parabolic initial boundary value problem). Consider

ut −
(
ux
)
x +ux +u= f (x, t) (4.1)

with Dirichlet boundary conditions u(0, t)= u(1, t)= 0 for all t ∈ (0,T], initial condition
u(x,0)= sin(πx) for all x ∈ [0,1], and f (x, t)= e−πt(sinπx(1− π − π2) + π cosπx). The
exact solution to this problem can be expressed as u(x, t)= e−πt sinπx.

For applying the mixed finite element method, we divide I = [0,1] into N uniform
intervals with length h= 1/N . Continuous, piecewise, linear polynomials are used to ap-
proximate functions in Vh and Wh.

In Figure 4.1(a), the graph of the relative errors E1 = ‖u− uh‖∞ and E2 = ‖v− vh‖∞
is plotted as a function of the discretization step h in the log-log scale when T = 1. The
slopes of the graphs give the computed order of convergence as approximately 2. This is
in agreement with the theoretical order of convergence.

In Table 4.1, the computation of order of convergence of u and v is shown (when
T = 1).

Example 4.2 (Burgers’ equation). We consider (2.8) with Dirichlet boundary conditions
u(0, t) = u(1, t) = 0 for all t ∈ (0,T] and initial condition u(x,0) = sin(πx) for all
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Table 4.1. The computation of order of convergence of u and v when T = 1.

h E1 = ‖u−uh‖∞ Order of
convergence

E2 = ‖v− vh‖∞ Order of
convergence

1/5 0.00161062154939 — 0.00336297943347 —
1/10 3.67965936194203e-004 2.1300 8.18699280648954e-004 2.0383
1/20 8.99200357053417e-005 2.0329 2.03385937364936e-004 2.0091
1/40 2.235204441825012e-005 2.0082 5.076721598365475e-005 2.0023

Table 4.2. A comparison of numerical and exact solutions (uh and vh) for ν= 1, N = 8,16,32,64, and
T = 0,0.05,0.1,0.2,0.25 at different points in (0,1).

x T N = 8 N = 16 N = 32 N = 64 Exact [5]
0.0 0.6980 0.7048 0.7065 0.7070 0.7071
0.05 0.4103 0.4124 0.4129 0.4130 0.4131

0.25 0.1 0.2536 0.2536 0.2536 0.2536 0.2536
0.2 0.0987 0.09700 0.0966 0.0965 0.0964
0.25 0.0617 0.0598 0.0594 0.0593 0.0592
0.0 0.9871 0.9968 0.9992 0.9998 1.0000
0.05 0.6034 0.6077 0.6087 0.6090 0.6091

0.5 0.1 0.3708 0.3714 0.3715 0.3716 0.3716
0.2 0.1417 0.1393 0.1387 0.1385 0.1385
0.25 0.0881 0.0854 0.0848 0.0846 0.0845
0.0 0.6980 0.7048 0.7065 0.7070 0.7071
0.05 0.4446 0.4488 0.4498 0.4501 0.4502

0.75 0.1 0.2713 0.2723 0.2725 0.2726 0.2726
0.2 0.1017 0.1000 0.0996 0.0995 0.0994
0.25 0.0629 0.0610 0.0605 0.0604 0.0603

x ∈ [0,1]. The exact solution to this problem can be expressed as an infinite series

u(x, t)= 2πν

∑∞
n=1 ane

−n2π2νtnsin(nπx)
a0 +

∑∞
n=1 ane−n

2π2νt cos(nπx)
, (4.2)

where a0, an, n=1,2, . . ., are the Fourier coefficients defined by a0=
∫ 1

0 e
−(2πν)−1[1−cos(πx)]dx

and an = 2
∫ 1

0 e
−(2πν)−1[1−cos(πx)] cos(nπx)dx, n= 1,2, . . ..

In Figure 4.1(b), the graph of the relative errors E1 = ‖u− uh‖∞ and E2 = ‖v− vh‖∞
is plotted as a function of the discretization step h in the log-log scale when T = 0.1
and ν = 1. As in the linear case, the slopes of the graphs give the computed order of
convergence as approximately 2. This is also in agreement with the theoretical order of
convergence.

In Table 4.2, a comparison of numerical and exact solutions (uh and vh) (as given in
[5]) for ν= 1, N = 8,16,32,64, and T = 0,0.05,0.1,0.2,0.25 at different points in (0,1) is
shown.
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Figure 4.2

Figures 4.2(a), 4.2(b) show the profiles of the approximate solutions and derivatives
for a fixed value of T = 0.5 and different values of ν= 0.5,0.1,0.05,0.01. From Figure 4.2,
we observe that for smaller value of viscosity, the propagation front is steeper. In Figures
4.3(a), 4.3(b), the profiles of approximate solutions and derivatives for a fixed value of
ν = 0.02 and for different values of T have been given. The graph shows that for the
different values of T = 0,0.5,1,2 the maximum point of the solution shifts towards the
right.

5. Conclusions

An H1-Galerkin mixed finite element method approximating velocity and flux simul-
taneously for linear and nonlinear parabolic problems has been described. A priori er-
ror estimates have been stated, and numerical experiments have been done. The mixed
method allows us to use two different finite element spaces for approximating u and its
flux v. Another striking feature of this mixed method is that the LBB condition need not
be satisfied. Although a higher regularity on the solution is assumed, better convergence
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Figure 4.3

results are proved for the flux. Note that if r < k, then standard mixed method fails, but
the present method yields required error estimates.
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STABILITY OF SOME MODELS OF CIRCULATING FUEL
NUCLEAR REACTORS—A LYAPUNOV APPROACH

SILVIU-IULIAN NICULESCU AND VLADIMIR RĂSVAN

The basic models in circulating fuel nuclear reactors are described by partial differential
equations (PDE): the transients define mixed initial boundary value problems for these
equations. According to a classical technique there are associated to such models some
functional differential equations (FDE) which, generally speaking, are of neutral type.
The paper considers these equations from the point of view of the stability of equilibria
which is studied via a suitably chosen Lyapunov functional, the stability conditions being
expressed through a frequency domain inequality.

Copyright © 2006 S.-I. Niculescu and V. Răsvan. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction (state of the art)

Dynamics and stability for nuclear reactors have a relatively short history—about 50
years. Various models were considered and analyzed in hundreds of papers and dozens of
books. We cite here just one, the book of Goriačenko et al. [4] which is in fact the third
stage in an evolution marked by two other books of Goriačenko [2, 3], because of the
broad variety of models and long list of references going back to the very beginning of the
problem.

The circulating fuel reactor is somehow different than the other models since the neu-
tron kinetics is described by PDE hence the overall model displays distributed parame-
ters regardless the structure of the external feedback block. Only a rough simplification
replaces the PDE by FDE of delayed type [2, 3]. The case of this simplified model being
already considered [2] and some errors corrected [11], we will consider here the model
with distributed parameters. The paper is therefore organized as follows: starting from
the basic model described by PDE, it is presented its analysis and transformation in or-
der to obtain the stability analysis model. For this model, a Lyapunov-Krasovskii func-
tional is proposed and some stability inequalities are described. Finally, a comparison is
performed with other models and some open problems pointing to future research are
discussed.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 861–870
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2. The model and its properties

We start from the model of [4] where some normalization of the state variables in the
neutron/hydraulic kinetics is performed

dn

dt
=
(

ρ−
m∑

1

βi

)

n+
m∑

1

βici(t),

ci(t)=
∫ h

0
ϕ(η)ci(η, t)dη,

∂ci
∂t

+
∂ci
∂η

+ σici = σiϕ(η)n(t), 0≤ η ≤ h, t > 0,

ci(0, t)= ci(h, t), ∀t, i= 1, . . . ,m,

(2.1)

where n, ci are the normalized state variables representing the neutron density and the
delayed circulating neutrons density, respectively. The assumptions about the coefficients
are the usual ones, based on their physical significance: βi > 0, σi > 0. The function ϕ :
[0,h] �→ R+ is supposed to be continuously differentiable almost everywhere and ex-
tended through h-periodicity to the entire real axis. The reactivity ρ is supposed to de-
pend linearly on the neutron density n and on the external variables (temperature, Xenon
poisoning, control).

(A) The properties of (2.1) may be studied as usually in the case of hyperbolic PDE,
by associating a system of FDE via integration along the characteristics (see, e.g., [10]).
Here the only family of characteristics is defined by the differential equation

dη

dt
= 1. (2.2)

If (n(t),ci(η, t)) is a solution of (2.1), then we may define

qi(t)= ci(h, t) (2.3)

and find the following equation for qi(t):

qi(t)= e−hσiqi(t−h) + σi

∫ 0

−h
eλσiϕ(λ)n(t+ λ)dλ, t > h (2.4)

with the initial condition

q0
i (t)= e−tσi c0

i (h− t) + σi

∫ 0

−t
eλσiϕ(λ)n(t+ λ)dλ, 0≤ t ≤ h, (2.5)

where c0
i (η)= ci(η,0) represent the initial conditions for (2.1).

The solution of (2.4) may be constructed by steps on [kh, (k+ 1)h] for given c0
i (η) and

n(t), t > 0. Obviously, qi(t) has the degree of smoothness of its initial conditions and of
n(t) except the discontinuities at kh which represent the propagation of the discontinuity
at h.
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This last discontinuity is due to the “mismatch” of the initial and boundary conditions:
in general the initial conditions need not satisfy the boundary conditions since they are, as
usually, incorporating the effect of the unknown short-period disturbances.

Conversely, if we consider a solution of (2.4) defined via (2.5) by the differentiable
initial condition c0

i (η), then

ci(η, t)= e(h−η)σi

[

qi(t+h−η)− σi
∫ 0

−h+η
eλσiϕ(λ)n(t+h+ λ−η)dλ

]

(2.6)

verifies the PDE almost everywhere, that is, except the characteristics t − η = kh, k =
0,1,2, . . ., the boundary conditions and the initial ones. Consequently, we may compute
ci(t) of (2.1) using the solution of (2.4) with the initial condition (2.5).

This expression may be substituted in the first equation of (2.1) to obtain a functional
equation. Summarizing we may associate to (2.1) the following system of FDE:

dn

dt
=
(

ρ−
m∑

1

βi

)

n+
m∑

1

βiσi×
∫ 0

−h
eλσi
(∫ h

−λ
ϕ(θ)ϕ(θ + λ)dθ

)

n(t+ λ)dλ

+
m∑

1

βi

∫ 0

−h
eθσiϕ(−θ)qi(t+ θ)dθ,

qi(t)= e−hσiqi(t−h) + σi

∫ 0

−h
eλσiϕ(λ)n(t+ λ)dλ, t > h

(2.7)

with the initial conditions

dn

dt
=
(

ρ−
m∑

1

βi

)

n+
m∑

1

βiσi

∫ t

0

(∫ h

0
ϕ(θ)ϕ(θ + λ− t)dθ

)

e−σi(t−λ)n(t+ λ)dλ

+
m∑

1

βie
−σit
∫ h

0
ϕ(t+ θ)c0

i (t+ θ)dθ, n(0)= n0,

qi(t)= e−tσi c0
i (h− t) + σi

∫ 0

−t
eλσiϕ(λ)n(t+ λ)dλ, 0 < t < h.

(2.8)

Observe that, given n0, we may solve the integrodifferential equation to find n(t) on
(0,h) and then using the difference equation to find qi(t) on (0,h). Then we may proceed
to the construction of the solution of (2.7) for t > h we have proved in fact.

Theorem 2.1. Let n(t), ci(η, t), i= 1, . . . ,m, 0≤ η ≤ h, t > 0, be a solution of (2.1) defined
by the initial conditions n0, c0

i (η), i = 1, . . . ,m, 0 ≤ η ≤ h. Then n(t), qi(t), i = 1, . . . ,m,
t > 0, where qi(t)= ci(h, t) is a solution of (2.7) with the initial conditions (2.8). Conversely,
let n(t), qi(t), i = 1, . . . ,m, t > 0, be a solution of (2.7) on t > h and of (2.8) on 0 < t < h
with the initial conditions n0, c0

i (η), i= 1, . . . ,m, 0≤ η ≤ h. Then n(t), ci(η, t), i= 1, . . . ,m,
0 ≤ η ≤ h, t > 0, with ci(η, t) defined by (2.6) is a solution of (2.1) defined by the initial
conditions n0, c0

i (η), i= 1, . . . ,m, 0≤ η ≤ h.

This one-to-one correspondence of the solutions for the two mathematical objects
(2.1) and (2.7)-(2.8) allows substituting analysis of one of them by the analysis of the
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other. System (2.7)-(2.8) appears as closer to control engineer’s representations. Worth
mentioning, nevertheless, that it belongs to the class of FDE of neutral type and this is
due to various reasons (see [10, 12, 13]).

(B) We will not insist on the basic theory for (2.7)-(2.8), that is, existence, uniqueness,
and data dependence since the standard tools of the theory of neutral FDE are available
(e.g., [7]). A more interesting subject is concerned with physical significance of the state
variables. They have to be positive and this property reads as existence of an invariant set
of (2.7)-(2.8). More precisely, we have the following theorem.

Theorem 2.2. Consider systems (2.1) and (2.7)-(2.8) with the initial conditions n0 ≥ 0,
c0
i (η)≥ 0, i= 1, . . . ,m, 0≤ η ≤ h. Then n(t) > 0, qi(t) > 0, ci(η, t) > 0, i= 1, . . . ,m, 0≤ η ≤
h.

Proof. This result is proved by straightforward computation, in the spirit of the proofs of
this kind (see [1, 6]). Namely, we take first (2.8) and obtain the property on [0,h]. Since
ϕ(λ) ≥ 0 and c0

i (λ) ≥ 0, the last integral in the integro-differential equation of (2.8) is
positive. Since n0 ≥ 0, we will have n(t)≥ 0 on some interval [0, t̂ ) for continuity reasons
hence the first integral is positive; therefore dn/dt ≥ 0 on [0, t̂ ) hence n(t)≥ 0 on [0,h];
this shows that qi(t) ≥ 0 on [0,h] from the second equation of (2.8). We switch now to
(2.7) constructing the solution by steps. On [h,2h] the two integrals in the RHS of the
first equation are positive hence n(t) ≥ 0 on this interval; from the second equation we
will have that qi(t)≥ 0 on this interval hence n(t)≥ 0 on [2h,3h] and so forth.

It remains to show that ci(η, t) ≥ 0, i = 1, . . . ,m, 0 ≤ η ≤ h. For this we use (2.6) and
take into account (2.4) and (2.5), which ends the proof. �

3. Equilibria, deviations, and the external dynamics

(A) Let n∞ be a given level of the neutron density (which is a measure of the available
power of the reactor). The steady-state solution of (2.1) follows by taking 0 the time
derivatives

0=
(

ρ−
m∑

1

βi

)

n∞ +
m∑

1

βici,

ci =
∫ h

0
ϕ(η)ĉi(η)dη,

dĉi
dη

+ σiĉi = σiϕ(η)n∞, 0≤ η ≤ h,

ĉi(0)= ĉi(h), i= 1, . . . ,m,

(3.1)

where ĉi(η) are the steady-state distributions of the delayed circulating neutrons. A
straightforward computation will give

ĉi(η)=
[

e−hσi

1− e−hσi
(∫ h

0
eθσiϕ(θ)dθ

)

+
∫ η

0
eθσiϕ(θ)dθ

]

σie
−ησin∞,

ci = σi
∫ h

0
e−ησi ĉi(η)dη = n∞ξi.

(3.2)
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The introduction of ξi is just a notation but it may be shown that 0 < ξi < 1; these in-
equalities will turn useful in further development. For instance, by substituting ci in the
first equation of (3.1) we find an equation that has to be fulfilled for any n∞ �= 0, that is,
the reactor has available power at any (reasonable) level and this level is controlled by the
reactivity ρ > 0 which holds provided ρ(n∞)=∑m

1 βi(1− ξi) > 0 which at its turn requires
ξi < 1.

The steady-state solution of (2.7) follows from (3.2) since q̄i = ĉi(h) and is given by
(n∞, ĉi(h)). By straightforward computation it is shown that (n∞, q̄i) thus defined verifies
(2.7) with dn/dt = 0.

(B) Following the standard line in control and stability studies, we introduce the devi-
ations with respect to the steady state and the system in deviations (e.g., [6])

ζ(t)= n(t)− 1, yi(η, t)= ci(η, t)− ĉi(η),

ȳi(t)=
(

1
ξi

)
(
c̄i(t)− ξi

)
, ν= ρ−

m∑

1

βi
(
1− ξi

)
,

(3.3)

(we took n∞ = 1 without any loss of generality).
Using the steady-state equations we find the PDE system in deviations which are the

same as in (2.1) due to linearity. Therefore we may associate the FDE

dζ

dt
= ν(1 + ζ)−

m∑

1

βi

[

ξiζ(t)− σi
∫ 0

−h
eλσi
(∫ h

−λ
ϕ(θ)ϕ(θ + λ)dθ

)

ζ(t+ λ)dλ

]

+
m∑

1

βi

∫ 0

−h
eθσiϕ(−θ)γi(t+ θ)dθ,

γi(t)= e−hσiγi(t−h) + σi

∫ 0

−h
eλσiϕ(λ)ζ(t+ λ)dλ, t > h, i= 1, . . . ,m

(3.4)

with an associated system of the initial conditions.
Note that (3.4) might have been obtained using (2.7) and (2.8). From Theorem 2.2

and from (3.3) it follows that system (3.4) has an invariant set defined by

n(t)= 1 + ζ(t) > 0, qi(t)= q̄i + γi(t) > 0, i= 1, . . . ,m, (3.5)

while the system of PDE in deviations has the invariant set

n(t)= 1 + ζ(t) > 0,

ci(η, t)= ĉi(η) + yi(η, t) > 0, 0≤ η ≤ h, i= 1, . . . ,m.
(3.6)

(C) We will consider now the dynamics of the external circuits: we assume them linear
and written in deviations with respect to the corresponding steady state ensuring the
steady state of the reactor; the deviation of the reactivity will be viewed as a linear output
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of the external block whose input is the neutron density

dx

dt
= Ax+ bζ(t),

ν=−(c∗x+h0ζ(t)
)
.

(3.7)

In this way the external block acts as a power level controller for the nuclear reactor. The
overall equations of the feedback system in deviations are as follows:

dx

dt
= Ax+ bζ ,

dζ

dt
=−(c∗x+h0ζ

)
(1 + ζ)

−
m∑

1

βi

[

ξiζ(t)− σi
∫ 0

−h
eλσi
(∫ h

−λ
ϕ(θ)ϕ(θ + λ)dθ

)

ζ(t+ λ)dλ

]

+
m∑

1

βi

∫ 0

−h
eθσiϕ(−θ)γi(t+ θ)dθ,

γi(t)= e−hσiγi(t−h) + σi

∫ 0

−h
eλσiϕ(λ)ζ(t+ λ)dλ, t > h, i= 1, . . . ,m.

(3.8)

We have here a system of coupled delay differential and difference equations, with lumped
and distributed delays [12, 13]. For the stability of the zero steady state of this system, it is
important to point out that the difference operator is stable, that is, the essential spectrum
is located inside the unit disk D1 ⊂ C: its eigenvalues are e−hσi < 1.

4. Stability of the linearized system

The linearized system is obtained from (3.8) by neglecting the quadratic terms in the
equation of ζ ,

dx

dt
=Ax+ bζ ,

dζ

dt
=−c∗x−

(

h0 +
m∑

1

βiξi

)

ζ(t)

+
m∑

1

βiσi

∫ 0

−h
eλσi
(∫ h

−λ
ϕ(θ)ϕ(θ + λ)dθ

)

ζ(t+ λ)dλ

+
m∑

1

βi

∫ 0

−h
eθσiϕ(−θ)γi(t+ θ)dθ,

γi(t)= e−hσiγi(t−h) + σi

∫ 0

−h
eλσiϕ(λ)ζ(t+ λ)dλ, t > h, i= 1, . . . ,m.

(4.1)
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This system is of the form considered in [8] but with a specific structure: some ma-
trices are diagonal, some coefficients are positive, and so forth. We will associate to (4.1)
a quadratic Lyapunov functional having the structure in [8] with some differences: some
matrices are diagonal, some items under the integrals are varying thus giving more free-
dom aiming to fulfill the conditions required for a linear matrix inequality of negative
sign.

More precisely, we take the following Lyapunov functional:

V
(
x,ζ(0),ζ(·),γi(·)

)

= x∗Px+
1
2
ζ(0)2 +

∫ 0

−h
ψ1(λ)ζ2(λ)dλ

+
m∑

1

∫ 0

−h
ψi2(λ)γ2

i (λ)dλ,

(4.2)

where ψ1 : [−h,0] �→ R+ and ψi2 : [−h,0] �→ R+ have to be chosen, as well as the positive
definite matrix P, in order to obtain a nonincreasing functional along system’s trajecto-
ries. Making the following notations:

κi1(λ)= βieλσiϕ(−λ), κi2(λ)= σieλσiϕ(λ),

κ̄1(θ)=
m∑

1

∫ θ

−h
κi1(θ− λ)κi2(λ)dλ,

(4.3)

we obtain after simple but tedious manipulation based on standard inequalities the fol-
lowing estimate of the derivative function:

W
(
x,ζ(0),ζ(·),γi(·)

)≤ x∗P(Ax+ bζ(0)
)

+
(
Ax+ bζ(0)

)∗
Px− ζ(0)c∗x

−
(

h0 +
m∑

1

βiξi−ψ1(0)

)

ζ2(0)−ψ1(−h)
∣
∣ζ(−h)

∣
∣2

+
∣
∣ζ(0)

∣
∣

(

sup
−h≤θ≤0

κ̄1(θ)

)∫ 0

−h

∣
∣ζ(θ)

∣
∣dθ

+
∣
∣ζ(0)

∣
∣

m∑

1

(

sup
−h≤θ≤0

κi1(θ)

)∫ 0

−h

∣
∣γi(θ)

∣
∣dθ

−
m∑

1

(

inf
−h≤θ≤0

ψ̇i2(θ)
)(∫ 0

−h

∣
∣γi(θ)

∣
∣dθ

)2

−
(

inf
−h≤θ≤0

√
√
√
√ψ̇1(θ)−

∫ 0

−h

m∑

1

ψi2(0)κi2(λ)dλ

)(∫ 0

−h

∣
∣ζ(θ)

∣
∣dθ

)2
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+ 2
m∑

1

∣
∣γi(−h)

∣
∣ψi2(0)e−hσi

(

sup
−h≤θ≤0

κi2(θ)

)∫ 0

−h

∣
∣ζ(θ)

∣
∣dθ

−
m∑

1

(
ψi2(−h)−ψi2(0)e−2hσi

)∣
∣γi(−h)

∣
∣2
.

(4.4)

The RHS of (4.4) is a quadratic form in the following arguments:

x, ζ(0),
∫ 0

−h

∣
∣ζ(θ)

∣
∣dθ,

∣
∣ζ(−h)

∣
∣,

∫ 0

−h

∣
∣γi(θ)

∣
∣dθ,

∣
∣γi(−h)

∣
∣,

(4.5)

where the quadratic term |ζ(−h)|2 is helpful but less significant. The quadratic form in x
and ζ(0) suggests making use of the Yakubovich-Kalman-Popov lemma (e.g., [9]) which
at its turn would send to a Welton-type criterion [3, 9] for stability; the result is as follows.

Theorem 4.1. Consider system (4.1) under the assumptions of Section 2 concerning the
coefficients. If A is a Hurwitz matrix and the following frequency domain inequality holds

h0 +�c∗(ıωI −A)−1b ≥ 0, (4.6)

then system (4.1) is exponentially stable.

Outline of proof. The proof of this main result of the paper is performed in several steps.
(A) We consider the Lyapunov functional (4.2) whose derivative along the solutions

satisfies (4.4). The frequency domain inequality (4.6) ensures via Yakubovich-Kalman-
Popov lemma existence of a matrix P > 0 and of some δ0 > 0 such that

x∗P
(
Ax+ bζ(0)

)
+
(
Ax+ bζ(0)

)∗
Px− ζ(0)c∗x

−
(

h0 +
m∑

1

βiξi−ψ1(0)

)

ζ2(0)≤−δ0
(|x|2 + ζ2(0)

) (4.7)

provided ψ1(0) < h0 +
∑m

1 βiξi.
(B) The choice of ψ1(·) > 0 and ψi2(·) > 0 is possible in order that the RHS of (4.4)

should be negative definite in its arguments enumerated above. From (4.4) it is also clear
that this choice allows ψ1(0) > 0 small enough to fulfill the inequality at (A), and also that
ψ1(·) and ψi2(·) > 0 are well delimited from 0. Therefore we obtain from the Lyapunov
inequality

δ1

(∣
∣x(t)

∣
∣2

+
∣
∣ζ(t)

∣
∣2
)

+ δ1

(∫ 0

−h

∣
∣ζ(t+ θ)

∣
∣2
dθ +

m∑

1

∫ 0

−h

∣
∣γi(t+ θ)

∣
∣2
dθ

)

≤V(x(0),ζ(0),ζ0(·),γi0(·))
(4.8)

which gives Lyapunov stability.
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For the asymptotic behavior we follow the approach of [9]: both x(t) and ζ(t) are in
L2(0,∞) (see (4.8)) and uniformly continuous since their derivatives are bounded (see
(4.1) and take again (4.8) into account). The Barbălat lemma [9] gives limt→∞ x(t) = 0,
limt→∞ ζ(t)= 0. For γi(t), we use the difference equation

γi(t)= e−hσiγi(t−h) +Ωi(t), (4.9)

where limt→∞Ωi(t)= 0. Using the asymptoticity theorems of [9] we deduce limt→∞ γi(t)=
0.

(C) Using a construction of Persidskii type [5] it is proved in the specific case that for
a linear system the asymptotic stability is exponential. The proof ends. �

5. Conclusions and further research problems

The circulating fuel reactor is, technologically speaking, at least half of century old if we
are to judge according to the very first published paper around 1954. This technology
could be by now obsolete, however the mathematical models might be still interesting
from a purely scientific point of view since a lot of problems are still challenging the
mathematical researcher.

The model considered in this paper has been obtained in a rigorous way, without ap-
proximating assumptions, by applying the integration along the characteristics of the so-
lutions of the PDE and taking into account the boundary conditions. Due to its struc-
ture, it is much alike to the quite popular system of lossless propagation [10, 12]. For
this reason we have been tempted to apply our results concerning the use of a specific
Lyapunov-Krasovskii quadratic functional [8]. Not only that a Welton-type criterion has
been obtained but also a linear matrix inequality has been shown as feasible by elemen-
tary manipulation. The result is nevertheless valid for the linearized model since the basic
results of [8] are such.
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INFINITESIMAL FOURIER TRANSFORMATION
FOR THE SPACE OF FUNCTIONALS

TAKASHI NITTA AND TOMOKO OKADA

A functional is a function from the space of functions to a number field, for example,
f : {a : (−∞,∞)→ (−∞,∞)} → (−∞,∞). These three ∞’s are written as the same nota-
tion, but these original meanings are quite different. The purpose of this proceeding is to
formulate a Fourier transformation for the space of functionals, as an infinitesimal mean-
ing. For it we divide three∞’s to three types of infinities. We extendR to �(∗R) under the
base of nonstandard methods for the construction. The domain of a functional is the set
of all internal functions from a ∗-finite lattice to a ∗-finite lattice with a double meaning.
Considering a ∗-finite lattice with a double meaning, we find how to treat the domain for
a functional in our theory of Fourier transformation, and calculate two typical examples.

Copyright © 2006 T. Nitta and T. Okada. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently, many kinds of geometric invariants are defined on manifolds and they are used
for studying low-dimensional manifolds, for example, Donaldson’s invariant, Chern-
Simon’s invariant, and so forth. They are originally defined as Feynman path integrals
in physics. The Feynman path integral is in a sense an integral of a functional on an
infinite-dimensional space of functions. We would like to study the Feynman path in-
tegral and the originally defined invariants. For the purpose, we would be sure that it is
necessary to construct a theory of Fourier transformation on the space of functionals. For
it, as the later argument, we would need many stages of infinitesimals and infinites, that
is, we need to put a concept of stage on the field of real numbers. We use nonstandard
methods to develop a theory of Fourier transformation on the space of functionals.

Feynman [3] used the concept of his path integral for physical quantizations. The
word “physical quantizations” has two meanings: one is for quantum mechanics and the
other is for quantum field theory. We usually use the same word “Feynman path integral.”
However, the meanings included in “Feynman path integral” have two sides, according
to the above. One is of quantum mechanics and the other is of quantum field theory. To

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 871–883
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understand the Feynman path integral of the first type, Fujiwara [4] studied it as a funda-
mental solution. In stochastic mathematics, Loeb [10] constructed Loeb measure theory
and investigated Brownian motion that relates to Itô integral [6]. Anderson [2] developed
it. Kamae [7] proved Ergodic theory using nonstandard analysis. From a nonstandard ap-
proach, Nelson [16], Nakamura [14, 15] studied Schrödinger equation, Dirac equation
and Loo [11, 12] calculated rigidly the quantum mechanics of harmonic oscillator. It
corresponds to functional analysis on the space of functions in standard mathematics.

On the other hand, we would like to construct a frame of a path integral of the second
type, that is, a functional analysis on the space of functionals. Our idea is the following: in
nonstandard analysis, model theory, especially non-well-founded set theory [18], we can
extend R to ∗R, furthermore a double extension �(∗R), and so forth. For formulation of
a path integral of the first type, it was necessary only one extension ∗R of R in nonstan-
dard analysis [1]. In fact, there exists an infinite in ∗R, however there are no elements in
∗R, that is greater than images of the infinite for any functions. The same situation occurs
for infinitesimals. Hence we consider the need of a further extension of R to construct a
formulation of a path integral of the second type. If the further extension satisfies some
condition, the extension �(∗R) has a higher degree of infinite and also infinitesimal. We
use these to formulate the space of functionals. We would like to try to construct a theory
of Fourier transformation on the space of functionals and calculate two typical examples
of it.

Historically, for the theories of Fourier transformations in nonstandard analysis, in
1972, Luxemburg [13] developed a theory of Fourier series with ∗-finite summation on
the basis of nonstandard analysis. The basic idea of his approach is to replace the usual
∞ of the summation with an infinite natural number N . He approximated the Fourier
transformation on the unit circle by the Fourier transformation on the group of Nth
roots of unity.

Takeuti [19] introduced an infinitesimal delta function δ, and Kinoshita [8, 9] de-
fined in 1988 a discrete Fourier transformation for each even ∗-finite number H(∈∗R) :
(Fϕ)(p)=∑−H2/2≤z<H2/2(1/H)exp(−2πip(1/H)z)ϕ((1/H)z), called “infinitesimal Fourier
transformation.” He developed a theory for the infinitesimal Fourier transformation and
studied the distribution space deeply, and proved the same properties hold as usual
Fourier transformation of L2(R). Especially saying, the delta function δ satisfies that
δ2,δ2, . . . ,

√
δ, . . . are also hyperfunctions as their meaning, and Fδ = 1, Fδ2 = H , Fδ3 =

H2, . . . , F
√
δ = 1/

√
H , . . . .

In 1989, Gordon [5] independently defined a generic, discrete Fourier transformation
for each infinitesimal Δ and ∗-finite number M, defined by

(
FΔ,Mϕ

)
(p)=

∑

−M≤z≤M
Δexp(−2πipΔz)ϕ(Δz). (1.1)

He studied under that condition the discrete Fourier transformation FΔ,M approximates
the usual Fourier transformation � for L2(R). His proposed condition is (A′) of his nota-
tion: let Δ be an infinitely small and M an infinitely large natural number such that M ·Δ
is infinitely large. He showed that under the condition (A′) the standard part of FΔ,Mϕ ap-
proximates the usual �ϕ for ϕ∈ L2(R). One of the different points between Kinoshita’s
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and Gordon’s is that whether or not there is the term Δexp(−2πipΔM)ϕ(ΔM) in the
summation of their two definitions. We mention that both definitions are the same for
the standard part of the dicrete Fourier transformation for ϕ∈ L2(R) and Kinoshita’s def-
inition satisfies the condition (A′) for an even infinite number H if Δ= 1/H , M =H2/2.

We will extend their theory of Fourier transformation for the space of functions to a
theory of Fourier transformation for the space of functionals. For the purpose of this,
we will represent a space of functions from R to R as a space of functions from a set
of lattices in an infinite interval [−H/2,H/2) to a set of lattices in an infinite interval
[−H′/2,H′/2). We consider what H′ is to treat any function from R to R. If we put a
function a(x)= xn (n∈ Z+), we need that H′/2 is greater than (H/2)n, and if we choose a
function a(x)= ex, we need that H′/2 is greater than eH/2. If we choose any infinite num-
ber, there exists a function whose image is beyond the infinite number. Since we treat
all functions from R to R, we need to put H′/2 as an infinite number greater than any
infinite number of ∗R. Hence we make [−H′/2,H′/2) not in ∗R but in �(∗R), where
�(∗R) is a double extension of R, that is, H′ is an infinite number in �(∗R). First we will
develop an infinitesimal Fourier transformation theory for the space of functionals, and
second we calculate fundamental two examples for our infinitesimal Fourier transforma-
tion. In our case, we define an infinitesimal delta function δ satisfies Fδ = 1, Fδ2 =H′H2

,
Fδ3 =H′2H2

, . . . ,F
√
δ =H′−(1/2)H2

, . . ., that is, Fδ2,Fδ3, . . . are infinite and F
√
δ, . . . are in-

finitesimal. These are a functional f and an infinite-dimensional Gaussian distribution
g, where st( f (α)) = exp(πi

∫∞
−∞α2(t)dt), st(g(α)) = exp(−π ∫∞−∞α2(t)dt) for α ∈ L2(R).

We obtain the following results of standard meanings: (F f )(b) = f (b) or − f (b) and
(Fg)(b)= C2(b)g(b), st(C2(b))= 1 if b is finite-valued. Our infinitesimal Fourier trans-
formation of g is also g when the domain of g is standard.

2. Preliminaries

To explain our infinitesimal Fourier transformation for the space of functionals, we in-
troduce Kinoshita and Gordon’s infinitesimal Fourier transformation for the space of
functions. We fix an infinite set Λ and an ultrafilter F of Λ so that F includes the Fréchet
filter F0(Λ). We remark that the set of natural numbers is naturally embedded in Λ. LetH
be an even infinite number where the definition being even is the following: if H is writ-
ten as [(Hλ, λ ∈ Λ)], then {λ ∈ Λ | Hλ is even} ∈ F, where [·] denotes the equivalence
class with respect to the ultrafilter F. Let ε be 1/H , that is, if ε is [(ελ, λ∈ Λ)], then ελ is
1/Hλ. Then we will define a lattice space L, a sublattice space L, and a space of functions
R(L) as follows:

L := ε∗Z= {εz | z ∈ ∗Z},

L :=
{

εz | z ∈ ∗Z, −H
2
≤ εz < H

2

}

= {[(ελzλ
)
, λ∈Λ

] | ελzλ ∈ Lλ
}

(⊂ L),

R(L) := {ϕ | ϕ is an internal function from L to ∗C
}

= {[(ϕλ, λ∈Λ
)] | ϕλ is a function from Lλ to C

}
,

(2.1)

where Lλ := {ελzλ | zλ ∈ Z, −Hλ/2≤ ελzλ < Hλ/2}.
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Takeuti [19] introduced an infinitesimal delta function δ(x)(∈ R(L)) and Kinoshita
[8, 9], Gordon [5] defined an infinitesimal Fourier transformation on R(L). From now
on, functions in R(L) are extended to periodic functions on L with the period H and we
denote them by the same notations. For ϕ(∈ R(L)), the infinitesimal Fourier transforma-
tion Fϕ, the inverse infinitesimal Fourier transformation Fϕ, and the convolution of ϕ,
ψ(∈ R(L)) are defined as follows:

δ(x) :=
⎧
⎨

⎩

H (x = 0),

0 (x 
= 0),

(Fϕ)(p) :=
∑

x∈L
εexp(−2πipx)ϕ(x),

(Fϕ)(p) :=
∑

x∈L
εexp(2πipx)ϕ(x),

(ϕ∗ψ)(x) :=
∑

y∈L
εϕ(x− y)ψ(y).

(2.2)

He obtained the following equalities as the same as the usual Fourier analysis:

δ = F1= F1, F is unitary, F4 = 1, FF = FF = 1,

ϕ∗ δ = δ∗ϕ= ϕ,

ϕ∗ψ = ψ∗ϕ,

F(ϕ∗ψ)= (Fϕ)(Fψ),

F(ϕψ)= (Fϕ)∗ (Fψ),

F(ϕ∗ψ)= (Fϕ)(Fψ),

F(ϕψ)= (Fϕ)∗ (Fψ).

(2.3)

The most different point is that δl(l ∈ R+) are also elements of R(L) and the Fourier
transformations are able to be calculated as Fδl =H(l−1), by the above definition.

On the other hand, we obtain the following theorem from his result and an elementary
calculation.

Theorem 2.1. For an internal function with two variables f : L×L→∗ C and g(∈ R(L)),

Fx

(
∑

y∈L
ε f (x− y, y)g(y)

)

(p)= {Fy
(
Fu
(
f (u, y)

)
(p)

)∗Fy
(
g(y)

)}
(p), (2.4)

where Fx, Fy , Fu are Fourier transformations for x, y, u, and ∗ is the convolution for the
variable paired with y by the Fourier transformation.
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Proof. By the above Kinoshita’s result, F(ϕψ) = (Fϕ)∗ (Fψ). We use it and obtain the
following:

Fx

(
∑

y∈L
ε f (x− y, y)g(y)

)

(p)

=
∑

x,y∈L
εexp(−2πipx)ε f (x− y, y)g(y)

=
∑

y,u∈L
ε2 exp

(− 2πip(y +u)
)
f (u, y)g(y)(u := x− y)

=
∑

y∈L

(

εexp(−2πipy)

(
∑

u∈L
εexp(−2πpu) f (u, y)

)

g(y)

)

= Fy
(
Fu
(
f (u, y)

)
(p) · g(y)

)
(p)= {Fy

(
Fu
(
f (u, y)

)
(p)

)∗Fy
(
g(y)

)}
(p).

(2.5)

To treat a ∗-unbounded functional f in the nonstandard analysis, we need a second
nonstandardization. Let F2 := F be a nonprincipal ultrafilter on an infinite set Λ2 := Λ
as above. Denote the ultraproduct of a set S with respect to F2 by ∗S as above. Let F1 be
another nonprincipal ultrafilter on an infinite set Λ1. Take the ∗-ultrafilter ∗F1 on ∗Λ1.
For an internal set S in the sense of ∗-nonstandardization, let �S be the ∗-ultraproduct of
S with respect to ∗F1. Thus, we define a double ultraproduct �(∗R), �(∗Z), and so forth
for the set R, Z, and so forth. It is shown easily that

�(∗S
)= SΛ1×Λ2

FF2
1

, (2.6)

where FF2
1 denotes the ultrafilter on Λ1×Λ2 such that for any A⊂Λ1×Λ2, A∈ FF2

1 if and
only if

{
λ∈Λ1 |

{
μ∈Λ2 | (λ,μ)∈ A}∈ F2

}∈ F1. (2.7)

We always work with this double nonstandardization. The natural embedding �S of an
internal element S which is not considered as a set in ∗-nonstandardization is often de-
noted simply by S. �

Definition 2.2 (cf. [17]). Let H(∈ ∗Z), H′(∈ �(∗Z)) be even positive numbers such that
H′ is larger than any element in ∗Z, and let ε(∈ ∗R), ε′(∈ �(∗R)) be infinitesimals sati-
fying εH = 1, ε′H′ = 1. We define as follows:

L := ε∗Z= {εz | z ∈ ∗Z},

L′ := ε′�(∗Z)= {ε′z′ | z′ ∈� (∗Z)},
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L :=
{

εz | z ∈ ∗Z,−H
2
≤ εz < H

2

}

(⊂ L),

L′ :=
{

ε′z′ | z′ ∈� (∗Z),−H
′

2
≤ ε′z′ < H′

2

}

(⊂ L′).

(2.8)

Here L is an ultraproduct of lattices

Lμ :=
{

εμzμ | zμ ∈ Z,−Hμ

2
≤ εμzμ <

Hμ

2

}
(
μ∈Λ2

)
(2.9)

in R, and L′ is also an ultraproduct of lattices

L′λ :=
{

ε′λz
′
λ | z′λ ∈ ∗Z,−H

′
λ

2
≤ ε′λz′λ <

H′λ
2

}
(
λ∈Λ1

)
(2.10)

in ∗R that is an ultraproduct of

L′λμ :=
{

ε′λμz
′
λμ | z′λμ ∈ Z,−

H′λμ
2
≤ ε′λμz′λμ <

H′λμ
2

}
(
μ∈Λ2

)
. (2.11)

We define a latticed space of functions X as follows:

X := {a | a is an internal function with double meanings, from � (L) to L′
}

= {[(aλ
)
, λ∈Λ1

] | aλ is an internal function from L to L′λ
}

,
(2.12)

where aλ : L→ L′λ is aλ = [(aλμ), μ∈ Λ2], aλμ : Lμ → L′λμ. We define three equivarence re-
lations ∼H , ∼�(H), and ∼H′ on L,�(L), and L′:

x ∼H y⇐⇒ x− y ∈H∗Z,

x ∼�(H) y⇐⇒ x− y ∈�(H)�
(∗
Z
)
,

x ∼H′ y⇐⇒ x− y ∈H′�(∗Z).
(2.13)

Then we identify L/ ∼H , �L/ ∼�(H), and L′/ ∼H′ as L, �L, and L′. Since �L is identified
with L, the set �L/ ∼�(H) is identified with L/ ∼H . Furthermore, we represent X as the
following internal set:

{
a | a is an internal function with a double meaning, from �L / ∼�(H) to L′/ ∼H′

}
.

(2.14)

We use the same notation as a function from �L to L′ to represent a function in the above
internal set. We define the space A of functionals as follows.
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Definition 2.3.

δ(a) :=
⎧
⎨

⎩

(H′)(�H)2
(a= 0),

0 (a
= 0),

ε0 := (H′)−(�H)2 ∈ �(∗R
)
,

(F f )(b) :=
∑

a∈X
ε0 exp

(

− 2πi
∑

k∈L
a(k)b(k)

)

f (a),

(F f )(b) :=
∑

a∈X
ε0 exp

(

2πi
∑

k∈L
a(k)b(k)

)

f (a),

( f ∗ g)(a) :=
∑

a′∈X
ε0 f (a− a′)g(a′).

(2.15)

We define an inner product on A : ( f ,g) :=∑b∈X ε0 f (b)g(b), where f (b) is the complex
conjugate of f (b). Then we obtain the following theorem.

Theorem 2.4. (1) δ = F1= F1;
(2) F is unitary, F4 = 1, FF = FF = 1;
(3) f ∗ δ = δ∗ f = f ;
(4) f ∗ g = g ∗ f ;
(5) F( f ∗ g)= (F f )(Fg);
(6) F( f ∗ g)= (F f )(Fg);
(7) F( f g)= (F f )∗ (Fg);
(8) F( f g)= (F f )∗ (Fg).

The definition implies the following proposition.

Proposition 2.5. If l ∈R+, then Fδl = (H′)(l−1)(�H)2
.

We define two types of infinitesimal divided differences. Let f and a be elements of A
and X , respectively, and let b(∈ X) be an internal function whose image is in �(∗Z)∩L′.
We remark that ε′b is an element of X .

Definition 2.6.

(
D+,b f

)
(a) := f (a+ ε′b)− f (a)

ε′
,

(
D−,b f

)
(a) := f (a)− f (a− ε′b)

ε′
.

(2.16)

Let λb(a) := (exp(2πiε′ab)− 1)/ε′, λb(a) := (exp(−2πiε′ab)− 1)/ε′. Then we obtain the
following theorem corresponding to Kinoshita’s result for the relationship between the
infinitesimal Fourier transformation and the infinitesimal divided differences.
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Theorem 2.7. (1) (F(D+,b f ))(a)= λb(a)(F f )(a);
(2) (F(D−,b f ))(a)=−λb(a)(F f )(a);
(3) (F(λb f ))(a)=−(D−,b(F f ))(a);
(4) (F(λb f ))(a)= (D+,b(F f ))(a);
(5) (D+,b(F f ))(a)= (F(λb f ))(a);
(6) (D−,b(F f ))(a)=−(F(λb f ))(a);
(7) λb(a)= 2πi(sin(πε′ab)/πε′)exp(πiε′ab).

Theorem 2.7 implies the following corollary.

Corollary 2.8. If ε′b is an element of X , then ( f ,D+,bg)=−(D+,b f ,g) for f ,g ∈A.

Replacing the definitions of L′, δ, ε0, F, F in Definitions 2.2 and 2.3 by the following,
we will define another type of infinitesimal Fourier transformation. The different point
is only the definition of an inner product of the space of functions X . In Definition 2.3,
the inner product of a, b(∈ X) is

∑
k∈L a(k)b(k), and in the following definition, it is

�ε
∑

k∈L a(k)b(k).

Definition 2.9.

L′ :=
{

ε′z′ | z′ ∈ �(∗Z
)
,−�HH′

2
≤ ε′z′ <� HH′

2

}

,

δ(a) :=
⎧
⎪⎨

⎪⎩

(�
H
)(�H)2/2

H′(�H)2
(a= 0),

0 (a
= 0),

ε0 := (�H)−(�H)2/2
H′−(�H)2

,

(F f )(b) :=
∑

a∈X
ε0 exp

(

− 2πi�ε
∑

k∈L
a(k)b(k)

)

f (a),

(F f )(b) :=
∑

a∈X
ε0 exp

(

2πi�ε
∑

k∈L
a(k)b(k)

)

f (a).

(2.17)

In this case, we obtain the same theorems as Theorems 2.4 and 2.7, and the following
theorem corresponding to Theorem 2.1.

Theorem 2.10. For an internal function with two variables f : X × X → �(∗C) and
g(∈A),

Fa

(
∑

b∈X
ε0 f (a− b,b)g(b)

)

(d)= {Fb
(
Fc
(
f (c,b)

)
(d)
)∗Fb

(
g(b)

)}
(d), (2.18)

where Fa, Fb, Fc are Fourier transformations for a, b, c, and ∗ is the convolution for the
variable pairing with b by the Fourier transformation.
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3. Proofs of theorems

Proof of Theorem 2.4. (1) (F1)(0)=∑a∈X ε0 = ε0
(
H′2

)(�H)2 = (H′)(�H)2· If b 
= 0, then

(F1)(b)=
∑

a∈X
ε0 exp

(

− 2πi
∑

k∈L
a(k)b(k)

)

= ε0

∏

k∈L

∑

a(k)∈L′
exp

(− 2πia(k)b(k)
)

= ε0

∏

k∈L,b(k)
=0

∑

a(k)∈L′
exp

(− 2πia(k)b(k)
) ·

∏

k∈L,b(k)=0

∑

a(k)∈L′
exp

(− 2πia(k)b(k)
)

=
∏

k∈L,b(k)
=0

ε0
exp

(− 2πiε′
(−H′2/2)b(k)

)(
1− exp

(− 2πiε′H′2b(k)
))

1− exp
(− 2πiε′b(k)

)

·
∏

k∈L,b(k)=0

∑

a(k)∈L′
exp

(− 2πia(k)b(k)
)= 0.

(3.1)

Hence F1= δ. The same argument implies that F1= δ;
(2)

(F f ,Fg)=
∑

b∈X
ε0(F f )(b)(Fg)(b)

=
∑

b∈X
ε0

∑

a∈X
ε0 exp

(

− 2πi
∑

k∈L
a(k)b(k)

)

f (a)
∑

c∈X
ε0 exp

(

− 2πi
∑

k∈L
c(k)b(k)

)

g(c)

=
∑

a∈X

∑

c∈X
ε2

0 f (a)g(c)
∑

b∈X
ε0 exp

(

− 2πi
∑

k∈L

(
c(k)− a(k)

)
b(k)

)

=
∑

a∈X

∑

c∈X
ε2

0 f (a)g(c)δ(c− a)=
∑

a∈X
ε0 f (a)g(a)= ( f ,g).

(3.2)

Hence F is unitary. Since (F2 f )(c) = (F(F f ))(c) = f (−c), F4 = 1. Thus the eigenvalues
of F are 1, −1, −i, i. Furthermore,

(F(F f ))(c)=
∑

b∈X
ε0 exp

(

2πi
∑

k∈L
c(k)b(k)

)(
∑

a∈X
ε0 exp

(

− 2πi
∑

k∈L
a(k)b(k)

)

f (a)

)

=
∑

a∈X

(
∑

b∈X
ε2

0 exp

(

− 2πi
∑

k∈L
b(k)

(
a(k)− c(k)

)
))

f (a)

=
∑

a∈X
ε0δ(a− c) f (a)= f (c).

(3.3)

The same argument implies (F(F f ))(c)= f (c);
(3) ( f ∗ δ)(a) = ∑b∈X ε0 f (a− b)δ(b) = f (a), (δ ∗ f )(a) = ∑b∈X ε0δ(a− b) f (b) =

f (a);
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(4) ( f ∗g)(a)=∑b∈X ε0 f (a−b)g(b)=∑(a−b)∈X ε0 f (a−b)g(a−(a−b))= (g∗ f )(a);
(5)

(
F( f ∗ g)

)
(c)=

∑

a∈X
ε0 exp

(

− 2πi
∑

k∈L
c(k)a(k)

)
∑

a∈X
ε0 f (a− b)g(b)

=
∑

a∈X
ε0 exp

(

− 2πi
∑

k∈L
c(k)

(
b(k) +d(k)

)
)
∑

b∈X
ε0 f (a− b)g(b),

(3.4)

where

d(k) := a(k)− b(k)

=
∑

b∈X
ε0 exp

(

− 2πi
∑

k∈L
c(k)b(k)

)

g(b)
∑

d∈X−b
ε0 exp

(

− 2πi
∑

k∈L
c(k)d(k)

)

f (d),

(3.5)

where

X − b := {x− b | x ∈ X}

=
∑

b∈X
ε0 exp

(

− 2πi
∑

k∈L
c(k)b(k)

)

g(b)
∑

d∈X
ε0 exp

(

− 2πi
∑

k∈L
c(k)d(k)

)

f (d)

= (Fg)(c)(F f )(c)= (F f )(c)(Fg)(c);

(3.6)

(6) similarly, F( f ′ ∗ g′)= (F f ′)(Fg′);
(7) the above (6) implies f ′ ∗ g′ = F((F f ′)(Fg′)). We put f ′ = F f , g′ = Fg. Then we

obtain (F f )∗ (Fg)= F( f g);
(8) similarly, (F f )∗ (Fg)= F( f g). �

Proof of Theorem 2.7. (1)

(
F
(
D+,b f

))
(a)=

∑

c∈X
ε0 exp(−2πiac)

1
ε′
(
f (c+ ε′b)− f (c)

)

=
∑

c∈X
ε0

(
1
ε′
(

exp(−2πiac) f (c+ ε′b)− exp(−2πiac) f (c)
)
)

=
∑

c∈X
ε0

(
1
ε′
(

exp(2πiε′ab)
(

exp
(− 2πia(c+ ε′b)

)
f (c+ ε′b)

− exp(−2πiac) f (c)
))
)

= 1
ε′
(

exp(2πiε′ab)− 1
)
(F f )(a)= λb(a)F f (a);

(3.7)
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(2)

(
F
(
D−,b f

))
(a)=

∑

c∈X
ε0 exp(−2πiac)

1
ε′
(
f (c)− f (c− εb′))

=
∑

c∈X
ε0

(
1
ε′
(

exp(−2πiac) f (c)

− exp(−2πiε′ab)exp
(− 2πia(c− ε′b)

)
f (c− ε′b)

)
)

= 1
ε′
(
1− exp(−2πiε′ab)

)
(F f )(a)=−λb(a)F f (a);

(3.8)

(3)

(
F
(
λb f

))
(a)=

∑

c∈X
ε0 exp(−2πiac)

(
λb f

)
(c)

=
∑

c∈X
ε0 exp(−2πiac)

1
ε′
(

exp(2πibcε′)− 1
)
f (c)

=
∑

c∈X
ε0

exp
(− 2πi(a− bε′)c)− exp(−2πiac)

ε′
f (c)=−D−,b(F f )(a);

(3.9)

(4)

(
F
(
λb f

))
(a)=

∑

c∈X
ε0 exp(−2πiac)

(
λb f

)
(c)

=
∑

c∈X
ε0 exp(−2πiac)

1
ε′
(

exp(−2πibcε′)− 1
)
f (c)

=
∑

c∈X
ε0

exp
(− 2πi(a+ bε′)c

)− exp(−2πiac)
ε′

f (c)=D+,b(F f )(a).

(3.10)

(1), (2) imply (5), (6). �

Proof of Corollary 2.8.

(
f ,D+,bg

)=
∑

a∈X
ε0 f (a)D+,bg =

∑

c∈X
ε0(F f )(c)

(
FD+,b

)
g(c)

=
∑

c∈X
ε0(F f )(c)λb(c)(Fg)(c)=

∑

c∈X
ε0λb(c)(F f )(c)(Fg)(c)

=−
∑

c∈X
ε0F

(
D−,b f

)
(c)(Fg)(c)=−

∑

a∈X
ε0D−,b f (a)g(a)

=−(D−,b f ,g
)
.

(3.11)

�
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4. Examples (see [17])

We obtain two examples of the infinitesimal Fourier transformation for the space A of
functionals. Let � ◦∗ : R→ �(∗R) be the natural elementary embedding and let st(c)
for c ∈ �(∗R) be the standard part of c with respect to the natural elementary embedding
� ◦∗. The first is for exp(iπ�ε

∑
k∈L a2(k)) and the second is for exp(−π�ε∑k∈L a2(k)).

We denote the two functionals by f (a), g(a). If there is an L2-function α(t) on R
for a(k) so that a(k) =�((∗α)(k)), then st( f (a)) = exp(iπ

∫∞
−∞α2(t)dt), and st(g(a)) =

exp(−π ∫∞−∞α2(t)dt). Then we obtain the following results.

Example 4.1. (F f )(b)= C1 f (b), where C1 =
∑

a∈X ε0 exp(iπ�ε
∑

k∈L a2(k)), it is just a sta-
ndard number (−1)H/2.

Example 4.2. (Fg)(b)=C2(b)g(b), where C2(b)=∑a∈X ε0 exp(−π�ε∑k∈L(a(k)+ib(k))2),
and if b is a finite-valued function, then it satisfies that st(st(C2(b)))= 1.
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LIPSCHITZ CLASSES OF A-HARMONIC FUNCTIONS
IN CARNOT GROUPS

CRAIG A. NOLDER

The Hölder continuity of a harmonic function is characterized by the growth of its gra-
dient. We generalize these results to solutions of certain subelliptic equations in domains
in Carnot groups.

Copyright © 2006 Craig A. Nolder. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Theorem 1.1 follows from results in [7].

Theorem 1.1. Let u be harmonic in the unit disk D ⊂ R2 and 0 < α ≤ 1. If there exists a
constant C1 such that

∣
∣∇u(z)

∣
∣≤ C1

(
1−|z|)α−1

(1.1)

for all z ∈D, then there exists a constant C2, depending only on α and C1, such that

sup

[∣
∣u
(
x1
)−u(x2

)∣
∣

∣
∣x1− x2

∣
∣α : x1, x2 ∈D, x1 �= x2

]

≤ C2. (1.2)

We give generalizations in Section 5. Theorem 5.1 characterizes local Lipschitz condi-
tions for A-harmonic functions in domains in Carnot groups by the growth of a local
average of the horizontal gradient. These functions are solutions to certain subelliptic
equations. Theorem 5.2 gives global results in Lipschitz extension domains. In Section 2
we describe Carnot groups. Section 3 presents subelliptic equations and integral inequal-
ities for their solutions. Section 4 contains Lipschitz conditions and extension domains.

2. Carnot groups

A Carnot group is a connected, simply connected, nilpotent Lie group G of topological
dimG= N ≥ 2 equipped with a graded Lie algebra � = V1⊕···⊕Vr so that [V1,Vi]=
Vi+1 for i= 1,2, . . . ,r− 1, and [V1,Vr]= 0. As usual, elements of � will be identified with

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 885–894



886 Lipschitz classes of A-harmonic functions in Carnot groups

left-invariant vectors fields on G. We fix a left-invariant Riemannian metric g on G with
g(Xi,Xj)= δi j . We denote the inner product with respect to this metric, as well as all other
inner products, by 〈·〉. We assume that dimV1 =m≥ 2 and fix an orthonormal basis of
V1 : X1,X2, . . . ,Xm. The horizontal tangent bundle of G, HT is the subbundle determined
by V1 with horizontal tangent space HTx the fiber span[X1(x), . . . ,Xm(x)]. We use a fixed
global coordinate system as exp : �→G is a diffeomorphism. We extend X1, . . . ,Xm to an
orthonormal basis X1, . . . ,Xm,T1, . . . ,TN−m of �. All integrals will be with respect to the
binvariant Harr measure on G which arises as the push-forward of the Lebesgue measure
in RN under the exponential map. We denote by |E| the measure of a measurable set E.
We normalize the Harr measure so that the measure of the unit ball is one. We denote by
Q the homogeneous dimension of the Carnot group G defined by Q =∑r

i=1 idimVi. We
write |v|2 = 〈v,v〉, d for the distributional exterior derivative and δ for the codifferential
adjoint. We use the following spaces where U is an open set in G:
C∞0 (U): infinitely differentiable compactly supported functions in U ,
HW1,q(U): horizontal Sobolev space of functions u ∈ Lq(U) such that the distribu-

tional derivatives Xiu∈ Lq(U) for i= 1, . . . ,m.
When u is in the local horizontal Sobolev space HW

1,q
loc (U), we write the horizontal

differential as d0u = X1udx1 + ···+Xmudxm. (The horizontal gradient ∇0u = X1uX1 +
···+XmuXm appears in the literature. Notice that |d0u| = |∇0u|.)

The family of dilations on G, [δt : t > 0] is the lift to G of the automorphism δt of �
which acts on eachVi by multiplication by ti. A path inG is called horizontal if its tangents
lie in V1. The (left-invariant) Carnot-Carathéodory distance, dc(x, y), between x and y is
the infimum of the lengths, measured in the Riemannian metric g, of all horizontal paths
which join x to y. A homogeneous norm is given by |x| = dc(0,x). All homogeneous
norms on G are equivalent as such | · | is equivalent to the homogeneous norms used
below. We have |δt(x)| = t|x|. We write B(x,r)= [y ∈G : |x−1y| < r] for the ball centered
at x of radius r. Since the Jacobian determinant of the dilation δr is rQ and we have
normalized the measure, |B(x,r)| = rQ. For σ ≥ 1, we write σB for the ball with the same
center as B and σ times the radius.

We write Ω throughout for a connected open subset of G. We give some examples of
Carnot groups.

Example 2.1. Euclidean spaceRn with its usual Abelian group structure is a Carnot group.
Here Q = n and Xi = ∂/∂xi.
Example 2.2. Each Heisenberg group Hn, n≥ 1, is homeomorphic to R2n+1. They form a
family of noncomutative Carnot groups which arise as the nilpotent part of the Iwasawa
decomposition of U(n,1), the isometry group of the complex n-dimensional hyperbolic
space. Denoting points in Hn by (z, t) with z = (z1, . . . ,zn) ∈ Cn and t ∈ R we have the
group law given as

(z, t)◦ (z′, t′)=
(

z+ z′, t+ t′ + 2
n∑

j=1

Im
(
zj z̄

′
j

)
)

. (2.1)
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With the notation zj = xj + iy j , the horizontal space V1 is spanned by the basis

Xj = ∂

∂xj
+ 2yj

∂

∂t
,

Yj = ∂

∂yj
− 2xj

∂

∂t
.

(2.2)

The one-dimensional center V2 is spanned by the vector field T = ∂/∂t with commutator
relations [Xj ,Yj]=−4T . All other brackets are zero. The homogeneous dimension of Hn

is Q= 2n+ 2. A homogeneous norm is given by

N(z, t)= (|z|4 + t2
)1/4

. (2.3)

Example 2.3. A generalized Heisenberg group, or H-type group, is a Carnot group with a
two-step Lie algebra � =V1⊕V2 and an inner product 〈·〉 in � such that the linear map
J :V2→ EndV1 defined by the condition

〈
Jz(u),v

〉= 〈z, [u,v]
〉

(2.4)

satisfies

J2
z =−〈z,z〉Id (2.5)

for all z ∈ V2 and all u,v ∈ V1. For each g ∈ G, let v(g) ∈ V1 and let z(g) ∈ V2 be such
that g = exp(v(g) + z(g)). Then

N(g)=
(∣
∣v(g)

∣
∣4

+ 16
∣
∣z(g)

∣
∣2
)1/4

(2.6)

defines a homogeneous norm inG. For each l ∈N, there exist infinitely many generalized
Heisenberg groups with dimV2 = l. These include the nilpotent groups in the Iwasawa
decomposition of the simple rank-one groups SO(n,1), SU(n,1), Sp(n,1), and F−20

4 .

See [1, 5, 14] for material about these groups.

3. Subelliptic equations

We consider solutions to equations of the form

δA
(
x,u,d0u

)= B(x,u,d0u
)
, (3.1)

where u ∈ HW1,p(Ω) and A : Ω×R×Rm → Rm, B : Ω×R×Rm → R are measurable
and for some p > 1 satisfy the structural equations

∣
∣A(x,u,ξ)

∣
∣≤ a0|ξ|p−1 +

(
a1(x)|u|)p−1

,

ξ ·A(x,u,ξ)≥ |ξ|p− (a2(x)|u|)p,

∣
∣B(x,u,ξ)

∣
∣≤ b1(x)|ξ|p−1 +

(
b2(x)

)p|u|p−1

(3.2)
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with (x,u,ξ)∈Ω×R×RN . Here a0 > 0 and ai(x),bi(x), i= 1,2, are measurable and non-
negative and are assumed to belong to certain subspaces of Lt(Ω), where t =max(p,Q),
see [11]. We refer to these quantities as the structure constants.

A weak solution to (3.1) means that
∫

Ω

{〈
A
(
x,u,d0u

)
,d0φ

〉−φB(x,u,d0u
)}
dx = 0 (3.3)

for all φ ∈ C∞0 (Ω).
We use the exponent p > 1 for this purpose throughout. We assume that u is a solution

to (3.1) in Ω throughout. We may assume that u is a continuous representative [8]. We
write uB for the average of u over B.

We use the following results.

Theorem 3.1. Here C is a constant independent of u.
(a) (Poincaré-Sobolev inequality) If 0 < s <∞,

∫

B

∣
∣u−uB

∣
∣s ≤ C|B|s/Q

∫

B

∣
∣d0u

∣
∣s (3.4)

for all balls B ⊂Ω.
(b) If s > p− 1, then

∣
∣u(x)− c∣∣≤ C

(
1
|B|

∫

σB
|u− c|s

)1/s

(3.5)

for all x ∈ B, σB ⊂Ω, and any constant c.
(c) If 0 < s, t <∞, then

(
1
|B|

∫

B

∣
∣u−uB

∣
∣t
)1/t

≤ C
(

1
|B|

∫

σB

∣
∣u−uB

∣
∣s
)1/s

(3.6)

for any σB ⊂Ω.
(d) (A Caccioppoli inequality)

∫

B

∣
∣d0u

∣
∣p ≤ C|B|−p/Q

∫

σB
|u− c|p (3.7)

for any constant c and σB ⊂Ω.

See [2, 6, 8, 9, 11].

Theorem 3.2. There exists an exponent p′ > p, depending only onQ, p, s, and the structure
constants, and there exists a constant C, depending only on Q, p, s, σ , and the structure
constants, such that

(
1
|B|

∫

B

∣
∣d0u

∣
∣p

′
)1/p′

≤ C
(

1
|B|

∫

σB

∣
∣d0u

∣
∣s
)1/s

(3.8)

for s > 0 and all balls B with σB ⊂Ω.
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Proof. We combine the Caccioppoli estimate (3.7), inequality (3.6), and the Poincaré-
Sobolev inequality (3.4),

(
1
|B|

∫

B

∣
∣d0u

∣
∣p
)1/p

≤ C|B|−1/Q
(

1
|B|

∫

√
σB

∣
∣u−u√σB

∣
∣p
)1/p

≤ C|B|−1/Q 1
|B|

∫

σB

∣
∣u−uσB

∣
∣≤ C 1

|B|
∫

σB

∣
∣d0u

∣
∣.

(3.9)

This is a reverse Hölder inequality. As such it improves to all positive exponents on the
right-hand side and to some exponent p′ > p on the left, see [2, 8, 9]. �

For E ⊂G, we write osc(u,E)= supE u− infE u.

Theorem 3.3. Let 0 < s <∞. There is a constant C, depending only on s, p, Q, σ , and the
structure constants such that

osc(u,B)≤ C|B|(s−Q)/sQ
(∫

σB

∣
∣d0u

∣
∣s
)1/s

(3.10)

for all balls B with σB ⊂Ω.

Proof. Fix B with σB ⊂ Ω and x, y ∈ B. Using (3.5) with s = p, the Poincaré inequality
(3.4) and (3.8),

∣
∣u(x)−u(y)

∣
∣≤ ∣∣u(x)−u√σB

∣
∣+

∣
∣u(y)−u√σB

∣
∣

≤ C
(

1
|B|

∫

√
σB

∣
∣u−u√σB

∣
∣p
)1/p

≤ C|B|(p−Q)/pQ
(∫

√
σB

∣
∣d0u

∣
∣p
)1/p

≤ C|B|(s−Q)/sQ
(∫

σB

∣
∣d0u

∣
∣s
)1/s

.

(3.11)

�

When p > Q, Theorem 3.3 holds for all u∈HW1,p(σB), see [8].
The last result follows from Harnack’s inequality and also appears in [8].

Theorem 3.4. There exist constants β,0 < β ≤ 1, and C, depending only on p, Q, and the
structure constants, such that

osc(u,B)≤ Cσ−β osc(u,σB) (3.12)

for all balls B with σB ⊂Ω with σ ≥ 1.
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4. Lipschitz classes and domains

We use the following notations for f : Ω→Rm and 0 < α≤ 1:

‖ f ‖α = sup
{∣∣ f

(
x1
)− f

(
x2
)∣
∣

dc
(
x1,x2

)α : x1, x2 ∈Ω, x1 �= x2

}

,

‖ f ‖α∂ = sup
{ ∣

∣ f
(
x1
)− f

(
x2
)∣
∣

(
dc
(
x1,x2

)
+dc

(
x1,∂Ω

))α : x1, x2 ∈Ω, x1 �= x2

}

,

‖ f ‖αloc = sup
{∣∣ f

(
x1
)− f

(
x2
)∣
∣

dc
(
x1,x2

)α : x1, x2 ∈Ω, x1 �= x2, dc
(
x1,x2

)
< dc

(
x1,∂Ω

)
}

,

‖ f ‖αloc,∂=sup
{ ∣

∣ f
(
x1
)− f

(
x2
)∣
∣

(
dc
(
x1,x2

)
+dc

(
x1,∂Ω

))α : x1, x2 ∈Ω, x1 �= x2, dc
(
x1,x2

)
< dc

(
x1,∂Ω

)
}

.

(4.1)

Notice

‖ f ‖αloc,∂ ≤min
(‖ f ‖αloc,‖ f ‖α∂

)≤max
(‖ f ‖αloc,‖ f ‖α∂

)≤ ‖ f ‖α. (4.2)

Definition 4.1. A domain Ω ⊂ G is uniform if there exist constants a,b > 0 such that
each pair of points x1,x2 ∈ Ω can be joined by a horizontal curve γ ⊂ Ω satisfying the
following:

(a) l(γ)≤ adc(x1,x2);
(b) mini, j l(γ(xj ,x))≤ bdc(x,∂Ω) for all x ∈ γ.
Here l(γ) is the length of γ in the dc-metric and l(xj ,x) is this length between xj and x.

We give some known examples.
(1) Metric balls in the Heisenberg groups are uniform.
(2) The Euclidean cube {(x1, y1, . . . , t)∈Hn|max(|xi|,|yi|,|t|) < 1} is a uniform do-

main in the Heisenberg groupsHn [4].
(3) The hyperspace {(x1, y1, . . . , t)∈Hn|t > 0} is a uniform domain in the Heisenberg

groupsHn [4].
(4) The hyperspace {x ∈ G | xi > 0, i = 1, . . . ,m} is a uniform domain in a Carnot

group G [4].
For domains in Rn, the following definition appears in [10] and with α= α′ in [3].

Definition 4.2. A domain Ω is a Lipα,α′-extension domain, 0 < α′ ≤ α≤ 1, if there exists a
constant M, independent of f : Ω→Rn, such that

‖ f ‖α′ ≤M‖ f ‖αloc. (4.3)

When α= α′, we write Lipα-extension domain.
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Theorem 4.3. For 0 < α′ ≤ α≤ 1, Ω is a Lipα,α′-extension domain if there exists a constant
N such that each pair of points x1,x2 ∈Ω can be joined by a horizontal path γ ⊂Ω for which

∫

γ
dc
(
γ(s),∂Ω

)α−1
ds≤Ndc

(
x1,x2

)α′
. (4.4)

If metric balls are uniform domains, then the converse holds.

The proof is the same as the corresponding result in Euclidean space given in [3] with
minor modification.

It follows that if Ω is a Lipα,α′-extension domain, then

‖ f ‖α′∂ ≤M‖ f ‖αloc,∂. (4.5)

Theorem 4.4. If Ω is a uniform domain, then it is a Lipα-extension domain.

The proof is similar to that in [3] in Rn. We give the simple proof here to show the
connection with uniform domains.

Proof. Let γ join x1 to x2 in Ω satisfy Definition 4.1. We have

∫

γ
dc(x,∂Ω)α−1ds≤ bα−1

∫ l(γ)

0
min(s, l(γ)− s)α−1ds

≤ 2bα−1
∫ l(γ)/2

0
sα−1ds

≤ 21−αα−1bα−1aαdc
(
x1,x2

)α
.

(4.6)

�

We also require the following results which characterize the local Lipschitz classes. We
assume from here on that metric balls are uniform domains.

Theorem 4.5. Assume that f : Ω→R and 0 < η < 1.
The following are equivalent:
(1) there exists a constant C1, independent of f , such that

∣
∣ f
(
x1
)− f

(
x2
)∣
∣≤ C1

∣
∣x1− x2

∣
∣α (4.7)

for all x1,x2 ∈Ω with |x1− x2| ≤ ηdc(x1,∂Ω);
(2) there exists a constant C2, independent of f , such that

‖ f ‖αloc ≤ C2. (4.8)

Theorem 4.6. Assume that f : Ω→R and 0 < η < 1.
The following are equivalent:
(1) there exists a constant C1, independent of f , such that

∣
∣ f
(
x1
)− f

(
x2
)∣
∣≤ C1

∣
∣x1− x2

∣
∣α (4.9)

for all x1,x2 ∈Ω with |x1− x2| = ηdc(x1,∂Ω);
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(2) there exists a constant C2, independent of f , such that

‖ f ‖αloc,∂ ≤ C2. (4.10)

Again the proofs are similar to those given in [3, 10].

5. Lipschitz classes of solutions

Recall we are assuming that u is a solution to (3.1). In the Euclidean case Theorems 5.1
and 5.2 appear in [13].

Theorem 5.1. The following are equivalent:
(1) there exists a constant C1, independent of u, such that

Du(x)≤ C1dc(x,∂Ω)α−1 (5.1)

for all x ∈Ω;
(2) there exists a constant C2, independent of u, such that

‖u‖αloc,∂ ≤ C2. (5.2)

Proof. Assume 1. Fix x1,x2 ∈ Ω with |x1 − x2| = dc(x1,∂Ω)/4 and let B = B(x1,2|x1 −
x2|). We have, using (3.10),

∣
∣u
(
x1
)−u(x2

)∣
∣≤ C|B|(p−Q)/pQ

(∫

B

∣
∣d0u

∣
∣p
)1/p

= C|B|1/QDu
(
x1
)≤ C∣∣x1− x2

∣
∣α.

(5.3)

Statement 2 then follows from Theorem 4.6.
Conversely, using the Caccioppoli inequality (3.7),

Du
(
x1
)= |B|−1/p

(∫

B

∣
∣d0u

∣
∣p
)1/p

≤ C|B|−(p+Q)/pQ
(∫

2B

∣
∣u−u(x1

)∣
∣p
)1/p

≤ dc
(
x1,∂Ω

)α−1
.

(5.4)

�

Theorem 5.2. Suppose that Ω is a Lipα,α′-extension domain, 0 < α′ ≤ α≤ 1. If there exists
a constant C1, independent of u, such that

Du(x)≤ C1d(x,∂Ω)α−1, (5.5)

then there is a constant C2, independent of u, such that

‖u‖α′∂ ≤ C2. (5.6)
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Moreover, there are constants β and C3, independent of u, such that if in addition α′ ≤ β,
then

‖u‖α′ ≤ C3. (5.7)

Otherwise, (5.5) only implies that

‖u‖β ≤ C(diamΩ)α
′−β. (5.8)

The first implication follows from (4.5) and Theorem 5.1. The second part is a conse-
quence of the next result.

Theorem 5.3. Assume along with u being a solution in Ω that it is also continuous in Ω̄.
There exists a constant β, depending only on Q, p, and the structure constants, such that if
α≤ β and if there exists a constant C1 such that

∣
∣u
(
x1
)−u(x2

)∣
∣≤ C1

∣
∣x1− x2

∣
∣α (5.9)

for all x1 ∈Ω and x2 ∈ ∂Ω, then

‖u‖α ≤ C2, (5.10)

where C2 depends only on Q, p, C1, and the structure constants. If β < α, (5.9) only implies
that

‖u‖β ≤ C2(diamΩ)α−β. (5.11)

The proof is similar to the Euclidean case, see [12]. It requires here inequality (3.12)
in the Carnot case with an appropriate choice of σ .
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ASYMPTOTIC BEHAVIOR IN STOCHASTIC FUNCTIONAL
DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE

ZEPHYRINUS C. OKONKWO

This paper deals with asymptotic behavior of the solution process of a class of neutral
stochastic functional differential equations of Itô-Volterra form. Criteria for the exis-
tence of the solution process are outlined. Using the results of Corduneanu, Mahdavi,
and Okonkwo, asymptotic behaviors of such solution processes (at +∞) are discussed.

Copyright © 2006 Zephyrinus C. Okonkwo. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We study the asymptotic behavior of the solutions to stochastic functional differential
equations of the form

d(Vx)(t,ω)= (Ax)(t,ω)dt+φ
(
t,x(t,ω)

)
dz(t,ω) (1.1)

with the random initial condition

x(0,ω)= x0 ∈ Rn. (1.2)

Here and in the sequel, V and A will denote causal operators on the function space
C(R+×Ω,Rn), which is the space of product measurable random functions x : R+×Ω→
Rn with continuous sample paths on every compact subset of R+. Ω is the sample space,
with ω ∈Ω. φ ∈M0(R+×Rn,Rn×k), the space of n× k product measurable matrix-valued
random functions with the property that

�
(

ω :
∫ T1

0
sup

0≤t≤T1

∣
∣φ
(
t,x(t,ω)

)∣
∣2
dt <∞

)

= 1, T1 <∞. (1.3)

The integral in (1.3) is assumed to be in the Lebesgue sense for each ω ∈Ω. We will
present a remark concerning the asymptotic behavior of (1.1), where the underlying space
is L

p
loc(R+×Ω,Rn), 1≤ p ≤∞.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 895–903



896 Asymptotic behavior in stochastic functional differential equations

The following assumptions are in order; (Ω,χ,�) Ω is the set of all elementary events,
χt is a nondecreasing σ-algebra of subsets of Ω, and � is the probability measure which
takes every event ω ∈Ω to the associated probability �(ω). The random process x(t,·) is
nonanticipating, and z(t,ω) is a normalized Rk-valued Wiener process. Furthermore, the
random initial condition x0 is a Gaussian random variable independent of the Wiener
process z. Asymptotic behavior of solutions of various classes of functional differential
equations has been a focus of study because of its importance in the study of stability
of systems. Corduneanu [2] discussed the asymptotic behavior of functional differential
equations of the form

ẋ(t) + (Lx)(t) + f
(
x(t)

)= g(t), (1.4)

where x, f , and g are vectors in Rn, and L is a linear abstract Volterra operator acting on
prescribed function spaces. Two distinct methods of discussing asymptotic behavior of
the solutions of equations of the form (1.4) appear in the literature. The first, based on
monotonicity assumption, initiated by Moser [6], enables us to compare the behavior of
the Volterra equations with that of convenient ordinary differential equations. Corduneau
[2] extended this method to the case of nonconvolution integral operators. The second
method, which uses admissibility techniques, was initiated by Massera and Schäffer [5].
Mahdavi [4] dealt with asymptotic behavior in some classes of functional differential
equations of the form

ẋ(t) + (Lx)(t)=M(x(t)
)

(1.5)

on the positive half-axes R+, where L is a linear causal operator, and M is a nonlinear
causal operator acting on the prescribed function spaces.

In this paper (see Corduneanu [3], Okonkwo [7]), (Vx)(t,ω) in (1.1) will be of the
form

(Vx)(t,ω)= x(t,ω) + g
(
x
(
μ(t),ω

))
, (1.6)

where μ : [0,T1]→ [0,∞) is continuous, with μ(0)= 0, and 0≤ μ(t)≤ t for t ∈ R+.
Other auxiliary conditions will be imposed on g and μ in the sequel. On integration of

both sides of (1.1) and using V in the form of (1.6), and imposing the condition

g
(
x
(
μ(0),ω

))= g(x0
)= θ ∈ Rn, (1.7)

we have

x(t,ω) + g
(
x
(
μ(t),ω

))= x0 +
∫ t

0
(Ax)(s,ω)ds+

∫ t

0
φ
(
s,x(s,ω)

)
dz(s,ω). (1.8)
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We will also assume that the following conditions hold true for (1.1):

∫ T1

0
sup

0≤t≤T1

E
[
φ
(
x(t,ω), t

)
dz(t,ω)

]= 0,

∫ T1

0
sup

0≤t≤T1

E
∣
∣φ
(
x(t,ω), t

)
dz(t,ω)

∣
∣2 =

∫ T1

0
sup

0≤t≤T1

E
∣
∣φ
(
x(t,ω), t

)∣
∣2
dt <∞, T1 <∞.

(1.9)

The results obtained in Corduneanu [2, 3] and Mahdavi [4], based on monotonic-
ity assumptions, will be used to obtain asymptotic behavior results for (1.1), (1.2). In
Section 2, preliminary remarks and auxiliary results are presented. In particular, the ulti-
mate behavior of the solution process of a stochastic functional differential equation not
perturbed by a Weiner process is presented. The main results are discussed in Section 3.

2. Preliminary remarks and results

Let us consider the functional differential equation

dx(t,ω)= (Lx)(t,ω)dt (2.1)

with the random initial condition

x(0,ω)= x0 ∈ Rn, (2.2)

where L is a linear continuous operator of Volterra type defined on C([0,T]×Ω,Rn).
Integrating (2.1), we get

x(t,ω)= x0 +
∫ t

0
(Lx)(s,ω)ds. (2.3)

Since dx(t,ω)= (Lx)(t,ω)dt, one can write (2.3) in the form

x(t,ω)= x0 +
∫ t

0
dx(s,ω)ds. (2.4)

On application of the linear operator L to both sides of (2.4), we get

Lx(t,ω)= L
{

x0 +
∫ t

0
dx(s,ω)ds

}

= L{x0}+L
{∫ t

0
dx(s,ω)ds

}

=�x0 + �x′. (2.5)

Equation (2.5) implies that the linear operator L can be decomposed into two parts:
the principal part; �: C([0,T]×Ω,Rn)→ C([0,T)×Ω,Rn), and the finite-dimensional
part �: Rn→ C([0,T)×Ω,Rn), see, for example, Azbelev [1].

Suppose

ẋ = (Lx)(t) + f (t), (2.6)

where L is a linear continuous operator of Volterra type defined on C([0,T)×Ω,Rn)
and f ∈ C([0,T)×Ω,Rn). Then, for each x0 ∈ Rn, there exists a unique solution x(t)
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in the space of absolutely continuous functions satisfying (2.6). Such a solution can be
represented by the variation of parameters formula (Corduneanu [2])

x(t,ω)= X(t,0)x0 +
∫ t

0
X(t,s) f (s)ds, (2.7)

where X(t,s) is the Cauchy kernel uniquely associated with L. Indeed, the relation

∫ t

0
(Lx)(t,s)ds=

∫ t

0
X(t,s)x(s)ds (2.8)

is established by means of Riesz representation theorem. Suppose X(t,s) is the resolvent
kernel associated with X(t,s), then the Cauchy kernel is related to the reslovent kernel as
follows:

X(t,s)= In×n +
∫ t

0
X(t,u)du. (2.9)

Using the results discussed above therefore, it is easy to see that if, in (1.1), (Ax)(t,ω)=
(Lx)(t,ω) + (Dx)(t,ω), the solution of (1.1), (1.2) can be put in the form

x(t,ω) + g
(
x
(
μ(t),ω

))= X(t,0)x0 +
∫ t

0
X(t,s)(Dx)(s,ω)ds

+
∫ t

0
X(t,s)φ

(
s,x(s,ω)

)
dz(s,ω).

(2.10)

Here, (1.7) has been used. Existence and uniqueness of the solution process of (1.1), (1.2)
given by (1.8) in various function spaces have been discussed in several recent papers. Let
us assume that the following hypotheses hold true:

(A1) g is a contraction operator on C([0,T)×Ω,Rn), that is,

E
∣
∣g
(
x
(
μ(t),ω

))− g(y(μ(t),ω
))∣
∣≤ λ sup

0≤s≤t
E
∣
∣x(s,ω)− y(s,ω)

∣
∣, 0 < λ < 1; (2.11)

(A2) A : C([0,T)×Ω,Rn)→ C([0,T)×Ω,Rn) is causal, and takes bounded sets into
bounded sets. Furthermore,

E
∣
∣(Ax)(t,ω)− (Ay)(t,ω)

∣
∣≤ γ(t) sup

0≤s≤t
E
∣
∣x(s,ω)− y(s,ω)

∣
∣; (2.12)

(A3) E|φ(t,x(t,ω))−φ(y, (t,ω))| ≤ ζ(t)sup0≤s≤t E|x(s,ω)− y(s,ω)|.
Here, we will assume that 3λ < 1, ζ(t), and γ(t) are in L1 for every x ∈ C([0,T)×Ω,Rn)

with 0≤ t ≤ T <∞.

Theorem 2.1 (Okonkwo [7]). Consider the neutral stochastic functional differential equa-
tion (1.1), with V given by formula (1.6), under the initial condition (1.2). Suppose that as-
sumptions (A1), (A2), and (A3) are satisfied, μ being a real-valued function with μ(0)= 0,
and 0≤ μ(t)≤ t for t ∈ [0,T]. Then, there exists a solution process x = x(t,ω) of the prob-
lem on [0,T1]×Ω ⊂ [0,T]×Ω such that x(t,ω) + g(x(μ(t),ω)) is differentiable almost
everywhere.
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Remark 2.2. The proof of the above Theorem has been presented in [7] and will not be
repeated here. Note that the uniqueness of the solution process was also established. The
deterministic version of the above theorem has been proven by Corduneanu in [3].

Let us present preliminary results concerning asymptotic behavior of a functional dif-
ferential equation related to (1.1).

Theorem 2.3. Consider the functional differential equation

d
(
x(t,ω) + g

(
x
(
μ(t),ω

)))=−((Lx)(t,ω) + f
(
x(t,ω)

))
dt+ v(t,ω)dt (2.13)

with the initial condition (1.2), and assume that the following hypotheses hold true:
(i) L : C(R+ ×Ω,Rn)→ C(R+ ×Ω,Rn) is causal, and takes bounded sets into bounded

sets, that is,

E
∫ t+1

t

∣
∣(Lx)(s,ω)

∣
∣ds−→ 0 as t −→∞, ∀x ∈ BC(R+×Ω,Rn

)
; (2.14)

(ii) g : Rn → Rn is almost surely continuous contraction operator, with g(x(0,ω)) =
g(x0)≡ θ, and

E
∣
∣g
(
x
(
μ(t),ω

))− g(y(μ(t),ω
))∣
∣≤ α sup

0≤s≤t
E
∣
∣x(t,ω)− y(t,ω)

∣
∣, 0 < α < 1; (2.15)

(iii) f : Rn→ Rn is continuous, and such that

E
∫ t

0
sup

0≤s≤t

〈
(Lx)(s,ω) + f

(
x(s,ω)

)
,x(s,ω)

〉
ds≥ 0, t ∈ R+; (2.16)

(iv) v ∈ L1(R+Ω,Rn), that is,
∫∞

0 E
∣
∣v(t,ω)

∣
∣ds <∞.

Furthermore, v(t,ω) is uncorrelated with x(t,ω), that is,

E
[
v(t,ω) · x(t,ω)

]= E[v(t,ω)
]
E
[
x(t,ω)

]
. (2.17)

Then any solution process of (2.13) is defined on R+×Ω, it is almost surely bounded there,
and the limit sets of the sample paths will coincide with that of a convenient solution of an
ordinary differential equation.

Proof. Suppose x = x(t,ω) is a solution of (2.1) and such that x(0,ω)= x0 ∈ Rn, then such
solution is defined on some interval [0,T1), T1 ≤∞ (or possibly for very small T1 only).
On scalar multiplication of both sides of (2.13) by x(t,ω), we get

〈
d
(
x(t,ω) + g

(
x
(
μ(t),ω

)))
,x(t,ω)

〉

= 〈− ((Lx)(t,ω) + f
(
x(t,ω)

))
dt,x(t,ω)

〉

+
〈
v(t,ω)dt,x(t,ω)

〉
.

(2.18)
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On integration of both sides of the above equation and rearranging, we get

1
2

∣
∣x(t,ω)

∣
∣2

+α
∣
∣x(t,ω)

∣
∣2

+
∫ t

0

〈
(Lx)(s,ω) + f

(
x(s,ω)

)
,x(s,ω)

〉
ds

= 1
2

∣
∣x0
∣
∣2

+
∫ t

0

〈
v(s,ω),x(s,ω)

〉
ds.

(2.19)

On taking inequality (2.16) into account, we get

1
2

∣
∣x(t,ω)

∣
∣2

+α
∣
∣x(t,ω)

∣
∣2 ≤ 1

2

∣
∣x0
∣
∣2

+
∫ t

0

〈
v(s,ω),x(s,ω)

〉
ds. (2.20)

Taking the mathematical expectation of both sides of (2.20), we have

(1 + 2α) sup
0≤t≤T

E
∣
∣x(t,ω)

∣
∣2 ≤ E∣∣x0

∣
∣2

+ 2 sup
0≤t≤T

E
∣
∣x(t,ω)

∣
∣
∫ t

0
E
∣
∣v(s,ω)

∣
∣ds. (2.21)

Let ξ(t)= sup0≤t≤T E|x(t,ω)|. Inequality (2.21) becomes

(1 + 2α)ξ2(t)≤ E∣∣x0
∣
∣2

+ 2ξ(t)
∫ t

0
E
∣
∣v(s,ω)

∣
∣ds. (2.22)

Inequality (2.22) implies that

(1 + 2α)ξ2(t)≤ E∣∣x0
∣
∣2

+ 2ξ(t)
∫∞

0
E
∣
∣v(s,ω)

∣
∣ds. (2.23)

Hence

ξ2(t)≤ E∣∣x0
∣
∣2

+ 2ξ(t)
∫∞

0
E
∣
∣v(s,ω)

∣
∣ds (2.24)

From (2.24), we have

ξ(t)≤
∫∞

0
E
∣
∣v(s,ω)

∣
∣ds+

{

E
∣
∣x0
∣
∣2

+
(∫∞

0
E
∣
∣v(s,ω)

∣
∣ds
)2
}1/2

. (2.25)

Inequality (2.25) means that

E
∣
∣x(t,ω)

∣
∣≤

∫∞

0
E
∣
∣v(s,ω)

∣
∣ds+

{

E
∣
∣x0
∣
∣2

+
(∫∞

0
E
∣
∣v(s,ω)

∣
∣ds
)2}1/2

. (2.26)

Observe that the left-hand side of inequality (2.26) is a constant with respect to t. We
therefore conclude that x = x(t,ω) remains bounded on its maximal interval of existence,
which implies that x(t,ω) (for each ω ∈ Ω) can be extended on the positive half-axes
R+ = [0,∞). That is, x = x(t,ω) is almost surely bounded on the positive half-axes R+ =
[0,∞). One can easily show that the limit set of the solutions coincides with that of the
convenient solution of an ordinary differential equation, see Corduneanu [2]. �
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3. Main results

In this section, we will establish the criteria for boundedness and asymptotic behavior
of the solution process of Itô-Volterra functional differential equations of the form (1.1),
(1.2).

Suppose we assume that in (1.1),

(Ax)(t,ω)=−((Lx)(t,ω) + (Nx)(t,ω)
)

+ v(t,ω), (3.1)

then, (1.1) can be put in the form

d
(
x(t,ω) + g

(
x
(
μ(t),ω

)))=−[(Lx)(t,ω)− (Nx)(t,ω)− v(t,ω)
]
dt

+φ
(
t,x(t,ω)

)
dz(t,ω).

(3.2)

In (3.2), we will assume that N : C(R+ ×Ω,Rn)− > C(R+ ×Ω,Rn) is an operator of
Niemytzki type, that is, (Nx)(t,ω) = f (t,x(t,ω)), x ∈ Rn. Furthermore, we will assume
that (Nθ)(t,ω)≡ θ, E|(Nx)(t,ω)| ≤ r(t)E|x(t,ω)|2, with r(t)≥ 0, t ∈ R+, and

∫∞

0
r(t)dt ≤ ξ <∞. (3.3)

Theorem 3.1. Consider the functional differential equation (3.2) with the initial condition
(1.2), and assume that the following hypotheses are satisfied:
(H1) L is a linear operator of Volterra type on the function spaceC(R+×Ω,Rn) and satisfies

the condition

E
∫ t

0
sup

0≤s≤t

〈
(Lx)(s,ω),x(s,ω)

〉
ds≥ β(t) sup

0≤s≤t
E
∣
∣x(s,ω)

∣
∣2

(3.4)

for each t ∈ R+, with β(t) being a nondecreasing function of t on R+;
(H2) there exists a function u∈ L2(R+,R), such that

E
∣
∣(Nx)(t,ω)

∣
∣≤ u(t), (3.5)

almost everywhere on R+ for all x ∈ C(R+×Ω,Rn);
(H3) g : Rn → Rn is almost surely continuous contraction operator, with g(x(0,ω)) =

g(x0)≡ θ, and

E
∣
∣g
(
x
(
μ(t),ω

))− g(y(μ(t),ω
))∣
∣≤ α sup

0≤s≤t
E
∣
∣x(t,ω)− y(t,ω)

∣
∣, 0 < α < 1. (3.6)

Furthermore, E|〈g(x(μ(t),ω)),x(t,ω)〉| ≤ αE|x(t,ω)|2 for 0 < α < 1;

(H4) v ∈ L2(R+×Ω,Rn), that is,
∫∞

0 E
∣
∣v(t,ω)

∣
∣2
ds <∞.

Furthermore, v(t,ω) is uncorrelated with x(t,ω), that is, E[v(t,ω) · x(t,ω)] =
E[v(t,ω)]E[x(t,ω)];

(H5) there exists a function l ∈ L2(R+,R), such that

E|φ(t,x(t,ω)
)∣
∣≤ l(t), (3.7)

almost everywhere on R+ for all x ∈ C(R+×Ω,Rn).
Then any sample path of the solution process of (3.2) is defined and bounded on R+.
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Proof. Suppose x = x(t,ω) is a solution of (3.2) and such that x(0,ω) = x0 ∈ Rn, then
such solution is defined on some interval [0,T2), T2 ≤∞ (or possibly for very small T2

only). On scalar multiplication of both sides of (3.2) by x(t,ω), we get

〈
d
(
x(t,ω) + g

(
x
(
μ(t),ω

)))
,x(t,ω)

〉

= 〈− [(Lx)(t,ω)− (Nx)(t,ω)− v(t,ω)
]
dt,x(t,ω)

〉

+
〈
φ
(
t,x(t,ω)

)
dz(t,ω),x(t,ω)

〉
.

(3.8)

Integrating both sides of (3.8) and on rearranging we have

1
2

∣
∣x
(
t,ω
)∣
∣2

+α
∣
∣x
(
t,ω
)∣
∣2

+
∫ t

0

〈
(Lx)(x,ω),x(s,ω)

〉
ds

= 1
2

∣
∣x0
∣
∣2

+
∫ t

0

〈
(Nx)(s,ω),x(s,ω)

〉
ds

+
∫ t

0

〈
v(s,ω),x(s,ω)

〉
ds+

∫ t

0

〈(
φ
(
s,x(s,ω)

)
,x(s,ω)

〉
dz(s,ω).

(3.9)

On application of hypotheses (H1)–(H5), we get

1
2

∣
∣x
(
t,ω
)∣
∣2

+α
∣
∣x
(
t,ω
)∣
∣2

+β(t)
∫ t

0

∣
∣(x,ω)

∣
∣2
ds

≤ 1
2

∣
∣x0
∣
∣2

+
1
2
ε
∫ t

0

〈
u2(s)

〉
ds+

ε
2

∫ t

0

∣
∣x(s,ω)

∣
∣2
ds

+
1
2
δ
∫ t

0
l2(s)ds+

ε
2

∫ t

0

∣
∣x(s,ω)

∣
∣2
dz

+
1
2
ρ
∫ t

0

∣
∣v(s,ω)

∣
∣2
ds+

ρ

2

∫ t

0

∣
∣x(s,ω)

∣
∣2
ds.

(3.10)

In the above inequality, the following inequalities have been used:

∫ t

0

〈
(Nx)(s,ω),x(s,ω)

〉
ds≤ 1

2ε

∫ t

0
u2(s)ds+

ε
2

∫ t

0

∣
∣x(s,ω)

∣
∣2
ds,

∫ t

0

〈
v(s,ω),x(s,ω)

〉
ds≤ 1

2ρ

∫ t

0

∣
∣v(s,ω)

∣
∣2
ds+

ρ

2

∫ t

0

∣
∣x(s,ω)

∣
∣2
ds,

∫ t

0

〈
φ
(
s,x(s,ω)

)
,x(s,ω)

〉
dz(s,ω)≤ 1

2δ

∫ t

0
l2(s)ds+

ρ

2

∫ t

0

∣
∣x(s,ω)

∣
∣2
ds,

(3.11)

where ε, δ, ρ are arbitrary positive numbers. On simplification of inequality (3.10), rear-
ranging, and taking the mathematical expectations of both sides of (3.10), we get

(1 + 2α) sup
0≤t≤T

E
∣
∣x
(
t,ω
)∣
∣2

+
(
2β(t)− ε− δ− ρ) sup

0≤t≤T
E
∫ t

0

∣
∣x(s,ω)

∣
∣2
ds

≤ E∣∣x0
∣
∣2

+
1
ε

∫ t

0
u2(s)ds+

1
δ

∫ t

0
l2(s)ds+

1
ρ
E
∫ t

0

∣
∣v(s,ω)

∣
∣2
ds.

(3.12)
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Hence

(1 + 2α)E
∣
∣x(t,ω)

∣
∣2

+
(
2β(t)− ε− δ− ρ)E

∫ t

0

∣
∣x(s,ω)

∣
∣2
ds

≤ E∣∣x0
∣
∣2

+
1
ε

∫∞

0
u2(s)ds+

1
δ

∫∞

0
l2(s)ds+

1
ρ
E
∫∞

0

∣
∣v(s,ω)

∣
∣2
ds.

(3.13)

�

The right-hand side of inequality (3.12) is independent of t. Therefore the solution
process of (3.2), (1.2) remains bounded on its interval of local existence. This implies
that the solution process x(t,ω) (for each ω ∈ ω) can be extended on the whole on the
positive half-axes R+ = [0,∞). That is, x = x(t,ω) is almost surely bounded on the positive
half-axes R+.

Remark 3.2. Asymptotic behavior of second-order functional differential equations of the
form

x′′(t) + (Lx′)(t) + gradF
(
x(t)

)= g(t), (3.14)

where the underlying space is the L
p
loc(R+,Rn), has been discussed in Corduneanu [3].
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A TWO-DEGREES-OF-FREEDOM HAMILTONIAN MODEL:
AN ANALYTICAL AND NUMERICAL STUDY

RAFFAELLA PAVANI

A well-studied Hamiltonian model is revisited. It is shown that known numerical results
are to be considered unreliable, because they were obtained by means of numerical meth-
ods unsuitable for Hamiltonian systems. Moreover, some analytical results are added.

Copyright © 2006 Raffaella Pavani. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Our aim is to study a well-known structural engineering problem about anomalous
elastic-plastic responses of a two-degrees-of-freedom model of a fixed ended beam with
short pulse loading (e.g., [2] and references therein). In particular, the resulting elastic
vibrations may be chaotic. We will tackle this problem mainly from the point of view of
numerical analysis, but we provide even some new theoretical results.

This system was already extensively studied using Runge-Kutta methods with variable
stepsize and many results can be found in [2] and references therein, but here we want to
show that some other numerical methods can be more effective in order to understand
the qualitative behavior of the orbits, in particular when chaotic behavior is detected.
Moreover, some new analytical results support our conclusions.

In Section 2, the problem is described and equations of the used mathematical model
are provided. In Section 3, we present some theoretical results about the behavior of so-
lutions close to the equilibrium point. In Section 4, numerical results are reported and
comparisons with already known results are shown. At last, Section 5 is devoted to a final
discussion.

2. Beam mathematical model

The two-degrees-of-freedom model of a fixed ended beam is provided by Carini et al. [2].
This model was deeply studied in the field of structural engineering and enjoys a large lit-
erature, which we do not cite here for the sake of brevity (e.g., see references in [2]). In
particular it is known that a beam, deformed into the plastic range by a short transverse

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 905–913



906 A two-degrees-of-freedom Hamiltonian model

force pulse, can exhibit anomalous behavior when its fixed ends prohibit axial displace-
ments. Indeed, the resulting elastic vibrations may be chaotic. Here we consider the “gen-
eralized” problem proposed in [2], where the plastic strains in the beam are regarded as
given and the “loading” is taken as the imposition of initial conditions of displacement
and velocity. Damping is neglected. So the system becomes a conservative Hamiltonian
system.

The beam model is provided with two cells B and C with two flanges as in the sand-
wich beam, each exhibiting elastic-perfectly plastic behavior. Assuming symmetrical de-
flections with respect to the midsection, there are two unknown transverse displacements,
that is, w1 at the quarterpoint and w2 at the midsection, and an axial displacement u at
the quarterpoint. The axial force is assumed to be constant over the span, therefore the
axial displacement can be found in terms of the transverse displacements. Consequently,
the configuration is defined by two transverse displacements w1 and w2, which serve as
generalized coordinates of the configuration.

The nonlinear system modeling the given beam is given by Carini et al. [2] as follows:

4
··
w1 +

··
w2 =−β

[
4w3

1 − 6w2
1w2 + 4w1w

2
2 −w3

2

]− 5kw1 + 3kw2,

··
w1 + 2

··
w2 =−β

[
w3

2 − 3w2
2w1 + 4w2w

2
1 − 2w3

1

]
+ 3kw1− 2kw2,

(2.1)

where β = 3.5555556× 1012, k = 2.61123556× 107.
Here we neglect the four plastic strains and assume that the stress σαi (α= B,C; i= 1,2)

are given by

σB1 = C
[

2
w2

1

0.1
− 0.0271

(
w2− 2w1

)
+

(
−w2

1

0.1
+

(
w1−w2

)2

0.1

)]

,

σB2 = C
[

2
w2

1

0.1
+ 0.0271

(
w2− 2w1

)
+

(
−w2

1

0.1
+

(
w1−w2

)2

0.1

)]

,

σC1 = C
[

2

(
w1−w2

)2

0.1
+ 0.0271

(
w2−w1

)−
(
−w2

1

0.1
+

(
w1−w2

)2

0.1

)]

,

σC2 = C
[

2
(w1−w2)2

0.1
− 0.0271

(
w2−w1

)−
(
−w2

1

0.1
+

(
w1−w2

)2

0.1

)]

,

(2.2)

where C = 4e+ 9.
Kinetic energy T(

·
w1,

·
w2) and potential energy V(w1,w2), relevant to half beam, have

the following expressions:

T = 1.8e− 3
(

2
·
w1

2
+
·
w1

·
w2 +

·
w2

2)
,

V = 2.5e− 17
(
σ2
B1 + σ2

B2 + σ2
C1 + σ2

C2

)
,

(2.3)

and the Hamiltonian function is given by H = T +V .
Alternatively, Hamiltonian function can be written as

H = 79.365
(
p2

1− p1p2 + 2p2
2

)
+V

(
w1,w2

)
. (2.4)
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The dynamical equations in canonical Hamiltonian form can be derived from the Hamil-
tonian function H ; so the generalized momenta (p1, p2) are defined by

p1 = ∂T

∂
·
w1

= 0.0018
(
4
·
w1 +

·
w2
)
, p2 = ∂T

∂
·
w2

= 0.0018
( ·
w1 + 2

·
w2
)
. (2.5)

Therefore the nonlinear model of the given beam can be written as the following first-
order system:

·
q1 = ·

w1 = 79.365
(
2p1− p2

)
,

·
q2 = ·

w2 = 79.365
(− p1 + 4p2

)
,

·
p1 =−3.2e+ 9

[
8w3

1 − 12w2
1w2 + 8w1w

2
2 − 2w3

2 + 0.0073w1− 0.0044w2
)
,

·
p2 =−3.2e+ 9

[
2w3

2 − 6w2
2w1 + 8w2w

2
1 − 4w3

1 + 0.0029w2− 0.0044w1
)
.

(2.6)

The system is a two-degrees-of-freedom conservative Hamiltonian system, which turns out
to be nonintegrable, but it can be considered nearly integrable for sufficiently small values
of Hamiltonian H .

3. Analytical results

It is easy to check that the origin is the only equilibrium point of the nonlinear system
(2.6); no saddles are present. Here we will show that, in spite of the fact that the given
Hamiltonian system is nonintegrable, an analytical approximation of the solution can
be found in a neighborhood of the equilibrium point and such approximation can be
as good as we want. Our results are founded on [7, 8], where the basic theorems are
established for one degree of freedom and n (n≥ 2) degrees of freedom.

At first we recall the following definition.
We call semitrigonometric polynomial (hereinafter STP) every function

f (t)=
∑
ar,h,kt

r(sinht+ coskt) (3.1)

with h,k ∈R, r ≥ 0, r integer. The class of STPs is closed with respect to integration and
derivation. We remark that a primitive of an STP can always be expressed in closed form
through elementary integrations, giving rise to functions of the same kind. We consider
these polynomials for 0 ≤ t ≤ 1. This is not a restriction, because, if the considered inte-
gration time interval is longer, we can use a union of closed bounded time intervals with
length equal to 1.

We notice that system (2.1) can be written in a more general form as follows:

··
x1 +ω2

1x1 = P1
(
x1,x2

)
,

··
x2 +ω2

2x2 = P2
(
x1,x2

)
,

(3.2)

where P1(x1,x2), P2(x1,x2) are polynomials of degree 3. Then we can apply to this system
our general results reported in [7], which can be summarized for two degrees of freedom
in the following way.
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If we assume that the following hypotheses are satisfied:
(1) P1(x1,x2) and P2(x1,x2) are polynomials in x1(t), x2(t) without terms of degree

< 2, with coefficients such that the sum of their absolute values is less than or
equal to 1;

(2) ωi > 3
√

2, i= 1,2;
(3) initial conditions are such that solution x0(t) of the homogeneous system satisfies

the condition |x0(t)| ≤ 0.25− 0.25r , where r is the minimum degree of Pi(x1,x2),
i= 1,2,

then there exists a domain D ⊂ R2n such that for each initial condition belonging to D,
the solution x(t)= (x1,x2) of (3.2) can be expressed in the following way:

xi(t)=
∞∑

j=1

si, j(t), i= 1,2, (3.3)

where the series converges uniformly in [0,1], and si, j(t) are semitrigonometric functions
in [0,1], which can be computed in closed form from the initial data.

Observe that, according to our previous definition of STP, every function si, j , i= 1,2,
j ≥ 1 can be explicitly written as

si, j(t)=
Nj∑

n=1

ant
rn
(

sinhnt+ cosknt
)
, (3.4)

where the indices i, j are fixed and the summand exhibits Nj terms, Nj ≥ 0, Nj integer,
hn,kn ∈R, r ≥ 0, r integer.

It is clear that system (2.1) does not satisfy the above assumptions. Therefore we have
to rearrange it so that our results can be applied. To this end we write system (2.1) in
matricial form

M
··
w+ Nw =−βY , (3.5)

where w = [w1
w2 ], M = [ 4 1

1 2 ], N= [ 5k −3k
−3k 2k ], Y = [4w3

1−6w2
1w2+4w1w

2
2−w3

2

w3
2−3w2

2w1+4w2w
2
1−2w3

1

]
.

We change the time scale, so that s= αt, with α = 102, and the space scale, setting w =
εw∗, with ε = 10−5.

Then using simultaneous diagonalization by congruencies, we find a unique nonsin-
gular matrix T such that TTMT = I and TTNT =D, where I is the identity matrix andD
is a diagonal matrix. At last using the change of variablesw∗(s)= Tq(s), q = (q1,q2)∈R2,
from (3.5) we obtain

d2q

ds2
+Dq =−Z, (3.6)

where D = [ 110.16 0
0 8842.6 ] and Z = [Z1

Z2
] with

Z1 =−5.0572e− 4q3
1 + 8.0311e− 3q2

1q2− 1.9344e− 2q1q
2
2 + 4.5443e− 2q3

2,

Z2 = 1.0564e− 3q3
1− 6.1083e− 3q2

1q2 + 2.6003e− 2q1q
2
2− 1.6526e− 3q3

2.
(3.7)

Now hypotheses (1) and (2) are satisfied.
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About the initial conditions, since they have to be close enough to the origin, we chose:
w1(0)=w2(0)= 0,

·
w1(0)= 0.56343,

·
w2(0)=−0.28172, corresponding to the energy level

H = 1e− 3. Changing these initial conditions according to the previous transformation,
we applied our method presented in [7] by the following steps.

(1) We solved the homogeneous form of system (3.6) and we obtained q01(s) =
−53.749sin10.4959s, q02(s)=−9.4692sin94.035s. We notice that, as here r = 3,
the condition |q0(s)| ≤ 0.25− 0.253 was fulfilled only for s ≤ 4e− 4, that is, t ≤
4e− 6.

(2) We computed the first iterate q1 = (q11,q12), solving system (3.6), where in Z we
replaced q1(s) with q01(s) and q2(s) with q02(s).

(3) We recovered the original variables (with the first approximated solutions de-
noted w0 and w1).

We observe that step 2 can be repeated as many times as it suffices, substituting the kth
approximated solution in Z, in order to get the (k+ 1)th approximated solution.

For the sake of brevity we report just the second element in both vectors w0 and w1:

w02 = 2.4417e− 4sin1049.6t− 5.7212e− 5sin9403.5t,

w12 =−5.7269e− 5sin9403.5t+ 2.4226e− 4sin1049.6t

− 6.9642e− 8sin3148.7t+ 5.8135e− 10sin28210t

+ 1.1712e− 8sin17757t+ 7.6531e− 8sin11502t

− 2.4214e− 8sin7304.4t− 8.8818e− 9sin19856t.

(3.8)

As we expected, this orbit is nearly quasiperiodic and the fundamental frequencies are
given by the following (rounded) values:

ω1 = 1049.6, ω2 = 9403.5. (3.9)

We remark that our proposed method belongs to the class of iterative methods; indeed
it is not a series development method. So the accuracy of the approximation can be
estimated in terms of the difference between two successive iterates |xk+1(t)− xk(t)|,
k = 0,1,2, . . .. In this case, |w1(t)−w0(t)| < 2e− 6 for t ≤ 6e− 3, where 6e− 3 is about the
length of the first cycle of the solution w12. This enlightens the fact that convergence hap-
pens in a longer interval than expected. Actually, convergence is guaranteed for t ≤ 4e− 6
only, as pointed above, but this condition is just sufficient.

4. Numerical results

In order to carry out a reliable numerical study of our mathematical model (2.1), we
compared results obtained by the following different numerical methods:

(1) an explicit Runge-Kutta method of order 4 (RK4 in public domain);
(2) an explicit Runge-Kutta method with variable stepsize of order 4 (MATLAB rou-

tine ODE45);
(3) an implicit symplectic Runge-Kutta method of order 12 (gni irk2 in public do-

main by E. Hairer);
(4) a conservative method of order 10, which numerically preserves energy (TOMG).
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Table 4.1

RK4 ODE45 gni irk2 TOMG

h 1e− 5 2.9e− 5 1e− 5 9e− 6

Δs 9.032e− 6 9.528e− 6 9.035e− 6 9.035e− 6

ΔH 4.1e− 9 1.7e− 6 1e− 18 1e− 17

The symplectic method is described in [5], whereas the conservative method will be
available as soon as possible, since at the present it is just a preliminary version (by F.
Mazzia and the author) of a new program inspired by both TOM methods for BVM
problems and GAM methods for IVP problems [1].

In particular, we considered two types of orbits: a close-to-equilibrium orbit and a
far-from-equilibrium orbit. As the considered system is nonintegrable, but nearly inte-
grable for small values of Hamiltonian, we should obtain different qualitative behaviors
of computed orbits.

4.1. A close-to-equilibrium orbit. We refer to the initial conditions chosen in Section 3.
Within the first cycle of the considered orbit, that is, for t ≤ 6e− 3, we report for each
method the maximum difference Δs between the computed solution and the analytical
one, that is, w12 reported in Section 3; the corresponding integration step h; the max-
imum differences ΔH between the computed Hamiltonian and the analytical one (see
Table 4.1).

Here the value of h for ODE45 has to be read as the maximum of the used integration
steps. Moreover, we recall that here the used machine precision is 2.2e− 16.

It is clear that all the numerical methods are equivalent about the approximation of the
solution, but they behave in a different way about the conservation of energy. Indeed, in
this short interval of time, the symplectic and the conservative methods preserve exactly
energy, but the Runge-Kutta methods do not. Now a fundamental question arises: what
happens over long time, when the analytical solution is not easily feasible?

The conservation of energy exhibits a completely different behavior, as Figure 4.1
shows; here the maximum error in Hamiltonian is reported versus increasing intervals
of time.

We observe that the conservative method TOMG goes on conserving the energy with
high constant accuracy, as requested. Actually, the Hamiltonian error always retains the
order 10−12.

On the contrary, gni irk2 loses an order of magnitude in Hamiltonian error within
420 seconds; this means that in a couple of hours the system stops, instead of oscillating
indefinitely.

Even ODE45 exhibits the same linearly increasing behavior of Hamiltonian error (not
reported in Figure 4.2). This means that again the considered system is numerically sim-
ulated as it were dissipative. This is in accordance with the fact that Hamiltonian systems
are not structurally stable against non Hamiltonian perturbations, such as those introduced
by classical explicit Runge-Kutta methods (with both fixed and variable stepsizes).
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About gni irk2, we carried out many other different tests and we concluded that the
behavior of gni irk2 does not change decreasing the stepsize, but it does change if we
solve the scaled system (3.6) instead of system (2.1). In this case, the symplectic method
preserves energy with a constant maximum error ΔH , which turns out to be �(10−12),
exactly as TOMG does. It is clear that for the highly nonlinear Hamiltonian model (2.1),
gni irk2 experiences stability problems, which are well known indeed (e.g., [3]) for gen-
eral symplectic methods.

Consequently, we suggest to choose the numerical method with great care, even for
close-to-equilibrium orbits.

4.2. A far-from-equilibrium orbit. We chose a second set of initial conditions: w1(0)=
w2(0)= 0,

·
w1(0)= 430.16,

·
w2(0)= 266.31, corresponding to the energy level H = 1000.

Unfortunately, no analytical approximation of the solution is available for this case. Here
the oscillation cycle is long about 4e− 4 seconds.
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For t ∈ [0,10], we compare solutions computed by TOMG and ODE45, since all the
results presented in literature are obtained by explicit Runge-Kutta methods of order 4
with variable stepsize, such as the method implemented by ODE45. There is no robust
way to distinguish chaotic from quasiperiodic solutions on the basis of the computed
waveform. So different tools (e.g., power spectra, Lyapunov exponents, Poincaré maps,
phase diagrams, etc.) should be used to detect a chaotic behavior. Here we resort just to
power spectrum, because it suffices to show how explicit Runge-Kutta methods can be
misleading in the study of Hamiltonian systems.

In Figure 4.2, we report the power spectrum computed using the MATLAB FFT rou-
tine applied to the data provided by TOMG; the semilogarithmic scale is used. It is clear
that the main frequencies are still two, as in the case of close-to-equilibrium orbit given
in Section 4.1. However here the main frequencies are perturbed by others; this means
that the nearly quasiperiodic orbit is going to become chaotic; indeed, the orbit exhibits
the so-called “Nekhoroshev” regime (e.g., [4]). The same qualitative results are obtained
by gni irk2, but with larger perturbations of the main frequencies, as expected.

In Figure 4.3, we report the power spectrum computed using the MATLAB FFT rou-
tine applied to the data provided by ODE45 routine; again the semilogarithmic scale is
used. Here the power spectrum suggests a chaotic behavior, which means a completely dif-
ferent conclusion. Actually, it does not present any dominant frequency, but a large band
of frequencies very close one to another. It is obvious that any other tool, such as, for
example, a Poincaré map should exhibit an analogous chaotic behavior, whenever it uses
the same discrete set of numerical data, provided by ODE45.

5. Conclusions

Conservative dynamical systems are not structurally stable against nonconservative per-
turbations. Actually, the popular explicit Runge-Kutta methods (with both fixed and vari-
able stepsizes) introduce such kind of perturbations. Indeed, mathematical models are
often discretized according to algorithms that have little to do with the original problem,
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whereas computational methods should reflect known structural features of the problem
under consideration, in particular they should preserve Hamiltonian for Hamiltonian
problems (e.g., [6] and references therein).

As well known, the most basic structural property of Hamiltonian systems is that they
are symplectic (i.e., they conserve phase-space volume); so symplectic numerical meth-
ods seem to be the first choice. However, according to the seminal paper by Ge Zhong and
Marsed [9], if an integrator is both symplectic and conservative, it must be exact. Nor-
mally the luxury of an exact discretization is not available, therefore in general symplectic
integration does not conserve Hamiltonian, in particular for highly nonlinear noninte-
grable Hamiltonian systems. Here we suggest to use conservative methods, which guaran-
tee the conservation of Hamiltonian. Then the drawback is that Hamiltonian phase-space
structure will not be preserved. Indeed, the problem of the choice between symplectic and
conservative methods remains open.

Actually, the integration method that is most suitable for a given Hamiltonian system
ultimately depends on the nature of the physical problem, the integration time scale, and
the kinds of questions addressed by the numerical simulation.

However, for systems which are to remain essentially nondissipative through numeri-
cal simulations (such as systems in structural engineering), conservative numerical meth-
ods seem to be the best choice.
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MULTIPLE POSITIVE SOLUTIONS OF SINGULAR
p-LAPLACIAN PROBLEMS VIA VARIATIONAL METHODS

KANISHKA PERERA AND ELVES A. B. SILVA

We obtain multiple positive solutions of singular p-Laplacian problems using variational
methods.

Copyright © 2006 K. Perera and E. A. B. Silva. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the boundary value problem

−Δpu= f (x,u) in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in Rn, n ≥ 1 of class C1,α for some α ∈ (0,1), Δpu =
div(|∇u|p−2∇u) is the p-Laplacian of u, 1 < p <∞, and f is a Carathéodory function
on Ω× (0,∞) satisfying

( f1) a0(x)≤ f (x, t)≤ a1(x)t−γ for 0 < t < t0,
( f2) MT := sup(x,t)∈Ω×[t0,T] | f (x, t)| <∞ for all T ≥ t0

for some nontrivial measurable functions a0,a1 ≥ 0 and constants γ, t0 > 0, so that it may
be singular at t = 0 and changes sign. We assume that

( f3) there exists ϕ ≥ 0 in C1
0(Ω) such that a1ϕ−γ ∈ Lq(Ω), where q = (p∗)′ if p 	= n

(resp., q > 1 if p = n).
Here (p∗)′ = p∗/(p∗ − 1) is the Hölder conjugate of the critical Sobolev exponent p∗ =
np/(n− p) if p < n (resp., p∗ =∞ if p ≥ n).

The semilinear case p = 2 has been studied extensively in both bounded and un-
bounded domains (see, e.g., [2–4, 8–13, 15, 17–21, 24–26, 29, 30] and their references).
The quasilinear ODE case 1 < p <∞, n= 1, was studied using fixed point theory by Agar-
wal et al. [1]. The general quasilinear case 1 < p <∞, n ≥ 1, was studied using a simple
cutoff argument and variational methods by Perera and Zhang [23] for q > n and by Agar-
wal et al. [5], and Perera and Silva [22] for q > n/p. We remove these restrictions on q in
this paper.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 915–924
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Note that ( f3) implies a1 ∈ Lq(Ω). If a1 ∈ L∞(Ω) and γ < 1/(p∗)′, ( f3) is satisfied with
any ϕ whose interior normal derivative ∂ϕ/∂ν > 0 on ∂Ω. A typical example is f (x, t) =
t−γ+g(x, t), where g is a Carathéodory function onΩ×[0,∞) that is bounded on bounded
t intervals. However, ( f3) does not necessarily require γ < 1 as usually assumed in the lit-
erature. For example, when Ω is the unit ball, a1(x) = (1− |x|2)σ , σ ≥ 0, and γ < σ +
1/(p∗)′, we can take ϕ(x)= 1−|x|2.

We may assume that a0 ∈ L∞(Ω) by replacing it with min{a0,1} if necessary, so the
problem

−Δpu= a0(x) in Ω,

u= 0 on ∂Ω
(1.2)

has a unique weak solution u ∈ C1
0(Ω) (see, e.g., Azizieh and Clément [7, Lemma 1.1]).

Since a0 ≥ 0 and is nontrivial, so is u and hence

u > 0 in Ω,
∂u

∂ν
> 0 on ∂Ω, (1.3)

by the strong maximum principle of Vázquez [28]. Fix 0 < ε ≤ 1 so small that u :=
ε1/(p−1)u < t0. Then

−Δpu− f (x,u)≤−(1− ε)a0(x)≤ 0 (1.4)

by ( f1), so u is a subsolution of (1.1).
Let

fu(x, t)=
⎧
⎪⎨

⎪⎩

f (x, t), t ≥ u(x),

f
(
x,u(x)

)
, t < u(x),

(1.5)

and consider the problem

−Δpu= fu(x,u) in Ω,

u= 0 on ∂Ω.
(1.6)

A standard argument shows that weak solutions of this problem are ≥ u and hence also
solutions of (1.1). We have

a0(x)≤ fu(x, t)≤ a1(x)u(x)−γ, t < t0, (1.7)

by ( f1), infΩ(u/ϕ) > 0 by (1.3) and hence a1u−γ ∈ Lq(Ω) by ( f3), and fu(x, t) = f (x, t)
for t ≥ t0. So the solutions of the modified problem (1.6) are the critical points of the C1

functional:

Φ(u)=
∫

Ω
|∇u|p− pF(x,u), u∈W1,p

0 (Ω), (1.8)

where F(x, t)= ∫ t0 fu(x,s)ds if f grows at most critically:



K. Perera and E. A. B. Silva 917

( f4) | f (x, t)| ≤ Ctr−1 for t ≥ t0, where r = p∗ if p < n (resp., r > p if p ≥ n).
As usual, C denotes a generic positive constant. We exploit this variational framework to

seek W
1,p
0 (Ω) solutions to the original problem.

2. Existence

Lemma 2.1. If ( f1) and ( f3) hold, and (1.1) has a supersolution u≥ u in W1,p(Ω), then it
has a solution in the order interval [u,u] in the cases:

(i) u∈ L∞(Ω) and ( f2) holds;
(ii) ( f4) holds.

Proof. Let

f̃u(x, t)=
⎧
⎪⎨

⎪⎩

fu
(
x,u(x)

)
, t > u(x),

fu(x, t), t ≤ u(x).
(2.1)

If u∈ L∞(Ω) and ( f2) holds,

∣
∣ f̃u

∣
∣≤ a1u

−γ +M|u|∞ ∈ Lq(Ω) (2.2)

by (1.7), where we set MT = 0 for T < t0 for convenience. If ( f4) holds,

∣
∣ f̃u

∣
∣≤ a1u

−γ +Cur−1 ∈ Lq(Ω). (2.3)

So the functional Φ with F(x, t)= ∫ t0 f̃u(x,s)ds is bounded from below and coercive, and
hence has a global minimizer by weak lower semicontinuity, in both cases. �

Theorem 2.2. If ( f1)–( f3) hold and there is a t1 > t0 such that

f
(
x, t1

)≤ 0, x ∈Ω, (2.4)

then (1.1) has a solution ≤ t1.

Proof. It follows from Lemma 2.1, taking u≡ t1. �

Example 2.3. Problem (1.1) with f (x, t)= t−γ − et has a solution ≤ 1 for all γ < 1/(p∗)′.

Let λ1 > 0 be the first eigenvalue of −Δp, with the eigenfunction ϕ1 > 0.

Theorem 2.4. If ( f1), ( f3), and ( f4) hold, and

f (x, t)≤ λtp−1 +C, t ≥ t0, (2.5)

for some 0≤ λ < λ1, then (1.1) has a solution.

Proof. Let

f (x, t)= λ(t+)p−1
+C+ a1(x)u(x)−γ. (2.6)
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The functional Φ with F(x, t) = ∫ t0 f (x,s)ds has a global minimizer u since λ < λ1, and
u≥ u since

−Δpu= f (x,u)≥ a1(x)u(x)−γ ≥ a0(x)≥ εa0(x)=−Δpu (2.7)

by ( f1). Then

−Δpu≥ λup−1 +C+ a1(x)u−γ ≥ f (x,u) (2.8)

by (2.5) and ( f1), so u is a supersolution of (1.1), and the conclusion follows from Lemma
2.1. �

Example 2.5. Problem (1.1) with f (x, t) = t−γ + λtp−1 + ts−1 has a solution for all γ <
1/(p∗)′, λ < λ1, and 1≤ s < p.

Theorem 2.6. If ( f1), ( f3), and ( f4) hold, and

f (x, t)≤ λ1t
p−1− g(x, t), t ≥ t1, (2.9)

for some t1 ≥ t0 and a Carathéodory function g on Ω× [t1,∞) satisfying

∣
∣g(x, t)

∣
∣≤ Ctr−1, (2.10)

where r is as in ( f4),

G(x, t) :=
∫ t

t1
g(x,s)ds≥−C, (2.11)

lim
t→∞G(x, t)=∞ on a set of positive measure, (2.12)

then (1.1) has a solution.

Proof. Take h∈ C(R, [0,1]) such that h(t)= 1 for t ≤ t1 and h(t)= 0 for t ≥ some t2 > t1,
and let

f (x, t)= (1−h(t)
)[
λ1t

p−1− g(x, t)
]

+h(t)a1(x)u(x)−γ. (2.13)

Following the proof of Theorem 2.4, it suffices to show that the functionalΦwith F(x, t)=
∫ t
t2 f (x,s)ds is bounded from below and coercive.

We have

F(x, t)≤

⎧
⎪⎪⎨

⎪⎪⎩

λ1

p
tp−G(x, t) +C, t ≥ t2,

C, t < t2,

(2.14)

and hence

Φ(u)≥
∫

Ω
|∇u|p− λ1(u+)p + p

∫

u≥t2
G(x,u)−C, (2.15)

so Φ is bounded from below by (2.11).
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Suppose Φ is not coercive, say, ρj := ‖uj‖ → ∞ and Φ(uj) ≤ C. Then for a subse-

quence, ũ j := uj/ρj converges to some ũ weakly in W
1,p
0 (Ω), strongly in Lp(Ω), and a.e.

in Ω. Since ‖ũ j‖ ≡ 1, ‖ũ‖ ≤ 1. By (2.11) and (2.15),

λ1

∫

Ω

(
u+
j

)p ≥ ρpj −C, (2.16)

and dividing by ρ
p
j and passing to the limit give

λ1
∣
∣ũ+

∣
∣p
p ≥ 1≥ ‖ũ‖p ≥ λ1|ũ|pp, (2.17)

so ũ= ϕ1. Then uj(x)= ρj ũ j(x)→∞ a.e., and hence

Φ
(
uj
)≥ p

∫

uj≥t2
G
(
x,uj

)−C −→∞ (2.18)

by (2.11), (2.12), (2.15), and Fatou’s lemma, a contradiction. �

Example 2.7. Problem (1.1) with f (x, t) = t−γ + λ1tp−1 − ts−1 has a solution for all γ <
1/(p∗)′ and 1≤ s < p.

Remark 2.8. When p > n, the supersolutions u constructed in the proofs of Theorems 2.4
and 2.6 are in L∞(Ω) by the Sobolev embedding and hence the weaker condition ( f2) can
be used in place of ( f4). The same is true when p ≤ n by the regularity results of Guedda
and Véron [16] if q > n/p in ( f3), in which case solutions ≥ u of (1.1) are also in L∞(Ω)
(see Agarwal et al. [5, proof of Proposition 2.1]).

3. Multiplicity

Throughout this section, we assume ( f1), ( f3), ( f4), and
( f5) there exists t2 > t1 > t0 and λ < λ1 such that

∫ t
t1 f (x,s)ds ≤ (λ/p)(t− t1)p for t1 ≤

t ≤ t2.
In particular, f (x, t1)≤ 0 and hence (1.1) has a solution u0 ∈ [u, t1] by Theorem 2.2. Not-
ing that u0 is also a subsolution of (1.1), we seek a second solution u1 ≥ u0 as another
critical point of the functional Φ with

F(x, t)=
∫ t

t1
fu0 (x,s)ds, fu0 (x, t)=

⎧
⎪⎪⎨

⎪⎪⎩

f (x, t), t ≥ u0(x),

f
(
x,u0(x)

)
, t < u0(x).

(3.1)

By ( f1) and ( f2),

∣
∣ fu0 (x, t)

∣
∣≤ a1(x)u(x)−γ +Mt1 ∈ Lq(Ω), t < t1, (3.2)

since u0 ≥ u.
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The functional Φ̃ given by (1.8) with F replaced by

F̃(x, t)=
∫ t

t1
f̃u0 (x,s)ds, f̃u0 (x, t)=

⎧
⎪⎪⎨

⎪⎪⎩

fu0

(
x, t1

)
, t > t1,

fu0 (x, t), t ≤ t1,
(3.3)

has a global minimizer in [u0, t1] as in the proof of Lemma 2.1, which we assume is u0

itself since otherwise we are done.

Lemma 3.1. u0 is a local minimizer of Φ.

Proof. If uj → u0, writing uj = vj +wj , where

vj =min
{
uj , t1

}−→ u0, wj =max
{
uj , t1

}− t1 −→ 0, (3.4)

we have

Φ
(
uj
)=Φ

(
vj
)

+
∥
∥wj

∥
∥p− p

∫

Ω
F
(
x,wj + t1

)
. (3.5)

Since vj ,u0 ≤ t1 and u0 is a global minimizer of Φ̃,

Φ
(
vj
)= Φ̃

(
vj
)≥ Φ̃

(
u0
)=Φ

(
u0
)
. (3.6)

By ( f4) and ( f5),

F(x, t)≤ λ

p

(
t− t1

)p
+C

(
t− t1

)r
, t ≥ t1, (3.7)

and hence

p
∫

Ω
F
(
x,wj + t1

)≤ λ

λ1

∥
∥wj

∥
∥p +C

∥
∥wj

∥
∥r . (3.8)

Since λ < λ1 and r > p, it follows that Φ(uj)≥Φ(u0) for large j. �

We recall that Φ satisfies the Cerami compactness condition (C) if every sequence (uj),
such that

Φ
(
uj
)

is bounded,
(
1 +

∥
∥uj

∥
∥
)∥
∥Φ′

(
uj
)∥
∥−→ 0, (3.9)

has a convergent subsequence. For t ≥ t1, let

g(x, t)= f (x, t)− λ1t
p−1,

G(x, t)=
∫ t

t1
g(x,s)ds= F(x, t)− λ1

p

(
tp− tp1

)
.

(3.10)
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Lemma 3.2. If ( f1) and ( f3)–( f5) hold,

G(x, t)≥−C, t ≥ t1, (3.11)

lim
t→∞G(x, t)=∞ on a set of positive measure, (3.12)

and Φ satisfies (C), then (1.1) has two solutions u1 ≥ u0.

Proof. We have

Φ
(
tϕ1
)≤ C− p

∫

tϕ1≥t1
G
(
x, tϕ1

)−→−∞ as t −→∞ (3.13)

by (3.2), (3.11), (3.12), and Fatou’s lemma, and the conclusion follows from Lemma 3.1
and the mountain pass lemma. �

Theorem 3.3. If ( f1) and ( f3)–( f5) hold,

G(x, t)≤ Ctp, t ≥ t1, (3.14)

lim
t→∞

G(x, t)
tp

= 0 a.e., (3.15)

H(x, t) := pG(x, t)− tg(x, t)≥−C, t ≥ t1, (3.16)

lim
t→∞H(x, t)=∞ on a set of positive measure, (3.17)

then (1.1) has two solutions u1 ≥ u0.

Proof. We apply Lemma 3.2. We have

∂

∂t

[
G(x, t)
tp

]

=−H(x, t)
tp+1 , (3.18)

and hence

G(x, t)= tp
∫∞

t

H(x,s)
sp+1 ds≥ 1

p
inf
s≥t H(x,s) a.e. (3.19)

by (3.15), so (3.16) and (3.17) imply (3.11) and (3.12), respectively.
As usual, to verify (C) it suffices to show that every sequence (uj) satisfying (3.9) is

bounded. Suppose ρj := ‖uj‖→∞ along a subsequence. Then for a further subsequence,

ũ j := uj/ρj converges to some ũ weakly in W
1,p
0 (Ω), strongly in Lp(Ω), and a.e. in Ω. By

(3.2),

Φ
(
uj
)≥ ρpj − λ1

∫

Ω

(
u+
j

)p− p
∫

uj≥t1
G
(
x,uj

)−C(ρj + 1
)
. (3.20)

Dividing by ρ
p
j and noting that

∫

uj≥t1

G
(
x,uj

)

ρ
p
j

=
∫

uj≥t1

G
(
x,uj

)

u
p
j

ũ
p
j −→ 0 (3.21)
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by (3.14), (3.15), and Lebesgue’s dominated convergence theorem, ũ= ϕ1 as in the proof
of Theorem 2.6. Then uj(x)→∞ a.e., and hence

1
p
Φ′
(
uj
)(
u+
j + 2u−j

)−Φ
(
uj
)≥ ∥∥u−j

∥
∥p +

∫

uj≥t1
H
(
x,uj

)−C(∥∥u−j
∥
∥+ 1

)−→∞ (3.22)

by (3.2), (3.16), (3.17), and Fatou’s lemma, contradicting (3.9). �

Example 3.4. Problem (1.1) with f (x, t) = t−γ + λ1tp−1 + ts−1 − μ has two-ordered solu-
tions for all γ < 1/(p∗)′, 1 < s < p, and large μ > 0.

Theorem 3.5. If ( f1)–( f3) and ( f5) hold, and

λ≤ f (x, t)
tp−1 ≤ C, t ≥ t3, (3.23)

for some t3 > t2 and λ > λ1, then (1.1) has two solutions u1 ≥ u0.

Proof. Clearly, (3.23) implies (3.11) and (3.12). To verify (C), suppose (uj) satisfies (3.9),

ρj := ‖uj‖→∞, and ũ j := uj/ρj → ũ weakly in W
1,p
0 (Ω), strongly in Lp(Ω), and a.e. in Ω

as in the proof of Theorem 3.3. By (3.2) and ( f4),

Φ′
(
uj
)
v

pρ
p−1
j

=
∫

Ω

∣
∣∇ũ j

∣
∣p−2∇ũ j ·∇v−αj(x)ũ

p−1
j v+ o

(‖v‖), (3.24)

where

αj(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
(
x,uj(x)

)

uj(x)p−1 , uj(x)≥ t3,

0, uj(x) < t3.

(3.25)

By (3.23), 0 ≤ αj ≤ C, so taking v = ũ−, ũ j and passing to the limit give ũ ≥ 0, 	≡ 0, re-
spectively. Moreover, a subsequence of (αj) converges to some 0≤ α≤ C weakly in Ls(Ω)
for any 1 < s <∞, and passing to the limit in (3.24) shows that ũ satisfies

−Δpũ= α(x)ũp−1 in Ω,

ũ= 0 on ∂Ω.
(3.26)

So ũ∈ L∞(Ω)∩C1(Ω) by Anane [6] and DiBenedetto [14], and hence ũ > 0 by the Har-
nack inequality of Trudinger [27]. This implies that α≥ λ and that the first eigenvalue of
−Δp with weight α given by

inf
u∈W1,p

0 (Ω)\{0}

∫

Ω
|∇u|p

∫

Ω
α(x)|u|p

= 1. (3.27)
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Then

1≤

∫

Ω

∣
∣∇ϕ1

∣
∣p

∫

Ω
α(x)ϕ

p
1

≤ λ1

λ
< 1, (3.28)

a contradiction. �

Example 3.6. Problem (1.1) with f (x, t) = t−γ + λtp−1 − ts−1 − μ has two-ordered solu-
tions for all γ < 1/(p∗)′, λ > λ1, 1≤ s < p, and large μ > 0.

Theorem 3.7. If ( f1), ( f3), ( f4) with r < p∗, and ( f5) hold, and

0 < θF(x, t)≤ t f (x, t), t ≥ t3, (3.29)

for some t3 > t2 and θ > p, then (1.1) has two solutions u1 ≥ u0.

Proof. It follows from Lemma 3.2 since (3.29) implies that

F(x, t)≥ F(x, t3
)
(
t

t3

)θ
, t ≥ t3, (3.30)

and that Φ satisfies (C). �

Example 3.8. Problem (1.1) with f (x, t)= t−γ + tθ−1−μ has two-ordered solutions for all
γ < 1/(p∗)′, p < θ < p∗, and large μ > 0.
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QUANTIZATION OF LIGHT FIELD IN PERIODIC
DIELECTRICS WITH AND WITHOUT THE
COUPLED MODE THEORY

VLASTA PEŘINOVÁ AND ANTONÍN LUKŠ

The known form (separated variables) of modal functions of a rectangular cavity may be
more easily compared with the modal functions of a rectangular waveguide if a rectangu-
lar waveguide of a finite length is considered (the usual periodic boundary conditions).
Perfect acquaintance with modal functions allows one to understand macroscopic quan-
tization of the electromagnetic field in a homogeneous or inhomogeneous medium.

Copyright © 2006 V. Peřinová and A. Lukš. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Waveguides are useful optical devices. An optical circuit can be made using them and
various optical couplers and switches. Classical theory of optical waveguides and cou-
plers has been elaborated in the 1970s [2], performance and the quantum theory have
been gaining importance. Recently, quantum entanglement has been pointed out as an-
other resource. Quantum descriptions may be very simple, but essentially, they ought
to be based on a perfect knowledge of quantization. By way of paradox, quantization is
based on classical normal modes. Therefore, it is appropriate to concentrate ourselves on
normal modes of rectangular mirror waveguide. It will be assumed that the waveguide is
filled with homogeneous refractive medium.

2. Classical description of the electromagnetic field

Vast literature has been devoted to the solution of the Maxwell equations and their value
for the wave and quantum optics cannot be denied. Depending on the system of phys-
ical units used, the Maxwell equations have several forms. Let us mention only two of
them, appropriate to the SI units and the Gaussian units. The time-dependent vector
fields, which enter these equations, are E(x, y,z, t), the electric strength vector field, and
B(x, y,z, t), the magnetic induction vector field. In fact, other two fields are used, but
they can also be eliminated through the so-called constitutive relations. The so-called

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 925–934



926 Quantization of light field in periodic dielectrics

monochromaticity assumption

E(x, y,z, t)= E(x, y,z;ω)exp(iωt),

B(x, y,z, t)= B(x, y,z;ω)exp(iωt)
(2.1)

allows one to treat the time-independent Maxwell equations.
As stated in the introduction, we restrict ourselves to a rectangular mirror waveguide.

We assume that it has an infinite length, a width 2ax, and the heigth 2by . The coordinate
system is chosen so that the z-axis is the axis of the waveguide and the x-, y-axes are
parallel with sides of the waveguide.

We deal with nonvanishing solutions of the time-independent Maxwell equations:

∇× 1
μ(x, y,z;ω)

B(x, y,z;ω)− iωε(x, y,z;ω)E(x, y,z;ω)= 0,

∇×E(x, y,z;ω) + iωB(x, y,z;ω)= 0,

∇· [ε(x, y,z;ω)E(x, y,z;ω)]= 0,

∇·B(x, y,z;ω)= 0,

(2.2)

where E(x, y,z;ω), B(x, y,z;ω) are vector-valued functions in a domain

G= {(x, y,z) :−ax < x < ax,−ay < y < ay ,−∞ < z <∞} (2.3)

and ω > 0 is a parameter. The desired solutions are to obey the boundary conditions

n(x, y,z)×E(x, y,z;ω)= 0, n(x, y,z) ·B(x, y,z;ω)= 0, (2.4)

where n(x, y,z) is any unit exterior normal vector at the point (x, y,z)∈ ∂G. The bound-
ary conditions (2.4) are a formal expression of the fact that the walls of the waveguide are
perfect mirrors.

Here μ(x, y,z;ω) = μ0, ε(x, y,z;ω) is a function defined up to a finite number of z-
values such that

ε(x, y,z;ω)=
⎧
⎨

⎩

ε0εr0 for z < 0, z > L,

ε0εr(z) for 0 < z < L,
(2.5)

with μ0 > 0, μ0 = 4π × 10−7 Hm−1 the free-space magnetic permeability, ε0 > 0 the free-
space electric permittivity, εr0 > 0, εr(z) are relative electric permittivities of the medium.
The medium electric permittivity ε(z)= ε0εr(z) has a period Λ, Λ|L, or ε(z)= ε(z+Λ)
for 0 < z < L−Λ, and is a positive function

∫ L
0 ε(z)dz = Lε0εr0.

We assume that the waveguide is filled with a homogeneous nonmagnetic refractive
medium, which is also nondispersive and lossless for simplicity. This assumption holds
on infinite intervals (−∞,0) and (L,∞) in the z-coordinate. On the finite interval (0,L),
the medium is not homogeneous, but it is periodic. On average, its electric permittivity
equals to that of the homogeneous medium assumed.
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3. Modal functions

For illustration, we will consider examples where solutions have finite norms in Section 4.
Let us assume that ε(x, y,z;ω) = ε0εr0 everywhere in G. We will express the solution in
the form

E(x, y,z;ω)= E(x, y)exp(−ikzz), B(x, y,z;ω)= B(x, y)exp(−ikzz), (3.1)

with kz �= 0. In analogy with the electromagnetic field theory, from (2.2) we derive the
time-independent wave equation

(

Δ+
ω2

v2

)

C= 0, (3.2)

where

v = 1√ε0εr0μ0
, (3.3)

and C≡ C(x, y,z;ω) stands for E and B substitutionally. Respecting (3.1), we may rewrite
(3.2) in the form

(
∂2

∂x2
+
∂2

∂y2

)

C +
(
ω2

v2
− k2

z

)

C= 0. (3.4)

Introducing the notation Er(x, y), Br(x, y), r = x, y,z, for the components of the vec-
tors E(x, y), B(x, y), respectively, we have [1]

Ex(x, y)= αcos
(
mπ

2ax

(
x+ ax

)
)

sin
(
nπ

2ay

(
y + ay

)
)

,

Ey(x, y)= β sin
(
mπ

2ax

(
x+ ax

)
)

cos
(
nπ

2ay

(
y + ay

)
)

,

Ez(x, y)=−iγ sin
(
mπ

2ax

(
x+ ax

)
)

sin
(
nπ

2ay

(
y + ay

)
)

,

Bx(x, y)=−iα′ sin
(
mπ

2ax

(
x+ ax

)
)

cos
(
nπ

2ay

(
y + ay

)
)

,

By(x, y)= iβ′ cos
(
mπ

2ax

(
x+ ax

)
)

sin
(
nπ

2ay

(
y + ay

)
)

,

Bz(x, y)= γ′ cos
(
mπ

2ax

(
x+ ax

)
)

cos
(
nπ

2ay

(
y + ay

)
)

,

(3.5)

where m,n= 0,1, . . . ,∞. Equation (3.4) yields the relation among m,n,kz, and ω,

(
mπ

2ax

)2

+
(
nπ

2ay

)2

+ k2
z =

ω2

v2
. (3.6)
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No solution of this kind exists if ω < ωg , where

ωg = ωmn = v
√
√
√
√
(
mπ

2ax

)2

+
(
nπ

2ay

)2

. (3.7)

We can specify one of two linear independent solutions for m,n= 0,1, . . . ,∞, m+n≥ 1,

αTE = iω
ky

k2
x + k2

y
γ′TE, α′TE =

kxkz
k2
x + k2

y
γ′TE,

βTE =−iω kx
k2
x + k2

y
γ′TE, β′TE =

kykz
k2
x + k2

y
γ′TE,

γTE = 0, γ′TE = γ′TE,

(3.8)

αTM = kxkz
k2
x + k2

y
γTM, α′TM =

1
v2

iωky
k2
x + k2

y
γTM,

βTM =
kykz
k2
x + k2

y
γTM, β′TM =

1
v2

−iωkx
k2
x + k2

y
γTM,

γTM = γTM, γ′TM = 0.

(3.9)

Here TE means transverse electric and TM transverse magnetic. For m= 0, a TE solution
exists, but no TM solutions exist, for n= 0, the same occurs and otherwise, both solutions
exist. In (3.8) and (3.9), kx, ky are abbreviations, kx ≡mπ/2ax, ky ≡ nπ/2ay . Let us remark
that γ′TE and γTM are complex parameters.

4. Normalized modes of the electromagnetic field

The normalization of modal functions of the electromagnetic field, which is made for
the sake of quantization, can be based, in optics, on a simple connection of the vector
potential with the electric field strength vector. This connection follows from the use of
the so-called Coulomb gauge. We assume that the waveguide is filled with a refractive
medium. To work with a finite volume, we will consider a subset G = G⊥ × S1(−az ≤
z < az), with the boundary ∂G = ∂G⊥ × S1(−az ≤ z < az), of a flat non-Euclidean space
R2 × S1(−az ≤ z < az), where S1(−az ≤ z < az) means a topological circle of the length
2az.

In optics, the quantization is a definition of the vector potential operator Â(t)(x, t) by
the relation

Â(t)(x, t)=
∑

j∈J

[
A

(phot)
j (x, t)â j + A

(phot)∗
j (x, t)â†j

]
, (4.1)

where J is an index set and the photon annihilation and creation operators â j and â†j in
the jth mode fulfill the commutation relations

[
â j , â

†
j′
]= δj j′ 1̂,

[
â j , â j′

]= [â†j , â†j′
]= 0̂. (4.2)
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Further,

A
(phot)
j (x, t)=

√
�

2ε0ωj
u(t)
j (x)exp

(− iωjt
)
, (4.3)

with � the reduced Planck constant, ε0 the vacuum (free-space) electric permittivity, ωj

and u(t)
j (x) satisfying the Helmholtz equation

∇2u(t)
j (x) + εr0

ω2
j

c2
u(t)
j (x)= 0, (4.4)

where εr0 is the relative electric permittivity of the medium, the transversality condition

∇·u(t)
j (x)= 0, (4.5)

and boundary conditions

nx×u(t)
j (x)

∣
∣
∂G = 0,

nx ·
(
∇×u(t)

j (x)
)∣
∣
∣
∂G
= (nx×∇

) ·u(t)
j (x)

∣
∣
∣
∂G
= 0,

(4.6)

where nx is the normal vector at the point x. It is required that the modal functions u(t)
j (x)

be orthogonal and normalized as expressed by the relation

εr0

∫

G
u(t)
j (x) ·u(t)

j′ (x)d3x = δj j′ . (4.7)

4.1. Rectangular waveguide filled with a refractive medium and located in a flat space.
For illustration, we will assume that

G= {x :−ax < x < ax,−ay < y < ay ,−az ≤ z < az
}

, (4.8)

where ax, ay , az are positive. It can be proved that the index set J is a collection of j =
(nx,ny ,nz,s), where nr ∈ {0}∪N, r = x, y,nz ∈ Z, s= TE,TM, nx > 0 or s= TE, ny > 0 or
s= TE, and nx +ny ≥ 1.

The solutions ωj have the form

ωj = v
√
k2
x + k2

y + k2
z (4.9)

with

v = 1√ε0εr0μ0
, kr = nrπ

2ar
, r = x, y, kz = nzπ

az
, (4.10)
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and the solutions u(t)
j (x) are connected with the classical solutions

Ejx(x)= αj cos
(
nxπ

2ax

(
x+ ax

)
)

sin
(
nyπ

2ay

(
y + ay

)
)

exp
(

i
2nzπ
2az

(
z+ az

)
)

,

Ejy(x)= βj sin
(
nxπ

2ax

(
x+ ax

)
)

cos
(
nyπ

2ay

(
y + ay

)
)

exp
(

i
2nzπ
2az

(
z+ az

)
)

,

Ejz(x)= iγj sin
(
nxπ

2ax

(
x+ ax

)
)

sin
(
nyπ

2ay

(
y + ay

)
)

exp
(

i
2nzπ
2az

(
z+ az

)
)

(4.11)

to the equivalent boundary value problem of the form

∇·E(t)
j = 0, ∇×B(t)

j + iεr0
ωj

c2
E(t)
j = 0,

∇·B(t)
j = 0, ∇×E(t)

j − iωjB
(t)
j = 0,

nx ·B(t)
j

(
x,ωj

)∣∣
∣
∂G
= 0, nx×E(t)

j

(
x,ωj

)∣∣
∣
∂G
= 0.

(4.12)

In (4.11),
(i) for s= TE,

αj =−iωj
ky

k2
x + k2

y
γ′j , βj = iωj

kx
k2
x + k2

y
γ′j , γj = 0; (4.13)

(ii) for s= TM,

αj =− kxkz
k2
x + k2

y
γj , βj =−

kykz
k2
x + k2

y
γj ; (4.14)

with γ′j , γj complex parameters. The connecting relation is

u(t)
j (x)=−i

√
2ε0

�ωj
E

(phot)
j (x) (4.15)

with

E
(phot)
j (x)=

∑

r=x,y,z

E
(phot)
jr (x)er , (4.16)

where E
(phot)
jr (x) are given by the formulas (4.11), (4.13), (4.14), in which

γ′j =
√

�ωj

2ε0

√
1
εr0

√
4

(
1 + δkx0

)(
1 + δky0

)
V

√
k2
x + k2

y

ωj
ζ ′j ,

γj = c
√

�ωj

2ε0

√
1
εr0

√
4

(
1− δkx0

)(
1− δky0

)
V

√
k2
x + k2

y

ωj
ζ j

(4.17)

are substituted.
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The modal functions are eigenfunctions of a selfadjoint operator. Hence, they are or-

thogonal. It can be verified that the vector-valued functions u(t)
j (x), j ∈ J , are normalized

too. It can be easily derived that the vector-valued functions u(t)
j (x), j ∈ J , satisfy a com-

pleteness relation

∑

j∈J
εr0u(t)

j (x)u(t)∗
j (x′)= δ(x− x′)1−∇x∇x′�(x,x′), (4.18)

where �(x,x′) is a Green’s function for (a Dirichlet problem for) the Laplace operator.

4.2. Rectangular waveguide filled with a refractive medium. We will consider a subset
G = G⊥ × R1, with the boundary ∂G = ∂G⊥ × R1, of the usual Euclidean space R3. In
optics, the quantization may be a definition of the vector potential operator Â(t)(x, t) by
the relation

Â(t)(x, t)=
∑

j⊥∈J⊥

∫∞

−∞

[
A

(phot)
j⊥ (x,kz, t)â j⊥

(
kz
)

+ A
(phot)∗
j⊥ (x,kz, t)â

†
j⊥

(
kz
)]
dkz, (4.19)

where J⊥ is an index set and the photon annihilation and creation operators â j⊥(kz) and

â†j⊥(kz) in the mode ( j⊥,kz) fulfill the commutation relations

[
â j⊥
(
kz
)
, â†j′⊥

(
k′z
)]= δj⊥ j′⊥δ

(
kz− k′z

)
1̂,

[
â j⊥
(
kz
)
, â j′⊥

(
k′z
)]= [â†j⊥

(
kz
)
, â†j′⊥

(
k′z
)]= 0̂.

(4.20)

Further,

A
(phot)
j⊥

(
x,kz, t

)=
√

�

2ε0ωj⊥
u(t)
j⊥

(
x,kz

)
exp

(− iωj⊥
(
kz
)
t
)
, (4.21)

with ε0 the vacuum (free-space) electric permittivity, ωj⊥(kz) and u(t)
j⊥ (x,kz) satisfying the

Helmholtz equation

∇2u(t)
j⊥

(
x,kz

)
+ εr0

ω2
j⊥

(
kz
)

c2
u(t)
j⊥

(
x,kz

)= 0, (4.22)

the transversality condition

∇·u(t)
j⊥

(
x,kz

)= 0, (4.23)

and boundary conditions

nx×u(t)
j⊥

(
x,kz

)∣∣
∣
∂G
= 0,

nx ·
(
∇×u(t)

j⊥

(
x,kz

))∣∣
∣
∂G
= (nx×∇

) ·u(t)
j⊥

(
x,kz

)∣∣
∣
∂G
= 0,

(4.24)
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where nx is the normal vector at the point x. It is required that the modal functions
u(t)
j⊥ (x,kz) be orthogonal and normalized as expressed by the relation

∫

G
εr0u(t)∗

j⊥

(
x,kz

) ·u(t)
j′⊥

(
x,k′z

)
d3x = δj⊥ j′⊥δ

(
kz− k′z

)
. (4.25)

For illustration, we will assume that

G= {x :−ax < x < ax,−ay < y < ay ,−∞ < z <∞}, (4.26)

where ax,ay are positive. It can be proved that the index set J⊥ is a collection of j⊥ =
(nx,ny ,s), where nr ∈ {0}∪N, r = x, y, s = TE,TM, nx > 0 or s = TE, ny > 0 or s = TE,
and nx +ny ≥ 1.

The solutions ωj⊥(kz) have the form

ωj⊥
(
kz
)= v

√
k2
x + k2

y + k2
z (4.27)

with

v = 1√ε0εr0μ0
, kr = nrπ

2ar
, r = x, y, (4.28)

and the solutions u(t)
j⊥ (x,kz) are connected with the classical solutions

Ej⊥x(x,kz)= αj⊥
(
kz
)

cos
(
nxπ

2ax

(
x+ ax

)
)

sin
(
nyπ

2ay

(
y + ay

)
)

exp
(
ikzz

)
,

Ej⊥ y(x,kz)= βj⊥
(
kz
)

sin
(
nxπ

2ax

(
x+ ax

)
)

cos
(
nyπ

2ay

(
y + ay

)
)

exp
(
ikzz

)
,

Ej⊥z
(

x,kz
)= iγj⊥

(
kz
)

sin
(
nxπ

2ax

(
x+ ax

)
)

sin
(
nyπ

2ay

(
y + ay

)
)

exp
(
ikzz

)

(4.29)

to the equivalent boundary value problem

∇·E(t)
j⊥ = 0, ∇×B(t)

j⊥ + iεr0
ωj⊥

(
kz
)

c2
E(t)
j⊥ = 0,

∇·B(t)
j⊥ = 0, ∇×E(t)

j⊥ − iωj⊥
(
kz
)

B(t)
j⊥ = 0,

nx ·B(t)
j⊥

∣
∣
∣
∂G
= 0, nx×E(t)

j⊥

∣
∣
∣
∂G
= 0.

(4.30)

Here E(t)
j⊥ ≡ E(t)

j⊥ (x,kz,ωj⊥(kz)), B(t)
j⊥ ≡ B(t)

j⊥ (x,kz,ωj⊥(kz)),
(i) for s= TE,

αj⊥
(
kz
)=−iωj⊥

(
kz
) ky
k2
x + k2

y
γ′j⊥ ,

βj⊥
(
kz
)= iωj⊥

(
kz
) kx
k2
x + k2

y
γ′j⊥ , γj⊥

(
kz
)= 0;

(4.31)
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(ii) for s= TM,

αj⊥
(
kz
)=− kxkz

k2
x + k2

y
γj⊥ ,

βj⊥
(
kz
)=− kykz

k2
x + k2

y
γj⊥

(4.32)

with γ′j⊥ , γj⊥ complex parameters.
The connecting relation is

u(t)
j⊥

(
x,kz

)=−i
√

2ε0

�ωj⊥
E

(phot)
j⊥

(
x,kz

)
, (4.33)

where

E
(phot)
j⊥

(
x,kz

)=
∑

r=x,y,z

E
(phot)
j⊥r

(
x,kz

)
er (4.34)

with E
(phot)
j⊥r (x,kz) given by the formulas (4.29), (4.31), (4.32), in which

γ′j⊥
(
kz
)=

√
√
√
√�ωj⊥

(
kz
)

2ε0

√
1
εr0

√
4

(
1 + δkx0

)(
1 + δky0

)
2πV⊥

√
k2
x + k2

y

ωj⊥
(
kz
) ζ ′j⊥ ,

γj⊥
(
kz
)= c

√
√
√
√�ωj⊥

(
kz
)

2ε0

√
1
εr0

√
4

(
1− δkx0

)(
1− δky0

)
2πV⊥

√
k2
x + k2

y

ωj⊥
(
kz
) ζj⊥

(4.35)

are substituted, V⊥ = axay , |ζ ′j⊥| = |ζj⊥| = 1.

It can be easily derived that the vector-valued functions u(t)
j⊥ (x,kz), j⊥ ∈ J⊥, satisfy a

completeness relation

∑

j⊥∈J⊥

∫∞

−∞
εr0u(t)

j⊥

(
x,kz

)
u(t)∗
j⊥

(
x′,kz

)
dkz = δ

(
x− x′

)
1−∇x∇x′�(x,x′), (4.36)

where �(x,x′) is a Green’s function for (a Dirichlet problem for) the Laplace operator.

5. Method of coupled modes

To anyω >min{ω10,ω01}, there exists only a finite number of modal functions. A solution
of the problem formulated in Section 2 can be expressed in terms of these functions (see
Section 4, where a different sign convention was adopted) for z < 0 or z > L.

The coupled mode method determines a form of the solution, even for z ∈ [0,L].
This method is approximate. Complex coefficients at the modal functions are obtained
as solutions of ordinary differential equations whose number is equal to the number of
these coefficients.
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6. Conclusions

We have shown how known modal functions of a rectangular waveguide are those of a
rectangular waveguide of a finite length (the usual periodic boundary conditions). Modal
functions are related with macroscopic quantization of a field in such a medium and with
the coupled mode theory as well which is an approximative method for seeking modal
functions (e.g.) of a rectangular waveguide with a finite segment of periodic modulation
of the electric permittivity along the optical axis of the waveguide. Our objective is to
assess to what extent the explicit expression of the modal functions preserves its form
with separated variables when modulation of the electric permittivity along the axis takes
place.
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ON QUENCHING FOR SEMILINEAR PARABOLIC EQUATIONS
WITH DYNAMIC BOUNDARY CONDITIONS

JOAKIM H. PETERSSON

We present a quenching result for semilinear parabolic equations with dynamic boundary
conditions in bounded domains with a smooth boundary.

Copyright © 2006 Joakim H. Petersson. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

For semilinear partial differential equations, a particular type of blow-up phenomenon
may arise when the nonlinearity has a pole at a finite value of the solution. Namely, the
solution itself remains bounded while some derivative of it blows up. This is referred
to by saying that the solution “quenches.” The study of quenching phenomena for par-
abolic differential equations with singular terms and classical boundary conditions (of
Dirichlet- or Neumann-type) was initiated by Kawarada [7] in connection with the study
of electric current transients in polarized ionic conductors, and has attracted much at-
tention since then (see the survey [8]). Recently, parabolic differential equations with dy-
namic boundary conditions aroused the interest of several researchers (see [1, 3, 6]). The
question of the occurrence of quenching phenomena in the case of dynamic boundary
conditions comes up naturally. In this paper, we provide a simple example.

In Section 2, we present some recent results on parabolic equations with dynamic
boundary conditions in bounded domains with a smooth boundary and we prove some
needed facts about the behavior of the solutions. Section 3 is devoted to a simple criterion
(positivity of the nonlinearities) for the appearance of quenching for certain semilinear
equations of this type.

2. Preliminary considerations

We will consider the semilinear problem with dynamic boundary conditions

ut −Δu= f (x,u), t > 0, x ∈Ω,

ut +uν = g(x,u), t > 0, x ∈ ∂Ω,

u(0,x)= u0(x), x ∈Ω,

(2.1)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 935–941



936 Quenching with dynamic boundary conditions

where Ω is a bounded domain inRn with a C2 boundary ∂Ω and ν denotes the outer unit
normal on ∂Ω. If we further demand that f ∈ C1(Ω×R) and g ∈ C2(∂Ω×R), then a
recent result in [3] implies the following existence and uniqueness result for (2.1).

Theorem 2.1. Let there be given an initial datum u0 ∈ C2(Ω). Then there exists a unique
classical solution u of (2.1) in some maximal time interval [0,T) depending on u0 with

u∈ C1((0,T),C(Ω)
)∩C((0,T),C2(Ω)

)∩C([0,T),C1(Ω)
)
. (2.2)

Moreover, if T <∞, then

limsup
t→T−

[

max
x∈Ω

∣
∣u(t,x)

∣
∣
]

=∞. (2.3)

These classical solutions may be studied by means of their maxima and minima over
Ω. The special case f (u) = g(u) is treated in [9]. We will use the following lemma ([2,
Theorem 2.1]). Note that our classical solution is in the Sobolev space W1,1((a,b),C(Ω))
whenever 0 < a < b < T .

Lemma 2.2. Let a < b and u∈W1,1((a,b),C(Ω)). Let there be given for every t ∈ (a,b) one
pair of points ξ(t),ζ(t) in Ω such that

m(t) :=min
x∈Ω

u(t,x)= u(t,ξ(t)
)
,

M(t) :=max
x∈Ω

u(t,x)= u(t,ζ(t)
)
.

(2.4)

Then the functions m(t), M(t) are absolutely continuous on [a,b] with

m′(t)= ut
(
t,ξ(t)

)
, M′(t)= ut

(
t,ζ(t)

)
a.e. in (a,b). (2.5)

With regard to the existence of global solutions of (2.1) and their behavior, we offer
the following result that will be used in Section 3.

Theorem 2.3. Assume that for all s∈R,

0≤ f (x,s)≤ ω(s), x ∈Ω, 0≤ g(x,s)≤ ω(s), x ∈ ∂Ω, (2.6)

where ω is a continuous positive function with
∫∞

0 ds/ω(s)=∞. Then every classical solution
u of (2.1) with nonnegative initial datum u0 ∈ C2(Ω) is global. Moreover, the minimum
m(t)=minx∈Ωu(t,x) is nondecreasing. In particular, u is nonnegative.

Proof. Let u be the classical solution of (2.1) under the given hypotheses, and let T > 0
be the maximal time of existence for u. Let (a,b) be a subinterval such that 0 < a < b < T .
For every t ∈ (a,b), the minimum m(t) is attained at some point ξ(t) ∈Ω. If ξ(t) ∈Ω,
then, in view of (2.5),

m′(t)= ut
(
t,ξ(t)

)= Δu
(
t,ξ(t)

)
+ f
(
ξ(t),u

(
t,ξ(t)

))≥ f
(
ξ(t),m(t)

)≥ 0 (2.7)
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for almost all such t. Similarly, if ξ(t) ∈ ∂Ω, then since clearly uν(t,ξ(t)) ≤ 0 at a mini-
mum point on the boundary, the dynamic boundary condition together with (2.5) lead
to the inequality

m′(t)= ut
(
t,ξ(t)

)=−uν
(
t,ξ(t)

)
+ g
(
ξ(t),u

(
t,ξ(t)

))≥ g(ξ(t),m(t)
)≥ 0 (2.8)

for almost all such t. Thus m(t), which is continuous on [0,T), is nondecreasing since
m′(t)≥ 0 almost everywhere. Also, m(0)≥ 0 if the initial datum u0 is nonnegative.

By reversing the inequalities, we get for the maximum M(t) that

M′(t)≤ ω(M(t)
)

a.e. in (0,T). (2.9)

We compare (2.9) with the solution of

z′(t)= ω(z(t)
)
, z

(
t0
)=M(t0

)
(2.10)

for some t0 > 0. Then clearly

t− t0 =
∫ t

t0

z′(s)
ω
(
z(s)

)ds=
∫ z(t)

z(t0)

ds

ω(s)
. (2.11)

But by absolute continuity, we also have M(t)≤ z(t) (see, e.g., [4]), so

t− t0 ≥
∫M(t)

M(t0)

ds

ω(s)
. (2.12)

This shows that M(t) stays bounded in finite time and the solution u exists globally in
time in view of Theorem 2.1. �

3. Quenching

Using the results above, we may now give examples of the occurrence of quenching for
parabolic equations with dynamic boundary conditions. We still consider the equation

ut −Δu= f (x,u), t > 0, x ∈Ω,

ut +uν = g(x,u), t > 0, x ∈ ∂Ω,

u(0,x)= u0(x), x ∈Ω,

(3.1)

where f ∈ C1(Ω× [0,b)) and g ∈ C2(∂Ω× [0,b)). Defining

f (s) :=min
x∈Ω

f (x,s), f (s) :=max
x∈Ω

f (x,s),

g(s) :=min
x∈∂Ω

g(x,s), g(s) :=max
x∈∂Ω

g(x,s),
(3.2)

we will require that

0 < f (s)≤ f (x,s)≤ f (s), x ∈Ω, 0≤ s < b,

0 < g(s)≤ g(x,s)≤ g(s), x ∈ ∂Ω, 0≤ s < b,
(3.3)
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and also that either f (s)→∞ or g(s)→∞ as s→ b− (or possibly both). Incidentally, f , f ,
g, and g are absolutely continuous by Lemma 2.2. The initial datum u0 is supposed to be

a nonnegative function in C2(Ω) with maxx∈Ωu0(x)=M(0) < b. Under these conditions,
the following holds.

Proposition 3.1. The problem (3.1) has a unique classical solution u defined on the max-
imal interval [0,T), where T > 0. Moreover, 0≤ u(t,x) < b for all (t,x)∈ [0,T)×Ω and if
T <∞, then

limsup
t→T−

[

max
x∈Ω

u(t,x)
]

= b. (3.4)

Proof. The proof consists of a standard approximation argument. By multiplying with a
smooth cutoff function in the variable s, for every sufficiently small ε > 0 we can choose
nonnegative bounded functions fε ∈ C1(Ω×R) and gε ∈ C2(∂Ω×R) such that

∀x ∈Ω : fε(x,s)= f (x,s) for 0≤ s≤ b− ε,
∀x ∈ ∂Ω : gε(x,s)= g(x,s) for 0≤ s≤ b− ε.

(3.5)

Then, in view of Theorem 2.3, there is a unique nonnegative global classical solution uε
of (3.1) with f ,g replaced by fε,gε. The maximum Mε(t)=maxx∈Ωuε(t,x) is continuous
for t ≥ 0 by uniform continuity since Ω is compact. Since Mε(0)=M(0) < b, there is for
all sufficiently small ε > 0 a maximal interval [0,Tε), where uε < b− ε. Furthermore, if
0 < ε′ < ε, then uε′ is a solution of the problem with fε,gε as long as it is less than b− ε,
and so the uniqueness implies that uε′ = uε in [0,Tε). Now if Tε <∞, then the continuity
of Mε′ gives that uε′ < b− ε′ in a neighborhood of Tε. Hence Tε′ > Tε if Tε <∞, and we
may define that T = limε→0+ Tε. T can be either finite or infinite. On the other hand, if
u is a classical solution of (3.1) in an interval [0, t0) and if u < b− ε in [0, t0), then u is a
solution of the problem with f ,g replaced by fε,gε in [0, t0), so the uniqueness once again
implies that u= uε in [0, t0). Therefore, the problem (3.1) has a unique classical solution
u in [0,T) and if T <∞, then (3.4) holds, for otherwise u could be extended past T by
way of some uε with sufficiently small ε > 0. �

We are now in a position to deal with possible quenching of solutions of our problem.

Definition 3.2. Let u be a nonnegative classical solution of (3.1), where at least one of f
and g is singular for u= b. It is said to be quenching in finite time if for some finite T > 0
the maximal interval of existence is [0,T) and (3.4) holds.

It is clear by Proposition 3.1 that in order to prove that quenching in finite time occurs,
we only need to find an upper bound on T . As a matter of fact, under these assumptions
we can deduce the following theorem on quenching in the case of dynamic boundary
conditions.

Theorem 3.3. Let Ω ⊂ Rn be a bounded domain with a C2 boundary and let u be the
unique classical solution of the problem (3.1), where f and g satisfy the conditions stated
at the beginning of the section. Suppose that u0 is a nonnegative function in C2(Ω) with
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maxx∈Ωu0(x)=M(0) < b. Then u quenches at a finite time T = T( f ,g,u0), and there exist
the estimates

∫ b

M(0)

ds

R(s)
≤ T ≤

∫ b

m(0)

ds

r(s)
, (3.6)

where

R=max( f ,g),

r =min( f ,g).
(3.7)

Proof. Let T > 0 be the maximal existence time of the solution. Then from the proof of
Theorem 2.3, we have

m′(t)≥min
(
f
(
m(t)

)
,g
(
m(t)

))= r(m(t)
)

(3.8)

almost everywhere in (0,T). Here r is continuous and positive. Comparing with the
(unique) solution of the equation

z′(t)= r(z(t)
)
,

z
(
t0
)=m(t0

) (3.9)

as in the proof of Theorem 2.3, we get

t− t0 =
∫ z(t)

z(t0)

ds

r(s)
≤
∫ m(t)

m(t0)

ds

r(s)
. (3.10)

Letting t0→ 0+ and using that m(t) < b in [0,T), we conclude that

T ≤
∫ b

m(0)

ds

r(s)
. (3.11)

The lower bound follows similarly from (2.12). There, we let t0 → 0+ and let t → T
over a sequence {tn} such that M(tn)→ b. In the limit,

T ≥
∫ b

M(0)

ds

R(s)
. (3.12)

�

The following comparison lemma may be used in connection with suitable sub- and
supersolutions.

Lemma 3.4. Under the assumptions in Theorem 3.3, if u0 develops into a classical solution
u defined on [0,Tu0 ) while v0 develops into a classical solution v defined on [0,Tv0 ), and if
u0(x) < v0(x) for every x ∈Ω, then Tu0 ≥ Tv0 and u < v.
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Proof. Let w = v − u and put mw(t) =minx∈Ωw(t,x) for 0 ≤ t < Tmin =min(Tu0 ,Tv0 ).
Note that mw(0) > 0 by assumption. But mw(t) is continuous on [0,Tmin) by uniform
continuity, so if not mw(t) > 0 for all t ∈ [0,Tmin), there is a T ∈ (0,Tmin) with mw(T)= 0
and mw(t) > 0 when 0≤ t < T . Let 0 < t0 < T . By Lemma 2.2, mw(t) is absolutely contin-
uous on [t0,T], and for any choice of ξ(t)∈Ω with mw(t)= w(t,ξ(t)), we have m′w(t)=
wt(t,ξ(t)) almost everywhere in (t0,T). But in view of (3.1) we get, in case ξ(t)∈Ω,

m′w(t)=wt
(
t,ξ(t)

)= Δw
(
t,ξ(t)

)
+ f
(
ξ(t),v

(
t,ξ(t)

))− f
(
ξ(t),u

(
t,ξ(t)

))

≥ f
(
ξ(t),v

(
t,ξ(t)

))− f
(
ξ(t),u

(
t,ξ(t)

))
,

(3.13)

and in case ξ(t)∈ ∂Ω,

m′w(t)=wt
(
t,ξ(t)

)=−wν
(
t,ξ(t)

)
+ g
(
ξ(t),v

(
t,ξ(t)

))− g(ξ(t),u
(
t,ξ(t)

))

≥ g(ξ(t),v
(
t,ξ(t)

))− g(ξ(t),u
(
t,ξ(t)

))
.

(3.14)

Dividing and multiplying with v(t,ξ(t))−u(t,ξ(t)), we may write this as

m′w(t)≥D(t)mw(t) a.e. in
(
t0,T

)
. (3.15)

Since 0 ≤ u(t,x),v(t,x) ≤ a < b for every x ∈Ω and t ∈ [0,T], the mean value theorem
and the fact that f ∈ C1(Ω× [0,a]) and g ∈ C2(∂Ω× [0,a]) imply that there is a constant
c > 0 such that |D(t)| ≤ c in [0,T]. Now the differential inequality m′w(t) ≥−cmw(t) al-
most everywhere in (t0,T) can be integrated (using the integrating factor ect, e.g.) to give

mw(t)≥mw
(
t0
)
ec(t0−t), t ∈ [t0,T

]
, (3.16)

which contradicts the definition of T . This shows that u < v, where they are both defined
and therefore Tu0 ≥ Tv0 in view of Proposition 3.1. �

Sometimes a better upper bound on the quenching time can be found by simultane-
ously approximating f and g from below by lines or other convex functions as in the
approach of [5]. In that case, one may consider the evolution of

∫
Ωudx+

∫
∂Ωudσ in ad-

dition to that of the minimum of u.
It is not known to us where quenching occurs and which derivative blows up (possibly

more than one). For example, it would be interesting to know under what conditions
quenching occurs on the boundary. Of course, an x-independent solution is possible if
f and g only depend on u and are equal. Then if u0 ≡M < b, the quenching time T is

precisely
∫ b
M ds/ f (s).
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CONSERVATION LAWS IN QUANTUM SUPER PDEs

A. PRÁSTARO

Conservation laws are considered for PDEs built in the category QS of quantum super-
manifolds. These are functions defined on the integral bordism groups of such equations
and belonging to suitable Hopf algebras (full quantum Hopf algebras). In particular, we
specialize our calculations on the quantum super Yang-Mills equations and quantum
black holes.

Copyright © 2006 A. Prástaro. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this section we will resume some of our fundamental definitions and results for PDEs
in the category of quantum supermanifolds, QS, where the objects are just quantum super-
manifolds, and the morphisms are maps of class Qk

w, k ∈ {0,1,2, . . . ,∞,ω} [1–8]. A small
subcategory is SM ⊂QS of supermanifolds as defined in [3].

Example 1.1. Let π : W →M be a fiber bundle, in the category QS, such that dimW =
(m|n,r|s), over the quantum superalgebra B ≡A×E and dimM = (m|n) overA and such
that E is a Z-module, with Z ≡ Z(A)⊂ A, the center of A. The quantum k-jet-derivative
space JD̂k(W) of π : W →M is the k-jet-derivative space of sections of π, belonging
to the class Qk

w. The k-jet-derivative JD̂k(W) is a quantum supermanifold modeled on
the quantum superalgebra Bk ≡

∏
0≤s≤k(

∏
i1+···+is∈Z2, ir∈Z2

Âsi1···is(E)), with Âsi1···is(E) ≡
HomZ(Ai1 ⊗Z ··· ⊗Z Ais ;E), Â0(E) ≡ A× E, Â1

i (E) ≡ Â0(E)× Â1(E) ≡ HomZ(A0;E)×
HomZ(A1;E). Each Âsi1···is(E) is a quantum superalgebra with Z2-gradiation induced by

E. Hence, Âsi1···is(E)q ≡HomZ(Ai1 ⊗Z ···⊗Z Ais ;Ep), ir , p,q ∈ Z2, q ≡ i1 + ···+ is + p. If
(xA, yB)1≤A≤m+n,1≤B≤r+s are fibered quantum coordinates on the quantum supermanifold
W over M, then (xA, yB, yBA, . . . , yBA1···Ak ) are fibered quantum coordinates on JD̂k(W)
over M, with the following gradiations: |xA| = |A|, |yB| = |B|, |yBA1···As| = |B|+ |A1|+

···|As|. Note, also, that there is not symmetry in the indexes Ai. JD̂k(W) is an affine

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 943–952
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bundle over JD̂k−1(W) with an associated vector bundle π∗k,0 HomZ(Ṡk0M;vTW), where

Ṡk0M is the k-times symmetric tensor product ofTM, considered as a bundle ofZ-modules
over M, and πk,0 : JD̂k(W)→W is the canonical surjection. Another important exam-
ple is Ĵ km|n(W), that is, the k-jet space for quantum supermanifolds of dimension (m|n)
(over A) contained in the quantum supermanifold W . This quantum supermanifold lo-
cally looks like JD̂k(W). Set JD̂∞(W) ≡ lim← JD̂k(W), Ĵ∞m|n(W) ≡ lim← Ĵ km|n(W). These
are quantum supermanifolds modeled on B ≡∏k Bk.

A quantum super PDE of order k on the fiber bundle π : W →M, defined in the cate-
gory of quantum supermanifolds, QS, is a subset Êk ⊂ JD̂k(W) or Êk ⊂ Ĵ km|n(W). A geo-
metric theory of quantum (super) PDEs can be formulated introducing suitable hypothe-
ses of regularity on Êk. (See [1, 3, 5–7].)

2. Bordism groups and conservation laws

The characterization of global solutions of a PDE Êk ⊆ Ĵ km|n(W), in the category QS,

can be made by means of its integral bordism groups ΩÊk
p|q, p ∈ {0,1, . . . ,m− 1}, q ∈

{0,1, . . . ,n− 1}. Let us shortly recall some fundamental definitions and results about. Let
fi : Xi → Êk, fi(Xi) ≡ Ni ⊂ Êk, i = 1,2, be (p|q)-dimensional admissible compact closed
smooth integral quantum supermanifolds of Êk. The admissibility requires thatNi should
be contained into some solution V ⊂ Êk, identified with an (m,n)-chain, with coeffi-
cients in A [3, 5–7]. Then, we say that they are Êk-bordant if there exist (p + 1|q + 1)-
dimensional smooth quantum supermanifolds f : Y → Êk, such that ∂Y = X1

⋃·X2,
f |Xi = fi, i = 1,2, and V ≡ f (Y) ⊂ Êk is an admissible integral quantum supermanifold
of Êk of dimension (p+ 1|q+ 1). We say that Ni, i= 1,2, are Êk-quantum-bordant if there
exist (p+ 1|q+ 1)-dimensional smooth quantum supermanifolds f : Y → Ĵ km|n(W), such

that ∂Y = X1
⋃·X2, f |Xi = fi, i = 1,2, and V ≡ f (Y) ⊂ Ĵ km|n(W) is an admissible inte-

gral manifold of Ĵ km|n(W) of dimension (p + 1|q + 1). Let us denote the corresponding

bordism groups by ΩÊk
p|q and Ωp|q(Êk), p ∈ {0,1, . . . ,m− 1}, q ∈ {0,1, . . . ,n− 1}, called,

respectively, (p|q)-dimensional integral bordism group of Êk and (p|q)-dimensional quan-
tum bordism group of Êk. Therefore these bordism groups work, for (p,q) = (m− 1,n−
1), in the category of quantum supermanifolds that are solutions of Êk. Let us emphasize
that singular solutions of Êk are, in general, (piecewise) smooth quantum supermani-
folds into some prolongation (Êk)+s ⊂ Ĵ k+s

m|n(W), where the set, Σ(V), of singular points
of a solution V is a nowhere dense subset of V . Here we consider Thom-Boardman sin-
gularities, that is, q ∈ Σ(V) if (πk,0)∗(TqV) �∼= TqV . However, in the case where Êk is a
differential equation of finite type, that is, the symbols ĝk+s = 0, s ≥ 0, then it is useful
to include also in Σ(V), discontinuity points, q,q′ ∈ V , with πk,0(q) = πk,0(q′) = a ∈
W , or with πk(q) = πk(q′) = p ∈M, where πk = π ◦ π(k,0) : Ĵ km|n(W)→M. We denote
such a set by Σ(V)S, and in such cases we will talk more precisely of singular bound-
ary of V , like (∂V)S = ∂V \ Σ(V)S. Such singular solutions are also called weak solu-
tions.

Let us define some notation to distinguish between some integral bordisms.
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Definition 2.1. Let ΩÊk
m−1|n−1, (resp., ΩÊk

m−1|n−1,s, resp., ΩÊk
m−1|n−1,w), be the integral bordism

group for (m− 1|n− 1)-dimensional smooth admissible regular integral quantum super-
manifolds contained in Êk, borded by smooth regular integral quantum supermanifold-
solutions, (resp., piecewise-smooth or singular solutions; resp., singular-weak solutions),
of Êk.

Theorem 2.2. One has the following exact commutative diagram:

0 0 0

0 KÊk
m−1|n−1,w/(s,w) KÊk

m−1|n−1,w KÊk
m−1|n−1,s,w 0

0 KÊk
m−1|n−1,s ΩÊk

m−1|n−1 ΩÊk
m−1|n−1,s 0

0 ΩÊk
m−1|n−1,w ΩÊk

m−1|n−1,w 0

0 0

(2.1)

Therefore, one has the canonical isomorphisms: KÊk
m−1|n−1,w/(s,w)

∼= KÊk
m−1|n−1,s; Ω

Êk
m−1|n−1/

KÊk
m−1|n−1,s

∼= ΩÊk
m−1|n−1,s; ΩÊk

m−1|n−1,s/K
Êk
m−1|n−1,s,w

∼= ΩÊk
m−1|n−1,w; ΩÊk

m−1|n−1/K
Êk
m−1|n−1,w

∼=
ΩÊk
m−1|n−1,w. If Êk is formally quantum superintegrable [3, 5–7], then one has the following

isomorphisms: ΩÊk
m−1|n−1

∼=ΩÊ∞
m−1|n−1

∼=ΩÊ∞
m−1|n−1,s; Ω

Êk
m−1|n−1,w

∼=ΩÊ∞
m−1|n−1,w.

Proof. The proof follows directly from the definitions and standard results of algebra.
Furthermore, for k =∞, one has that all nonweak singular solutions are smooth solu-
tions. �

Theorem 2.3. Let Êk ⊂ Ĵ km|n(W) be a quantum super PDE that is formally quantum su-
perintegrable, and completely superintegrable. Assume that the symbols ĝk+s �= 0, s = 0,1.

(This excludes the case k =∞.) Then one has the following isomorphisms: ΩÊk
p|q,s
∼=ΩÊk

p|q,w
∼=

Ωp|q(Êk), with p ∈ {0, . . . ,m− 1} and q ∈ {0, . . . ,n− 1}.
Proof. In fact, in these cases any weak solution identifies a singular solution, by connect-
ing its branches by means of suitable pieces of fibers. Furthermore, since Êk+1 is a strong
retract of Ĵ k+1

m|n(W), we can deform any quantum bording V ⊂ Ĵ k+1
m|n(W), dimV = (m|n),

with ∂V ⊂ Êk+1, into a (singular) solution of Êk+1, and hence into a solution of Êk. (For
details see [1, 3, 8].) �
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Corollary 2.4. Let Êk ⊂ Ĵ km|n(W) be a quantum super PDE, that is formally superinte-

grable and completely superintegrable. One has the following isomorphisms: ΩÊk
m−1|n−1,w

∼=
Ωm−1|n−1(Êk)∼=ΩÊk+h

m−1|n−1,w
∼=ΩÊ∞

m−1|n−1,w
∼=Ωm−1|n−1,w(Êk+h)∼=Ωm−1|n−1(Ê∞).

In order to distinguish between quantum integral supermanifolds V representing sin-
gular solutions, where Σ(V) has no discontinuities, and quantum integral superman-
ifolds where Σ(V) contains discontinuities, we can also consider “‘conservation laws”
valued on quantum integral supermanifolds N representing the integral bordism classes
[N]Êk ∈ΩEk

p|q.

Definition 2.5. Set Î(Êk) ≡ ⊕p,q≥0(Ω̂p|q(Êk) ∩ d−1CΩ̂p+1|q+1(Êk)/dΩ̂p−1|q−1(Ek) ⊕
{CΩ̂p|q(Êk)∩ d−1(CΩ̂p+1|q+1(Êk))} ≡ ⊕p,q≥0Î(Êk)p|q. Here CΩ̂p|q(Êk) denotes the space

of all quantum (p|q)-forms on Êk. Then, define integral characteristic supernumbers of N ,

with [N]Êk ∈ Ω̂Êk
p|q, the numbers î[N]≡ 〈[N]Êk , [α]〉 ∈ B for all [α]∈ Î(Êk)p|q.

Then, one has the following theorems.

Theorem 2.6. Assume that Î(Êk)p|q �= 0. One has a natural homomorphism: j
p|q : ΩÊk

p|q →
HomA(Î(Êk)p|q;A), [N]Êk �→ j

p|q([N]Êk ), j
p|q([N]Êk )([α])= ∫N α≡ 〈[N]Êk , [α]〉. Then, a

necessary condition that N ′ ∈ [N]Êk is the following: î[N] = î[N ′] for all [α] ∈ Î(Êk)p|q.
Furthermore, if the classic limit, NC [3, 5–7], of N is orientable, then the above condition is
sufficient also in order to say that N ′ ∈ [N]Êk .

Proof. The proof can be conduced by analogy to ones for PDEs and quantum PDEs. (For
details see [1, 3, 5–7].) �

Corollary 2.7. Let Êk ⊆ Ĵ km|n(W) be a quantum super PDE. Consider admissible (p|q)-
dimensional, 0 ≤ p ≤ m− 1, 0 ≤ q ≤ n− 1, integral quantum supermanifolds, with ori-

entable classic limits. Let N1 ∈ [N2]Ek ∈ΩÊk
p|q, then there exists a (p+ 1|q+ 1)-dimensional

admissible integral quantum supermanifold V ⊂ Êk, such that ∂V = N1
⋃·N2, where V is

without discontinuities if and only if the integral supernumbers of N1 and N2 coincide.

The above considerations can be generalized to include more sophisticated quantum
solutions of quantum super PDEs.

Definition 2.8. Let Êk ⊂ Ĵ km|n(W) be a quantum super PDE and let B be a quantum su-
peralgebra. Let us consider the following chain complex (bigraded bar quantum chain
complex of Êk): {C̄•|•(Êk;B),∂}, induced by the Z2-gradiation of B on the corresponding
bar quantum chain complex of Êk, that is, {C̄•(Êk;B),∂}. (See [1, 3, 5–7].) More precisely,
C̄p(Êk;B) is the free two-sided B-module of formal linear combinations with coefficients

in B,
∑
λici, where ci is a singular p-chain f :�p → Êk, that extends on a neighborhood

U ⊂Rp+1, such that f on U is differentiable and T f (�p)⊂ Êkm|n, where Êkm|n is the Car-

tan distribution of Êk.

Theorem 2.9. The homology H̄•|•(Êk;B) of the bigraded bar quantum chain complex of
Êk is isomorphic to (closed) bar integral singular (p|q)-bordism groups, with coefficients
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in B, of Êk: BΩ̄Êk
p|q,s
∼= H̄q|q(Êk;B)∼= (Ω̄Êk

p,s⊗K B0)
⊕

(Ω̄Êk
q,s⊗K B1), p ∈ {0,1, . . . ,m− 1}, q ∈

{0,1, . . . ,n− 1}. (If B =K, omit the apex B.) If Êk ⊂ Ĵ km|n(W) is formally quantum superin-
tegrable and completely superintegrable, and the symbols ĝk+s �= 0, then one has the following

canonical isomorphisms: AΩ̄Êk
p|q,s
∼=ΩÊk

p|q,w
∼=ΩÊk

p|q,s
∼=Ωp|q(Êk). Furthermore, the quantum

(p|q)-bordism groups Ωp|q(Êk) is an extension of a subgroup of AΩp|q,s(W)∼=Hp|q(W ;A),

and the integral (p|q)-bordism group ΩÊk
p|q is an extension of the quantum (p|q)-bordism

group.

Proof. It follows from an exact commutative diagram naturally associated to the bigraded
bar quantum chain complex of Êk, and from the above results. (See analogous situation
for quantum PDEs in [1, 3, 5–7]). �
Corollary 2.10. Let Êk ⊂ Ĵ km|n(W) be a quantum super PDE, that is formally superin-

tegrable and completely superintegrable. One has the following isomorphisms: ΩÊk
m−1|n−1,w

∼=
Ωm−1|n−1(Êk) ∼= ΩÊk+h

m−1|n−1,w
∼= ΩÊ∞

m−1|n−1,w
∼= Ωm−1|n−1,w(Êk+h) ∼= Ωm−1|n−1(Ê∞) ∼=

AΩm−1|n−1,s(W)∼=Hm−1|n−1(W ;A).

The spaces of conservation laws of quantum super PDEs identify quantum Hopf alge-
bras that now are Z2-graded with a natural structure of induced quantum superalgebra.
Quantum Hopf algebras are generalizations of such algebras [1, 3, 5–7].

Definition 2.11. The full space of (p|q)-conservation laws, (or full (p|q)-Hopf superalge-

bra), of Êk is the following one: Hp|q(Ek)≡ BΩ
Êk
p|q , where B is defined in Example 1.1. Call

full Hopf superalgebra, of Êk, the following: Hm−1|n−1(Ê∞)≡ BΩÊ∞
m−1|n−1 .

Definition 2.12. The space of (differential) conservation laws of Êk⊂ Ĵ km|n(W) is Cons(Êk)=
Î(Ê∞)m−1|n−1.

Theorem 2.13. The full (p|q)-Hopf superalgebra of a quantum super PDE Êk ⊂ Ĵ km|n(W)
has a natural structure of quantum Hopf superalgebra.

Proof. The proof is similar to the one made for quantum PDEs [1]. �

Proposition 2.14. The space of conservation laws of Êk has a canonical representation in
Hm−1|n−1(Ê∞).

Proof. In fact, one has the following homomorphism: j : Cons(Ek) → Hm−1|n−1(Ê∞),
j[α]([N]Ê∞) = 〈[α],[N]Ê∞〉 =

∫
NC
i∗α ∈ B, where i : NC → N is the canonical injection.

�

Theorem 2.15. Set: KÊk
m−1|n−1,w/(s,w) ≡ BK

Ek
n−1,w/(s,w) , KÊk

m−1|n−1,w ≡ BK
Êk
m−1|n−1,w , KÊk

m−1|n−1,s,w ≡
BK

Êk
m−1|n−1,(s,w) , KÊk

m−1|n−1,s ≡ BK
Êk
m−1|n−1,s , Hm−1|n−1(Êk) ≡ BΩ

Êk
m−1|n−1 , Hm−1|n−1,s(Êk) ≡ BΩ

Êk
m−1|n−1,s ,

Hm−1|n−1,w(Êk)≡ BΩ
Êk
m−1|n−1,w . One has the following canonical isomorphisms:

KÊk
m−1|n−1,w/(s,w)

∼=KK
Êk
m−1|n−1,s ;

KÊk
m−1|n−1,w/K

Êk
n−1,s,w

∼=KK
Êk
m−1|n−1,w/(s,w) ;
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Hm−1|n−1
(
Êk
)
/Hm−1|n−1,s

(
Êk
)∼=KÊk

m−1|n−1,s;

Hm−1|n−1
(
Êk
)
/Hm−1|n−1,w

(
Êk
)∼=KÊk

m−1|n−1,w

∼=Hm−1|n−1,s
(
Êk
)
/Hm−1|n−1,w

(
Êk
)

∼=KÊk
m−1|n−1,s,w.

(2.2)

Proof. The proof is obtained directly by duality of the exact commutative diagram (2.1).
�

Theorem 2.16. Under the same hypotheses of Theorem 2.3, one has the following canoni-
cal isomorphism: Hm−1|n−1,s(Ek) ∼=Hm−1|n−1,w(Êk). Furthermore, it is possible to represent
differential conservation laws of Ek in Hm−1|n−1,w(Êk).

Proof. Let us note that Î(Êk)m−1|n−1 ⊂ Î(Ê∞)m−1|n−1. If j : Cons(Êk)→Hm−1|n−1(Ê∞) is
the canonical representation of the space of the differential conservation laws in the
full Hopf superalgebra of Êk, (corresponding to the integral bordism groups for regu-
lar smooth solutions), it follows that one has also the following canonical representa-
tion j|Î(Êk)m−1|n−1 : Î(Êk)m−1|n−1 →Hm−1|n−1,s(Êk) ∼=Hm−1|n−1,w(Êk). In fact for any N ′ ∈
[N]Êk ,s ∈ΩÊk

m−1|n−1,s
∼=ΩÊk

m−1|n−1,w, one has
∫
N ′ β =

∫
N β for any [β]∈ Î(Êk)m−1|n−1. �

3. Conservation laws in quantum black holes

We will consider, now, the quantum N = 2 super-Poincaré group over a quantum su-
peralgebra A = A0 ⊕ A1, that is a quantum Lie supergroup G having as quantum Lie
superalgebra ĝ one identified by the following infinitesimal generators: {ZK}1≤K≤19 ≡
{Jαβ,Pα,Z,Qβi}0≤α,β≤3;1≤a≤2, such that Jαβ =−Jβα, Pα,Z ∈HomZ(A0;g), Qβi ∈HomZ(A1;
g). The corresponding nonzero Z2-graded brackets are the following: [Jαβ, Jγδ]= ηβγJαδ +
ηαδJβγ − ηαγJβδ − ηβδJαγ, [Pα,Pβ] = −8e2Jαβ, [Jαβ,Pγ] = ηβγPβ − ηαγPβ, [Jαβ,Qγi] =
(σαβ)

μ j
γ Qμj , [Qβi,Qμj] = (Cγα)βμδi jPα + Cβμεi jZ. Here Cαβ is the antisymmetric charge

conjugation matrix, σβμ = (1/4)[γβ,γμ], with γμ the Dirac matrices. Z commutes with
all the other ones. Then, with reference to the above notation, one has dimG= (d|N2)=
(11|8), and we will consider the following principal bundle in the category of quantum
supermanifolds: P is a quantum supermanifold of dimension (15|8); M is a quantum su-
permanifold of dimension (4|N1) = (4|0). Then a pseudoconnection can be written by
means of the following full quantum differential 1-forms on P: �μK = μKHdYH , (μKH) =
((1/2)ω

αβ
H ,θ

μ
H ,AH ,ψ

aj
H ). With respect to a section s : M → P, we get (s∗�μ)K = μ̄Kγ dX

γ,

(μ̄Kγ ) = ((1/2)ω̄
αβ
γ , θ̄

μ
γ ,Āγ, ψ̄

α j
γ ), where ω̄

αβ
γ is the usual Levi-Civita connection, θ̄

μ
γ is the

vierbein, Āγ is the electromagnetic field, and ψ̄
a j
γ is the usual spin 3/2 field. The blow-up

structure π∗Ĉ(P)↩HomZ(TP;g) implies that we can identify our fields with sections �μ
of the fiber bundle π̄ : C̄ ≡HomZ(TM;g)→M. (Ĉ(P)∼= JD̂(P)/G is the fiber bundle, over
M, of principal quantum connections on the G-principal fiber bundle π : P →M.) The
corresponding curvatures can be written in the form �RKβα = (∂xβμKα ) +CKIJ[μ

I
β,μJα]+. The
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Table 3.1. Dynamic equation on macroscopic shell: Ê2[i]⊂ JD̂2(i∗C̄) and Bianchi identity.

Fields equations (∂ω
γ
ab ·L)− ∂μ(∂ω

γμ
ab ·L)= 0 (curvature equation)

(∂θ
γ
α ·L)− ∂μ(∂θ

γμ
α ·L)= 0 (torsion equation)

(Ê2[i]) (∂ψ
γ
βi ·L)− ∂μ(∂ψ

γμ
βi ·L)= 0 (gravitino equation)

(∂Aγ ·L)− ∂μ(∂Aγμ ·L)= 0 (Maxwell’s equation)

Bianchi identity (∂x[γ ·Rabβα]) + 2ωa
e[γR

eb
βα] = 0

(∂x[γ ·Rαβω]) +ωαb
[γ Rβω]b +

1
2

(Cγα)δμψδ
j[γρ

μj
βω] = 0

(B[i]) (∂x[γ · ρβiωα]) +
1
2

(σab)
βi
δ jω

ab
[γ ρ

δ j
ωα] = 0

(∂x[γFβα]) +
1
2
Cδμεi jψδi

[γρ
μj
βα] = 0

Fields Rabμν = (∂x[μ ·ωab
ν] ) + 2ωa

e[μω
eb
ν] (curvature)

Rαμν = (∂x[μ · θαν]) +ωα
β[μ,θ

β
ν] +

1
2

(Cγα)βδψ
β
j[μψ

δ j
ν] (torsion)

ρ
βi
μν = (∂x[μ ·ψβi

ν] ) +
1
2

(σab)
βi
γ jω

ab
[μ ψ

γ j
ν] (gravitino)

Fμν = (∂x[μ ·Aν]) +
1
2
Cβγεi jψ

βi
[μψ

γ j
ν] (electromagnetic field)

local expression of the dynamic equation, Ê2[i]⊂ JD̂2(i∗C̄), evaluated on a macroscopic
shell, that is, an embedding i :N →M, of a globally hyperbolic; p-connected manifoldN ,
0≤ p ≤ 3, is given by the quantum super PDE reported in Table 3.1, where L : JD̂(E)→ Â
is a quantum Lagrangian function. Possible Lagrangian densities are polynomial in the
curvature, (see example below), and hence we can assume that they give formally quan-
tum superintegrable, and completely quantum superintegrable, quantum super PDEs.
Then, assuming that Ê2[i] is formally integrable and completely superintegrable, the inte-
gral bordism groups of Ê2[i] and its full quantum p-Hopf superalgebras can be calculated.
More precisely, we use the fact that Ĉ(P)→M is a contractible fiber bundle of dimen-
sion (4|0,44|32) over the quantum superalgebra A× Â = (A0 ×A1)× Â1

0(A)× Â1
1(A),

and that N is topologically trivial. In fact, we can apply Theorem 2.9 and Corollary 2.10

to obtain the quantum and integral bordism groups of Ê2[i]: ΩÊ2[i]
p,s
∼= ΩÊ2[i]+∞

p,w
∼= 0 for

p = 1,2,3 and ΩÊ2[i]
0,s
∼= ΩÊ2[i]+∞

0,w
∼= A. Therefore, we have that 1-dimensional admissible

integral closed quantum submanifolds contained into Ê2[i], (admissible quantum closed
strings), can propagate and interact between them by means of 2-dimensional admissi-
ble integral quantum manifolds contained into Ĵ2

4 (i∗C̄), or by means of 2-dimensional
admissible integral quantum manifolds contained into Ê2[i], in such a way to generate
(quantum) tunnel effects. Finally, as a consequence of the triviality of the 3-dimensional
integral bordism groups, we get the existence of global quantum solutions of such equa-
tions.

As a byproduct we get the following theorems.
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Theorem 3.1 (quantum tunnel effects). The quantum supergravity equation Ê2 ⊂
JD̂2(i∗C̄) admits global solutions having a change of sectional topology (quantum tunnel
effects). In general these solutions are not globally representable as second derivative of sec-
tions of the fiber bundle i∗C̄→N (Such solutions with nontrivial topology well interpret the
meaning of “quantum geometrodynamics” as first conjectured by J. A. Wheeler. Compare
also with the more recent approach on the “topological quantum field theory” by M. Atiayah
and E. Witten, (see references quoted in [3]).)

Proof. This statement can be proved by using surgery techniques and taking into account

that for the 3-dimensional integral bordism group of Êk, one has ΩÊk
3,s = 0 = Ω(Ê2)+∞

3,w .

In fact, a boundary value problem for Êk[i] can be directly implemented in the mani-
fold Êk[i] ⊂ JD̂2(i∗C̄) ⊂ Ĵ2

4 (i∗C̄) by requiring that a 3-dimensional compact space-like
(for some t = t0), admissible integral manifold B ⊂ Êk[i] propagates in Êk[i] in such a
way that the boundary ∂B describes a fixed 3-dimensional time-like integral manifold
Y ⊂ Êk[i]. (We will require that the boundary ∂B of B is orientable.) Y is not, in gen-
eral, a closed (smooth) manifold. However, we can solder Y with two other compact
3-dimensional integral manifolds Xi, i = 1,2, in such a way that the result is a closed 3-
dimensional (smooth) integral manifold Z ⊂ Êk[i]. More precisely, we can take X1 = B
so that Z̃ ≡ X1

⋃
∂B Y is a 3-dimensional compact integral manifold, such that ∂Z̃ ≡ C is a

2-dimensional space-like integral manifold. We can assume that C is an orientable man-
ifold. Then, from the triviality of the integral bordism group, it follows that ∂X2 = C, for
some space-like compact 3-dimensional integral manifold X2 ⊂ Êk[i]. Set Z ≡ Z̃⋃C X2.
Therefore, one has Z = X1

⋃
∂B Y

⋃
C X2. Then, again from the triviality of the integral

bordism group, it follows also that there exists a 4-dimensional integral (smooth) man-
ifold V ⊂ Êk[i] such that ∂V = Z. Hence the integral manifold V is a solution of our
boundary value problem between the times t0 and t1, where t0 and t1 are the times cor-
responding to the space-like boundaries where are soldered Xi, i = 1,2 to Y . Now, this
process can be extended for any t2 > t1. So we are able to find (smooth) solutions for
any t > t0, and hence (smooth) solutions for any t > t0, therefore, global (smooth) so-
lutions. Remark that in order to assure the smoothness of the global solution so built
it is enough to develop such construction in the infinity prolongation Êk[i]+∞ of Êk[i].
Finally, note that in the set of solutions of Êk[i] there are ones that have change of sec-

tional topology. In fact, the 3-dimensional integral bordism groups are trivial: ΩÊk[i]
3,s =

0=ΩÊk[i]+∞
3,w . �

Theorem 3.2 (quantum black holes). If the 3-dimensional space-like compact domain B
describes a region where a “quantum black hole” is present, (i.e., of physical dimension in the
range of strong interactions [3]), a solution, like the one described in the proof of the previous
theorem, represents an evaporating black hole. The point where there is the singularity of
the characteristic flow of the solution is the explosive end [3] of the evaporation process with
production of new particles and radiation described by the outgoing solution.

Proof. In order to obtain such solutions we must have a Cauchy integral data with a geo-
metric black hole B embedded in a compact 3-dimensional integral manifold N , B ⊂N ,
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such that its boundary ∂N propagates with a fixed flow. Then a solution, with quantum
tunnel effect of such boundary problem, can describe a vaporization process of such black
hole. The above results assure the existence of such solutions and a way to build them. �

Definition 3.3. Set Î(Êk[i]) ≡ ⊕q≥0Ω̂q(Êk[i])∩d−1(CΩ̂q+1(Êk[i]))/Ω̂q−1(Êk[i]) ⊕
{CΩ̂q(Êk[i])∩ d−1(CΩ̂q+1(Êk[i]))} ≡ ⊕q≥0Î(Êk[i])q. Here CΩ̂q(Êk[i]) denotes the space

of all Cartan quantum q-forms on Êk[i]. (See also [3, 5–7].) Then, define integral char-

acteristic supernumbers of N with [N]∈ Ω̂Êk[i]
q , the numbers î[N]≡ 〈[N],[α]〉 ∈ B for all

[α]∈ Î(Êk[i])q.

Theorem 3.4. Assume that Î(Êk[i])q �= 0. One has a natural homomorphism: j
q

: ΩÊk[i]
q →

HomA(Î(Êk[i])q;A), [N] �→ j
q
([N]), j

q
([N])([α]) = ∫N α ≡< [N],[α] >. Then, a neces-

sary condition that N ′ ∈ [N]∈ΩÊk[i]
q is the following: î[N]= î[N ′] for all [α]∈ Î(Êk[i])q.

Furthermore, if N is orientable, then the above condition is sufficient also in order to say that
N ′ ∈ [N].

Proof. The proof follows directly from Definition 3.3 and the results given in [1, 3, 5–7].
See also [6, Theorem 3.18]. �

Remark 3.5. Theorem 3.2 proves that a quantum evaporation black hole process can be
described by means of quantum smooth integral manifolds, and therefore for such a pro-
cess “conservation laws” are not destroyed. By the way, as we can have also weak solutions
around a quantum black hole, we can assume also that interactions with such objects
could be described by means of weak solutions, like shock waves. Therefore we will more
precisely talk of weak quantum black holes and nonweak quantum black holes, according
to whether if they are described, respectively, by means of weak solutions or nonweak
solutions.

Theorem 3.6 (“conservation laws” through nonweak quantum black holes). All the in-
tegral characteristic supernumbers are conserved through a nonweak quantum evaporating
black hole.

Proof. This follows from Theorem 3.4 taking into account that solutions of Êk[i], describ-
ing quantum black holes, are nonweak solutions. In particular, such a statement holds for
any evaporation process of nonweak quantum black hole. �
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SUPERLINEAR MIXED BVP WITH TIME
AND SPACE SINGULARITIES

IRENA RACHŮNKOVÁ

Motivated by a problem arising in the theory of shallow membrane caps, we investigate
the solvability of the singular boundary value problem (p(t)u′)′ + p(t) f (t,u, p(t)u′)= 0,
limt→0+ p(t)u′(t)= 0, u(T)= 0, where [0,T]⊂R, p ∈ C[0,T], and f = f (t,x, y) can have
time singularities at t = 0 and/or t = T and space singularities at x = 0 and/or y = 0. A
superlinear growth of f in its space variables x and y is possible. We present conditions
for the existence of solutions positive and decreasing on [0,T).

Copyright © 2006 Irena Rachůnková. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let [0,T]⊂R= (−∞,∞), �⊂R2. We deal with the singular mixed boundary value prob-
lem

(
p(t)u′

)′
+ p(t) f

(
t,u, p(t)u′

)= 0, (1.1)

lim
t→0+

p(t)u′(t)= 0, u(T)= 0, (1.2)

where p ∈ C[0,T] and f satisfies the Carathéodory conditions on (0,T)×�. Here, f can
have time singularities at t = 0 and/or t = T and space singularities at x = 0 and/or y = 0.
We provide sufficient conditions for the existence of solutions of (1.1), (1.2) which are
positive and decreasing on [0,T).

Let [a,b]⊂R, � ⊂R2. Recall that a real-valued function f satisfies the Carathéodory
conditions on the set [a,b]×� if

(i) f (·,x, y) : [a,b]→R is measurable for all (x, y)∈�,
(ii) f (t,·,·) : �→R is continuous for a.e. t ∈ [a,b],

(iii) for each compact set K ⊂�, there is a function mK ∈ L1[0,T] such that | f (t,x,
y)| ≤mK (t) for a.e. t ∈ [a,b] and all (x, y)∈ K .

We write f ∈ Car([a,b]×�). By f ∈ Car((0,T)×�), we mean that f ∈ Car([a,b]×�)
for each [a,b]⊂ (0,T) and f �∈ Car([0,T]×�).

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 953–961
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Definition 1.1. Let f ∈ Car((0,T)×�).
The function f has a time singularity at t = 0 and/or at t = T if there exists (x, y)∈�

such that
∫ ε

0

∣
∣ f (t,x, y)

∣
∣dt =∞ and/or

∫ T

T−ε

∣
∣ f (t,x, y)

∣
∣dt =∞ (1.3)

for each sufficiently small ε > 0. The point t = 0 and/or t = T will be called a singular
point of f .

The function f has a space singularity at x = 0 and/or at y = 0 if

limsup
x→0+

∣
∣ f (t,x, y)

∣
∣=∞ for a.e. t ∈ [0,T] and for some y ∈ (−∞,0) (1.4)

and/or

limsup
y→0−

∣
∣ f (t,x, y)

∣
∣=∞ for a.e. t ∈ [0,T] and for some x ∈ (0,∞). (1.5)

Definition 1.2. By a solution of problem (1.1), (1.2), we understand a function u∈ C[0,
T]∩C1(0,T] with pu′ ∈ AC[0,T] satisfying conditions (1.2) and fulfilling

(
p(t)u′(t)

)′
+ p(t) f

(
t,u(t), p(t)u′(t)

)= 0 for a.e. t ∈ [0,T]. (1.6)

The study of equations with the term (pu′)′ was motivated by a problem arising in the
theory of shallow membrane caps, namely,

(
t3u′

)′
+

t3

8u2
− a0

t3

u
− b0t

2γ−1 = 0, lim
t→0+

t3u′(t)= 0, u(1)=A, (1.7)

where a0 ≥ 0, b0 > 0, A > 0, γ > 1.
Singular mixed problem (1.1), (1.2) was studied, for example, in [1, 6], and special

cases of (1.1), (1.2) were investigated in [3–5, 7]. In [2] we can find a mixed problem
with φ-Laplacian and a real parameter. Here, we generalize the existence results of [7]
and extend those of [1]. We offer new and rather simple conditions (in comparison with
those in [1]) which guarantee the existence of positive solutions of the singular problem
(1.1), (1.2), provided both time and space singularities are allowed.

2. Approximating regular problem

First, we will study the auxiliary regular mixed problem

(
q(t)u′

)′
+h
(
t,u,q(t)u′

)= 0, u′(0)= 0, u(T)= 0, (2.1)

where q ∈ C[0,T] is positive on [0,T] and h ∈ Car([0,T]×R2). In order to prove the
solvability of problem (2.1), we will modify the classical lower- and upper-functions
method (see, e.g., [5]).

Definition 2.1. A solution of the regular problem (2.1) is defined as a function u∈ C1[0,
T] with qu′ ∈ AC[0,T] satisfying u′(0) = u(T) = 0 and fulfilling (q(t)u′(t))′ + h(t,u(t),
q(t)u′(t))= 0 for a.e. t ∈ [0,T].
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Definition 2.2. A function σ ∈ C[0,T] is called a lower function of (2.1) if there exists a
finite set Σ⊂ (0,T) such that qσ ′ ∈ ACloc([0,T] \Σ), σ ′(τ+),σ ′(τ−)∈R for each τ ∈ Σ,

(
q(t)σ ′(t)

)′
+h
(
t,σ(t),q(t)σ ′(t)

)≥ 0 for a.e. t ∈ [0,T],

σ ′(0)≥ 0, σ(T)≤ 0, σ ′(τ−) < σ ′(τ+) for each τ ∈ Σ.
(2.2)

If the inequalities in (2.2) are reversed, then σ is called an upper function of (2.1).

Theorem 2.3 (lower- and upper-functions method). Let σ1 and σ2 be a lower function
and an upper function for problem (2.1) such that σ1 ≤ σ2 on [0,T]. Assume also that there
is a function ψ ∈ L1[0,T] such that

∣
∣h(t,x, y)

∣
∣≤ ψ(t) for a.e. t ∈ [0,T], all x ∈ [σ1(t),σ2(t)

]
, y ∈R. (2.3)

Then problem (2.1) has a solution u∈ C1[0,T] satisfying qu′ ∈AC[0,T] and

σ1(t)≤ u(t)≤ σ2(t) for t ∈ [0,T]. (2.4)

Proof
Step 1. For a.e. t ∈ [0,T] and each x, y ∈R, ε∈ [0,1], i= 1,2, put

wi(t,ε)= sup
{∣
∣h
(
t,σi(t),q(t)σ ′i (t)

)−h(t,σi(t), y
)∣
∣ :
∣
∣q(t)σ ′i (t)− y

∣
∣≤ ε},

h∗(t,x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h
(
t,σ2(t), y

)−w2

(

t,
x− σ2(t)

x− σ2(t) + 1

)

− x− σ2(t)
x− σ2(t) + 1

for x > σ2(t),

h(t,x, y) for σ1(t)≤ x ≤ σ2(t),

h
(
t,σ1(t), y

)
+w1

(

t,
σ1(t)− x

σ1(t)− x+ 1

)

+
σ1(t)− x

σ1(t)− x+ 1
for x < σ1(t),

(2.5)

and consider the auxiliary problem
(
q(t)u′

)′
+h∗

(
t,u,q(t)u′

)= 0, u′(0)= 0, u(T)= 0. (2.6)

Define the operator � : C1[0,T]→ C1[0,T] by

(�u)(t)=
∫ T

t

1
q(τ)

∫ τ

0
h∗
(
s,u(s),q(s)u′(s)

)
dsdτ. (2.7)

Solving (2.6) is equivalent to finding a fixed point of the operator �. Moreover, h∗ ∈
Car([0,T]×R2) and there exists ψ∗ ∈ L1[0,T] such that

∣
∣h∗(t,x, y)

∣
∣≤ ψ∗(t) for a.e. t ∈ [0,T] and each x, y ∈R. (2.8)

Therefore � is continuous and compact and the Schauder fixed point theorem yields a
fixed point u of �. By (2.7),

u(t)=
∫ T

t

1
q(τ)

∫ τ

0
h∗
(
s,u(s),q(s)u′(s)

)
dsdτ for t ∈ [0,T], (2.9)

which implies that u is a solution of (2.6).
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Step 2. We prove that u satisfies the equation in (2.1). Put v = u− σ2 on [0,T] and assume
that max{v(t) : t ∈ [0,T]} = v(t0) > 0. Since σ2(T)≥ 0 and u(T)= 0, we can assume that
t0 ∈ [0,T). Hence v′(t0)= 0 and we can find δ > 0 such that for t ∈ (t0, t0 + δ)

v(t) > 0,
∣
∣q(t)v′(t)

∣
∣ <

v(t)
v(t) + 1

< 1. (2.10)

Then for a.e. t ∈ (t0, t0 + δ), we get

(
q(t)v′(t)

)′ = −h∗(t,u(t),q(t)u′(t)
)− (q(t)σ ′2(t)

)′ = −h(t,σ2(t),q(t)u′(t)
)

− (q(t)σ ′2(t)
)′

+w2

(

t,
v(t)

v(t) + 1

)

+
v(t)

v(t) + 1
> 0.

(2.11)

Therefore

0 <
∫ t

t0

(
q(s)v′(s)

)′
ds= q(t)v′(t) (2.12)

for each t ∈ (t0, t0 + δ), which contradicts the fact that v(t0) is the maximal value of v. So
u ≤ σ2 on [0,T]. The inequality σ1 ≤ u on [0,T] can be proved analogously. Using the
definition of h∗, we see that u is also a solution of (2.1). �

3. Main result

We are interested in positive and decreasing solutions of singular problem (1.1), (1.2),
and hence the following existence result will be proved under the assumptions

p ∈ C[0,T], p > 0 on (0,T],
1
p
∈ L1[0,T], (3.1)

�= (0,∞)× (−∞,0), f ∈ Car
(
(0,T)×�

)
,

f can have time singularities at t = 0, t = T ,

and space singularities at x = 0, y = 0.

(3.2)

Theorem 3.1 (existence result). Let (3.1), (3.2) hold. Assume that there exist ε ∈ (0,1),
ν∈ (0,T), c ∈ (ν,∞) such that

f
(
t,P(t),−c)= 0 for a.e. t ∈ [0,T], (3.3)

0≤ f (t,x, y) for a.e. t ∈ [0,T], all x ∈ (0,P(t)
]
, y ∈ [−c,0), (3.4)

ε ≤ f (t,x, y) for a.e. t ∈ [0,ν], all x ∈ (0,P(t)
]
, y ∈ [−ν,0), (3.5)

where

P(t)= c
∫ T

t

ds

p(s)
. (3.6)
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Then problem (1.1), (1.2) has a positive decreasing solution u∈ C[0,T] with pu′ ∈ AC[0,
T] satisfying

0 < u(t)≤ P(t), −c ≤ p(t)u′(t) < 0 for t ∈ (0,T). (3.7)

Proof. Let k ∈N, where N is the set of all natural numbers and let k ≥ 3/T .
Step 1. Approximate solutions. For x, y ∈R, put

αk(x)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P(t) if x > P(t),

x if
1
k
≤ x ≤ P(t),

1
k

if x <
1
k

,

βk(y)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1
k

if y >−1
k

,

y if − c ≤ y ≤−1
k

,

−c if y <−c,

γ(y)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε if y ≥−ν,

ε
c+ y

c− ν
if − c < y <−ν,

0 if y ≤−c.

(3.8)

For a.e. t ∈ [0,T] and x, y ∈R, define

fk(t,x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(y) if t ∈
[

0,
1
k

)

,

f
(
t,αk(x),βk(y)

)
if t ∈

[
1
k

,T − 1
k

]

,

0 if t ∈
(

T − 1
k

,T
]

,

pk(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
{

p(t), p
(

1
k

)}

if t ∈
[

0,
1
k

)

,

p(t) if t ∈
[

1
k

,T
]

.

(3.9)

Then pk fk ∈ Car([0,T]×R2) and there is ψk ∈ L1[0,T] such that

∣
∣pk(t) fk(t,x, y)

∣
∣≤ ψk(t) for a.e. t ∈ [0,T], all x, y ∈R. (3.10)

We have got a sequence of auxiliary regular problems:

(
pk(t)u′

)′
+ pk(t) fk

(
t,u, pk(t)u′

)= 0, u′(0)= 0, u(T)= 0, (3.11)
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for k ∈N, k ≥ 3/T . Put

σ1(t)= 0, σ2k(t)= c
∫ T

t

ds

pk(s)
for t ∈ [0,T]. (3.12)

Then pk(t)σ ′2k(t)=−c for t ∈ [0,T], and conditions (3.3) and (3.4) yield

pk(t) fk(t,0,0)≥ 0, pk(t) fk
(
t,σ2k(t),−c)= 0 for a.e. t ∈ [0,T]. (3.13)

Hence σ1 and σ2k are lower and upper functions of (3.11). By Theorem 2.3, problem
(3.11) has a solution uk ∈ C1[0,T] satisfying

0≤ uk(t)≤ σ2k(t) for t ∈ [0,T]. (3.14)

Note that since pk ∈ C[0,T] is positive on [0,T], we have σ2k ∈ C1[0,T].
Step 2. A priori estimates of approximate solutions. The conditions (3.14) and uk(T) =
σ2k(T)= 0 give

pk(t)
uk(T)−uk(t)

T − t ≥ pk(t)
σ2k(T)− σ2k(t)

T − t , (3.15)

which yields pk(T)u′k(T) ≥ pk(T)σ ′2k(T) = −c. Further, by (3.11), pk(0)u′k(0) = 0. Since
pku

′
k is nonincreasing on [0,T], we have proved that

−c ≤ pk(t)u′k(t)≤ 0 on [0,T]. (3.16)

Due to pk(0)u′k(0)= 0, there is tk ∈ (0,T] such that

−ν≤ pk(t)u′k(t)≤ 0 for t ∈ [0, tk
]
. (3.17)

If tk ≥ ν, we get by (3.5)

pk(t)u′k(t)≤−ε
∫ t

0
p(s)ds for t ∈ [0,ν]. (3.18)

Assume that tk < ν and pk(t)u′k(t) <−ν for t ∈ (tk,ν]. Then

pk(t)u′k(t)≤−ε
∫ t

0
p(s)ds for t ∈ [0, tk

]
(3.19)

and, since −ν <−εt for t ∈ (tk,ν], we get

pk(t)u′k(t)≤−εt for t ∈ (tk,ν
]
. (3.20)

Choose an arbitrary compact interval [a,T]⊂ (0,T] and denote

m=min
{
p(t) : t ∈ [a,T]

}
, M =max

{
p(t) : t ∈ [a,T]

}
,

d =min
{

a,ν,
∫ a

0
p(s)ds,

∫ ν

0
p(s)ds

}

.
(3.21)
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Using the fact that pku′k is nonincreasing on [0,T], we obtain by (3.16) and the above
inequalities −c ≤ pk(t)u′k(t)≤−εd for t ∈ [a,T], and hence, for each sufficiently large k,
we get

− c

m
≤ u′k(t)≤− εd

M
for t ∈ [a,T], (3.22)

(T − t) εd
M
≤ uk(t)≤ (T − t) c

m
for t ∈ [a,T]. (3.23)

Step 3. Convergence of a sequence of approximate solutions. Consider the sequence {uk}.
Choose an arbitrary compact interval J ⊂ (0,T). By virtue of (3.22) and (3.23), there is
kJ ∈N such that for each k ∈N, k ≥ kJ ,

1
kJ
≤ uk(t)≤ kJ , −kJ ≤ u′k(t)≤− 1

kJ
,

−c ≤ pk(t)u′k(t)≤− 1
kJ

for t ∈ J ,
(3.24)

and hence there is ψ ∈ L1(J) such that

∣
∣pk(t) fk

(
t,uk(t), pk(t)u′k(t)

)∣
∣≤ ψ(t) a.e. on J. (3.25)

Using conditions (3.24), (3.25), we see that the sequences {uk} and {pku′k} are equi-
bounded and equicontinuous on J . Therefore by the Arzelà-Ascoli theorem and the diag-
onalization principle, we can choose u∈ C(0,T) and subsequences of {uk} and of {pku′k}
which we denote for the simplicity in the same way such that

lim
k→∞

uk = u, lim
k→∞

pku
′
k = pu′ locally uniformly on (0,T). (3.26)

Having in mind (3.14), (3.16), (3.24) and the fact that

lim
k→∞

pk(t)= p(t), lim
k→∞

σ2k(t)= P(t) for t ∈ [0,T], (3.27)

we get (3.7).
Step 4. Convergence of a sequence of approximate problems. Choose an arbitrary ξ ∈ (0,T)
such that

f (ξ,·,·) is continuous on (0,∞)× (−∞,0). (3.28)

There exists a compact interval Jξ ⊂ (0,T) with ξ ∈ Jξ , and, by (3.24), we can find kξ ∈N
such that and for each k ≥ kξ ,

uk(ξ)≥ 1
kξ

, pk(ξ)u′k(ξ)≤− 1
kξ

, Jξ ⊂
[

1
k

,T − 1
k

]

. (3.29)

Therefore

fk
(
ξ,uk(ξ), pk(ξ)u′k(ξ)

)= f
(
ξ,uk(ξ), pk(ξ)u′k(ξ)

)
, (3.30)
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and, due to (3.26), (3.27), we have for a.e. t ∈ (0,T),

lim
k→∞

pk(t) fk
(
t,uk(t), pk(t)u′k(t)

)= p(t) f
(
t,u(t), p(t)u′(t)

)
. (3.31)

Choose an arbitrary s∈ (0,T). Then there exists a compact interval Js ⊂ (0,T) containing
s, and (3.25) holds for J = Js and for all sufficiently large k. By virtue of (3.11) we get

pk

(
T

2

)

u′k

(
T

2

)

− pk(s)u′k(s)=
∫ s

T/2
pk(τ) fk

(
τ,uk(τ), pk(τ)u′k(τ)

)
dτ. (3.32)

Letting k→∞ and using (3.25)–(3.31) and the Lebesgue convergence theorem on Js, we
get for an arbitrary s∈ (0,T),

p
(
T

2

)

u′
(
T

2

)

− p(s)u′(s)=
∫ s

T/2
p(τ) f

(
τ,u(τ), p(τ)u′(τ)

)
dτ. (3.33)

Step 5. Properties of u and pu′. By virtue of (3.33) we have pu′ ∈ ACloc(0,T) and

(
p(t)u′(t)

)′
+ p(t) f

(
t,u(t), p(t)u′(t)

)= 0 for a.e. t ∈ (0,T). (3.34)

According to (3.11) and (3.16) we have for each k ≥ 3/T ,

∫ T

0
pk(s) fk

(
s,uk(s), pk(s)u′k(s)

)
ds=−pk(T)u′k(T)≤ c, (3.35)

which together with (3.4), (3.7), and (3.31) yield, by the Fatou lemma, that p(t) f (t,u(t),
p(t)u′(t)) ∈ L1[0,T]. Therefore, by (3.34), pu′ ∈ AC[0,T]. Denote v = pu′. Since v ∈
C[0,T], we have by (3.1) that u′ ∈ L1[0,T] and consequently u∈ C[0,T]∩C1(0,T].

Further, for each k ≥ 3/T and t ∈ (0,T),

∣
∣pk(t)u′k(t)

∣
∣≤

∫ t

0

∣
∣pk(s) fk

(
s,uk(s), pk(s)u′k(s)

)− p(s) f
(
s,u(s)p(s)u′(s)

)∣
∣ds

+
∫ t

0

∣
∣p(s) f

(
s,u(s), p(s)u′(s)

)∣
∣ds,

∣
∣uk(t)

∣
∣≤

∫ T

t

∣
∣u′k(s)−u′(s)∣∣ds+

∫ T

t

∣
∣u′(s)

∣
∣ds.

(3.36)

Hence, by (3.26) and (3.31),

∀ε > 0 ∃δ > 0, ∀t ∈ (0,δ) ∃k1 = k1(ε, t)∈N :
∣
∣(pu′)(t)

∣
∣≤ ∣∣(pu′)(t)− (pk1u

′
k1

)
(t)
∣
∣+

∣
∣
(
pk1u

′
k1

)
(t)
∣
∣ < ε,

∀ε > 0 ∃δ > 0, ∀t ∈ (T − δ,T) ∃k2 = k2(ε, t)∈N :
∣
∣u(t)

∣
∣≤ ∣∣u(t)−uk2 (t)

∣
∣+

∣
∣uk2 (t)

∣
∣ < ε.

(3.37)

This implies

u(T)= lim
t→T−

u(t)= 0, (pu′)(0)= lim
t→0+

(pu′)(t)= 0. (3.38)
�
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Remark 3.2. By virtue of (3.38) there is a point t0 ∈ (0,T] such that

u(t) < P(t), −c < p(t)u′(t) for t ∈ [0, t0
)
. (3.39)

Example 3.3. Let α,γ ∈ (0,∞), β ∈ [0,∞), θ ∈ (0,1). By Theorem 3.1, the problem

(
tθu′

)′
+ tθ

(
u−α +uβ + 1

)(
1− (− tθu′)γ

)
= 0,

lim
t→0+

tθu′(t)= 0, u(1)= 0,
(3.40)

has a solution u∈ C[0,1] satisfying tθu′ ∈ AC[0,1] and

0 < u(t)≤ 1− t1−θ
1− θ , −1≤ tθu′(t) < 0 for t ∈ (0,1). (3.41)

To see this we put p(t) = tθ , c = 1, ν = 1/2, ε = 1− (1/2)γ, and f (t,x, y) = (x−α + xβ +
1)(1− (−y)γ).

Acknowledgment

This work is supported by the Council of Czech Government MSM 6198959214.

References

[1] R. P. Agarwal and D. O’Regan, Nonlinear superlinear singular and nonsingular second order
boundary value problems, Journal of Differential Equations 143 (1998), no. 1, 60–95.
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ON SETS OF ZERO HAUSDORFF s-DIMENSIONAL MEASURE

MARIA ALESSANDRA RAGUSA

The goal of this paper is to investigate regularity properties of local minimizers u of some
variational integrals and the Hausdorff measure of the set, where u is not Hölder contin-
uous.

Copyright © 2006 Maria Alessandra Ragusa. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We investigate some partial regularity results of local minimizers u of some quadratic
functionals and the Hausdorff measure of the set, where u has not Hölder regularity.

We introduce the notion of Hausdorff s-dimensional measure. LetA be a metric space,
F a subset of A, and s a nonnegative number. Let us call Jl an l cover of F, meaning that
every point in F is covered by a set in Jl and that all sets M ∈ Jl have diameter less than l.
We say that

�s(F)= lim
l→0

inf
Jl

∑

M∈Jl

[
diam(M)

]s
(1.1)

is the s-dimensional Hausdorff measure (see, e.g., [4, 10]). We note that in general �s

may be infinite and that the notion involves the case that s is not an integer. From the
above definition, we have that the Hausdorff 1-measure of a smooth rectificable curve is
just the length of the curve.

Throughout the paper, we consider Rn as the environment and set Ω as an open
bounded subset of Rn, n≥ 3.

In the sequel, we need the following definition of Morrey class. We say that a function
f ∈ L1

loc(Ω) belongs to the Morrey space Lp,λ(Ω) if it is finite

‖ f ‖pLp,λ(Ω) ≡ sup
x∈Ω, ρ>0

1
ρλ

∫

Bρ(x)∩Ω

∣
∣ f (y)

∣
∣pdy, (1.2)

where Bρ(x) is a ball of radius ρ centered at the point x.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 963–968



964 On sets of zero Hausdorff s-dimensional measure

Morrey’s estimates have been considered in the study of partial regularity of minimiz-
ers of quadratic functionals with VMO coefficients in [9]. The authors investigate partial
regularity of the minimizers of quadratic functionals, whose integrands have VMO coef-
ficients, using some majorizations for the functionals, rather than the well-known Euler’s
equation associated with it. The functional is

∫

Ω

{
A
αβ
i j (x,u)Dαu

iDβu
j + g(x,u,Du)

}
dx, (1.3)

where Ω⊂Rn, n≥3, is a bounded open set, u : Ω→RN , N > 1, u(x)=(u1(x), . . . ,uN (x)),
Du= (Dαui), Dα = ∂/∂xα, α= 1, . . . ,n, i= 1, . . . ,N .

We know that a function u ∈H1,2(Ω,RN ) is a minimizer of the functional �(u,Ω) if
and only if

�(u,Ω)≤�(v,Ω), ∀v ∈H1,2(Ω,RN
)
, (1.4)

with u− v ∈H1,2
0 (Ω,RN ).

We also recall that a function f belongs to the John-Nirenberg space BMO (see [8]) or
that f has “bounded mean oscillation” if

‖ f ‖∗ ≡ sup
B⊂Rn

1
|B|

∫

B

∣
∣ f (x)− fB

∣
∣dx <∞, (1.5)

where fB is the integral average (1/|B|)∫B f (x)dx of the function f (x) over the set B,
considering B in the class of the balls of Rn.

Let, for f ∈ BMO,

η(r)= sup
x∈Rn, ρ≤r

1
∣
∣Bρ

∣
∣

∫

Bρ

∣
∣ f (x)− fBρ

∣
∣dx, (1.6)

we say that f belongs to the class VMO (see [11]), or f has “vanishing mean oscillation”
if

lim
r→0+

η(r)= 0. (1.7)

Let us suppose that A
αβ
i j are bounded functions on Ω×RN and satisfy the following

conditions:
(1) A

αβ
i j =Aβαji ;

(2) for every u∈RN , A
αβ
i j (·,u)∈VMO(Ω);

(3) for every x ∈Ω and u,v ∈RN ,

∣
∣A

αβ
i j (x,u)−Aαβi j (x,v)

∣
∣≤ ω(|u− v|2) (1.8)

for some monotone increasing concave function ω with ω(0)= 0;
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(4) there exists a positive constant ν such that

ν|ξ|2 ≤Aαβi j (x,u)ξiαξ
j
β (1.9)

for almost every x ∈Ω, all u∈RN , and ξ ∈RnN .

We should mention that sinceC0 is a proper subset of VMO, the continuity ofA
αβ
i j (x,u)

with respect to x is not assumed.
Before we state the result contained in [9], we point out that g is a Carathéodory func-

tion and has growth less than quadratic.

Theorem 1.1. Let u∈W1,2(Ω,RN ) be a minimum of the functional �(u,Ω) above defined.

Suppose that assumptions on A
αβ
i j (x,u) and g(x,u,Du) are satisfied.

Then, for λ= n(1− 2/p),

Du∈ L2,λ
loc

(
Ω0,RnN

)
, (1.10)

where

Ω0 =
{

x ∈Ω : liminf
R→0

1
Rn−2

∫

B(x,R)

∣
∣Du(y)

∣
∣2
dy = 0

}

. (1.11)

As a consequence, for α∈ (0,1), there exists the following Hölder regularity:

u∈ C0,α(Ω0,RN
)
. (1.12)

Also for some positive s,

�n−2−s(Ω \Ω0
)= 0. (1.13)

For linear systems regularity results assuming A
αβ
i j constants or in C0(Ω) have been

obtained by Campanato in [2].
Without assuming continuity of coefficients, we mention the note [1] where the au-

thor refines Campanato’s results considering that coefficientsA
αβ
i j belong to a class neither

containing nor contained in C0(Ω), hence in general discontinuous.
Moreover, we recall the study made by Huang in [7] where he shows regularity results

of weak solutions of linear elliptic systems with coefficients in the class VMO. Therefore,
it seems to be natural to expect partial regularity results under the condition that the

coefficients of the principal terms A
αβ
i j ∈VMO, even for nonlinear cases.

Recently, Daněček and Viszus in [3] treated the regularity of minimizer for the func-
tional

∫

Ω

{
A
αβ
i j (x)Dαu

iDβu
j + g(x,u,Du)

}
dx, (1.14)

where g(x,u,Du) is a lower-order term which satisfies

∣
∣g(x,u,z)

∣
∣≤ f (x) +L|z|γ, (1.15)
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where f ∈ Lp(Ω), 2 < p ≤∞, f ≥ 0, almost everywhere on Ω, L is a nonnegative con-

stant, and 0≤ γ < 2. They obtain Hölder regularity of minimizer assuming that A
αβ
i j (x)∈

VMO.
In [9], the authors extend both the results by Huang and Daněček and Viszus because

they study the functional whose integrand contains the term g(x,u,Du) and has coeffi-

cients A
αβ
i j dependent not only on x but also on u.

Let us now give an outline of the proof.
Basic tool is the following lemma for constant coefficients proved by Campanato (see

[2]).

Lemma 1.2. Let u∈W1,2(B(x0,R),RN) be a weak solution of the system

Dα
(
g
αβ
i j Dβu

j
)= 0 for i= 1, . . . ,N , (1.16)

where g
αβ
i j are constant coefficients such that strong ellipticity holds. Then, for any t ∈ [0,1],

∫

B(x0,tR)
|Du|2dx ≤ ctn

∫

B(x0,R)
|Du|2dx. (1.17)

Proof of Theorem 1.1. Let R > 0, x0 ∈ Ω, such that B(x0,R) ⊂⊂ Ω. To obtain the Mor-
rey regularity result, let us consider v ∈W1,2(B(x0,R/2),RN ) to be the minimum of the
“freezing” functional �0:

�0
(

v,B
(

x0,
R

2

))

=
∫

B
(
x0,R/2

)A
αβ
i j

(
uR/2

)
R/2Dαv

iDβv
jdx, (1.18)

where v−u∈H1,2
0 (B(x0,R/2)) and

A
αβ
i j (w)R/2 =

∫

−
B(x0,R/2)

A
αβ
i j (y,w)dy. (1.19)

Having constant coefficients A
αβ
i j (uR/2)R/2 from the above lemma by Campanato, we

have

∫

B(x0,tR/2)
|Dv|2dx ≤ c · tn

∫

B(x0,R/2)
|Dv|2dx (1.20)

for every t ∈ [0,1]. Let us define w = u− v.
Then,

∫

B(x0,tR/2)
|Du|2dx≤c ·

{

tn
∫

B(x0,R/2)
|Du|2dx+

∫

B(x0,R/2)
|Dw|2dx

}

. (1.21)
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We can write

ν

∫

B(x0,R/2)
|Dw|2dx ≤ c

{

�0
(

u,B
(

x0,
R

2

))

−�0
(

v,B
(

x0,
R

2

))}

. (1.22)

Using the following majorizations:

∫

B(x0,R/2)

(
A
αβ
i j

(
uR/2

)
R/2−A

αβ
i j

(
x,uR/2

)) ·Dαu
iDβu

jdx

≤ c
{

η
(

A
(·,uR/2

)
;
R

2

)}1−2/p

·
{∫

B(x0,R)
|Du|2dx+R(n−2/p)

}

,
∫

B(x0,R/2)

(
A
αβ
i j

(
x,uR/2

)−Aαβi j (x,u)
)
Dαu

iDβu
jdx

≤
(∫

B(x0,R)
|Du|2dx

)

ω
(

R2−n
∫

B(x0,R/2)
|Du|2dx

)

,

(1.23)

the hypothesis on A
αβ
i j and a lemma contained in the book [5] for R sufficiently small

∫

B(x0,ρ)
|Du|2dx ≤ c · ρλ, (1.24)

then we obtain the requested Morrey’s estimate. Using Sobolev-Morrey embedding con-
tained in [12], we get the Hölder regularity of the local minimizer u.

Following the lines of the proof of Giaquinta’s [6, Theorem 6.2], we are able to prove
that the Hausdorff measure of Ω \Ω0 is zero. �
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male Superiore Pisa, Pisa, 1980.
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FINITE-DIFFERENCES METHOD FOR SOLVING OF
FIRST-ORDER HYPERBOLIC-TYPE EQUATIONS
WITH NONCONVEX STATE FUNCTION IN
A CLASS OF DISCONTINUOUS FUNCTIONS

MAHIR RASULOV AND BAHADDIN SINSOYSAL

A method for obtaining an exact and numerical solution of the Cauchy problem for a
first-order partial differential equation with nonconvex state function is suggested. For
this purpose, an auxiliary problem having some advantages over the main problem, but
equivalent to it, is introduced. On the basis of the auxiliary problem, the higher-order
numerical schemes with respect to time step can be written, such that the solution ac-
curately expresses all the physical properties of the main problem. Some results of the
comparison of the exact and numerical solutions have been illustrated.

Copyright © 2006 M. Rasulov and B. Sinsoysal. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Many important problems of physics and engineering are reduced to finding the solution
of equations of a first-order hyperbolic-type equations as

ut +Fx(u)= 0 (1.1)

with the following initial condition

u(x,0)= u0(x). (1.2)

In this study, we consider Cauchy problem for a 1-dimensional first-order nonlinear
wave equation and propose a numerical method for obtaining the solution in a class of
discontinuous functions when F′′(u) has alternative signs.

2. The Cauchy problem for the nonconvex state function

As usual, let R2(x, t) be the Euclidean space of points (x, t). We denote QT = {x ∈ R, 0≤
t ≤ T} ⊆ R2(x, t), here R= (−∞,∞).

Suppose that the function F(u) is known and satisfies the following conditions.
(i) F(u) is twice continuously differentiable and a bounded function for bounded u.

(ii) F′(u)≥ 0 for u≥ 0.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 969–977



970 Hyperbolic equation with nonconvex state functions

(iii) F′′(u) is a function with alternating signs, that is, F has convex and concave parts.
Let us assume that u0(x) is given as a continuous function with compact support or

piecewise function.
A solution of the problem (1.1)-(1.2) can easily be constructed by the method of char-

acteristics [1–4] and has the form

u(x, t)= u0(ξ), ξ = x−F′(u)t, (2.1)

where ξ is the spatial coordinate moving with speed F′(u).
The relation (2.1) is an alternative form of the problem (1.1)-(1.2), and it is an implicit

function for the solution.
It is known that if u′0 < 0 and F′′ > 0, or (u′0>0 and F′′<0), then for t=−1/u′0(ξ)F′′(u),

we have ux(x, t)=∞. At these points, ut(x, t) also becomes infinite. Therefore, the prob-
lem (1.1)-(1.2) has not a classical solution.

Definition 2.1. The function u(x, t) is called the weak solution of the problem (1.1)-(1.2)
if the integral relation

∫∫

QT

{
ϕt(x, t)u(x, t) +ϕx(x, t)F(u)

}
dxdt+

∫∞

−∞
u(x,0)ϕ(x,0)dx = 0 (2.2)

holds for every function ϕ(x, t) defined and twice differentiable in the upper half-plane,
and which vanishes for sufficiently large t+ | x |.

2.1. Auxiliary problem. In order to determine the weak solution of the problem (1.1)-
(1.2), in accordance with [3, 4], the auxiliary problem

vt(x, t) +F
(
vx(x, t)

)= 0, (2.3)

v(x,0)= v0(x) (2.4)

is introduced. Here, v0(x) is any absolutely continuous and differentiable function satis-
fying the equation (v0(x))x = u0(x).

Theorem 2.2. If v(x, t) is a soft solution of the auxiliary problem (2.3)-(2.4), then the func-
tion u(x, t) defined by

u(x, t)= vx(x, t) (2.5)

is the soft solution of the main problem (1.1)-(1.2).

The solution of the problem (2.3)-(2.4) can easily be obtained, and has the form

v(x, t)= [vxF′
(
vx
)−F(vx

)]
t+ v0(ξ), ξ = x−F′((v0

)
x

)
t. (2.6)

By calculation, it can be easily shown that u(x, t)= vx(x, t).
It can easily be shown that an integrable soft solution is a weak solution, that is, the

following theorem holds.

Theorem 2.3. If v(x, t) is the solution of the auxiliary problem (2.3)-(2.4), then
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(10) the function u(x, t) defined by (2.5) is the weak solution of the main problem,
(20) v(x, t) is an absolutely continuous function.

The auxiliary solution has the following advantages:
(i) the function v(x, t) is smoother than u(x, t);

(ii) u(x, t) can be determined without using the derivatives ux and ut which are not
defined at the neighborhoods of the points of discontinuities.

2.1.1. Shock fitting. In order to obtain the location of the points of discontinuity which
arise in the solution of the main problem, we will use the facts that

∫∞
−∞u(x, t)dx = const,

and that this integral exists not only for multivalued and continuous functions but
also for a single-valued piecewise continuous function as well. In addition, it is known
that (1.1) expresses the conservation law of mass. Let E1(t) denote the integral E1(t) =
∫
R u(x, t)dx.

Definition 2.4. The number E1(0), defined by E1(0) = ∫R u(x,0)dx, is called the critical
value of the function v(x, t).

Now we will investigate the problem of finding the locations of discontinuous points
of u(x, t) and the time evolution of these points. As it was expressed before, the solution of
an auxiliary problem is not unique. In order to find a physically meaningful and unique
solution, some additional conditions are required.

Definition 2.5. For every t, the geometrical location of the points, where v(x, t) takes a
critical value, is called the front curve.

Let x f = x f (t) be the equation of discontinuity curve of v(x, t). Considering Definition
2.5 and expression (2.5), we have v(x f (t), t) = ∫ x f−∞u(x, t)dx = E1(0). From the last rela-
tion, we have

dx f (t)

dt
=
[
F(u)

]

[u]

∣
∣
∣
∣
x=x f (t)

. (2.7)

Here [ f ] shows the shock of the function f at a point x = x0.

Definition 2.6. The function defined by

vext(x, t)=
⎧
⎪⎨

⎪⎩

v(x, t), v < E1(0),

E1(0), v ≥ E1(0),
(2.8)

is called the extended solution of the problem (2.3)-(2.4).

From Theorem 2.2, for the weak solution of the main problem (1.1)-(1.2), we have
uext(x, t)= (vext(x, t))x.

3. The Riemann problem for the nonconvex state function

In this section, we will study the Riemann problem for the case F(u) = u3. In order to
find the exact solution of this problem, according to [1, 2], we formulate the following
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Figure 3.1. (a) The convex hull of the function f (u)= u3; (b) the concave hull of the function f (u)=
u3.

definitions. By ℵ we denote the set functions of F̃ defined on [α,β] which satisfy the
inequality F̃ ≥ F(u).

Definition 3.1. The function defined by the relation F̂ = inf F̃∈ℵ F̃(u) is called a convex
hull on [α,β] of a function F(u).

Definition 3.2. The function defined by the relation F̂ = supF̃∈ℵ F̃(u) is called a concave
hull on [α,β] of a function F(u).

Case 1. In this case, we will obtain the solution of (1.1) with the following initial function:

u0(x)=
⎧
⎪⎨

⎪⎩

u1, x < 0,

u2, x > 0,
(3.1)

here u1 = 1, u2 =−1. The exact solution of the problem (1.1), (3.1) was found in [1].

According to [1], at first, we will construct the convex hull of the function F(u)= u3

on the interval [−1,1]. The graph of this convex hull is illustrated in Figure 3.1(a).
The exact solution of the problem (1.1), (3.1) is

u(x, t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1, x <
3
4
t,

−
√
x

3t
,

3
4
t <

x

t
< 3t,

u2, x > 3t.

(3.2)

The graph of the weak solution of the problem (1.1), (3.1) is given in Figure 3.2(a).
For the cases u1 = −1 and u2 = 1, according to Definition 3.2, we will construct the

concave hull of the function f (u) = u3 on [u1,u2]. The graph of this concave hull is
demonstrated in Figure 3.1(b). The graph of the problem (1.1), (3.1) for this case is
demonstrated in Figure 3.2(b).
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Figure 3.2. Time evaluation of exact solution u(x, t) at T = 0.5: (a) u1 = 1, u2 = −1; (b) u1 = −1,
u2 = 1.

Case 2. Now, we will investigate (1.1) when the function F(u) is−cos2u/2 and u1 = 5π/4,
u2 =−5π/4 (or u1 =−5π/4, u2 = 5π/4).

According to Definitions 3.1 and 3.2, we will construct the convex and concave hulls
of the function −cos2u/2 on the interval [−5π/4, 5π/4]. The graphs of the convex and
concave hulls of the function −cos2u/2 are shown in Figures 3.3(a) and 3.3(b), respec-
tively.

The exact solution of the problem (1.1), (3.1) for the case u1 = 5π/4, u2 =−5π/4 is

u(x, t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5π
4

, x ≤−kt,

−1
2

arcsin
x

t
, −kt < x < 0,

1
2

arcsin
x

t
, 0 < x < kt,

−5π
4

, x ≥ kt,

(3.3)

and for the case u1 =−5π/4, u2 = 5π/4 is

u(x, t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−5π
4

, x ≤−k1t,

−1
2

arcsin
x

t
−π, −k1t < x < 0,

1
2

arcsin
x

t
+π, 0 < x < k1t,

5π
4

, x ≥ k1t.

(3.4)

The graphs of the solutions (3.3), (3.4) are illustrated in Figures 3.4(a) and 3.4(b),
respectively.
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4. Finite-differences schemes in a class of discontinuous functions

In order to construct the special finite-differences methods, at first the domain of defini-
tion of the problem is covered by the following grid:

ωh,τ =
{(
xi, tk

) | xi = ih, tk = kτ, i= 0,±1,±2, . . . , k = 0,1,2, . . . ; h > 0, τ > 0
}

, (4.1)

where h and τ are steps of the grid for x and t variables, respectively.
The problem (2.3)-(2.4) is approximated by the finite-difference scheme at any point

(i,k) of the grid ωh,τ as follows:

Vi,k+1 =Vi,k − τF
(
Vi,k −Vi−1,k

h

)

, (4.2)

Vi,0 = v0
(
xi
)
. (4.3)

A function v0(xi) is for any solution of the finite-difference equation (V0)x̄ = u0(xi). It is
easy to prove that

Ui,k+1 = Vi,k+1−Vi−1,k+1

h
. (4.4)

Here, the grid functions Ui,k and Vi,k represent approximate values of the functions
u(x, t) and v(x, t) at point (i,k), respectively.

In order to prove (4.4), it is sufficient first to write (4.2) at a point (i− 1,k), then
subtract it from (1.1) and divide it by 2. By taking (4.4) into consideration, it is seen that
Ui,k satisfies the following nonlinear system of algebraic equations:

Ui,k+1 =Ui,k − τ

h

(
F
(
Ui,k

)−F(Ui−1,k
))
. (4.5)

Theorem 4.1. The expression E1(tk)= h∑i Ui,k is independent of time.

Definition 4.2. The quantities E1(0) defined by E1(0) = h
∑

i Ui,0 are called the critical
values for the grid functions Vi,k.

Definition 4.3. The mesh function defined by

Vext
i,k =

⎧
⎪⎨

⎪⎩

Vi,k, Vi,k < E1(0),

E1(0), Vi,k ≥ E1(0),
(4.6)

is called the extended solutions of the problem (4.2)-(4.3).

From Theorem 2.2, we have Uext
i,k = (Vext

i,k )x̄, and this expression is called the extended
numerical solution of the main problem.

By applying, for example, the Runge-Kutta method to (2.3), we can write a higher-
order finite-difference scheme for the main problem with respect to τ.
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Figure 5.1. Numerical solutions for f (u)= u3 at T = 2: (a) u1 = 1, u2 =−1; (b) u1 =−1, u2 = 1.
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Figure 5.2. Comparison of the exact and numerical solutions at value T = 2.0: (a) u1 > u2; (b) u1 < u2.

5. Numerical experiments

In order to demonstrate the efficiency of the suggested numerical method, we adapt this
algorithm for solving the following problem. We will investigate the numerical solution
of (1.1) with the initial condition (3.1) when F(u) = u3. The numerical solutions of the
main problem (1.1), (3.1) obtained by the suggested method at the value T = 1.0 are
given in Figures 5.1(a) and 5.1(b), respectively.

In Figures 5.2(a) and 5.2(b) with a view to compare, both the graphs of exact and
numerical solutions of the problem (1.1), (3.1) with the same initial data are given. As
seen from Figure 5.2 in the graph of the numerical solution, the jump appearing in the
solution moves to the right with the increase of time, this is correct from the physical
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point of view. But, this phenomenon has not been observed in the graph of the exact so-
lution. Certainly, it is related to the convex hull of the function F(u) which is generated
once, while the evaluation of solution u is not taken into account. Indeed, the state func-
tion changes from time to time. In general, the physical process described by nonlinear
equations is not reversible.

Conclusion

A new numerical method for solving the Cauchy problem for the first-order nonlinear
partial differential equation with nonconvex state function in a class of discontinuous
functions is suggested. An auxiliary problem formed in a special way and having some
advantages over the main problem is introduced.
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ON THE GLOBAL ATTRACTOR IN A CLASS
OF DYNAMIC SYSTEMS

R. RAUTMANN

We consider a class of dynamic systems (∗) (d/dt)x = f (x) with a continuous function
f :Rn

+ →Rn defined in the positive cone Rn
+ of the Euclidean space Rn, n≥ 2. In the sta-

ble case, from an observation concerning flow-invariant n-dimensional rectangles Q and
contractivity of a flow in Q, we find that the unique stationary point E of (∗) is global at-
tractor inRn

+. In the unstable case for more specialized systems, we get explicit conditions
for blowing up and dying out by constructing lower and upper bounds for the solutions.
By the well-known comparison methods, these results apply to solutions of weakly cou-
pled quasimonotone parabolic systems with Dirichlet or Neumann boundary conditions.
In addition, the systems (∗) in question could be used as models of cooperative societies
in order to indicate future perspectives for such communities.

Copyright © 2006 R. Rautmann. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

1.1. Problems and results. In this contribution, we will consider dynamic systems,

ẋ = f (x),
(

ẋ = d

dt
x
)

, (1.1)

in the open positive cone Rn
+ = {x = (xi) ∈ Rn | 0 < xi for i = 1, . . . ,n}, n ≥ 2. The right-

hand sides f = ( fi) taken into account are

fi(x)= ψi
(
∏

j�=i

∣
∣xj
∣
∣αi j −∣∣xi

∣
∣γi
)

· gi(x), (1.2)

the functions ψi : R→ R being continuous, odd, and strictly monotone increasing, with
ψi(0) = 0, gi being continuous on a neighborhood of the closed cone Rn

+ in Rn, gi(x) ∈
R1

+, and the constants fulfilling αii = 0 < αij , i �= j, 0 < γi, and the matrix α= (δi jγ j −αi j)
being nonsingular. Thus the system (1.1) has the unique stationary point E = (1, . . . ,1)T

inside Rn
+. Since each function gi may depend on all components xi of x, systems of sizes

(1.1), (1.2) are slightly more general than quasimonotone systems.

Hindawi Publishing Corporation
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We will see below that, if there are points A= (Ai)∈Rn
+, δ = (δi)∈Rn

+, fulfilling

α ·A= δ, (1.3)

then the stationary point E is the global attractor of (1.1) in Rn
+. Otherwise, if there are

points A,δ ∈Rn
+ satisfying

α ·A=−δ, (1.4)

then all solutions of (1.1) starting (component-wise) above E will blow up, while all solu-
tions of (1.1) starting (component-wise) below E will die out [5]. For the latter statement
(which, in view of the page limitations, will be proved below only for systems (1.1) of
a more specialized form), we will find lower and upper bounds of the solutions x(t) to
(1.1). Interfaces separating the domains of attraction of 0 or ∞, respectively, have been
visualized in [5] for some systems of this type in R3

+. By the well-known comparison the-
orems [3, 8], these results extend to suitable solutions u(t,z) ∈ Rn

+ (the vector function
u(t,z) having the additional spatial argument z varying in a smoothly bounded domain
Ω⊂Rm, m≥ 1) to weakly coupled quasimonotone parabolic systems

∂

∂t
ui = Fi

(
u,uiz,uizz

)
, (t,z)∈R1

+×Ω, (1.5)

where

Fi(x,0,0)= fi(x), fi from (1.2), i= 1, . . . ,n, (1.6)

with Dirichlet or Neumann boundary conditions on R1
+× ∂Ω [3, 8].

1.2. Models for cooperative societies. The systems (1.1), (1.2) are modeling a coop-
erative society of n members, the ith one having the prosperity function xi(t) > 0. The
exponent αi j measures the support given from member i to member j, the exponent γi
expresses the self-restriction of member i, while the functions ψi, gi specify the increase
of xi(t).

The parabolic systems (1.5), (1.6) with Neumann boundary condition would describe
some cooperative society with spatial prosperity diffusion in a domain Ω, where the flux
of the prosperity functions ui(t,z) across the boundary R1

+× ∂Ω is given in a natural way.
On the other side, with Dirichlet boundary conditions to (1.5), we would model a

cooperative society with spatial prosperity diffusion inside a domain Ω having a closed
boundary on which the values of the prosperity functions are prescribed.

In the following for vectors x = (xi), y = (yi) ∈ Rn, we will sometimes use the
component-wise ordering

x < y or x ≤ y iff

xi < yi or xi ≤ yi, resp., ∀i= 1, . . . ,n.
(1.7)

As usual, a subset S of the domain of definition of the direction field f in (1.1) will be
called flow invariant for this differential equation if each solution x(t) of (1.1) starting at
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time t0 at any point x(t0) ∈ S remains in S for all t ≥ t0 of its right maximal interval of
existence. Since here we only suppose continuity of f , the initial value problem of (1.1)
may have several solutions to the same initial value.

2. The stable case

The key to our results below is given by the following lemma on flow invariant rectangles
Q in Rn and the contractivity of the flow on Q. We consider the n-dimensional axis-
parallel rectangle

Q = [a−,a+]= {x ∈Rn | a− ≤ x ≤ a+}, n≥ 2, (2.1)

where a± = (a±i )∈Rn, a− < a+. The ith upper or lower (n− 1)-dimensional faces are

Q±i =
{
x ∈Q | xi = a±i

}
. (2.2)

For any ε = (εi)∈Rn
+, the set

Qε = {x ∈Rn | a− − ε ≤ x ≤ a+ + ε
}

or
(
Q±i
)ε = {x ∈Qε | a±i − εi ≤ xi ≤ a±i + εi

}

(2.3)

represents some ε-neighborhood of Q or of Q±i in Rn, respectively. We will say that a
continuous map f = ( fi) :Qε →Rn satisfies the direction condition on the boundary ∂Q
if the restriction of fi to Q±i fulfills

± fi
∣
∣
Q±i
< 0, ∀i. (2.4)

The notation “±” here and below means either the same sign “+” or “−”, respectively, at
all places of the relation in question.

Lemma 2.1. Assume that the continuous map f = ( fi) : Qε → Rn fulfills the direction con-
dition (2.4) on ∂Q. Then,

(i) the rectangle Q is flow invariant for the system

ẋ = f (x), x
(
t0
)∈Q; (2.5)

(ii) each solution x(t)∈Q of (2.5) exists for all t ≥ t0;
(iii) there exist δ = δQ ∈Rn

+, δ ≤ ε, and τ > 0, such that the subset (or “δ-retract of Q”)
Q−δ =: {x ∈Q | a− + δ ≤ x ≤ a+− δ} is attractor for (2.5) in Qδ , and each solution
x(t) of (2.5) with x(t0)∈Qδ satisfies x(t0 + τ)∈Q−δ .

Remark 2.2. In case of locally Lipschitz-continuous f , (i) and (ii) result even from the
weaker direction condition

± fi
∣
∣
Q±i
≤ 0, ∀i, (2.6)

by Bony’s theorem (cp. [1, 6]).
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Proof of (i). By contradiction, if there exists some solution x = {x(t)} ∈ C1[t0, t1] with
x(t0) ∈ Q, x(t1) �∈ Q, taking t∗ = sup{t ∈ [t0, t1) | x(t) ∈ Q}, we find x(t∗) ∈ ∂Q and
there exist (tk) ↓ t∗, x(tk) �∈Q.

Thus either
(a) ∃ i : xi(t∗)= a−i , ∃(tk) ↓ t∗, xi(tk) < a−i , or
(b) ∃ i : xi(t∗)= a+

i , ∃(tk) ↓ t∗, xi(tk) > a+
i .

In case (a), because of the continuity of fi(x(t)), from (2.4) fi(x(t∗)) > 0, we conclude
that there exist γ > 0, fi(x(t)) > 0 for all t ∈ [t∗, t∗ + γ]. Choosing any tk ∈ (t∗, t∗ + γ)
and integrating (2.5), we get

xi
(
tk
)− a−i =

∫ tk

t∗
fi
(
x(t′)

)
dt′ > 0 (2.7)

in contradiction to the last inequality in (a). Similarly, we conclude in case (b). �

Note 2.3. In the proof of (i), we did not use the compactness of Q or ∂Q. Thus our
conclusion holds, for example, if Q denotes the closed cone {x ∈ Rn

+ | a ≤ x} for any
point a∈Rn

+.

Proof of (ii). By (i), the existence for all t ≥ t0 of each solution x(t)∈Q starting at t = t0
at some x(t0)∈Q follows immediately from the well-known fact that no solution of (2.5)
can remain inside any compact subset of the time-space cylinder [0,∞)×Q, where f is
continuous. �

Proof of (iii). To see (iii), for any rectangle Q = [a−,a+] and ξ = (ξi),η = (ηi) ∈ Rn,
|ξi|,|ηi| ≤ (a+

i − a−i )/2 for all i, we introduce the (ξ,η)-near rectangle

Q̃=Q(ξ,η) = {x ∈Rn | a− − ξ ≤ x ≤ a+ +η
}
. (2.8)

Note 2.4. In case ξ,η ∈Rn
+ (or −ξ,−η ∈Rn

+), the rectangle Q̃ represents a neighborhood
(or a retract, resp.) of Q.

Remark 2.5. Let the map f :Qε →Rn be continuous, f fulfilling the direction condition
(2.4) on ∂Q. Then there exists some δQ ∈ Rn

+, such that (2.4) holds on the boundary of
each rectangle Q̃ =Q(ξ,η) for all ξ,η ∈Rn with (|ξi|)≤ δQ, (|ηi|)≤ δQ, thus Q̃ being flow
invariant for (2.5) by Lemma 2.1(i).

Namely, because of the continuity of f and the compactness of each Q±i , (2.4) holds
even in the sharpened form± fi|Q±i ≤−2cQ with some cQ > 0, thus there exists some δQ ∈
Rn

+, δQ ≤ ε, such that we have

± fi
∣
∣

(Q±i )δ ≤−cQ, ∀δ ∈Rn
+, δ ≤ δQ, (2.9)

since f is uniformly continuous on (Q±i )ε. From (2.9), we see the flow invariance of
Q̃ =Q(ξ,η) for all (|ξi|),(|ηi|)≤ δ by Lemma 2.1(i).
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Now with δ ≡ (δi)=: δQ, let x(t)∈Qδ denote some solution of (2.5) for t ≥ 0. At any
t0 ≥ 0, the ith coordinate xi = xi(t0), i= 1, . . . ,n, fulfills either

(a) a−i + δi ≤ xi ≤ a+
i − δi, or

(b) a−i − δi ≤ xi < a−i + δi ≤ a+
i − δi, or

(c) a−i + δi ≤ a+
i − δi < xi ≤ a+

i + δi.
By Remark 2.5, each one of the 3 rectangles {x ∈Qδ | a−i + δi ≤ xi ≤ a+

i − δi}, or {x ∈
Qδ | xi ≤ a+

i − δi}, or {x ∈ Qδ | a−i + δi ≤ xi}, respectively, is flow invariant for (2.5). In
addition, on the ith lower layer {x ∈Qδ | a−i − δi ≤ xi ≤ a−i + δi} of Q, we have cQ ≤ fi(x)
by (2.9), therefore, if we choose τ > 0 such that

0 < 2δi ≤ τ · cQ holds∀i= 1, . . . ,n, (2.10)

in case (b), we find a−i + δi ≤ xi(t0) + τ · cQ ≤ xi(t0 + τ) from the differential equation
(2.5). The analogous conclusion in case (c) with fi(x) ≤ −cQ gives xi(t0 + τ) ≤ a+

i − δi.
Since this holds true for all indices i for which (b) or (c) is valid, we find x(t0 + τ)∈Q−δ ,
Q−δ being flow invariant by Remark 2.5. �

Theorem 2.6 [4]. For all i= 1, . . . ,n, n≥ 2, assume

fi(x)= ψi
(
∏

j�=i

∣
∣xj
∣
∣αi j −∣∣xi

∣
∣γi
)

· gi(x), (2.11)

where
(1) ψi :R→R continuous, odd, strictly monotone increasing, ψi(0)= 0,
(2) gi :Rn

+→R1
+ continuous,

(3) α= (δi j · γj −αi j), detα �= 0,
(4) αii = 0 < αij , i �= j, 0 < γi,
(5) there exist A= (Ai)∈Rn

+, α ·A= δ ∈Rn
+.

Then all solutions x(t) of the differential equation

ẋ = f (x), (2.12)

starting at t = 0 in any point x(0)∈Rn
+, exist for all t ≥ 0. Each such solution remains in the

smallest rectangle

Q(s)=:
{
f ∈Rn

+ | a−(s)≤ x ≤ a+(s), a±(s)= (s±Ai)}, 1 < s, (2.13)

containing x(0), and has the limit set {E}, E = (1, . . . ,1)T .

Thus the unique stationary point E of (2.12) is the global attractor of (2.12) in Rn
+.

Proof. (a) Firstly, we show that the direction condition (2.4) holds on the boundary ∂Q(s)
of each rectangle Q(s), s > 1. For any x on the ith lower (n− 1)-dimensional face Q−i (s),
we have xi = s−Ai , s−Aj ≤ xj ≤ sAj for all j �= i, thus recalling (5), we find

∏

j�=i

∣
∣xj
∣
∣αi j −∣∣xi

∣
∣γi ≥ s−γiAi · {sδi − 1

}
> 0 since s > 1. (2.14)
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Therefore 0 < fi|Q−i (s) holds by our assumption on fi from (2.11). Similarly, we get
fi|Q+

i (s) < 0 for all i = 1, . . . ,n. Thus Lemma 2.1 gives the flow invariance of each Q(s),
s > 1, for (2.11), (2.12), as well as the global existence of each solution x(t) for all positive
t in the smallest Q(s) containing x(0).

(b) Evidently, we have {E} =⋂1<sQ(s). By contradiction, we will show x(t)→ E with
t →∞ for each solution x(t) to (2.11), (2.12) starting at t = 0 inside of Rn

+. Namely, in
case

1 < s∗ =: inf
{
s > 1 | ∃ t > 0, x(t)∈Q(s)

}
(2.15)

from (a) we know that the direction condition (2.4) holds on ∂Q(s∗). Therefore by
Remark 2.5, we find some δQ(s∗) ∈Rn

+ such that (2.4) even holds true on the boundary of
each rectangle Qδ(s∗) near Q(s∗) with (|δi|)≤ δQ. Now we will take δ = δQ.

By definition of s∗, there exist some sequences (sk) ↓ s∗ and (tk) fulfilling x(tk) ∈
Q(sk) for all k = 1,2, . . . . Since with sk ↓ s∗ the rectangles Q(sk) are contracting uniformly
to Q(s∗), we can find some k∗, such that Q(sk) ⊂ Qδ(s∗) for all k ≥ k∗, but then by
Lemma 2.1(iii), from x(tk∗)∈ Qδ(s∗), we conclude x(tk∗ + τ)∈Q−δ(s∗) for some τ > 0.
Since with s ↑ s∗ the rectangles Q(s) ⊂ Q(s∗) are expanding uniformly to Q(s∗), there
exist some s∈ (1,s∗) such that x(tk∗ + τ)∈ Q−δ(s∗)⊂ Q(s) in contradiction to the defi-
nition of s∗. �

3. The unstable case

Up to elementary integrating, on Q±1 =: {x ∈Rn
+ | ±E <±x}, we will calculate lower and

upper bounds v(t) for solutions x(t) to specialized systems (2.11), (2.12) which are coop-
erative (or quasimonotone increasing) in the sense of [2, 7, 8].

Theorem 3.1. Let the vector function x(t)∈Rn
+ denote a solution of

ẋ = f (x), x(0)= x0 ∈Rn
+, where f = ( fi

)
, (3.1)

fi(x)=
(
∏

j�=i

∣
∣xj
∣
∣αi j −∣∣xi

∣
∣γi
)

·∣∣xi
∣
∣ζi , (3.2)

on the right maximal interval [0,T) of existence of x(t) (with 0 < T ≤∞).
The constants αii = 0 < αij , i �= j, 0 < γi, 0≤ ζi, α= (δi j · γj − αi j), detα �= 0, are given

in such a way that there exist points

A= (Ai
)∈Rn

+, δ = (δi
)∈Rn

+ fulfilling α ·A=−δ. (3.3)

Define the vector functions v±(t)=: (ϕ±Ai(t))∈ Rn+ with the help of the positive solution ϕ(t)
to the initial value problem

ϕ̇= b ·ϕ1+c for t > 0, ϕ(0)= a. (3.4)
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(a) In case E < x(0) with the constants

ai = xi(0)1/Ai , bi = 1− a−δii

Ai
, ci = δi−Ai

[
1− (γi + ζi

)]
, (3.5)

the function v+(t)=: (ϕAi(t)) will represent
(a.1) a lower bound of x(t)∈Q+

1 if

a=min
i

{
ai
}

, b =min
i

{
bi
}

, c =min
i

{
ci
}

(3.6)

are taken, or
(a.2) an upper bound of x(t) ∈ Q+

1 (on the function’s ϕ right maximal interval of
existence) if

a=max
i

{
ai
}

, b =max
i

{
1
Ai

}

, c =max
i

{
ci
}

(3.7)

are taken.
(b) In case x(0) < E with constants

ai = xi(0)−1/Ai , bi = 1− a−δii

Ai
, ci =Ai ·

[
1− (γi + ζi

)]
, (3.8)

if additionally a local Lipschitz condition for f is required, the function v− =:
(ϕ−Ai(t)) will represent

(b.1) a lower bound of x(t)∈Q−1 if

a=max
i

{
ai
}

, b =max
i

{
1
Ai

}

, c =max
i

{
ci
}

(3.9)

are taken, or
(b.2) an upper bound of x(t)∈Q−1 if

a=min
i

{
ai
}

, b =min
i

{
bi
}

, c =min
i

{
ci
}

(3.10)

are taken.
(c) If c > 0, the lower bounds defined in (a) blow up to∞, and the upper bounds defined

in (b) die out.

An immediate consequence of the latter theorem is the following.

Corollary 3.2. Under the requirements of Theorem 3.1 in case (a) with ci = δi −Ai[1−
(γi + ζi)] > 0 for all i= 1, . . . ,n, each solution x(t) to (3.1), (3.2), x(t) starting at t = 0 in any
x(0) > E will blow up in finite time, and in case (a) with ci = δi−Ai · [1− (γi + ζi)]≤ 0 for
all i= 1, . . . ,n, no solution x(t) to (3.1), (3.2), x(t) starting at t = 0 in any x(0) > E will blow
up in finite time (but, of course, each such one will blow up with t→∞).

Proof of Corollary 3.2. The statement is evident because of Theorem 3.1 part (a) and the
fact that the solution ϕ(t) to (3.4) blows up in finite time if and only if c > 0 holds. �
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Proof of Theorem 3.1. From the requirements of Theorem 3.1 in any point a+(s) =:
(sAi)∈Q+

1 , s > 1, we find

fi
(
a+(s)

)= s[Ai(γi+ζi)+δi] · {1− s−δi} > 0. (3.11)

Using the Ansatz

v(t)=: a+(ϕ(t)
)∈Rn

+ (3.12)

for a lower bound v(t)≤ x(t), where the function ϕ(t) > 1 has to be calculated, we get

v̇i =Ai ·ϕAi−1 · ϕ̇. (3.13)

Since f from (3.2) is quasimonotone increasing, the function v(t) will become the lower
bound of x(t) if

v̇i ≤ fi(v), vi(0)≤ xi(0), ∀i= 1, . . . ,n. (3.14)

The equality signs are admissible since on Q+
1 the functions fi are locally Lipschitz con-

tinuous [8, pages 94, 96].
From (3.11) and (3.13) by a short calculation, we see that (3.14) results from the sys-

tem

ϕ̇≤ bi ·ϕ1+ci , ϕ(0)≤ ai, i= 1, . . . ,n, (3.15)

of differential inequalities for the function ϕ, where the constants ai, bi, ci are listed in
(3.5).

Therefore we will get a lower bound v(t) ≤ x(t) if we take for ϕ > 1 the maximal so-
lution to all of the inequalities (3.15), thus ϕ from (3.4), (3.6). In order to similarly find
an upper bound v(t) =: a+(ϕ(t)) ≥ x(t), we only have to reverse the inequalities (3.14),
(3.15), getting ϕ from (3.4), now with the constants from (3.7).

Below E we have to keep in mind that in Q(s)= {x ∈Rn
+ | 0≤ x ≤ a−(s)} with a−(s)=

(s−Ai)∈Rn
+, 1 < s, on any lower (n− 1)-dimensional face Q−i (s)= {x ∈Q(s) | xi = 0}, we

only have

0≤ fi(x)
∣
∣
Q−i (s) (3.16)

instead of (2.4). Therefore, roughly spoken, some solutions of (3.1), (3.2) could leaveQ(s)
across any Q−i (s).

On each upper face Q+
i (s) the direction condition (2.4) being valid, by inspection of

the outer normals νx in any point x of the k-dimensional edges of Q(s), k = 0, . . . ,n− 1,
we see that the condition νx · f (x)≤ 0 holds for the inner product of νx with f (x) in all
points x ∈ ∂Q(s). Consequently, if additionally we require a local Lipschitz condition for
f on a neighborhood of Rn

+ in Rn, we can apply Bony’s theorem [1, 6] which guarantees
the flow invariance of Q(s) for (3.1). Clearly, the function fi(x) in (3.2) will be Lipschitz
continuous on Q−1 if we require 1≤ αi j for i �= j, 1 ≤ γi, and ζi = 0 or 1≤ ζi for all i, j =
1, . . . ,n.
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Then the Ansatz v(t) =: a−(ϕ(t)) = (ϕ−Ai(t)) ∈ Rn
+ with the requirements in part (b)

leads to the lower and upper bounds (stated above in part (b)) for solutions x(t) ∈ Q−1
in a quite similar way as in the proof of part (a). Finally, the last statement (c) results
immediately from the definition of the functions v(t) and the convergence to ∞ of the
solutions ϕ(t) (3.4) with t→ T ≤∞, [0,T) denoting the right maximal interval of exis-
tence of ϕ. �
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TYPES OF SOLUTIONS AND MULTIPLICITY RESULTS
FOR FOURTH-ORDER NONLINEAR BOUNDARY
VALUE PROBLEMS

F. SADYRBAEV AND I. YERMACHENKO

The multiplicity results for the problem x(4) = f (t,x,x′′), (i) x(0) = x′(0) = 0 = x(1) =
x′(1), (ii) are presented, where the right side in (i) is monotone with respect to x and
x′. Our considerations are based on the types of solutions, which are introduced using
the notion of conjugate points by Leighton and Nehari. One of the main results is that
the quasilinear equation x(4)− p(t)x′′ − q(t)x = F(t,x,x′′), (iii) along with the boundary
conditions (ii), has a solution which possesses the oscillatory properties induced by the
linear part in (iii). Results are applied to the Emden-Fowler-type equations.

Copyright © 2006 F. Sadyrbaev and I. Yermachenko. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

In this paper we consider the fourth-order nonlinear differential equations

x(4) = f (t,x,x′′), t ∈ I := [0,1], (1.1)

x(4)− p(t)x′′ − q(t)x = F(t,x,x′′) (1.2)

together with the boundary conditions

x(0)= x′(0)= 0= x(1)= x′(1). (1.3)

Function f is supposed to be continuous together with the partial derivatives fx and fx′′ .
Functions F, Fx, Fx′′ are continuous and F is bounded, that is, |F(t,x,x′′)| <M, p(t)≥ 0,
and q(t) > 0 are continuous functions. We prove first that quasilinear boundary value
problem (1.2), (1.3) has a solution which hereditates oscillatory properties of the linear
part (L4x)(t) := x(4) − p(t)x′′ − q(t)x, provided that the linear part is nonresonant, that
is, the homogeneous problem (L4x)(t)= 0, (1.3) has only the trivial solution. We consider
then (1.1) (together with the boundary conditions (1.3)) under some monotonicity-type

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 989–998



990 Types of solutions and multiplicity results

restrictions and show that there exist multiple solutions of the BVP (1.1), (1.3) if (1.1)
can be represented in a quasilinear form (1.2) for various linear parts. Our results are
applied then to the fourth-order Emden-Fowler equation

x(4) = α2 · |x|γ signx, γ > 0. (1.4)

The boundary value problem ((1.3), (1.4)) is shown to have multiple solutions if γ is
sufficiently close to unity.

Similar results were proven in [8] for the second-order boundary value problems of
the form

x′′ = f (t,x), F ∈ C([0,1],R
)
,

x′′ + k2x = F(t,x), F ∈ C([0,1],R
)
,

x(0)= 0, x(1)= 0.

(1.5)

The results for the second-order BVPs, in turn, were inspired by the works of Jackson
and Schrader [2], Knobloch [3, 4] and Erbe [1]. The interested reader may consult papers
[8, 9] for details.

2. Fourth-order quasilinear problems

2.1. Linear theory by Leighton-Nehari-Pudei. We provide first basics of the oscillation
theory for linear fourth-order differential equations of the form

y(4)− p(t)y′′ − q(t)y = 0, (2.1)

where p and q are continuous functions and q > 0, p ≥ 0. This theory was developed
by Leighton and Nehari [5] for two-termed equation y(4) = q(t)y and generalized for
equations of the form (2.1) by Pudei [6].

Theorem 2.1 [6, page 210]. If there exists a solution y(t) of (2.1) which vanishes for t = a
and has at least n + 3 zeros (counting multiplicities) in [a,+∞), then there exist n points
η1, . . . ,ηn (a < η1 < η2 < ··· < ηn) and n essentially unique (up to multiplication by a con-
stant) solutions y1(t), . . . , yn(t) of (2.1) with the following properties:

(a) yν(t) has double zeros at t = a and t = ην;
(b) yν(t) has exactly ν + 3 zeros in [a,ην] (double zeros are counted according to their

multiplicities);
(c) any other solution y(t) such that y(a)= 0 has fewer than ν + 3 zeros in [a,ην].

Definition 2.2. The point ηn is called by the nth conjugate point of t = a (with respect to
(2.1)). The respective solution yn(t) is referred to as the nth extremal function since (a)
and (c) imply that ηn is the minimum value of (n+ 3)th zeros of y(t) as y(t) ranges over
all solutions of (2.1) for which y(a)= 0. Functions yn(t) are defined uniquely except for
multiplicative constants.
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x′′′ = 0

(a)

x′′′ = −0.97

(b)

Figure 2.1

x′′′ = −0.982

(a)

x′′′ = −0.9999

(b)

Figure 2.2

Corollary 2.3. Equation y(4)−Py′′ − k4y = 0, where P ≥ 0 and k �= 0 are constants, has
infinite sequence of conjugate (of the point t = 0) points ηi.

Suppose that initial conditions are of the form

x(0)= x′(0)= 0,

x′′(0)= r cosΘ, x′′′(0)= r sinΘ.
(2.2)

It was shown in [6] that no extremal solutions are possible for Θ ∈ [0,π/2] and Θ ∈
[π,3π/2]. Let Θi relate to an extremal solution xi(t). It was shown in [7] that Θi are
ordered as follows for solutions with positive x′′(0) (and, resp., negative x′′′(0))

−π
2
<Θ2 < ··· <Θ2n < ··· <Θ2m+1 < ··· <Θ1 < 0. (2.3)

Some solutions of the Cauchy problem x(4) = x, x(0)= x′(0)= 0, x′′(0)= 1, x′′′(0)= r
for various negative r are depicted in Figures 2.1, 2.2, 2.3, and 2.4.

Theorem 2.4 [7, Theorem 3]. Conjugate points continuously depend on the coefficients
p(t) and q(t).

2.2. Quasilinear problems. Consider quasilinear equation (1.2) together with the
boundary conditions (1.3). Suppose the following conditions are satisfied:

(A0) p(t)≥ 0, and q(t) > 0 are continuous functions;
(A1) F, Fx, and Fx′′ are continuous functions;
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x′′′ = −1

(a)

x′′′ = −1.0007

(b)

Figure 2.3

x′′′ = −1.000001

(a)

x′′′ = −π/2

(b)

Figure 2.4

(A2) F(t,0,0)≡ 0;
(A3) q(t) +Fx(t,x,x′′) > 0 for any (t,x,x′′)∈ [0,1]×R2;
(A4) p(t) +Fx′′(t,x,x′′)≥ 0 for any (t,x,x′′)∈ [0,1]×R2.

Definition 2.5. Say that the linear part (L4x)(t) := x(4)− p(t)x′′ − q(t)x is i-nonresonant
with respect to the boundary conditions (1.3) if (L4x)(t)= 0 has exactly i conjugate points
(of the point t = 0) in the interval (0,1) and t = 1 is not a conjugate point.

Definition 2.6. Say that ξ(t) is an i-type solution of the problem (1.2), (1.3) if for small
enough α, β the difference u(t;α,β) = x(t;α,β)− ξ(t) has exactly i + 3 zeros (counting
multiplicities) in (0,1) and t = 1 is not a zero, where x(t;α,β) is a solution of (1.2), which
satisfies the initial conditions

x(0;α,β)− ξ(0)= 0,

x′(0;α,β)− ξ′(0)= 0,

x′′(0;α,β)− ξ′′(0)= α,

x′′′(0;α,β)− ξ′′′(0)= β.

(2.4)

Remark 2.7. Due to conditions (A3) and (A4) the linear theory above applies to the re-
spective equation of variations

y(4) = (p(t) +Fx′′(t,ξ,ξ′′)
)
y′′ +

(
q(t) +Fx(t,ξ,ξ′′)

)
y (2.5)
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and an i-type solution ξ of the problem (1.2), (1.3) has the following characteristics:
(2.5) either has exactly i conjugate points in the interval (0,1], or has exactly i conjugate
points in the interval (0,1) and t = 1 is the (i+ 1)th conjugate point. The cases of the ith
conjugate point being at t = 1 or (i+ 1)th conjugate point being at t = 1 are not excluded.

Theorem 2.8. Quasilinear problem (1.2), (1.3) with an i-nonresonant linear part (L4x)(t)
has an i-type solution.

We state several lemmas before proving the theorem.

Lemma 2.9. A set S of all solutions of the BVP (1.2), (1.3) is nonempty and compact in
C3([0,1]).

Proof. Solvability can be proved by standard application of the Schauder principle to the
operator T : C3(I)→ C3(I), where T is defined by

(Tx)(t)=
∫ 1

0
G(t,s)F

(
s,x(s)

)
ds (2.6)

and G(t,s) is the Green function for (L4x)(t)= 0, (1.3). Notice that F is bounded.
Compactness of S is obtained by routine application of the Arzela-Ascoli criterium.

�

Remark 2.10. Solvability of quasilinear problems with nonresonant linear parts is well
known.

Remark 2.11. Any solution x(t) of the problem (1.2), (1.3) satisfies the estimate

max
I

∣
∣x(t)

∣
∣≤ Γ ·M, (2.7)

where Γ=max0≤t,s≤1 |G(t,s)|, M = sup{|F(t,x)| : (t,x)∈ I ×R}.
Lemma 2.12. There is an element x∗(t) in S, which possesses the property: x∗′′2(0) +
x∗′′′2(0)=max{x′′2(0) + x′′′2(0) : x ∈ S}.
Proof. The set S1 = {x′′2(0) + x′′′2(0) : x ∈ S} is an image of a continuous map M :
C3([0,1])→ R defined by M(x)= x′′2(0) + x′′′2(0). �

For some function ξ(t), let ξ(t) be given. Denote by x(t;r,Θ) a solution of the Cauchy
problem (1.2)

x(0)= x′(0)= 0, x′′(0)− ξ′′(0)= r cosΘ,

x′′′(0)− ξ′′′(0)= r sinΘ.
(2.8)

Lemma 2.13. Assume that conditions (A0) to (A4) are satisfied. Let ξ be any element of S
and x(t;r,Θ) as above. The function v(t;r,Θ)= x(t;r,Θ)− ξ(t) satisfies then

(
L4v
)
(t)=Φ1(t;r,Θ)v+Φ2(t;r,Θ)v′′, (2.9)
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where

Φ1(t;r,Θ)= F(t,x,x′′)−F(t,ξ,x′′)
x− ξ = Fx

(
t,ω1(t),x′′

)
,

Φ2(t;r,Θ)= F(t,ξ,x′′)−F(t,ξ,ξ′′)
x′′ − ξ′′ = Fx′′

(
t,ξ,ω2(t)

)
(2.10)

(ω1 and ω2, by mean value theorem, stand for some intermediate points).
If (2.9) has a conjugate point at t = 1 for some r∗ and Θ∗ and v(t;r∗,Θ∗) is a respective

extremal function, then x(t;r∗,Θ∗) = v(t;r∗,Θ∗) + ξ(t) solves the BVP (1.2), (1.3). The
opposite also is true, namely, if x(t;r∗,Θ∗) is a solution to the BVP, then v(t)= x(t;r∗,Θ∗)−
ξ(t) is an extremal function for (2.9) with a conjugate point exactly at t = 1.

Proof. Essentially [7, Lemma 4]. �

Lemma 2.14. Assume that conditions (A0) to (A4) are satisfied. If x(t) is a nontrivial solu-
tion of the BVP (1.2), (1.3), then x′′(0)x′′′(0) < 0.

Proof. Let ξ(t)≡ 0 in precedent lemma. Notice that Φ1 > 0 and Φ2 ≥ 0 in (2.9). By results
in [5, 6] any extremal function v(t) satisfies v′′(0)v′′′(0) < 0. Since, by Lemma 2.13, x(t)=
v(t) + ξ(t)= v(t) for some extremal function v(t), the assertion follows. �

Lemma 2.15. Let the conditions (A1) to (A3) be fulfilled. Suppose that the linear part
(L4x)(t) in (1.2) is i-nonresonant. Let ξ be any element of S.

Then the function u(t;r,Θ)= (x(t;r,Θ)− ξ(t))/r for any Θ∈ [0,2π) tends to a solution
y(t) of the Cauchy problem

y(4)− p(t)y′′ − q(t)y = 0, y(0)= y′(0)= 0,

y′′(0)= cosΘ, y′′′(0)= sinΘ
(2.11)

as r → +∞, where x(t;r,Θ) is a solution of the problem

x(4)− p(t)x′′ − q(t)x = F(t,x), x(0)= x′(0)= 0,

x′′(0)− ξ′′(0)= r cosΘ, x′′′(0)− ξ′′′(0)= r sinΘ.
(2.12)

Proof. The functions u(t;r,Θ) solve the initial value problems

(
L4u

)
(t)= 1

r

[
F
(
t,x(t)

)−F(t,ξ(t)
)]

,

u(0)= u′(0)= 0, u′′(0)= cosΘ,

u′′′(0)= sinΘ.

(2.13)

Let r → +∞. The right side in (2.13) then tends to zero uniformly in t for fixed Θ. By
classical results, u(t;r,Θ) tends then to a solution y(t) of the problem (2.11). �
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Proof of Theorem 2.8. Identify ξ(t) with a maximal solution x∗(t) of Lemma 2.12. Con-
sider solutions x(t;r,Θ) of the initial value problem (1.2), (2.8). The difference
u(t;r,Θ) := x(t;r,Θ)− ξ(t) satisfies the linear equation

(
L4u

)
(t)=Φ1(t;r,Θ)u+Φ2(t;r,Θ)u′′, (2.14)

where Φi(t;r,Θ) are defined as above. Consider linear equation (2.14) for r ∼ 0. Suppose
that ξ(t) is not an i-type solution. By Lemma 2.14, ξ′′(0)ξ′′′(0) < 0 if ξ is not trivial so-
lution. Suppose that ξ′′(0) > 0 and ξ′′′(0) < 0. To be definite, consider the case of the dif-
ference u(t;r,Θ) to have more than i points of double zero in the interval (0,1) for small
values of r. Recall that u′′′(0) = r sinΘ < 0 and u′′(0) = r cosΘ > 0. Let Θ ∈ (−π/2,0)
be fixed. For r ∼ +∞ the respective linear equation (2.14) has exactly i conjugate points.
Thus there exists r1(Θ) such that the respective linear equation (2.14) has (i+ 1)th con-
jugate point exactly at t = 1. This is true for any Θ ∈ (−π/2,0). The function r1(Θ) is,
possibly, multivalued. Define R(Θ)= supr1(Θ). This function is continuous in (−π/2,0)
since otherwise continuous dependence of conjugate points ηi+1 on coefficients of (2.14)
is violated.

Consider extremal solutions vi+1(t;R(Θ),Θ) of (2.14). Let ω(R(Θ),Θ) be the angle of
initial data (ω= arctan(v′′′(0)/v′′(0))) for vi+1(t;R(Θ),Θ).

Consider the difference ω(R(Θ),Θ)−Θ in the interval (−π/2,0). It has different signs
for Θ = 0 and Θ = −π/2. Therefore there exists Θ0 such that ω(R(Θ0),Θ0) =Θ0. Thus,
by Lemma 2.13, a solution to the BVP exists which has r2 = x′′2(0) + x′′′2(0) greater than
that for ξ. This contradicts the choice of ξ = x∗. Similarly, other cases can be considered.

Thus ξ is an i-type solution of the problem (1.2), (1.3). Other cases can be treated
similarly. �

3. Application

3.1. Quasilinearization. Let us describe first the idea of quasilinearization which is used
below to get the multiplicity results. Consider the BVP (1.1), (1.3). Let quasilinear equa-
tion be of the form (1.2). If the linear part in (1.2) is i-nonresonant with respect to
the boundary conditions (1.3), then the problem (1.2), (1.3) has an i-type solution, by
Theorem 2.8.

Suppose further that (1.1) and (1.2) are equivalent in a domain D = {(t,x,x′′);0 ≤
t ≤ 1, |x| ≤ N , |x′′| ≤ N1}. If any solution x(t) of the problem (1.2), (1.3) satisfies the
estimates

∣
∣x(t)

∣
∣≤N ,

∣
∣x′′(t)

∣
∣≤N1, ∀t ∈ I , (3.1)

then it solves also the problem (1.1), (1.3). We will say for brevity that the problem (1.1),
(1.3) allows for quasilinearization with respect to the linear part (L4x)(t).

If the same procedure is possible for another, say, j-nonresonant linear part, then the
problem (1.1), (1.3) has a j-type solution. Thus multiply solutions of the problem (1.1),
(1.3).
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3.2. Example. Consider the boundary value problem for

x(4) = α2 · |x|γ signx, (3.2)

x(0)= x′(0)= 0= x(1)= x′(1), (3.3)

where α �= 0, γ > 0, γ �= 1.
After the appropriate smooth truncation (“cutoff”) (cf. [9]) of the right-hand side in

x(4)− k4x = α2 · |x|γ signx− k4x, (3.4)

one gets multiple quasilinear problems for different values of k,

x(4)− k4x = Fk(x), (3.5)

where right sides in (3.4) and (3.5) coincide for |x| < Nk and Fk is bounded in modulus
by a constant Mk. Let Gk(t,s) be the respective Green function which allows for estimate
|Gk| ≤ Γk.

If the relation Γk ·Mk < Nk is satisfied for some k, then quasilinearization in the above
sense is possible with a linear part x(4)− k4x.

After the laborious work on estimation of the respective Green function, the “key”
relation Γk ·Mk < Nk takes the form below.

In order to check either the quasilinearization with a given k is possible, one should
verify the inequalities

k ·
(
1 +
√

2
)
ek

(
ek + 1

) < β · γ
γ/(γ−1)

|γ− 1| for k = (2n− 1)π, (3.6)

k ·
(
1 +
√

2
)
ek

(
ek − 1

) < β · γ
γ/(γ−1)

|γ− 1| for k = 2nπ, (3.7)

where β > 1 is a root of

βγ = β+ (γ− 1) · γγ/(1−γ). (3.8)

In Table 3.1 the results of calculations are provided. It is shown for certain values of
k in the form k = πn, n = 1,2 . . ., which parameters are appropriate for the inequalities
(3.6) and (3.7) to be satisfied.

This table may be interpreted as a set of multiplicity results for the boundary value
problem (3.2), (3.3).
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Table 3.1

γ = 4
5

β ≈ 1.3632 k = π; k = 2π

γ = 5
6

β ≈ 1.3553 k = π; k = 2π

γ = 6
7

β ≈ 1.3499 k = π; k = 2π; k = 3π

γ = 7
8

β ≈ 1.3461 k = π; k = 2π; k = 3π

γ = 8
9

β ≈ 1.3431 k = π; k = 2π; k = 3π; k = 4π

γ = 9
10

β ≈ 1.3407 k = π; k = 2π; k = 3π; k = 4π

γ = 10
11

β ≈ 1.3388 k = π; k = 2π; k = 3π; k = 4π; k = 5π

γ = 11
12

β ≈ 1.3373 k = π; k = 2π; k = 3π; k = 4π; k = 5π

γ = 12
13

β ≈ 1.3359 k = π; k = 2π; k = 3π; k = 4π; k = 5π

γ = 13
14

β ≈ 1.3349 k = π; k = 2π; k = 3π; k = 4π; k = 5π; k = 6π

. . . . . . . . .

γ = 14
13

β ≈ 1.3076 k = π; k = 2π; k = 3π; k = 4π; k = 5π; k = 6π

γ = 13
12

β ≈ 1.3065 k = π; k = 2π; k = 3π; k = 4π; k = 5π

γ = 12
11

β ≈ 1.3053 k = π; k = 2π; k = 3π; k = 4π; k = 5π

γ = 11
10

β ≈ 1.3038 k = π; k = 2π; k = 3π; k = 4π

γ = 10
9

β ≈ 1.3019 k = π; k = 2π; k = 3π; k = 4π

γ = 9
8

β ≈ 1.2998 k = π; k = 2π; k = 3π

γ = 8
7

β ≈ 1.2969 k = π; k = 2π; k = 3π

γ = 7
6

β ≈ 1.2933 k = π; k = 2π; k = 3π

γ = 6
5

β ≈ 1.2884 k = π; k = 2π

γ = 5
4

β ≈ 1.2813 k = π; k = 2π
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SANDWICH PAIRS

MARTIN SCHECHTER

Since the development of the calculus of variations, there has been interest in finding
critical points of functionals. This was intensified by the fact that for many equations
arising in practice the solutions are critical points of functionals. If a functional G is
semibounded, one can find a Palais-Smale (PS) sequences: G(uk)→ a, G′(uk)→ 0. These
sequences produce critical points if they have convergent subsequences (i.e., if G satisfies
the PS condition). However, there is no clear method of finding critical points of func-
tionals which are not semibounded. The concept of linking was developed to produce
Palais-Smale (PS) sequences for C1 functionalsG that separate linking sets. In the present
paper we discuss the situation in which one cannot find linking sets that separate the
functional. We introduce a new class of subsets that accomplishes the same results under
weaker conditions. We then provide criteria for determining such subsets. Examples and
applications are given.

Copyright © 2006 Martin Schechter. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Many problems arising in science and engineering call for the solving of the Euler equa-
tions of functionals, that is, equations of the form

G′(u)= 0, (1.1)

where G(u) is a C1 functional (usually representing the energy) arising from the given
data. As an illustration, the equation

−Δu(x)= f
(
x,u(x)

)
(1.2)

is the Euler equation of the functional

G(u)= 1
2
‖∇u‖2−

∫

F
(
x,u(x)

)
dx (1.3)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 999–1007
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on an appropriate space, where

F(x, t)=
∫ t

0
f (x,s)ds, (1.4)

and the norm is that of L2. The solving of the Euler equations is tantamount to finding
critical points of the corresponding functional. The classical approach was to look for
maxima or minima. If one is looking for a minimum, it is not sufficient to know that the
functional is bounded from below, as is easily checked. However, one can show that there
is a sequence, called a Palais-Smale (PS) sequence, satisfying

G
(
uk
)−→ a, G′

(
uk
)−→ 0 (1.5)

for a= infG. Such a sequence may not produce a critical point, but if it has a convergent
subsequence, then it does. If every PS sequence for G has a convergent subsequence, then
we say that G satisfies the PS condition. However, when extrema do not exist, there is no
clear way of obtaining critical points. In particular, this happens when the functional is
not bounded from either above or below. Until recently there was no organized proce-
dure for producing critical points which are not extrema. What can be used to replace
semiboundedness? We will describe an approach which is very useful in such cases. As a
substitute for semiboundedness, one looks for suitable sets that separate the given func-
tional. One looks for suitable subsets A, B of a Banach space E, which for a given C1

functional G on E satisfy

a0 := sup
A
G≤ b0 := inf

B
G. (1.6)

Ideally, we would want (1.6) to imply that G has a critical point, that is, a point u ∈ E
such that

G(u)= a≥ b0, G′(u)= 0. (1.7)

Clearly, this is too much to ask, since even semiboundedness is not sufficient to imply the
existence of a critical point. However, there are pairs of subsets such that (1.6) produces
a PS sequence:

G
(
uk
)−→ a, G′

(
uk
)−→ 0, (1.8)

where a≥ b0. If A, B are such that (1.6) always implies (1.8), we say that A links B. Con-
sequently, if A links B and G is a C1 functional on E which satisfies (1.6) and the PS
condition, then G has a critical point satisfying (1.7). Linking sets exist and are described
in the literature.

In the present paper, we discuss the situation in which one cannot find linking sets that
separate the functional, that is, satisfy (1.6). Are there weaker conditions that will imply
(1.8)? Our answer is yes, and we find pairs of subsets such that a condition weaker than
(1.6) produces a PS sequence. We have the following definition.
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Definition 1.1. Say that a pair of subsets A, B of a Banach space E forms a sandwich, if for
any G∈ C1(E,R), inequality

−∞ < b0 := inf
B
G≤ a0 := sup

A
G <∞ (1.9)

implies that there is a sequence satisfying

G
(
uk
)−→ c, b0 ≤ c ≤ a0, G′

(
uk
)−→ 0. (1.10)

Unlike linking, the order of a sandwich pair is immaterial, that is, if the pairA, B forms
a sandwich, so B, A does. Moreover, we allow sets forming a sandwich pair to intersect.
One sandwich pair has been studied in the past. We have (cf. [9–11]) the following theo-
rem.

Theorem 1.2. Let N be a closed subspace of a Hilbert space E, and let M = N⊥. Assume
that at least one of the subspaces M,N is finite-dimensional. Let G be a C1-functional on E
such that

m0 := inf
w∈M

G(w)�=−∞,

m1 := sup
v∈N

G(v)�=∞. (1.11)

Then there are a constant c ∈R and a sequence {uk} ⊂ E such that

G
(
uk
)−→ c, m0 ≤ c ≤m1, G′

(
uk
)−→ 0. (1.12)

It follows from this that M, N form a sandwich pair if one of them is finite-
dimensional. (Note that m0 ≤m1.)

Theorem 1.2 has been generalized as follows (cf. [8]).

Theorem 1.3. Let N be a closed subspace of a Hilbert space E, and let M = N⊥. Assume
that at least one of the subspaces M, N is finite-dimensional. Let G be a C1-functional on E
such that

m0 := sup
v∈N

inf
w∈M

G(v+w)�=−∞,

m1 := inf
w∈M

sup
v∈N

G(v+w)�=∞.
(1.13)

Then there are a constant c ∈R and a sequence {uk} ⊂ E such that

G
(
uk
)−→ c, m0 ≤ c ≤m1, G′

(
uk
)−→ 0. (1.14)

This constitutes the sum total of results of this type. To date, only complementing
subspaces have been considered with one of them being finite-dimensional. The purpose
of the present paper is to show that other sets can qualify as well.
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2. Criteria

In this section we present sufficient conditions for sets to qualify as sandwich pairs. We
have the following proposition.

Proposition 2.1. If A, B is a sandwich pair, and J is a diffeomorphism on the entire space
having a derivative J ′ satisfying

∥
∥J ′(u)−1

∥
∥≤ C, u∈ E, (2.1)

then JA, JB is a sandwich pair.

Theorem 2.2. Let N be a finite-dimensional subspace of a Banach space E. Let F be a
Lipschitz continuous map of E onto N such that F = I on N and

∥
∥F(g)−F(h)

∥
∥≤ K‖g −h‖, g,h∈ E. (2.2)

Then for each point p of N , A=N , B = F−1(p) forms a sandwich pair.

3. Applications

In the present section we assume that Ω is a bounded domain in Rn with boundary ∂Ω
sufficiently regular so that the Sobolev inequalities hold and the embedding of Hm,2(Ω)
in L2(Ω) is compact (cf. [1]). Let A be a selfadjoint operator on L2(Ω). We assume that
A≥ λ0 > 0 and that

C∞0 (Ω)⊂D :=D(A1/2)⊂Hm,2(Ω) (3.1)

for some m> 0, where C∞0 (Ω) denotes the set of test functions in Ω (i.e., infinitely differ-
entiable functions with compact supports in Ω), and Hm,2(Ω) denotes the Sobolev space.
If m is an integer, the norm in Hm,2(Ω) is given by

‖u‖m,2 :=
(
∑

|μ|≤m

∥
∥Dμu

∥
∥2
)1/2

. (3.2)

Here Dμ represents the generic derivative of order |μ|, and the norm on the right-hand
side of (3.2) is that of L2(Ω). We will not assume that m is an integer.

Let q be any number satisfying

2≤ q ≤ 2n
(n− 2m)

, 2m< n,

2≤ q <∞, n≤ 2m,
(3.3)

and let f (x, t) be a Carathéodory function on Ω×R. This means that f (x, t) is contin-
uous in t for a.e. x ∈ Ω and measurable in x for every t ∈ R. We make the following
assumptions.
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(A) The function f (x, t) satisfies

∣
∣ f (x, t)

∣
∣≤V(x)q|t|q−1 +V(x)W(x),

f (x, t)
V(x)q

= o(|t|q−1) as |t| −→∞,
(3.4)

where V(x) > 0 is a function in Lq(Ω) such that

‖Vu‖q ≤ C‖u‖D, u∈D, (3.5)

and W is a function in Lq
′
(Ω). Here

‖u‖q :=
(∫

Ω

∣
∣u(x)

∣
∣qdx

)1/q

,

‖u‖D := ∥∥A1/2u
∥
∥,

(3.6)

and q′ = q/(q− 1). (If Ω and V(x) are bounded, then (3.5) will hold automatically by the
Sobolev inequality. However, there are functions V(x) which are unbounded such that
(3.5) holds even on unbounded regions Ω.) With the norm (3.6), D becomes a Hilbert
space. Define

F(x, t) :=
∫ t

0
f (x,s)ds,

G(u) := ‖u‖2
D − 2

∫

Ω
F(x,u)dx.

(3.7)

It is readily shown thatG is a continuously differentiable functional on the whole ofD (cf.,
e.g., [10]). Since the embedding of D in L2(Ω) is a compact, the spectrum of A consists
of isolated eigenvalues of finite multiplicity

0 < λ0 < λ1 < ··· < λ� < ··· . (3.8)

(We take λ0 to be an eigenvalue.)
Let λ� , � > 0, be one of these eigenvalues. We assume that the eigenfunctions of λ� are

in L∞(Ω) and that the following hold:

2F(x, t)≤ λ�t2 +W1(x), x ∈Ω, t ∈R for some W1(x)∈ L1(R), (3.9)

λ�t
2 ≤ 2F(x, t), |t| ≤ δ for some δ > 0, (3.10)

νt2 ≤ 2F(x, t), x ∈Ω, t ∈R for some ν > λ�−1, (3.11)

H(x, t) := 2F(x, t)− t f (x, t)≤ C(|t|+ 1
)
, (3.12)

σ(x) := limsup
|t|→∞

H(x, t)
|t| < 0 a.e. (3.13)

We have the following theorem.
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Theorem 3.1. Under the above hypotheses,

Au= f (x,u), u∈D, (3.14)

has at least one nontrivial solution.

The proof of Theorem 3.1 implies.

Corollary 3.2. If λ� is a simple eigenvalue, then hypothesis (3.9) can be weakened to

2F(x, t)≤ λ�+1t
2 +W1(x), x ∈Ω, t ∈R for some W1(x)∈ L1(R) (3.15)

in Theorem 3.1.

We can essentially reverse the inequalities (3.9)–(3.13) and obtain the same results. In
fact we have the following theorem.

Theorem 3.3. Equation (3.14) has at least one nontrivial solution if we assume � > 0 and

λ�t
2 ≤ 2F(x, t) +W1(x), x ∈Ω, t ∈R for some W1(x)∈ L1(R), (3.16)

2F(x, t)≤ λ�t2, |t| ≤ δ for some δ > 0,

2F(x, t)≤ νt2, x ∈Ω, t ∈R for some ν < λ�+1,

H(x, t)≥−C(|t|+ 1
)
, x ∈Ω, t ∈R,

liminf
|t|→∞

H(x, t)
|t| > 0 a.e.

(3.17)

The proof of Theorem 3.3 implies.

Corollary 3.4. If λ� is a simple eigenvalue, then hypothesis (3.16) can be weakened to

λ�−1t
2 ≤ 2F(x, t) +W1(x), x ∈Ω, t ∈R for some W1(x)∈ L1(R) (3.18)

in Theorem 3.3.

4. Some generalizations

We now show that we can improve the results of the last section. For each fixed k, let
Nk denote the subspace of D :=D(A1/2) spanned by the eigenfunctions corresponding to
λ0, . . . ,λk, and let Mk =N⊥k ∩D. Then D =Mk ⊕Nk. We define

αk :=max
{

(Av,v) : v ∈Nk, v ≥ 0, ‖v‖ = 1
}

, (4.1)

where ‖v‖ denotes the L2(Ω) norm of v. We assume that A has an eigenfunction ϕ0 of
constant sign a.e. on Ω corresponding to the eigenvalue λ0.
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Next we define for a∈R,

γk(a) :=max
{

(Av,v)− a∥∥v−∥∥2
: v ∈Nk,

∥
∥v+

∥
∥= 1

}
,

Γk(a) := inf
{

(Aw,w)− a∥∥w−∥∥2
:w ∈Mk,

∥
∥w+

∥
∥= 1

}
,

(4.2)

where u± =max{±u,0}.
We take any integer � ≥ 0 and let N denote the subspace of L2(Ω) spanned by the

eigenspaces of A corresponding to the eigenvalues λ0,λ1, . . . ,λ� . We take M = N⊥ ∩D,
where D =D(A1/2). We assume that F(x, t) satisfies

a1
(
t−
)2

+ γ�
(
a1
)(
t+
)2−W1(x)≤ 2F(x, t)≤ a2

(
t−
)2

+ ν
(
t+
)2

, x ∈Ω, t ∈R, (4.3)

for numbers a1, a2 satisfying α� < a1 ≤ a2, whereW1 is a function in L1(Ω) and ν < Γ�(a2).
We also assume that

2F(x, t)≤ λ�+1t
2, |t| ≤ δ for some δ > 0, (4.4)

∣
∣ f (x, t)

∣
∣≤ C|t|+W(x), W ∈ L2(Ω),

f (x, t)
t

−→ α±(x) a.e. as t −→±∞,
(4.5)

and the only solution of

Au= α+(x)u+−α−(x)u− (4.6)

is u≡ 0. We have the following theorem.

Theorem 4.1. Under the above hypotheses, (3.14) has a nontrivial solution.

5. Another application

We first show how Theorem 1.3 can be strengthened.

Theorem 5.1. Under the hypotheses of Theorem 1.3, the following is true. For any sequence
{Rk} ⊂R+ such that Rk →∞, there are a constant c ∈R and a sequence {uk} ⊂ E such that

G
(
uk
)−→ c, m0 ≤ c ≤m1,

(
Rk +

∥
∥uk

∥
∥
)∥
∥G′

(
uk
)∥
∥≤ m1−m0

ln(4/3)
. (5.1)

Note that the conclusion of this theorem produces a sequence stronger than a PS se-
quence. We apply it to the following situation.

Theorem 5.2. Let g(x) be a function ∈ L2
loc = L2

loc(Rn) satisfying

g(x)≥ c0 > 0, x ∈Rn, (5.2)

for some positive constant c0, and such that multiplication by g−1 is a compact operator from
H1 to L2. Then there exists a sequence of eigenvalues for the equation

−Δu(x) + g(x)2u(x)= λu(x), x ∈Rn, (5.3)
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satisfying

0 < λ0 < λ1 < ··· < λk < ··· . (5.4)

Let f (x, t) be a Carathéodory function satisfying Hypothesis (A). Assume that

H(x, t) := 2F(x, t)− t f (x, t)≥−W1(x)∈ L1, x ∈Rn, t ∈R,

H(x, t)−→∞ a.e. as |t| −→∞,
(5.5)

where

F(x, t) :=
∫ t

0
f (x,s)ds. (5.6)

Assume also that for some � > 0 there are numbers a1, a2 such that α� < a1 ≤ a2, and F(x, t)
satisfies (4.4). Then

−Δu(x) + g(x)2u(x)= f
(
x,u(x)

)
, x ∈Rn, (5.7)

has at least one solution.

Remark 5.3. Sufficient conditions on g(x) which guarantee that multiplication by g−1 is
compact are given in [7]. The following is sufficient:

μ
{
x ∈ B1(y) : g(x) <m

}−→ 0 as |y| −→∞ (5.8)

for each m> 0. Here μ is the Lebesgue measure and B1(y) is the ball in Rn of radius 1 and
center y.

This theorem generalizes results of several authors, including [2–6], with various con-
ditions on the function g(x) to insure that the spectrum of (5.3) is discrete. Most of the
cited authors considered the superlinear problem.
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REGULAR AND SINGULAR DEGENERATE BOUNDARY VALUE
PROBLEMS IN BANACH-VALUED FUNCTION SPACES

VELI B. SHAKHMUROV

This study focuses on nonlocal boundary value problems (BVPs) for linear and nonlinear
regular and singular degenerate differential operator equations (DOE) of second order,
with varying coefficients and that contain Schrödinger-type equations. In regular degen-
erate case nonlocal BVPs, in singular case local BVPs are considered. Several conditions
are obtained, which guarantee the maximal regularity, Fredholmness, and positivity of
linear BVP in Banach-valued Lp-spaces. Then by using these results the maximal regular-
ity of parabolic nonlocal initial boundary value problems (IBVP) and the existence and
uniqueness of solution of nonlinear nonlocal BVPs are shown.

Copyright © 2006 Veli B. Shakhmurov. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Statement of problems

Consider the following nonlocal BVPs for degenerate elliptic DOE:

n∑

k=1

ak(x)D[2]
k u(x) +Aλ(x)u(x) +

n∑

k=1

Ak(x)D[1]
k u(x)= f (x), x ∈G⊂ Rn,

Lk ju=
[
αk ju

[mkj]
(
Gk0
)

+βk ju(mkj )
(
Gkb

)]
+
Nk j∑

i=1

δk jiu
[mkj ]

(
Gki
)= 0,

j = 1,2, k = 1,2, . . . ,n;

(1.1)

nonlocal IBVP parabolic problem

∂u(t,x)
∂t

+
n∑

k=1

ak(x)D[2]
k u(t,x) +Aλ(x)u(t,x) +

n∑

k=1

Ak(x)D[1]
k u(x)= f (t,x),

Lk ju=
[
αk ju

[mkj ]
(
t,Gk0

)
+βk ju[m]k j

(
t,Gkb

)]
+
Nk j∑

i=1

δk jiu
[mkj ]

(
t,Gki

)

= 0, u(0,x)= 0, j = 1,2, k = 1,2, . . . ,n, t ∈ R+, x ∈G⊂ Rn;

(1.2)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1009–1018
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and nonlinear nonlocal BVP

n∑

k=1

ak(x)D[2]
k u(x) +Aλ(x)u(x) +

∑

σ

A
(
x,D[σ]u

)
= F

(
x,D[σ]u

)
, x ∈G⊂ Rn,

Lk ju=
[
αk ju

[m]k j
(
Gk0
)

+βk ju[mkj ]
(
Gkb

)]
+
Nk j∑

i=1

δk jiu
[mkj ]

(
Gki
)= 0,

j = 1,2, k = 1,2, . . . ,n,

(1.3)

where

G= {x = (x1,x2, . . . ,xn
)
, 0 < xk < bk

}
, G+ = R+×G,

Gk0 =
(
x1,x2, . . . ,xk−1,0,xk+1, . . . ,xn

)
, σ = (σ1,σ2, . . . ,σn

)
,

Dσ =Dσk
k , σk = 0,1, Gkb =

(
x1,x2, . . . ,xk−1,bk,xk+1, . . . ,xn

)
,

Gki =
(
x1,x2, . . . ,xk−1,xki,xk+1, . . . ,xn

)
, γk

(
Gk0
)= 0,

∫ bk

0
γ−1
k (z)dz <∞,

mk ∈ {0,1}, D2
k =

∂2

∂x2
k

, k = 1,2, . . . ,n, Aλ(x)= A(x) + λ;

(1.4)

αjk, βjk, δjki are complex numbers, ak are real-valued function on G and A(x), Ak(x)

for x, y ∈ G are possible unbounded operators in E, and D[i]
k u(x)= (γk(xk)(d/dx))iu(x),

0≤ νk ≤m− 1.
In the singular degenerate case, that is, for

∫ bk
0 γ−1

k (z)dz =∞ we consider BVPs of type
(1.1) in which we do not contain degenerate linesGk0. Let B denote a realization operator
of BVP (1.1) in Lp(G;E).

We say that the degenerate elliptic BVP (1.1) is a maximal Lp-regular, if for all f ∈
Lp(G;E) there exists a unique solution u∈W [2]

p,γ(G;E(A),E) of the problem (1.1) satisfy-
ing this problem almost everywhere and there exists a positive constant C independent
on f , such that has the following estimate:

n∑

k=1

∥
∥
∥D[2]

k u
∥
∥
∥
Lp(G;E)

+‖Au‖Lp(G;E) ≤ C‖ f ‖Lp(G;E). (1.5)

We say that the parabolic problem (1.2) is a maximal Lp-regular, if for all f ∈ Lp(G+;E)
there exists a unique solution u satisfying the problem (1.2) almost everywhere and there
exists a positive constant C independent on f , such that

∥
∥
∥
∥
∂u(t,x)
∂t

∥
∥
∥
∥
Lp(G+;E)

+‖Bu‖Lp(G+;E) ≤ C‖ f ‖Lp(G+;E). (1.6)



Veli B. Shakhmurov 1011

2. Maximal regularity for nonhomogeneous BVPs

In a Banach space E consider the following degenerate nonlocal boundary value problem
with parameter:

Lu=−tu[2](x) +Au(x) +B1(x)u[1](x) +B2(x)u(x)= f (x), x ∈ (0,1), (2.1)

L1u= α0t
θ1u[m1](0) +

M1∑

j=1

tηj T1 ju
(
x1 j
)= f1,

L2u= β0t
θ2u[m2](1) +

M2∑

j=1

tηj T2 ju
(
x2 j
)= f2,

(2.2)

where xk j ∈ [0,1], ηj = 1/2p(1− ν) when xk j = 0, and ηj = 1/2p when xk j �= 0, moreover

θ1 = pm1(1− ν) + 1
2p(1− ν)

, θ2 = pm2 + 1
2p

, u[i] =
(

xν d

dx

)i
u(x),

ν≥ 0, mk ∈ {0,1}, k = 1,2;
(2.3)

α0,β0 are complex numbers, t is a small parameter, and fk ∈ Ek = (E(A),E)θk ,p, k = 1,2,
where A, Bk(x) for x ∈ [0,1], and Tk j are possible unbounded operators in E.

The function u that belongs to a space

W [2]
p,ν
(
0,1;E(A),E

)= {u; u∈ Lp
(
0,1;E(A)

)
, u[2] ∈ Lp(0,1;E)

}
,

‖u‖
W [2]

p,ν

(
0.1;E(A),E

) = {‖Au‖Lp(0,1);E +
∥
∥u[2]

∥
∥
Lp(0,1;E) <∞

} (2.4)

and satisfies (2.1) a.e. on (0,1) is said to be solution of (2.1).
Let

W [2]
p,ν
(
0,1;E(A),E,Lk

)= {u; u∈W [2]
p,ν
(
0,1;E(A),E

)
, Lku= 0, k = 1,2

}
. (2.5)

Consider the following BVP:

Lu=−tu[2](x) +Au(x)= f (x), x ∈ (0,1), (2.6)

L1u= α0t
θ1u[m1](0) +

M1∑

j=1

tηj T1 ju
(
x1 j
)= f1,

L2u= β0t
θ2u[m2](1) +

M2∑

j=1

tηj T2 ju
(
x2 j
)= f2.

(2.7)

The following results are obtained.

Theorem 2.1. Let E be a Banach space that satisfies the multiplier condition with respect to
p and weighted function γ = yν/(1−ν), 0 ≤ ν < 1− 1/p, let A be an R-positive operator in E
for ϕ∈ (0,π], 0 < t ≤ t0 <∞ and α0�= 0, β0�= 0.
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Then the operator u→D0(λ, t)u= {L0(λ, t)u,L10u,L20u} for |argλ| ≤ π−ϕ and for suf-

ficiently large |λ| is an isomorphism from W [2]
p,ν(0,1;E(A),E) onto Lp(0,1;E) +E1 +E2 and

the coercive uniform estimate for the solution of (2.6)-(2.7)

|λ|‖u‖Lp(0,1;E) +
∥
∥
∥tu[2]

∥
∥
∥
Lp(0,1:E)

+‖Au‖Lp(0,1:E)

≤ C
[

‖ f ‖Lp(0,1:E) +
2∑

k=1

(∥
∥ fk
∥
∥
Ek

+ |λ|1−θk∥∥ fk
∥
∥
E

)] (2.8)

holds with respect to parameters λ and t.

3. Coerciveness on the space variable and Fredholmness

Theorem 3.1. Let all conditions of Theorem 2.1 be satisfied and A−1 ∈ σ(E). Moreover,
suppose

(1) for any ε > 0 and for almost all x ∈ [0,1],

∥
∥B1(x)u

∥
∥≤ ε‖u‖(E(A),E)1/2,1 +C(ε)‖u‖, u∈ (E(A),E

)
1/2,1,

∥
∥B2(x)u

∥
∥≤ ε‖Au‖+C(ε)‖u‖, u∈D(A),

(3.1)

for u∈ (E(A),E)1/2,1 the function B1(x)u and for u∈D(A) the function B2(x)u are
measurable on [0,1] in E;

(2) if mk = 0, then Tk j = 0; if mk = 1, then for u∈ (E(A),E)σ ,p and ε > 0,

∥
∥Tk ju

∥
∥

(E(A),E)1/2+σ ,p
≤ ε‖u‖(E(A),E)σ ,p +C(ε)‖u‖, (3.2)

where σ = 1/2p(1− ν), if xk j = 0, σ = 1/2p if xk j �= 0.
Then

(a) the coercive uniform estimate for the solution of (2.1)-(2.2)

∥
∥
∥tu[2]

∥
∥
∥
Lp(0,1:E)

+‖Au‖Lp(0,1:E)

≤ C
[

‖Lu‖Lp(0,1;E) +
2∑

k=1

∥
∥Lku

∥
∥

(E(A),E)θk ,p +‖u‖Lp(0,1;E)

] (3.3)

holds with respect to the parameter t;

(b) the operator u→ D(t)u = {Lu,L1u,L2u} from W [2]
p,ν(0,1;E(A),E) into Lp(0,1;E)

+ (E(A),E)θ1 + (E(A),E)θ2 is bounded and Fredholm.
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4. Maximal regularity for regular degenerate nonlocal BVPs

Let us now consider a nonlocal BVP for ordinary DOE

(L+ λ)u= au[2](x) +Aλu(x)= f (x), x ∈ (0,b), (4.1)

Lku= αku[mk](0) +βku[mk](b) +
Nk∑

j=1

δk ju
[mk](xk j

)= 0, k = 1,2, (4.2)

where D[i]u(x)= (γ(x)(d/dx))iu(x), mk ∈ {0,1}; a, αk, βk, δk j are complex numbers and
xk j ∈ (0,b); A is a possible unbounded operator in E. Let ωj , j = 1,2, be roots of an
equation aω2 + 1= 0.

Condition 4.1. Let A be a positive operator in a Banach space E for ϕ ∈ (0,π/2), a�= 0,
and |argω1 − π| ≤ π/2− ϕ, |argω2| ≤ π/2− ϕ, η = (−1)m1α1β2 − (−1)m2α2β1 �= 0; and
γ ∈ C([0,1])∩C2(0,1),

∫ 1
0 γ
−1(z)dz <∞, for 0 < y1 ≤ y2 ≤ 1, there exist the positive con-

stants Ck, k = 1,2,3, such that

γ
(
y1
)≤ C1γ

(
y2
)
,

γ1/p(y2
)
γ−1/p(y1

)≤ C2

∣
∣
∣
∣

[∫ y2

0
γ−1(z)dz

]ν[∫ y1

0
γ−1(z)dz

]−ν∣∣
∣
∣,

∣
∣
∣γ1/p(y2

)
γ−1/p(y1

)− 1
∣
∣
∣≤ C3

∣
∣
∣
∣

[∫ y2

0
γ−1(z)dz

]ν[∫ y1

0
γ−1(z)dz

]−ν

− 1
∣
∣
∣
∣, 0≤ ν < 1− 1

p
.

(4.3)

Theorem 4.2. Let Condition 4.1 be satisfied for ϕ∈ (0,π/3). Let E be a Banach space sat-
isfying the multiplier condition with respect to p ∈ (1,∞) and A is an R-positive operator in

E. Then for all f ∈ Lp(0,b;E) there exists a unique solution u ∈W [2]
p (0,b;E(A),E) of the

problem (4.1)-(4.2) and the coercive uniform estimate for the solution of (4.1)-(4.2)

2∑

j=0

|λ|1− j/2
∥
∥
∥u[ j]

∥
∥
∥
Lp

+‖Au‖Lp ≤ C‖ f ‖Lp (4.4)

holds with respect to parameter λ.

Remark 4.3. If a is a real negative number, then part (2) of Condition 4.1 is satisfied for
0 < ϕ≤ π and Theorems 2.1, 3.1 are valid for 0 < ϕ≤ π.

5. Regular degenerate partial DOE

5.1. Regular degenerate partial DOE with constant coefficients

n∑

k=1

akD
[2]
k u(x) +Aλu(x)= f (x), x ∈G, (5.1)

Lk ju=
[
αk ju

[mkj ]
(
Gk0
)

+βk ju[mkj]
(
Gkb

)]
+
Nk j∑

i=1

δk jiu
[mkj ]

(
Gki
)= 0, j = 1,2, (5.2)
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αk, βk, δk j are complex numbers, ak are complex numbers, andA is a possible unbounded
operator in E.

Let ωk j , j = 1,2, k = 1,2, . . . ,n, be roots of akω2 + 1= 0.

Condition 5.1. Let the following conditions be satisfied:
(1) E is a Banach space satisfying multiplier condition with respect to p ∈ (1,∞);
(2) ak �= 0, and |argωk1−π| ≤ π/2−ϕ, |argωk2| ≤ π/2−ϕ for ϕ∈ (0,π/3);
(3) ηk = (−1)m1αk1βk2− (−1)m2αk2βk1�= 0, k = 1,2, . . . ,n;

(4) γk ∈ C([0,bk])∩C2(0,bk),
∫ bk

0 γ−1
k (z)dz <∞, for 0 < y1 ≤ y2 ≤ bk, there exist the

positive constants Cj , j = 1,2,3, such that

γ
(
y1k
)≤ C1γ

(
y2k
)
,

γ
1/p
k

(
y2k
)
γ
−1/p
k

(
y1k
)≤ C2

∣
∣
∣
∣

[∫ y2k

0
γ−1
k (z)dz

]νk[∫ y1k

0
γ−1(z)dz

]−νk∣∣
∣
∣,

∣
∣
∣γ

1/p
k

(
y2k
)
γ
−1/p
k

(
y1k
)− 1

∣
∣
∣≤ C3

∣
∣
∣
∣

[∫ y2k

0
γ−1
k (z)dz

]νk[∫ y1k

0
γ−1
k (z)dz

]−νk

− 1
∣
∣
∣
∣,

0≤ νk < 1− 1
p
.

(5.3)

Theorem 5.2. Let Condition 5.1 be satisfied and A is an R-positive operator in E. Then
(a) the problem (5.1)-(5.2) for f ∈ Lp(G;E), λ ∈ S(ϕ), and for sufficiently large |λ|,

has a unique solution that belongs to the space W [2]
p,γ(G;E(A),E) and the coercive

uniform estimate for the solution of (5.1)-(5.2)

n∑

k=1

2∑

i=0

(
1 + |λ|)1−i/2∥∥

∥D[i]
k u
∥
∥
∥
Lp(G;E)

+‖Au‖Lp(G;E) ≤M‖ f ‖Lp(G;E) (5.4)

holds with respect to parameter λ;
(b) the realization operator L0 that generated by BVP (5.1)-(5.2) is positive in Lp(G;E).

5.2. Regular degenerate partial DOE with variable coefficients. Consider the bound-
ary value problem (1.1). By using localization arguments as in [2] and Theorem 5.2, we
obtain the following.

Theorem 5.3. Let Condition 5.1 be satisfied for all x ∈G and
(1) A(x) is an R-positive in E uniformly with respect to x and A(G0k)= A(Gbk), ak(x)

are continuous functions on Ḡ such that ak(Gj0)= ak(Gjb), k, j = 1,2, . . . ,n;
(2) A(x)A−1(x0)∈C(G;B(E)) and for any ε>0, for a.e. x∈G and for u∈(E(A),E)1/2,∞,

∥
∥Ak(x)u

∥
∥≤ ε‖u‖(E(A),E)1/2,∞ +C(ε)‖u‖. (5.5)
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Then
(a) the problem (1.1) for f ∈ Lp(G;E), λ ∈ S(ϕ), and for sufficiently large |λ|, has a

unique solution that belongs to the space W [2]
p,γ(G;E(A),E) and the coercive uniform

estimate for the solution of (1.1)

n∑

k=1

2∑

i=0

(
1 + |λ|)1−i/2∥∥

∥D[i]
k u
∥
∥
∥
Lp(G;E)

+‖Au‖Lp(G;E) ≤M‖ f ‖Lp(G;E) (5.6)

holds with respect to parameter λ;
(b) the operator O generated by BVP (1.1) is positive in Lp(G;E).

Result 5.4. Theorem 5.3 implies that the differential operator O has a resolvent operator
(O+ λI)−1 for λ∈ S(ϕ), ϕ∈ (0,π/3), and the estimate holds

n∑

k=1

2∑

i=0

|λ|1−i/2
∥
∥
∥D[i]

k (O+λI)−1
∥
∥
∥
B(Lp(G;E))

+
∥
∥A(O+ λI)−1

∥
∥
B(Lp(G;E)) ≤ C. (5.7)

Theorem 5.5. Let all conditions of Theorem 5.3 hold and A−1 ∈ σ∞(E). Then the operator

O from W [2]
p,γ(G;E(A),E) into Lp(G;E) is Fredholm.

Proof. Theorem 5.3 implies that the operator O+ λI sufficiently large |λ| has a bounded

inverse (O + λI)−1 from Lp(G;E) to W [2]
p,γ(G;E(A),E), that is, the operator O + λI is

Fredholm from W [2]
p,γ(G;E(A),E) into Lp(G;E). Moreover, by virtue of Remark 1, Theo-

rem A2 and the perturbation theory [1] we obtain that the operator O is Fredholm from

W [2]
p,γ(G;E(A),E) into Lp(G;E). �

Remark 5.6. If ak are negative-valued functions, then part (2) of Condition 5.1 is satisfied
for 0 < ϕ≤ π and Theorems 5.2–5.5 are valid for 0 < ϕ≤ π.

Remark 5.7. Conditions ak(Gj0)= ak(Gjb), A(Gk0)= A(Gkb) arise due to nonlocality of
the boundary conditions (1.1). If boundary conditions are local, then conditions men-
tioned above are not required anymore.

6. IBVP for parabolic DOE

By applying Theorem 5.2 and using [3, Theorem 4.2] we obtain the following.

Theorem 6.1. Let all conditions of Theorem 5.3 hold. Then the parabolic problem (1.2) for
λ∈ S(ϕ0), ϕ < ϕ0 ∈ (0,π/3), and sufficiently large |λ| is maximal Lp-regular.

Result 6.2. (a) If we put ak(x) = −1, Ak(x) = 0, k = 1,2, . . . ,n, in (1.1), then we obtain
from Theorem 5.2 the maximal regularity,R-positivity and Fredholmness of Schrödinger-
type operator

S1u=−Δu(x) +A(x)u(x) (6.1)

with nonlocal boundary conditions in Banach-valued Lp(G;E) space.
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(b) If we put ak(x) = −i, Ak(x) = 0, k = 1,2, . . . ,n, in (1.2), then we obtain from
Theorem 5.5 the maximal regularity of Schrödinger-type operator

S2u= ∂u(x, t)
∂t

− iΔu(x, t) +A(x)u(x, t) (6.2)

with nonlocal boundary conditions in Lp(G+;E) space.

7. BVP for nonlinear DOE

Let us consider the nonlinear BVP (1.3). We denote Lp(G;E) and W [2]
p,γ(G;E(A),E) by X

and Y , respectively. Moreover, we let

A(x,u)= A0(x), Gk =
(
0,b1

)×···(0,bk−1
)× (0,bk+1

)×···× (0,bn
)
,

Bk j =
(
W [2]

p,γ
(
Gk,E(A),E

)
, Lp

(
Gk;E)

)

η
k j

, ηk j = j + 1/p
2

,

Y0 =
{
u : u∈W [2]

p,γ
(
G;E(A),E

)
, Lk ju= 0

}
,

σ = (σ1,σ2, . . . ,σn
)
, Dσ = {Dσk

k

}
, σk = 0,1,

B0 =
∏

Bk j , j = 0,1, k = 1,2, . . . ,n.

(7.1)

Condition 7.1. Let the following conditions be satisfied:
(1) E is a Banach space satisfying the multiplier condition with respect to p ∈ (1,∞).

Suppose there exist hk j ∈ Bk j , such that the operator A(x) = A(x,H) for H =
{hk j} is R-positive in E uniformly with respect to x ∈G;

(2) ak �= 0, ak(x) are continuous functions on Ḡ such that ak(Gj0)= ak(Gjb), k, j =
1,2, . . . ,n, and |argωk1−π| ≤ π/2−ϕ, |argωk2| ≤ π/2−ϕ for ϕ∈ (0,π/3) for all
x ∈G;

(3) ηk(x)�= 0, k = 1,2, . . . ,n, for all x ∈G;
(4) A(x)A−1(x0)∈ C(G;B(E)), A(G0k)= A(Gbk), and for u∈(E(A),E)1/2,1 ,

∥
∥Aα(x)u

∥
∥≤ ε‖u‖(E(A),E)|α:l|,1 +C(ε)‖u‖; (7.2)

(5) A(x,U) for x ∈G, U = {uk j} ∈ B0, uk j ∈ Bk j is a ϕ-positive operator in a Banach
space E for ϕ ∈ (0,π/2), where domain definition D(A(x,U)) does not depend
on x,U and A : G× B0 → B(E(A),E) is continuous. Moreover, for each R > 0
there is a constant L(R) > 0 such that

∥
∥
[
A(x,U)−A(x,Ū

)]
υ
∥
∥
E ≤ L(R)

∥
∥U − Ū∥∥B0

‖Aυ‖E (7.3)

for x ∈G, U ,Ū ∈ B0, Ū = {ūk j}, ūk j ∈ Bk j , ‖U‖B0 , ‖Ū‖B0 ≤ R;
(6) f (·) = F(·,0) ∈ Lp(G;E); the function F : G×B0 → E such that F(·,U) is mea-

surable for each U ∈ B0 and F(x,·) is continuous for a.a. x∈G. Moreover,
‖F(x,U)− F(x,Ū)‖E ≤ ϕR(x)‖U − Ū‖B0 for a.a. x ∈ G, U ,Ū ∈ B0 and ‖U‖B0 ,
‖Ū‖B0 ≤ R.

Theorem 7.2. Let Condition 7.1 be held. Then the problem (1.3) has a unique solution that

belongs to space W [2]
p,γ(G;E(A),E).
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8. BVP for singular degenerate partial DOE

Consider the BVP

n∑

k=1

akD
[2]
k u(x) +Aλ(x)u(x) +

n∑

k=1

Ak(x)D[1]
k u(x)= f (x), x ∈G⊂ Rn,

Lk ju= βk ju(mkj )
(
Gkb

)
+
Nk j∑

i=1

δk jiu
[mkj ]

(
Gki
)= 0, j ≤ 2, k = 1,2, . . . ,n,

(8.1)

where αjk, βjk, δjki are complex numbers, ak are complex numbers, and A(x), Ak(x) for
x, y ∈G are, generally speaking, unbounded operators in E and

D[i]
k u(x)=

(

γk
(
xk
) d

dx

)i
u(x), γk(0)= 0,

∫ bk

0
γ−1
k (z)dz =∞, 0≤ νk ≤m− 1.

(8.2)

Condition 8.1. Let the following conditions be satisfied:
(1) E is a Banach space satisfying multiplier condition with respect to p ∈ (1,∞);
(2) ak �= 0, and |argωk1−π| ≤ π/2−ϕ, |argωk2| ≤ π/2−ϕ for ϕ∈ (0,π/3);
(3) ηk = (−1)m1αk1βk2− (−1)m2αk2βk1�= 0, k = 1,2, . . . ,n;
(4) γk ∈ C([0,bk])∩C2(0,bk), for 0 < y1 ≤ y2 ≤ bk, there exist the positive constants

Cj , j = 1, βk, and δk such that

γ
(
y1k
)≤ C1γ

(
y2k
)
,

γk
(
y2k
)
γ−1
k

(
y1k
)≤ C2

[

δk

∫ y2k

y1k

γ−1
k (z)dz

]∣
∣
∣γ

1/p
k

(
y2k
)
γ
−1/p
k

(
y1k
)− 1

∣
∣
∣≤ gk

(∫ y2k

y1k

γ−1
k (z)dz

)

,

(8.3)

where gk such nonnegative functions that

∫∞

−∞
exp

[−βk|z|
]
gk(z)|z|−1dz <∞. (8.4)

Theorem 8.2. Let Condition 8.1 be satisfied and A is an R-positive operator in E. Then
(a) the BVPs (8.1) for f ∈ Lp(G;E) and for sufficiently large |λ| has a unique solution

that belongs to the space W [2]
p,γ(G;E(A),E) and the coercive uniform estimate for the

solution of (8.1)

n∑

k=1

2∑

i=0

(
1 + |λ|)1−i/2∥∥

∥D[i]
k u
∥
∥
∥
Lp(G;E)

+‖Au‖Lp(G;E) ≤M‖ f ‖Lp(G;E) (8.5)

holds with respect to parameter λ;
(b) the realization operator L0 that generated by BVP (8.1) is positive in Lp(G;E).
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We survey some new results obtained recently in joint papers with S. Aizicovici and N. S.
Papageorgiou, concerning the existence of integral solutions for nonlocal Cauchy prob-
lem and for the periodic problem to evolution inclusions in Banach spaces.

Copyright © 2006 Vasile Staicu. This is an open access article distributed under the Cre-
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reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper we study the existence of integral solutions for the nonlocal Cauchy problem

u′(t)∈−Au(t) +F
(
t,u(t)

)
, t ∈ [0,b]; u(0)= g(u), (1.1)

and for the periodic problem

−u′(t)∈ Au(t) +F
(
t,u(t)

)
, t ∈ [0,b]; u(0)= u(b), (1.2)

whereA :D(A)⊂ X → X is anm-accretive operator, F : T ×X → 2X is a multivalued map,
and g : C(I ;D(A))→D(A).

The study of nonlocal initial value problems in Banach spaces was initiated by
Byszewski [14], who considered an equation of the form (1.1) with A linear, F single
valued, and g of a special structure. Results on fully nonlinear abstract nonlocal Cauchy
problem have been obtained in [2–4] and very recently in [24]. These papers are pri-
marily concerned with equations governed by accretive operators and single-valued per-
turbations. To our knowledge, the only existing result for (1.1) with A nonlinear and
F multivalued was obtained in [4], where F is supposed to be closed-valued and lower
semicontinuous in its second variable. On the other hand, finite-dimensional versions of
(1.1) (with A= 0) appear in [12, 18], while abstract semilinear evolution inclusions with
nonlocal initial conditions have been considered in [1, 9–11]. In particular, in [1], the
problem (1.1) is analyzed under the assumption that −A is the infinitesimal generator

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1019–1027
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of a linear C0-semigroup on X , F is closed, convex-valued, and upper semicontinuous in
its second argument, and g is an integral operator. Our result for problem (1.1) comple-
ments [4] by allowing F to be upper semicontinuous in its second variable (as opposed to
lower semicontinuous) and also generalizes the theory of [1] to the case when A is fully
nonlinear.

The periodic problem (1.2) has been studied by many authors, mainly the case when
the perturbation is a single-valued map. A common approach is to impose conditions on
the perturbation term strong enough in order to guarantee the uniqueness of solutions
of a related Cauchy problem and then to apply some of the classical fixed point theorems
to the corresponding Poincaré map. The first result in this direction is due to Browder
[13], who considered the case when A is a linear, time-dependent, monotone operator
in a Hilbert space. The next major result on periodic solutions for semilinear evolution
equations can be traced in the work of Pruss [22], who considered the case when the lin-
ear operator −A generates a compact semigroup and F : T ×D→ X is continuous and
such that A+ F satisfies a Nagumo-type tangential condition. Subsequently, Becker [8]
considered the case in which −A generates a compact semigroup, and satisfies an extra
condition (which amounts to saying that A− λI is m-accretive for some λ > 0). The first
fully nonlinear existence results for the periodic problem (1.2) with F single-valued were
obtained by Vrabie [23] and Hirano [19]. Vrabie’s result can be viewed as an extension of
Becker’s result to general Banach spaces and to fully nonlinear operatorsA and F. Hirano,
on the other hand, improved Vrabie’s result to the specific case in which A is the subdif-
ferential of a lower semicontinuous convex and proper function acting on a real Hilbert
space. Cascaval and Vrabie [15] extended Hirano’s result to the case whenA ism-accretive
and −A generates a compact semigroup in a Hilbert space. A usual assumption to get ex-
istence of solutions for the periodic problem is a kind of coercivity condition relating
A and F. Nonlinear periodic problems with a multivalued perturbation were studied by
many authors within the framework of evolution triples. Bader’s paper [5] considered
semilinear problems and extended to evolution inclusions some of the results of Pruss,
while the work of Hu and Papageorgiou [20] is related to the papers of Vrabie and Hi-
rano. Recently, Bader and Papageorgiou [6] and Hu and Papageorgiou [21] studied the
existence of strong solutions for the periodic problem for nonlinear evolution inclusions
of subdifferential type in Hilbert spaces.

For the nonlinear periodic evolution inclusion (1.2), we proved three existence results
in the broader framework of reflexive Banach spaces and m-accretive operators using the
notion of integral solution. The first one deals with the case when the multivalued nonlin-
earity F(t,u) is convex-valued, the second one with the case when F(t,u) is nonconvex-
valued, and finally the third existence result is for the case when F(t,u) is replaced by
extF(t,u), the set of extreme points of F(t,u). We emphasize that with the exception of
the third theorem, we do not impose any strong accretivity restriction onA. Also, as com-
pared to earlier works, we do not need any condition relating A and F. The plan of the
paper is as follows. In Section 2 we review some background material on multifunctions,
m-accretive operators, and evolution equations. The existence result for the problem (1.1)
is presented in Section 3 and the existence results for the periodic problem (1.2) are given
in Section 4.
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2. Preliminaries

For easy reference, in this section we present some notations, basic definitions, and facts
from nonlinear operator theory and multivalued analysis, which we will need in the se-
quel.

Throughout this paper, X is a reflexive, separable Banach space with norm ‖ · ‖ and
2X denotes the collection of all subsets of X . For Ω∈ 2X , we denote by Ω the closure of a
set Ω. Let X∗ be the dual space of X , with norm ‖ · ‖∗, let σ(X ,X∗) be the weak topology
on X , and denote by Xw the space X endowed with the topology σ(X ,X∗). The duality
pairing between X and X∗ will be denoted by 〈·,·〉. The duality mapping J : X → 2X

∗
is

given by J(x) := {x∗ ∈ X∗ : x∗(x) = ‖x‖2 = ‖x∗‖2∗}, for all x ∈ X . The so-called upper
semi-inner product on X is then defined by 〈y,x〉+ := sup{x∗(y) : x∗ ∈ J(x)}. Recall that
if X∗ is uniformly convex, then J is single-valued and uniformly continuous on bounded
subsets of X .

Let A : X → 2X be a multivalued operator in X . The domain and the range of A are
defined by D(A) := {x ∈ X : Ax 
=∅} and R(A) :=⋃x∈D(A)Ax, respectively. The operator
A is called m-accretive if the following conditions are satisfied:

(i) 〈y′ − y,x′ − x〉+ ≥ 0, for all x,x′ ∈D(A), y ∈ Ax, and y′ ∈Ax′;
(ii) R(I + λA)= X , for all λ > 0, where I is the identity on X .

By a celebrated result of Crandall and Liggett [16], if A is m-accretive, then −A gener-
ates a semigroup of contractions {S(t) : t ≥ 0} on D(A). If S(t) maps bounded subsets of
D(A) into precompact subsets of D(A), for each t > 0, then the semigroup {S(t) : t ≥ 0}
is called a compact semigroup.

Let T = [0,b], with 0 < b <∞. We denote by C(T ,X) the Banach space of all continu-
ous functions u : I → X with norm. ‖u‖∞ = supt∈T ‖u(t)‖ and for 1≤ p <∞, we denote
by Lp(T ,X) the Banach space of (equivalence classes of) measurable functions u : I → X

such that ‖u‖p is Lebesgue integrable, endowed with the norm ‖u‖p = (
∫ T

0 ‖u(t)‖pdt)1/p.
Let A be m-accretive operator in X . For f ∈ L1(T ,X) we consider the evolution equa-

tion

u′(t)∈−Au(t) + f (t), t ∈ I ; u(0)= u0, (2.1)

whose solutions are meant in the sense of the following definition that is due to Bénilan
[7].

Definition 2.1. An integral solution to (2.1) is a continuous function u : I → D(A) with
u(0)= u0, such that, for all x ∈D(A), y ∈Ax, and all 0≤ s≤ t ≤ T ,

∥
∥u(t)− x∥∥2 ≤ ∥∥u(s)− x∥∥2

+ 2
∫ t

s

〈
f (τ)− y,u(τ)− x〉+dτ. (Pf )

It is well known that (2.1) has a unique solution u∈ C(I ,D(A)). Moreover, if u and v
are integral solutions of (2.1) that correspond to (u0, f ) and (v0,g), respectively, (where
u0,v0 ∈D(A) and f ,g ∈ L1(T ,X)), then

∥
∥u(t)− v(t)

∥
∥≤ ∥∥u0− v0

∥
∥+

∫ t

0

∥
∥ f (s)− g(s)

∥
∥ds. (2.2)
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Definition 2.2. Let F : T ×X → 2X be a multivalued map. A function u ∈ C(I ,D(A)) is
called an integral solution of the problem

ẋ ∈−Ax+F(t,x), x(0)= x0, (2.3)

if there exists f ∈ L1(T ,X) with f (t) ∈ F(t,u(t)), a.e. on I , such that u is an integral
solution of the corresponding problem (Pf ).

The remainder of this section is devoted to a brief review of multifunctions. We denote
by � f (X) (resp., �(w)k(c)(X)) the collection of all nonempty closed (resp., (weakly-) com-
pact (convex)) subsets of X . We also denote by �(X) the Borel σ-algebra on X . Let (Ω,Σ)
be a measurable space. We are particularly interested in the case when (Ω,Σ) = (T ,�),
with T = [0,b], � the σ-algebra of Lebesgue measurable subsets, as well as in the case
when (Ω,Σ) = (T ×X ,�⊗�(X)), where �⊗�(X) is the product σ-algebra on T ×X
generated by sets of the form A×B with A∈� and B ∈�(X).

We say that a multifunction Φ : Ω→� f (X) is measurable if for all x ∈ X , the func-
tion ω→ d(x,Φ(ω)) = inf{‖x− z‖ : z ∈ Φ(ω)} is measurable. Recall that Φ is measur-
able if and only if it is graph measurable, that is, GrΦ := {(ω,x) ∈Ω×X : x ∈Φ(ω)} ∈
Σ⊗�(X). By �

p

Φ (1 ≤ p <∞) we denote the set of all measurable selections of Φ that
belong to the Bochner-Lebesgue space Lp(Ω,X), that is, �

p

Φ = {ϕ ∈ Lp(Ω,X) : ϕ(t) ∈
Φ(t), a.e. on Ω}.

By the Kuratowski-Ryll-Nardzewski theorem one has that for a measurable multifunc-
tion Φ : Ω→� f (X), the set �

p

Φ is nonempty if and only if the function ω→ inf{‖z‖ : z ∈
Φ(ω)} belongs to L

p
+(Ω) := Lp(Ω,R+). Recall that a set K ⊆ Lp(T ,X) is said to be decom-

posable if for all u,v ∈ K and all A ∈ Σ we have uχA + vχT/A ∈ K , where χA denotes the
characteristic function of A. Clearly �

p

Φ is decomposable.
Let now Y be a Hausdorff topological space and let Ψ : Y → 2X . The multifunction

Ψ is said to be upper semicontinuous on X (u.s.c., for short) if the set Ψ+(A) := {y ∈
Y : Ψ(y) ⊂ A} is open in Y for any open subset of A of Z. Equivalently, Ψ is u.s.c. if
Ψ−(A) := {y ∈ Y : Ψ(y)∩A
=∅} is closed in Y for each closed subset C of Z. If Ψ is an
upper semicontinuous, closed-valued multifunction, then Ψ is closed, that is, its graph
GrΨ is closed in Y ×X . Conversely, if Ψ : Y →�(Z) is closed and locally compact (i.e.,
for each y ∈ Y , there exists a neighborhood U of y such that Ψ(U) is precompact), then
Ψ is u.s.c. We say that Ψ : Y → 2X is lower semicontinuous (l.s.c., for short) if Ψ+(C) is
closed in Y for each closed subset C of Z.

We conclude this section by recalling the notion of Hausdorff continuity for multi-
functions. Let h(·,·) be the so-called Hausdorff-Pompeiu generalized metric on � f (X),
defined by

h(A,B)=max

{

sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}

, ∀A,B ∈� f (X). (2.4)

A multifunction Ψ : Y →� f (X) is said to be Hausdorff continuous if it is a continuous
map from Y into the matric space (� f (X),h), that is, for every y0 ∈ Y and every ε > 0
there exists a neighborhoodU0 of y0 such that for every y∈U0, we have h(F(y),F(y0))<ε.
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3. Evolution inclusions with nonlocal initial conditions

This section is concerned with the existence of solutions to the nonlocal Cauchy problem

u′(t)∈−Au(t) +F
(
t,u(t)

)
, t ∈ T := [0,b]; u(0)= g(u), (3.1)

where A : D(A) ⊂ X → 2X is a nonlinear operator on a Banach space X , F : I × X →
2X\{∅} is a multifunction with closed, convex, and nonempty values, and g :C(I ;D(A))→
D(A). Our existence result is the following.

Theorem 3.1. Assume X is a real separable Banach space with uniformly convex dual X∗,
T := [0,b], with 0 < b <∞, and R+ := [0,∞). Let A be an m-accretive operator in X , such
that −A generates a compact semigroup {S(t) : t ≥ 0} on D(A), g : C(I ,D(A))→ D(A) is
such that

∥
∥g(u)− g(v)

∥
∥≤m‖u− v‖∞, ∀u,v ∈ C(I ,D(A)

)
, (3.2)

for some m with 0 <m < 1, and F : I ×X →�c(X) satisfies the following conditions:
(i) F(·,x) is measurable for each x ∈ X ;

(ii) F(t,·) is upper semicontinuous from X to Xw for a.a. t ∈ I ;
(iii) there exists a function γ : I ×R+ → R+ such that γ(·,r) ∈ L1(I ,R) for every r ∈

R+, γ(t,·) is continuous and nondecreasing for a.a. t ∈ I , and

lim sup
r→∞

1
r

∫ T

0
γ(t,r)dt < 1−m, (3.3)

where m is the same as in condition (Hg), with the additional property that

∣
∣F(t,x)

∣
∣ := sup

{‖w‖ :w ∈ F(t,x)
}≤ γ(t,‖x‖) (3.4)

for a.a. t ∈ I , and all x ∈ D(A). Then the set of integral solutions of the problem
(3.1) is a nonempty, compact subset of C(T ,X).

Sketch of the proof. We start with the initial value problem

u′(t)∈−Au(t) + f (t), t ∈ I ; u(0)= g(u), (3.5)

where f ∈ L1(T ,X),A ism-accretive in X , and prove that it has a unique integral solution
that will be denoted by u f . Indeed, for each v ∈ C(I ,D(A)), there exists a unique integral
solution uv of the initial value problem

u′(t)∈−Au(t) + f (t), t ∈ I ; u(0)= g(v), (3.6)

and for all v,w ∈ C(I ,D(A)) we have

∥
∥uv(t)−uw(t)

∥
∥≤ ∥∥g(v)− g(w)

∥
∥≤m‖v−w‖∞, ∀t ∈ I , (3.7)

hence ‖uv − uw‖∞ ≤m‖v−w‖∞. Since 0 < m < 1, it follows that v → uv is a strict con-
traction in C(I ,D(A)), therefore, by the contraction mapping principle, it has a unique
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fixed point in C(I ,D(A)), which is obviously the unique integral solution of (3.5). Next,
we obtain an a priori bound for all possible solutions of (3.1): we prove that there exists
a finite positive constant M such that for each integral solution u of (3.1) one has

‖u‖∞ ≤M. (3.8)

For such constantM and for γ satisfying condition (iii) we set ϕ(t) := γ(t,M) and remark
that ϕ∈ L1(I ,R). Moreover, for each integral solution u of (3.1) we get

∣
∣F
(
t,u(t)

)∣
∣≤ ϕ(t) a.e. on I , (3.9)

In view of (3.9), we may assume without loss of generality that

∣
∣F(t,x)

∣
∣≤ ϕ(t), ∀x ∈ X , a.e. on I. (3.10)

Otherwise, we replace F(t,x) by F̃(t,x)= F(t, pM(x)), where pM : X → X is given by

pM(x)=
⎧
⎪⎨

⎪⎩

x if ‖x‖ ≤M,

M
x

‖x‖ if ‖x‖ >M,
(3.11)

with M as in (3.8). We now introduce the set K ⊂ L1(T ,X) by

K = { f ∈ L1(T ,X) :
∥
∥ f (t)

∥
∥≤ ϕ(t) a.e. on T

}
. (3.12)

Clearly, K is nonempty, closed, and convex. In addition, K is uniformly integrable, hence
it is compact in L1(T ,X) equipped with its weak topology. We also note (see [17, Theorem
V.6.3]) that K endowed with the relative L1(T ,X)w topology is a metric space. Define the
map � : K → 2L

1(T ,X) by

�( f ) := S1
F(·,u f (·)) =

{
v ∈ L1(T ,X) : v(t)∈ F(t,u f (t)

)
a.e. on T

}
, (3.13)

where, remember, u f (·) denotes the integral solution of (3.5), for a given f ∈ K . One has
that �( f ) has nonempty, closed, and convex values. Moreover, �(K)⊂ K . We regardK as
a compact convex subset, denoted as Kw, of L1(T ,X)w and show that � is u.s.c. from Kw
into 2Kw and for this we prove that Gr(�) is sequentially closed in Kw ×Kw. We can now

invoke the Kakutani-Ky Fan fixed point theorem to deduce that there exists f̂ ∈ K such

that f̂ ∈�( f̂ ), hence the corresponding integral solution of the problem (3.5), denoted
by u f̂ , is an integral solution of the problem (3.1). This shows that the set of integral
solutions of the problem (3.1) is a nonempty subset of C(T ,X), which will be denoted
by �.

In order to show that � is compact in C(T ,X), let (un)n∈N be a sequence in �. Then
un = u fn for some fn ∈ K , with fn(t)∈ F(t,un(t)), a.e. on I . Recalling that K is compact
in L1(T ,X)w and arguing as before, we may assume (without changing the notation for
subsequences) that un → u in C(T ,X), fn → f weakly in L1(T ,X), as n→∞. We then
conclude that u = u f , with f (t) ∈ F(t,u(t)), a.e. on I . In other words, u ∈ �, and � is
compact in C(T ,X). �
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4. Periodic solutions to nonlinear evolution inclusions

In this section we consider following periodic problem to evolution inclusions:

−u′(t)∈Au(t) +F
(
t,u(t)

)
, t ∈ T := [0,b]; u(0)= u(b), (4.1)

where A : D(A) ⊆ X → 2X is an m-accretive operator in a reflexive Banach space X and
F : T ×X → 2X is a multivalued perturbation. For the first result concerning existence of
solutions for the periodic problem (4.1) we will assume that X is a real separable Banach
space with a uniformly convex dual X∗ and the following conditions are satisfied:

(HA) A is anm-accretive operator inX , with 0∈A0, such that−A generates a compact
semigroup on D(A);

(HF) F : T ×X →�wkc(X) is a multifunction such that (i) t → F(t,u) is measurable,
for each x ∈ X ; (ii) the graph of x→ F(t,x) is sequentially closed in X ×Xw, for
a.a. t ∈ T ; (iii) for each ρ > 0 there exists a function aρ ∈ L1

+(T) such that for all
x ∈ X with ‖x‖ ≤ ρ,

∣
∣F(t,x)

∣
∣ := sup

{‖w‖ :w ∈ F(t,x)
}≤ aρ(t) a.e. on T ; (4.2)

(iv) there exists r > 0 such that 〈v, Jx〉 ≥ 0 for all v ∈ F(t,x), all t ∈ T , and all x ∈ X
with ‖x‖ = r:

∣
∣F(t,x)

∣
∣ := sup

{‖w‖ :w ∈ F(t,x)
}≤ aρ(t) a.e. on T (4.3)

Our result for the convex problem is the following.

Theorem 4.1. Let assumptions (HA) and (HF) be satisfied. Then the problem (4.1) has at
least one integral solution.

Our next result is concerned with the problem (4.1) where F is no longer convex-
valued. We assume instead that F is closed-valued and lower semicontinuous in its second
argument. More precisely, assumption (HF) changes as follows:

(H1
F) F : T ×X →� f (X) satisfies the following: (i) (t,x)→ F(t,x) is �⊗�(X) mea-

surable; (ii) x→ F(t,x) is lower semicontinuous for a.a. t ∈ T ; (iii) for each ρ > 0,
there exists a function aρ ∈ L1

+(T) such that for all x ∈ X with ‖x‖ ≤ ρ,
∣
∣F(t,x)

∣
∣ := sup

{‖w‖ :w ∈ F(t,x)
}≤ aρ(t) a.e. on T ; (4.4)

(iv) there exists r > 0 such that 〈v, Jx〉 ≥ 0 for all v ∈ F(t,x), all t ∈ T , and all x ∈ X
with ‖x‖ = r.
Theorem 4.2. Let assumptions (HA) and (H1

F) be satisfied. Then there exists an integral
solution to problem (4.1).

We consider now the evolution inclusion

−x′(t)∈ Ax(t) + extF
(
t,x(t)

)
, t ∈ T ; x(0)= x(b), (4.5)

where extF(t,x(t)) denotes the set of extreme points of F(t,x(t)). We assume that F has
nonempty, weakly compact values which insures that extF(t,x)
=∅ for all (t,x)∈ T ×X .
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However, since in general the multivalued map (t,x)→ extF(t,x) is neither convex- nor
closed-valued, the previous theorems are not applicable to (4.5). We impose the following
conditions on A and F:

(H1
A) A satisfies (HA) and in addition there exists ω > 0 such that A−ωI is accretive,

(HF) F : T ×X →�wkc(X) is such that: (i) t → F(t,x) is measurable, for each x ∈ X ;
(ii) x→ F(t,x) is Hausdorff continuous for a.a. t ∈ T ; (iii) for each ρ > 0, there
exists a function aρ ∈ Lp+(T), 1 < p <∞, such that for all x ∈ X with ‖x‖ ≤ ρ,

∣
∣F(t,x)

∣
∣ := sup

{‖w‖ :w ∈ F(t,x)
}≤ aρ(t) a.e. on T ; (4.6)

(iv) there exists r > 0 such that 〈v, Jx〉 ≥ 0 for all v ∈ F(t,x), all t ∈ T , and all x ∈ X
with ‖x‖ = r.
Theorem 4.3. If conditions (H1

A) and (H2
F) are satisfied, then the problem (4.1) has at least

one integral solution.
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POSITIVE SOLUTIONS OF A CLASS OF SINGULAR
FUNCTIONAL BOUNDARY VALUE PROBLEMS
WITH φ-LAPLACIAN

SVATOSLAV STANĚK

The paper discusses the existence of positive solutions (in C1[0,T]) to the functional
differential equations of the form (φ(x′))′ = F(t,x,x′,x′(0),x′(T)) satisfying the Dirichlet
boundary conditions x(0) = x(T) = 0. The nonlinearity F may be singular at x = 0 and
changes its sign.

Copyright © 2006 Svatoslav Staněk. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let T be a positive number. Consider the functional-differential equation

(
φ
(
x′(t)

))′ = f
(
x(t)

)
ω
(
x′(t)

)− p1
(
t,x(t),x′(t)

)
x′(0) + p2

(
t,x(t),x′(t)

)
x′(T) (1.1)

together with the Dirichlet boundary conditions

x(0)= 0, x(T)= 0. (1.2)

A function x ∈ C1[0,T] is said to be a positive solution of the boundary value problem
(BVP) (1.1), (1.2) if φ(x′)∈ C1(0,T), x > 0 on (0,T), x satisfies the boundary conditions
(1.2), and (1.1) holds for t ∈ (0,T).

The aim of this paper is to give conditions for the existence of a positive solution of
the BVP (1.1), (1.2). Our results generalize those in [1] where the equation (φ(x′(t)))′ =
f (x(t))− q(t)h(x(t))x′(0) + r(t)p(x(t))x′(T) was discussed. The form of our equation
(1.1) is motivated by a regular functional-differential equation considered in [2] together
with (1.2). This problem is a mathematical model for a biological population.

Throughout this paper, we will use the following assumptions on the functions φ, f ,
ω, p1, and p2.

(H1) φ ∈ C0(R) is increasing and odd on R and limu→∞φ(u)=∞.
(H2) f ∈ C0(0,∞), limx→0+ f (x)=−∞, there is a χ > 0 such that f < 0 on (0,χ), f > 0

on (χ,∞), and
∫ χ

0 f (s)ds >−∞,
∫∞
χ f (s)ds=∞.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1029–1039
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(H3) ω ∈ C0(R) is positive and even and there exist K > 0 and γ > 1 such that

H(u)≥ Kuγ for u∈ [0,∞), (1.3)

where

H(u)=
∫ φ(u)

0

φ−1(s)
ω
(
φ−1(s)

)ds, u∈R. (1.4)

(H4) pj ∈ C0([0,T]× (0,∞)×R)

0 < pj(t,x, y)≤ qj(t)r j(x)ω(y) (1.5)

for (t,x, y) ∈ [0,T] × (0,∞) × R and j = 1,2, where qj ∈ C0[0,T] and r j ∈
C0(0,∞) are positive, limx→0+ r j(x)=∞, and

∫ 1
0 r j(s)ds <∞.

(H5) There exists Δ > 0 such that r j ( j = 1,2) is decreasing and f is increasing on (0,Δ].
(H6) limx→∞ f (x)/(r1(x) + r2(x))=∞ and

liminf
x→∞

∫ x
0 f (s)ds

(∥
∥q1

∥
∥
∫ x

0 r1(s)ds+
∥
∥q2

∥
∥
∫ x

0 r2(s)ds
)γ/(γ−1) > K

−1/(γ−1). (1.6)

Remark 1.1. If φ and ω satisfy (H1) and (H3), then the function H defined in (1.4) is
continuous and even on R, H(0)= 0, and H(u) > 0 for u∈R \ {0}.

From now on, ‖x‖ =max{|x(t)| : 0 ≤ t ≤ T} stands for the norm in C0[0,T]. The
space of Lebesgue integrable functions on [0,T] will be denoted by L1[0,T].

Our existence result for the BVP (1.1), (1.2) is proved by a regularization and sequen-
tial technique.

2. Auxiliary regular BVPs

Let assumptions (H2)–(H5) be satisfied. Let N∗ = {n ∈ N : 1/n < min{χ,Δ}}, where χ
and Δ are taken from (H2) and (H5). For n ∈ N∗ and j = 1,2, define fn ∈ C0(R) and
pj,n ∈ C0([0,T]×R2) by the formulas

fn(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x) for x ≥ 1
n

,

f
(

1
n

)

for 0≤ x ≤ 1
n

,

f
(

1
n

)

− δn|x|1/(γ−1) for x < 0,

(2.1)
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where

δn = 2γ
γ− 1

K−1/(γ−1)
(
∥
∥q1

∥
∥r1

(
1
n

))γ/(γ−1)

, (2.2)

pj,n(t,x, y)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pj(t,x, y) for (t,x, y)∈ [0,T]×
[

1
n

,∞
)

×R,

pj

(

t,
1
n

, y
)

for (t,x, y)∈ [0,T]×
(

−∞,
1
n

)

×R.
(2.3)

Then

0 < pj,n(t,x, y)≤ qj(t)r j,n(x)ω(y), (t,x, y)∈ [0,T]×R2, (2.4)

where

r j,n(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r j(x) for x ≥ 1
n

,

r j

(
1
n

)

for x <
1
n
.

(2.5)

Also, 0 < pj,n(t,x, y)≤ qj(t)r j(x)ω(y) for (t,x, y)∈ [0,T]× (0,∞)×R and

f (x)≤ fn+1(x)≤ fn(x),
∣
∣ f (x)

∣
∣≥ ∣∣ fn(x)

∣
∣,

r j(x)≥ r j,n+1(x)≥ r j,n(x)
(2.6)

for x ∈ (0,∞), n∈N∗, and j = 1,2.
Consider the family of regular functional-differential equations

(
φ
(
x′(t)

))′ = λ( fn
(
x(t)

)
ω
(
x′(t)

)− p1,n
(
t,x(t),x′(t)

)
x′(0)

+ p2,n
(
t,x(t),x′(t)

)
min

{
0,x′(T)

}) (2.6)λn

depending on the parameters λ∈ [0,1] and n∈N∗.
One can easily check the following result which is used in the proofs of Lemmas 2.2

and 2.4.

Lemma 2.1. Let assumptions (H1) and (H3) be satisfied. Let H(u) ≤ A + B|u| for some
u∈R, where A≥ 0 and B > 0. Then

|u| <
(
A+B
K

)1/(γ−1)

+ 1, (2.7)

and if A= 0, then

|u| <
(
B

K

)1/(γ−1)

. (2.8)
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Lemma 2.2. Let assumptions (H1)–(H5) be satisfied and let x(t) be a solution of the BVP
(2.6)λn, (1.2). Then

x(t)≥ 0, t ∈ [0,T]. (2.9)

Proof. If λ = 0, then x = 0 and (2.9) is true. Let λ ∈ (0,1]. Suppose min{x(t) : 0 ≤ t ≤
T} = x(ξ) < 0. Then ξ ∈ (0,T) and x′(ξ) = 0. If x′(0) ≥ 0, then (see (2.1) and (2.2))
(φ(x′(t)))′|t=ξ ≤ λ fn(x(ξ))ω(0)= λ( f (1/n)− δn|x(ξ)|1/(γ−1))ω(0) < 0. Therefore x′ is de-
creasing on a neighborhood of t = ξ, which contradicts the minimal value of x at t =
ξ. Hence x′(0) < 0 and there exists ν ∈ (0,ξ] such that x′ < 0 on [0,ν) and x′(ν) = 0.
Since p2,n(t,x(t),x′(t))min{0,x′(T)}x′(t) ≥ 0 for t ∈ [0,ν], we have (φ(x′(t)))′x′(t) ≥
λ( fn(x(t))− q1(t)r1,n(x(t))x′(0))ω(x′(t))x′(t) and (see (2.5)) (φ(x′(t)))′x′(t)/ω(x′(t))≥
λ( fn(x(t))− q1(t)r1(1/n)x′(0))x′(t) for t ∈ [0,ν]. Integrating the last inequality over [0,ν]
yields

−H(x′(0)
)≥ λ

(∫ x(ν)

0
fn(s)ds− x′(0)r1

(
1
n

)∫ ν

0
q1(t)x′(t)dt

)

(2.10)

and using
∫ x(ν)

0 fn(s)ds > 0, we obtain

H
(
x′(0)

)
< λx′(0)r1

(
1
n

)∫ ν

0
q1(t)x′(t)dt ≤ ∣∣x′(0)

∣
∣r1

(
1
n

)∣
∣
∣
∣

∫ ν

0
q1(t)x′(t)dt

∣
∣
∣
∣. (2.11)

Now Lemma 2.1 gives |x′(0)| < (r1(1/n)/K|∫ ν
0 q1(t)x′(t)dt|)1/(γ−1). From (2.10) and

H(x′(0)) > 0, we also have
∫ x(ν)

0 fn(s)ds < x′(0)r1(1/n)
∫ ν

0 q1(t)x′(t)dt, and so

∫ x(ν)

0
fn(s)ds < K−1/(γ−1)

(

r1

(
1
n

)
∥
∥q1

∥
∥
∣
∣x(ν)

∣
∣
)γ/(γ−1)

. (2.12)

Since (see (2.1))

∫ x(ν)

0
fn(s)ds=

∫ x(ν)

0

(

f
(

1
n

)

− δn|s|1/(γ−1)
)

ds

= f
(

1
n

)

x(ν) +
(

1− 1
γ

)

δn
∣
∣x(ν)

∣
∣γ/(γ−1)

,

(2.13)

we have (see (2.12)) f (1/n)x(ν) + (1 − 1/γ)δn|x(ν)|γ/(γ−1) < K−1/(γ−1)(r1(1/n)‖q1‖
|x(ν)|)γ/(γ−1) and | f (1/n)| < [K−1/(γ−1)(r1(1/n)‖q1‖)γ/(γ−1) − (1 − 1/γ)δn]|x(ν)|1/(γ−1),
contrary to (see (2.2))

K−1/(γ−1)
(

r1

(
1
n

)
∥
∥q1

∥
∥
)γ/(γ−1)

−
(

1− 1
γ

)

δn

=−K−1/(γ−1)
(

r1

(
1
n

)
∥
∥q1

∥
∥
)γ/(γ−1)

< 0.

(2.14)

We have proved that (2.9) is true. �
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Remark 2.3. Lemma 2.2 shows that any solution x of the BVP (2.6)λn, (1.2) satisfies (2.9).
Therefore x′(0)≥ 0 and x′(T)≤ 0. Hence

(
φ
(
x′(t)

))′ = λ( fn
(
x(t)

)
ω
(
x′(t)

)− p1,n
(
t,x(t),x′(t)

)
x′(0)

+ p2,n
(
t,x(t),x′(t)

)
x′(T)

)
, t ∈ [0,T].

(2.15)

Lemma 2.4. Let assumptions (H1)–(H6) be satisfied. Then there exist positive constants S0

and S1 such that

0 < x(t) < S0, ‖x′‖ < S1, t ∈ (0,T), (2.16)

for any solution x of the BVP (2.6)λn, (1.2) with λ∈ (0,1] and n∈N∗.

Proof. Let x be a solution of the BVP (2.6)λn, (1.2) for some λ ∈ (0,1] and n ∈ N∗. By
Lemma 2.2, x≥0 on [0,T] and therefore (2.15) is satisfied for t∈[0,T]. SetV=|∫ χ0 f (s)ds|,
where χ > 0 appears in (H2). The conditions (1.6) and

∫∞
χ f (s)ds=∞ in (H2) guarantee

the existence of an L > 0 such that

∫ u

0
f (s)ds >

[

1 +K−1/(γ−1)
(

V +
∥
∥q1

∥
∥
∫ u

0
r1(s)ds+

∥
∥q2

∥
∥
∫ u

0
r2(s)ds

)1/(γ−1)
]

×
(
∥
∥q1

∥
∥
∫ u

0
r1(s)ds+

∥
∥q2

∥
∥
∫ u

0
r2(s)ds

) (2.17)

for any u ≥ L. Let t̄ = 0, T . Then (φ(x′(t)))′|t=t̄ ≤ λ f (1/n)ω(x′(t̄)) < 0, and therefore x′

is decreasing on a right neighborhood of t = 0 and on a left neighborhood of t = T .
Hence x(0) = x(T) = 0 implies that x′(0) > 0, x′(T) < 0, and x′ vanishes on (0,T). Let
ν1 =min{t : x′(t)= 0}, ν2 =max{t : x′(t)= 0}. Then 0 < ν1 ≤ ν2 < T . We now show that

x(t) > 0, t ∈ (0,T), (2.18)

max
{
x(t) : t ∈ [0,ν1

]∪ [ν2,T
]}
< L, (2.19)

max
{
x′(0),

∣
∣x′(T)

∣
∣
}
<W , (2.20)

where W = K−1/(γ−1)(V + ‖q1‖
∫ L

0 r1(s)ds + ‖q2‖
∫ L

0 r2(s)ds)1/(γ−1) + 1. To see (2.18), as-
sume x(τ) = 0 for τ ∈ (0,T). Then ν1 < τ < ν2 and x′(τ) = 0. Since (φ(x′(t)))′|t=τ <
λ f (1/n)ω(0) < 0, x′ is decreasing on a neighborhood of t = τ, which is impossible. Hence
(2.18) is true and also

(
φ
(
x′(t)

))′

ω
(
x′(t)

) ≥ λ( f (x(t)
)− q1(t)r1

(
x(t)

)
x′(0) + q2(t)r2

(
x(t)

)
x′(T)

)
(2.21)

for t ∈ (0,T). Integrating

(
φ
(
x′(t)

))′
x′(t)

ω
(
x′(t)

) ≥ λ( f (x(t)
)− q1(t)r1

(
x(t)

)
x′(0) + q2(t)r2

(
x(t)

)
x′(T)

)
x′(t) (2.22)
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over [0,ν1] and

(
φ
(
x′(t)

))′
x′(t)

ω
(
x′(t)

) ≤ λ( f (x(t)
)− q1(t)r1

(
x(t)

)
x′(0) + q2(t)r2

(
x(t)

)
x′(T)

)
x′(t) (2.23)

over [ν2,T], we get

0 >−H(x′(0)
)≥

∫ x(ν1)

0
f (s)ds− x′(0)

∫ ν1

0
q1(t)r1

(
x(t)

)
x′(t)dt

−∣∣x′(T)
∣
∣
∫ ν1

0
q2(t)r2

(
x(t)

)
x′(t)dt,

(2.24)

0 <H
(
x′(T)

)≤−
∫ x(ν2)

0
f (s)ds+ x′(0)

∣
∣
∣
∣

∫ T

ν2

q1(t)r1
(
x(t)

)
x′(t)dt

∣
∣
∣
∣

+
∣
∣x′(T)

∣
∣
∣
∣
∣
∣

∫ T

ν2

q2(t)r2
(
x(t)

)
x′(t)dt

∣
∣
∣
∣.

(2.25)

In addition, we have
∫ u

0
f (s)ds≥−V for u∈ [0,∞), (2.26)

∫ ν1

0
qj(t)r j

(
x(t)

)
x′(t)dt ≤ ∥∥qj

∥
∥
∫ ν1

0
r j
(
x(t)

)
x′(t)dt = ∥∥qj

∥
∥
∫ x(ν1)

0
r j(s)ds, (2.27)

∣
∣
∣
∣

∫ T

ν2

qj(t)r j
(
x(t)

)
x′(t)dt

∣
∣
∣
∣≤

∥
∥qj

∥
∥
∣
∣
∣
∣

∫ T

ν2

r j
(
x(t)

)
x′(t)dt

∣
∣
∣
∣=

∥
∥qj

∥
∥
∫ x(ν2)

0
r j(s)ds (2.28)

for j = 1,2. Let x(νi)=max{x(ν1), x(ν2)} =max{x(t) : t ∈ [0,ν1]∪ [ν2,T]} for i∈ {1,2}
and set Aj = ‖qj‖

∫ x(νi)
0 r j(s)ds, j = 1,2. Then (2.24)–(2.28) give

H
(
x′(0)

)≤V +A1x
′(0) +A2

∣
∣x′(T)

∣
∣,

H
(
x′(T)

)≤V +A1x
′(0) +A2

∣
∣x′(T)

∣
∣.

(2.29)

Consequently, (max{x′(0),|x′(T)|})≤V + (A1 +A2)max{x′(0),|x′(T)|} and therefore

max
{
x′(0),

∣
∣x′(T)

∣
∣
}
<
(
V +A1 +A2

K

)1/(γ−1)

+ 1, (2.30)

by Lemma 2.1. Returning to (2.24) and (2.25), if i= 1, then

∫ x(νi)

0
f (s)ds < x′(0)

∫ νi

0
q1(t)r1

(
x(t)

)
x′(t)dt− x′(T)

∫ νi

0
q2(t)r2

(
x(t)

)
x′(t)dt (2.31)

and if i= 2, then

∫ x(νi)

0
f (s)ds <−x′(0)

∫ T

νi
q1(t)r1

(
x(t)

)
x′(t)dt+ x′(T)

∫ T

νi
q2(t)r2

(
x(t)

)
x′(t)dt. (2.32)
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Now using (2.27)–(2.30), we have

∫ x(νi)

0
f (s)ds <

[

1 +
(
V +A1 +A2

K

)1/(γ−1)]
(
A1 +A2

)

=
[

1 +K−1/(γ−1)
(

V +
∥
∥q1

∥
∥
∫ x(νi)

0
r1(s)ds+

∥
∥q2

∥
∥
∫ x(νi)

0
r2(s)ds

)1/(γ−1)
]

×
(
∥
∥q1

∥
∥
∫ x(νi)

0
r1(s)ds+

∥
∥q2

∥
∥
∫ x(νi)

0
r2(s)ds

)

,

(2.33)

and consequently (see (2.17)) x(νi) < L, which proves (2.19). The validity of (2.20) follows
immediately from (2.30) and Aj < ‖qj‖

∫ L
0 r j(s)ds, j = 1,2. The rest part of the proof is

divided into two cases.

Case 1. Suppose ν1 = ν2. Then the first inequality in (2.16) holds with S0 = L. Let
max{|x′(t)| : 0 ≤ t ≤ T} = |x′(η)|. Assume that x′(η) > 0 (when x′(η) < 0 we proceed
similarly). Then 0 ≤ η < ν1. Integrating (2.22) from η to ν1 and using (2.20) and (2.26),
we obtain by a simple calculation that

−H(x′(η)
)
>−V −W

(
∥
∥q1

∥
∥
∫ L

0
r1(s)ds+

∥
∥q2

∥
∥
∫ L

0
r2(s)ds

)

. (2.34)

Hence

x′(η) <H−1
(

V +W
(
∥
∥q1

∥
∥
∫ L

0
r1(s)ds+

∥
∥q2

∥
∥
∫ L

0
r2(s)ds

))

=: Z (2.35)

and the second inequality in (2.16) is satisfied with S1 = Z. Here H−1 denotes the inverse
function to the restriction of H on [0,∞).

Case 2. Suppose ν1 < ν2. Let max{x(t) : ν1 ≤ t ≤ ν2} = x(δ). Since the assumption
limu→∞ f (u)/(r1(u) + r2(u))=∞ implies limu→∞(‖q1‖r1(u) +‖q2‖r2(u))/ f (u)= 0, from

f (u)
(

1−W
∥
∥q1

∥
∥r1(u) +

∥
∥q2

∥
∥r2(u)

f (u)

)

= f (u)−W(∥
∥q1

∥
∥r1(u) +

∥
∥q2

∥
∥r2(u)

)
, (2.36)

we see that a constant C > 0 exists such that f (u)−W(‖q1‖r1(u) +‖q2‖r2(u)) > 0 when-
ever u > C. We now claim that x(δ) ≤ C. If not, there exists ε > 0 such that x > C on
[δ− ε,δ + ε]. Then (see (2.20) and (2.21))

(
φ
(
x′(t)

))′

ω
(
x′(t)

) ≥ λ( f (x(t)
)−W[∥

∥q1
∥
∥r1
(
x(t)

)
+
∥
∥q2

∥
∥r2
(
x(t)

)])
> 0 (2.37)

for t ∈ [δ − ε,δ + ε]. Hence φ(x′) is increasing on [δ − ε,δ + ε], which contradicts the
maximality of x at t = δ. Therefore x ≤ C on [ν1,ν2] and the first inequality in (2.16)
is satisfied with S0 =max{L,C + 1}. Finally, we give an upper bound of |x′| on [0,T].
Let max{|x′(t)| : 0≤ t ≤ T} = |x′(κ)|. Assume that x′(κ) < 0 (when x′(κ) > 0 we proceed
similarly). Then there exists τ∗ ∈ [ν1,ν2] such that x′(τ∗) = 0 and x′ < 0 on the open
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interval with the end points τ∗ and κ. Assuming, for example, τ∗ < κ and integrating
(2.23) over [τ∗,κ], we get

H
(∣
∣x′(κ)

∣
∣
)≤

∫ S0

0

∣
∣ f (s)

∣
∣ds+W

(
∥
∥q1

∥
∥
∫ S0

0
r1(s)ds+

∥
∥q2

∥
∥
∫ S0

0
r2(s)ds

)

=:Q. (2.38)

Consequently, the second inequality in (2.16) holds with S1 =H−1(Q).
Summarizing, we have proved the validity of (2.16) with S0 =max{L,C+ 1} and S1 =

max{Z,H−1(Q)}. �

Lemma 2.5. Let assumptions (H1)–(H6) be satisfied. Then for each n ∈N∗, there exists a
solution xn of the BVP (2.6)λn, (1.2) and

0 < xn(t) < S0,
∥
∥x′n

∥
∥ < S1, t ∈ (0,T), n∈N∗, (2.39)

where S0 and S1 are positive constants independent of n.

Proof. Fix n∈N∗. First observe that, by Lemma 2.4, any solution of the BVP (2.6)λn, (1.2)
with λ∈ (0,1] satisfies (2.16), where S0 and S1 are positive constants independent of n and
λ. Let Fn : C1[0,T]→ C0[0,T] be defined by

(
Fnx

)
(t)= fn

(
x(t)

)
ω
(
x′(t)

)− p1,n
(
t,x(t),x′(t)

)
x′(0)

+ p2,n
(
t,x(t),x′(t)

)
min

{
0,x′(T)

}
.

(2.40)

Then Fn is a continuous operator and for each r > 0,

sup
{∥
∥Fnx

∥
∥ : x ∈ C1[0,T], ‖x‖+‖x′‖ ≤ r} <∞. (2.41)

Since (2.6)λn can be written in the form (φ(x′))′ = λFnx, the assertion of our lemma fol-
lows from [1, Theorem 2.1]. �

Lemma 2.6. Let assumptions (H1)–(H6) be satisfied. Then there exists c > 0 independent of
n such that

x(t)≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ct for t ∈
[

0,
T

2

]

,

c(T − t) for t ∈
[
T

2
,T
] (2.42)

for any solution x of the BVP (2.6)λn, (1.2) with n∈N∗.

Proof. Let x be a solution of the BVP (2.6)λn, (1.2) for some n∈N∗. Then x ≥ 0 on [0,T]
by Lemma 2.2 and (φ(x′(t)))′|t=t∗ ≤ f (1/n)ω(x′(t∗)) < 0 for t∗ = 0,T . Hence x′(0) > 0
and x′(T) < 0. Also (2.16) holds where S0, S1 are positive constants independent of n.
Since (φ(x′(t)))′ < 0 whenever x(t)≤ χ, where χ appears in (H2), x′ is decreasing and x is
concave on any subinterval of [0,T], where x ≤ χ. Next part of the proof is divided into
two cases.
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Case 1. Suppose max{x(t) : 0≤ t ≤ T} ≤ χ. Then x′ is decreasing on [0,T], x′(ξ)= 0 for
a unique ξ ∈ (0,T), x is concave on [0,T], and

(
φ
(
x′(t)

))′∣∣
t=τ =max

{(
φ
(
x′(t)

))′
: 0≤ t ≤ T}=: α < 0, (2.43)

where τ ∈ [0,T]. Therefore x′(t) ≥ φ−1(|α|(τ − t)) on [0,τ], x′(t) ≤ φ−1(|α|(τ − t)) on

[τ,T], and consequently x(τ)≥ ∫ τ0 φ−1(|α|t)dt, −x(τ)≤−∫ T−τ0 φ−1(|α|t)dt. Hence

x(τ)≥max
{∫ τ

0
φ−1(|α|t)dt,

∫ T−τ

0
φ−1(|α|t)dt

}

≥
∫ T/2

0
φ−1(|α|t)dt. (2.44)

If |α| ≥ 1, then x(τ) ≥ ∫ T/20 φ−1(t)dt and x being concave on [0,T] gives x(T/2) ≥
(1/2)

∫ T/2
0 φ−1(t)dt. To give a lower bound for x(T/2) if α > −1, notice that the assump-

tion limx→0+ f (x) = −∞ guarantees f (x) ≤ −1/Λ for x ∈ (0,d] with some d ∈ (0,T],
where Λ =min{ω(u) : 0 ≤ u ≤ S1}. Now α = (φ(x′(t)))′|t=τ < fn(x(τ))ω(x′(τ)) implies
fn(x(τ)) > α/ω(x′(τ)) > α/Λ. Hence x(τ) > d if α > −1 and using u being concave on

[0,T], we get x(T/2) > d/2. Set c1 =min{∫ T/20 φ−1(t)dt, d}. Then c1 is independent of n,
x(T/2)≥ c1/2 and

x(t)≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1t

T
for t ∈

[

0,
T

2

]

,

c1(T − t)
T

for t ∈
[
T

2
,T
]

.

(2.45)

Case 2. Suppose max{x(t) : 0 ≤ t ≤ T} > χ. Set a =min{t : x′(t) = 0} and b =max{t :
x′(t)= 0}. Then 0 < a≤ b < T . We claim that

min
{
x(t) : a≤ t ≤ b} > χ. (2.46)

To see this, let x(η) =min{x(t) : a ≤ t ≤ b} ≤ χ, where η ∈ [a,b]. Then x′(η) = 0 which
contradicts (φ(x′(t)))′|t=η < 0. Hence (see (2.46)) x(a) > χ and x(b) > χ. Let c =min{t :
x(t)= χ} and d =max{t : x(t)= χ}. Then 0 < c < a≤ b < d < T and, since x is concave on
[0,c] and [d,T], we have

x(t)≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χt

c
for t ∈ [0,c],

χ(T − t)
(T −d)

for t ∈ [d,T].
(2.47)

Now using (2.46) and the fact that x is increasing on [0,a] and decreasing on [b,T], we
deduce that x(T/2) > χ/2, and consequently

x(t)≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χt

T
for t ∈

[

0,
T

2

]

,

χ(T − t)
T

for t ∈
[
T

2
,T
]

.

(2.48)

Summarizing, from (2.45) and (2.48), we see that (2.42) is true with c = (1/T)
min{c1,χ}. Clearly, c is independent on n. �
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3. Existence result

Theorem 3.1. Suppose assumptions (H1)–(H6) are satisfied. Then the BVP (1.1), (1.2) has
a positive solution.

Proof. Let Ω= {x : x ∈ C1[0,T], ‖x‖ < S0, ‖x′‖ < S1}, where S0 and S1 are positive con-
stants in Lemma 2.5. By Lemmas 2.5 and 2.6, for each n ∈ N∗, there exists a solution
xn ∈Ω of the BVP (2.6)λn, (1.2) and

xn(t)≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ct for t ∈
[

0,
T

2

]

,

c(T − t) for t ∈
[
T

2
,T
]

,
(3.1)

where c is a positive constant. Set t∗ =min{Δ/S1,T/2}. Then ct ≤ xn(t) = ∫ t0 x′n(t)dt ≤
S1t ≤ Δ for t ∈ [0, t∗] and c(T − t) ≤ xn(t) = −∫ Tt x′n(t)dt ≤ S1(T − t) ≤ Δ for t ∈ [T −
t∗,T]. Without loss of generality we can assume thatΔ≤ χ, that is, f (u)≤ 0 for u∈ (0,Δ].
Then (see (2.6))

∣
∣ fn

(
xn(t)

)∣
∣≤ ∣∣ f (xn(t)

)∣
∣≤ ∣∣ f (ct)

∣
∣,

r j,n
(
xn(t)

)≤ r j
(
xn(t)

)≤ r j(ct)
(3.2)

for t ∈ (0, t∗] and similarly

∣
∣ fn

(
xn(t)

)∣
∣≤ ∣∣ f (c(T − t))∣∣, r j,n

(
xn(t)

)≤ r j
(
c(T − t)), t ∈ [T − t∗,T

)
. (3.3)

Set P =max{ω(u) : 0≤ u≤ S1} and

Qn(t)= fn
(
xn(t)

)
ω
(
x′n(t)

)− p1,n
(
t,xn(t),x′n(t)

)
x′n(0)

+ p2,n
(
t,xn(t),x′n(t)

)
x′n(T)

(3.4)

for t ∈ [0,T] and n∈N∗. Then (see (2.4), (3.2), and (3.3))

∣
∣Qn(t)

∣
∣≤ P∣∣ f (ct)

∣
∣+

∥
∥q1

∥
∥S1Pr1(ct) +

∥
∥q2

∥
∥S1Pr2(ct), t ∈ (0, t∗

]
, (3.5)

∣
∣Qn(t)

∣
∣≤ P∣∣ f (c(T − t))∣∣+

∥
∥q1

∥
∥S1Pr1

(
c(T − t))

+
∥
∥q2

∥
∥S1Pr2

(
c(T − t)), t ∈ [T − t∗,T

)
,

(3.6)

∣
∣Qn(t)

∣
∣≤ Pmax

{∣
∣ f (u)

∣
∣ : ct∗ ≤ u≤ S0

}
+
∥
∥q1

∥
∥S1Pmax

{
r1(u) : ct∗ ≤ u≤ S0

}

+
∥
∥q2

∥
∥S1Pmax

{
r2(u) : ct∗ ≤ u≤ S0

}
, t ∈ [t∗,T − t∗

]
.

(3.7)

From (H2), (H4), and (3.5)–(3.7), we get |Qn(t)| ≤ ρ(t) for t ∈ (0,T) and n∈N∗, where
ρ∈ L1[0,T]. Therefore {φ(xn)}n∈N∗ is equicontinuous on [0,T], and using the fact that
φ is continuous and increasing on R, we see that {xn}n∈N∗ is equicontinuous on [0,T] as
well. It follows that there exists a subsequence {xkn} of {xn}n∈N∗ converging to some x in
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C1[0,T]. Then x ∈ C1[0,T], x satisfies (1.2), and (see (3.1))

x(t)≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ct for t ∈
[

0,
T

2

]

,

c(T − t) for t ∈
[
T

2
,T
]

.

(3.8)

Hence x > 0 on (0,T) and

lim
n→∞Qkn(t)= f

(
x(t)

)
ω
(
x′(t)

)− p1
(
t,x(t),x′(t)

)
x′(0) + p2

(
t,x(t),x′(t)

)
x′(T) (3.9)

for t ∈ (0,T). Then x is a solution of the BVP (1.1), (1.2) by [1, Theorem 2.3]. �
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AVERAGING DOMAINS: FROM EUCLIDEAN SPACES
TO HOMOGENEOUS SPACES

SUSAN G. STAPLES

We explore the role of averaging domains from their earliest definition in Euclidean
spaces and subsequent weighted forms of the definition to most recent results in homo-
geneous spaces. Various examples and applications of these domains, including Poincaré
inequalities, are also discussed.

Copyright © 2006 Susan G. Staples. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Averaging domains in Euclidean spaces

Averaging domains were first introduced by Staples [21] in order to answer a basic ques-
tion on the definition of BMO functions in Rn. Let us frame some of the relevant back-
ground and set notations. By Ω we mean a proper subdomain (i.e., open and connected)
of Rn. Recall that the BMO norm of a function u∈ L1

loc(Ω) is defined as

‖u‖∗ = sup
B⊂Ω

1
|B|

∫

B

∣
∣u−uB

∣
∣dx, (1.1)

where B is any ball in Ω with Lebesgue measure |B|, uB = (1/|B|)∫B udx, and dx repre-
sents Lebesgue measure.

It is a well-established fact that if the class of balls in Ω is replaced by the class of cubes
in Ω, then the corresponding supremum defines an equivalent norm.

A natural question arises: what types of domains D can replace balls and produce an
equivalent norm? Here the supremum would be taken over all domains D′ ⊂Ω with D′

similar to D. The pursuit of the solution to this problem led in turn to the definition
of Lp-averaging domains. The case p = 1 of bounded L1-averaging domains provided
precisely the class of domains which produce equivalent BMO norms.

Definition 1.1. Let D be a domain in Rn, with |D| <∞, and let p ≥ 1. It is said that D is
an Lp-averaging domain, if for some τ > 1 the following holds:

(
1
|D|

∫

D

∣
∣u(x)−uD

∣
∣pdx

)1/p

≤ C
(

sup
τB⊂D

1
|B|

∫

B

∣
∣u(x)−uB

∣
∣pdx

)1/p

. (1.2)
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The notation τB stands for the ball concentric with B and of radius τ times the ra-
dius of B. The right-hand side of the inequality is referred to as C times the mean Lp-
oscillation. Most noteworthy, Staples [21] established that a domain D is Lp-averaging if
and only if the quasihyperbolic metric is Lp integrable over D. This metric is defined for
any pair of points x and y in D by

kD(x, y)= inf
γ

∫

γ

ds

d(z,∂D)
, (1.3)

where γ is any rectifiable curve joining x to y in D. It is well known that the quasihyper-
bolic metric is complete.

The seminal result of Staples [21] is then precisely stated as follows.

Theorem 1.2. Let D be a domain in Rn with |D| <∞. Then D is an Lp-averaging domain
if and only if

(
1
|D|

∫

D
kD
(
x,x0

)p
dx
)1/p

≤ a (1.4)

for some x0 ∈D.

This first work treating averaging domains contains a number of key results. Included
among these are proofs that Lp-averaging domains are preserved under quasi-isometries
but are not invariant with respect to quasiconformal self-mappings of Rn and charac-
terizations of the Whitney cube decomposition of averaging domains. Additionally, the
well-known class of John domains [16] from potential theory is shown to be strictly con-
tained in the class of averaging domains. The Boman chain property of John domains [5]
makes possible the required estimates on the integral of the quasihyperbolic metric; an
example of an Lp-averaging domain (p ≤ n− 1) with positive n-dimensional boundary
measure precludes the possibility that all averaging domains are John.

Furthermore, [21] demonstrates that Lp-averaging domains support the following
Poincaré inequality.

Theorem 1.3. If D is an Lp-averaging domain, p ≥ n, then there exists a constant C such
that

(
1
|D|

∫

D

∣
∣u−uD

∣
∣pdx

)1/p

≤ C|D|1/n
(

1
|D|

∫

D
|∇u|pdx

)1/p

(1.5)

for each function u in the Sobolev class W
p
1 (D).

The hypothesis p ≥ n is proved sharp as well.

2. Weighted averaging domains inRn

Ding and Nolder [12] developed the first generalization of averaging domains. They re-
placed Lebesgue measure by a weighted measure μ, where dμ=w(x)dx. Denote the space
of functions that are locally Lp-integrable inD with respect to the measure μ by L

p
loc(D,μ).

Then weighted averaging domains are defined as follows.



Susan G. Staples 1043

Definition 2.1. A domainD ⊂Rn is called an Lp(μ)-averaging domain, p ≥ 1, if μ(D) <∞,
and there exists a constant C such that

(
1

μ(D)

∫

D

∣
∣u(x)−uB0

∣
∣pdμ

)1/p

≤ C
(

sup
4B⊂D

1
μ(B)

∫

B

∣
∣u(x)−uB

∣
∣pdμ

)1/p

(2.1)

for some ball B0 ⊂D and all u∈ Lploc(D,μ).

Various weight conditions onw(x) produced analogues of the results in [21]. We focus
here only on the three main classes of weights examined in [12]: doubling measures, weak
reverse Hölder weights, and Muckenhoupt weights.

Definition 2.2. A weight w is called a doubling weight if there exists a constant C such
that μ(B)≤ Cμ(B/2) for all balls B ⊂D.

Definition 2.3. Let σ > 1. It is said that w satisfies a weak reverse Hölder inequality, w ∈
WRH(D), if there exist constants β > 1 and C > 0 such that

(
1
|B|

∫

B
wβdx

)(1/β)

≤ C 1
|B|

∫

σB
wdx (2.2)

for all balls B with σB ⊂D.

Definition 2.4. A weight w is said to satisfy the Muckenhoupt Ar-condition, r > 1, and is
written w ∈ Ar(D) when

sup
B⊂D

(
1
|B|

∫

B
wdx

)(
1
|B|

∫

B
w1/(r−1)dx

)r−1

<∞. (2.3)

In the case where w(x) ∈WRH(D), Ding and Nolder proved that if D is an Lp(μ)-
averaging domain, then the quasihyperbolic metric is Lp integrable over D with respect
to the measure μ. For the converse they only needed to assume that w(x) was a doubling
weight.

When the weightw(x) was further assumed to satisfy theAr-condition, the authors es-
tablished that John domains are Lp(μ)-averaging domains. Moreover, they proved certain
norm inequalities for conjugate A-harmonic tensors in Lp(μ)-averaging domains. These
inequalities serve as generalizations of the Hardy-Littlewood theorem for conjugate har-
monic functions. In a subsequent work, Agarwal et al. [1] studied the integrability of the
solutions to the conjugate A-harmonic equation in Lp(μ)-averaging domains.

In a series of papers Ding and Liu [10, 11, 19] examined a number of properties
of Lp(μ)-averaging domains in the Muckenhoupt Ar-weight case. They showed quasi-
isometries preserve Lp(μ)-averaging domains, described the Whitney cube decomposi-
tion of these domains, and established the monotonic property of this class of domains.
They proved versions of the Poincaré inequality for solutions to theA-harmonic equation
on Lp(μ)-averaging domains as well.
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Ding and Shi [13] studied other weighted analogues. They generalized the Poincaré
inequality of Theorem 1.3 to the case of differential forms on Lp(μ)-averaging domains.
The weights w(x) they considered satisfied a condition denoted by Ar(λ) which for λ= 1
coincides with the class of Ar-weights.

Later Ding [9] extended averaging domains to the case of Lϕ(μ)-averaging domains.

Definition 2.5. Let ϕ : [0,∞)→R be a continuous, increasing, and convex function with
ϕ(0)= 0. A domain D ⊂Rn is called an Lϕ(μ)-averaging domain if there exists a constant
C such that

1
μ(D)

∫

D
ϕ
(
τ
∣
∣u(x)−uB0,μ

∣
∣
)
dμ

≤ C sup
4B⊂D

1
μ(B)

∫

B
ϕ
(
σ
∣
∣u−uB,μ

∣
∣
)
dμ

(2.4)

for some ball B0 ⊂ D and all u such that ϕ(|u|) ∈ L1
loc(D,μ). Here τ and σ are constants

such that 0 < τ,σ < 1. Note that for the special case ϕ(t)= tp, the class of Lp(μ)-averaging
domains is recovered.

Ding proved that if ϕ(t) ≤ ebt and if w(x) satisfies a weak reverse Hölder inequality,
then D is an Lϕ(μ)-averaging domain if and only if

∫
D ϕ(αk(x,x0))dμ <∞ for each x0 ∈D

and some α > 0.
Bao and Ding [2] proved that if w(x) actually satisfies the Ar-condition, then John

domains are Lϕ(μ)-averaging domains. In this same paper they also showed that Lϕ(μ)-
averaging domains are invariant with respect to quasi-isometries.

3. Averaging domains in homogeneous spaces

A most recent work [22] extends the notion of averaging domains to spaces of homoge-
neous type possessing an intrinsic metric. The space (X ,d,μ) under study is a complete
locally compact metric space equipped with a metric d and a doubling measure μ. In par-
ticular, this metric condition guarantees that any pair of points x and y in X can be joined
by a curve of finite length and that there exists a path joining x to y of length d(x, y).

The measure μ is doubling means that for all metric balls, B(x,r) ⊂ X , μ(B(x,r)) ≤
Cμμ(B(x,r/2)), where Cμ is independent of x and r.

Examples of these spaces include (i) Rn with a measure ω(x)dx, where the weight
ω satisfies a Muckenhoupt A∞-condition, (ii) stratified homogeneous groups with the
Carnot-Carathéodory metric and a measureω(x)dx ∈A∞, and (iii) compact Riemannian
manifolds with a Riemannian metric and measure. The text by Heinonen [15] provides
an excellent reference for such metric spaces.

Various concepts of Euclidean spaces can be extended to these generalized metric
spaces. For example, such spaces were utilized by Vodop’yanov and Greshnov [23] in
their work examining extensions of bounded mean oscillation functions. In this setting,
they generalized the notion of the quasihyperbolic metric and developed an analogue
of Jones’ [17] result on Rn establishing uniform domains as precisely the class of BMO
extension domains.
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The definition for the quasihyperbolic metric basically replaces Euclidean distance
with the intrinsic metric d and Euclidean arc length with arc length in the metric. That
is, given any pair of points x and y,

kD(x, y)= inf
γ

∫

γ

dl

d(z,∂D)
, (3.1)

where the infimum is calculated over all rectifiable curves in D joining x to y. When the
domain in question is clearly understood we will abbreviate kD(x, y) to k(x, y).

In this setting, we say the following.

Definition 3.1. D is an Lp-averaging domain if for some τ > 1 the following holds:

(
1

μ(D)

∫

D

∣
∣u(x)−uD

∣
∣pdμ

)1/p

≤ Cave

(

sup
τB⊂D

1
μ(B)

∫

B

∣
∣u(x)−uB

∣
∣pdμ

)1/p

, (3.2)

where the constant Cave is independent of u and B is any metric ball in D, such that
τB ⊂D.

The main theorem in [22] characterizes averaging domains in these homogeneous
spaces.

Theorem 3.2. Let D be a domain in the metric space (X ,d,μ) with μ(D) <∞. Then D is an
Lp-averaging domain if and only if the quasihyperbolic metric is Lp integrable over D with
respect to the measure μ.

The crucial features of homogeneous spaces (see [6, 8, 18]) that allow the general-
ization of the results to this case include the weak Vitali-type covering property of these
spaces and homogeneous space versions of the John-Nirenberg theorem.

The critical notion linking the definition of averaging domains remains as in all of the
previous cases. Namely, the quasihyperbolic distance between two points plays a natu-
ral role in estimating the average amount of change of the function between these two
points, when the function under consideration is of bounded mean Lp-oscillation. More
precisely, a central lemma needed to prove Theorem 3.2 is the following.

Lemma 3.3. Suppose that

(

sup
τB⊂D

1
μ(B)

∫

B

∣
∣u(x)−uB

∣
∣pdμ

)1/p

≤ C0, (3.3)

then there exist constants s and q such that

∣
∣uB(x)−uB(y)

∣
∣≤ C0

(
s
(
k(x, y)

)
+ q
)

(3.4)

for all x, y ∈D. Here B(x) and B(y) denote the balls B(x,d(x,∂D)/τ) and B(y,d(y,∂D)/τ),
respectively, and the constants s and q depend only on τ and Cμ.

Staples [22] also proved that the domains satisfying a Boman chain condition are Lp-
averaging domains.
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Definition 3.4. A domain E in X is said to satisfy the Boman chain condition if there exist
constants M, λ > 1, C2 > C1 > 1, C3 > 1, and a family F of disjoint metric balls B such
that

(i) E =⋃B∈FC1B,
(ii)

∑
B∈F χC2B ≤MχE(x) for all x ∈ X ,

(iii) there is a so-called central ball B∗ ∈ F such that for each ball B ∈ F, there is a
positive integer k = k(B) and a chain of balls {Bj}kj=0 such that B0 = B, Bk = B∗,
and C1Bj ∩C1Bj+1 contains a metric ball Dj for which μ(Dj) ≥ C3 max(μ(Bj),
μ(Bj+1)),

(iv) B ⊂ λBj for all j = 0, . . . ,k(B).

Theorem 3.5. If D satisfies a Boman chain condition, then D is an Lp-averaging domain.

Buckley et al. [5] pioneered the study of such chain domains in homogeneous spaces.
Their paper included the result that all John domains are Boman chain domains.

In the standard hierarchy of domains, it is well known that the class of NTA domains is
a proper subset of uniform domains which are in turn a proper subclass of John domains.
The pathologies of metrics in Carnot-Carathéodory spaces make it difficult to produce
examples of NTA, uniform and John domains. In fact, even metric balls in a Carnot-
Carathéodory space are not necessarily NTA [7], although they are always uniform [23].
The integrability criterion characterizing Lp-averaging domains provides another means
to check if a domain is John.

John domains support the Sobolev-Poincaré inequalities and provide a standard set-
ting for much of the study of inequalities in homogeneous spaces. Buckley and Koskela,
[3, 4], proved that John domains are nearly the largest class of domains that support the
Sobolev-Poincaré embedding theorem. Semmes [20] proved a version of the Poincaré in-
equality forQ-regular homogeneous metric spaces which are locally linearly contractible.
Staples [22] extends this result to averaging domains. To understand the statement of this
theorem, we provide the requisite definitions.

First we recall how upper gradients are defined on abstract homogeneous spaces and
state the Poincaré inequality. Here we use the terminology of [14].

Definition 3.6. It is said that a Borel function g : X → [0,∞] is an upper gradient of an-
other Borel function u : X →R, if for every 1-Lipschitz curve γ : [a,b]→ X , the following

holds |u(γ(b))−u(γ(a))| ≤ ∫ ba g(γ(t))dt.

Definition 3.7. It is said that the space X supports a p-Poincaré inequality, 1≤ p <∞, if
for every pair u,g of a continuous function u∈ L1

loc(X) and its upper gradient g on X ,

1
μ(B)

∫

B

∣
∣u−uB

∣
∣dμ≤ Cpr

(
1

μ(τB)

∫

τB
g pdμ

)1/p

, (3.5)

on each ball B with τB ⊂ X , where r is the radius of B and τ ≥ 1, Cp > 0 are fixed con-
stants.

The metric space conditions considered in [20] are as follows.
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Definition 3.8. The metric space (X ,d,μ) as defined in Section 3 is called Q-regular if
there exist constants a1,a2 > 0 such that μ also satisfies

a1r
Q ≤ μ(B(x,r)

)≤ a2r
Q (3.6)

whenever x ∈ X and r ≤ diamX .

Definition 3.9. The metric space X satisfies a local linear contractibility condition if there
exists a3 ≥ 1 such that, for each x ∈ X and radius r ≤ a−1

3 diamX , the ball B(x,r) can be
contracted to a point inside B(x,a3r).

The Poincaré inequality on averaging domains in homogeneous spaces is the follow-
ing.

Theorem 3.10. Let X be a connected linearly locally contractible Q-regular metric space
that is also an orientable topological Q-dimensional manifold, Q ≥ 2 an integer. Let D be an
Lp-averaging domain in X . Then the following Poincaré inequality holds on D,

(
1

μ(D)

∫

D

∣
∣u−uD

∣
∣dμ

)

≤ C(p,τ,a1,a2,a3,Cave
)
μ(D)1/Q

(
1

μ(D)

∫

D
g pdμ

)1/p

(3.7)

when p ≥Q.

The study of various types of domains in homogeneous spaces is still in its early stages.
Concrete examples in even the simplest cases [7] remain elusive. The characterization of
averaging domains generates one more geometric technique to utilize in assessing exam-
ple domains.
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Hölder inequality, Journal of Mathematical Analysis and Applications 237 (1999), no. 2, 730–
739.

[20] S. Semmes, Finding curves on general spaces through quantitative topology, with applications to
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ON A BIFURCATION DELAY IN DIFFERENTIAL EQUATIONS
WITH A DELAYED TIME 2nπ

K. TCHIZAWA AND R. MIYAZAKI

In the dynamic Hopf bifurcation it is known that the bifurcation delay occurs. In this
paper we will show that the bifurcation delay is persistent under adding a delayed feed-
back control term with a delayed time 2nπ (n is any positive integer) if the period of
the Hopf bifurcating solution is 2π. We will also give some numerical simulation results
which suggest that the length of the bifurcation delay is shorter as n increases.

Copyright © 2006 K. Tchizawa and R. Miyazaki. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Neishtadt [4] shows the existence of a delay for the general Hopf bifurcation. Lobry [2]
gives an introductory explanation of the “delay” phenomenon as follows. Consider the
planar system

x′1 = μx1 + x2− x1
(
x2

1 + x2
2

)
,

x′2 =−x1 +μx2− x2
(
x2

1 + x2
2

) (1.1)

which exhibits a supercritical Hopf bifurcation for μ= 0. More precisely, if μ < 0, the ori-
gin is stable, and if μ > 0, the origin becomes unstable and a stable closed orbit surround-
ing the origin with a radius ρ = √μ appears (see Figure 1.1). Then the closed orbit has
a period 2nπ. By contrast, consider the parameter μ growing slowly with time in system
(1.1),

x′1 = μx1 + x2− x1
(
x2

1 + x2
2

)
,

x′2 =−x1 +μx2− x2
(
x2

1 + x2
2

)
,

μ′ = ε,
(1.2)

where ε is small, and consider the solution which starts from (x0, y0,μ0), where x2
0 + y2

0 is
very small and μ0 < 0. Lobry shows that x2 + y2 remains close to 0 until μ is positive, and
from the value μ= 0 to μ=−μ0 the solution remains infinitesimal and then departs very

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1049–1054
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Figure 1.1. The amplitude of the stable closed orbit of (1.1).
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Figure 1.2. The phase portrait of (1.2) for ε= 0.05, μ(0)=−2.

suddenly to an oscillation of large amplitude (see Figure 1.2). The phenomenon is called
a “delay” in the bifurcation.

Let us consider the effects of a delayed feedback control term on the “delay” phenom-
enon in the bifurcation.

x′1 = μx1 + x2− x1
(
x2

1 + x2
2

)
+ b1u(t),

x′2 =−x1 +μx2− x2
(
x2

1 + x2
2

)
+ b2u(t),

μ′ = ε;
u(t)=−k1

(
x(t)− x(t− τ)

)− k2
(
y(t)− y(t− τ)

)
,

(1.3)

where k1, k2, b1, b2 are real constants, and u(t) is called a delayed feedback control term
with a delayed time τ. In [3] the authors consider the case when n = 1 and obtain the
following results.

Theorem 1.1. Assume τ = 2π and |k1|, |k2|, |b1|, |b2| are sufficiently small. Then bifurca-
tion delay is persistent under the time delayed feedback for system (1.2).

In this paper we consider the case when τ = 2nπ (n= 1,2, . . .) and we obtain the sim-
ilar results as Theorem 1.1. Moreover, we give some numerical simulation results which
suggest that the length of the bifurcation delay is shorter as n increases.
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2. Analysis of the first system

Consider planar ordinary differential equations with a scalar parameter μ:

dx

dt
= F(x;μ). (2.1)

Assume that the Hopf bifurcation occurs at μ = 0. In this paper we consider only the
normalized case when

F(x;μ)= A(μ)x+ f
(|x|)x, A(μ)=

(
μ 1

−1 μ

)

, (2.2)

where x = col(x1,x2), |x| =
√
x2

1 + x2
2, and f : [0,∞)→ R is a Ck (k ≥ 3) function satisfy-

ing f (0)= 0. Note that we refer to [1, Theorem 11.15] as the Hopf bifurcation theorem
reformulated to be more directly applicable to this system.

Adding a time delayed feedback control term bu(t) to system (2.1), we have

dx

dt
= A(μ)x+ f

(|x|)x+ bu(t), A(μ)=
(
μ 1

−1 μ

)

,

u(t)=−kT(x(t)− x(t− τ)
)
,

(2.3)

where b and k are in R2, and kT represents a transpose of k.
The linearized equation of (2.3) at x = 0 becomes

dx(t)
dt

= A(μ)x(t)− bkT(x(t)− x(t− τ)
)
. (2.4)

The characteristic equation of (2.4) is

p(z) := det
[
zI −A(μ) +

(
1− e−τz)bkT]= 0. (2.5)

Define two sets of the characteristic roots of (2.4) as

Λ := {z : p(z)= 0 and�z > 0
}

, Λ0 := {z : p(z)= 0 and�z = 0
}
. (2.6)

Here�z represents the real part of a complex number z.
To avoid complication in calculating, throughout this paper we assume

kTb = 0. (H1)

Then it is convenient to write b and k as follows:

b= b̂
(

cosδ

−sinδ

)

, k = k̂
(

sinδ

cosδ

)

, (2.7)

where b̂ ≤ 0, k̂ ∈R and 0≤ δ < 2π.
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Lemma 2.1. Suppose that (H1) holds and |b̂k̂| is sufficiently small. If τ = 2nπ, then for any
small |μ|,

(i) μ < 0 implies Λ∪Λ0 =∅,
(ii) μ= 0 implies Λ=∅, Λ0 = {±i}. Moreover the multiplicity of ±i is 1 and

�dz

dμ

∣
∣
∣
∣ μ=0
z=±i

> 0, (2.8)

(iii) μ > 0 implies Λ0 =∅ and Λ has two elements.

Proof. The proof is given by using Rouché’s theorem. �

By the similar calculation in [3], we can show that the dynamics of the center manifold
at the equilibrium are given by the following system:

dy

dt
=A(0)y +Ψ0

{
μ+ f

(|y|)}y, (2.9)

where

Ψ0 = (Ψ,Φ)−1 = 1

1 +
(
b̂k̂nπ

)2

{

I + b̂k̂nπR
(
π

2

)}

. (2.10)

3. Bifurcation delay and delayed feedback term

Consider the effects of a time delayed feedback term on the “delay” phenomenon in sys-
tem (1.2):

x′1 = μx2 + x1− x1
(
x2

1 + x2
2

)
+ b1u(t),

x′2 =−x1 +μx2− x2
(
x2

1 + x2
2

)
+ b2u(t),

μ′ = ε;
u(t)=−k1

(
x(t)− x(t− τ)

)− k2
(
y(t)− y(t− 2nπ)

)
.

(3.1)

This is the case when f (ρ) = −ρ2, b = col(b1,b2) = b̂col(cosδ,−sinδ), k = (k1,k2) =
k̂ col(sinδ, cosδ), and τ = 2nπ in (2.3), so that we can use the results calculated in the
previous section. Moreover, the same argument given by Lobry [2, pages 1–4] can be ap-
plicable and we can expect the “delay” phenomenon in the bifurcation. Translating to
polar coordinates (ρ,θ) for (2.9) given by y1 = ρcosθ, y2 =−ρ sinθ, we have

dρ

dt
= 1

1 +
(
b̂k̂nπ

)2

(
μ+ f (ρ)

)
ρ,

dθ

dt
= 1− b̂k̂nπ

1 +
(
b̂k̂π

)2

(
μ+ f (ρ)

)
.

(3.2)
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Figure 3.1. The phase portrait of (3.1) for n= 1.
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Figure 3.2. The phase portrait of (3.1) for n= 2.
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Figure 3.3. The phase portrait of (3.1) for n= 3.

Theorem 3.1. Assume |k1|, |k2|, |b1|, |b2| are sufficiently small. For any positive integer n,
the bifurcation delay is persistent under the time delayed feedback with a delayed time 2nπ
for system (1.2).

Figures 3.1, 3.2, 3.3, and 3.4 illustrate the phase portraits of (3.1) for n = 1,2,3,4,

where ε = 0.05, μ(0)=−2, b = (0.1/
√

2)
(

1
−1

)
, k = (0.1/

√
2)
(

1
1

)
. It seems that the length of

the bifurcation delay is shorter as n increases.
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Figure 3.4. The phase portrait of (3.1) for n= 4.
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CONCENTRATION-COMPACTNESS PRINCIPLE
FOR MOUNTAIN PASS PROBLEMS

KYRIL TINTAREV

We show that critical sequences associated with the mountain pass level for semilin-
ear elliptic problems on RN converge when the nonlinearity is subcritical, superlinear,
and satisfies the penalty condition F∞(s) < F(x,s). The proof suggests a concentration-
compactness framework for minimax problems, similar to that of P.-L. Lions for con-
strained minima.

Copyright © 2006 Kyril Tintarev. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper we prove an existence result for the classical semilinear elliptic problem on
RN :

−Δu+u= f (x,u), u∈H1(RN
)
. (1.1)

The classical existence proof for the analogous Dirichlet problem on bounded domain,
based on the mountain pass lemma of [1], fails in the case of RN , since the Palais-Smale
condition does not anymore follow from compactness of Sobolev embeddings and a
concentration-compactness argument is needed. There are numerous publications where
the concentration compactness is used in minimax problems, including the problem con-
sidered here (a representative bibliography on the subject can be found in the books of
Chabrowski [4] and Willem [13]), but given that in problems on RN the (PS)c condition
fails, typically, for every c that is a linear combination, with positive integer coefficients,
of critical values, the Palais-Smale condition has been proved only with severe restrictions
on the nonlinearity f (x,s).

We consider here a set of conditions on the functional, similar to the concentration-
compactness framework as set by Lions (see [6–9]), where conditions for existence of
minima can be formulated as the following prototype assumptions: (a) the function-
als are continuous; (b) critical sequences are bounded in norm (achieved by regard-
ing constrained minima); (c) constrained minimal values are subadditive with respect
to the parameter of constraint level; and (d) the functionals are invariant relative to

Hindawi Publishing Corporation
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transformations causing the loss of compactness or their asymptotic values (with respect
to the unbounded sequences of the transformations) satisfy a penalty condition.

In the present paper we consider a functional G on a Hilbert space H with an as-
ymptotic (with respect to unbounded sequence of transformations responsible for loss of
compactness) value G∞. Let Φ be an appropriate set of mappings from a metric space X
into H with fixed values on a subset X0 of X , and let

ρ := supG
(
ϕ
(
X0
))
< c =: inf

ϕ∈Φ
supG

(
ϕ(X)

)
. (1.2)

We regard the following heuristic conditions, whose formal counterparts for the func-
tional associated with (1.1) will be given in Section 2:

(a′) G∈ C1(H) (in the semilinear elliptic case, subcritical growth of f );
(b′) critical sequences at the level c are bounded (in the semilinear elliptic case it fol-

lows from an assumption of superlinearity for f );
(c′) a condition of convexity type forG∞—in the semilinear elliptic case with a moun-

tain pass, the sufficient condition is s�→ f∞(s)/|s|monotone increasing;
(d′) invariance or penalty condition (resp., f (x,s) = f (s) or F(x,s) > F∞(s), where

F(x, t)= ∫ t0 f (x,s)ds).
A weaker version of (c′) may be given as follows:

(c′′) for every critical point w of G∞ such that ρ < G∞(w) ≤ c, there is a sequence of
paths ϕk such that d(w,ϕk(X))→ 0 and supx∈X G∞(ϕk(x))→G(w).

Existence of critical points is proved by verifying (PS)c for a single value c, namely,
the one given by the mountain pass statement. Sharp estimates of c are based on the
global compactness theorem by Schindler and the author [11], which is a functional-
analytic generalization of earlier “multibump” weak convergence lemmas (Struwe [12],
Lions [10], Cao and Peng [3]).

2. Existence theorem

We consider the Hilbert space H1(RN ), N ∈ N, defined as the completion of C∞c (RN )
with respect to the norm

‖u‖2 =
∫

RN
|∇u|2 +u2. (2.1)

In what follows the notation of norm without other specification will refer to this H1-
norm. The spaceH1(RN ) is continuously embedded into Lp(RN ) for 2≤ p ≤ 2N/(N − 2)
whenN > 2 and for p ≥ 2 forN = 1,2. For convenience we set 2∗ = 2N/(N − 2) forN > 2
and 2∗ =∞ for N = 1,2. Let f :RN ×R be continuous function and let

F(x, t)=
∫ t

0
f (x,s)ds, (2.2)

g(u)=
∫

RN
F
(
x,u(x)

)
dx, (2.3)

G(u)= 1
2
‖u‖2− g(u). (2.4)
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We assume that f (x,s)→ f∞(s) as |x| →∞ and follow the definitions above to define
F∞, g∞, and G∞.

Let

Φ=
{
ϕ∈ C([0,∞);H1(RN

))
: ϕ(0)= 0, lim

t→∞G∞
(
ϕ(t)

)=−∞
}
. (2.5)

Theorem 2.1. Assume that for every ε > 0 there exist pε ∈ (2,2∗) and Cε > 0 such that
(A) | f (x,s)| ≤ ε(|s|+ |s|2∗−1) +Cε|s|pε−1, s∈R, x ∈RN , there exists μ > 2, such that
(B) f (x,s)s≥ μF(x,s), s∈R, x ∈RN ,
(C) s�→ f∞(s)/|s|, s∈R, is increasing,
(D) F(x,s) > F∞(s), s∈R \ {0}, x ∈RN .

Then Φ�=∅;

c := inf
ϕ∈Φ

max
t∈[0,∞)

G
(
ϕ(t)

)
> 0; (2.6)

there is a sequence uk ∈ H1(RN ) such that G′(uk)→ 0, G(uk)→ c; every such sequence
has a subsequence convergent in H1(RN ). Consequently, u = limuk satisfies G(u) = c and
G′(u)= 0 (and therefore, u is a solution of (1.1)).

Condition (A) is a well-known sufficient condition for G∈ C1(H1(RN )).

Lemma 2.2. Let G be as in (2.4). Assume conditions (A) and (C) of Theorem 2.1. Then for
every w ∈ H1(RN ) \ {0}, the path ϕ(t) = tw, t ∈ (0,∞), is in Φ and the constant (2.6) is
positive. If, in addition, G′∞(w)= 0, then maxt G∞(ϕ(t)) is attained at ϕ(1)=w.

Proof. The first assertion of the lemma follows easily from (C) and the second is a conse-
quence of (A) (the proof is a trivial modification of the one in [1]).

Let w �= 0 satisfy G′−∞(w) = 0. From (C) follow that the function s �→ s−1(d/
ds)G∞(sw(n)) is decreasing on (0,∞). Then, since

d

ds
G∞(sw)= s‖w‖2−

∫

f∞(sw)w

= s
(

‖w‖2−
∫
f∞(sw)
sw

w2dx
)

,

(2.7)

the function s �→ γ(s) := G∞(sw) has at most one critical point. Since γ(0) = 0, γ(s) < 0
for s large and has positive values (because c > 0), the critical point of γ is a point of
maximum. Since G′−∞(w) = 0, (G′−∞(w),w) = 0, which is equivalent to γ′(1) = 0. Since
γ(s) has a unique critical point, which is a point of maximum, s �→ G−∞(sw) attains its
maximum at s= 1. �

3. Global compactness

In this section we present statements from [11] concerning weak convergence that will
be used in the proof. In what follows D denotes the group of lattice shifts on H1(RN ),
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namely,

D = {u�→ u(·+ y), y ∈ ZN}. (3.1)

We will say that uk
D⇀ u if for every sequence gk ∈D, gk(uk −u)⇀ 0.

Theorem 3.1. Let uk ∈H1(RN ) be a bounded sequence. Then there exists w(n) ∈H , g(n)
k ∈

D, k,n∈N such that for a renumbered subsequence

g(1)
k = id, g(n)

k

−1
g(m)
k ⇀ 0 for n�=m, (3.2)

w(n) =w− limg(n)
k

−1
uk, (3.3)

∑

n∈N

∥
∥w(n)

∥
∥2 ≤ limsup

∥
∥uk

∥
∥2

, (3.4)

uk −
∑

n∈N
g(n)
k w(n) D⇀ 0. (3.5)

In particular, u�→ u(·− y), y ∈ ZN , form a dislocation group in H1
0 (RN ), and uk

D⇀ 0
is equivalent to uk → 0 in Lp(RN ), p ∈ (2,2∗) (an equivalent statement is found in [5]).

The following lemma is similar to the Brézis-Lieb lemma from [2] and is a trivial
modification of analogous lemma from [11].

Lemma 3.2. Assume that F satisfies (A) and that uk and (w(n)) are as in Theorem 3.1. Then
∫

F
(
x,uk

)−→
∫

F
(
x,w(1))+

∑

n≥2

∫

F∞
(
w(n)). (3.6)

4. Proof of Theorem 2.1

Step 1. By Lemma 2.2, Φ�=∅ and c > 0. By (A), (2.6), and the mountain pass lemma [1],
there is a sequence uk such that G′(uk)→ 0 and G(uk)→ c. By (B), uk is bounded in H1

(see, again, the argument of [1]) and we can apply Theorem 3.1, referring in what follows
to the renamed subsequence. By (3.6) and (3.4),

c ≥ 1
2

∑

n∈N

∥
∥w(n)

∥
∥2−

∫

F
(
x,w(1))−

∑

n≥2

∫

F∞
(
w(n)). (4.1)

From G′(uk)→ 0 (since (A), by compactness of local embeddings of H1 into Lp, im-
plies weak convergence of g′(uk) for weakly convergent uk) follow

∥
∥w(1)

∥
∥2 =

∫

f
(
x,w(1))w(1),

∥
∥w(n)

∥
∥2 =

∫

f∞
(
w(n))w(n) for n≥ 2. (4.2)

Substituting (4.2) into (4.1) we get

c ≥
∫ (

1
2
f
(
x,w(1))w(1)−F(x,w(1))

)

+
∑

n≥2

∫ (
1
2
f∞
(
w(n))w(n)−F∞

(
w(n))

)

. (4.3)
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Step 2. Note that

1
2
f (x,s)s−F(x,s) > 0,

1
2
f∞(s)s−F∞(s) > 0, s�= 0. (4.4)

The first relation follows from (B):

1
2
f (x,s)s−F(x,s)≥

(
μ

2
− 1
)

F(x,s), (4.5)

F(x,s) > F∞(s) by (D) and F∞(s) > 0 for s �= 0 due to (A). The second relation follows
from going to the limit in (4.5) as |x| →∞ and using positivity of F∞(s).
Step 3. Assume that

w(n) �= 0 for some n�= 1. (4.6)

Let us estimate c from above by choosing paths s�→ sw(n)(·− yk)∈H1(RN ) with yk ∈ ZN ,
|yk| →∞. Then

c ≤ sup
s∈(0,∞)

G
(
sw(n)( ·−yk

))
. (4.7)

By taking k→∞, we have

c ≤ sup
s∈(0,∞)

G∞
(
sw(n)). (4.8)

By Lemma 2.2, sups∈(0,∞)G∞(sw(n))=G∞(w(n)), and therefore

c ≤G∞
(
w(n)). (4.9)

Comparing this with (4.3), we see, due to (4.4), that form�= n, w(m) = 0 with necessity
and therefore

c =G∞
(
w(n)). (4.10)

This is clearly false: consider a path s�→ sw(n). Then by (D),

sup
s
G
(
sw(n)) < sup

s
G∞
(
sw(n))=G∞

(
w(n))= c, (4.11)

which contradicts the definition of c.
We conclude that the assumption (4.6) is false and w(n) = 0 for all n�= 1.

Step 4. We conclude from Step 3 and (3.5) that uk → w(1) in Lr for any r ∈ (2,2∗). Then
from (A) follows g′(uk)→ g′(w(1)), and, since uk − g′(uk)→ 0, uk is a convergent se-
quence in H1(RN ). We conclude that uk → w(1) in H1(RN ). By continuity, G′(w(1)) = 0
and G(w(1))= c.
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[2] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of
functionals, Proceedings of the American Mathematical Society 88 (1983), no. 3, 486–490.

[3] D. Cao and S. Peng, A global compactness result for singular elliptic problems involving critical
Sobolev exponent, Proceedings of the American Mathematical Society 131 (2003), no. 6, 1857–
1866.

[4] J. Chabrowski, Weak Convergence Methods for Semilinear Elliptic Equations, World Scientific,
New Jersey, 1999.

[5] E. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Inventiones
Mathematicae 74 (1983), no. 3, 441–448.

[6] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally com-
pact case. I, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 1 (1984), no. 2, 109–145.
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SCATTERING THEORY FOR A WAVE EQUATION
OF HARTREE TYPE

KIMITOSHI TSUTAYA

We consider a scattering problem for a wave equation with a cubic convolution together
with a potential in three space dimensions. We show the sharp conditions on the decay
rates at infinity of the potentials and initial data for the existence of scattering operators.

Copyright © 2006 Kimitoshi Tsutaya. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

This paper is intended to present an extension of the result in the paper [9], which treats
the Cauchy problem.

We consider a scattering problem for the nonlinear wave equation

∂2
t u−Δu=V1(x)u+

(
V2∗u2)u in R×R3, (NW)

where V1(x)= O(|x|−γ1 ) as |x| →∞, V2(x)= ν2|x|−γ2 , ν2 ∈ R, γ1,γ2 > 0, and ∗ denotes
spatial convolution. The potential V1 is assumed to be a smooth function.

The Schrödinger equation with the interaction term V1(x)u+ (V2∗u2)u was studied
by Hayashi and Ozawa [3]. See also Coclite and Georgiev [2].

We study the scattering problem for (NW) with small initial data. Moreover, in this
paper the potential V1 is assumed to be small since the solution may blow up in a finite
time unless V1 is small. See Strauss and Tsutaya [8].

In case V1(x)≡ 0, the initial data have small amplitude, and V2(x) satisfies some con-
ditions, it is known by [4–7] that the scattering operator exists for small initial data.
In particular, Mochizuki and Motai [7] proved the existence of scattering operators for
(NW) in n-dimensional space if

2 +
2

3(n− 1)
< γ2 < n. (1.1)

Hidano [4] showed the existence of scattering operators for (NW) in three dimensions if
2 < γ2 < 5/2 using the Lorentz invariance method. He also proved blow up in a finite time
for 0 < γ2 < 2.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1061–1065
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For the Klein-Gordon equation with a cubic convolution, we refer to [5–7].
One aim of this paper is to permitV1(x) which is small and decays like |x|−γ1 . We show

that if γ1 > 2, 2 ≤ γ2 < 3, and the small initial data decay like |x|−1−k with k > 1 + (3−
γ2)/2, then there exist scattering operators for (NW), which improves on the requirement
2 < γ2 < 5/2 in Hidano [4].

On the other hand, we show that if any of these three conditions are relaxed, then there
exist arbitrarily small initial data such that the corresponding solutions blow up in a finite
time.

2. Main result

In this section we state the main theorem. Consider the scattering problem for (NW) with
V2(x) = ν2|x|−γ2 , ν2 ∈ R, γ2 > 0. We also assume the following condition: the potential
V1(x) satisfies

∑

|α|≤2

∣
∣∂αxV1(x)

∣
∣≤ ν1

(
1 + |x|)γ1 (H1)

with γ1 > 0, where ν1 > 0 is a small parameter.
Let u−(t,x) be a C2-solution of

∂2
t u−Δu= 0 in R×R3,

(
u(0,x),∂tu(0,x)

)= (ϕ(x),ψ(x)
)
, x ∈R3.

(W)

We assume that the initial data ϕ∈ C3(R3) and ψ ∈ C2(R3) satisfy

∑

|α|≤3

∣
∣∂αxϕ(x)

∣
∣+

∑

|β|≤2

∣
∣∂

β
xψ(x)

∣
∣≤ ε

(
1 + |x|)1+k (H2)

with k > 0, where ε > 0 is a small parameter.

Theorem 2.1. (i) Assume (H1) and (H2). Let γ1 > 2, 2 ≤ γ2 < 3, and k > 1 + (3− γ2)/2.
If ν1 and ε are sufficiently small, depending on k, γ1, γ2, and ν2, then there exists a unique
C2-solution u(t,x) of (NW) such that

∥
∥u(t)−u−(t)

∥
∥
e −→ 0 (t −→−∞), (2.1)

where

∥
∥u(t)

∥
∥
e =

{∥
∥∇u(t)

∥
∥2
L2(R3) +

∥
∥∂tu(t)

∥
∥2
L2(R3)

}1/2
. (2.2)

(ii) Moreover, there exists a unique C2-solution u+(t,x) of ∂2
t u−Δu= 0 such that for the

solution u given by (i),
∥
∥u(t)−u+(t)

∥
∥
e −→ 0 (t −→ +∞). (2.3)

Therefore, the scattering operator for (NW) can be defined:

S :
(
u−(0),∂tu−(0)

)	−→ (u+(0),∂tu+(0)
)
. (2.4)
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Proof of Theorem 2.1. Part (i). To prove Theorem 2.1(i) we use the pointwise estimate
method developed by F. John.

Let F(u) = V1(x)u+ (V2 ∗ u2)u and let u−(t,x) be a solution of (W). We consider to
solve the integral equation:

u(t,x)= u−(t,x) +
1

4π

∫ t

−∞
(t− s)

∫

|ω|=1
F
(
u
(
s,x+ (t− s)ω))dωds for t ∈R (2.5)

in the space X , where

X = {u(x, t) : ∂αxu(t,x)∈ C(R3×R) for |α| ≤ 2, ‖u‖X <∞
}

,

‖u‖X =
∑

|α|≤2

∥
∥∂αxu

∥
∥,

‖u‖ = sup
t∈R
x∈R3

w(t,x)
∣
∣u(t,x)

∣
∣,

w(t,x)= (1 + |t|+ |x|)(1 +
∣
∣|t|− |x|∣∣)m,

(2.6)

where m=min{1,k− 1}. We use the following lemma.

Lemma 2.2 (Asakura [1]). Suppose that ϕ(x), ψ(x) satisfy (H2). Let k > 1. Then the solu-
tion u− of (W) satisfies

∑

|α|≤2

∣
∣∂αxu−(t,x)

∣
∣≤ Ckε

(
1 + |t|+ |x|)(1 +

∣
∣|t|− |x|∣∣)k−1 , (2.7)

where the constant Ck depends only on k.

We next define

LF(t,x)= 1
4π

∫ t

−∞
(t− s)

∫

|ω|=1
F
(
s,x+ (t− s)ω)dωds. (2.8)

The following lemma is the basic estimate for the existence proof.

Lemma 2.3. Let V1(x) satisfy (H1). If γ1 > 2, 2≤ γ2 < 3, and k > 1 + (3− γ2)/2, then there
exists a constant C > 0 depending only on k, γ1, γ2, and ν2 such that

∥
∥LF(u)

∥
∥≤ C(ν1‖u‖+‖u‖3). (2.9)

Using Lemmas 2.2 and 2.3, we can prove the existence of the solution in Theorem 2.1(i)
by the contraction mapping principle. It also follows that

∫ t

−∞

∥
∥F
(
u(s)

)∥
∥
L2
(
R3
)ds−→ 0 (t −→−∞), (2.10)

which yields (2.1).
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Part (ii) of Theorem 2.1. We define

u+(t,x)= u(t,x) +
1

4π

∫ t

−∞
(t− s)

∫

|ω|=1
F
(
u
(
s,x+ (t− s)ω))dωds. (2.11)

Then, clearly u+ is a C2-solution of (W) and as before, we can show that

∥
∥u(t)−u+(t)

∥
∥
e −→ 0 (t −→ +∞). (2.12)

�

3. Blow up

In this section we state a blow-up result. We consider (NW) for t > 0. We can verify lo-
cal existence and uniqueness for the problem, and existence of nonnegative solutions,
provided that

V1 ∈ L∞, V1 ≥ 0, ν2 > 0, 0 < γ2 < 3, ϕ≡ 0, ψ ≥ 0. (3.1)

Let T be the existence time. The following theorem is proved in [9].

Theorem 3.1. Assume condition (3.1). Let one of the following conditions be satisfied:
(i) 0 < γ1 < 2 and V1(x)≥ C(1 + |x|)−γ1 for C > 0;

(ii) 0 < γ2 < 2;
(iii) 1/2 < k < 1 + (3− γ2)/2 and ψ(x)≥ ε(1 + |x|)−1−k for ε > 0.

Then T <∞.
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NONLINEAR VARIATIONAL INCLUSION PROBLEMS
INVOLVING A-MONOTONE MAPPINGS

RAM U. VERMA

Based on the notion of A-monotonicity, a new class of nonlinear variational inclusion
problems is introduced. Since A-monotonicity generalizes H-monotonicity (and in turn
generalizes maximal monotonicity), results thus obtained are general in nature.

Copyright © 2006 Ram U. Verma. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Resolvent operator techniques have been in literature for a while for solving problems
from several fields, including complementarity, optimization, mathematical program-
ming, equilibria in economics, and variational inclusions, but the generalized resolvent
operator technique (referred to as A-resolvent operator technique) based on A-mono-
tonicity [13, 14] is a new development. This gave rise to several generalized resolvent
operator-like techniques that can be applied to several variational inclusion problems
from sensitivity analysis, model equilibria problems in economics, and optimization and
control theory. Just recently, the author [13, 14] generalized the notion of the maximal
monotonicity to A-monotonicity, and applied A-resolvent operator technique, thus de-
veloped, to establishing existence and uniqueness of the solution as well as algorithmic
convergence analysis for the solution of nonlinear variational inclusions.

We explore in this paper the role of A-monotonicity in constructing a general frame-
work for A-resolvent operator technique, and then we consider the existence and unique-
ness of the solution and convergence analysis for approximate solution of a new class
of nonlinear variational inclusion problems involving relaxed cocoercive mappings us-
ing A-resolvent operator technique. As there is a vast literature on variational inequalities
and their applications to several fields of research, the obtained nonlinear variational
inclusion results generalize the recent research works of Fang and Huang [3, 4], Liu et
al. [9], and Jin [7] to the case of A-monotone mappings. For more details, we refer to
[1–14].

Hindawi Publishing Corporation
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2. General A-monotonicity

In this section we recall the notion of A-monotonicity [13, 14] that generalizes the well-
known class of maximal monotone mappings, as well as the notion of H-monotonicity
[3]. It seems thatA-monotone mappings have a wide range of applications to several fields.
We also recall the notion of relaxed cocoercive mappings along with examples.

Let M : X → 2X be a multivalued mapping from a Hilbert space X to 2X , the power set
of X . We recall the following.

(i) The set D(M) defined by

D(M)= {u∈ X :M(u)�=Ø
}

(2.1)

is called the effective domain of M.
(ii) The set R(M) defined by

R(M)=
⋃

u∈X
M(u) (2.2)

is called the range of M.
(iii) The set G(M) defined by

G(M)= {(u,v)∈ X ×X : u∈D(M), v ∈M(u)
}

(2.3)

is the graph of M.

Definition 2.1. A mapping M : X → 2X is said to be
(i) monotone if and only if

〈u∗ − v∗,u− v〉 ≥ 0, ∀u,v ∈D(M), u∗ ∈M(u), v∗ ∈M(v), (2.4)

(ii) pseudomonotone if and only if

〈v∗,u− v〉 ≥ 0 implies 〈u∗,u− v〉 ≥ 0 (2.5)

for all u,v ∈D(M), u∗ ∈M(u), v∗ ∈M(v),
(iii) (r)-strongly monotone if and only if there exists a positive constant r such that

〈u∗ − v∗,u− v〉 ≥ r‖u− v‖2, ∀u,v ∈D(M), u∗ ∈M(u), v∗ ∈M(v), (2.6)

(iv) (m)-relaxed monotone if and only if there exists a positive constant m such that

〈u∗ − v∗,u− v〉 ≥ −m‖u− v‖2, ∀u,v ∈D(M), u∗ ∈M(u), v∗ ∈M(v), (2.7)

(v) maximal monotone
(a) if and only if M is monotone,
(b) for every u∈D(M) and u∗ ∈ X such that

〈u∗ − v∗,u− v〉 ≥ 0, ∀v ∈D(M), v∗ ∈M(v), (2.8)

implies u∗ ∈M(u).
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Definition 2.2 [13]. Let A : X → X be a nonlinear mapping on a Hilbert space X and let
M : X → 2X be a multivalued mapping on X . The map M is said to be A-monotone if

(i) M is (m)-relaxed monotone,
(ii) A+ ρM is maximal monotone for ρ > 0.

Next, we recall some results that reflect general properties of A-monotonicity and its
connections to the maximal monotonicity.

Proposition 2.3. Let A : X → X be an (r)-strongly monotone single-valued mapping and
let M : X → 2X be an A-monotone mapping. Then M is maximal monotone.

Next we state some general properties on A-monotone mappings regarding the gener-
alized resolvent operator technique.

Proposition 2.4. Let A : X → X be an r-strongly monotone mapping and let M : X → 2X

be an A-monotone mapping. Then the operator (A+ ρM)−1 is single-valued.

Definition 2.5 [13]. Let A : X → X be an (r)-strongly monotone mapping and let M : X →
2X be an A-monotone mapping. Then the generalized resolvent operator JMρ,A : X → X is
defined by

JMρ,A(u)= (A+ ρM)−1(u). (2.9)

Definition 2.6. Let T , A : X → X be any two mappings on X . The map T is called
(i) monotone with respect to A if

〈
T(x)−T(y),A(x)−A(y)

〉≥ 0, ∀x, y ∈ X , (2.10)

(ii) strictly monotone with respect to A if
〈
T(x)−T(y),A(x)−A(y)

〉
> 0, ∀x, y ∈ X with x �= y, (2.11)

(iii) (r)-strongly monotone with respect to A if there exists a constant r > 0 such that
〈
T(x)−T(y),A(x)−A(y)

〉≥ r‖x− y‖2, ∀x, y ∈ X , (2.12)

(iv) (m)-cocoercive with respect to A if there exists a constant m> 0 such that

〈
T(x)−T(y),A(x)−A(y)

〉≥m∥∥T(x)−T(y)
∥
∥2

, ∀x, y ∈ X , (2.13)

(v) (m)-relaxed cocoercive with respect to A if there exists a constantm> 0 such that

〈
T(x)−T(y),A(x)−A(y)

〉≥−m∥∥T(x)−T(y)
∥
∥2

, ∀x, y ∈ X , (2.14)

(vi) (γ,r)-relaxed cocoercive with respect to A if there exist constants γ,r > 0 such
that

〈
T(x)−T(y),A(x)−A(y)

〉≥−γ∥∥T(x)−T(y)
∥
∥2

+ r‖x− y‖2, ∀x, y ∈ X , (2.15)

(vii) (s)-Lipschitz continuous if there exists a constant s > 0 such that
∥
∥T(x)−T(y)

∥
∥≤ s‖x− y‖, ∀x, y ∈ X. (2.16)
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3. Nonlinear quasivariational inclusions

Let X be a real Hilbert space with the norm ‖ · ‖ and inner product 〈·,·〉, and let N :
X ×X → X be a nonlinear mapping. Let A : X → X and M : X ×X → 2X be any nonlinear
mappings. Then we have the nonlinear variational inclusion (NVI) problem: determine
an element u∈ X for a given element f ∈ X such that

f ∈N(u,u) +M(u,u). (3.1)

The solvability of the NVI problem (3.1) depends on the equivalence between (3.1)
and the problem of finding the fixed point of the associated A-resolvent operator.

We note that if A : X → X is (r)-strongly monotone andM : X ×X → 2X isA-monotone

in the first variable, then A-resolvent operator JM(·,u)
ρ,A is defined by

JM(·,u)
ρ,A (u)= (A+ ρM(·,u)

)−1
(u), ∀u∈ X , (3.2)

where ρ > 0.

Lemma 3.1 [14]. Let X be a real Hilbert space, let A : X → X be (r)-strongly monotone,
and let M : X × X → 2X be A-monotone in the first variable. Then A-resolvent operator
associated with M and defined by

JM(·,u)
ρ,A (u)= (A+ ρM(·,u)

)−1
(u), ∀u∈ X , (3.3)

is (1/(r− ρm))-Lipschitz continuous; that is,

∥
∥
∥JM(·,u)

ρ,A (u)− JM(·,u)
ρ,A (v)

∥
∥
∥≤ 1

r− ρm‖u− v‖, ∀u,v ∈ X. (3.4)

Lemma 3.2. Let X be a real Hilbert space, let A : X → X be (r)-strongly monotone, and let
M : X ×X → 2X be A-monotone. Then the following statements are mutually equivalent.

(i) An element u∈ X is a solution to (3.1).
(ii) There is u∈ X such that

u= JM(·,u)
ρ,A

(
A(u)− ρN(u,u) + ρ f

)
. (3.5)

(iii) The map G : X → X defined by

G(u)= (1− t)u+ tJM(·,u)
ρ,A

(
A(u)− ρN(u,u) + ρ f

)
, ∀u∈ X , (3.6)

has a fixed point u∈ X for 0 < t ≤ 1.

Theorem 3.3. Let A : X → X be (r)-strongly monotone and (s)-Lipschitz continuous, and
let M : X ×X → 2X be A-monotone in the first variable. LetN : X ×X → X be (γ,α)-relaxed
cocoercive with respect to A and (β)-Lipschitz continuous in the first variable, and let N be
(μ)-Lipschitz continuous in the second variable. Let

∥
∥
∥JM(·,u)

ρ,A (x)− JM(·,v)
ρ,A (x)

∥
∥
∥≤ η‖u− v‖, ∀x,u,v ∈ X. (3.7)
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Then
∥
∥G(u)−G(v)

∥
∥≤ (1− t(1− θ)

)‖u− v‖, ∀(u,v)∈ X ×X , (3.8)

where

θ = 1
r− ρm

[√
s2− 2ρα+ 2ργβ2 + ρ2β2 + ρμ

]
+η < 1,

∥
∥
∥
∥
∥
ρ− α− r(1−η)

(
m(1−η) +μ

)− γβ2

β2− (m(1−η) +μ
)2

∥
∥
∥
∥
∥
<

√
A−B

β2− (m(1−η) +μ
)2 ,

(3.9)

where

A= (α− r(1−η)
(
m(1−η) +μ

)− γβ2)2
,

B =
(
β2− (m(1−η) +μ

)2
)(
s2− r2(1−η)2),

α > r(1−η)
(
m(1−η) +μ

)
+ γβ2 +

√(
β2− (m(1−η) +μ

)2
)(
s2− r2(1−η)2

)
,

β >
(
m(1−η) +μ

)√(
s2− r2(1−η)2

)
, η < 1,

ρ <
r(1−η)

m(1−η) +μ
, s > r(1−η), 0 < t ≤ 1.

(3.10)

Furthermore, NVI problem (3.1) has a unique solution.

Proof. For any element (u,v)∈ X ×X , we have

G(u)= (1− t)u+ tJM(·,u)
ρ,A

(
A(u)− ρN(u,u) + ρ f

)
,

G(v)= (1− t)v+ tJM(·,v)
ρ,A

(
A(v)− ρN(v,v) + ρ f

)
.

(3.11)

It follows that
∥
∥G(u)−G(v)

∥
∥

=
∥
∥
∥(1−t)(u−v)+t

[
JM(·,u)
ρ,A

(
A(u)− ρN(u,u)+ρ f

)− JM(·,v)
ρ,A

(
A(v)−ρN(v,v)+ρ f

)]∥∥
∥

≤ (1−t)‖u−v‖+t
∥
∥
∥
[
JM(·,u)
ρ,A

(
A(u)−ρN(u,u)+ρ f

)−JM(·,u)
ρ,A

(
A(v)−ρN(v,v)+ρ f

)]∥∥
∥

+ t
∥
∥
∥
[
JM(·,u)
ρ,A

(
A(v)− ρN(v,v) + ρ f

)− JM(·,v)
ρ,A

(
A(v)− ρN(v,v) + ρ f

)]∥∥
∥

≤ (1− t)‖u− v‖+
t

r− ρm
∥
∥A(u)−A(v)− ρ(N(u,u)−N(v,v)

)∥
∥+η‖u− v‖

= (1−t)‖u−v‖+
t

r−ρm
[∥
∥A(u)−A(v)−ρ(N(u,u)−N(v,u)+N(v,u)−N(v,v)

)∥
∥
]

+η‖u− v‖
≤ (1− t)‖u− v‖+

t

r− ρm
[∥
∥A(u)−A(v)− ρ(N(u,u)−N(v,u)

)∥
∥

+
∥
∥ρ
(
N(v,u)−N(v,v)

)∥
∥
]

+η‖u− v‖.
(3.12)
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The (γ,α)-relaxed cocoercivity with respect to A and (β)-Lipschitz continuity of N in the
first argument imply that

∥
∥A(u)−A(v)− ρ(N(u,u)−N(v,u)

)∥
∥2

= ∥∥A(u)−A(v)
∥
∥2− 2ρ

〈
N(u,u)−N(v,u),A(u)−A(v)

〉

+ ρ2
∥
∥N(u,u)−N(v,u)

∥
∥2

≤ (s2− 2ρα+ ρ2β2 + 2ργβ2)‖u− v‖2,

(3.13)

while the (μ)-Lipschitz continuity where of N in the second argument results in

∥
∥N(v,u)−N(v,v)

∥
∥≤ μ‖u− v‖. (3.14)

In light of the above arguments, we infer

∥
∥G(u)−G(v)

∥
∥≤ (1− t)‖u− v‖+ tθ‖u− v‖ = (1− t(1− θ)

)‖u− v‖, (3.15)

where

θ = 1
r− ρm

[√
s2− 2ρα+ ρ2β2 + 2ργβ2 + ρμ

]
+η, (3.16)

for 0 < t ≤ 1.
Since θ < 1, it implies that G is a contraction, and hence, there exists a unique element

z ∈ X such that

G(z)= z (3.17)

which is equivalent to

z = (1− t)z+ JMρ,A

(
A(z)− ρN(z,z) + ρ f

)
. (3.18)

Consequently, the mappingG(u) in light of Lemma 3.2(ii) has a unique fixed point z ∈ X
such that

G(z)= z. (3.19)

It follows from Lemma 3.2 that z is a unique solution to NVI problem (3.1). This com-
pletes the proof. �

4. Algorithmic convergence analysis

This section deals with convergence analysis for the iterative procedure, while the exis-
tence and uniqueness of the solution of the nonlinear variational inclusion problem (3.1)
are dealt with Section 3.
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Algorithm 4.1. Let X be a real Hilbert space, and let A : X → X and M : X ×X → 2X be
any mappings. Let N : X ×X → X be a suitable mapping. For a given element f ∈ X and
an arbitrarily chosen initial point x0 ∈ X , compute sequences {xk}k≥0 and {yk}k≥0 such
that

xk+1 = (1− ak)xk + akJ
M(·,yk)
ρ,A

(
A
(
yk
)− ρN(yk, yk

)
+ ρ f

)
+ akek,

yk = (1− bk)xk + bkJM(·,xk)
ρ,A

(
A
(
xk
)− ρN(xk,xk

)
+ ρ f

)
+ bk f k,

(4.1)

where ρ is a positive constant, and sequences {ak}k≥0 and {bk}k≥0 satisfy

0≤ ak, bk ≤ 1, ak + bk ≤ 1,

bk ≤ ak, Σ∞k=0a
k =∞.

(4.2)

Furthermore, let {zk}k≥0 be a sequence in X such that sequences {εk}k≥0 and {tk}k≥0

satisfy

εk =
∥
∥
∥zk+1−

[(
1− ak)zk + akJ

M(·,yk)
ρ,A

(
A
(
yk
)− ρN(yk, yk

)
+ ρ f

)
+ akek

]∥
∥
∥,

tk = (1− bk)zk + bkJM(·,zk)
ρ,A

(
A
(
zk
)− ρN(zk,zk

)
+ ρ f

)
+ bk f k.

(4.3)

Theorem 4.2. Let X be a real Hilbert space, let A : X → X be (r)-strongly monotone and
(s)-Lipschitz continuous, and let M : X ×X → 2X be A-monotone. Let N : X ×X → X be
(γ,α)-relaxed cocoercive with respect to A and (β)-Lipschitz continuous in the first variable,
and let N be (μ)-Lipschitz continuous in the second variable. Let

∥
∥
∥JM(·,u)

ρ,A (x)− JM(·,v)
ρ,A (x)

∥
∥
∥≤ η‖u− v‖, ∀x,u,v ∈ X ,

θ = 1
r− ρm

[√
s2− 2ρα+ 2ργβ2 + ρ2β2 + ρμ

]
+η < 1,

∣
∣
∣
∣
∣
ρ− α− r(1−η)

(
m(1−η) +μ

)− γβ2

β2− (m(1−η) +μ
)2

∣
∣
∣
∣
∣
<

√
A−B

β2− (m(1−η) +μ
)2 ,

(4.4)

where

A= (α− r(1−η)
(
m(1−η) +μ

)− γβ2)2
,

B =
(
β2− (m(1−η) +μ

)2
)(
s2− r2(1−η)2),

α > r(1−η)
(
m(1−η) +μ

)
+ γβ2 +

√(
β2− (m(1−η) +μ

)2
)(
s2− r2(1−η)2

)
,

β >
√(
m(1−η) +μ

)2(
s2− r2(1−η)2

)
, η < 1, ρ <

r(1−η)
m(1−η) +μ

,

s > r(1−η), 0 < t ≤ 1.

(4.5)
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If, for an arbitrarily chosen initial point x0 ∈ X , sequences {xk}k≥0 and {yk}k≥0 are gener-
ated by Algorithm 4.1, then the sequence {xk}k≥0 converges to the unique solution z of NVI
problem (3.1), where

lim
k→∞

∥
∥ek
∥
∥= lim

k→∞
∥
∥ f k

∥
∥= 0. (4.6)

If, in addition, 0 < δ ≤ ak, then

lim
k→∞

zk = z if and only if lim
k→∞

εk = 0, (4.7)

where εk is defined in Algorithm 4.1.

Proof. Since Theorem 3.3 ensures the existence and uniqueness of the solution z ∈ X to
NVI problem (3.1), it follows from Algorithm 4.1 that

∥
∥xk+1− z∥∥

= ∥∥(1− ak)xk + akJ
M(·,yk)
ρ,A

(
A
(
yk
)− ρN(yk, yk

)
+ ρ f

)
+ akek

− (1− ak)z+ akJM(·,z)
ρ,A

(
A(z)− ρN(z,z) + ρ f

)∥
∥

≤ (1− ak)∥∥xk − z∥∥

+ ak
∥
∥
∥J

M(·,yk)
ρ,A

(
A
(
yk
)−ρN(yk, yk

)
+ρ f

)−JM(·,z)
ρ,A

(
A(z)−ρN(z,z)+ρ f

)∥∥
∥+ak

∥
∥ek
∥
∥

≤ (1− ak)∥∥xk − z∥∥+
ak

r− ρm
∥
∥A
(
yk
)−A(z)− ρ(N(yk, yk

)−N(z,z)
)∥
∥

+ akη
∥
∥yk − z∥∥+ ak

∥
∥ek
∥
∥≤ (1− ak)∥∥xk − z∥∥

+
ak

r− ρm
[∥
∥A
(
yk
)−A(z)− ρ(N(yk, yk

)−N(z,xk
))∥
∥+ ρ

(
N
(
z, yk

)−N(z,z)
)∥
∥
]

+ akη
∥
∥yk − z∥∥+ ak

∥
∥ek
∥
∥.

(4.8)

Since

∥
∥A
(
yk
)−A(z)− ρ(N(yk, yk

)−N(z, yk
))∥
∥2

= ∥∥A(yk)−A(z)
∥
∥2

− 2ρ
〈
A
(
yk
)−A(z),N

(
yk, yk

)−N(z, yk
)〉

+ ρ2
∥
∥N
(
yk, yk

)−N(z, yk
)∥
∥2

≤ (s2− 2ρα+ 2ργβ2 + ρ2β2)∥∥yk − z∥∥2
,

(4.9)
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we have, using (4.12), that

∥
∥xk+1− z∥∥≤ (1− ak)∥∥xk − z∥∥+ ak

1
r− ρm

[
θ
∥
∥yk − z∥∥+ ρμ

∥
∥yk − z∥∥]

+ akη
∥
∥yk − z∥∥+ ak

∥
∥ek
∥
∥

= (1− ak)∥∥xk − z∥∥+ akθ
∥
∥yk − z∥∥+ ak

∥
∥ek
∥
∥,

(4.10)

where

θ = 1
r− ρm

[√
s2− 2ρα+ 2ργβ2 + ρμ

]
+η. (4.11)

Similarly, we have

∥
∥yk − z∥∥≤ (1− bk)∥∥xk − z∥∥+ bkθ

∥
∥xk − z∥∥+ bk

∥
∥ f k

∥
∥. (4.12)

It follows that
∥
∥xk+1− z∥∥≤ (1− ak)∥∥xk − z∥∥+ akθ

(
1− bk)∥∥xk − z∥∥

+ akbkθ2
∥
∥x∗ − z∥∥+ ak

(
θbk
∥
∥ f k

∥
∥+

∥
∥ek
∥
∥
)

= (1− ak(1− θ)
)∥
∥xk − z∥∥− akbkθ(1− θ)

∥
∥xk − z∥∥

+ ak
(
θbk
∥
∥ f k

∥
∥+

∥
∥ek
∥
∥
)

≤ (1− ak(1− θ)
)∥
∥xk − z∥∥+ ak

(
θbk
∥
∥ f k

∥
∥+

∥
∥ek
∥
∥
)
.

(4.13)

Hence, the sequence {xk} converges to z, and by Lemma 3.2, the unique solution to NVI
problem (3.1). �

References

[1] R. P. Agarwal, Y. J. Cho, and N. J. Huang, Sensitivity analysis for strongly nonlinear quasi-
variational inclusions, Applied Mathematics Letters 13 (2000), no. 6, 19–24.

[2] X. P. Ding and C. L. Luo, On parametric generalized quasi-variational inequalities, Journal of
Optimization Theory and Applications 100 (1999), no. 1, 195–205.

[3] Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational
inclusions, Applied Mathematics and Computation 145 (2003), no. 2-3, 795–803.

[4] , H-monotone operators and system of variational inclusions, Communications on Ap-
plied Nonlinear Analysis 11 (2004), no. 1, 93–101.

[5] N. J. Huang and Y. P. Fang, Auxiliary principle technique for solving generalized set-valued nonlin-
ear quasi-variational-like inequalities, to appear in Mathematical Inequalities & Applications.

[6] H. Iiduka and W. Takahashi, Strong convergence theorem by a hybrid method for nonlinear map-
pings of nonexpansive and monotone type and applications, Advances in Nonlinear Variational
Inequalities 9 (2006), 1–9.

[7] M. M. Jin, Perturbed algorithm and stability for strongly nonlinear quasivariational inclusion in-
volving H-monotone operators, to appear in Mathematical Inequalities & Applications.

[8] J. Kyparisis, Sensitivity analysis framework for variational inequalities, Mathematical Program-
ming 38 (1987), no. 2, 203–213.



1076 Relaxed cocoercive variational inclusions

[9] Z. Liu, J. S. Ume, and S. M. Kang, H-monotone operator and resolvent operator technique for
nonlinear variational inclusions, to appear in Mathematical Inequalities & Applications.

[10] A. Moudafi, Mixed equilibrium problems: sensitivity analysis and algorithmic aspect, Computers
& Mathematics with Applications 44 (2002), no. 8-9, 1099–1108.

[11] R. L. Tobin, Sensitivity analysis for variational inequalities, Journal of Optimization Theory and
Applications 48 (1986), no. 1, 191–209.

[12] R. U. Verma, Nonlinear variational and constrained hemivariational inequalities involving relaxed
operators, ZAMM: Zeitschrift für Angewandte Mathematik und Mechanik 77 (1997), no. 5, 387–
391.

[13] , A-monotonicity and applications to nonlinear variational inclusion problems, Journal of
Applied Mathematics & Stochastic Analysis 2004 (2004), no. 2, 193–195.

[14] , Approximation-solvability of a class of a-monotone variational inclusion problems, Jour-
nal of the Korea Society for Industrial and Applied Mathematics 8 (2004), 55–66.

Ram U. Verma: Division of Applied Mathematics, Department of Theoretical and Applied
Mathematics, The University of Akron, Akron, OH 44325, USA
E-mail address: rverma@internationalpubls.com

mailto:rverma@internationalpubls.com


WEIGHTED EXPONENTIAL TRICHOTOMY OF LINEAR
DIFFERENCE EQUATIONS

CLAUDIO VIDAL AND CLAUDIO CUEVAS

We introduce the weighted exponential trichotomy notion to difference equation and we
study the behavior in the future and the past of the solutions for linear system.

Copyright © 2006 C. Vidal and C. Cuevas. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The notion of dichotomy for a linear system of differential equations has gained promi-
nence since the appearance of two fundamental books: Dalietzkii and Krein [2], and
Massera and Schäffer [6]. These were followed by the important book of Coppel [1] who
synthesized and improved the results that existed in the literature up to 1978.

Two generalizations of dichotomy in differential equations have been introduced: the
first by Sacker and Sell [10] called (S-S) trichotomy and the second by Elaydi and Hájek
[3] called (E-H)-trichotomy. But it was not until 1990 that the notions of dichotomy
and trichotomy were extended to nonlinear difference equations by Papaschinopoulos in
[8] and by Elaydi and Janglajew in [4]. Pinto in [9] introduced a generalized notion of
dichotomies, called (h,k)-dichotomies, which contains the usual notion of ordinary or
exponential dichotomies.

In this paper we introduce a new notion of trichotomy, which is very useful in order
to study the asymptotic behavior for linear system of difference equations

x(n+ 1)=A(n)x(n), n∈ Z, (1.1)

in the nonhomogeneous linear case. It consists essentially in taking into account the above
concepts of (E-H)-trichotomies and (h,k)-dichotomies; that is, we introduce both con-
cepts in only one, such trichotomies will be called weighted exponential trichotomy. Our
main purpose in this work is to extend the study of dichotomy and trichotomy in linear
ordinary difference equations and to study the asymptotic behavior of the solutions of
both the future and the past under the existence of weighted exponential trichotomy.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1077–1086
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The results given in this paper are essentially motivated by the corresponding ones in
[1, 4, 5, 7]. As will be evident in the next sections, by our approach we get to generalize
several results presented in the previous papers as qualitatively as extending to a more
general class of equations.

The paper is organized as follows. In Section 2, we introduce the concept of weighted
exponential trichotomy for linear ordinary difference equations (1.1), and from a more
calculational point of view in Section 3 the authors present genuine examples of this new
class of trichotomy. In Section 4, we make a complete study of the linear difference sys-
tems (1.1) possessing weighted exponential trichotomy; in particular, in Theorem 4.5 we
characterize the space S of all the solutions, and the asymptotic behavior is given. Here
we point out that the results obtained in this section generalize substantially some of the
results in [4, 8] valid only for (E-H)-trichotomy. In fact, with our approach we can char-
acterize the asymptotic behavior of a great variety of important linear systems, which are
not included when the notion of (h,k)-trichotomy is considered only.

At present we are working in the nonhomogeneous linear case and in the nonlinear
case with strong perturbations.

2. Weighted exponential trichotomy for linear ordinary difference equations

Consider the linear difference equation (1.1), where A(n) is an m×m invertible matrix
defined on Z.

Now we are going to introduce the new notion of trichotomy.

Definition 2.1. Let X(n) denote the fundamental matrix of (1.1) with X(0)= I . Suppose
that there are h and k two positive sequences {h(t)}t∈Z, {k(t)}t∈Z; three mutually orthog-
onalm×mmatrix projections P1, P2, P3, with P1 +P2 +P3 = I (with ranks n1, n2, and n3,
resp., with n1 +n2 +n3 =m); positive constants γ1, γ2, γ3, and q such that

(a) |X(n)P1X−1( j + 1)| ≤ γ1 qn− jh(n)h−1( j + 1) for n≥ j + 1;
(b) |X(n)P2X−1( j + 1)| ≤ γ2 q j−nk(n)k−1( j + 1) for n≤ j + 1;
(c) |X(n)P3X−1( j + 1)| ≤ γ3 q|n− j| for n≥ j + 1≥ 1 or n≤ j + 1≤ 1.

If q ∈ (0,1), it will be said that the linear system (1.1) inRm has a weighted exponential
trichotomy.

It is worth to remark that the weighted exponential trichotomy is a property that does
not depend on the fixed fundamental matrix. Indeed, if Y(n) is another fundamental
matrix of system (1.1), then there exists a nonsingular matrix C such that X(n)= Y(n)C
and |X(n)PiX−1( j + 1)| = |Y(n)CPiC−1Y−1( j + 1)|.

This new concept combines the notion of trichotomy and (h,k)-dichotomy, and it
is general enough to include interesting particular situations, namely, the following re-
marks.

Remarks 2.2. (1) If in the above definition h= constant and k = constant following the
notation in [10], the system (1.1) is said to have an exponential trichotomy on Z, or con-
sidering [4], the system (1.1) has an (E-H)-trichotomy on Z. This kind of trichotomy was
introduced first by Elaydi and Hájek in [3] in the case of ordinary differential equations;
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Papaschinopoulos in [8] adapted this concept in the case of ordinary difference equa-
tions, he gave necessary and sufficient conditions in order a linear difference equation to
have trichotomy, he also had studied roughness of trichotomy and studied the existence
of bounded solutions for nonlinear systems. Elaydi and Janglajew in [4] extended the
notion of dichotomy and trichotomy to nonlinear ordinary difference equations.

(2) If in (a) and (b) we set q = 1 and P3 ≡ 0, we have an (h,k)-dichotomy (see [8]). If
in this situation h = constant, k = constant, in (b) q = 1, and in (a) q ∈ (0,1), Pinto in
[9] called this kind of dichotomy expo-ordinary dichotomy.

(3) If in the above definition h= constant and k = constant and we assume q = 1, then
according to the notation in [4], the system (1.1) is said to have an (S-S) trichotomy. If in
(c) in the above definition we put q = 1, then we will say that system (1.1) has a weighted
expo-ordinary trichotomy on Z.

(4) If in (a), (b), and (c) we put q = 1, then according to [8], (1.1) has an (h,k)-
trichotomy on Z.

(5) If P3 = 0, h= constant, and k = constant, then the system (1.1) has an exponential
dichotomy on Z.

(6) Since 0 < q ≤ 1, defining h̃(n) = h(n)qn and k̃(n) = k(n)q−n, then using again

the definition in [8], we have that system (1.1) has an (h̃, k̃)-trichotomy. Therefore, ev-
ery weighted exponential trichotomy is an (h,k)-trichotomy. But, clearly not all (h,k)-
trichotomy is a weighted exponential trichotomy.

Although the concept of (h,k)-trichotomy is more general than weighted exponential
trichotomy, we will see in the next sections that the behavior of system that possesses
a weighted exponential trichotomy is too different than that system that only possesses
an (h,k)-trichotomy. For example, we obtain results about the behavior at the infinity
(n→ ±∞) which cannot be obtained under the hypothesis that system (1.1) possesses
only an (h,k)-trichotomy. On the other hand, in [5] the authors did not study the as-
ymptotic behavior of the solution of (1.1) and its perturbations. In fact, they studied the
case of solutions moving inside and in a neighborhood of an invariant manifold called
(h,k)-hyperbolic.

We emphasize that weighted exponential trichotomy is more useful than (h,k)-tri-
chotomy when we are interested in specializing the study of asymptotic behavior at the
infinity, and it is useful when compared with (E-H)-trichotomy because we have the pos-
sibility of including the unbounded solutions in the asymptotic relation of system (1.1)
and its perturbations. Also, it is useful for applications, since the results include a large
class of systems. This will be evident in the next sections.

Another important definition that we will use in the next sections is the following
definition.

Definition 2.3. Say that a pair of sequences h and k is compensated if there exists a positive
constant C ≥ 1 such that

h(n)h−1(m)≤ Ck(n)k−1(m), ∀n≥m, n,m∈ Z. (2.1)
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We remark that if the system (1.1) has an (h,k)-dichotomy which is compensated,
then one can reduce it in a system with ordinary dichotomy. In fact, it suffices mak-
ing the following change of variables x(n) = h(n)y(n), thus we can infer that the sys-
tem y(n+ 1)= B(n)y(n) has an ordinary dichotomy, where B(n)= (h(n)/h(n+ 1))A(n).
However, it makes sense to study a system that admits a weighted exponential trichotomy
compensated, because it is not possible to make this reduction.

To end this section we point out the following remarks.

Remarks 2.4. Equation (1.1) has a weighted exponential trichotomy on Zwith projections
Pi (i = 1,2,3) and positive constants γi (i = 1,2,3) and q ∈ (0,1) if and only if there are
positive constants γ̃i (i = 1,2,3) and q̃ ∈ (0,1), and three families of projections Pi(n),
n∈ Z (i= 1,2,3) such that

(i) for each n∈ Z, Pi(n)Pj(n)= 0, if i	= j and P1(n) +P2(n) +P3(n)= I ,
(ii) Pi(n+ 1)A(n)= A(n)Pi(n) for all n∈ Z, i= 1,2,3,

(iii) (a) |X(n)X−1( j + 1)P1( j + 1)| ≤ γ̃1q̃n− jh(n)h−1( j + 1) for n≥ j + 1,
(b) |X(n)X−1( j + 1)P2( j + 1)| ≤ γ̃2q̃ j−nk(n)k−1( j + 1) for n≤ j + 1,
(c) |X(n)X−1( j + 1)P3( j + 1)| ≤ γ̃3q̃|n− j| for n≥ j + 1≥ 1 or n≤ j + 1≤ 1.

In fact, let us assume that (1.1) has a weighted exponential trichotomy as in
Definition 2.1. Taking γ̃i = γi, q̃ = q, Pi(n) = X(n)PiX−1(n), then it follows immediately
that (i), (ii), and (iii) are satisfied (observe that X−1(n)= X−1(n+ 1)A(n)). Reciprocally,
let the positive constants γ̃i, q̃, and a family of projections Pi(n), n∈ Z such that the previ-
ous conditions are satisfied. We take γi = γ̃i, q = q̃, Pi = Pi(0), then it follows from (i) that
Pi( j + 1) = A( j)A( j − 1)···A(0)Pi(0)A−1(0)···A−1( j − 2)A−1( j) = X( j + 1)PiX−1( j +
1)Pi.

Hence,

∣
∣X(n)PiX−1( j + 1)

∣
∣= ∣∣X(n)X−1( j + 1)Pi( j + 1)

∣
∣ (2.2)

and by (iii) follows the affirmation.

3. Examples

At this stage some examples and their associated projections are given. We will see that
the projections play a distinguished role in the trichotomies. We will concentrate on (1.1)
when

A(n)= diag
(
λ1(n),λ2(n), . . . ,λm(n)

)
(3.1)

with λj(n)∈R. Here we have that the fundamental matrix is given by

X(n)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag

(n−1∏

j=0

λ1( j), . . . ,
n−1∏

j=0

λm( j)
)

if n > 0,

I if n= 0,

diag

( −1∏

j=n
λ−1

1 ( j), . . . ,
−1∏

j=n
λ−1
m ( j)

)

if n < 0.

(3.2)
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Now, we will analyze the case m = 3. It is necessary to choose adequate projections in
order to get an (h,k)-trichotomy, in our case we can assume that P1 = diag(1,0,0), P2 =
diag(0,1,0), P3 = diag(0,0,1). In this situation we obtain

X(n)PiX−1( j + 1)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

diag

[ n−1∏

l= j+1

λi(l)

]

ei if n≥ j + 1,

diag

[ j∏

l=n
λ−1
i (l)

]

ei if n≤ j + 1,

(3.3)

where ei (i= 1,2,3) is the canonical basis of R3.

Example 3.1. We consider

λ1(l)= a |l|+ 1
|l+ 1|+ 1

, λ2(l)= b |l+ 1|+ 1
|l|+ 1

,

λ3(l)= c2l+1 |lmodN|+ 1
∣
∣(l+ 1)modN

∣
∣+ 1

,

(3.4)

where N is arbitrary > 1. Taking h(n) = 1/[|n| + 1] and k(n) = |n| + 1, we obtain the
estimates

∣
∣X(n)P1X

−1( j + 1)
∣
∣≤ |a|n− jh(n)h( j + 1)−1, n≥ j + 1,

∣
∣X(n)P2X

−1( j + 1)
∣
∣≤

(
1
|b|
) j−n

k(n)k( j + 1)−1, n≤ j + 1.
(3.5)

Since

X(n)P3X
−1( j + 1)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cn
2−( j+1)2

[
( j + 1)modN + 1

]

[nmodN + 1]
, n≥ j + 1≥ 1,

c−n2+( j+1)2

[∣
∣( j + 1)modN

∣
∣+ 1

]

[|nmodN|+ 1
] , n≤ j + 1≤ 1,

(3.6)

it follows that

∣
∣X(n)P3X

−1( j + 1)
∣
∣≤

⎧
⎪⎨

⎪⎩

N

|c| |c|
n− j , n≥ j + 1≥ 1,

N|c||c| j−n, n≤ j + 1≤ 1.
(3.7)

Therefore, taking q = max{|a|,|b|−1,|c|,N} with |a| < 1, |b|−1 < 1, |c| < 1, h(n) = 1/
(|n|+ 1), and k(n) = |n| + 1, we obtain system (1.1) with a weighted exponential tri-
chotomy. Note that this example is a “genuine” case of weighted exponential trichotomy;



1082 Weighted exponential trichotomy of difference equations

in the sense that is impossible to have h(n)h−1( j + 1) bounded or k(n)k−1( j + 1) bounded
for all n≥ j + 1, that is, this example cannot be reduced to one with (E-H)-trichotomy.

Example 3.2. In order to generalize Example 3.1, we will consider any function γ, for
instance, such that γ : Z→R+ \ {0}. If

α(l)= γ(l)
γ(l+ 1)

, l ∈ Z, (3.8)

we get

n−1∏

l= j+1

∣
∣α(l)

∣
∣=

∣
∣γ( j + 1)

∣
∣

∣
∣γ(n)

∣
∣ if n≥ j + 1,

j∏

l=n

∣
∣α(l)

∣
∣−1 =

∣
∣γ( j + 1)

∣
∣

∣
∣γ(n)

∣
∣ if n≤ j + 1.

(3.9)

Analogously, defining β(l)= γ(l+ 1)/γ(l), l ∈ Z, we get

n−1∏

l= j+1

∣
∣β(l)

∣
∣=

∣
∣γ(n)

∣
∣

∣
∣γ( j + 1)

∣
∣ if n≥ j + 1,

j∏

l=n

∣
∣β(l)

∣
∣−1 =

∣
∣γ(n)

∣
∣

∣
∣γ( j + 1)

∣
∣ if n≤ j + 1.

(3.10)

Now considering

λ(l)= γ(l)modN + 1
γ(l+ 1)modN + 1

, (3.11)

we obtain the following expression:

n−1∏

l= j+1

∣
∣λ(l)

∣
∣=

[∣
∣γ( j + 1)modN

∣
∣+ 1

]

[∣
∣γ(n)modN

∣
∣+ 1

] if n≥ j + 1,

j∏

l=n

∣
∣λ(l)

∣
∣−1 =

[∣
∣γ( j + 1)modN

∣
∣+ 1

]

[∣
∣γ(n)modN

∣
∣+ 1

] if n≤ j + 1.

(3.12)

Therefore, with this kind of arguments we can construct a great variety of examples
of weighted exponential trichotomy, we only need to choose the function γ associated
with the eigenvalue function λ3 such that (|γ( j + 1)modN|+ 1)/(|γ(n)modN|+ 1) is
bounded for all n, j ∈ Z. Observe that the weight is defined through the function γ as-
sociated and this function can have several behaviors depending on the function γ.

4. Asymptotic behavior for linear systems with weighted exponential trichotomy

The results obtained in this section for homogeneous extend those of [5, 10].
From the definition immediately follows the lemma.
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Lemma 4.1. Equation (1.1) has a weighted exponential trichotomy if and only if there are h
and k two positive sequences {h(t)}t∈Z, {k(t)}t∈Z; three mutually orthogonal m×m matrix
projections P1, P2, P3, with P1 +P2 +P3 = I (with ranks n1, n2, and n3, resp., with n1 +n2 +
n3 =m); positive constants γ1, γ2, γ3, and q ∈ (0,1) such that

(a) |X(n)P1ξ| ≤ γ1 qn− jh(n)h−1( j + 1)|X( j + 1)ξ| for n≥ j + 1,
(b) |X(n)P2ξ| ≤ γ2 q j−nk(n)k−1( j + 1)|X( j + 1)ξ| for n≤ j + 1,
(c) |X(n)P3ξ| ≤ γ3 q|n− j||X( j + 1)ξ| for n≥ j + 1≥ 1 or n≤ j + 1≤ 1,

for all vector ξ ∈Rk.

The following proposition gives us the asymptotic behavior of the solutions of a linear
system with weighted exponential trichotomy.

Proposition 4.2. Assume that system (1.1) has a weighted exponential trichotomy. Then
every solution x(n) of (1.1) has a decomposition into solutions of (1.1)

x(n)≡ x1(n) + x2(n) + x3(n) (4.1)

such that
(1) x1(n)= o(h(n)) and x3(n)= o(1) as n→ +∞,
(2) x2(n)= o(k(n)) and x3(n)= o(1) as n→−∞,
(3) either |x1(n)| = o(h(n)) as n→−∞ or x1 ≡ 0,
(4) either |x2(n)| = o(k(n)) as n→ +∞ or x2 ≡ 0.

Remark 4.3. If we put q = 1 in Definition 2.1(c), then the same properties from the above
proposition are true except that in this particular situation where x3(n) is only bounded
for all n∈ Z.

Proof. By definition we have that any solution x(n) of (1.1) with initial condition a∈Rm

is given by

x(n)= X(n)a

= X(n)P1a+X(n)P2a+X(n)P3a

≡ x1(n) + x2(n) + x3(n).

(4.2)

By case (a) from Lemma 4.1 we have
(a-1) |x1(n)|/h(n) ≤ γ1 qn− j(|X( j + 1)a|/h( j + 1)), for n ≥ j + 1, which implies that

x1(n)/h(n)→ 0 as n→ +∞,
(a-2) and on the other hand, (1/γ1)q j−n(|X(n)P1a|/h(n)) ≤ |X( j + 1)P1a|/h( j + 1) =

|x1( j + 1)|/h( j + 1), for n ≥ j + 1, which implies that |x1( j + 1)|/h( j + 1)→ +∞
as j →−∞.

From (b) of Lemma 4.1 we have
(b-1) |x2(n)|/k(n)≤ γ2 q j−n(|X( j + 1)P2a|/k( j + 1)), for n≤ j + 1, which implies that

x2(n)/k(n)→ 0 as n→−∞,
(b-2) also it is valid (1/γ2)qn− j(|X(n)P2a|/k(n))≤ |X( j + 1)P2a|/k( j + 1)=|x2( j + 1)|/

k( j + 1), for n≤ j + 1, which implies that |x2( j + 1)|/k( j + 1)→ +∞ as j → +∞.
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From the case (c) of Lemma 4.1 follows that
(c-1) |x3(n)| ≤ γ3q|n− j||X( j + 1)P3a|, for n≥ j + 1≥ 1 or n≤ j + 1≤ 1, which implies

that x3(n)→ 0 as n→±∞.
This concludes the proof of the proposition. �

Remark 4.4. If we assume that q = 1 in Definition 2.1, that is, the system (1.1) has an
(h,k)-trichotomy, then we do not obtain the same results about the asymptotic behav-
ior of the solutions of the linear system with a weighted exponential trichotomy as in
Proposition 4.2. In fact, using the same arguments as in the above proposition, we have
that

(a′-1) x(n)=O(h(n)) as n→ +∞,
(a′-2) (1/γ1)(|X(n)P1a|/h(n)) ≤ |X( j + 1)P1a|/h( j + 1) = |x1( j + 1)|/h( j + 1) for n ≥

j + 1.
In case (b) we have

(b′-1) x(n)=O(k(n)) as n→−∞,
(b′-2) (1/γ2)(|X(n)P2a|/k(n)) ≤ |X( j + 1)P2a|/k( j + 1) = |x2( j + 1)|/k( j + 1) for n ≤

j + 1.
For case (c) follows that

(c′-1) x(n)=O(1) as n→±∞.

The results obtained in the above proposition permit us to give a complete description
of the asymptotic behavior of the solutions of (1.1), both in future and in past. More
precisely, we have the following theorem.

Theorem 4.5. If the system (1.1) has a weighted exponential trichotomy, with projections
P1, P2, P3 corresponding to the fundamental matrix X(n) such that X(0)= I . Then the m-
dimensional space S of all the solutions of (1.1) can be written as direct sum S= B1⊕B2⊕B3,
where

(i) B1 is the n1-dimensional subspace of solutions x such that x(0) = ξ ∈ Range(P1),
where n1 = Rank(P1). If x ∈ B1, then x(n) = o(h(n)) as n → +∞ and x is h-
unbounded for n→−∞.

(ii) B2 is the n2-dimensional subspace of solutions x such that x(0) = η ∈ Range(P2),
where n2 = Rank(P2). If x ∈ B2, then x(n) = o(k(n)) as n → −∞ and x is k-
unbounded for n→ +∞.

(iii) B3 is the n3-dimensional subspace of solutions x such that x(0) = ζ ∈ Range(P3),
where n3 = Rank(P3). If x ∈ B3, then x(n)= o(1) as n→±∞.

Proof. Let x be a solution of (1.1). Then it can be written in the unique form

x(n)= X(n)P1x(0) +X(n)P2x(0) +X(n)P3x(0)≡ x1(n) + x2(n) + x3(n); (4.3)

thus the first part of the theorem is proved. Now considering the previous notation, we
obtain that limn→+∞ |x1(n)|/h(n) = 0, by the first part in (1) of Proposition 4.2. Also,
limn→−∞ |x1(n)|/h(n)= +∞ if P1x(0)	= 0, by (3) of Proposition 4.2.

It is clear that limn→+∞ |x2(n)|/k(n) = +∞ if P2x(0) 	= 0, by (4) from Proposition 4.2.
On the other hand, limn→−∞ |x2(n)|/k(n)= 0, by the first part in (2) of Proposition 4.2.

By the second part in (1) of Proposition 4.2 follows that limn→+∞ x3(n)= 0. It is clear
that limn→−∞ |x3(n)| = 0 by the second part in (2) of Proposition 4.2. �
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Remark 4.6. This theorem extends [7, Theorem 1] proved here in the case of lp tri-
chotomy for difference systems. We observe that this is another point of view different
of us. Our result can be applied to the case (E-H)-trichotomy of difference equations
considered in [4]. We note that the authors in this last paper did not consider this kind of
approach.

Corollary 4.7. Let x(n) ≡ x1(n) + x2(n) + x3(n) be a solution of (1.1). The solutions of
(1.1) that satisfy that x1(n) is h-bounded, for all n, x2(n) is k-bounded, for all n, x3(n) is
bounded, for all n are the solutions with initial conditions on B3.

Proof. To prove the corollary it is sufficient to observe that necessarily by Theorem 4.5
P1x(0)= P2x(0)= 0 in order to have solution of (1.1) that satisfies the above conditions.

�

Remark 4.8. If we choose x(0)∈ B3, then the solution of (1.1) with this initial conditions
satisfies x1 ≡ 0 and x2 ≡ 0, and we obtain the reciprocal of the above corollary.

Corollary 4.9. Assume that (1.1) has a weighted exponential trichotomy which is com-
pensated and satisfies the condition q|n|/k(n)→ 0 as n→±∞. Let x(n) be any solution of
(1.1), then

(i) if x(0)∈ B1, then x(n)= o(k(n)) as n→ +∞, and |x(n)|/k(n)→ +∞ as n→−∞;
(ii) if x(0)∈ B2, then x(n)= o(k(n)) as n→−∞, and |x(n)|/k(n)→ +∞ as n→ +∞;

(iii) if x(0)∈ B3, then x(n)= o(k(n)) as n→±∞.

Corollary 4.10. Assume that system (1.1) has a weighted exponential trichotomy which
is compensated and satisfies the condition q|n|/k(n) bounded for all n ∈ Z. Let x(n) be any
solution of (1.1), then

(i) if x(0)∈ B1, then x(n)= o(k(n)) as n→ +∞, and |x(n)|/k(n)→ +∞ as n→−∞;
(ii) if x(0)∈ B2, then x(n)= o(k(n)) as n→−∞, and |x(n)|/k(n)→ +∞ as n→ +∞;

(iii) if x(0)∈ B3, then x(n) is k-bounded in Z.

Remarks 4.11. If the compensated trichotomy is an (h,k)-trichotomy, that is, q = 1, the
condition q|n|/k(n)→ 0 as n→±∞ is equivalent to impose that k(n)→ +∞ as n→±∞.

On the other hand, if the compensated trichotomy is (E-H)-trichotomy, that is, h =
constant and k = constant, then the condition q|n|/k(n)→ 0 as n→±∞ is trivially veri-
fied, since q ∈ (0,1).

If P3 = 0, that is, the system (1.1) has an exponential dichotomy, then the unique so-
lution that is bounded for all n∈ Z is the trivial solution, that is, x ≡ 0.

Example 4.12. We have seen in Section 3 that there is a great variety of examples, for in-
stance, taking k(n)= |n|+ 1 (resp., k(n)= 1/[|n|+ 1]) for n∈ Z, we have that q|n|/k(n)→
0 as n→±∞ for all q ∈ (0,1).

Now considering k(n)= pn with p > 0 fixed, we have

q|n|

k(n)
=
⎧
⎪⎨

⎪⎩

(
q

p

)n
if n≥ 0,

(qp)−n if n≤ 0.
(4.4)

Therefore if we take p satisfying q < p < 1/q, the desired condition is satisfied.
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MAXIMUM PRINCIPLES FOR ELLIPTIC EQUATIONS
IN UNBOUNDED DOMAINS

ANTONIO VITOLO

We investigate geometric conditions to have the maximum principle for linear second-
order elliptic equations in unbounded domains. Next we show structure conditions for
nonlinear operators to get the maximum principle in the same domains, then we consider
viscosity solutions, for which we can establish at once a comparison principle when one
of the solutions is regular enough. We also note that the methods underlying the present
results can be used to obtain related Phragmén-Lindelöf principles.

Copyright © 2006 Antonio Vitolo. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let us consider the linear second-order elliptic operator

Lw = ai j(x)Dijw+ bi(x)Dw+ c(x)w, (1.1)

acting on a function space of twice differentiable functions D(Ω)⊂ C2(Ω), where Ω is a
domain (open connected set) ofRn. Here the matrix of principal coefficients ai j(x) will be
taken definite positive and bounded (uniformly with respect to x), satisfying the uniform
ellipticity condition

λ|X|2 ≤ ai j(x)XiXj ≤Λ|X|2, X ∈Rn, (1.2)

with ellipticity constants 0 < λ ≤ Λ, the first-order coefficients bi(x) in L∞(Ω), and the
zero-order coefficient c(x)≤ 0.

We are interested in the weak maximum principle (weak MP) for solutions w of the
equation Lw ≥ 0 (see [3, 14]), which is extensively applied to linear and nonlinear prob-
lems.

Definition 1.1 (weak MP). The weak MP holds for L in D(Ω) if

Lw ≥ 0 in Ω, limsup
x→∂Ω

w(x)≤ 0 on ∂Ω=⇒w ≤ 0 in Ω (1.3)

whenever w ∈D(Ω).

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1087–1097
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Δw = 0 in Ω =]−∞,+∞[×]− π/2, π/2[

w = 0 on ∂Ω

w > 0 in Ω
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Figure 1.1

(Note that the function w is not necessarily defined up to the boundary.)
In a bounded domain Ω, the weak MP is implied by the strong maximum principle

(strong MP), which means that the subsolutions w ∈W2,n
loc (Ω) of the equation Lw = 0

cannot achieve a nonnegative maximum inside Ω unless w = constant (see [10]). In fact,
if the strong MP holds in a bounded domain Ω, then a maximizing sequence for a non-
constant function w should approach ∂Ω. This is no more true in general in the case that
Ω is an unbounded domain, in which a maximizing sequence could go to infinity. On the
other side, the weak MP can be viewed as a particular case of the Alexandroff-Bakelman-
Pucci estimate (ABP estimate):

w ≤ limsup
x→∂Ω

w+ +Cdiam(Ω)‖ f ‖Ln(Ω) (1.4)

with a positive constant C = C(n,λ,Λ,‖bi‖L∞(Ω)). This again holds for bounded domains,
but can be improved and rearranged to cover a large class of unbounded domains, as we
will see below.

We also note that if C(Ω) ⊂ D(Ω), then the assumptions of the weak MP imply that
the subsolutionw is bounded above in a bounded domain. This is not true in unbounded
domains. Moreover, the weak MP may fail when w is not bounded above as shown by the
following counterexample: in the strip Ω=]−∞,+∞[×]−π/2,+π/2[ of R2, the Laplace
equation Δw = 0 has the solution w(x1,x2) = exp(x1)cos(x2) such that w is null on the
boundary lines x2 = −π/2 and x2 = +π/2, while tends to infinity on the middle axis of
the strip x2 = 0 as x1→ +∞ (see Figure 1.1).

This suggests to require the functions of D(Ω) to be bounded above as a reasonable
assumption to get the weak MP. But, even assuming this, the weak MP may equally fail.
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Indeed, for n≥ 3, the fundamental solution u(x)= 1/|x|n−2 provides a counterexample:
in the exterior domain Ω=Rn\B̄(0;1) ofRn, the Laplace equation has the radial solution
w(x) = 1− 1/|x|n−2, such that w = 0 on the boundary |x| = 1 while w(x)→ 1 as |x| →
+∞. This is since u(x) is bounded above. Differently, for n= 2, the fundamental solution
u(x) = log|x|, going to infinity as |x| → ∞, can be used to show the weak MP in any
domain, as shown by the following result.

Theorem 1.2. The weak MP holds for the Laplace operator Δ in the space D(Ω) = {w ∈
C2(Ω)/w+(x)=O(1)}, where Ω is the punctured planeR2\{0} and w+(x)=max(w(x),0).

Proof. Let us fix δ > 0. Considering a subsolution w(x), bounded above, of the equation
Δw = 0 in Ω, we set v(x)= w(x)− ε log|x| for any fixed ε > 0. Since v(x)→−∞ as |x| →
+∞, then by the strong MP we get

w(x)− ε log|x| = v(x)≤max
|x|=δ

w+(x)− ε logδ, |x| > δ, (1.5)

and therefore, letting ε→ 0, we get

w ≤max
|x|=δ

w+(x), |x| > δ, (1.6)

which yields the weak MP in the exterior domain R2\B̄(0;δ). As limit case, letting δ→ 0,
we obtain w ≤ limsup|x|→0w

+(x), x ∈Ω, as claimed. �

However, the above result does not hold for all linear second-order elliptic operators
in R2. Indeed, in the exterior domain Ω=R2\B̄(0;e2) of R2, the equation

Δw− 2
2 + log|x|

xixj
|x|2Dijw = 0 (1.7)

has the radial solution w(x) = 1− 2/ log|x|, such that w = 0 on the boundary |x| = e2

while w(x)→ 1 as |x| → +∞.
The above discussion shows that some condition is needed on the domain, in order

that the weak MP holds for all the linear second-order elliptic operators.

2. Geometric conditions

We start with a local geometric condition for the points of a domain Ω of Rn, where | · |
denotes the n-dimensional Lebesgue measure.

Definition 2.1 (condition Gσ). A point x ∈Ω satisfies condition Gσ , for 0 < σ < 1, if there
exists a ball BRx such that

x ∈ BRx , |BRx\ΩRx | ≥ |BRx |, (2.1)

where ΩRx is the component of BRx ∩Ω containing x (see Figure 2.1).
Here below different global conditions will be described.
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∂Ω

x

ΩR0

Figure 2.1

Definition 2.2 (condition G). A domain Ω satisfies condition G if each point x ∈Ω satis-
fies condition Gσ with Rx ≤R0 for a fixed positive number σ < 1 and a positive constant
R0.

Example 2.3. Condition G is satisfied by bounded domains, cylinders, and in general
slabs in Rn as B×Rn−k, where B is a bounded subset of Rk. In all previous examples the
complement of the domain is large enough. Nonetheless, since only the complement of
the connected components has to be considered, there are domainsΩ satisfying condition
G, but with complement of null measure. For instance, considering in R2 the half-lines
H+
i and H−i defined, respectively, by x1 ≥ 0, x2 = 2i and x1 ≤ 0, x2 = 2i+ 1, setting H± =

⋃
i∈Z H±i and K = H+ ∪H−, we construct a domain Ω = R2\K satisfying condition G,

but |K| = |R2\Ω| = 0.

Remark 2.4. In all the examples considered above, the domain Ω satisfies the condition
that

sup
{
r > 0/B(x;r)⊂Ω, x ∈Ω

}
< +∞. (2.2)

This is true in general for a domain satisfying condition G. But the converse does not hold
in general. For instance, complements of infinite regular lattices of balls B̄(i;ρ) of radius
ρ, centered at points with integer coordinates i∈ Zn, also satisfy condition G and hence
(2.2). But in the limit case, as ρ→ 0, we obtain Ω=Rn\⋃i∈Zn , which satisfies condition
(2.2) but not condition G.

Remark 2.5. A stronger two-parameter local geometric condition for the domain Ω,
which originates from Berestycki-Nirenberg-Varadhan [3], has been used by Cabré [5]
to show, for the subsolutions w ∈W2,n

loc (Ω) bounded above of the equation Lw = f , the
improved ABP estimate

w ≤ limsup
x→∂Ω

w+ +CR0‖ f ‖Ln(ΩR0 ), (2.3)

where C depends only on the structure parameters λ, Λ, ‖bi‖L∞(Ω) of the operator and
the geometric constants of the domain. We observe that here the diameter of Ω of the
classical ABP estimate (1.4) is replaced by the new geometric constant R0, and, as it can
be deduced from the proof of Theorem 3.2, condition G of Definition 2.2 is actually suf-
ficient to have (2.3).

Next, we weaken condition G, removing the uniformly boundedness of the radii Rx.
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Figure 2.2

Definition 2.6 (condition wG). A domain Ω satisfies condition G if for each point of
Ω condition Gσ holds for a positive constant σ < 1 (see [6] for a two-parameter local
condition and the proof of Theorem 3.2 to be convinced that condition wG, as given
here, is sufficient for our purposes).

Next, let Ωσ be the set of the points x ∈Ω for which condition Gσ holds. A domain Ω
satisfies condition wG a.e. if there is a covering of Ω with balls BR of radius R such that

∣
∣Ωσ ∪ (BR\Ω

)∣
∣≥ η∣∣BR

∣
∣ (2.4)

for a positive constant η.
We can also weaken this assumption. We say that Ω satisfies condition wG a.e. by

components if there exists H ⊂Ωσ such that in each component of Ω\H condition wG
a.e. holds for positive constants σ < 1 and η.

Example 2.7. Condition wG is satisfied by infinite open connected cones Σ of Rn with
closure Σ̄�=Rn for which condition G does not hold.

The complements inRn of hypersurfacesG, which are graphs of a continuous function
with sublinear growth g, for example, xn = g(x1, . . . ,xn−1), xi ≥ 0, i= 1, . . . ,n− 1, provide
examples of condition wG a.e.

In particular, for n= 2 and g = 0, we get the cut plane and Ω1/2 ⊃R2
+\G, where R2

+ is
the half-plane x1 > 0. Instead, in the case of an arbitrary g with sublinear growth, we can
always find a positive constant σ < 1 such that Ωσ ⊃ Σ\G, where Σ is any convex cone,
which contains G (see Figure 2.2).

If we consider the sequence of balls with the same radius centered on a half-line, for
example, B(i;ρ), and put K =⋃i∈N×{0} B̄(i;ρ), choosing H = Ω∩ [0,+∞[×{0}, we can
see that the domain Ω=R2\K satisfies condition wG a.e. by components.

We will search for conditions on the coefficients of the linear second-order operator L
in order that the weak MP holds in this kind of domains.

3. The method

The basic tool will be the Krylov-Safonov boundary weak Harnack inequality due to
Trudinger (see [10]), as formulated by Cabré [5], which holds with functions in W2,n

loc .
This will justify the choice of the function space D(Ω) for the weak MP.
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Lemma 3.1 (boundary weak Harnack inequality). Let u∈W2,n
loc (A) be a nonnegative solu-

tion of the equation Lu= f in a domain A∈Rn. Denote by u−s the extension of the function
min(u,s), setting u−s = s outside A. Let BR and BR/τ , 0 < τ < 1, be two concentric balls such
that BR∩Ω, BR/τ\Ω are nonempty. Choosing s= liminfx→BR/τ∩A, then

(
1

∣
∣BR

∣
∣

∫

BR

(
u−s
)p
)1/p

≤ C
(

inf
BR∩A

u+R‖ f ‖Ln(BR/τ∩A)

)

(3.1)

with p and C > 1 positive constants depending only on n, λ, Λ, τ, R‖bi‖L∞(BR/τ∩A), and
R2‖c‖L∞(BR/τ∩A).

In order to exemplify the method let us begin considering a linear elliptic operator
with the only second-order term

Lw = ai j(x)Dijw. (3.2)

Theorem 3.2. Let Ω be a domain of Rn satisfying condition wG a.e. by components. Then
the weak MP holds for the operator L as (3.1) in D(Ω)= {w ∈W2,n

loc (Ω)/w+(x)=O(1)}.
Sketch of the proof. To be short we limit ourselves to show the case of condition wG.
Letting w be a subsolution of the equation Lw = 0 and putting M = supΩw

+, by means
of condition Gσ , in spite of the Krylov-Safonov growth lemma, we search, in the case
limsupx→∂Ωw ≤ 0, for a pointwise estimate

w(y)≤ κM, (3.3)

where κ < 1 is a positive constant independent of y ∈Ω.
In fact, from (3.3), passing to the sup over y ∈Ω, we getw ≤ 0 inΩ, as we have to show.

To obtain (3.3), firstly we pass to a supersolution setting u=M−w, where M = supΩw
+.

Next, using condition Gσ in y, we apply Lemma 3.1 in A = ΩRy , with BR = BτRy and
τ = τ(σ) sufficiently close to 1, to get

(σ/2)1/pM ≤ (σ/2)1/ps≤
(∣∣BτRy\ΩRy

∣
∣

∣
∣BτRy

∣
∣

)1/p

≤
(

1
∣
∣BτRy

∣
∣

∫

BτRy

(
u−s
)p
)1/p

≤ C inf
BτRy∩ΩRy

u≤ C
(

M− sup
BτRy∩ΩRy

w
)

,

(3.4)

whence for a positive κ < 1 we have

sup
BτRy∩ΩRy

w ≤ κM + (1− κ) limsup
x→∂Ω

w+. (3.5)

If y ∈ BτRy , from (3.5) we have at once (3.3). This motivated the earlier two-parameter
local geometric condition of [5, 6] (see Remark 2.5 before).

Otherwise, by a continuity argument we reduce to a ball Bry such that both |Bry\Ωry | =
σ|Bry | and |Ωry | = (1− σ)|Bry |, in order that (3.2) holds for a set of appreciable measure,
for example, (1− σ/2)|Bry |.



Antonio Vitolo 1093

Then, applying Lemma 3.1 in A = {x ∈ Ω/w(x) > κM}, with BR = Bry and τ = τ(σ)
sufficiently close to 1, and arguing as before as in (3.4) for (3.5), we get the estimate (3.2)
in all Ωry with a slightly larger κ < 1, as we needed.

To consider an operator with the first-order term (see [16, 17]) we have to look at the
dependence of the constantsC and p occurring in the boundary weak Harnack inequality,
which influences the dependence of the constant κ of the proof of Theorem 3.2. Indeed,
using the same argument for the elliptic operator

Lw = ai j(x)Dijw+ bi(x)Diw, (3.6)

the existence of a positive constant κ < 1 to have the Krylov-Safonov growth lemma will
depend on the cross condition

sup
y∈Ω

Ry

∥
∥bi
∥
∥
L∞(BRy /τ∩Ω) < +∞ (3.7)

for some positive constant τ < 1. Therefore, when Ry →∞, we should assume a suitable
decay rate for the bi’s, but, to take advantage from this assumption to get (3.7), we should
also be able to choose balls BRy /τ which are not too much close to the origin.

4. The weak MP in the linear case

Using the arguments of the previous section, we get, for linear second-order elliptic op-
erators, the following results.

Theorem 4.1. Let Ω be a domain ofRn satisfying condition wG and let L be a linear second-
order operator as (3.2) such that the cross condition (3.7) holds for the covering BRy which

realizes condition wG. Then the weak MP holds for L in D(Ω) = {w ∈W2,n
loc (Ω)/w+(x) =

O(1)}.
In the case of a domain Ω satisfying condition G, the ABP estimate of Remark 2.5 yields

at once the weak MP under the only assumption that bi(x) = O(1), since also Ry = O(1).

For a parabolic-shaped domain, defined by x
1/p
2 > |x1|, the covering BRy to realize wG can be

chosen in order that the cross condition (3.7) is satisfied with bi(x)=O(1/|x|1/p) as |x| →∞.
As limit cases (see Figure 4.1), for p = +∞ (half-strip, condition wG), we need bi(x)=O(1)
for p = 1 (cone) bi(x)=O(1/|x|).

Using a boundary weak Harnack inequality for annuli instead that for balls, as stated by
Cabré [5], we can avoid to check the cross condition (3.7) case by case.

Theorem 4.2. Let Ω be a domain of Rn satisfying condition wG a.e by components as in
Definition 2.6 and let L be a linear second-order operator as (3.2) such that

bi(x)=O
(

1
|x|
)

, |x| −→∞, (4.1)

then the weak MP holds for L in D(Ω)= {w ∈W2,n
loc (Ω)/w+(x)=O(1)}.
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p = +∞
p = 1

−3 −2 −1 0 1 2 3

Figure 4.1

Remark 4.3. The admissible decay (4.1) is almost optimal, as shown in the quarter-plane
x1 > 1, x2 > 1 by the equation

Δw+
(

α

x1−α
1

+
1−α
x1

)

D1w+
(

α

x1−α
2

+
1−α
x2

)

D2w ≥ 0, (4.2)

solved by the function w(x1,x2) = (1− e1−xα1 )(1− e1−xα2 ), which is null on the boundary
lines x1 ≥ 0, x2 = 1 and x1 = 1, x2 ≥ 0, but goes to 1− as x1 = x2→∞.

However, it is not true in general that a first-order coefficient bi(x) = O(1/|x|) yields
an admissible perturbation of an operator for which the weak MP holds. Indeed, as we
saw in the proof of Theorem 1.2, the weak MP holds for the Laplace operator Δ in the
exterior domain R2\B̄(0;1). But the equation

Δw+
x1

|x|2D1w+
x2

|x|2D2w = 0 (4.3)

has the solution w(x)= 1− 1/|x|, which violates the weak MP.

Remark 4.4. The condition on the zero-order coefficient (see [5, 17]) can also be relaxed
to allow a slightly positive sign. In the case of condition G, we may assume that c(x)≤ c0,
where c0 is a positive constant depending on the structure and geometric parameters. In
the case of condition wG, we need to strengthen the assumption on the covering BRy ,
which realizes wG, supposing that Ry ≤ χ|y| for some positive constant χ, and at the
same time assuming c(x)≤ c0/|x|2 as |x| →∞.

The weak MP with zero-order coefficient can be used to relax the condition of the
above boundedness of the subsolutions to get Phragmèn-Lindelöf theorems, namely, the
weak MP holds for subsolution with exponential growth in domains with condition G
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(see [1, 4, 9, 11, 17]), with polynomial growth in the case of condition wG (see [2, 9, 11–
14, 17]). For the details we refer to [17], where the geometric conditions were still given
as two-parameter local condition (see the proof of Theorem 3.2).

5. The weak MP in the fully nonlinear case

Let us consider a fully nonlinear operator (see [7, 10])

F[w]= F(x,w,Dw,D2w
)

(5.1)

acting on W2,n
loc (Ω). Here F is a real function on the set Ω×R×Rn × S[n], where S[n]

denotes the space of real symmetric n×n matrices.
F will be said uniformly elliptic if

λ‖T‖ ≤ F(x, t,X ,S+T)−F(x, t,X ,S)≤Λ‖T‖, T ≥ 0, (5.2)

for positive (ellipticity) constants λ≤Λ, where ‖T‖ = sup|x|=1 |Tx|.
Meaningful examples of fully nonlinear uniformly elliptic operators are the extremal

Pucci operators (see [7, 15]), defined by

P±λ,Λ(S)=±Λ
n∑

i=1

μ±i ∓ λ
n∑

i=1

μ∓i , (5.3)

where the μi’s are the eigenvalues of the matrix S, which are uniformly elliptic with el-
lipticity constants λ and nΛ. If we consider a fully nonlinear uniformly elliptic operator
with ellipticity constants λ and Λ, the difference for a matrix-variable increment T is
controlled by means of the maximal Pucci operator with constants λ/n and Λ, namely,

F(x, t,X ,S+T)−F(x, t,X ,S)≤ P+
λ/n,Λ(T), S,T ∈ S[n]. (5.4)

Suppose that F(x, t,X ,0) ≤ b(x)|X| for a positive function b(x). Then, using (5.4) with
S= 0, we deduce that a subsolution v of the equation F[v]= 0 is in turn a subsolution of
the equation

P+
λ/n,Λ

(
D2v

)
+ b(x)|Dv| = 0, (5.5)

but for this it is sufficient to assume

F(x, t,X ,T)≤ P+
λ/n,Λ(T) + b(x)|X|, (5.6)

which is not equivalent to the uniform ellipticity on any account unless F is linear in the
matrix-variable. In fact, in the linear case, (5.6) implies (5.4), which in turn yields the
uniform ellipticity for the operator F0[w]= F(x,w,0,D2w).

At this stage, we note that there is a linear elliptic operator L with the only second-
order term as (3.2) such that P+

λ/n,Λ(D2v) = Lv, which can be dealt with as the linear
equations of the previous sections. This implies that the weak MP continues to hold for
a fully nonlinear second-order elliptic operator as (3.2), under the structure assumption
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(5.6), with strong subsolutions in W2,n
loc (Ω), bounded above, provided that b(x) = O(1)

in the case of condition G and b(x)=O(1/|x|) as |x| →∞ in the case of condition wG.
In the case of linear operators, the weak MP for subsolutions v bounded above yields

at once a weak minimum principle (weak mP) for supersolutions u bounded from below.
As well as we obtain a weak comparison principle (weak CP), namely, v ≤ u on ∂Ω⇒ v ≤
u in Ω, considering the difference w = v− u. In the case of nonlinear operators we need
dual assumptions for the weak mP and additional assumptions for the weak CP.

In the case of fully nonlinear operators, we can state a minimum principle for super-
solutions bounded from below, under the dual structure assumption

F(x, t,X ,T)≥ P−λ/n,Λ(T)− b(x)|X|. (5.7)

For what concerns comparison principles, we could linearize the equation under suitable
assumptions on the differentiability of the operator F with respect on the matrix-variable.

An alternative approach is to consider the so-called viscosity solutions (see [7]).

Definition 5.1. An upper (lower) semicontinuous w is said to be a viscosity subsolution
(supersolution) of the equation F[w] = f in Ω if, for each point x ∈ Ω, the following
inequality

F
(
x,φ(x),Dφ(x),D2φ(x)≥ f (x)

(≤ f (x)
))

(5.8)

holds for any φ∈ C2(Ω) such that the difference w−φ has a local maximum (minimum)
in x. A solution is a continuous functions which is both subsolution and supersolution.

In [8] a weak MP has been obtained, in the case of fully nonlinear second-order elliptic
operator F as (5.1), under the the structure assumption (5.6), and a weak mP, under
the dual structure assumption (5.7), with b(x) as above in the case of strong solutions.
Furthermore, a weak CP, when at least one between the subsolution and the supersolution
is regular, has been obtained under the assumption of uniform ellipticity.

We notice that while in the case of strong solutions we can directly use the results of
the linear case, apart the nonlinearity on the first-order term (which does not invalidate
the argument); in this case we only take the method from the linear setting, using the fact
that a weak Harnack inequality continues to hold for viscosity solutions (see [7]).

6. Conclusions

We have seen that some useful linear techniques can be extended to nonlinear problems,
and this provides a wide range of applications. For instance, remaining in the topic dis-
cussed here, we have in mind to extend the Phragmén-Lindelöf results to fully nonlinear
operators in the viscosity sense, eventually considering a superlinear growth in the gra-
dient variable. It would be also interesting to obtain weak CP in unbounded domains for
viscosity subsolutions and supersolutions, without the regularity assumption used in the
previous section.
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[5] X. Cabré, On the Alexandroff-Bakel’man-Pucci estimate and the reversed Hölder inequality for
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BAYESIAN FORECASTING IN UNIVARIATE
AUTOREGRESSIVE MODELS WITH NORMAL-GAMMA
PRIOR DISTRIBUTION OF UNKNOWN PARAMETERS

IGOR VLADIMIROV AND BEVAN THOMPSON

We consider the problem of computing the mean-square optimal Bayesian predictor in
univariate autoregressive models with Gaussian innovations. The unknown coefficients
of the model are ascribed a normal-gamma prior distribution providing a family of con-
jugate priors. The problem is reduced to calculating the state-space realization matrices of
an iterated linear discrete time-invariant system. The system theoretic solution employs a
scalarization technique for computing the power moments of Gaussian random matrices
developed recently by the authors.

Copyright © 2006 I. Vladimirov and B. Thompson. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

We consider the problem of computing the mean-square optimal Bayesian predictor for
a univariate time series whose dynamics is described by an autoregressive model with
Gaussian innovations [3]. The coefficients of the model are assumed unknown and as-
cribed a normal-gamma prior distribution [1, page 140] providing a family of conjugate
priors.

The problem reduces to computing the power moments of a square random matrix
which is expressed affinely in terms of a random vector with multivariate Student dis-
tribution [1, page 139]. The latter is a randomized mixture of Gaussian distributions,
thereby allowing us to employ a matrix product scalarization technique developed in
[7] for computing the power moments EXs of Gaussian random matrices X = A+BζC,
where ζ is a standard normal random vector and A, B, C are appropriately dimensioned
constant matrices.

Note that developing an exact algorithm for the power moment problem, alternative
to an approximate solution via Monte Carlo simulation, is complicated by the noncom-
mutativity of the matrix algebra that is only surmountable in special classes of random
matrices, of which a more general one is treated by sophisticated graph theoretic methods
in [8].

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1099–1108



1100 Bayesian forecasting

In the context of the problem considered in the present paper, application of the scalar-
ization technique yields a system theoretic algorithm which reduces the computation of
the Bayesian forecast to recursively calculating the state-space realization matrices of an
iterated linear discrete time-invariant system.

The results of the paper are applicable to the forecasting problems in econometrics
and adaptive control where predicting a time series must be accompanied by model iden-
tification, including parameter estimation, in the framework of the Bayesian theory [1].
A related circle of questions for diffusion processes is studied in [6].

The paper is organized as follows. Section 2 provides the necessary background mate-
rial on multivariate normal-gamma distributions. Section 3 specifies the class of autore-
gressive time series. Section 4 shows that the normal-gamma family supplies conjugate
priors. Section 5 reduces the Bayesian forecast to a power moment of a Student distrib-
uted random matrix. Section 6 describes the state-space system theoretic solution to the
problem. Proofs are relegated to the appendix.

2. Multivariate normal-gamma distributions

Let Pn denote the set of positive definite real symmetric matrices of order n, and let S∈
Pp+1 be partitioned into four blocks as

S=
[
P q

q� r

]

, P ∈ Pp, q ∈Rp, r > ‖q‖2
P−1 . (2.1)

Here, (·)� is the matrix transpose, and ‖a‖U =
√
a�Ua is the Euclidean (semi-)norm of a

vector a induced by a positive (semi-)definite real symmetric matrix U . Unless otherwise
indicated, vectors are organized as columns. With S, we associate a map VS :Rp →R+ by

VS(a)=
∥
∥
∥
∥
∥

[
a

−1

]∥
∥
∥
∥
∥

2

S

= ‖a‖2
P − 2q�a+ r =M(S) +

∥
∥a−P−1q

∥
∥2
P , (2.2)

where

M(S)= r−‖q‖2
P−1 =min

a∈Rp
VS(a) (2.3)

is the Schur complement of the diagonal block P in (2.1). Since (2.2) is linear in S, the
function M is concave on Pp+1 as the lower envelope of linear functions.

For S in (2.1) and for λ > 0, we denote by Dp(λ,S) a probability measure on Rp ×R+

with density

dp,λ,S(a,b)=
(
b

2π

)p/2√
detP exp

(

− 1
2

∥
∥a−P−1q

∥
∥2
bP

)

×
(
M(S)/2

)λ

Γ(λ)
bλ−1 exp

(

−M(S)
b

2

)

= (2π)−p/2
√

detP

(
M(S)/2

)λ

Γ(λ)
bλ+(p/2)−1 exp

(

−VS(a)
b

2

)

,

(2.4)
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where Γ is the Euler gamma function. In terminology of [1, page 140], Dp(λ,S) is the
multivariate normal-gamma distribution Ng p(P−1q,P,λ,M(S)/2). We will write (α,β)∼
Dp(λ,S) for an Rp-valued random vector α and for an R+-valued random variable β
whose joint pdf is given by (2.4). The conditional distribution of α with respect to β is
Gaussian with mean P−1q and precision matrix βP:

Law(α | β)=Np
(
P−1q, (βP)−1). (2.5)

Furthermore, β is gamma-distributed and α has the multivariate Student distribution [1,
pages 118–139]:

α∼ Stp

(

P−1q,
2λP
M(S)

,2λ
)

, β ∼Ga
(

λ,
M(S)

2

)

. (2.6)

Remark 2.1. If the last diagonal entry in (2.1) is rescaled so that

Sλ =
[
P q

q� 2λr

]

, (2.7)

then the distribution Dp(λ,Sλ) is weakly convergent [2], as λ→ +∞, to the direct product
of Np(P−1q,rP−1) and of the atomic probability measure concentrated on 1/r. Indeed,
from (2.3), limλ→+∞(M(Sλ)/(2λ)) = r and hence, β in (2.6) converges in probability to
1/r. It now remains to combine the last convergence with the conditional law (2.5) and to
apply the well-known result on the preservation of weak convergence under continuous
maps [2, Theorem 5.5 on page 34].

3. Autoregressive model

Let X = (Xk)k>−p be an R-valued random sequence governed by an autoregressive (AR)
equation of order p ∈N,

Xk =
p∑

j=1

αjXk− j +
√
cWk, k ∈N. (3.1)

Here,W = (Wk)k∈N is an innovation sequence, and α1, . . . ,αp ∈R and c > 0 are unknown
parameters. Let α∈Rp, β > 0, and an Rp-valued sequence Y = (Yk)k∈Z+ be given by

α=

⎡

⎢
⎢
⎣

α1
...
αp

⎤

⎥
⎥
⎦ , β = 1

c
, Yk =

⎡

⎢
⎢
⎣

Xk
...

Xk−p+1

⎤

⎥
⎥
⎦ . (3.2)

Denote by �0 the σ-algebra of random events describing the prior information on the
AR(p)-model (3.1) at time 0, so that X0, . . . ,X1−p are �0-measurable. Let Π0 be the prior
probability distribution of the unknown parameter θ = (α,β) on the set

Θ=Rp×R+. (3.3)
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We assume that the innovation sequence W is constituted by independent standard nor-
mal random variables which are independent of �0 and θ. Furthermore, the unknown
parameter is assumed to have a normal-gamma prior,

Π0 =Dp
(
λ0,S0

)
, (3.4)

as defined in Section 2, where λ0 > 1 and, similarly to (2.1), S0 ∈ Pp+1 is partitioned into
four blocks as

S0 =
[
P0 q0

q�0 r0

]

, P0 ∈ Pp, q0 ∈Rp, r0 >
∥
∥q0

∥
∥2
P−1

0
. (3.5)

Since, by the second relation in (2.6), Law(β |�0) = Ga(λ0,M(S0)/2), where M is given
by (2.3), the random variable c is integrable with respect to Π0, with

E
(
c |�0

)= M
(
S0
)

2
(
λ0− 1

) . (3.6)

By Remark 2.1, the situation, where c is known precisely while the prior distribution of α
is Gaussian, is a limiting case of (3.4).

4. The posterior parameter distribution

For any k ∈ N, let �k denote the σ-algebra generated by �0 and by the observations
X1, . . . ,Xk available at time k, and let

Πk = Law
(
θ |�k

)
(4.1)

be the corresponding posterior distribution of the unknown parameter θ. The resultant
filtration is denoted by F = (�k)k∈Z+ . Define an Rp+1-valued F-adapted sequence Z =
(Zk)k∈N by

Zk =
[
Yk−1

Xk

]

. (4.2)

Proposition 4.1. Under the assumptions of Section 3, for any k ∈ Z+, the posterior distri-
bution (4.1) is given by

Πk =Dp
(
λk,Sk

)
, (4.3)

where

λk = λ0 +
k

2
, Sk =

[
Pk qk

q�k rk

]

= S0 +
k∑

j=1

ZjZ
�
j . (4.4)

The proposition shows that the family of normal-gamma distributions Dp provides
conjugate priors for the parameters α and β of the AR(p)-model (3.1)-(3.2). Its proof is
given in Appendix A to make the exposition self-contained.
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5. Bayesian prediction

By (3.1), the F-adapted sequence Y given by (3.2) follows the multivariate AR(1)-equa-
tion

Yk =ΦYk−1 +
√
cΨWk. (5.1)

Here,

Φ=Ψα� +Υ, Ψ=
[

1
0(p−1)×1

]

, Υ=
[

01×p
Ip−1 | 0(p−1)×1

]

, (5.2)

where 0m×n is the (m×n)-matrix of zeros, and In is the identity matrix of order n. From
(5.1) and (5.2), for any k ∈ Z+ and s∈N,

Xk+s =
(
ΦsYk

)
1 +
√
c
s−1∑

j=0

(
Φ j
)

11Wk+s− j , (5.3)

where (·)1 is the first entry of a vector, and (·)11 is the (1,1)st entry of a matrix. Note
that (Wj) j>k consists of independent standard normal random variables which are inde-
pendent of �k and θ. Hence, by (5.3), the s steps ahead mean-square optimal Bayesian
predictor of X based on �k is

E
(
Xk+s |�k

)= (E
(
Φs |�k

)
Yk
)

1. (5.4)

Its mean-square accuracy is quantified by the conditional variance

var
(
Xk+s |�k

)= var
((
ΦsYk

)
1 |�k

)
+
s−1∑

j=0

E
(
c
(
Φ j
)2

11 |�k
)
. (5.5)

In particular, for the one step ahead predictor with s= 1, the relations (5.4) and (5.5) give

E
(
Xk+1 |�k

)= α̂�k Yk,

var
(
Xk+1 |�k

)= ∥∥Yk
∥
∥2

cov(α|�k) + E
(
β−1 |�k

)=
(∥
∥Yk

∥
∥2
P−1
k

+ 1
) M

(
Sk
)

2
(
λk − 1

) .
(5.6)

Here, cov(α |�k)= E(β−1 |�k)P−1
k is the conditional covariance matrix of αwith respect

to �k;

α̂k = E
(
α |�k

)= P−1
k qk, (5.7)

and the relation E(β−1 |�k)=M(Sk)/(2(λk − 1)), similar to (3.6), is used.
The problems of computing the Bayesian predictor (5.4) and evaluating its mean-

square accuracy (5.5) for arbitrary s > 1 are more difficult, and we will restrict ourselves
to the first of these. Clearly, (5.4) reduces to the sth power moment of the random matrix
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Φ in (5.2) which is affinely expressed in terms of α. By Proposition 4.1 and by (2.5)-(2.6),
Law(α |�k) is the multivariate Student distribution, with

α= α̂k +
(
βPk

)−1/2
γk. (5.8)

Here, γk is an Rp-valued standard normal random vector, independent of β and of �k,

Law
(
γk | β,�k

)=Np
(
0p×1,Ip

)
, (5.9)

and
√
U ∈ Pp is the matrix square root ofU ∈ Pp. Therefore, substituting (5.8) into (5.2)

yields

Φ= Φ̂k +Ψγ�k
(
βPk

)−1/2
, Φ̂k = E

(
Φ |�k

)=Ψα̂�k +Υ. (5.10)

6. A system theoretic solution

A triplet (A,B,C) ∈ Rn×n ×Rn×m ×R
×n can be interpreted as a state-space realization
of a linear discrete time-invariant (LDTI) system with appropriately dimensioned input
i= (it)t∈Z+ , internal state σ = (σt)t∈Z+ , and output o= (ot)t∈Z+ governed by the equations

σt = Aσt−1 +Bit, ot = Cσt, (6.1)

with σ−1 = 0n×1; see, for example, [4, pages 90–93] or [5, page 35]. The linear oper-
ator (Rm)Z+ 	 i 
→ o ∈ (R
)Z+ is described by σt =

∑t
u=0CA

t−uBiu, where the sequence
(CAuB)u∈Z+ is the impulse response of the system. The input-output operator is denoted
by (A,B,C) or, interchangeably, by

[
A B

C 0
×m

]

. (6.2)

Since we only deal with LDTI systems in the sequel, the qualifier LDTI will be omitted.
The class of such systems is closed under composition, and the state-space representation
of the operation is well known in linear control; see also [7, Lemma 2 and Appendix B].

Proposition 6.1. Let the output of Σ1 = (A1,B1,C1) be the input to Σ2 = (A2,B2,C2). Then
the composition of the systems is given by

Σ2 ◦Σ1 =

⎡

⎢
⎢
⎣

A1 0 B1

B2C1A1 A2 B2C1B1

0 C2 0

⎤

⎥
⎥
⎦ . (6.3)

The dimensions of the zero blocks in (6.3) are omitted for the sake of brevity. Note that
(6.3) is an equality between linear operators, not between their state-space realization
matrices.
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The theorem below provides a system theoretic solution to the problem of computing
the Bayesian forecast (5.4). In order to facilitate its formulation, we introduce subsidiary
systems

E = F◦G= (A,B,C), (6.4)

F = (Φ̂�k ,Ip,Ip
)
, (6.5)

G= (Φ̂k,Ω,P−1
k

)
, (6.6)

where

Ω=ΨΨ� =
[

1 01×(p−1)

0(p−1)×1 0(p−1)×(p−1)

]

, (6.7)

and (4.4), (5.2), and (5.10) are used. The state-space realization matrices A ∈ R2p×2p,
B∈R2p×p, and C∈Rp×2p in (6.4) are computed using Proposition 6.1 which yields

A=
[

Φ̂k 0p×p
P−1
k Φ̂k Φ̂�k

]

, B=
[
Ip
P−1
k

]

Ω, C= [0p×p | Ip
]
. (6.8)

For any t ∈N, let Et = E◦···◦E︸ ︷︷ ︸
t times

denote the t-fold iterate of the system E, and let Ht be

the system associated with (6.4) and (6.5) as

Ht = Et◦F =
(

At,Bt,Ct
)
. (6.9)

Remark 6.2. The state-space realization of (6.9) is completely determined by Φ̂k and Pk.
The system F in (6.5) does not depend on the matrix Pk, while (6.6) is positively ho-
mogeneous in Pk of degree −1 in the sense that for any ρ > 0, the rescaling Pk 
→ ρPk
implies G 
→ ρ−1G. Hence, the dependence of the linear operator Ht on Pk is positively
homogeneous of degree −t. That is, in terms of the impulse response, Pk 
→ ρPk induces
CtAu

t Bt 
→ ρ−tCtAu
t Bt for all u∈ Z+.

In the sequel, �· and �·� denote the floor and ceiling integer parts of a real number,
respectively.

Theorem 6.3. For any s ∈ N satisfying s < 2�λk�, the sth posterior power moment of the
random matrix Φ in (5.4) is expressed in terms of the state-space realization matrices of the
system (6.9) as

E
(
Φs |�k

)= Φ̂s
k +

�s/2∑

t=1

(2t− 1)!!

(
M
(
Sk
)
/2
)t

∏t
u=1

(
λk −u

)
(

CtAs−2t
t Bt

)�
. (6.10)

Here, λk and Sk are the hyperparameters (4.4) of the posterior distribution (4.3), and the
function M is given by (2.3).

We prove Theorem 6.3 in Appendix B. The theorem encapsulates a system theoretic al-
gorithm which reduces the computation of the posterior power moments of Φ in (5.4) to
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calculating the state-space realization matrices At ∈ R(2t+1)p×(2t+1)p, Bt ∈ R(2t+1)p×p, and
Ct ∈Rp×(2t+1)p recursively in t. More precisely, applying Proposition 6.1 to the recurrence
relation Ht+1 = E◦Ht and using (6.8) yield

At+1 =
[

At 0(2t+1)p×2p

BCtAt A

]

, Bt+1 =
[

Bt

BCtBt

]

, Ct =
[
0p×2tp | Ip

]
, (6.11)

with

A0 = Φ̂�k , B0 = C0 = Ip. (6.12)

Both At and Bt in (6.11) are submatrices of At+1 and Bt+1, respectively, with At being
block lower triangular. From (6.8) and from the special structure of the matrices Ct, it
follows that

Ct+1At+1 =
[
P−1
k ΩCtAt | CA

]
, Ct+1Bt+1 = P−1

k ΩCtBt, (6.13)

where CA = [P−1
k Φ̂k | Φ̂�k ]. Moreover, by the special structure of the matrix Ω in (6.7),

the rightmost relations in (6.12) and in (6.13) imply that for any t ∈N,

CtBt =
(
P−1
k Ω

)t =
[(
P−1
k

)t−1
11

(
P−1
k

)
•1 | 0p×(p−1)

]
, (6.14)

where (·)•1 is the first column of a matrix.
The proposed system theoretic algorithm (6.8)–(6.14) for computing E(Φs | �k) is

expensive for large s, since the order of At grows linearly in t. The burden, however, is
partially alleviated by the sparsity of the state-space realization matrices due to the special
structure of Ω. Also recall that, in order to assure the integrability ofΦs with respect to the
posterior distribution Πk given by (4.3)-(4.4), s is limited by the number of observations
k on which the forecast (5.4) is based.

Although this last restriction originates from the particular family of conjugate pri-
ors used, it conforms with the qualitative principle that a meaningful long term forecast
of a time series, whose dynamics incorporates unknown parameters, requires an appro-
priately long past history in order to estimate them accurately enough to attenuate the
dynamic propagation of the remaining posterior uncertainty in the knowledge of the pa-
rameters.

Appendices

A. Proof of Proposition 4.1

The assertion of the proposition for k = 0 replicates the assumption (3.4). In order to
establish its validity for any k ∈N, we rewrite (3.1) in notation (3.2) as

Xk = α�Yk−1 +
Wk√
β
. (A.1)
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Recall thatW is a discrete time Gaussian white noise, independent of �0 and of θ. Hence,
by (A.1), the conditional likelihood function of X1, . . . ,Xk, that is, their joint pdf, condi-
tioned on �0 and on θ = (a,b)∈Θ, and considered as a function of the latter, is

Λk(θ)=
(
b

2π

)k/2
exp

(

− b

2

k∑

j=1

(
Xj − a�Yj−1

)2
)

, (A.2)

where (3.3) is used. Hence, applying the Bayes theorem, it follows that the density πk of
Πk is given by

πk(τ)= π0(τ)Λk(τ)
∫
Θπ0(τ′)Λk(τ′)dτ′

, τ = (a,b)∈Θ, (A.3)

where π0 = dp,λ0,S0 is the prior pdf of θ defined by (2.4). As always with posterior pdf ’s,
omitting all those multipliers in the numerator of (A.3) which do not depend on τ, we
obtain

πk(τ)∝ bλ0+(p/2)−1+k/2 exp

(

− b

2

(

VS0 (a) +
k∑

j=1

(
a�Yj−1−Xj

)2
))

. (A.4)

Now combining (4.2) with (2.2), one verifies that

VS0 (a) +
k∑

j=1

(
a�Yj−1−Xj

)2 =VS0 (a) +
k∑

j=1

∥
∥
∥
∥
∥

[
a
−1

]∥
∥
∥
∥
∥

2

ZjZ
�
j

=VSk (a), (A.5)

where Sk = S0 +
∑k

j=1ZjZ
�
j . Substituting (A.5) into (A.4), and comparing the resultant

expression with (2.4), it follows that πk = dp,λk ,Sk , where λk = λ0 + k/2. Therefore, the pos-
terior distribution of θ with respect to �k is indeed given by (4.3)-(4.4), completing the
proof of the proposition.

B. Proof of Theorem 6.3

To simplify notation throughout the proof, we will omit the subscript k which specifies
the current moment of time in (5.4). With this convention, (5.9) and (5.10) give

Φ� = Φ̂� + (βP)−1/2γΨ�, (B.1)

where γ ∼Np(0p×1,Ip) is independent of β and of �. Since the matrices Φ̂ and P are �-
measurable and the vector Ψ is constant, E(Φs | β,�) can be found using the scalariza-
tion technique developed in [7] for computing the power moments of Gaussian random
matrices A+BζC, where ζ is a standard normal random vector, and A, B, C are appropri-
ately dimensioned constant matrices. More precisely, setting A = Φ̂�, B = (βP)−1/2, and
C =Ψ�, and applying [7, Theorem 1 and Proposition 1], one verifies that

(
E
(
Φs | β,�

))� = (Φ̂�)s +
�s/2∑

t=1

(2t− 1)!!β−tCtAs−2t
t Bt, (B.2)
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where At, Bt, Ct are the state-space realization matrices of the systemHt defined by (6.4)–
(6.9). Here, we have also used the positive homogeneity of Ht in the matrix P of degree
−t; see Remark 6.2. Now by Proposition 4.1 and by (2.6), Law(β |�) = Ga(λ,M(S)/2),
where λ and S are the hyperparameters of the posterior distribution Π. Consequently, for
any t ∈N satisfying t < λ, the random variable β−t is integrable with respect to Π, with

E
(
β−t |�

)=
(
M(S)/2

)t
Γ(λ− t)

Γ(λ)
=

(
M(S)/2

)t

∏t
u=1(λ−u)

. (B.3)

Using (B.2) and the �-measurability of the matrices At, Bt, Ct, we arrive at

E
(
Φs |�

)= Φ̂s +
�s/2∑

t=1

(2t− 1)!!E
(
β−t |�

)(
CtAs−2t

t Bt
)�
. (B.4)

Since the assumption s < 2�λ� is equivalent to �s/2 < λ, substituting (B.3) into (B.4)
yields (6.10) that completes the proof of the theorem.
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GLOBAL CONVERGENT ALGORITHM FOR PARABOLIC
COEFFICIENT INVERSE PROBLEMS

QUAN-FANG WANG

The globally convergent algorithm, that is, convexification approach will be applied to
coefficient inverse problems of parabolic differential equations when spatial dimensions
are two. Based on the unified framework of convexification approach, a developed global
iteration scheme for solving numerical solution will be implemented to verify the effec-
tiveness of convexification approach for 2D parabolic case.

Copyright © 2006 Quan-Fang Wang. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Global convergent algorithm is to solve the multidimensional coefficient inverse prob-
lems both in theoretical and computation issues using a unified framework (cf. [6]). Its
application to a class of inverse problems has been reported in literatures (cf. [1–7]). The
main thoughts of convexification approach focus on several aspects. Comparing the lo-
cal convergent iteration to exact solution, convexification approach is a global convergent
algorithm, which avoids leading to false solution under incomplete boundary data and in-
consistency of a mathematical model with the reality. A couple of points clearly show its
advantages. The sequential minimization algorithm (i) provides stable approximate so-
lution via minimization of a finite sequence of strictly convex objective functions, which
is constructed by applying the nonlinear weighted least-squares method with Carleman’s
weight function; (ii) provides the convergence to the “exact” solution independent of
starting vector, which is directly determined from the data eliminating for the descent
methods.

The purpose is to use convexification approach for solving the coefficient inverse prob-
lem arising in parabolic partial differential equations. Numerical study will be imple-
mented for two dimensions to show the effectiveness.

The contents of this paper are as follows. In Section 2, the formulation is given in the
unified framework of convexification approach. In Section 3, the global convergent al-
gorithm is applied to parabolic coefficient inverse problems. In Section 4, experiments

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1109–1119
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demonstration verifies the effectiveness of global convergent algorithm. Section 5 con-
tains the conclusions.

2. Notations and formulations

Consider the Cauchy problems described by parabolic partial differential equations in
R3× (0,∞):

∂tu+ a(x)u−∇2u=−s(x, t),

∂ηu(x,0) + ku(x,0)= u0(x),
(2.1)

where a(x) ≥ 0 is unknown coefficient, and k is constant. Consider R+ = {x ∈ R3 | x2 >
0, x3 > 0}, x = (x1,x2,x3) with the plane S = {x2 = 0, x3 = 0}. Assume that the source
function s(x, t)≥ 0 with compactly support in R3. Let Ω∈R3

+ be a prism,

Ω= {x ∈R+ :−R < x1 <R, x2 ∈ (0,L), x3 ∈ (0,L)
}
. (2.2)

A support of the source function s(x, t) belongs to the setR+\Ω̄ (taking s(x, t)=0, u0(x)=
0 in experiments).

2.1. Inverse problems

Definition 2.1. Given the lateral data ∂ηu(x, t) + ku(x, t) = u0(x),(x, t) ∈ S× (0,T) for a
fixed source position and sufficiently large T , find approximately coefficient a(x) in Ω.

Let Laplace transform of u(x, t) be denoted as

w(x, t)=
∫∞

0
e−stu(x, t)dt, (2.3)

where the parameter s > 0. By applying Laplace transform to Cauchy problem (2.1) to
obtain that

[
s+ a(x)

]
w−∇2w = S(x,s),

lim
|x|→∞

w = 0,

∂ηw(x,s) + kw(x,s)= ũ0(x,s), x ∈ S,

(2.4)

where ũ0(x,s) is the Laplace transform of u0, ∂η(w) is the normal derivative of the func-
tion w at the boundary. For simplicity, assume that S(x,s) = δ(x− x0), where x0 = (x2,
1− a) ∈ R3

+\Ω̄ is a fixed source position, and a is a small positive number. It is obvious
that the function is the Laplace transform of s(x, t)= δ(x− x0)δ(t). Assume that the ob-
servation w(x2,0,s) = ũ0(x,s) is known, s > 0 in the computation experiments. For the
positivity of function w(x,s), [6, Lemmas 1 and 2] can be used.
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3. Sequential minimization algorithm

3.1. Transformations. Assume that coefficient a(x) is unknown, our aim is to deduce an
equation without this coefficient. From [6, Lemma 1] that w > 0 in Ω, let new function
v = lnw and transform (2.4) to

∇2v+ (∇v)2 + S(x,s)ev = s+ a(x), x ∈Ω. (3.1)

Introduce f (x,s)= v + s· l(x,x0), q(x,s)=∂ f /∂s. Lemma 2 in [6] implies that f (x,s)=
O(s−1), q(x,s)=O(s−2) as s→∞. Hence, it can be approximated by

f (x,s)≈−
∫ s̄

s
q(x,ν)dν, (3.2)

where s̄ is a sufficiently large number. For x ∈Ω, s∈ (s0, s̄), the boundary problems (2.4)
are approximated by

∫ s̄

s
∇2q(x,ν)dν− 2s

(∫ s̄

s
∇q(x,ν)dν

)

+
(∫ s̄

s
∇q(x,ν)dν

)2

+ S(x,s)e−
∫ s̄
s q(x,ν)dν−s|x−x0| + s2− s= 0,

∂ηq(x,ν) + kq(x,ν)= q0(x,ν), x ∈ Γ,

(3.3)

where q0 corresponds to ū0. Especially, q0 is computed by some regularizing algorithm
of numerical differential with respect to s. Obviously, (3.3) does not contain unknown
coefficient a(x). Consider a set of functions

H(m)=
{

q(x,s) | ∂ηq+ kq = q0, x ∈ Γ, max
s∈(s0,s̄)

∥
∥q(x,s)

∥
∥
C3(Ω̄) ≤m

}

, (3.4)

where m> 0 is a given number, which is not necessarily small.

Theorem 3.1. There exists at most one solution q(x,s) to problems (3.3) such that

max
s∈(s0,s̄)

∥
∥q(x,s)

∥
∥
C3(Ω̄) <∞. (3.5)

3.2. Approximations. Recall that Ω=Ω1× [0,L]× [0,L], L > 0, where Ω1 = {x1|−R≤
x1 ≤ R}. Also assume that q0 are observed on Γ = Ω1 = Ω̄∩ S ⊂ {x2 = 0, x3 = 0}. Let
{φk(x1)}|Kk=1 ⊂ C2(Ω̄1) be a set of linearly independent functions that approximate q(x,s)
and its x-derivatives up to second order, that is,

Dα
xq(x,s)≈Dα

x

K∑

k=1

ηk
(
x2,x3,s

)
φk
(
x1
)
, (x,s)∈ Ω̄× [s0, s̄

]
, |α| ≤ 2. (3.6)

Therefore, for q ∈H(m), a number J(ε,m) can be chosen for sufficiently small ε > 0 and
ηk(x2,x3,s), such that

max
s∈(s0,s̄)

∥
∥
∥
∥
∥
q−

K∑

k=1

ηk
(
x2,x3,s

)
φk
(
x1
)
∥
∥
∥
∥
∥
C2(Ω̄)

< ε. (3.7)
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Denote p(x2,x3,s)=(η1(x2,x3,s), . . . ,ηk(x2,x3,s), . . . ,ηK (x2,x3,s))T and substitute the right-
hand side of (3.6) in (3.3). p0 response to the initial value q0 in (3.3). The results are
quoted as in [6] to parabolic coefficient inverse problems. Let

q(x,s)≈
K∑

k=1

ηk
(
x2,x3,s

)
φk
(
x1
)
, (x,s)∈ Ω̄× [s0, s̄

]
. (3.8)

Then one can deduce that

∇q(x,s)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂q(x,s)
∂x1

∂q(x,s)
∂x2

∂q(x,s)
∂x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K∑

k=1

ηk
(
x2,x3,s

)∂φk
(
x1
)

∂x1

K∑

k=1

∂ηk
(
x2,x3,s

)

∂x2
φk
(
x1
)

K∑

k=1

∂ηk
(
x2,x3,s

)

∂x3
φk
(
x1
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

∇2q(x,s)=
K∑

k=1

ηk
(
x2,x3,s

)∂φ2
k

(
x1
)

∂x2
1

+
K∑

k=1

∂2ηk
(
x2,x3,s

)

∂x2
2

φk(x1) +
K∑

k=1

∂2ηk
(
x2,x3,s

)

∂x2
3

φk
(
x1
)
.

(3.9)

Therefore, (3.3) implies that

K∑

k=1

ηk
(
x2,x3,s

)∂φ2
k

(
x1
)

∂x2
1

+
K∑

k=1

∂2ηk
(
x2,x3,s

)

∂x2
2

φk
(
x1
)

+
K∑

k=1

∂2ηk
(
x2,x3,s

)

∂x2
3

φk
(
x1
)

− 2s2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K∑

k=1

ηk
(
x2,x3,s

)∂φk
(
x1
)

∂x1

K∑

k=1

∂ηk
(
x2,x3,s

)

∂x2
φk
(
x1
)

K∑

k=1

∂ηk
(
x2,x3,s

)

∂x3
φk
(
x1
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ s̄

s

K∑

k=1

ηk
(
x2,x3,ν

)∂φk
(
x1
)

∂x1
dν

∫ s̄

s

K∑

k=1

∂ηk
(
x2,x3,ν

)

∂x2
φk
(
x1
)
dν

∫ s̄

s

K∑

k=1

∂ηk
(
x2,x3,ν

)

∂x3
φk
(
x1
)
dν

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ 2s

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ s̄

s

K∑

k=1

ηk
(
x2,x3,ν

)∂φk
(
x1
)

∂x1
dν

∫ s̄

s

K∑

k=1

∂ηk
(
x2,x3,ν

)

∂x2
φk
(
x1
)
dν

∫ s̄

s

K∑

k=1

∂ηk
(
x2,x3,ν

)

∂x3
φk
(
x1
)
dν

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

+ s−2 + 2s−3a
(
x2,x3

)

+ δ
(

x− x0
)
e−

∫ s̄
s

∑K
k=1 ηk(x2,x3,ν)φk(x1)dν−s|x−x0| = 0.

(3.10)
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Considering p(x2,x3,s)= (η1(x2,x3,s), . . . ,ηk(x2,x3,s), . . . ,ηK (x2,x3,s))T , then

p′1 =
∂p
∂x2
=
(
∂η1

∂x2

(
x2,x3,s

)
, . . . ,

∂ηk
∂x2

(
x2,x3,s

)
, . . . ,

∂ηK
∂x2

(
x2,x3,s

)
)T

;

p′2 =
∂p
∂x3
=
(
∂η1

∂x3

(
x2,x3,s

)
, . . . ,

∂ηk
∂x3

(
x2,x3,s

)
, . . . ,

∂ηK
∂x3

(
x2,x3,s

)
)T

;

p′′1 =
∂2p
∂x2

2
=
(
∂2η1

∂x2
2

(
x2,x3,s

)
, . . . ,

∂2ηk
∂x2

2

(
x2,x3,s

)
, . . . ,

∂2ηK
∂x2

2

(
x2,x3,s

)
)T

;

p′′2 =
∂2p
∂x2

3
=
(
∂2η1

∂x2
3

(
x2,x3,s

)
, . . . ,

∂2ηk
∂x2

3

(
x2,x3,s

)
, . . . ,

∂2ηK
∂x2

3

(
x2,x3,s

)
)T
.

(3.11)

Hence,

�(p)= p′′1 + p′′2

+F
(

p′1,p′2,p,
∫ s̄

s
p′1
(
x2,x3,ν

)
dν,

∫ s̄

s
p′2
(
x2,x3,ν

)
dν,

∫ s̄

s
p
(
x2,x3,ν

)
dν,x2,x3

)

.

(3.12)

Then one can obtain that

�(p)= 0, x2 ∈ (0,L), x3 ∈ (0,L), s∈ (s0, s̄),

∂tp(0,0,s) + kp(0,0,s)= p0(s).
(3.13)

3.3. Numerical solution. For taking of boundary condition, the extrapolated boundary
condition is commonly used. Namely, let Ω0 = [0,L]× [0,L], c0 = const > 0, G ⊂ R2 be
a square larger than Ω, Ω ⊂ G, and let 0 be the center of G. Choose G such that for any
point x ∈G (not near a corner), there exists a unique point x′ ∈ ∂Ω such that the outward
distance in the normal direction is given by |x− x′| = c0lt. Then ∂G is an extrapolated
boundary of the domainΩ. The constant c0 depends on the mismatch of the speed of light
in two media. A simple explanation is quoted to get the flux ψ(x, t) using the extrapolated
boundary. For x ∈ ∂Ω, let η = η(x) be the outward unit normal vector on ∂Ω. Then

∂u

∂η
(x, t)= lim

s→0

u(x + sη, t)−u(x, t)
s

. (3.14)

Since (x + c0ltη)∈ ∂G, it implies that u(x,c0ltη, t) = 0. Hence, if the number c0lt is suffi-
ciently small, then (∂u/∂η)(x, t) ≈ −(1/c0lt)u(x, t) for x ∈ ∂Ω, t ∈ (T0,T). Thus, assume
that

∂u

∂η
(x, t)= ψ(x, t)=− 1

c0lt
φ(x, t), x ∈ ∂Ω, t ∈ (T0,T

)
. (3.15)

Equation (3.15) really implies that in the case of the extrapolated boundary condition,
(∂p/∂η)|∂Ω ≡ 0. The condition (3.15) is equivalent to the boundary condition of the third
kind on ∂Ω, ∂u/∂η+ S0u= 0, for x ∈ ∂Ω, t ∈ (T0,T), where S0 = 1/(c0lt). Hence, in prin-
ciple, original parabolic boundary value problem with third-kind boundary condition
can be converted to Dirichlet boundary condition.
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Discrete the parabolic coefficient inverse problems (3.13) on the rectangle [0,L]×
[0,L], denote y = x2, z = x3, and consider the grid

0= y0 < y1 < ··· < yn−1 < yn = L, hi = yi− yi−1,

0= z0 < z1 < ··· < zn−1 < zn = L, hj = zi− zi−1.
(3.16)

We approximate the vector function p(x2,x3,s) by a quadratic polynomial in each sub-
rectangle, that is,

p(y,z,s)≈ pi j(y,z,s)

= ai(s)
(
y− yi−1

)2

2
+ bj(s)

(
z− zj−1

)2

2
+ ci j(s)

(
y− yi−1

)(
z− zj−1

)

+ p′
(
yi−1,zj−1,s

)(
y− yi−1

)
+ p′

(
yj−1,zj−1,s

)(
z− zj−1

)
+ pi j

(
yi−1,zi−1,s

)
.

(3.17)

By considering the boundary condition at each element, let S0 = (1/zlt + k) by p(y,z,s)=
(1/S0)p0 at boundary, then one can get

p11(y,z,s)= a1(s)

(
y− y0

)2

2
+ b1(s)

(
z− z0

)2

2
+ c11(s)

(
y− y0

)(
z− z0

)

+
(
S0y + S0z+ 1

)
p11
(
y0,z0,s

)
,

p1 j(y,z,s)= a1(s)

(
y− y0

)2

2
+ bj(s)

(
z− zj−1

)2

2
+ c1 j(s)

(
y− y0

)(
z− zj−1

)

+ p′
(
y0,zj−1,s

)(
y− y0

)
+ p′

(
y0,zj−1,s

)(
z− zj−1

)

+
(
S0
(
z− zj−1

)
+ 1
)
pi j
(
y0,zi−1,s

)
,

pi1(y,z,s)= ai(s)
(
y− yi−1

)2

2
+ b1(s)

(
z− z0

)2

2
+ ci1(s)

(
y− yi−1

)(
z− z0

)

+ p′
(
yi−1,z0,s

)(
y− yi−1

)
+ p′

(
yi−1,z0,s

)(
z− z0

)

+
(
S0
(
y− yi−1

)
+ 1
)
pi1
(
yi−1,zi−1,s

)
,

pin(y,z,s)= ai(s)
(
y− yi−1

)2

2
+ bn(s)

(
z− zn−1

)2

2
+ cin(s)

(
y− yi−1

)(
z− zn−1

)

+ p′
(
yi−1,zn−1,s

)(
y− yi−1

)
+ p′

(
yi−1,zn−1,s

)(
z− zn−1

)

+
(
S0
(
y− yi−1

)
+ 1
)
pin
(
yi−1,zn−1,s

)
,

pnj(y,z,s)= an(s)

(
y− yn−1

)2

2
+ bj(s)

(
z− zj−1

)2

2
+ cnj(s)

(
y− yn−1

)(
z− zj−1

)

+ p′
(
yn−1,zj−1,s

)(
y− yn−1

)
+ p′

(
yn−1,zj−1,s

)(
z− zj−1

)

+
(
S0
(
z− zn−1

)
+ 1
)
pin
(
yn−1,zj−1,s

)
,
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pnn(y,z,s)= an(s)

(
y− yn−1

)2

2
+ bn(s)

(
z− zn−1

)2

2
+ cnn(s)

(
y− yn−1

)(
z− zn−1

)

+ p′
(
yn−1,zn−1,s

)(
y− yn−1

)
+ p′

(
yn−1,zn−1,s

)(
z− zn−1

)

+
(
S0
(
y− yn−1

)
+ S0

(
z− zn−1

)
+ 1
)
pnn
(
yn−1,zn−1,s

)
.

(3.18)

For 2-dimensional case, the ai(s),bj(s),ci j(s) will be determined by calculating at each
element:

ai(s)= αis2 + s, bj(s)= βjs2 + s, ci j(s)= γi j s2 + s, αi,βj ,γi j ∈R1. (3.19)

The resulting functionals with respect to the (i, j)th leading coefficients αi, βi, γi j of the
quadratic polynomial are

Jλ,i, j(p)=
∫ s̄

s0

∫ zi

zi−1

∫ yj

y j−1

∣
∣�
(
pi j(y,z,ν)

)∣
∣2
C2
λ,i, j(y,z)dydzdν, (3.20)

where Cλ,i, j(z) = exp[−λ(y − yi−1)− λ(z− zj−1)], λ = 1 in experiments, are Carleman’s
weight functions, which appear in Carleman estimates for the operators d2/dy2, d2/dz2.
The calculation of Jλ,i, j uses Gauss-Legendre quadrature to find the approximate

Ĵλ,i, j =
TT∑

tt=1

wtt

II∑

ii=1

wii

JJ∑

j j=1

wj j

∣
∣�
(
pi j(yii,zj j , tt)

)∣
∣2
Cλ,ii, j j

(
yii,zj j

)
, (3.21)

where wii,wj j ,wtt are Gauss weights, and yii, zj j , tt are Gauss points at y, z, and t direc-
tions, respectively. Sequentially minimizers of Jλ,i(pi) will be searched on the set

G(m)=
{

p(s) :
∥
∥p(s)

∥
∥= max

s∈[s0,s̄]

∣
∣p(s)

∣
∣≤m

}

. (3.22)

As in [6], the convexity of Jλ,i, j(p), the uniqueness of minimizers of these functionals,
and the convergence result can be proved. If assuming that there exists a vector function
p∗(y,z,s), such that

�̂
(

p∗
)= 0, y ∈ (0,L), z ∈ (0,L), s∈ (s0, s̄

)
,

∂tp∗(0,0,s) + kp∗(0,0,s)= p∗0 (s),
(3.23)

where

�̂(p∗)≡ p∗′′ + p∗′ +F∗
(

p∗′,p∗,
∫ s̄

s
p∗′(y,z,ν)dν,

∫ s̄

s
p∗(y,z,ν)dν, y,z

)

, (3.24)

the p∗(y,z,s) will be called the exact solution to (3.13). Assume that

p∗ ∈ C3[0,L], max
s∈(s0,s̄)

∥
∥p∗(y,z,s)

∥
∥
C3[0,L] ≤

m

2
, (3.25)
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and the function F and data are known approximately. Assume that

max
s∈[s0,s̄]

∥
∥ε̂(z,s)

∥
∥
C[0,L] ≤ ε, max

s∈[s0,s̄]

∣
∣p0(s)−p∗0 (s)

∣
∣≤ ε. (3.26)

Theorem 3.2. Let λ= 1, let the above assumption be satisfied, and let p0 ∈ G(m/2). Then
there exist sufficiently small positive numbers ε0(m), h10(m), h20(m) such that for all ε ∈
(0,ε0), h1 ∈ (0,h10), h2 ∈ (0,h20),

pi
(
yi−1,zi−1,s

)∈G(m) (i= 1,2, . . . ,n) (3.27)

all functionals Jλ,i, j(p) are strictly convex on G(m), the unique minimizer p̄λ,i, j of Jλ,i, j(p) is
an interior point of G(m).

Proof. Refer to [6, 8], it is easy to obtain the proof for 2D case of parabolic equations. The
theorem implies the global convergence of sequential minimization algorithm. �

3.4. Inversion. Once the approximating field f̃ (x,ν) is found, the unknown coefficient
a(x) can be approximately determined from (3.1). By taking S(x,0) = 0, the inversion
formula for ã(x) is deduced that

ã(x)=∇2 f̃ +
(∇ f̃

)2− s, ∀s∈ [s
¯
, s̄
]
. (3.28)

It is no need to compute quantities∇ f̃ and∇2 f̃ for getting ã(x).

4. Numerical experiments

The experiments aim is to find the continuous coefficients a(x), and recover it from para-
bolic equation (2.1) without solving the exactly solution of (2.1). Take the φk(x1) in (3.6)
as follows:

φk
(
x1
)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1− (k− 1)h
h

, (k− 1)h≤ x1 ≤ kh,

−x1− (k+ 1)h
h

, kh≤ x1 ≤ (k+ 1)h.

(4.1)

Set n = 8, hi = hj = 1/8, then 64 elements of [yi−1,zj−1]× [yi,zj] are used in sequential
minimization algorithm. Taking s̄= 108 in (3.2) and s0 = 0, s

¯
= 0, c0 = 1.1, lt = 0.5 dur-

ing all calculations. Approximate unknown coefficients a(x) = a(y,z) in 2-dimensional
spaces (assume x1 = 1.0) in Figures 4.1 and 4.2. Taking x1 = 5.0, unknown coefficients
a(x)= a(y,z), see Figures 4.3 and 4.4. Let x1 = 10.0, unknown coefficients a(x)= a(y,z)
are in Figures 4.5 and 4.6.

5. Conclusions

This work solved the coefficient inverse problems of nonlinear parabolic differential equa-
tions for 2-dimensional spaces using globally convergent algorithm (i.e., convexification
approach). The sequential minimization algorithm is used to optimize the cost function
given by Carleman’s weight functions.
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Figure 4.1. Contour plot of a(y,z).
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Figure 4.2. Plot of a(y,z).
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Figure 4.3. Contour plot of a(y,z).
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Figure 4.4. Plot of a(y,z).
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Figure 4.5. Contour plot of a(y,z).
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Figure 4.6. Plot of a(y,z).
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MULTIPLE POSITIVE RADIAL SOLUTIONS
FOR QUASILINEAR EQUATIONS
IN ANNULAR DOMAINS

HAIYAN WANG

We study the number of positive radial solutions of elliptic equations when nonlinearity
has zeros. We show that the problem has k positive solutions if the nonlinearity has k
zeros. Similar results are also true for elliptic systems.

Copyright © 2006 Haiyan Wang. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper we consider the multiplicity of positive radial solutions for the quasilinear
equations

div
(
A
(|∇u|)∇u)+ λb

(|x|) f (u)= 0 in D,

u= 0 for x ∈ ∂D,
(1.1)

div
(
A
(|∇u|)∇u)+ λb1

(|x|)g1(u,v)= 0 in D,

div
(
A
(|∇v|)∇v)+ λb2

(|x|)g2(u,v)= 0 in D,

u= v = 0 for x ∈ ∂D,

(1.2)

where D = {x : x ∈Rn, n≥ 2, 0 < R1 < |x| < R2 <∞}.
The function A originates from a variety of practical applications, for instance, the

degenerate m-Laplace operator, namely, A(|p|) = |p|m−2, m > 1. When A ≡ 1, we recall
that (1.1) reduces to the classical semilinear elliptic equation

Δu+ λb
(|x|) f (u)= 0 in D,

u= 0 for x ∈ ∂D. (1.3)

In the recent paper [5], the author discussed the problem under assumption (H1) on
the function A, which covers the two important cases A≡ 1 and A(|p|)= |p|m−2, m> 1,

Hindawi Publishing Corporation
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1122 Positive solutions of elliptic equations

that is, the degenerate m-Laplace operator. It was proved that appropriate combinations
of superlinearity and sublinearity of the quotient f (u)/A(u) at zero and infinity guarantee
the existence, multiplicity, and nonexistence of positive radial solutions of (1.1) and (1.2).

The purpose of this paper is to study the number of positive radial solutions of (1.1)
if f has zeros. We will show that (1.1) has at least k positive radial solutions if f has
k zeros. A similar result is also true for (1.2). For the scalar equation (1.1) and the case
A≡ 1, previous work on this problem has been done by Hess [2]. We also obtain a similar
multiplicity result for elliptic systems. Our arguments are based on a fixed point theorem
in a cone due to Krasnoselskii.

2. Multiplicity results

Let R= (−∞,∞), ϕ(t)=A(|t|)t. We make the following assumptions.
(H1) ϕ is an odd increasing homeomorphism ofR ontoR and there exist two increas-

ing homeomorphisms ψ1 and ψ2 of (0,∞) onto (0,∞) such that

ψ1(σ)ϕ(t)≤ ϕ(σt)≤ ψ2(σ)ϕ(t), ∀σ , t > 0. (2.1)

(H2) b : [R1,R2]→ [0,∞) is continuous and b 
≡ 0 on any subinterval of [R1,R2].
(H3) f : [0,∞)→ [0,∞) is continuous.
(H4) There exist k numbers ak > ak−1 > ··· > a1 > 0 such that ai > 4ai−1, f (ai)= 0 for

i= 1, . . . ,k and f (u) > 0 for ai−1 < u < ai, i= 1, . . . ,k, where a0 = 0.
Our multiplicity result for (1.1) is as follows.

Theorem 2.1. Assume (H1)–(H4) hold. Then there exists λ0 such that for λ > λ0 (1.1) has
k positive solutions, u1,u2, . . . ,uk, such that

ai−1 < sup
t∈[0,1]

ui(t)≤ ai, i= 1, . . . ,k. (2.2)

We assume the following additional conditions for (1.2).
(H5) bi : [R1,R2] → [0,∞) is continuous and bi 
≡ 0 on any subinterval of [R1,R2],

i= 1,2.
(H6) gi : [0,∞)→ [0,∞) is continuous, i= 1,2.
(H7) There exist k numbers ak > ak−1 > ··· > a1 > 0 such that ai > 4ai−1, g1(u,v)= 0,

and g2(u,v) = 0 for u + v = ai, i = 1, . . . ,k, and g1(u,v) > 0 and g2(u,v) > 0 for
ai−1 < u+ v < ai, i= 1, . . . ,k, where a0 = 0.

Our multiplicity result for (1.2) is as follows.

Theorem 2.2. Assume (H1) and (H5)–(H7) hold. Then there exists λ0 such that for λ > λ0

(1.2) has k positive solutions, (u1v1),(u2,v2), . . . , (uk,vk), such that

ai−1 < sup
t∈[0,1]

(
ui(t) + vi(t)

)≤ ai, i= 1, . . . ,k. (2.3)
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3. Preliminaries

A radial solution of (1.1) can be considered as a solution of the equation

(
rn−1ϕ

(
u′(r)

))′
+ λrn−1b(r) f

(
u(r)

)= 0 in R1 < r < R2,

u
(
R1
)= u(R2

)= 0.
(3.1)

We will treat classical solutions of (3.1), namely, functions u of class C1 on [R1,R2]
with ϕ(u′) ∈ C1(R1,R2), which satisfies (3.1). A solution u is positive if u(r) > 0 for all
r ∈ (R1,R2).

Applying the change of variables, r = (R2−R1)t+R1, we can transform (3.1) into the
form

(
q(t)ϕ

(
pu′

))′
+ λh(t) f (u)= 0, 0 < t < 1,

u(0)= u(1)= 0,
(3.2)

where

q(t)= ((R2−R1
)
t+R1

)n−1
, p = 1

R2−R1
,

h(t)= (R2−R1
)((

R2−R1
)
t+R1

)n−1
b
((
R2−R1

)
t+R1

)
.

(3.3)

We will prove there are k positive solutions for (3.2), which immediately implies that
Theorem 2.1 is true.

The following well-known result of the fixed point index is crucial in our arguments.

Lemma 3.1 [1, 3]. Let E be a Banach space and K a cone in E. For r > 0, define Kr =
{u ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is completely continuous such that Tx 
= x for
x ∈ ∂Kr = {u∈ K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr , then

i
(
T ,Kr ,K

)= 0. (3.4)

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr , then

i
(
T ,Kr ,K

)= 1. (3.5)

In order to apply Lemma 3.1 to (3.2), let X be the Banach space C[0,1] with ‖u‖ =
supt∈[0,1] |u(t)|, u∈ X .

Define K to be a cone in X by

K =
{

u∈ X : u(t)≥ 0, min
1/4≤t≤3/4

u(t)≥ 1
4
‖u‖

}

. (3.6)
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Also, define, for r a positive number, Ωr by

Ωr =
{
u∈ K : ‖u‖ < r}. (3.7)

Note that ∂Ωr = {u∈ K : ‖u‖ = r}.
For i= 1, . . . ,k, let fi satisfy

fi(u)=
⎧
⎨

⎩

f (u), 0≤ u≤ ai,
0, ai ≤ u,

(3.8)

and let the map Ti
λ : K → X be defined by

Ti
λu(t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ t

0
p−1ϕ−1

(
1
q(s)

∫ σ

s
λh(τ) fi

(
u(τ)

)
dτ
)

ds, 0≤ t ≤ σ ,

∫ 1

t
p−1ϕ−1

(
1
q(s)

∫ s

σ
λh(τ) fi

(
u(τ)

)
dτ
)

ds, σ ≤ t ≤ 1,

(3.9)

where σ ∈ (0,1) is a solution of the equation

Θiu(t)= 0, 0≤ t ≤ 1, (3.10)

where the map Θi : K → C[0,1] is defined by

Θiu(t)=
∫ t

0
ϕ−1

(
1
q(s)

∫ t

s
λh(τ) fi

(
u(τ)

)
dτ
)

ds

−
∫ 1

t
ϕ−1

(
1
q(s)

∫ s

t
λh(τ) fi

(
u(τ)

)
dτ
)

ds, 0≤ t ≤ 1.

(3.11)

By virtue of Lemma 3.2, the operator Ti
λ is well defined.

Lemma 3.2 [4, 5]. Assume (H1)–(H3) hold. Then, for any u∈ K , Θiu(t)= 0, i= 1, . . . ,k,
has at least one solution in (0,1). In addition, if σ1 < σ2 ∈ (0,1) are two solutions of Θiu(t)=
0, then h(t) fi(u(t))≡ 0 for t ∈ [σ1,σ2] and any σ ∈ [σ1,σ2] is also a solution of Θiu(t)= 0.
Furthermore, Ti

λu(t) is independent of the choice of σ ∈ [σ1,σ2].

Lemma 3.3 follows from the concavity of u.

Lemma 3.3 [4, 5]. Assume (H1)-(H2) hold. Let u and v ∈ X with u(t)≥ 0 and v(t)≤ 0 for
t ∈ [0,1]. If (q(t)ϕ(pu′))′ = v, then

u(t)≥min{t,1− t}‖u‖, t ∈ [0,1]. (3.12)

In particular,

min
1/4≤t≤3/4

u(t)≥ 1
4
‖u‖. (3.13)

We remark that, according to Lemma 3.3, any nonnegative solution of (3.2) is positive
unless it is identical to zero.
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Lemma 3.4. Assume (H1)–(H3) hold. If u∈ K such that Ti
λu= u in K , then u is a solution

of (3.2) such that

sup
t∈[0,1]

u(t)≤ ai. (3.14)

Proof. It is easy to see that u satisfies the following problem:

(
q(t)ϕ

(
pu′

))′
+ λh(t) fi(u)= 0, 0 < t < 1,

u(0)= u(1)= 0.
(3.15)

Let t0 ∈ (0,1) such that u(t0)= supt∈[0,1]u(t). It follows that u′(t0)= 0. If u(t0) > ai, then
there exist two numbers 0≤ t1 < t0 < t2 ≤ 1 such that u(t) > ai for t ∈ (t1, t2) and u(t1)=
u(t2)= ai. Since fi(u)= 0 for u≥ ai, we have

(
q(t)ϕ

(
pu′(t)

))′ = 0 for t ∈ [t1, t2
]
. (3.16)

Thus, ϕ(pu′(t)) is constant on [t1, t2]. Since u′(t0) = 0, it follows that u′(t) = 0 for t ∈
[t1, t2]. Consequently, u(t) is constant on [t1, t2]. This is a contradiction. Therefore,
supt∈[0,1]u(t) ≤ ai. On the other hand, since f (u) ≡ fi(u) for 0 ≤ u ≤ ai, u is a solution
of (3.2). �

Lemma 3.5 [4, 5]. Assume (H1)–(H3) hold. Then Θi : K → C[0,1], i= 1, . . . ,k, is compact
and continuous.

Lemma 3.6 [4, 5]. Assume (H1)–(H3) hold. Then Tλ(K)⊂ K and Ti
λ : K → K , i= 1, . . . ,k,

are compact and continuous.

Lemma 3.7 [4, 5]. Assume (H1) holds. Then for all σ , t ∈ (0,∞),

ψ−1
2 (σ)t ≤ ϕ−1(σϕ(t)

)≤ ψ−1
1 (σ)t. (3.17)

Set

γ(t)= 1
2

[∫ t

1/4
p−1ψ−1

2

(
1
q(s)

∫ t

s
h(τ)dτ

)

ds+
∫ 3/4

t
p−1ψ−1

2

(
1
q(s)

∫ s

t
h(τ)dτ

)

ds
]

, (3.18)

where t ∈ [1/4,3/4]. It follows from (H1)-(H2) that

Γ= inf
{

γ(t) :
1
4
≤ t ≤ 3

4

}

> 0. (3.19)

Lemma 3.8. Assume (H1)–(H4) hold. For i= 1, . . . ,k, let r > 0 such that [r/4,r]⊂ (aj−1,aj)
for some 1≤ j ≤ i. Then

∥
∥Ti

λu
∥
∥≥ Γψ−1

2 (λ)ϕ−1(ωir
)

for u∈ ∂Ωr , (3.20)

where ωir =min1/4r≤t≤r{ fi(t)} > 0.
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Proof. Note, from the definition of Ti
λu, that Ti

λu(σ) is the maximum value of Ti
λu on

[0,1]. If σ ∈ [1/4,3/4], we have

∥
∥Ti

λu
∥
∥≥ 1

2

[∫ σ

1/4
p−1ϕ−1

(
1
q(s)

∫ σ

s
λh(τ) fi

(
u(τ)

)
dτ
)

ds

+
∫ 3/4

σ
p−1ϕ−1

(
1
q(s)

∫ s

σ
λh(τ) fi

(
u(τ)

)
dτ
)

ds
]

.

(3.21)

Since fi(u(t))≥ ωir = ϕ(ϕ−1(ωir)) for t ∈ [1/4,3/4], we find, by condition (H1),

∥
∥Ti

λu
∥
∥≥ 1

2

[∫ σ

1/4
p−1ϕ−1

(
1
q(s)

∫ σ

s
h(τ)dτψ2

(
ψ−1

2 (λ)
)
ϕ
(
ϕ−1(ωir

))
)

ds

+
∫ 3/4

σ
p−1ϕ−1

(
1
q(s)

∫ s

σ
h(τ)dτψ2

(
ψ−1

2 (λ)
)
ϕ
(
ϕ−1(ωir

))
)

ds
]

≥ 1
2

[∫ σ

1/4
p−1ϕ−1

(
1
q(s)

∫ σ

s
h(τ)dτϕ

(
ψ−1

2 (λ)ϕ−1(ωir
))
)

ds

+
∫ 3/4

σ
p−1ϕ−1

(
1
q(s)

∫ s

σ
h(τ)dτϕ

(
ψ−1

2 (λ)ϕ−1(ωir
))
)

ds
]

.

(3.22)

Now, because of Lemma 3.7, we have

∥
∥Ti

λu
∥
∥≥ ψ−1

2 (λ)ϕ−1
(
ωir
)

2

[∫ σ

1/4
p−1ψ−1

2

(
1
q(s)

∫ σ

s
h(τ)dτ

)

ds

+
∫ 3/4

σ
p−1ψ−1

2

(
1
q(s)

∫ s

σ
h(τ)dτ

)

ds
]

≥ Γψ−1
2 (λ)ϕ−1(ωir

)
.

(3.23)

For σ > 3/4, it is easy to see

∥
∥Ti

λu
∥
∥≥

∫ 3/4

1/4
p−1ϕ−1

(
1
q(s)

λ
∫ 3/4

s
h(τ) fi

(
u(τ)

)
dτ
)

ds. (3.24)

On the other hand, we have

∥
∥Ti

λu
∥
∥≥

∫ 3/4

1/4
p−1ϕ−1

(
1
q(s)

λ
∫ s

1/4
h(τ) fi

(
u(τ)

)
dτ
)

ds for σ <
1
4
. (3.25)

Therefore, the same arguments show that

∥
∥Ti

λu
∥
∥≥ Γψ−1

2 (λ)ϕ−1(ωir
)

if σ >
3
4

or σ <
1
4
. (3.26)

�
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4. Proof of Theorem 2.1

For each i = 1, . . . ,k, in view of condition (H4), there is an ri < ai such that ri > 4ai−1. It
follows that [ri/4,ri] ⊂ (ai−1,ai). By Lemma 3.8, we infer that there exists a λi > 0 such
that

∥
∥Ti

λu
∥
∥ > ‖u‖ for u∈ ∂Ωri , λ > λi. (4.1)

On the other hand, since fi(u) is bounded, there is an Ri > ri such that

∥
∥Ti

λu
∥
∥ < ‖u‖ for u∈ ∂ΩRi , λ > λi. (4.2)

It follows from Lemma 3.1 that

i
(
Ti
λ,Ωri ,K

)= 0, i
(
Ti
λ,ΩRi ,K

)= 1, (4.3)

and hence i(Ti
λ,ΩRi \ Ω̄ri ,K) = 1. Thus, Ti

λ has a fixed point ui in ΩRi \ Ω̄ri . Lemma 3.4
implies that the fixed point ui is a solution of (3.2) such that ai < ‖ui‖ ≤ ai. Consequently,
(3.2) has k positive solutions, u1,u2, . . . ,uk, such that

0= a0 <
∥
∥u1

∥
∥≤ a1 <

∥
∥u2

∥
∥≤ a2 < ··· ≤ ak−1 <

∥
∥uk

∥
∥≤ ak for λ > λ0, (4.4)

where λ0 =maxi=1,...,n{λi}.

5. Elliptic systems

With the same transformation for (1.1), we can transform (1.2) to the following system:

(
q(t)ϕ

(
pu′

))′
+ λh1(t)g1(u,v)= 0, 0 < t < 1,

(
q(t)ϕ

(
pv′
))′

+ λh2(t)g2(u,v)= 0, 0 < t < 1,

u(0)= u(1)= v(0)= v(1)= 0,

(5.1)

where

hi(t)=
(
R2−R1

)((
R2−R1

)
t+R1

)n−1
bi
((
R2−R1

)
t+R1

)
, i= 1,2, (5.2)

q(t) and p are the same as in (3.2).
In this section, let X be the Banach space C[0,1]×C[0,1] with

∥
∥(u,v)

∥
∥= sup

t∈[0,1]

∣
∣u(t)

∣
∣+ sup

t∈[0,1]

∣
∣u(t)

∣
∣, (u,v)∈ X. (5.3)

Define K to be a cone in X by

K=
{

(u,v)∈ X : u(t),v(t)≥ 0, min
1/4≤t≤3/4

(
u(t) + v(t)

)≥ 1
4

(‖u‖+‖v‖)
}

, (5.4)

where ‖u‖ = supt∈[0,1]u(t), u∈ C[0,1].
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Also, define, for r a positive number, Ur by

Ur =
{

(u,v)∈K :
∥
∥(u,v)

∥
∥ < r

}
. (5.5)

Note that ∂Ur = {(u,v)∈K : ‖(u,v)‖ = r}.
For i= 1, . . . ,k, j = 1,2, let gij satisfy

gij(u,v)=
⎧
⎨

⎩

gj(u,v), 0≤ u+ v ≤ ai,
0, ai ≤ u+ v,

(5.6)

and let the map Ti = (Ti
1,Ti

2) :K→ X be defined by

Ti
j(u,v)(t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ t

0
p−1ϕ−1

(
1
q(s)

∫ σj

s
λhj(τ)gij

(
u(τ),v(τ)

)
dτ
)

ds, 0≤ t ≤ σj ,
∫ 1

t
p−1ϕ−1

(
1
q(s)

∫ s

σj
λhj(τ)gij

(
u(τ),v(τ)

)
dτ
)

ds, σj ≤ t ≤ 1,

(5.7)

where σj ∈ (0,1) is a solution of the equation

Θi
j(u,v)(t)= 0, 0≤ t ≤ 1, (5.8)

and the map Θi
j :K→ C[0,1] is defined by

Θi
j(u,v)(t)=

∫ t

0
ϕ−1

(
1
q(s)

∫ t

s
λhj(τ)gij

(
u(τ),v(τ)

)
dτ
)

ds

−
∫ 1

t
ϕ−1

(
1
q(s)

∫ s

t
λhj(τ)gij

(
u(τ),v(τ)

)
dτ
)

ds, 0≤ t ≤ 1.

(5.9)

Lemma 5.1 can be proved in a similar manner as in [4, 5].

Lemma 5.1. Assume (H1), (H5), and (H6) hold. Then for i = 1, . . . ,k, Ti is well defined,
Ti(K)⊂K and Ti :K→K are compact and continuous.

Lemma 5.2. Assume (H1) and (H5)–(H7) hold. If (u,v)∈K such that Ti(u,v)= (u,v) in
K, then (u,v) is a solution of (5.1) such that

sup
t∈[0,1]

(
u(t) + v(t)

)≤ ai. (5.10)

Proof. It is easy to see that (u,v) satisfies the following problem:

(
q(t)ϕ

(
pu′

))′
+ λh1(t)gi1(u,v)= 0, 0 < t < 1,

(
q(t)ϕ

(
pv′
))′

+ λh2(t)gi2(u,v)= 0, 0 < t < 1,

u(0)= u(1)= v(0)= v(1)= 0.

(5.11)
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Let t0∈(0,1) such that u(t0)+v(t0)=supt∈[0,1](u(t)+v(t)). It follows that u′(t0)+v′(t0)=0.
If u(t0) + v(t0) > ai, then there exist two numbers 0 ≤ t1 < t0 < t2 ≤ 1 such that u(t) +
v(t) > ai for t ∈ (t1, t2) and

u
(
t1
)

+ v
(
t1
)= u(t2

)
+ v
(
t2
)= ai. (5.12)

Since gij(u,v)= 0, j = 1,2, for u+ v ≥ ai, we have

(
q(t)ϕ

(
pu′(t)

))′ = 0 for t ∈ [t1, t2
]
,

(
q(t)ϕ

(
pv′(t)

))′ = 0 for t ∈ [t1, t2
]
.

(5.13)

Thus, ϕ(pu′(t)) and ϕ(pu′(t)) are constant on [t1, t2], and so are u′(t) and v′(t). Since
u′(t0) + v′(t0) = 0, it follows that (u(t) + v(t))′ = 0 for t ∈ [t1, t2]. Consequently, u(t) +
v(t) is constant on [t1, t2]. This is a contradiction. Therefore, supt∈[0,1](u(t) + v(t))≤ ai.
On the other hand, since gij(u,v)≡ gj(u,v) for 0≤ u+ v ≤ ai, j = 1,2, (u,v) is a solution
of (1.2). �

Set

γj(t)= 1
2

[∫ t

1/4
p−1ψ−1

2

(
1
q(s)

∫ t

s
h j(τ)dτ

)

ds+
∫ 3/4

t
p−1ψ−1

2

(
1
q(s)

∫ s

t
h j(τ)dτ

)

ds
]

,

(5.14)

where t ∈ [1/4,3/4], j = 1,2. It follows from (H1) and (H5) that

Γ̂= inf
{

γj(t) :
1
4
≤ t ≤ 3

4
, j = 1,2

}

> 0. (5.15)

The following lemma can be proved in the same manner as in Lemma 3.8.

Lemma 5.3. Assume (H1) and (H5)–(H7) hold. For i= 1, . . . ,k, let r > 0 such that [r/4,r]⊂
(am−1,am) for some 1≤m≤ i. Then

∥
∥Ti(u,v)

∥
∥≥ Γ̂ψ−1

2 (λ)ϕ−1(ωir
)

for (u,v)∈ ∂Ur , (5.16)

where ωir =min1/4r≤t+s≤r{gj(t,s), j = 1,2} > 0.

6. Proof of Theorem 2.2

For each i = 1, . . . ,k, in view of condition (H7), there is an ri < ai such that ri > 4ai−1. It
follows that [ri/4,ri] ⊂ (ai−1,ai). By Lemma 5.3, we infer that there exists a λi > 0 such
that

∥
∥Ti(u,v)

∥
∥ >

∥
∥(u,v)

∥
∥ for (u,v)∈ ∂Uri , λ > λi. (6.1)

On the other hand, since f ij (u,v), j = 1,2, are bounded, there is an Ri > ri such that

∥
∥Ti(u,v)

∥
∥ <

∥
∥(u,v)

∥
∥ for (u,v)∈ ∂URi , λ > λi. (6.2)
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It follows from Lemma 3.1 that

i
(
Ti,Uri ,K

)= 0, i
(
Ti,URi ,K

)= 1, (6.3)

and hence, i(Ti,URi \ Ūri ,K)= 1. Thus, Ti has a fixed point (ui,vi) in URi \ Ūri . Lemma 5.2
implies that the fixed point (ui,vi) is a solution of (1.2) such that ai−1 < supt∈[0,1](ui(t) +
vi(t))≤ ai. Consequently, (1.2) has k positive solutions, (u1,v1),(u2,v2), . . . , (uk,vk), such
that

ai−1 < sup
t∈[0,1]

(
ui(t) + vi(t)

)≤ ai, i= 1, . . . ,k, for λ > λ0, (6.4)

where λ0 =maxi=1,...,n{λi}.
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SECOND-ORDER NONLINEAR OSCILLATIONS:
A CASE HISTORY
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This paper gives an updated account on a nonlinear oscillation problem originated from
the earlier works of F. V. Atkinson and Z. Nehari.

Copyright © 2006 James S. W. Wong. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We are here concerned with the study of oscillatory behavior of solutions of second-order
Emden-Fowler equations:

y′′(x) + a(x)
∣
∣y(x)

∣
∣γ−1

y(x)= 0, γ > 0, (1.1)

where a(x) is nonnegative and absolutely continuous on (0,∞). Under these conditions, it
is well known that every solution of (1.1) is uniquely continuable to the right throughout
(0,∞); see Hastings [17], Heidel [18], Coffman and Wong [10]. A solution y(x) of (1.1)
is said to be oscillatory if it has arbitrarily large zeros, that is, for any x0 ∈ (0,∞), there
exists x1 > x0 such that y(x1)= 0. Otherwise, the solution y(x) is said to be nonoscillatory
and it has only finitely many zeros on (0,∞), that is, there exists a last zero x̂ depending
on y(x) so that |y(x)| > 0 for all x > x̂.

Equation (1.1) is said to be superlinear if γ > 1 and sublinear if 0 < γ < 1. Further-
more, (1.1) is said to be oscillatory if every solution is oscillatory. Likewise, it is said to be
nonoscillatory if all its solutions are nonoscillatory. In the nonlinear case, that is, γ �= 1,
(1.1) can possess both oscillatory and nonoscillatory solutions.

The title of this paper is borrowed from a well-known paper of Atkinson [2] which
was published over fifty years ago. The same title was used by a second author in a sur-
vey paper [46] for more general second-order equations with coefficient a(x) which may
assume negative values for arbitrarily large values of x. What we describe here may also
be considered to be an expanded and updated version of one section of another survey
paper by the author in [48].

Hindawi Publishing Corporation
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2. Oscillation and existence of oscillatory solutions

The first result in this area of research is the following oscillation theorem due to F. V.
Atkinson.

Theorem 2.1 (Atkinson [2]). Let γ > 1. Equation (1.1) is oscillatory if and only if

∫∞
xa(x)dx = +∞. (2.1)

When γ = 1, it was known that
∫∞

a(x)dx = +∞ implied the oscillation of the linear equa-
tion y′′ + a(x)y = 0, a result due to Fite [14]. The sufficiency part of (2.1) was not so
unexpected because in general superlinearity enhanced oscillation. It was somewhat surpris-
ing that condition (2.1) was in fact also necessary. Following Atkinson [2], the sublinear
analogue was given by the following.

Theorem 2.2 (Belohorec [4]). Let 0 < γ < 1. Equation (1.1) is oscillatory if and only if

∫∞
xγa(x)dx = +∞. (2.2)

When γ �= 1, (1.1) can possess both oscillatory and nonoscillatory solutions, a situation ruled
out by Sturm’s separation theorem for the linear equation. The first result on the existence of
oscillatory solutions of (1.1), which does not also guarantee oscillation of all solutions, was
given by the following.

Theorem 2.3 (Jasný [21], Kurzweil [28]). Let γ > 1. If the function φ(x)= x(γ+3)/2a(x) is
nondecreasing in x for all large values of x, then (1.1) has oscillatory solutions.

Theorem 2.3 was improved to conclude that every solution of (1.1) with a zero within
the range of x for which φ(x) is nondecreasing must be oscillatory, an observation made
by Heidel and Hinton [19]. The sublinear analogue of Theorem 2.3 was given in the fol-
lowing.

Theorem 2.4 (Heidel and Hinton [19], Chiou [8]). Let 0 < γ < 1. If φ(x)= x(γ+3)/2a(x) is
nondecreasing for all large values of x, then (1.1) has oscillatory solutions.

Both Theorems 2.3 and 2.4 were improved in a single result by Ou and Wong [41] who
proved the following.

Theorem 2.5 (Ou and Wong [41]). Let γ �= 1 and φ(x) = x(γ+3)/2a(x). Suppose that
φ′−(x)∈ L1(0,∞), where φ′−(x)=min(−φ′(x),0), and there exists a positive constant k such
that φ(x)≥ k > 0 for all large values of x, then (1.1) has oscillatory solutions.

Theorem 2.5 implies the following corollary.

Corollary 2.6. Let γ �= 1. If φ(x) ≥ k > 0 for all large values of x and φ′+(x) ∈ L1(0,∞),
where φ′+(x)=max(φ′(x),0), then (1.1) has oscillatory solutions.

The condition that φ(x) is bounded away from zero by a positive constant plays an
important role in Theorems 2.3, 2.4, and 2.5, and similarly for nonoscillation theorems
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which we will discuss in the next section. Indeed, we have as a consequence of Corollary
2.6 the following result.

Theorem 2.7 (Belohorec [5], Erbe and Muldowney [12], Wong [51]). Let γ �= 1. If φ(x)
is monotone and bounded either below or above by a positive constant for all large values of
x, then (1.1) has oscillatory solutions.

3. Nonoscillation theorems

In this section, we discuss criteria which imply that all solutions of (1.1) are nonoscilla-
tory. We begin with the following theorem.

Theorem 3.1 (Kiguradze [23]). Let γ > 1. If for some δ > 0, ψ(x) = xδφ(x) =
x(γ+3)/2+δa(x) is nonincreasing for all large values of x, then (1.1) is nonoscillatory.

Nehari showed that Kiguardze’s result could also be improved to the following.

Theorem 3.2 (Nehari [38]). Let γ > 1. If for σ ≥ (γ+ 3)/2, the function (logx)σφ(x) is
nonincreasing for all large values of x, (1.1) is nonoscillatory.

Nehari indicated through a private communication that Theorem 3.2 would remain
valid for any σ > 0. Indeed, Chiou [6] proved that Theorem 3.2 remained valid for σ ≥
(γ+ 5)/4. In a subsequent paper, Chiou [7] claimed that Theorem 3.2 remained valid for
any σ > 0. Unfortunately, in a mathematical review, Nehari [40] pointed out an error in
Chiou’s proof but his new proof did improve the lower bound to σ ≥ (γ+ 1)/4− 1/(γ+ 1);
see also Erbe and Muldowney [13]. Finally, in a substantive paper, Nehari’s conjecture was
settled by Kaper and Kwong in the following.

Theorem 3.3 (Kaper and Kwong [22]). Let γ > 1. If the function (logx)σx(γ+3)/2a(x) is
nonincreasing for any σ > 0, then (1.1) is nonoscillatory.

Again, we seek for similar results in the sublinear case. Kiguradze [25] conjectured that
his Theorem 3.1 remained valid when 0 < γ < 1. This conjecture was settled only recently
in the following.

Theorem 3.4 (Wong [54]). Let 0 < γ < 1. If for some δ > 0, xδφ(x) is nonincreasing for all
large values of x, then (1.1) is nonoscillatory.

The natural question arises whether the Nehari type of improvement, namely; Theo-
rems 3.2, and 3.3, are also valid for sublinear equations. Coffman and Wong [11] advo-
cated a general principle that results on the existence of oscillatory solutions and nonoscil-
lation, which are in certain sense sharp, are always valid for both superlinear and sublinear
equations. This observation was given credence by Theorems 2.4, 2.5, 2.7, and 3.4, and
others, for example, Hinton [20] and Wong [50], and also Gollwitzer [16], Kwong and
Wong [30], and Wong [49]. Recently, using the technique developed in [54], Kwong and
Wong succeeded in proving the following improvement of Theorem 3.4.

Theorem 3.5 (Kwong and Wong [33]). Let 0 < γ < 1. If φ(x)= x(γ+3)/2a(x) is nonincreas-
ing in x for all large values of x and in addition limx→∞φ(x)= 0, then (1.1) is nonoscillatory.
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Thus as a consequence of Theorem 3.5, we have the sublinear analogue of Theorem
3.3, namely, the following.

Corollary 3.6. Let 0 < γ < 1. If φ(x)(logx)σ , σ > 0, is nonincreasing in x, then (1.1) is
nonoscillatory.

Using Theorem 3.5, we can state an improved version of Corollary 3.6 by requiring
that φ(x)(loglogx)σ , σ > 0, is nonincreasing. Indeed, for any positive integer n, denote
log[n] x = log(log[n−1] x), n = 1,2,3 . . ., and log[0] x = x by definition, we have the follow-
ing.

Corollary 3.7. Let 0 < γ < 1. If φ(x)(log[n] x)σ , σ > 0, is nonincreasing in x, then (1.1) is
oscillatory.

As for Theorem 3.5, it is unfortunate that its analogue for the superlinear equation is
not ture, because Nehari [39] gave an example which shows for every γ > 1, a function
a(x) could be constructed with the property that φ(x)= x(γ+3)/2a(x) is nonincreasing in
x and limx→∞φ(x) = 0 but (1.1) has oscillatory solutions. This example together with
Theorem 3.5 showed that the “duality principle” advocated by Coffman and Wong [9]
was false after all.

In light of Nehari’s ingenious counterexample, it is natural to ask whether Corollary 3.7
remains valid for the superlinear equation. This would generalize Theorem 3.3 of Kaper
and Kwong [22]. We have recently also succeeded in proving this, which is stated as a
separate theorem.

Theorem 3.8 (Kwong and Wong [34]). Let γ > 1. If φ(x)(log[n] x)σ , σ > 0, is nonincreasing
in x, then (1.1) is nonoscillatory.

Finally, we mention that we may relax the monotonicity condition in Kiguradze’s
Theorem 3.1 on nonoscillation in a similar manner as Theorem 2.5 with regard to the
existence of oscillatory solutions as the following result shows.

Theorem 3.9 (Wong [53]). Let γ �= 1 and ψ(x)= φ(x)xδ , when δ > 0. If ψ(x) is bounded
below by a positive constant and ψ′+(x)∈ L1(0,∞), where ψ′+(x)=max(ψ′(x),0), then (1.1)
is nonoscillatory.

Note that the condition ψ(x) bounded away from zero cannot be removed entirely. An
example was given in another recent paper by Kwong and Wong [32], where a function
a(x) was exhibited with the property that liminfx→∞ψ(x) = 0 but (1.1) has oscillatory
solutions for every γ > 0. Thus Theorem 3.9 does not imply Theorems 3.1 and 3.4.

4. Remarks and open problems

In this final section, we give a few remarks and indicate how some of the results cited
above may be extended to more general equations. At the same time, we also pose some
open problems.

(i) Equation (1.1) is related to the radial symmetric equation of semilinear elliptic
partial differential equations under suitable transformations, where the behavior of the



James S. W. Wong 1135

solution y(x) near infinity has the same meaning for the solution of the partial differ-
ential equation near zero. Pohožaev [44] studied the existence of a positive solution to
the Dirichlet boundary value problem of the semilinear elliptic equation in a bounded
star-shaped domain Ω in Rn with n≥ 3, namely,

Δu+uγ = 0, u= 0 on ∂Ω, (4.1)

where ∂Ω is the boundary of Ω. When Ω = {ξ ∈ Rn : |ξ| ≤M, M > 0}, solutions of
(4.1) are radially symmetric; see Gidas et al. [15]. Equation (4.1) can be reduced to the
Emden-Fowler equation (1.1) after a suitable change of independent variables. Pohožaev
proved that (4.1) always possesses a positive solution, called the ground-state solution,
if and only if γ < (n+ 2)/(n− 2) = γ∗, where γ∗ is the well-known Sobolev critical con-
stant. It turns out the transformed equation corresponding to (4.1) is the Emden-Fowler
equation: y′′(x) + xa|y|y−1y = 0 with a = −(2n− 2)/(n− 2), which is nonoscillatory if
a < −(γ+ 3)/2. This translates to γ < (n+ 2)/(n− 1) = γ∗. This is not at all surprising
since in case Ω is a ball, the existence and uniqueness of the ground-state solution are
indeed equivalent to the nonoscillation of the transformed Emden-Fowler equation; see
Atkinson and Peletier [3], Kaper and Kwong [22], and also Wong [53, Remark 3, pages
752–753].

(ii) It is natural to seek further extensions of results described in Sections 2 and 3. The
possibility of relaxing the assumption that the coefficient a(x) is nonnegative is the first
question one would ask. Indeed, for oscillation theorems of Atkinson [2] in the super-
linear case and of Belohorec [4] in the sublinear case, this superfluous assumption can
be dropped as shown by Kiguradze [26], Kwong and Wong [29, 31], and Wong [47]. In
other words, conditions (2.1) and (2.2) are valid oscillation criteria for (1.1) in cases γ > 1
and 0 < γ < 1, respectively, without assuming that a(x) is nonnegative. Unfortunately, for
results similar to Theorems 2.3 and 2.4 on the existence of oscillatory solutions and The-
orems 3.1 and 3.4 on nonoscillation, there has been little progress in this direction.

(iii) It will be of great interest to obtain similar results for the more general second-
order nonlinear equation

y′ + f (x, y)= 0, (4.2)

where f (x, y) is suitably restricted, for example, nondecreasing in y for every x. Even in
the simpler case of

y′′ + a(x) f (y)= 0, (4.3)

where a(x)≥ 0 and f (−y)=− f (y), f (y) > 0, whenever y > 0, there are few results other
than oscillation theorems. When f (y) satisfies f ′(y) ≥ 0 for all y and the superlinear
condition

0 <
∫∞

y

du

f (u)
<∞, y > 0, (4.4)

then the oscillation theorem of Atkinson [2] was extended to (4.3), and also more gen-
erally to (4.2) by Macki and Wong [36]. See also Nehari [37], and the recent monograph
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by Agarwal et al. [1]. With regard to results on nonoscillation and existence of oscillatory
solutions, see Coffman and Wong [9, 10], and Wong [52].

Equation (4.2) contains the interesting case when f (x, y) has mixed nonlinearities,
namely,

y′′ + a(x)|y|γ−1y + b(x)|y|β−1y = 0, (4.5)

where γ > 1 and 0 < β < 1. When a(x) and b(x) are both nonnegative, then condition (2.1)
in Theorem 2.1 or condition (2.2) in Theorem 2.2, if valid for either a(x) or b(x), would
imply oscillation of all solutions of (4.5). Little is known if we relax the nonnegativeness
on a(x), b(x), or both. We refer the reader to Sun and Wong [45] for a more detailed
discussion and related open problems.

(iv) Finally, we should also mention higher-order Emden-Fowler equations which are
thoroughly discussed in the seminar book by Kiguradze and Chanturia [27]. Both Theo-
rems 2.1 and 2.2 were generalized to even-order equations by Kiguradze [24] and inde-
pendently by Ličko and Švec [35]. For some recent results on the existence of oscillatory
solutions for higher-order equations, see Ou and Wong [42, 43]. It seems difficult to de-
velop a theory for higher-order equations similar to that described in this paper for the
second-order equations. We believe new analytical and geometric techniques need to be
devised. It suffices to say that this subject is wide open.
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[21] M. Jasný, On the existence of an oscillating solution of the nonlinear differential equation of the
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TRIPLE FIXED-SIGN SOLUTIONS FOR A SYSTEM
OF THIRD-ORDER GENERALIZED RIGHT FOCAL
BOUNDARY VALUE PROBLEMS

PATRICIA J. Y. WONG

We consider the following system of third-order differential equations u′′′i (t)= fi(t,u1(t),
u2(t), . . . ,un(t)), t ∈ [a,b], 1≤ i≤ n, together with generalized right focal boundary con-
ditions ui(a) = u′i (t∗) = 0, ξui(b) + δu′′i (b) = 0, 1 ≤ i ≤ n, where (1/2)(a + b) < t∗ < b,
ξ ≥ 0, and δ > 0. By using Leggett-Williams’ fixed point theorem, we establish the exis-
tence of three solutions of the system which are of fixed signs on the interval [a,b].

Copyright © 2006 Patricia J. Y. Wong. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper we will consider a system of third-order differential equations subject to
generalized right focal boundary conditions. To be precise, our system is

u′′′i (t)= fi
(
t,u1(t),u2(t), . . . ,un(t)

)
, t ∈ [a,b],

ui(a)= u′i
(
t∗
)= 0, ξui(b) + δu′′i (b)= 0,

i= 1,2, . . . ,n,

(F)

where t∗, ξ, δ are fixed with

1
2

(a+ b) < t∗ < b, ξ ≥ 0, δ > 0,

η ≡ 2δ + ξ(b− a)
(
b+ a− 2t∗

)
> 0.

(1.1)

A solution u = (u1,u2, . . . ,un) of (F) will be sought in (C[a,b])n = C[a,b]×C[a,b]×
···×C[a,b] (n times). We say that u is a solution of fixed sign if for each 1 ≤ i ≤ n, we
have θiui(t)≥ 0 for t ∈ [a,b], where θi ∈ {1,−1} is fixed. In particular, our definition of
fixed-sign solution includes positive solutions, the usual consideration in the literature.

Hindawi Publishing Corporation
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Existence of positive solutions to the two-point right focal boundary value problem

(−1)3−k y′′′(t)= f
(
t, y(t)

)
, t ∈ [0,1];

y( j)(0)= 0, 0≤ j ≤ k− 1; y( j)(1)= 0, k ≤ j ≤ 2,
(1.2)

where k ∈ {1,2}, has been well discussed in the literature [1, 2]. The related discrete prob-
lem can be found in [7, 8, 11]. Work on a three-point right focal problem, a special case
of (F) when n = 1, δ = 1, ξ = 0, is available in [3, 5]. Recently, Anderson [4] considered
(F) when n= 1 and developed Green’s function for the boundary value problem. In our
present work, we generalize the problem considered in [4] to a system of boundary value
problems, with very general nonlinear terms fi; this yields a much more appropriate and
robust model for many nonlinear phenomena. We will establish the existence of three
fixed-sign solutions using Leggett-Williams’ fixed point theorem. Estimates on the norms
of these solutions will also be provided. Related work concerning (F) can be found in
[9, 10].

2. Preliminaries

In this section we will state some necessary definitions and the relevant fixed point theo-
rem. Let B be a Banach space equipped with norm ‖ · ‖.

Definition 2.1. Let C (⊂ B) be a nonempty closed convex set. It is said that C is a cone,
provided that the following conditions are satisfied:

(a) if u∈ C and α≥ 0, then αu∈ C;
(b) if u∈ C and −u∈ C, then u= 0.

Definition 2.2. Let C (⊂ B) be a cone. A map ψ is a nonnegative continuous concave func-
tional on C if the following conditions are satisfied:

(a) ψ : C→ [0,∞) is continuous;
(b) ψ(ty + (1− t)z)≥ tψ(y) + (1− t)ψ(z) for all y,z ∈ C and 0≤ t ≤ 1.

Let ψ be a nonnegative continuous concave functional onC. For nonnegative numbers
w1, w2, the following notations are introduced:

C
(
w1
)= {u∈ C | ‖u‖ < w1

}
,

C
(
ψ,w1,w2

)= {u∈ C | ψ(u)≥w1, ‖u‖ ≤w2
}
.

(2.1)

Theorem 2.3 (Leggett-Williams’ fixed point theorem) [6]. Let C (⊂ B) be a cone, and
let w4 > 0 be given. Assume that ψ is a nonnegative continuous concave functional on C
such that ψ(u) ≤ ‖u‖ for all u ∈ C(w4), and let S : C(w4)→ C(w4) be a continuous and
completely continuous operator. Suppose that there exist numbers w1, w2, w3, where 0 <
w1 < w2 < w3 ≤w4 such that

(a) {u∈ C(ψ,w2,w3) | ψ(u) > w2} �=∅, and ψ(Su) > w2 for all u∈ C(ψ,w2,w3),
(b) ‖Su‖ < w1 for all u∈ C(w1),
(c) ψ(Su) > w2 for all u∈ C(ψ,w2,w4) with ‖Su‖ > w3.
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Then, S has (at least) three fixed points u1, u2, and u3 in C(w4). Furthermore,

u1 ∈ C(w1
)
, u2 ∈ {u∈ C(ψ,w2,w4

) | ψ(u) > w2
}

,

u3 ∈ C(w4
)\(C(ψ,w2,w4

)∪C(w1
))
.

(2.2)

We also require the definition of an Lq-Carathéodory function.

Definition 2.4. A function P : [a,b]×Rn → R is an Lq-Carathéodory function if the fol-
lowing conditions hold.

(a) The map t→ P(t,u) is measurable for all u∈Rn.
(b) The map u→ P(t,u) is continuous for almost all t ∈ [a,b].
(c) For any r > 0, there exists μr ∈ Lq[a,b] such that |u| ≤ r implies that |P(t,u)| ≤

μr(t) for almost all t ∈ [a,b].

3. Main results

Throughout we will denote u = (u1,u2, . . . ,un). Let the Banach space B = (C[a,b])n be
equipped with norm

‖u‖ = max
1≤ i≤ n

sup
t∈[a,b]

∣
∣ui(t)

∣
∣= max

1≤ i≤ n

∣
∣ui
∣
∣

0, (3.1)

where we denote |ui|0 = supt∈[a,b] |ui(t)|, 1≤ i≤ n.
Let g(t,s) be Green’s function of the boundary value problem

y′′′(t)= 0, t ∈ [a,b],

y(a)= y′
(
t∗
)= 0, ξ y(b) + δy′′(b)= 0.

(3.2)

Define the operator S : B→ B by

Su(t)= (S1u(t),S2u(t), . . . ,Snu(t)
)
, t ∈ [a,b], (3.3)

where

Siu(t)=
∫ b

a
g(t,s) fi

(
s,u(s)

)
ds, t ∈ [a,b], 1≤ i≤ n. (3.4)

Clearly, a fixed point of the operator S is a solution of the system (F).
Our first lemma gives the properties of Green’s function g(t,s) which will be used later.
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Lemma 3.1 [4]. It is known that for t,s∈ [a,b],

g(t,s)≥ 0, t,s∈ [a,b]; g(t,s) > 0, t,s∈ (a,b], (3.5)

g(t,s)≤ g(t∗,s
)
, t,s∈ [a,b], (3.6)

for fixed h∈ (0,b− t∗),
g(t,s)≥Mg

(
t∗,s

)
, t ∈ [t∗ −h, t∗ +h], s∈ [a,b],

where M =
(
t∗ − a+h

)(
t∗ − a−h)

(
t∗ − a)2 ∈ (0,1).

(3.7)

For clarity, we will list the conditions that are needed later. Note that in these condi-
tions θi ∈ {1,−1}, 1≤ i≤ n, are fixed,

[0,∞)i =
⎧
⎨

⎩

[0,∞) if θi = 1,

(−∞,0] if θi =−1,

K̃ = {u∈ B | for each 1≤ i≤ n, θiui(t)≥ 0 for t ∈ [a,b]
}

,

K = {u∈ K̃ | for some j ∈ {1,2, . . . ,n}, θjuj(t) > 0 for some t ∈ [a,b]
}
.

(3.8)

(C1) For each 1≤ i≤ n, fi : [a,b]×Rn→R is an L1-Carathéodory function.
(C2) For each 1≤ i≤ n and a.e. t ∈ (a,b),

θi fi(t,u)≥ 0, u∈ K̃ ,

θi fi(t,u) > 0, u∈ K. (3.9)

(C3) There exist continuous functions p, ν, μi, 1≤ i≤ n, with p :
∏n

j=1[0,∞) j → [0,∞)
and ν,μi : (a,b)→ [0,∞) such that for each 1≤ i≤ n,

μi(t)p(u)≤ θi fi(t,u)≤ ν(t)p(u), u∈ K̃ , a.e. t ∈ (a,b). (3.10)

(C4) For each 1≤ i≤ n, there exists a number 0 < ρi ≤ 1 such that

μi(t)≥ ρiν(t) a.e. t ∈ (a,b). (3.11)

Using a standard argument, we have the following lemma.

Lemma 3.2. Let (C1) hold. Then, the operator S defined in (3.3), (3.4) is continuous and
completely continuous.

Let h∈ (0,b− t∗) be fixed. Define a cone C in B as

C =
{
u∈ B | for each 1≤ i≤ n, θiui(t)≥ 0 for t ∈ [a,b],

min
t∈[t∗−h,t∗+h]

θiui(t)≥Mρi
∣
∣ui
∣
∣

0

}
,

(3.12)

where M and ρi are defined in (3.7) and (C4), respectively. Clearly, C ⊆ K̃ .
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Remark 3.3. If (C2) and (C3) hold, then it follows from (3.4) and (3.5) that for u ∈ K̃ ,
t ∈ [a,b] and 1≤ i≤ n,

0≤
∫ b

a
g(t,s)μi(s)p

(
u(s)

)
ds≤ θiSiu(t)≤

∫ b

a
g(t,s)ν(s)p

(
u(s)

)
ds. (3.13)

Lemma 3.4. Let (C1)–(C4) hold. Then, the operator S maps C into C.

Proof. Let u∈ C. From (3.13) we have θiSiu(t)≥ 0 for t ∈ [a,b] and 1≤ i≤ n. Next, using
(3.13) and (3.6) gives for t ∈ [a,b] and 1≤ i≤ n,

∣
∣Siu(t)

∣
∣≤

∫ b

a
g(t,s)ν(s)p

(
u(s)

)
ds≤

∫ b

a
g
(
t∗,s

)
ν(s)p

(
u(s)

)
ds. (3.14)

Hence, we have

∣
∣Siu

∣
∣

0 ≤
∫ b

a
g
(
t∗,s

)
ν(s)p

(
u(s)

)
ds, 1≤ i≤ n, (3.15)

and therefore

‖Su‖ = max
1≤i≤n

∣
∣Siu

∣
∣

0 ≤
∫ b

a
g
(
t∗,s

)
ν(s)p

(
u(s)

)
ds. (3.16)

Now, employing (3.13), (3.7), (C4), and (3.15), we find for t ∈ [t∗ − h, t∗ + h] and
1≤ i≤ n,

θiSiu(t)≥
∫ b

a
Mg

(
t∗,s

)
μi(s)p

(
u(s)

)
ds

≥
∫ b

a
Mg

(
t∗,s

)
ρiν(s)p

(
u(s)

)
ds

≥Mρi
∣
∣Siu

∣
∣

0.

(3.17)

This leads to

min
t∈[t∗−h,t∗+h]

θiSiu(t)≥Mρi
∣
∣Siu

∣
∣

0, 1≤ i≤ n. (3.18)

We have shown that Su∈ C. �

For subsequent results, we define the following constants for each 1≤ i≤ n and fixed
h∈ (0,b− t∗):

q =
∫ b

a
g
(
t∗,s

)
ν(s)ds,

ri = min
t∈[t∗−h,t∗+h]

∫ t∗+h

t∗−h
g
(
t∗,s

)
μi(s)ds.

(3.19)
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Lemma 3.5. Let (C1)–(C4) hold, and assume that
(C5) the function g(t∗,s)ν(s) is nonzero on a subset of [a,b] of positive measure.

Suppose that there exists a number d > 0 such that for |uj| ∈ [0,d], 1≤ j ≤ n,

p
(
u1,u2, . . . ,un

)
<
d

q
. (3.20)

Then,

S
(
C(d)

)⊆ C(d)⊂ C(d). (3.21)

Proof. Let u∈ C(d). Then, |uj| ∈ [0,d], 1≤ j ≤ n. Applying (3.14), (C5), and (3.20), we
find for 1≤ i≤ n and t ∈ [a,b],

∣
∣Siu(t)

∣
∣≤

∫ b

a
g
(
t∗,s

)
ν(s)p

(
u(s)

)
ds

<
∫ b

a
g
(
t∗,s

)
ν(s)

d

q
ds

= qd
q
= d.

(3.22)

This implies |Siu|0 < d, 1 ≤ i ≤ n, and so ‖Su‖ < d. Coupling with the fact that Su ∈ C
(Lemma 3.4), we have Su∈ C(d). The conclusion (3.21) is now immediate. �

The next lemma is similar to Lemma 3.5 and hence we will omit the proof.

Lemma 3.6. Let (C1)–(C4) hold. Suppose that there exists a number d > 0 such that for
|uj| ∈ [0,d], 1≤ j ≤ n,

p
(
u1,u2, . . . ,un

)≤ d

q
. (3.23)

Then,

S
(
C(d)

)⊆ C(d). (3.24)

We are now ready to establish existence criteria for three fixed-sign solutions.

Theorem 3.7. Let h∈ (0,b− t∗) be fixed. Let (C1)–(C5) hold, and assume
(C6) for each 1≤ i≤ n and each t ∈ [t∗ −h, t∗ +h], the function g(t,s)μi(s) is nonzero on

a subset of [t∗ −h, t∗ +h] of positive measure.
Suppose that there exist numbers w1, w2, w3 with

0 < w1 < w2 <
w2

Mmin1≤i≤n ρi
≤w3 (3.25)
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such that the following hold:
(P) p(u1,u2, . . . ,un) < w1/q for |uj| ∈ [0,w1], 1≤ j ≤ n;
(Q) one of the following holds:

(Q1) limsup|u1|,|u2|,...,|un|→∞ p(u1,u2, . . . ,un)/|uj| < 1/q for some j ∈ {1,2, . . . ,n};
(Q2) there exists a number d (≥w3) such that p(u1,u2, . . . ,un)≤ d/q for |uj| ∈ [0,d],

1≤ j ≤ n;
(R) for each 1≤ i≤ n, p(u1,u2, . . . ,un) > w2/ri for |uj| ∈ [w2,w3], 1≤ j ≤ n.

Then, the system (F) has (at least) three fixed-sign solutions u1,u2,u3 ∈ C such that

∥
∥u1

∥
∥ < w1; θiu

2
i (t) > w2, t ∈ [t∗ −h, t∗ +h

]
, 1≤ i≤ n;

∥
∥u3

∥
∥ > w1, min

1≤i≤n
min

t∈[t∗−h,t∗+h]
θiu

3
i (t) < w2.

(3.26)

Proof. We will employ Theorem 2.3. First, we will prove that condition (Q) implies the
existence of a number w4, where w4 ≥w3 such that

S
(
C
(
w4
))⊆ C(w4

)
. (3.27)

Suppose that (Q2) holds. Then, by Lemma 3.6 we immediately have (3.27) where we pick
w4 = d. Suppose now that (Q1) is satisfied. Then, there exist N > 0 and ε < 1/q such that

p
(
u1,u2, . . . ,un

)

∣
∣uj

∣
∣ < ε,

∣
∣u1

∣
∣,
∣
∣u2

∣
∣, . . . ,

∣
∣un

∣
∣ > N. (3.28)

Define

L= max
|um|∈[0,N],1≤m≤n

p
(
u1,u2, . . . ,un

)
. (3.29)

In view of (3.28), it is clear that for some j ∈ {1,2, . . . ,n}, the following holds for all
(u1,u2, . . . ,un)∈Rn,

p
(
u1,u2, . . . ,un

)≤ L+ ε
∣
∣uj

∣
∣. (3.30)

Now, pick the number w4 so that

w4 >max

{

w3,L
(

1
q
− ε

)−1
}

. (3.31)
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Let u∈ C(w4). For t ∈ [a,b] and 1≤ i≤ n, using (3.14), (3.30), and (3.31) gives

∣
∣Siu(t)

∣
∣≤

∫ b

a
g
(
t∗,s

)
ν(s)p

(
u(s)

)
ds

≤
∫ b

a
g
(
t∗,s

)
ν(s)

(
L+ ε

∣
∣uj(s)

∣
∣
)
ds

≤
∫ b

a
g
(
t∗,s

)
ν(s)

(
L+ εw4

)
ds

= q(L+ εw4
)

< q
[

w4

(
1
q
− ε

)

+ εw4

]

=w4.

(3.32)

This leads to |Sui|0 < w4, 1≤ i≤ n. Hence, ‖Su‖ < w4 and so Su∈ C(w4)⊂ C(w4). Thus,
(3.27) follows immediately.

Let ψ : C→ [0,∞) be defined by

ψ(u)= min
1≤i≤n

min
t∈[t∗−h,t∗+h]

θiui(t). (3.33)

Clearly, ψ is a nonnegative continuous concave functional on C and ψ(u) ≤ ‖u‖ for all
u∈ C.

We will verify that condition (a) of Theorem 2.3 is satisfied. In fact, it is obvious that

u(t)=
(
θ1

2

(
w2 +w3

)
, . . . ,

θn
2

(
w2 +w3

)
)

∈ {u∈ C(ψ,w2,w3
) | ψ(u) > w2

}
(3.34)

and so {u∈ C(ψ,w2,w3) | ψ(u) > w2} �=∅. Next, let u∈ C(ψ,w2,w3). Then,w2 ≤ ψ(u)≤
‖u‖ ≤w3 and hence we have

θjuj(s)=
∣
∣uj(s)

∣
∣∈ [w2,w3

]
, s∈ [t∗ −h, t∗ +h

]
, 1≤ j ≤ n. (3.35)

In view of (3.13), (3.35), (C6), (R), (3.7), and (3.19), it follows that

ψ(Su)= min
1≤i≤n

min
t∈[t∗−h,t∗+h]

θi
(
Siu
)
(t)

≥ min
1≤i≤n

min
t∈[t∗−h,t∗+h]

∫ t∗+h

t∗−h
g(t,s)μi(s)p

(
u(s)

)
ds

> min
1≤i≤n

min
t∈[t∗−h,t∗+h]

∫ t∗+h

t∗−h
g(t,s)μi(s)

w2

ri
ds

= min
1≤i≤n

ri
ri
w2 =w2.

(3.36)

Therefore, we have shown that ψ(Su) > w2 for all u∈ C(ψ,w2,w3).
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Next, by Lemma 3.5 and condition (P), we have S(C(w1))⊆ C(w1). Hence, condition
(b) of Theorem 2.3 is fulfilled.

Finally, we will show that condition (c) of Theorem 2.3 holds. Let u ∈ C(ψ,w2,w4)
with ‖Su‖ > w3. Using (3.13), (3.7), (C4), and (3.16), we find

ψ(Su)= min
1≤i≤n

min
t∈[t∗−h,t∗+h]

θi
(
Siu
)
(t)

≥ min
1≤i≤n

min
t∈[t∗−h,t∗+h]

∫ b

a
g(t,s)μi(s)p

(
u(s)

)
ds

≥ min
1≤i≤n

∫ b

a
Mg

(
t∗,s

)
μi(s)p

(
u(s)

)
ds

≥ min
1≤i≤n

∫ b

a
Mg

(
t∗,s

)
ρiν(s)p

(
u(s)

)
ds

≥ min
1≤i≤n

Mρi‖Su‖

> min
1≤i≤n

Mρiw3 ≥w2.

(3.37)

Hence, we have proved that ψ(Su) > w2 for all u∈ C(ψ,w2,w4) with ‖Su‖ > w3.
It now follows from Theorem 2.3 that the system (F) has (at least) three fixed-sign

solutions u1,u2,u3 ∈ C(w4) satisfying (2.2). It is easy to see that here (2.2) reduces to
(3.26). �
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ANALYTIC SOLUTIONS OF UNSTEADY CRYSTALS
AND RAYLEIGH-TAYLOR BUBBLES

XUMING XIE

We study the initial value problem for 2-dimensional dendritic crystal growth with zero
surface tension and classical Rayleigh-Taylor problems. If the initial data is analytic, it
is proved that unique analytic solution exists locally in time. The analysis is based on a
Nirenberg theorem on abstract Cauchy-Kovalevsky problem in properly chosen Banach
spaces.

Copyright © 2006 Xuming Xie. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The phenomenon of dendritic crystal growth is one of the earliest scientific problems,
tackled first by Kepler [4] in 1661 in his work on six-sided snowflake crystals. It has long
been a subject of continued interest to physicists, metallurgists as well as mathematicians.
Dendrite constitutes a good example of pattern selection and stability in nonequilibrium
systems. From mathematical point of view, dendrite formation is a free boundary prob-
lem like the Stefan problem. Many review papers on this subject have appeared in the
literature, for example, Langer [8], Kessler et al. [5], Pelce [13], Levine [9]. For unsteady
dendritical crystal growth, Kunka et al. [6, 7] studied the linear theory of localized dis-
turbances and a class exact zero-surface-tension solutions if the initial conditions include
only poles. They also studied the singular behavior of unsteady dendritical crystal with
surface tension. In those situations, a zero of the conformal map that describes the crystal
gives birth to a daughter singularity that moves away from the zero and approaches the
interface.

The motion of the interface of a heavy fluid resting above a lighter fluid in the presence
of gravity (Rayleigh-Taylor flow) is very basic but important problem. When the fluids
are immiscible, the sharp interface deforms into a pattern containing rising bubbles of
lighter fluid and falling spikes of heavier fluid. Model equations for the location of the
interface have been derived (see Baker et al. [2], Moore [10], Sharp [16], and references
therein). These studies are numerical and asymptotic, but important to furthering phys-
ical understanding of the flow dynamics. Numerical calculation ran into the traditional

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1149–1157
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difficulties associated with singularity formation.There have been a lot of literature with
regard to singularity formation of Rayleigh-Taylor instabilities. Numerical evidence for
singularity was performed by Pugh [14] for Boussinesq limit and by Siegel [17]. Inspired
by studies of the evolution of vortex sheets in homogeneous fluid, Baker et al. [1] de-
veloped a simple approximation for Rayleigh-Taylor flow as a generalization of Moore’s
approximation for Kevin-Helmholtz instability. Tanveer [19] explored the dynamics of
singularity formation in the classical Rayleigh-Taylor problem without resort to any lo-
calized approximation. Under some assumptions, Tanveer showed that the only possible
singularity is of a “fold” type, that is, one-half, one-third, or one-fourth singularity, and
so.

In this paper, we are going to establish existence results of analytical solution to the
dendrite crystal growing problem with no surface tension and Rayleigh-Taylor problem.
Our approach is to apply the following Nirenberg’s theorem [11] on an abstract evolu-
tionary equation in certain appropriately chosen Banach spaces.

Theorem 1.1 (Nirenberg). Let {Bs}0<s≤1 be a scale of Banach spaces satisfying that Bs ⊂
Bs′ , ‖ · ‖s′ ≤ ‖ · ‖s for any 0 < s′ < s. Consider the abstract Cauchy-Kovalevsky problem

du

dt
=�

(
u(t), t

)
, u(0)= 0. (1.1)

Assume the following conditions on �:
(i) for some constants M > 0, δ > 0 and every pair of numbers s, s′ such that 0≤ s′ < s <

1, (u, t)→�(u, t) is a continuous mapping of

{
u∈ Bs : ‖u‖s < M

}× {t; |t| < δ} into Bs′ ; (1.2)

(ii) for any s′ < s < 1 and all u,v ∈ Bs with ‖u‖s < M, ‖v‖s < M and for any t, |t| < δ, �
satisfies

∥
∥�(u, t)−�(v, t)

∥
∥
s′ ≤ C

‖u− v‖s
s− s′ , (1.3)

where C is some positive constant independent of t, u, v, s, s′;
(iii) �(0, t) is a continuous function of t, |t| < δ with values in Bs for every s < 1 and

satisfies, with some positive constant K ,

∥
∥�(0, t)

∥
∥
s ≤

K

(1− s) . (1.4)

Under the preceding assumptions there is a positive constant a0 such that there exists a unique
function u(t) which, for every 0 < s < 1 and |t| < a0(1− s), is a continuously differentiable
function of t with values in Bs, ‖u‖s < M, and satisfies (1.1).

It is to be noted that Nirenberg’s theorem has been successfully applied to other prob-
lems such as Hele-Shaw flow [15] and vortex sheet problem [3].
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2. Unsteady crystal with zero surface tension

Following [6], the unsteady crystal problem with zero surface tension is to find function
F(ξ, t) analytic in the upper-half plane Imξ > 0 such that F(ξ, t) satisfies (2.1) and (2.4):

Ft + i= (− iξ + 1 +Fξ
)[
H[F](ξ, t) +R[F](ξ, t)

]
for real ξ, (2.1)

where

H[F](ξ, t)= 1
π

(P)
∫∞

−∞
R[F](ξ′, t)

(ξ′ − ξ)
dξ′, (2.2)

R[F](ξ, t)= 1
∣
∣− iξ + 1 +Fξ(ξ, t)

∣
∣2 . (2.3)

The initial condition is

F(ξ,0)= F0(ξ), (2.4)

where the initial data F0(ξ) is a function which is analytic in the upper-half plane Imξ > 0.

Definition 2.1. Let �s be the open region on complex ξ plane above line rl defined as
follows:

rl =
{

ξ : ξ =−1 + s
4

i+ re−i(ϕ0+s)/4
}

∪
{

ξ : ξ =−1 + s
4

i+ rei[π+(ϕ0+s)/4]
}

, (2.5)

where 0 < s≤ 1, 0 < ϕ0 < π/8.

Remark 2.2. In the above definition, φ0 is fixed, and s can vary. For s > 0, the upper-half
plane Imξ > 0 is a proper angular subset of �s. For 0≤ s′ < s≤ 1, �s′ is a proper angular
subset of �s and dist(∂�s′ ,∂�s)≥ C(s− s′).

We introduce spaces of functions.

Definition 2.3. For k = 0,1,2, define

Bs,k =
{

F : F(ξ) analytic in �s and continuous in �s,with sup
ξ∈�

∣
∣(ξ + 2i)−kF(ξ)

∣
∣ <∞

}

,

‖F‖s,k := sup
ξ∈�s

∣
∣(ξ + 2i)−kF(ξ)

∣
∣.

(2.6)

Remark 2.4. Bs,k are Banach spaces and Bs,k ⊂ Bs′,k for 0 < s′ ≤ s ≤ 1. Furthermore, the
norm of the canonical embedding operator Is→s′ ≤ 1.

Remark 2.5. If F ∈ Bs,k, then F satisfies the property

F(ξ)∼O(ξk) as |ξ| −→∞, ξ ∈�s. (2.7)

Definition 2.6. Let � be any connected set in the complex ξ plane; introduce norms:
‖F‖k,� := supξ∈� |(ξ + 2i)−kF(ξ)|, k = 0,1,2.
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Definition 2.7. Define

F̄(ξ)= [F(ξ∗)]∗, (2.8)

where ∗ denotes the complex conjugate.

Remark 2.8. If F is analytic in domain � containing real axis, then F̄ is analytic in �∗

and F̄(ξ)= F∗(ξ) for ξ real, and �∗ denotes the conjugate domain obtained by reflecting
� about the real axis. Furthermore, ‖F̄‖k,�∗ ≤ ‖F‖k,�.

Definition 2.9. Let �0 be the open region on complex ξ plane above line r0 defined as
follows:

r0 =
{

ξ : ξ =−1
8
i+ re−i(ϕ0/8)

}

∪
{

ξ : ξ =−1
8
i+ rei[π+(ϕ0/8)]

}

, (2.9)

where 0 < ϕ0 < π/8 is the same as in Definition 2.1.

Remark 2.10. The upper-half plane Im ξ > 0 is a proper angular subset of �0 and �0 is a
proper angular subset of �s for any s > 0.

Some properties of the Banach space Bs,k are given in the following lemma.

Lemma 2.11. If F ∈ Bs,k, s > 0, then ‖Fξ‖k−1,�0 ≤ K1‖F‖0,k, where K1 > 0 is a constant
independent of s and F.

Let K2 =min�1 |− iξ + 1||(ξ + 2i)−(k−1)|, K3 =min�1 |iξ + 1||(ξ + 2i)−(k−1)|, define

M =min
{
K3

2K1
,
K3

2K1

}

. (2.10)

The following lemma is essential to application of Nirenberg’s theorem.

Lemma 2.12. If F ∈ Bs,k, 0 < s′ < s≤ 1, then Fξ ∈ Bs′,k−1 and

∥
∥Fξ
∥
∥
s′,k−1 ≤

K4

s− s′ ‖F‖s,k, (2.11)

where K4 is independent of s,s′, and F.

We are going to prove the following theorem.

Theorem 2.13. If the initial data F0(ξ)∈ B1,2 and ‖F0‖1,2 ≤M/2, then there exists one and
only one solution: F(ξ, t) ∈ C1([0,T],Bs,k), ‖F‖s,k ≤M, to the unsteady crystal problem,
where T is a suitable positive constant.

The proof of the above theorem will be based on Nirenberg’s theorem [11, 12].
Equation (2.1) can be written as

Ft = L(F, t)≡ (− iξ + 1 +Fξ
)[
H[F](ξ, t) +R[F](ξ, t)

]− i for real ξ. (2.12)
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Using Plemej formula, we analytically extend (2.12) to region �s. We can extend L(F, t)
in upper-half plane as

L(F, t)≡ (− iξ + 1 +Fξ
)
H+[F](ξ, t)− i, Imξ > 0, (2.13)

and L(F, t) in lower-half plane is

L(F, t)≡ (− iξ + 1 +Fξ
)[
H−[F](ξ, t) + 2R(ξ, t)

]− i
= (− iξ + 1 +Fξ

)
H−(ξ, t) + 2R1[F](ξ, t)− i, ξ ∈�s∩{Imξ < 0},

(2.14)

where

R1[F](ξ, t)= 1
iξ + 1 + F̄ξ

. (2.15)

The following lemma can be proved.

Lemma 2.14. Let u ∈ Bs,2,v ∈ Bs,2, then for 0 < s′ < s ≤ 1, ‖L(u, t) − L(v, t)‖s′,2 ≤
C‖u− v‖s,2/(s− s′), where C is a positive constant independent of s,s′.

Proof of Theorem 2.13. For F0(ξ) ∈ B1,2, ‖F0‖1,2 ≤M/2, 0 < s′ < 1, applying Lemma 2.14
with u= F0, s= 1, v = 0, we have

∥
∥L
(
F0, t

)∥
∥
s′,2 ≤

C
∥
∥F0

∥
∥

1,2

1− s′ . (2.16)

Let f (ξ, t)= F(ξ, t)−F0(ξ), then f (ξ, t) satisfies the initial value problem

ft =�( f , t)≡ L( f +F0, t
)
,

f (ξ,0)= 0.
(2.17)

Since �(0, t)= L(F0, t), (1.4) holds due to (2.16). For u∈ Bs,2, ‖u‖s,2 ≤M/2, 0 < s′ < s≤ 1,
using Lemma 2.14 with v = 0, we have �(u, t)≡ L(u+F0, t)∈ Bs′,2; hence assumption (i)
of Nirenberg’s theorem holds. Equation (1.3) follows from Lemma 2.14. Therefore the
main theorem follows from Nirenberg’s theorem. �

3. The classical Rayleigh-Taylor flow

We are going to use the same formulation of the classical Rayleigh-Taylor flow as in [18,
19]. The unsteady classical Rayleigh-Taylor problem is equivalent to finding (g,h) which
is analytic in |ξ| < 1 and satisfies in |ξ| < 1:

ht = ξhξI−1 [ f ,g]− ξh(I−1 [g,h]
)
ξ , (3.1)

gt = ξgξI−1 [g,h] + 1−h− ξh(I−2 [g]
)
ξ , (3.2)
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where I−1 and I−2 defined in |ξ| < 1 can be written as

I−1 [g,h](ξ, t)= 1
4πi

∫

|ξ′|=1

dξ′

ξ′

[
ξ + ξ′

ξ′ − ξ
]
[
ḡ(ξ′, t)h(ξ′, t) + g(ξ′, t)h̄(ξ′, t)

]
, (3.3)

I−2 [g](ξ, t)= 1
4πi

∫

|ξ′|=1

dξ′

ξ′

[
ξ + ξ′

ξ′ − ξ
]
[
g(ξ′, t)ḡ(ξ′, t)

]
, (3.4)

and the initial conditions are

h|t=0 = h0(ξ), g|t=0 = g0(ξ). (3.5)

The analytic continuation of (3.1) and (3.2) to |ξ| > 1 is

gt =
(
R3[g,h] +R2[h]g

)
gξ + ξgh

(
R1[g]

)
ξ −
(
1 + ξ

(
I+

2

)
ξ

)
h+ 1, (3.6)

ht =
(
R3[g,h] +R2[h]g

)
hξ −R2[h]hgξ +

R3[g,h]
ξ

h− R3[g,h]
ξ

h2

− ξR4[g,h]h2− ξ
(
R2[h]
ξ

)

ξ
gh− (R3[g,h]

)
ξh+

(
R3[g,h]

)
ξh

2,

(3.7)

where

R1[g](ξ, t)=−ḡ(ξ, t), (3.8)

R2[h](ξ, t)= ξh̄(ξ, t), (3.9)

R3[g,h](ξ, t)= ξI+
1 [g,h](ξ, t), (3.10)

R4[g,h]= I+
1 [g,h] + ḡ(ξ, t). (3.11)

I+
1 and I+

2 defined in |ξ| > 1 can be written as

I+
1 [g,h](ξ, t)= 1

4πi

∫

|ξ′|=1

dξ′

ξ′

[
ξ + ξ′

ξ′ − ξ
]
[
ḡ(ξ′, t)h(ξ′, t) + g(ξ′, t)h̄(ξ′, t)

]
, (3.12)

I+
2 [g](ξ, t)= 1

4πi

∫

|ξ′|=1

dξ′

ξ′

[
ξ + ξ′

ξ′ − ξ
]
[
g(ξ′, t)ḡ(ξ′, t)

]
. (3.13)

Let r > 1 be a fixed number.

Definition 3.1. Let �s be the disk in complex ξ plane with radius s, that is, �s={ξ,|ξ|<s}.
Define function space Bs so that

Bs =
{
f (ξ) : f (ξ) is analytic in �s and continuous on �s

}
(3.14)

with norm ‖ f ‖s = sup�s
| f (ξ)|.
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Remark 3.2. Let r1 be a number such that 1 < r1 < r. Bs are Banach spaces and Bs ⊂ Bs′

for r1 < s′ ≤ s≤ r. Furthermore, the norm of the canonical embedding operator Is→s′ ≤ 1.

We define �s as

�s = Bs×Bs (3.15)

with norm ‖(g,h)‖s = ‖g‖s + ‖h‖s. �s is a Banach space. We assume h0 ∈ Br , g0 ∈ Br .
Let M be a positive number defined by

M = ∥∥g0
∥
∥
r +
∥
∥h0
∥
∥
r . (3.16)

We are going to prove the following theorem.

Theorem 3.3. If g0 ∈ Br , h0 ∈ Br , M is defined as in (3.16), then there exists one and only
one solution (g,h) ∈ C1([0,T],�s), r1 < s < r, ‖(g,h)‖s ≤ 2M to the problem (3.1), (3.2),
and (3.5), where T is a suitable positive constant.

Definition 3.4. Let (g,h)∈�s. The following operators: for |ξ| < 1, L1[g,h] and L2[g,h]
are defined by

L1[g,h](ξ, t)= ξgξI−1 [g,h](ξ, t) + 1−h− ξh(I−2 [g](ξ, t)
)
ξ , (3.17)

L2[g,h](ξ, t)= ξhξI−1 [ f ,g](ξ, t)− ξh(I−1 [g,h](ξ, t)
)
ξ . (3.18)

Analytic continuation of L1[g,h] and L2[g,h] to |ξ| > 1 is

L1[g,h]= (R3 +R2g
)
gξ + ξgh

(
R1
)
ξ −
(

1 + ξ
(
I+

2

)
ξ

)
h+ 1, (3.19)

L2[g,h]= (R3 +R2g
)
hξ −R2hgξ +

R3

ξ
h− R3

ξ
h2− ξR4h

2

− ξ
(
R2

ξ

)

ξ
gh− (R3

)
ξh+

(
R3
)
ξh

2.

(3.20)

Let p = g − g0, q = h− h0, then (g,h) is a solution of initial problem (3.1), (3.2), and
(3.5) if and only if (p,q) solves the following initial problem:

(
pt,qt

)=�(p,q), (p,q)|t=0 = (0,0), (3.21)

where the operator � is defined by

�(p,q)= (L1
[
p+ g0,q+h0

]
,L2
[
p+ g0,q+h0

])
. (3.22)

We can prove the following two lemmas.

Lemma 3.5. If (p,q) ∈�s, (u,v) ∈�s, ‖(p,q)‖s ≤M, and ‖(u,v)‖s ≤M, r1 < s′ < s < r,
then

∥
∥�(p,q)−�(u,v)

∥
∥
s′ ≤

C

s− s′
∥
∥(p,q)− (u,v)

∥
∥
s. (3.23)
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Lemma 3.6. If r1 < s′ < r, then ‖�(0,0)‖s′ ≤ K/(r− s′).

Proof of Theorem 3.3. We first apply Nirenberg’s theorem to system (3.21). For (p,q) ∈
�s, by Lemma 3.5 with (u,v)= (0,0), we have (L1[p,q],L2[p,q])∈�s′ ; hence �(p,q)∈
�s′ from (3.22). Since the system (3.21) is autonomous, the continuity of the opera-
tor � is implied by Lemma 3.5; hence (1.2) holds. Equations (1.3) and (1.4) are given
by Lemmas 3.5 and 3.6, respectively. Therefore, there exists unique solution (p,q)∈�s,
‖(p,q)‖s ≤M, so g = p+ g0, h= q+h0 is the unique solution of Rayleigh-Taylor problem
(3.1), (3.2), and (3.5). �
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TWO-WEIGHT INEQUALITIES FOR SOME OPERATORS
APPLIED TO HARMONIC FORMS

YUMING XING

We obtain two-weight integral inequalities for the composition T ◦G, where T is the
homotopy operator and G is Green’s operator applied to A-harmonic forms.

Copyright © 2006 Yuming Xing. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and statement of results

The aim of this paper is to prove different versions of two-weight embedding inequali-
ties for the composition of homotopy operator T and Green’s operator G applied to the
A-harmonic forms on manifolds and establish two-weight norm estimates for the com-
position T ◦G. Our main results are presented in the following Theorems 1.1 and 1.2,
respectively.

Theorem 1.1. Let u ∈ Lploc(ΛlM,wα), l = 1, . . . ,n, 1 < p <∞, be an A-harmonic form on
a manifold M. If ρ > 1 and (w1(x),w2(x)) ∈ Ar,λ(M) for some λ ≥ 1 and 1 < r <∞, then
there exists a constant C, independent of u, such that

∥
∥T
(
G(u)

)∥
∥
p,B,wα

1
≤ C|B|diam(B)‖u‖p,ρB,wα

2
, (1.1)

∥
∥T
(
G(u)

)∥
∥
W1,p(B),wα

1
≤ C|B|‖u‖p,ρB,wα

2
(1.2)

for all balls B with ρB ⊂M and any real number α with 0 < α < λ.

Theorem 1.2. Let M be a compact, oriented, C∞ smooth, Riemannian manifold without
boundary and let u ∈ Lp(ΛlM,wα), l = 1,2, . . . ,n, 1 < p <∞, be an A-harmonic form on
M. Assume that (w1(x),w2(x))∈ Ar,λ(M) for some λ≥ 1 and 1 < r <∞. Then there exists
a constant C, independent of u, such that

∥
∥T
(
G(u)

)∥
∥
p,M,wα

1
≤ C|M|diam(M)‖u‖p,M,wα

2
, (1.3)

∥
∥T
(
G(u)

)∥
∥
W1,p(M),wα

1
≤ C|M|‖u‖p,M,wα

2
(1.4)

for any real number α with 0 < α < λ.

Hindawi Publishing Corporation
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2. Some preliminary results

We always assume that M is a Riemannian, compact, oriented, and C∞ smooth mani-
fold without boundary on Rn and B is a ball or a cube. σB, σ > 0, is the ball with the
same center as B and with diam(σB) = σ diam(B). The Hodge star operator �: Λ→ Λ
is defined by the rule �1 = e1 ∧ e2 ∧ ··· ∧ en and α∧�β = β ∧�α = 〈α,β〉(�1) for
all α,β ∈ Λ. We denote the exterior derivative by d : D′(M,Λl)→ D′(M,Λl+1) for l =
0,1, . . . ,n− 1. The Hodge codifferential operator d� :D′(M,Λl+1)→D′(M,Λl) is defined
by d� = (−1)nl+1 � d�, l = 0,1, . . . ,n− 1. We always use G to denote Green’s opera-
tor and T to denote homotopy operator in this paper, and see definitions and more
properties of them in [1, 7]. Let ΛlM be the lth exterior power of the cotangent bun-
dle and let C∞(ΛlM) be the space of smooth l-forms on M. We use D′(M,Λl) to de-
note the space of all differential l-forms and Lp(ΛlM,wα) to denote the l-forms ω(x) =
∑

I ωI(x)dxI =
∑
ωi1i2···il(x)dxi1 ∧ dxi2 ∧ ··· ∧ dxil on M satisfying

∫
M |ωI |pwα <∞ for

all ordered l-tuples I , where w is a weight. In this way, Lp(ΛlM,wα) becomes a Banach
space with norm ‖ω‖p,M,wα = (

∫
M |ω(x)|pwαdx)1/p = (

∫
M(
∑

I |ωI(x)|2)p/2wαdx)1/p, where
α is a real number. W1,p(M,Λl) is used to denote the space of all differential l-forms on

M whose coefficients are in W1,p(M,R). The notations W
1,p
loc (M,R) and W

1,p
loc (M,Λl) are

self-explanatory. For 0 < p <∞ and a weightw(x), the weighted norm ofω ∈W1,p(M,Λl,
wα) over M is denoted by

‖ω‖W1,p(M),wα = diam(M)−1‖ω‖p,M,wα +‖∇ω‖p,M,wα , (2.1)

where α is a real number. Also, for ω ∈ D′(M,Λl), the vector-valued differential form
∇ω = (∂ω/∂x1, . . . ,∂ω/∂xn) consists of differential forms ∂ω/∂xi ∈ D′(M,Λl), where the
partial differentiation is applied to the coefficients ofω. Some new results about harmonic
forms have been established in the study of the A-harmonic equation

d�A(x,dω)= 0 (2.2)

for differential forms, where A :M×Λl(Rn)→Λl(Rn) satisfies the following conditions:

∣
∣A(x,ξ)

∣
∣≤ a|ξ|p−1,

〈
A(x,ξ),ξ

〉≥ |ξ|p
(2.3)

for almost every x ∈M and all ξ ∈ Λl(Rn). Here a > 0 is a constant and 1 < p <∞ is
a fixed exponent associated with (2.2). The solutions of the A-harmonic equation are
called A-harmonic tensors. The following definition of Ar,λ (E)-weights appears in [5],
and see [2] for more applications of the two-weight.

Definition 2.1. A pair of weights (w1(x),w2(x)) satisfies the Ar,λ(E)-condition in a set
E ⊂Rn, write (w1(x),w2(x))∈Ar,λ(E), for some λ≥ 1 and 1 < r <∞with 1/r + 1/r′ = 1 if

sup
B⊂E

(
1
|B|

∫

B

(
w1
)λ
dx
)1/λr

(
1
|B|

∫

B

(
1
w2

)λr′/r
dx

)1/λr′

<∞. (2.4)
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Lemma 2.2. Let 0 < α <∞, 0 < β <∞, and s−1 = α−1 + β−1. If f and g are measurable
functions on Rn, then for any E ⊂Rn,

‖ f g‖s,E ≤ ‖ f ‖α,E · ‖g‖β,E. (2.5)

The following weak reverse Hölder inequality appears in [6].

Lemma 2.3. Let u be an A-harmonic tensor in M, ρ > 1, and 0 < s, t <∞. Then for all balls
or cubes B with ρB ⊂M, there exists a constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,ρB. (2.6)

From [8], we have the following Lp-estimates for the composition T ◦G acted on dif-
ferential forms.

Lemma 2.4. Let u∈ Lploc(ΛlM), l = 1,2, . . . ,n, 1 < p <∞, be a smooth differential form on a
manifold M. Then for all balls B ⊂Rn, there exists a constant C, independent of u, such that

∥
∥T
(
G(u)

)∥
∥
p,B ≤ C|B|diam(B)‖u‖p,B, (2.7)

∥
∥∇(T(G(u)

))∥
∥
p,B ≤ C|B|‖u‖p,B, (2.8)

∥
∥T
(
G(u)

)∥
∥
W1,p(B) ≤ C|B|‖u‖p,B. (2.9)

3. Proofs of the main results

In this section, we prove both the local and global two-weight embedding inequalities for
the composition T ◦G.

Proof of Theorem 1.1. Firstly, we prove inequality (1.1). Let t = λp/(λ− α), then p < t.
Using Lemma 2.2 and inequality (2.7), we obtain

(∫

B

∣
∣T
(
G(u)

)∣
∣pwα

1dx
)1/p

≤
(∫

B

∣
∣T
(
G(u)

)∣
∣tdx

)1/t(∫

B

(
w
α/p
1

)pt/(t−p)
dx
)(t−p)/(pt)

≤ ∥∥T(G(u)
)∥
∥
t,B ·

(∫

B
wλ

1dx
)α/(λp)

≤ C1|B|diam(B)‖u‖t,B
(∫

B
wλ

1dx
)α/(λp)

.

(3.1)

Choosing m = λp/(λ+ α(r − 1)), then m < p < t. From Lemma 2.3 and inequality (3.1),
we have

∥
∥T
(
G(u)

)∥
∥
p,B,wα

1
≤ C1|B|diam(B)‖u‖t,B

(∫

B
wλ

1dx
)α/(λp)

≤ C2|B|diam(B)|B|(m−t)/mt‖u‖m,ρ1B

(∫

B
wλ

1dx
)α/(λp)

,

(3.2)
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where ρ1 > 1. Applying Lemma 2.2 with 1/m= 1/p+ (p−m)/pm yields

‖u‖m,ρ1B ≤
(∫

ρ1B
|u|pwα

2dx
)1/p(∫

ρ1B

(
1
w2

)αm/(p−m)

dx
)(p−m)/(pm)

= ‖u‖p,ρ1B,wα
2

(∫

ρ1B

(
1
w2

)λ/(r−1)

dx
)α(r−1)/(λp)

(3.3)

for all balls B with ρ1B ⊂M. Combining (3.3) and (3.2), we find that

∥
∥T
(
G(u)

)∥
∥
p,B,wα

1
≤ C2|B|diam(B)|B|(m−t)/mt‖u‖p,ρ1B,wα

2

×
(∫

B
wλ

1dx
)α/(λp)(∫

ρ1B

(
1
w2

)λ/(r−1)

dx
)α(r−1)/(λp)

.
(3.4)

Since (w1(x),w2(x))∈Ar,λ(M), it follows that

∥
∥wλ

1

∥
∥α/(pλ)

1,B

∥
∥
∥
∥

(
1
w2

)λ∥∥
∥
∥

α/(pλ)

1/(r−1),ρ1B

≤
((∫

ρ1B
wλ

1dx
)(∫

ρ1B

(
1
w2

)λ/(r−1)

dx
)r−1

)α/(λp)

=
(
∣
∣ρ1B

∣
∣r
(

1
∣
∣ρ1B

∣
∣

∫

ρ1B
wλ

1dx
)(

1
∣
∣ρ1B

∣
∣

∫

ρ1B

(
1
w2

)λ/(r−1)

dx
)r−1

)α/(λp)

≤ C3|B|αr/(λp).

(3.5)

Substituting (3.5) into (3.4) with (m− t)/mt =−αr/λp, we arrive at the estimate

∥
∥T
(
G(u)

)∥
∥
p,B,wα

1
≤ C4|B|diam(B)‖u‖p,ρ1B,wα

2
(3.6)

for all balls B with ρ1B ⊂M and any real number α with 0 < α < λ.
Secondly, based on inequality (2.8), we can get the following inequality (3.7) by the

method similar to the proof of inequality (1.1):

∥
∥∇(T(G(u)

))∥
∥
p,B,wα

1
≤ C5|B|‖u‖p,ρ2B,wα

2
. (3.7)

Now, let us show inequality (1.2). Combining inequalities (2.1), (1.1), and (3.7) yields

∥
∥T
(
G(u)

)∥
∥
W1,p(B),wα

1
= diam(B)−1

∥
∥T
(
G(u)

)∥
∥
p,B,wα

1
+
∥
∥∇(T(G(u)

))∥
∥
p,B,wα

1

≤ diam(B)−1C4 diam(B)|B|‖u‖p,ρ1B,wα
2

+C5|B|‖u‖p,ρ2B,wα
2

≤ C6|B|‖u‖p,ρB,wα
2

(3.8)

with ρ=max{ρ1,ρ2}. This ends the proof of Theorem 1.1. �

Based on the above results, we can prove the global cases now.
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Proof of Theorem 1.2. Since the manifold M is compact, then M is bounded and has a
finite open cover � = {B1,B2, . . . ,Bn}. Let di = diam(Bi), i = 1,2, . . . ,n, and d =min{d1,
d2, . . . ,dn}. Thus there exists a constant C1 satisfies

1
d
≤ C1

diam(M)
. (3.9)

Applying inequality (1.1) and (3.9), we conclude that

(∫

M

∣
∣T
(
G(u)

)∣
∣pwα

1dx
)1/p

≤
∑

B∈�

(∫

B

∣
∣T
(
G(u)

)∣
∣pwα

1dx
)1/p

≤
∑

B∈�

C2|B|diam(B)
(∫

ρB
|u|pwα

2dx
)1/p

≤
∑

B∈�

C2|M|diam(M)
(∫

M
|u|pwα

2dx
)1/p

≤ C3|M|diam(M)
(∫

M
|u|pwα

2dx
)1/p

.

(3.10)

Hence (1.3) follows. We can prove inequality (1.4) by the similar method used in the
proof of inequality (1.2), and we do not list the details here. The proof of Theorem 1.2 is
complete. �

4. Some other two-weight inequalities

From [4, 3], we have the following definitions and properties of these two weights.

Definition 4.1. A pair of weights (w1(x),w2(x)) satisfiesAr(λ,E)-condition in a set E ⊂Rn

for some r > 1 and λ > 0, write (w1(x),w2(x)) ∈ Ar(λ,E), if w1(x),w2(x) > 0 a.e., and
satisfies

sup
B⊂E

(
1
|B|

∫

B
wλ

1dx
)(

1
|B|

∫

B

(
1
w2

)1/(r−1)

dx

)r−1

<∞. (4.1)

Definition 4.2. A pair of weights (w1(x),w2(x)) satisfies Aλr (E)-condition in a set E ⊂
Rn for some r > 1 and λ > 0, write (w1(x),w2(x)) ∈ Aλr (E), if w1(x),w2(x) > 0 a.e., and
satisfies

sup
B⊂E

(
1
|B|

∫

B
w1dx

)(
1
|B|

∫

B

(
1
w2

)1/(r−1)

dx

)λ(r−1)

<∞. (4.2)

Note that if we set w1(x)= w2(x)= w(x) and λ= 1 in the above definitions, they be-
come the famous Muckenhoupt weights. Then, we can obtain the following local two-
weight embedding inequalities by the method used in the proof of Theorem 1.1.
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Theorem 4.3. Let u∈ Lploc(ΛlM,wα), l = 1, . . . ,n, 1 < p <∞, be an A-harmonic tensor on
a manifold M. If ρ > 1 and (w1(x),w2(x))∈ Ar(λ,M) for some λ > 0 and 1 < r, then there
exists a constant C, independent of u, such that

∥
∥T
(
G(u)

)∥
∥
p,B,wα

1
≤ C|B|diam(B)‖u‖p,ρB,wα/λ

2
,

∥
∥T
(
G(u)

)∥
∥
W1,p(B),wα

1
≤ C|B|‖u‖p,ρB,wα/λ

2

(4.3)

for all balls B with ρB ⊂M and any real number α with 0 < α < λ.

Theorem 4.4. Let u∈ Lploc(ΛlM,wα), l = 1, . . . ,n, be an A-harmonic tensor on a manifold
M. Assume that (w1(x),w2(x))∈ Aλr (M) for some r > 1 and λ > 0. If 0 < α < 1, ρ > 1, and
p > αλ(r− 1) + 1, then there exists a constant C, independent of u, such that

∥
∥T
(
G(u)

)∥
∥
p,B,wα

1
≤ C|B|diam(B)‖u‖p,ρB,wαλ

2
,

∥
∥T
(
G(u)

)∥
∥
W1,p(B),wα

1
≤ C|B|‖u‖p,ρB,wαλ

2

(4.4)

for all balls B with ρB ⊂M.

We also can extend the above local Lp-estimates to the global cases, and the proofs are
similar to the proof of Theorem 1.2. Considering the length of this paper, we just list the
global results according to the two weights here.

Theorem 4.5. Let u∈ Lp(ΛlM,wα), l = 1,2, . . . ,n, 1 < p <∞, be an A-harmonic form on
M. Assume that (w1(x),w2(x)) ∈ Ar(λ,M) for some λ > 0 and 1 < r. Then there exists a
constant C, independent of u, such that

∥
∥T
(
G(u)

)∥
∥
p,M,wα

1
≤ C|M|diam(M)‖u‖p,M,wα/λ

2
,

∥
∥T
(
G(u)

)∥
∥
W1,p(M),wα

1
≤ C|M|‖u‖p,M,wα/λ

2

(4.5)

for any real number α with 0 < α < λ.

Theorem 4.6. Let u∈ Lp(ΛlM,wα), l = 1,2, . . . ,n, be an A-harmonic form on M. Assume
that (w1(x),w2(x))∈ Aλr (M) for some λ > 0, r > 1, and p > αλ(r− 1) + 1. Then there exists
a constant C, independent of u, such that

∥
∥T
(
G(u)

)∥
∥
p,M,wα

1
≤ C|M|diam(M)‖u‖p,M,wαλ

2
,

∥
∥T
(
G(u)

)∥
∥
W1,p(M),wα

1
≤ C|M|‖u‖p,M,wαλ

2

(4.6)

for any real number α with 0 < α < 1.

Remark 4.7. (1) We can obtain many interesting versions of local and global Lp-estimates
from different choices of weights and parameters α and λ. (2) These results can be used
to study the integral properties of the compositions of the operators.
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UNBOUNDEDNESS OF SOLUTIONS OF PLANAR
HAMILTONIAN SYSTEMS

XIAOJING YANG

The unboundedness of solutions for the following planar Hamiltonian system: Ju′ =
∇H(u) +h(t) is discussed, where the function H(u)∈ C3(R2,R) a.e. in R2, is positive for
u �= 0 and positively homogeneous of degree 2, h ∈ L1[0,2π]× L1[0,2π] is 2π-periodic,
and J is the standard symplectic matrix.

Copyright © 2006 Xiaojing Yang. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

We are interested in this paper in the unboundedness of solutions of the planar Hamil-
tonian system

Ju′ = ∇H(u) +h(t),
(
′ = d

dt

)

, (1.1)

where H(u) ∈ C3(R2,R) a.e. in R2 is positive for u �= 0, and positively homogeneous of
degree 2, that is, for every u∈R2, λ > 0,

H(λu)= λ2H(u),

min
‖u‖=1

H(u) > 0,
(1.2)

h∈ L1[0,2π]×L1[0,2π] is 2π-periodic, and J = ( 0 −1
1 0 ) is the standard symplectic matrix.

Under the above conditions, it is easy to see that the origin is an isochronous center
for the autonomous system

Ju′ = ∇H(u), (1.3)

that is, all solutions of (1.3) are periodic with the same minimal period, which will be
denoted as τ.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1167–1176



1168 Unboundedness of solutions of planar Hamiltonian systems

Throughout this paper, we denote by 〈a,b〉 the scale product of the vectors a, b. The
boundedness problem of solutions of second-order differential equations has been dis-
cussed by many authors, for example, the linear equation

x′′ +n2x = cosnt, n∈N, (1.4)

has no bounded solution. The next example is due to Ding [3], he showed that the equa-
tion

x′′ +n2x+ arctanx = 4cosnt, n∈N, (1.5)

has no 2π-periodic solution. Therefore, by Massera’s theorem [12], we know that all the
solutions of the above equation are unbounded.

In 1996, Ortega [15] considered the equation

x′′ +αx+−βx− = 1 + εh(t), α�= β, (1.6)

where α, β are positive constants and h is a smooth 2π-periodic function. He proved that
if |ε| is sufficiently small, then all the solutions of (1.6) are bounded. This result is in
contrast with the well-known fact of linear resonance that occurs in the case α= β = n2

for some n∈N. For example, all the solutions of

x′′ +n2x = 1 + εcosnt (1.7)

are unbounded if ε�= 0.
Let C(t) be the solution of the following initial value problem:

x′′ + ax+− bx− = 0, x(0)= 0, x′(0)= 1, (1.8)

where

1√
a

+
1√
b
= 2m

n
, m,n∈N. (1.9)

In [10], Liu proved the boundedness of all the solutions of

x′′ + ax+− bx− = h(t) (1.10)

under the condition that h∈ C6(S1), (S1 =: R/2πZ) and the 2π/n-periodic function

Φh(θ)=
∫ 2π

0
h(mt)C(θ +mt)dt (1.11)

has no zero for all θ ∈ S1.
In contrast to Liu’s result, Alonso and Ortega [2] proved that if Φh(θ) has only finite

zeros {θi} and every zero of it is simple, that is, Φ′h(θi)�= 0 if Φh(θi)= 0, then all the so-
lutions of (1.10) with large initial values, that is, |x(t0)|+ |x′(t0)| 
 1, are unbounded.
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Fabry and Mawhin [5] consider the behavior of the solutions of the following more gen-
eral equation:

x′′ + ax+− bx− = f (x) + g(x) +h(t), (1.12)

where a > 0, b > 0, a−1/2 + b−1/2 = 2/n, n∈N, f is bounded, and the limits

lim
x→+∞ f (x)= f (+∞), lim

x→−∞ f (x)= f (−∞) (1.13)

exist, g is bounded and satisfies

lim
|x|→∞

∫ x

0

g(s)ds
x

= 0. (1.14)

Let

φh(θ)= n

π

(
f (+∞)
a

− f (−∞)
b

)

+
1

2π
√
a

∫ 2π

0
h(t)C(θ + t)dt, (1.15)

they showed that any solution x(t) of (1.12) is unbounded if |x(0)| + |x′(0)| 
 1 and
φh(θ) has finite zeros and all of them are simple. But one would ask the following ques-
tion: what will happen if the function φh(θ) has multiple zeros or is a zero function?
In this paper, we will consider the unboundedness of the solutions of (1.1) and give
some sufficient conditions for the unboundedness of all the solutions of (1.1) with large
initial value, that is, those solutions u(t) of (1.1) satisfying u(0) = u0 and ‖u0‖ 
 1.
For more recent results on boundedness and unboundedness of solutions of the form
x′′ + g(x) = f (t) or more general quasilinear differential equations, we refer to [1, 4, 6–
11, 13, 14, 16–21] and the references therein.

Let φ(t) be the solution of (1.3) satisfying

H(φ(t))= 1
2

, ∀t ∈R. (1.16)

The main results of this paper are the following.

Theorem 1.1. Suppose that ω = 2π/τ = n/m∈Q+ for some n,m∈N. Define 2π-periodic
functions λ1, μ1, λ3 as

λ1(θ)= n

m

∫ 2mπ

0

〈

h(t),φ
(
mθ

n
+ t
)�

dt,

μ1(θ)=−
∫ 2mπ

0

〈

h(t),φ′′
(
mθ

n
+ t
)�∫ t

0

〈

h(s),φ
(
mθ

n
+ s
)�

dsdt,

λ3(θ)= α(θ)− n

2m

∫ 2mπ

0

〈

h(t),φ′′
(
mθ

n
+ t
)�(∫ t

0

〈

h(s),φ
(
mθ

n
+ s
)�

ds
)2

dt,

(1.17)

where

α(θ)= λ1(θ)
[(
λ′1(θ)

)2−μ1(θ)
]
. (1.18)
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Then any solution of (1.1) with large initial value goes to infinity either in the future or
in the past, provided that one of the following conditions holds.

(I) The function λ1(θ) has only finite zeros in S1 =:R/2πZ. Let

Ω=Ω1∪Ω2 ⊂ S1 (1.19)

be the set of zeros of λ1(θ), where

Ω1 =
{
θi : λ1

(
θi
)= 0, λ′1

(
θi
)�= 0

}
,

Ω2 =
{
θj : λ1

(
θj
)= 0, λ′1

(
θj
)= 0

}
,

(1.20)

and for each θj ∈Ω2, one has μ1(θj) �= 0 and λ′1(θ)μ1(θ) ≤ 0 holds in a neighbor-
hood of θj .

(II) λ1(θ)≡ 0 and λ3(θ) has only finite zeros {θi}ki=1 ∈ S1. For each zero θi of λ3, one has
μ1(θi)�= 0 and

μ1
(
θi
)
λ3(θ)

(
θ− θi

)
< 0 for 0 <

∥
∥θ− θi

∥
∥� 1. (1.21)

(III) λ1(θ)= μ1(θ)≡ 0 and λ3(θ) has only finite zeros in S1 and all of them are simple.
(IV) λ′1(θ)≡ 0, μ1(θ) has no zero in S1.

Theorem 1.2. Assume that H ∈ C2, ω ∈R+\Q. Define 2π-periodic functions λ1(θ), μ1(θ)
as

λ1(θ)= ω
∫ 2π

0

〈

h(t),φ
(
θ

ω
+ t
)�

dt,

μ1(θ)=−
∫ 2π

0

〈

h(t),φ′′
(
θ

ω
+ t
)�∫ t

0

〈

h(s),φ
(
θ

ω
+ s
)�

dsdt.

(1.22)

If

λ
′
1(θ)≡ 0,

∫ 2π

0
μ1(θ)dθ �= 0, (1.23)

then any solution of (1.1) with large initial value goes to infinity either in the future or in the
past.

Remark 1.3. We say that u(t) goes to infinity in the future if limt→∞‖u(t)‖ =∞, and u(t)
goes to infinity in the past if limt→−∞‖u(t)‖ =∞.

2. Generalized polar coordinates transformation

Since H is positively homogeneous of degree 2, by Euler’s identity, for every u∈R2,

〈∇H(u),u
〉= 2H(u). (2.1)

Let φ(t) be a solution of (1.3) satisfying (1.16) with the minimal period τ.
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For r > 0, θ(mod2π)∈R, we define the generalized polar coordinates transformation
T : (r,θ)→ u as

u= rφ
(
θ

ω

)

, (2.2)

where ω = 2π/τ. Then the map T is a diffeomorphism from the half plane {r > 0} to
R2\{(0,0)}, the functions r, θ are of C3 almost everywhere in (0,∞)×R as far as u(t)
does not cross the origin. Substituting (2.6) in to (1.1) yields

r′Jφ+
rθ′

ω
Jφ′ = r∇H(φ) +h. (2.3)

Since for any u∈R2, 〈Ju,u〉 = 0. By Euler’s identity (1.3), (1.16), and (2.1), a scalar prod-
uct in (2.3) with φ yields

rθ′

ω
= r + 〈h,φ〉, (2.4)

while a scalar product with φ′ yields

−r′ = 〈h,φ′〉. (2.5)

Therefore for u(t)�= 0, we get

θ′ = ω(1 + r−1〈h,φ〉),
r′ = −〈h,φ′〉, (2.6)

where

h= h(t), φ= φ
(
θ

ω

)

, φ′ = φ′
(
θ

ω

)

. (2.7)

Let (θ(t;θ0,r0),r(t;θ0,r0)) be the solution of (2.6) with initial value (θ0,r0). Then for r0

1, by the assumption that h ∈ L1(0,2π)× L1(0,2π), we get for t ∈ [0, T], where T > 0 is
any fixed number,

r(t)= r0 +O(1), r−1(t)= r−1
0 +O

(
r−2

0

)
, θ(t)= θ0 +ωt+O

(
r−1

0

)
. (2.8)

For the proof of theorems, we need the following lemmas (the proofs are omitted).

Lemma 2.1. Let ω = n/m∈Q for some n,m∈N. Then, for r0
 1, the Poincaré map

P :
(
θ0,r0

)−→ (θ1,r1
)= (θ(2mπ;θ0,r0

)
, r
(
2mπ;θ0,r0

))
(2.9)

of the solution of (2.6) with initial value (θ0,r0) has the following asymptotic expression:

θ1 = θ0 + 2nπ + λ1
(
θ0
)
r−1

0 + λ1
(
θ0
)
λ′1
(
θ0
)
r−2

0 + λ3
(
θ0
)
r−3

0 +O
(
r−4

0

)
,

r1 = r0− λ′1
(
θ0
)

+μ1
(
θ0
)
r−1

0 +
(
λ′3
(
θ0
)−α′(θ0

))
r−2

0 +O
(
r−3

0

)
,

(2.10)

where λ1, μ1, λ3, and α are given by Theorem 1.1.
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Lemma 2.2. Let ω ∈R+\Q. Then, for r0
 1, the Poincaré map

P :
(
θ0,r0

)−→ (θ1,r1
)= (θ(2π;θ0,r0

)
, r
(
2π;θ0,r0

))
(2.11)

of the solution of (2.6) with initial value (θ0,r0) has the following asymptotic expression:

θ1 = θ0 + 2ωπ + λ1
(
θ0
)
r−1

0 +O
(
r−2

0

)
,

r1 = r0− λ′1
(
θ0
)

+μ1

(
θ0
)
r−1

0 +O
(
r−2

0

)
,

(2.12)

where λ1(θ), μ1(θ) are given in (1.22).

3. Planar mappings and unbounded motions

In this section, we adopt the notations used in [2]. Given σ > 0, let the set Eσ be the
exterior of the open ball Bσ centered at the origin and of radius σ , that is,

Eσ = R2−Bσ , (3.1)

then Eσ = {(θ,r) | r ≥ σ}. Define S1 = R/2πZ, then the points in S1 are defined by

θ̄ = θ + 2kπ, k ∈ Z, θ ∈ R, (3.2)

and the group distance in S1 is defined by

‖θ‖ = ‖θ̄‖ =min
{|θ + 2kπ| |k ∈ Z}. (3.3)

Let P̄ : Eσ → R2 be a mapping that is one to one and continuous. We assume that its lift,
denoted by P, can be expressed in the following form:

θ1 = θ0 + 2mπ + λi
(
θ0
)
r−i0 +Fi

(
θ0,r0

)
,

r1 = r0 +μj
(
θ0
)
r
− j
0 +Gj

(
θ0,r0

) (3.4)

for r0
 1, θ0 ∈ S1, and λi, μj ∈ C(S1), m, i∈N, j ≥ 0, Fi = o(r−i0 ), Gj = o(r
− j
0 ) uniformly

in θ0, are continuous and 2π-periodic in θ0. Given a point (θ0,r0) ∈ Eσ , let {(θk,rk)}k∈I
be the unique solution of the initial value problem for the difference equation

(
θk+1,rk+1

)= P(θk,rk
)
. (3.5)

This solution is defined in a maximal interval

I = {k ∈ Z | ka < k < kb
}

, (3.6)

where ka, kb are certain numbers in the set Z∪{+∞,−∞} satisfying

−∞≤ ka < 0 < kb ≤ +∞. (3.7)

The solution {(θk,rk)} is said to be defined in the future if kb = +∞, and is said to be
defined in the past if ka =−∞.
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Lemma 3.1. Consider the mapping (3.4). Assume the function λi(θ) has an isolated zero
θ∗ ∈ S1. If

μj
(
θ∗
)
> 0, λi(θ)

(
θ− θ∗) < 0 for 0 <

∥
∥θ− θ∗∥∥� 1. (3.8)

Then there exist ε > 0 and R0 ≥ σ such that if ‖θ0 − θ∗‖ < ε and r0 ≥ R0, the solution
{(θk,rk)} is defined in the future and satisfies

lim
n→+∞rn = +∞. (3.9)

Lemma 3.2. Consider the mapping (3.4). Assume the function λi(θ) has an isolated zero
θ∗ ∈ S1. If

μj
(
θ∗
)
< 0, λi(θ)

(
θ− θ∗) > 0 for 0 <

∥
∥θ− θ∗∥∥� 1. (3.10)

Then there exist ε > 0 and R0 ≥ σ such that if ‖θ0 − θ∗‖ < ε and r0 ≥ R0, the solution
{(θk,rk)} is defined in the past and satisfies

lim
n→−∞rn = +∞. (3.11)

Lemma 3.3. Consider the following mapping:

θ1 = θ0 + 2mπ + λi
(
θ0
)
r−i0 +Fi

(
θ0,r0

)
,

r1 = r0− λ′i
(
θ0
)
r−(i−1)

0 +μj
(
θ0
)
r
− j
0 +Gj

(
θ0,r0

)
,

(3.12)

where m, i, j ∈ N, 0 ≤ i ≤ j, λi ∈ C1(S1), μj ∈ C(S1), Fi = o(r−i0 ), Gj = o(r
− j
0 ) uniformly

in θ0, are 2π-periodic in θ0 and continuous. If the function λi(θ) has only finitely zeros,
{θi}n0

i=1 =: Ω∈ S1 and Ω=Ω1∪Ω2 with

λ′i
(
θi
)�= 0, ∀θi ∈Ω1,

λ′i
(
θj
)= 0, ∀θj ∈Ω2.

(3.13)

If for each θj ∈Ω2, μj(θj)�= 0 and λ′i (θ)μj(θ)≤ 0 holds in a neighborhood of θj , then there
exists R0 ≥ σ such that if r0 ≥ R0, then for any θ0 ∈ S1 such that ‖θ0 − θj‖� 1, the orbit
{(θk, rk)} is either defined in the future and satisfies

rk −→ +∞ as k −→ +∞, (3.14)

or is defined in the past and satisfies

rk −→ +∞ as k −→−∞. (3.15)

Lemma 3.4. Consider the following mapping:

θ1 = θ0 + 2mπ + λi
(
θ0
)
r−i0 +Fi

(
θ0,r0

)
,

r1 = r0 +μj
(
θ0
)
r
− j
0 +Gj

(
θ0,r0

)
,

(3.16)
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where m, i, j ∈N, j < i, θ0 ∈ S1, λi,μj ∈ C(S1) with Fi = o(r−i0 ), Gj = o(r
− j
0 ) uniformly in

θ0 are continuous and 2π-periodic in θ0. If the function λi(θ) has only finite zeros {θk}Mk=1 =:
Ω∈ S1 and for each θk ∈Ω, μj(θk)�= 0 and

μj
(
θk
)
λi(θ)

(
θ− θk

)
< 0 for 0 <

∥
∥θ− θk

∥
∥� 1. (3.17)

Then there exists R0 ≥ σ such that if r0 ≥ R0, then for any θ0 ∈ S1 with ‖θ0− θk‖� 1, the
orbit {(θn, rn)}∞n=1 is either defined in the future and satisfies

rn −→ +∞ as n−→ +∞, (3.18)

or is defined in the past and satisfies

rn −→ +∞ as n−→−∞. (3.19)

Lemma 3.5. Let r0
 1, consider the following mapping:

θ1 = θ0 + 2ωπ + λi
(
θ0
)
r−i0 +Fi

(
θ0,r0

)
,

r1 = r0 +μj
(
θ0
)
r
− j
0 +Gj

(
θ0,r0

)
,

(3.20)

where ω ∈ R+\Q, i > 0, j ≥ 0, θ0 ∈ S1, and λi,μj ∈ C(S1), Fi = o(r−i0 ), Gj = o(r
− j
0 ) uni-

formly in θ0, are continuous and 2π-periodic in θ0. If

∫ 2π

0
μj(θ)dθ > 0, (3.21)

then there exists R0 ≥ σ such that if r0 ≥ R0, the orbit {(θn,rn)} of (3.20) with initial value
(θ0,r0) is defined in the future and satisfies

lim
n→+∞rn = +∞. (3.22)

If

∫ 2π

0
μj(θ)dθ < 0, (3.23)

then there exists R0 > σ such that if r0 ≥ R0, θ0 ∈ S1, the orbit {(θn,rn)} of (3.20) is defined
in the past and satisfies

lim
n→−∞rn = +∞. (3.24)

4. Proof of the theorems

Proof of Theorem 1.1. It follows from Lemma 2.1 that the Poincaré map P : (θ0,r0) →
(θ1,r1) of the solutions of (2.6) has the form of (2.10).

In case (I), (2.10) has the form of (3.4) with i = 1, j = 0, μj(θ) = −λ′1(θ). If θi ∈Ω1,
then Lemmas 3.1 and 3.2 apply, if θj ∈Ω2, then (2.10) has the form of (3.12) with i= 1,
j = 1, and Lemma 3.3 applies.
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In case (II), (2.10) has the following form:

θ1 = θ0 + 2nπ + λ3
(
θ0
)
r−3

0 +O
(
r−4

0

)
,

r1 = r0 +μ1
(
θ0
)
r−1

0 + λ′3
(
θ0
)
r−2

0 +O
(
r−3

0

)
.

(4.1)

Now, Lemma 3.4 with i= 3, j = 1 applies in this situation.
In case (III), (2.10) has the form of

θ1 = θ0 + 2nπ + λ3
(
θ0
)
r−3

0 +O
(
r−4

0

)
,

r1 = r0 + λ′3
(
θ0
)
r−2

0 +O
(
r−3

0

)
.

(4.2)

Lemmas 3.1 and 3.2 with i= 3, j = 2, μ2(θ)≡ λ′3(θ) are applicable.
Finally, in case (IV), since μ1(θ) has no zero, we have either

0 < 2c0 =: min
θ∈S1

μ1(θ)≤max
θ∈S1

μ1(θ)=: c1 <∞ (4.3)

or

−2d0 =: min
θ∈S1

μ1(θ)≤max
θ∈S1

μ1(θ)=:−d1 < 0. (4.4)

In the former case, for r0
 1, we have

r1 = r0 +μ1
(
θ0
)
r−1

0 +O(r−2
0 )≥ r0 + c0r

−1
0 > r0, (4.5)

r1 ≤ r0 + 2c1r
−1
0 . (4.6)

By induction, we can show for each n∈N,

rn ≤ r0 + 2nc1r
−1
0 (4.7)

which implies that rn is defined in the future. Replacing r0 by rn and r1 by rn+1 in (4.5),
we get

rn+1 ≥ rn + c0r
−1
n (4.8)

which implies that

lim
n→∞rn =∞. (4.9)

(Otherwise, if r∗ = limn→∞ rn <∞ by taking limits on both sides of (4.8), we get r∗ > r∗,
a contraction.)

Similarly, we can prove that in the later case, rn is defined in the past and satisfies

lim
n→−∞rn =∞. (4.10)

�

Proof of Theorem 1.2. Theorem 1.2 is a direct consequence of Lemma 3.5 with i= 3, j =
1, and λ3, μ1 are replaced by λ3, μ1, respectively. �
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PICONE-TYPE INEQUALITIES FOR A CLASS
OF QUASILINEAR ELLIPTIC EQUATIONS
AND THEIR APPLICATIONS

NORIO YOSHIDA

Picone-type inequalities are established for quasilinear elliptic equations with first-order
terms, and oscillation results are obtained for forced superlinear elliptic equations and
superlinear-sublinear elliptic equations.

Copyright © 2006 Norio Yoshida. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

There is an increasing interest in oscillation problems for half-linear differential equa-
tions. There are many papers dealing with half-linear partial differential equations (see,
e.g., Bognár and Došlý [1], Došlý and Mařı́k [2], Dunninger [3], Kusano et al. [6], Mařı́k
[7], Yoshida [8], and the references cited therein). Superlinear elliptic equations with
p-Laplacian principal part and superlinear-sublinear elliptic equations were studied by
Jaroš et al. [4, 5]. Picone identity or inequality plays an important role in establishing
Sturmian comparison and oscillation theorems for partial differential equations.

The objective of this paper is to establish Picone-type inequalities for quasilinear par-
tial differential operators P and P̃ defined by

P[v]≡∇· (A(x)|∇v|α−1∇v)+ (α+ 1)|∇v|α−1B(x) ·∇v+C(x)|v|β−1v,

P̃[v]≡∇· (A(x)|∇v|α−1∇v)+ (α+ 1)|∇v|α−1B(x) ·∇v
+C(x)|v|β−1v+D(x)|v|γ−1v,

(1.1)

where α, β, and γ are constants satisfying α > 0, β > α, 0 < γ < α, and to employ the in-
equalities thus obtained to derive oscillation theorems for the forced quasilinear elliptic
equation

P[v]= f (x) (1.2)

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1177–1185
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and the quasilinear elliptic equation

P̃[v]= 0. (1.3)

In Section 2 we establish Picone-type inequality for (1.2), and in Section 3 we derive
oscillation results for (1.2) in an unbounded domain Ω ⊂ Rn. Sections 4 and 5 concern
Picone-type inequality and oscillation results for (1.3).

2. Picone-type inequality for (1.2)

Let G be a bounded domain in Rn with piecewise smooth boundary ∂G. It is assumed
that

(A1) A(x)∈ C(G; (0,∞)), B(x)∈ C(G;R), and C(x)∈ C(G; [0,∞));
(A2) f (x)∈ C(G;R).
The domain �P(G) of P is defined to be the set of all functions v of class C1(G;R) with

the property that A(x)|∇v|α−1∇v ∈ C1(G;R)∩C(G;R).

Theorem 2.1. If v ∈�P(G), v �= 0 in G, and v · f (x)≤ 0 in G, then the following Picone-
type inequality holds for any u∈ C1(G;R):

−∇·
(

uϕ(u)
A(x)Φ(∇v)

ϕ(v)

)

≥−A(x)
∣
∣
∣
∣∇u−

u

A(x)
B(x)

∣
∣
∣
∣

α+1

+
β

α

(
β−α
α

)(α−β)/β

C(x)α/β
∣
∣ f (x)

∣
∣(β−α)/β|u|α+1

+A(x)
[(

∇u− u

A(x)
B(x)

)

·Φ
(

∇u− u

A(x)
B(x)

)

+α
(
u

v
∇v
)

·Φ
(
u

v
∇v
)

− (α+ 1)
(

∇u− u

A(x)
B(x)

)

·Φ
(
u

v
∇v
)]

− uϕ(u)
ϕ(v)

(
P[v]− f (x)

)
,

(2.1)

where ϕ(s)= |s|α−1s (s∈R) and Φ(ξ)= |ξ|α−1ξ (ξ ∈Rn).

Proof. The following identity holds:

−∇·
(

uϕ(u)
A(x)Φ(∇v)

ϕ(v)

)

=−A(x)
∣
∣
∣
∣∇u−

u

A(x)
B(x)

∣
∣
∣
∣

α+1

+A(x)
[(

∇u− u

A(x)
B(x)

)

·Φ
(

∇u− u

A(x)
B(x)

)

+α
(
u

v
∇v
)

·Φ
(
u

v
∇v
)

− (α+ 1)
(

∇u− u

A(x)
B(x)

)

·Φ
(
u

v
∇v
)]

− uϕ(u)
ϕ(v)

(∇· (A(x)|∇v|α−1∇v)+ (α+ 1)|∇v|α−1B(x) ·∇v)

(2.2)
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(see Yoshida [8, Theorem 1.1]). It is easy to check that

∇· (A(x)|∇v|α−1∇v)+ (α+ 1)|∇v|α−1B(x) ·∇v
= P[v]− f (x) + f (x)−C(x)|v|β−1v

(2.3)

and therefore

uϕ(u)
ϕ(v)

(∇· (A(x)|∇v|α−1∇v)+ (α+ 1)|∇v|α−1B(x) ·∇v)

= uϕ(u)
ϕ(v)

(
P[v]− f (x) + f (x)−C(x)|v|β−1v

)

= uϕ(u)
ϕ(v)

(
P[v]− f (x)

)−uϕ(u)
(

C(x)
|v|β−1v

ϕ(v)
− f (x)
ϕ(v)

)

= uϕ(u)
ϕ(v)

(
P[v]− f (x)

)−|u|α+1
(

C(x)|v|β−α− f (x)
|v|α−1v

)

.

(2.4)

The following inequality holds:

C(x)|v|β−α− f (x)
|v|α−1v

= C(x)|v|β−α +

∣
∣ f (x)

∣
∣

|v|α

≥ β

α

(
β−α
α

)(α−β)/β

C(x)α/β
∣
∣ f (x)

∣
∣(β−α)/β

(2.5)

(see, e.g., Jaroš et al. [4, page 712]). Combining (2.2)–(2.5) yields the desired inequality
(2.1). The proof is complete. �

Theorem 2.2. If there exists a nontrivial function u∈ C1(G;R) such that u= 0 on ∂G and

MG[u]≡
∫

G

[

A(x)
∣
∣
∣
∣∇u−

u

A(x)
B(x)

∣
∣
∣
∣

α+1

− β

α

(
β−α
α

)(α−β)/β

C(x)α/β
∣
∣ f (x)

∣
∣(β−α)/β|u|α+1

]

dx ≤ 0,

(2.6)

then every solution v ∈�P(G) of (1.2) satisfying v · f (x)≤ 0 must vanish at some point of
G.

Proof. Suppose to the contrary that there exists a solution v ∈�P(G) of (1.2) satisfying
v · f (x) ≤ 0 and v �= 0 on G. Theorem 2.1 implies that the Picone-type inequality (2.1)
holds for the nontrivial function u. Integrating (2.1) over G and proceeding as in the
proof of [8, Theorem 1.1], we are led to a contradiction. �

Corollary 2.3. Assume that f (x)≥ 0 (or f (x)≤ 0) in G. If there exists a nontrivial func-
tion u ∈ C1(G;R) such that u = 0 on ∂G and MG[u] ≤ 0, then (1.2) has no negative (or
positive) solution on G.
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Proof. Suppose that (1.2) has a negative (or positive) solution v on G. It is easily seen that
v · f (x)≤ 0 inG. Therefore it follows from Theorem 2.2 that v must vanish at some point
of G. This is a contradiction, and the proof is complete. �

Theorem 2.4. Assume that G is divided into two subdomains G1 and G2 by an (n− 1)-
dimensional piecewise smooth hypersurface in such a way that

f (x)≥ 0 in G1, f (x)≤ 0 in G2. (2.7)

If there are nontrivial functions uk ∈ C1(Gk;R) (k = 1,2) such that uk = 0 on ∂Gk and

MGk

[
uk
]≡

∫

Gk

[

A(x)
∣
∣
∣
∣∇uk −

uk
A(x)

B(x)
∣
∣
∣
∣

α+1

− β

α

(
β−α
α

)(α−β)/β

C(x)α/β
∣
∣ f (x)

∣
∣(β−α)/β∣∣uk

∣
∣α+1

]

dx ≤ 0,

(2.8)

then every solution v ∈�P(G) of (1.2) has a zero on G.

Proof. Suppose that there is a solution v ∈�P(G) of (1.2) which has no zero on G. Then,
either v > 0 on G or v < 0 on G. If v > 0 on G, then v > 0 on G2, and therefore v · f (x)≤ 0
in G2. It follows from corollary that (1.2) has no positive solution G2. This is a contra-
diction. In the case where v < 0 on G, a similar argument leads us to a contradiction. The
proof is complete. �

3. Oscillation results for (1.2)

Let Ω be an unbounded domain in Rn. It is assumed that
(H1) A(x)∈ C(Ω; (0,∞)), B(x)∈ C(Ω;R), and C(x)∈ C(Ω;R),
(H2) f (x)∈ C(Ω;R),
(H3) β is a constant satisfying β > α(> 0).
The domain �P(Ω) of P is defined to be the set of all functions v ∈ C1(Ω;R) with the

property that A(x)|∇v|α−1∇v ∈ C1(Ω;R).

Definition 3.1. A function v : Ω→R is said to be oscillatory in Ω if v has a zero in Ωr for
any r > 0, where

Ωr =Ω∩ {x ∈Rn; |x| > r}. (3.1)

Theorem 3.2. Assume that for any r > 0, there is a bounded and piecewise smooth do-
main G with G⊂Ωr , which can be divided into two subdomains G1 and G2 by an (n− 1)-
dimensional hypersurface in such a way that f (x) ≥ 0 in G1 and f (x) ≤ 0 in G2. Further-
more, assume that C(x) ≥ 0 in G and that there are nontrivial functions uk ∈ C1(Gk;R)
such that uk = 0 on ∂Gk and MGk [uk]≤ 0 (k = 1,2), where MGk are defined by (2.8). Then
every solution v ∈�P(Ω) of (1.2) is oscillatory in Ω.

Proof. For any r > 0, there is a bounded domain G as mentioned in the hypotheses of
Theorem 3.2. Theorem 2.4 implies that every solution v of (1.2) has a zero on G ⊂Ωr ,
that is, v is oscillatory in Ω. �
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Example 3.3. Let us consider the forced quasilinear elliptic equation

∇· (|∇v|2∇v)+ 4|∇v|2
(
∂v

∂x1
+
∂v

∂x2

)

+K
(

sinx1 · sinx2
)|v|β−1v

= cosx1 · sinx2,
(
x1,x2

)∈Ω,
(3.2)

where β and K are the constants satisfying β > 3, K > 0, and Ω is an unbounded domain
in R2 containing a horizontal strip such that

[2π,∞)× [0,π]⊂Ω. (3.3)

Here, n = 2, α = 3, A(x) = 1, B(x) = (1,1), C(x) = K(sinx1 · sinx2), and f (x) = cosx1 ·
sinx2. For any fixed j ∈N, we consider the rectangle

G( j) = (2 jπ, (2 j + 1)π
)× (0,π), (3.4)

which is divided into two subdomains

G
( j)
1 =

(

2 jπ,
(

2 j +
1
2

)

π
)

× (0,π),

G
( j)
2 =

((

2 j +
1
2

)

π, (2 j + 1)π
)

× (0,π)

(3.5)

by the vertical line x1 = (2 j + (1/2))π. It is easily seen that f (x) ≥ 0 in G
( j)
1 , f (x) ≤ 0 in

G
( j)
2 , and C(x) ≥ 0 in G( j). Letting uk = sin2x1 · sinx2 (k = 1,2), we find that uk = 0 on

∂G
( j)
k (k = 1,2). A simple computation shows that

M
G

( j)
k

[uk]= 261
128

π2− 128
15

K3/β β

3

(
β− 3

3

)(3−β)/β

B
(

5
2

+
3

2β
,3− 3

2β

)

, (3.6)

where B(s, t) is the beta function. If K > 0 is chosen sufficiently large, then M
G

( j)
k

[uk]≤ 0

hold for k = 1,2. It follows from Theorem 2.4 that every solution v of (3.2) is oscillatory
in Ω for all sufficiently large K > 0.

4. Picone-type inequality for (1.3)

In addition to the hypothesis (A1) of Section 2 we assume that
(A3) D(x)∈ C(G; [0,∞)).
The domain �P̃(G) of P̃ is defined to be the same as that of P, that is, �P̃(G)=�P(G).



1182 Picone-type inequalities for elliptic equations

Theorem 4.1. If v ∈�P̃(G), v �= 0 in G, then the following Picone-type inequality holds for
any u∈ C1(G;R):

−∇·
(

uϕ(u)
A(x)Φ(∇v)

ϕ(v)

)

≥−A(x)
∣
∣
∣
∣∇u−

u

A(x)
B(x)

∣
∣
∣
∣

α+1

+
β− γ
α− γ

(
β−α
α− γ

)(α−β)/(β−γ)

C(x)(α−γ)/(β−γ)D(x)(β−α)/(β−γ)|u|α+1

+A(x)
[(

∇u− u

A(x)
B(x)

)

·Φ
(

∇u− u

A(x)
B(x)

)

+α
(
u

v
∇v
)

·Φ
(
u

v
∇v
)

− (α+ 1)
(

∇u− u

A(x)
B(x)

)

·Φ
(
u

v
∇v
)]

− uϕ(u)
ϕ(v)

P̃[v].

(4.1)

Proof. We note that the identity (2.2) holds for any v ∈�P̃(G) and u∈ C1(G;R). It is easy
to see that

∇· (A(x)|∇v|α−1∇v)+ (α+ 1)|∇v|α−1B(x) ·∇v
= P̃[v]−C(x)|v|β−1v−D(x)|v|γ−1v

(4.2)

and hence

uϕ(u)
ϕ(v)

(∇· (A(x)|∇v|α−1∇v)+ (α+ 1)|∇v|α−1B(x) ·∇v)

= uϕ(u)
ϕ(v)

(
P̃[v]−C(x)|v|β−1v−D(x)|v|γ−1v

)

= uϕ(u)
ϕ(v)

P̃[v]−|u|α+1
(

C(x)|v|β−α +
D(x)
|v|α−γ

)

.

(4.3)

The following inequality was obtained by Jaroš et al. [4, page 717]:

C(x)|v|β−α +
D(x)
|v|α−γ ≥

(
β− γ
α− γ

)(
β−α
α− γ

)(α−β)/(β−γ)

C(x)(α−γ)/(β−γ)D(x)(β−α)/(β−γ).

(4.4)

Combining (2.2), (4.3), and (4.4) yields the desired inequality (4.1). �

Theorem 4.2. If there exists a nontrivial function u∈ C1(G;R) such that u= 0 on ∂G and

M̃G[u]≡
∫

G

[

A(x)
∣
∣
∣
∣∇u−

u

A(x)
B(x)

∣
∣
∣
∣

α+1

− β− γ
α− γ

(
β−α
α− γ

)(α−β)/(β−γ)

C(x)(α−γ)/(β−γ)D(x)(β−α)/(β−γ)|u|α+1
]

dx ≤ 0,

(4.5)

then every solution v ∈�P̃(G) of (1.3) vanishes at some point of G.



Norio Yoshida 1183

Proof. Suppose to the contrary that there exists a solution v ∈�P̃(G) of (1.3) such that
v �= 0 on G. It follows from Theorem 4.1 that the Picone-type inequality (4.1) holds for
the nontrivial function u. Integrating (4.1) over G and proceeding as in the proof of
Theorem 2.2, we observe that we are led to a contradiction. The proof is complete. �

5. Oscillation results for (1.3)

Let Ω be an unbounded domain in Rn. In this section we assume that the following hy-
potheses hold:

(H4) A(x)∈C(Ω;(0,∞)), B(x)∈C(Ω;R),C(x)∈C(Ω;[0,∞)), andD(x)∈C(Ω;[0,∞));
(H5) γ is a constant such that 0 < γ < α.
The domain �P̃(Ω) of P̃ is defined to be the same as that of P, that is, �P̃(Ω)=�P(Ω).

Theorem 5.1. Assume that for any r > 0, there exists a bounded and piecewise smooth
domain G with G ⊂Ωr . If there is a nontrivial function u ∈ C1(G;R) such that u = 0 on
∂G and M̃G[u]≤ 0, where M̃G is defined in Theorem 4.2, then every solution v ∈�P̃(Ω) of
(1.3) is oscillatory in Ω.

Proof. Let r > 0 be an arbitrary number. Theorem 4.2 implies that every solution v ∈
�P̃(Ω) of (1.3) has a zero on G ⊂ Ωr , that is, every solution v of (1.3) is oscillatory in
Ω. �

The following Theorems 5.2 and 5.3 follow by using the same arguments as those of
[8, Theorems 2.2 and 2.3].

Theorem 5.2. Let 0 < α < 1. Assume that for any r > 0, there exist a bounded and piecewise
smooth domain G with G⊂Ωr and a nontrivial function u∈ C1(G;R) such that u= 0 on
∂G and

∫

G

[
A(x)
1−α |∇u|

α+1−
{

H(x)−
∣
∣B(x)

∣
∣α+1

(1−α)
∣
∣A(x)

∣
∣α

}

|u|α+1

]

dx ≤ 0, (5.1)

where

H(x)= β− γ
α− γ

(
β−α
α− γ

)(α−β)/(β−γ)

C(x)(α−γ)/(β−γ)D(x)(β−α)/(β−γ). (5.2)

Then every solution v ∈�P̃(Ω) of (1.3) is oscillatory in Ω.

Theorem 5.3. Let A(x) > α in Ω. Assume that for any r > 0, there exist a bounded and
piecewise smooth domain G with G⊂Ωr and a nontrivial function u∈ C1(G;R) such that
u= 0 on ∂G and

∫

G

[
A2(x)
A(x)−α |∇u|

α+1−
{

H(x)− A(x)
A(x)−α

∣
∣B(x)

∣
∣α+1

}

|u|α+1
]

dx ≤ 0. (5.3)

Then every solution v ∈�P̃(Ω) of (1.3) is oscillatory in Ω.
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Let {Q(x)}S(r) denote the spherical mean ofQ(x) over the sphere Sr = {x ∈Rn : |x| = r},
that is,

{
Q(x)

}
S(r)=

1
ωnrn−1

∫

Sr
Q(x)dσ = 1

ωn

∫

S1

Q(r,θ)dω, (5.4)

where ωn is the surface area of the unit sphere S1 and (r,θ) is the hyperspherical coordinates
on S1.

Theorem 5.4. Let 0 < α < 1. If the half-linear differential equation

(

rn−1
{
A(x)
1−α

}

S
(r)|y′|α−1y′

)′
+ rn−1

{

H(x)−
∣
∣B(x)

∣
∣α+1

(1−α)
∣
∣A(x)

∣
∣α

}

S

(r)|y|α−1y = 0 (5.5)

is oscillatory, then every solution v ∈�P̃(Rn) of (1.3) is oscillatory in Rn.

Proof. Let {rk} be the zeros of a nontrivial solution y(r) of (5.5) such that r1 < r2 < ··· ,
limk→∞ rk =∞. Letting

Gk =
{
x ∈Rn; rk < |x| < rk+1

}
(k = 1,2, . . .) (5.6)

and uk(x)= y(|x|), we find that

∫

Gk

[
A(x)
1−α

∣
∣∇uk

∣
∣α+1−

{

H(x)−
∣
∣B(x)

∣
∣α+1

(1−α)
∣
∣A(x)

∣
∣α

}
∣
∣uk

∣
∣α+1

]

dx

= ωn
∫ rk+1

rk

[{
A(x)
1−α

}

S
(r)
∣
∣y′(r)

∣
∣α+1

−
{

H(x)−
∣
∣B(x)

∣
∣α+1

(1−α)
∣
∣A(x)

∣
∣α

}

S

(r)
∣
∣y(r)

∣
∣α+1

]

rn−1dr

=−ωn
∫ rk+1

rk

[(

rn−1
{
A(x)
1−α

}

S
(r)
∣
∣y′(r)

∣
∣α−1

y′(r)
)′

+ rn−1

{

H(x)−
∣
∣B(x)

∣
∣α+1

(1−α)
∣
∣A(x)

∣
∣α

}

S

(r)
∣
∣y(r)

∣
∣α−1

y(r)

]

y(r)dr = 0.

(5.7)

Hence, the conclusion follows from Theorem 5.2. �

Theorem 5.5. Let A(x) > α in Rn. If the half-linear differential equation

(

rn−1
{

A2(x)
A(x)−α

}

S
(r)|y′|α−1y′

)′
+ rn−1

{

H(x)− A(x)
A(x)−α

∣
∣B(x)

∣
∣α+1

}

S
(r)|y|α−1y = 0

(5.8)

is oscillatory, then every solution v ∈�P̃(Rn) of (1.3) is oscillatory in Rn.
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Example 5.6. We consider the quasilinear elliptic equation

∇· (3|∇v|∇v)+ 3|∇v|
(
∂v

∂x1
+
∂v

∂x2

)

+ 32|v|3v+ 32|v|−1/2v = 0 (5.9)

for x = (x1,x2) ∈ R2. Here, n = 2, α = 2, β = 4, γ = 1/2, A(x) = 3, B(x) = (1,1), and
C(x)=D(x)= 32. A simple calculation yields

A2(x)
A(x)−α = 9,

H(x)− A(x)
A(x)−α

∣
∣B(x)

∣
∣α+1 = 16− 6

√
2 > 0.

(5.10)

It follows from Theorem 5.5 that every solution v of (5.9) is oscillatory in R2.
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[1] G. Bognár and O. Došlý, The application of Picone-type identity for some nonlinear elliptic dif-
ferential equations, Acta Mathematica Universitatis Comenianae. New Series 72 (2003), no. 1,
45–57.
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QUENCHING OF SOLUTIONS OF NONLINEAR HYPERBOLIC
EQUATIONS WITH DAMPING

JIANMIN ZHU

A hyperbolic initial-boundary value problem with nonlinear damping and singular
source terms is studied. A criterion for a solution to reach the value 1 in a finite time
is established.

Copyright © 2006 Jianmin Zhu. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The concept of quenching was introduced in 1975 by Kawarada [6] through a first initial-
boundary value problem for a semilinear heat equation. Chang and Levine [4] extended
the concept to a first initial-boundary value problem for a semilinear wave equation in
1981. Over more than twenty years, there has been an extensive study on quenching of
solution to various partial differential equations, particularly for parabolic equations. Be-
cause of the lack of a maximum principle for hyperbolic equations as useful as that for
parabolic equations, quenching phenomena for hyperbolic equations have not been stud-
ied as extensively as for parabolic equations. The study of quenching phenomena for hy-
perbolic initial-boundary value problems has been focused on two types of problems:
one with singular nonlinearities in the differential equations, and the other with singular
nonlinearities in the boundary conditions. Chang and Levine [4] considered the quench-
ing problem to a first initial-boundary value problem for a semilinear wave equation with
singular nonlinearities in the differential equations in 1981. Later, Smith [12] and Levine
and Smiley [9] generalized the results to the multidimensional case. The effect of nonlin-
ear boundary conditions on the homogeneous wave equation was investigated by Levine
[7] in 1-dimensional space while Rammaha [10] in the multidimensional space. For other
related works, we refer the reader to [2, 8, 11] and the references therein.

For the initial-boundary value problem with nonlinear damping and source terms,
Georgiev and Todorova [5] studied the existence and the blow-up of solutions in 1994,
Chan and Zhu [3] studied the corresponding quenching problem, and Agre and
Rammaha [1] studied the existence and the quenching of solutions for a wave equation
in one space dimension. Here, we would like to study the quenching phenomena for the

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1187–1194
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following hyperbolic initial-boundary value problem with nonlinear damping and source
terms.

Let Ω be an open, bounded, connected domain in Rn with a sufficiently smooth
boundary ∂Ω, we consider the following initial-boundary value problem:

utt −Δu+ a(t)ut
∣
∣ut
∣
∣q−1 = b

(
1

1−u
)p

, (x, t)∈Ω× [0,T],

u(x, t)= 0, (x, t)∈ ∂Ω× [0,T],

u(x, t)= u0(x), ut(x, t)= u1(x), x ∈Ω,

(1.1)

where Δ denotes the n-dimensional Laplace operator, 0 < a(t) � a, and p,q > 1, a,b > 0.

2. Quenching results

Let
∫
Ωdx = |Ω|, β = p/(p− 1), and α be any positive constant less than [p/(p+ 1)]1/β.

Let

E(t)= b

p− 1

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p−1

p−1
− 1

2

∥
∥ut
∥
∥2

2−
1
2
‖∇u‖2

2,

h(t)=
∫

Ω
uutdx, G(t)= cE(t) + εh(t),

(2.1)

where c, ε, and γ are some constants.

Theorem 2.1. For the problem (1.1), assume that
(i) Gβ(0) > γ2β + 2a|Ω|ε/(β− 1),

(ii) E(0) >max{0,−(ε/c)
∫
Ωu0u1dx},

(iii) p > (q+ 1)/q.
Then a solution of (1.1) quenches in finite time.

Proof. By multiplying ut on both sides of the equation in (1.1), we have

ututt −utΔu+ a(t)
∣
∣ut
∣
∣q+1 = but

(
1

1−u
)p
. (2.2)

Integrating (2.2) over the domain Ω, we have

∫

Ω

(
ututt −utΔu+ a(t)

∣
∣ut
∣
∣q+1

)
dx = b

∫

Ω
ut

(
1

1−u
)p
dx. (2.3)

It follows Green’s identity and the boundary condition that

d

dt

[
1
2

∥
∥ut
∥
∥2

2 +
1
2
‖∇u‖2

2−
b

p− 1

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p−1

p−1

]

=−a(t)
∥
∥ut
∥
∥q+1
q+1. (2.4)

Define

E(t)=−1
2

∥
∥ut
∥
∥2

2−
1
2
‖∇u‖2

2 +
b

p− 1

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p−1

p−1
. (2.5)
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By (2.4), we have

dE(t)
dt

= a(t)
∥
∥ut
∥
∥q+1
q+1 > 0. (2.6)

Define

h(t)=
∫

Ω
uutdx. (2.7)

Then,

h′(t)=
(∫

Ω
uutdx

)′

t

= 2
∫

Ω
u2
t dx+ 2E(t)− b(p+ 1)

p− 1

∫

Ω

(
1

1−u
)p−1

dx

+ b
∫

Ω

(
1

1−u
)p
dx− a(t)

∫

Ω
uut
∣
∣ut
∣
∣q−1

dx.

(2.8)

It follows E(t) � 0 and
∫
Ωu

2
t dx� 0 that

h′(t) �−b(p+ 1)
p− 1

∫

Ω

(
1

1−u
)p−1

dx+ b
∫

Ω

(
1

1−u
)p
dx

− a(t)
∫

Ω
uut
∣
∣ut
∣
∣q−1

dx.

(2.9)

Since

a(t)
∫

Ω
uut
∣
∣ut
∣
∣q−1

dx� a(t)|Ω|+ a(t)
∥
∥ut
∥
∥q+1
q+1, (2.10)

b(p+ 1)
p− 1

∫

Ω

(
1

1−u
)p−1

dx� b(p+ 1)|Ω|
p− 1

(
1
α

)p
+
b(p+ 1)αp/(p−1)

p

∫

Ω

(
1

1−u
)p
dx.

(2.11)

From (2.9), (2.10), and (2.11), we have

h′(t) � b
(

1− (p+ 1)αp/(p−1)

p

)∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
− a(t)|Ω|

− b(p+ 1)|Ω|
p− 1

(
1
α

)p
− a(t)

∥
∥ut
∥
∥q+1
q+1.

(2.12)

Denote c1 = a|Ω|, c2 = a, and c3 = 1− (p+ 1)αp/(p−1)/p, then (2.12) becomes

h′(t) � bc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
− c1− c2

∥
∥ut
∥
∥q+1
q+1. (2.13)

Define

G(t)= cE(t) + εh(t). (2.14)
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Then, from (2.13) and (2.14), we have

G′(t)= cE′(t) + εh′(t) �
(
c− c2ε

)
E′(t)− c1ε+ εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
. (2.15)

Let

α1 = c− εc2, α2 =−c1ε. (2.16)

Then

G′(t) � α1E
′(t) + εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
+α2. (2.17)

It follows the definitions of c, c2, and (2.17) that

G′(t) � α2. (2.18)

Therefore,

G(t) �G(0) +α2t. (2.19)

Let

t∗ = G(0)
−α2

. (2.20)

It follows G(0) > 0 and α2 < 0 that t∗ > 0. Therefore,

G(t) > 0, t ∈ [0, t∗
)
. (2.21)

It follows (2.19) and (2.21) that

Gβ(t) �
(
G(0) +α2t

)β
, t ∈ [0, t∗

)
. (2.22)

From (2.22) and α2 < 0, we have

Gβ(t) �
(

G(0) +
α2t∗

2

)β
, t ∈

[

0,
t∗

2

)

. (2.23)

It follows (2.23) that

Gβ(t) � Gβ(0)
2β

, t ∈
[

0,
t∗

2

)

. (2.24)

We want to prove that

dG(t)
dt

�Gβ(t)− γ. (2.25)
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Since

G′(t) �Gβ(t) +α1E
′(t) + εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
+α2−Gβ(t), (2.26)

we consider the following two cases.

Case 1.
∫
Ωuutdx� 0. It follows (2.21) and

∫
Ωuutdx� 0 that

α1E
′(t) + εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
−Gβ(t)

� α1E
′(t) + εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
− bβcβ

(p− 1)β

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

(p−1)β

p−1
, t ∈ [0, t∗

)
.

(2.27)

Define

c = aε+ 2β−1qεβ

q
. (2.28)

It follows the definitions of c, c2, α1, and ε that α1 = c− c2ε = 2β−1εβ > 0, since E′(t) � 0,
therefore,

α1E
′(t) + εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
− bβcβ

(p− 1)β

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

(p−1)β

p−1

�
∫

Ω

εbc3

(1−u)p
− bβcβ

(p− 1)β

(∫

Ω

1
(1−u)p−1 dx

)β
, t ∈ [0, t∗

)
.

(2.29)

Define

ε = p
(
2b|Ω|)β−1

cβ

(p− 1)β
[
p− (p+ 1)αβ

] . (2.30)

Let β = p/(p− 1) > 1, it follows Jensen’s inequality, and the definition of ε, and 2β−1 > 1
that

α1E
′(t) + εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
− bβcβ

(p− 1)β

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

(p−1)β

p−1
� 0. (2.31)

Therefore,

α1E
′(t) + εb

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
−Gβ(t) � 0, t ∈ [0, t∗

)
. (2.32)

From (2.26) and (2.32), we have

dG(t)
dt

�Gβ(t) +α2, t ∈ [0, t∗
)
. (2.33)
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Case 2.
∫
Ωuutdx > 0. It follows (x+ y)β � 2β−1(xβ + yβ) for β > 1, x� 0, y � 0 that

α1E
′(t) + εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
−Gβ(t)

� α1

∫

Ω

∣
∣ut
∣
∣q+1

dx− 2β−1εβ|Ω|β−1
(∫

Ω

∣
∣ut
∣
∣βdx

)

+ εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p

− 2β−1
(

bc

p− 1

)β∥∥
∥
∥

1
1−u

∥
∥
∥
∥

(p−1)β

p−1
.

(2.34)

Applying Jensen’s inequality and β = p/(p− 1), we have

εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
� εbc3

|Ω|β−1

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p−1
. (2.35)

It follows (2.35) and the definition of ε that

εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
− 2β−1

(
bc

p− 1

)β∥∥
∥
∥

1
1−u

∥
∥
∥
∥

(p−1)β

p−1
� 0. (2.36)

Therefore, (2.34) becomes

α1E
′(t) + εb

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
−Gβ(t)

� α1

∫

Ω

∣
∣ut
∣
∣q+1

dx− 2β−1εβ|Ω|β−1
(∫

Ω

∣
∣ut
∣
∣βdx

)

.

(2.37)

It follows q+ 1 > β, α1− 2β−1εβ = 0, a(t) > 0, and (2.37) that

α1E
′(t) + εbc3

∥
∥
∥
∥

1
1−u

∥
∥
∥
∥

p

p
−Gβ(t) �−2β−1εβ|Ω|. (2.38)

Let

ᾱ2 =−2β−1εβ|Ω|−α2 < 0. (2.39)

Then, from (2.26), (2.34), and (2.38), we have

G′(t) �Gβ(t)−∣∣ᾱ2
∣
∣. (2.40)

Define

γ =max
{∣
∣α2

∣
∣,
∣
∣ᾱ2

∣
∣
}= aε|Ω|+ 2β−1εβ|Ω|, (2.41)

then, from (2.33) and (2.40), we have

G′(t) �Gβ(t)− γ, t ∈ [0, t∗
)
. (2.42)
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It follows (2.21), (2.24), (2.42), and γ > 0 that

G′(t)
Gβ(t)

� 1− γ2β

Gβ(0)
, t ∈

[

0,
t∗

2

)

. (2.43)

From (2.43), we have

G1−β(t) �G1−β(0)− (β− 1)
(

1− γ2β

Gβ(0)

)

t, t ∈
[

0,
t∗

2

)

. (2.44)

It follows (2.44) and 1− γ2β/Gβ(0) > 0 that

Gβ−1(t) �
[

G1−β(0)− (β− 1)
(

1− γ2β

Gβ(0)

)

t
]−1

. (2.45)

From (2.45), and condition (i) in Theorem 2.1, we have

G(t)−→∞ as t −→ T <∞, (2.46)

where

T = G1−β(0)
(β− 1)

(
1− γ2β/Gβ(0)

) <
t∗

2
. (2.47)

By the definition of G(t) in (2.14), we have

u(x, t)−→ 1 as t −→ T <∞. (2.48)

Therefore, u quenches in finite time. �
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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
EXISTENCE OF NONCONSTANT TWICE CONTINUOUSLY
DIFFERENTIABLE SOLUTIONS OF x′′ = f (x)

RODRIGO LÓPEZ POUSO

We deduce necessary and sufficient conditions for having nonconstant classical solutions
of the scalar equation x′′ = f (x).

Copyright © 2006 Rodrigo López Pouso. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this note, we complement the results obtained in [1] concerning necessary and suffi-
cient conditions for the existence of nontrivial Carathéodory solutions of the initial value
problem

x′′ = f (x), x(0)= x0, x′(0)= x1, (1.1)

where f : Dom( f )⊂R→R∪{−∞,+∞} and x0,x1 ∈R.
In order to present the main result in [1] we need some preliminaries. First, a Car-

athéodory solution of (1.1) is any mapping x : I ⊂R→R, where I is a nontrivial interval
that contains 0, such that x′ exists and is locally absolutely continuous on I , x(0) = x0,
x′(0)= x1, and x satisfies the differential equation almost everywhere on I (in Lebesgue’s
measure sense). Let us remark that classical (twice continuously differentiable) solutions
of (1.1) are Carathéodory solutions but the converse is not true in general.

Let J ⊂ Dom( f ) be a nontrivial interval that contains x0 (if no such interval exists,
then (1.1) would have no nonconstant solution). Without further assumptions over f ,
we formally define the time map

τ : y ∈ J τ(y) :=
∫ y

x0

dr
√
x2

1 + 2
∫ r
x0
f (s)ds

, (1.2)

and now we are in a position to state the main result in [1], which gives a characterization
of the nontrivial solvability of (1.1).

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1195–1199
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Theorem 1.1. The problem (1.1) has the constant solution if and only if f (x0)= 0= x1.
Moreover, the following statements are pairwise equivalent for a nontrivial interval J that

contains x0:
(i) the problem (1.1) has a (nonconstant) Carathéodory solution with range J ;

(ii) f ∈ L1
loc(J), x2

1 +
∫ y
x0
f (s)ds > 0 for a.a. y ∈ J , and

max
{

1,| f |}
√
x2

1 + 2
∫ ·
x0
f (s)ds

∈ L1
loc(J); (1.3)

(iii) the problem (1.1) has a strictly monotone Carathéodory solution x implicitly given
by

∫ x(t)

x0

dr
√
x2

1 + 2
∫ r
x0
f (s)ds

= sgn
(
x1
)
t, ∀t ∈ sgn

(
x1
)
τ(J), (1.4)

where sgn(z)= z/|z| for z 	= 0, and sgn(0)=±1.

In Section 2, we include some remarks to Theorem 1.1 that may be helpful when read-
ing the work in [1]. In Section 3, we prove an analogous result for nonconstant classical
solutions of (1.1).

2. Some remarks to Theorem 1.1

Note that the equivalence between conditions (i), (ii), and (iii) in Theorem 1.1 concerns
nonconstant solutions. Obviously, nonconstant solutions are the unique ones we can ex-
pect to exist when x1 	= 0, therefore it is not a surprise that existence of nonconstant
solutions when x1 	= 0 requires less restrictive hypotheses compared to the case x1 = 0.

We have the following corollary of Theorem 1.1 for the case x1 	= 0.

Corollary 2.1. If x1 	= 0, then the following statements are pairwise equivalent:
(a) the problem (1.1) has a Carathéodory solution;
(b) f is integrable on some nontrivial interval that contains x0;
(c) the problem (1.1) has a strictly monotone Carathéodory solution x implicitly given

by

∫ x(t)

x0

dr
√
x2

1 + 2
∫ r
x0
f (s)ds

= sgn
(
x1
)
t (2.1)

for all t in a nontrivial interval that contains 0.

Proof. Condition (c) implies condition (a).
Moreover, (a) implies (ii) in Theorem 1.1, therefore we can ensure that f is integrable

on a compact nontrivial interval that contains x0.
Finally, to show that (b) implies (c), let K be the nontrivial interval that contains x0

such that f ∈ L1(K). It suffices to show that f satisfies condition (ii) in Theorem 1.1 for
some interval J ⊂ K and then use the equivalence between (ii) and (iii) in Theorem 1.1.
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Since f is integrable in K and x1 	= 0, we can choose a nontrivial subinterval J ⊂ K that
contains x0 such that

x2
1 + 2

∫ y

x0

f (s)ds > 0, ∀y ∈ J. (2.2)

Hence the mapping

y ∈ J 1
√
x2

1 + 2
∫ y
x0
f (s)ds

(2.3)

is continuous and then (1.3) holds true. �

Remark 2.2. Integrability of f around x0 is not sufficient for the existence of nonconstant
solutions when x0 = 0. As an example, consider the case x′′ = x with conditions x(0) =
0= x′(0), whose unique solution is constant.

3. Nonconstant classical solutions

In this section we will prove the following result on nonconstant classical solutions of
(1.1).

Theorem 3.1. The following statements are pairwise equivalent for a nontrivial interval J
that contains x0:

(i∗) the problem (1.1) has a (nonconstant) classical solution with range J ;
(ii∗) f|J is finite-valued and continuous on J , x2

1 +
∫ y
x0
f (s)ds > 0 for a.a. y ∈ J , and

1
√
x2

1 + 2
∫ ·
x0
f (s)ds

∈ L1
loc(J); (3.1)

(iii∗) the problem (1.1) has a strictly monotone classical solution x implicitly given by

∫ x(t)

x0

dr
√
x2

1 + 2
∫ r
x0
f (s)ds

= sgn
(
x1
)
t, ∀t ∈ sgn

(
x1
)
τ(J), (3.2)

where sgn(z)= z/|z| for z 	= 0, and sgn(0)=±1.

Proof. Clearly, (iii∗) implies (i∗).
To show that (i∗) implies (ii∗) note first that (i∗) implies (i) in Theorem 1.1 and then

conditions (ii) in Theorem 1.1 immediately hold true, thus it suffices to prove that f|J is
finite-valued and continuous on J . Suppose then that x : I → R is a classical solution of
(1.1) with x(I)= J .
Claim 1. f is finite-valued on J . To each y ∈ J , there corresponds some t ∈ I such that
x(t)= y, hence f (y)= f (x(t))= x′′(t)∈R.

Claim 2. f|J is continuous on J . Let {yn}n be a sequence of elements of J that converges to
some y0 ∈ J ; we have to show that { f (yn)}n converges to f (y0).
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In order to use compactness arguments we fix R > 0 such that yn ∈ [y0−R, y0 +R]∩
J =: [a,b], for all n∈N, we take ta, tb ∈ I such that x(ta)= a and x(tb)= b, and we define
Ĩ as the compact interval with extreme points ta and tb. Since x is continuous, we have
that [a,b]⊂ x(Ĩ) and thus for each n∈N there exists tn ∈ Ĩ such that yn = x(tn).

Now the proof of Claim 2 follows two steps.

Step 1. { f (yn)}n is a bounded sequence. Indeed, the relations

f
(
yn
)= f

(
x
(
tn
))= x′′(tn

)∈ x′′(Ĩ), ∀n∈N, (3.3)

imply that { f (yn)}n is bounded because x′′(Ĩ) is compact.

Step 2. Every convergent subsequence of { f (yn)}n tends to f (y0). To prove this fact, let
{ f (ynk)}k be a subsequence of { f (yn)}n that tends to some limit l ∈ R. We have that
ynk = x(tnk ) with tnk ∈ Ĩ , for all n ∈ N. Since Ĩ is compact, we have a subsequence of
{tnk}k, that we denote again as {tnk}k, which tends to some t0 ∈ Ĩ . Now the continuity of
x implies that x(t0)= y0 and then

lim
k→∞

f
(
ynk
)= lim

k→∞
f
(
x
(
tnk
))= lim

k→∞
x′′
(
tnk
)= x′′(t0

)= f
(
x
(
t0
))= f

(
y0
)
, (3.4)

which implies that l = f (y0).

Finally, we have to prove that (ii∗) implies (iii∗). Since (ii∗) implies (ii) in Theorem 1.1,
we have that (1.4) is a Carathéodory solution of (1.1), so we have

x′′(t)= f
(
x(t)

)
for a.a. t ∈ I. (3.5)

Moreover, we know that x(I) = J and f|J is continuous, so x′′ is equal to a continuous
function almost everywhere on I which implies that x ∈�2(I) and satisfies the differential
equation everywhere on I . �

Remark 3.2. When x0 ∈ Int(J) in condition (ii∗) then we have that f is continuous on a
neighborhood of x0 and thus Peano’s theorem ensures that (1.1) has at least one classical
solution, but not necessarily a nonconstant solution.

Remark 3.3. Note that (1.1) may have a nonconstant classical solution and f may be
discontinuous at x0 (according to Theorem 3.1 we only know that the restriction of f
to the solution’s range is continuous). As an example, note that x(t) = cost, t ∈ R, is a
classical solution of the problem

x′′ =
⎧
⎨

⎩

−x if x ≤ 1,

−2 if x > 1,
x(0)= 1, x′(0)= 0, (3.6)

and clearly the right-hand side of the differential equation is discontinuous precisely at
the initial position x0 = 1.

However, in this case the range of the solution is the interval [−1,1], and the restriction
of the right-hand side to that interval is a continuous function.
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VARIATION-OF-PARAMETERS FORMULAE AND LIPSCHITZ
STABILITY CRITERIA FOR NONLINEAR MATRIX
DIFFERENTIAL EQUATIONS WITH INITIAL
TIME DIFFERENCE

COSKUN YAKAR

This paper investigates the relationship between an unperturbed matrix differential equa-
tion and a perturbed matrix differential system which both have different initial positions
and an initial time difference. Variation-of-parameter techniques are employed to obtain
integral formulae and to establish Lipschitz stability criteria for nonlinear matrix differ-
ential systems and make use of the variational system associated with the unperturbed
differential system.

Copyright © 2006 Coskun Yakar. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The method of variation-of-parameters formulae (VPF) has been a very useful technique
in the qualitative theory of system of differential equations and nonlinear matrix differen-
tial equations since it is a practical tool in the investigation of the properties of solutions.
Recently in [1–3], the study of nonlinear matrix initial value problems with an initial time
difference (ITD) has been initiated and the corresponding theory of differential inequal-
ities has been investigated. Below, we will derive VPF showing the relationship between
unperturbed matrix differential systems with different initial conditions and unperturbed
and perturbed systems with different initial conditions.

The qualitative behavior of matrix differential equations has been explored extensively
and the investigation of initial value problems with a perturbation in the space variable
is well known when the perturbation is restricted to the space variable with the initial
time unchanged [1–4, 6, 7]. Recently, several investigations have been initiated to explore
the qualitative behavior of matrix differential systems that have a different initial position
and a different initial time. We call this type of stability analysis ITD stability analysis.
In Section 3, variation-of-parameter formulae were used to investigate the relationship
between (1) unperturbed matrix equations with different initial conditions and (2) un-
perturbed and perturbed matrix equations with ITD. ITD Lipschitz stability criteria for
matrix differential systems are established by employing the variational system associated
with the unperturbed matrix differential system.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1201–1216
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A significant difference between ITD Lipschitz stability and the classical notions of
stability is that the classical notions of Lipschitz stability are with respect to the null so-
lution, but ITD stability is with respect to the unperturbed matrix differential equations
where the unperturbed matrix differential equation and the perturbed matrix differential
system have a change in initial position and in initial time. We show in Section 4 that the
transformation that allows the classical notions of Lipschitz stability to be studied with
respect to the null solution gives a different result for ITD Lipschitz stability which is not
equivalent to the classical approach.

We utilize the variational system associated with the unperturbed matrix differential
system to establish Lipschitz stability (LS) criteria for initial time difference Lipschitz sta-
bility (ITDLS) in variation and ITD exponential asymptotic LS in variation. In Section 2,
we introduce the variational system and give the definitions necessary for the various
types of ITDLS and of LS with a time difference only. We compare classical stability of the
null solution with ITD stability and show that the two are different and that we cannot
limit our study of stability just to that of the null solution. Moreover, we compare ITDLS
with ITD stability and show that ITDLS is sufficient for ITD stability, but ITD stability
is necessary for ITDLS. Also, we present theorems for ITDLS in variation, ITD exponen-
tial asymptotic LS in variation, ITD (uniform) stability, and ITD (uniform) (LS) of the
perturbed differential system with respect to the unperturbed differential system.

2. Preliminaries

Let us consider the nonlinear matrix differential systems

X ′ = F(t,X), X
(
t0
)= X0 for t ≥ t0, t0 ∈R+, (2.1)

X ′ = F(t,X), X
(
τ0
)= Y0 for t ≥ τ0, τ0 ∈R+, (2.2)

and the perturbed nonlinear matrix differential system of (2.1):

Y ′ = F(t,Y) +R(t,Y), Y
(
τ0
)= Y0 for t ≥ τ0, (2.3)

where F,R ∈ C[R+ ×Rn×n,Rn×n], F(t,X), R(t,Y) are n× n continuous matrices for t ∈
R+, (t,X), (t,Y)∈R+×Rn×n, and R(t,Y) is a perturbation matrix term.

The operator Vec(·) is defined in [5] which maps an m×n matrix A= (ai j) onto the
vector composed of columns of A:

Vec(A)= (a11,a21, . . . ,am1,a12,a22, . . . ,am2, . . . ,a1n,a2n, . . . ,amn
)T
. (2.4)

Then the corresponding vector differential systems can be written as

x′ = f (t,x), x
(
t0
)= x0 for t ≥ t0, t0 ∈R+, (2.5)

x′ = f (t,x), x
(
τ0
)= y0 for t ≥ τ0, τ0 ∈R+, (2.6)
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and the perturbed nonlinear vector differential system of (2.3) as

y′ = f (t, y) +R∗(t, y), y
(
τ0
)= y0 for t ≥ τ0, (2.7)

where f ,R∗∈C[R+×Rn2
,Rn2

] and x=Vec(X)T , y=Vec(Y)T , f =Vec(F)T ,R∗=Vec(R)T .

Definition 2.1. The solution Y(t,τ0,Y0) of the nonlinear matrix differential system (2.3)
through (τ0,Y0) is said to be initial time difference stable with respect to the solution
X(t− η, t0,X0) for t ≥ τ0 and t0 ∈ R+, where X(t, t0,X0) is any solution of the nonlinear
matrix differential system (2.1) for t ≥ τ0 ≥ 0 and η = τ0− t0 ≥ 0. If given any ε > 0, there
exist δ1 = δ1(τ0,ε) > 0 and δ2 = δ2(τ0,ε) > 0 such that

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥ < ε whenever

∥
∥Y0−X0

∥
∥ < δ1,

∣
∣τ0− t0

∣
∣ < δ2 for t ≥ τ0.

(2.8)

If δ1 and δ2 are independent of τ0, then the solution Y(t,τ0,Y0) of the nonlinear ma-
trix differential system (2.3) is initial time difference uniformly stable with respect to the
solution X(t−η, t0,X0) for t ≥ τ0.

Definition 2.2. The solution Y(t,τ0,Y0) of the nonlinear matrix differential system (2.3)
through (τ0,Y0) is said to be initial time difference Lipschitz stable with respect to the
solution X(t− η, t0,X0) for t ≥ τ0, where X(t, t0,X0) is any solution of the nonlinear ma-
trix differential system (2.1) and η = τ0− t0 ≥ 0 if and only if there exists an L= L(τ0) > 0
such that

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤ L(τ0

)[∥
∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]
, t ≥ τ0. (2.9)

If L is independent of τ0, then the solution Y(t,τ0,Y0) of the nonlinear matrix differen-
tial system (2.3) is initial time difference uniformly Lipschitz stable with respect to the
solution X(t− η, t0,X0) for t ≥ τ0, related to the solution of nonlinear matrix differential
system (2.1).

Definition 2.3. The solution Y(t,τ0,Y0) of the nonlinear matrix differential system (2.3)
through (τ0,Y0) is said to be initial time difference asymptotically Lipschitz stable with
respect to the solution X(t− η, t0,X0) for t ≥ τ0, where X(t, t0,X0) is any solution of the
nonlinear matrix differential system (2.1) and η = τ0− t0 ≥ 0 if and only if there exists an
L= L(τ0) > 0 such that

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤ L(τ0

)[∥
∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]
σ
(
t− τ0

)
, t ≥ τ0,

(2.10)

where σ → 0 as t→∞.
If L is independent of τ0, then the solution Y(t,τ0,Y0) of the nonlinear matrix dif-

ferential system (2.3) is initial time difference uniformly asymptotically Lipschitz stable
with respect to the solution X(t−η, t0,X0) for t ≥ τ0, related to the solution of nonlinear
matrix differential system (2.1).
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Definition 2.4. The solution Y(t,τ0,Y0) of the nonlinear matrix differential system (2.3)
through (τ0,Y0) is said to be initial time difference asymptotically Lipschitz stable in vari-
ation with respect to the solution X(t− η, t0,X0) for t ≥ τ0, where X(t, t0,X0) is any solu-
tion of the nonlinear matrix differential system (2.1) and η=τ0−t0 ≥ 0 if and only if

(i) there exists an L= L(τ0) > 0 such that

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤ L(τ0

)[∥
∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]
σ
(
t− τ0

)
, t ≥ τ0,

(2.11)

where σ → 0 as t→∞,
(ii) for each α > 0, there exists an N > 0 such that the fundamental matrix ϕ(t,τ0,Y0)

solution of the variational equation (i) in Theorem 3.1 satisfies

∥
∥ϕ
(
t,τ0,Y0

)∥
∥≤N , ∀t ≥ τ0,

∥
∥Y0

∥
∥≤ α. (2.12)

If L is independent of τ0, then the solution Y(t,τ0,Y0) of the nonlinear matrix differ-
ential system (2.3) is initial time difference uniformly asymptotically Lipschitz stable in
variation with respect to the solution X(t− η, t0,X0) for t ≥ τ0, related to the solution of
nonlinear matrix differential system (2.1).

Definition 2.5. The solution Y(t,τ0,Y0) of the nonlinear matrix differential system (2.3)
through (τ0,Y0) is said to be initial time difference generalized exponentially asymp-
totically Lipschitz stable with respect to the solution X(t − η, t0,X0) for t ≥ τ0, where
X(t, t0,X0) is any solution of the nonlinear matrix differential system (2.1) and η = τ0−
t0 ≥ 0 if and only if there exists an L= L(τ0) > 0 such that

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤L(τ0

)[∥
∥Y0−X0

∥
∥+
∣
∣τ0−t0

∣
∣
]

exp
[
P
(
τ0
)−P(t)

]
, t ≥ τ0,

(2.13)

where P ∈� = {P ∈ C[R+,R+] : P(t) is strictly increasing in t and P(0)= 0}, P(t)→∞
as t→∞.

If L is independent of τ0, then the solution Y(t,τ0,Y0) of the nonlinear matrix differ-
ential system (2.3) is initial time difference uniformly generalized exponentially asymp-
totically Lipschitz stable with respect to the solution X(t− η, t0,X0) for t ≥ τ0, related to
the solution of nonlinear matrix differential system (2.1).

In particular, if P(t)= αt for α > 0, we have initial time difference exponentially asymp-
totically Lipschitz stable for matrix differential equations.

3. Variation-of-parameters formulae for perturbed and unperturbed nonlinear
matrix differential equations with initial time difference

Now we have the following results for the systems (2.1), (2.2), and (2.3).

Theorem 3.1. Assume that f is continuous and has continuous partial derivatives ∂ f /∂x
onR+×Rn×n. Let x(t,τ0, y0) be the unique solution of (2.6) existing for t ≥ τ0, τ0 ∈R+, and
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let H(t,τ0, y0)= (∂ f /∂x)(t,x(t,τ0, y0)). Then
(i) ϕ(t,τ0, y0)= ∂x(t,τ0, y0)/∂y0 exists and is the solution of

z′ =H(t,τ0, y0
)
z (3.1)

such that ϕ(τ0,τ0, y0)= In×n is the n×n identity matrix,
(ii) ∂x(t,τ0, y0)/∂τ0 exists and is the solution of (3.1) with ∂x(t,τ0, y0)/∂τ0 =− f (t0,x0)

and satisfies the relation

∂x
(
t,τ0, y0

)

∂τ0
+ϕ
(
t,τ0, y0

)
f
(
τ0, y0

)= 0 (3.2)

for t ≥ τ0, τ0 ∈R+,
(iii) any solution y(t,τ0, y0) of (2.7) satisfies the integral equation, well-known Alekseev’s

formula,

y
(
t,τ0, y0

)= x(t,τ0, y0
)

+
∫ t

τ0

ϕ
(
t,s, y

(
s,τ0, y0

))
R∗
(
s, y
(
s,τ0, y0

))
ds, (3.3)

where ϕ(t,τ0, y0)= ∂x(t,τ0, y0)/∂y0 for t ≥ τ0.

Theorem 3.2. Assume that W(t,τ0,X0) and Z(t,τ0,X0) are the solutions of matrix differ-
ential systems of (3.4), (3.5), respectively, for t ≥ τ0. Consider the matrix differential systems

W ′ =A(t,τ0,X0
)
W , Y

(
τ0
)= I , t ≥ τ0, (3.4)

Z′ = ZB(t,τ0,X0
)
, Z

(
τ0
)= I , t ≥ τ0, (3.5)

and the perturbed matrix differential system of (3.4)

X ′ =A(t,τ0,X0
)
X +XB

(
t,τ0,X0

)
, X

(
τ0
)= C, t ≥ τ0, (3.6)

where I is n× n identity matrix, A(t,τ0, y0) and B(t,τ0, y0) are n× n continuous matrices
for t ≥ τ0, and C is n×n constant matrix.

Then the solution of the matrix differential system of (3.6) satisfies the relation

X
(
t,τ0,X0

)=W(t,τ0,X0
)
CZ
(
t,τ0,X0

)
, t ≥ τ0. (3.7)

Theorem 3.3. Assume that f (t,x) in (2.6) has continuous partial derivatives onR+×Rn×n

and let

G
(
t,τ0, y0

)= ∂ f

∂x

(
t,x
(
t,τ0, y0

))
. (3.8)

If there exist n×n matrices A(t,τ0, y0) and B(t,τ0, y0) as in Theorem 3.2 such that

G= (A⊗ I) +
(
I ⊗BT), (3.9)
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then
(i) ϕ(t,τ0, y0)= ∂x(t,τ0, y0)/∂y0 exists, and is the fundamental matrix solution of

ϕ′ =G(t,τ0, y0
)
ϕ (3.10)

such that ϕ(τ0,τ0, y0)= I , and therefore

ϕ
(
t,τ0, y0

)=W(t,τ0, y0
)⊗ZT(t,τ0, y0

)
, (3.11)

where W and Z are the solutions of (3.4) and (3.5), respectively,
(ii) any solution of (2.3) satisfies the integral equation

Y
(
t,τ0,Y0

)= X(t,τ0,Y0
)

+
∫ t

τ0

W
(
t,s,Y

(
s,τ0,Y0

))
R
(
s,Y
(
s,τ0,Y0

))
Z
(
t,s,Y

(
s,τ0,Y0

))
ds, t ≥ τ0.

(3.12)

The detailed proof of the theorem is in [4].
In this section, we will introduce the relation among the systems of perturbed and

unperturbed matrix differential equations.

Theorem 3.4. Assume that the solutions of (2.1) and (2.2) of the nonlinear matrix dif-
ferential equations X(t− η, t0,X0) through (t0,X0) and X(t,τ0,Y0) through (τ0,Y0) admit
unique solutions for t ≥ τ0, respectively. Then X(t,τ0,Y0) and X(t− η, t0,X0) satisfy the in-
tegral equation

X
(
t,τ0,Y0

)= X(t−η, t0,X0
)

+
∫ 1

0
ϕ
(
t,τ0,Ω(s)

)
ds
[
Y0−X0

]

−
∫ t

τ0

[
∂X

∂τ0

(
t,s,X(s−η)

)
+ϕ
(
t,s,X(s−η)

)
F
(
s−η,X(s−η)

)
]

ds

(3.13)

for t ≥ τ0 ≥ 0, where Ω(s)= Y0s+ (1− s)X0 for 0≤ s≤ 1.

Proof. Let the systems (2.1) and (2.2) admit unique solutionsX(t−η, t0,X0), whereX(t, t0,
X0) is any solution of the system (2.1) for t ≥ t0 ≥ 0, through (t0,X0) and X(t,τ0,Y0)
through (τ0,Y0) for t ≥ τ0 ≥ 0, τ0 ∈R+.

Let us set Q(s) = X(t,s,X(s− η)) for τ0 ≤ s ≤ t, where X(τ0 − η, t0,X0) = X0, then we
have

d

ds

[
Q(s)

]= ∂X

∂τ0

(
t,s,X(s−η)

)
+
∂X

∂Y0

(
t,s,X(s−η)

)
X ′(s−η). (3.14)

Integrating (3.14) with respect to s between τ0 and t, we get

X
(
t−η, t0,X0

)= X(t,τ0,X0)

+
∫ t

τ0

[
∂X

∂τ0

(
t,s,X(s−η)

)
+ϕ
(
t,s,X(s−η)

)
F
(
s−η,X(s−η)

)
]

ds.

(3.15)
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Now, let

P(s)= X(t,τ0,Ω(s)
)
, Ω(s)= Y0s+ (1− s)X0, 0≤ s≤ 1, (3.16)

then we have

d

ds

[
P(s)

]= ∂X

∂Y0

(
t,τ0,Ω(s)

)[
Y0−X0

]
. (3.17)

Integrating (3.17) with respect to s between 0 and 1, we get

X
(
t,τ0,Y0

)= X(t,τ0,X0
)

+
∫ 1

0
ϕ
(
t,τ0,Ω(s)

)
ds
[
Y0−X0

]
, t ≥ τ0. (3.18)

Combining (3.15) and (3.18) yields (3.13). This completes the proof. �

Remark 3.5. Assume that the solutions of (2.2) of the nonlinear matrix differential equa-
tions X(t,τ0,X0) through (t0,X0) and X(t,τ0,Y0) through (τ0,Y0) admit unique solutions
for t ≥ τ0, respectively. If η = 0, then X(t,τ0,Y0) and X(t,τ0,X0) satisfy the integral equa-
tion

X
(
t,τ0,Y0

)= X(t,τ0,X0
)

+
∫ 1

0
ϕ
(
t,τ0,Ω(s)

)
ds
[
Y0−X0

]
, t ≥ τ0, (3.19)

where Ω(s)= Y0s+ (1− s)X0 for 0≤ s≤ 1.
Hence, (3.19) gives us the relation between the solution of the nonlinear unperturbed

matrix differential equations of (2.2) starting at different initial positions.

Theorem 3.6. Assume that the solution of nonlinear perturbed matrix differential equation
(2.3) Y(t,τ0,Y0) has continuous partial derivatives ∂Y/∂τ0 and ∂Y/∂Y0 on R+×R+×Rn×n

and the solution of nonlinear unperturbed and perturbed matrix differential systems (2.1),
(2.2), and (2.3) admit unique solutions X(t, t0,X0) through (t0,X0) for t ≥ t0, X(t,τ0,Y0)
through (τ0,Y0) for t ≥ τ0, and Y(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0, respectively. Then
Y(t,τ0,Y0) and X(t−η, t0,X0) satisfy the integral equation

Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)=−

∫ t

τ0

[
∂Y

∂τ0

(
t,σ ,X(σ −η)

)
]

dσ

−
∫ t

τ0

[
∂Y

∂Y0

(
t,σ ,X(σ −η)

)
F
(
σ −η,X(σ −η)

)
]

dσ

+
∫ 1

0

∂Y

∂Y0

(
t,τ0,Ω(s)

)
ds
[
Y0−X0

]
,

(3.20)

where Ω(s)= Y0s+ (1− s)X0 for 0≤ s≤ 1 and t ≥ τ0.

Proof. Let us consider the unique solution X(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0 of the
system (2.2) X(t− η, t0,X0) for t ≥ τ0, where X(t, t0,X0) is the unique solution through
(t0,X0) of the differential system (2.1) for t ≥ t0, t0 ∈ R+, and let the differential system
(2.3) admit the unique solution Y(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0.
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Let
∼
Q(σ)= Y(t,σ ,X(σ −η)) for τ0 ≤ σ ≤ t, whereX(τ0−η, t0,X0)= X0; differentiating

∼
Q with respect to σ and integrating between τ0 and t, we get

X
(
t−η, t0,X0

)= Y(t,τ0,X0
)

+
∫ t

τ0

∂Y

∂τ0

(
t,σ ,x(σ −η)

)
dσ

+
∫ t

τ0

∂Y

∂Y0

(
t,σ ,x(σ −η)

)
F
(
σ −η,x(σ −η)

)
dσ.

(3.21)

Now, let

∼
P(s)= Y(t,τ0,Ω(s)

)
, Ω(s)= Y0s+ (1− s)X0 for 0≤ s≤ 1, (3.22)

then we have

d

ds

[∼
P(s)

]= ∂Y

∂Y0

(
t,τ0,Ω(s)

)[
Y0−X0

]
. (3.23)

Integrating with respect to s from 0 to 1, we get

Y
(
t,τ0,Y0

)= Y(t,τ0,X0
)

+
∫ 1

0

∂Y

∂Y0

(
t,τ0,Ω(s)

)
ds
[
Y0−X0

]
, t ≥ τ0 ≥ 0. (3.24)

Combining (3.21) and (3.24) yields (3.20) which is equivalent to (3.12). Here (3.20) gives
us the relation between the solutions of the nonlinear unperturbed matrix differential
equation (2.1) and nonlinear perturbed matrix differential equation (2.3) starting at dif-
ferent initial data in time and space. �

Remark 3.7. Assume that the solution of nonlinear perturbed matrix differential equa-
tion (2.3) Y(t,τ0,Y0) has continuous partial derivatives ∂Y/∂τ0 and ∂Y/∂Y0 on R+ ×
R+ ×Rn×n and the solution of nonlinear unperturbed and perturbed matrix differen-
tial systems (2.2) and (2.3) admit unique solutions X(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0

and Y(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0, respectively. If η = 0, then Y(t,τ0,Y0) and
X(t,τ0,X0) satisfy the integral equation

Y
(
t,τ0,Y0

)−X(t,τ0,X0
)=−

∫ t

τ0

[
∂Y

∂τ0

(
t,σ ,X(σ)

)
+
∂Y

∂Y0

(
t,σ ,X(σ)

)
F
(
σ ,X(σ)

)
]

dσ

+
∫ 1

0

∂Y

∂Y0

(
t,τ0,Ω(s)

)
ds
[
Y0−X0

]
,

(3.25)

where Ω(s)= Y0s+ (1− s)X0 for 0≤ s≤ 1 and t ≥ τ0.
Here (3.25) gives us the relation between the solutions of the nonlinear unperturbed

matrix differential equation (2.1) and nonlinear perturbed matrix differential equation
(2.3) starting at the same in time and at different initial positions in space.

Recently, the qualitative behavior of nonlinear differential systems with an initial time
difference has been investigated for systems with a different initial position and a different
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initial time [8–11]. The definitions of the notions of Lipschitz stability are not with re-
spect to the null solution but with respect to the unperturbed differential system that also
has a difference in initial time and in initial position. We use these definitions of initial
time difference Lipschitz stability to obtain results in Section 4.

4. Lipschitz stability criteria for nonlinear matrix differential systems
with initial time difference

Next, we will show that in the nonlinear case, initial time difference Lipschitz stability
for matrix system of equations is stronger than stability with initial time difference in
uniform or not in uniform.

Theorem 4.1. Lipschitz stability for the nonlinear matrix differential system with initial
time difference does imply stability for the nonlinear matrix differential system with initial
time difference.

Proof. By using the definition of Lipschitz stability with initial time difference in Defini-
tion 2.1, assume that the solution Y(t,τ0,Y0) of the nonlinear matrix differential system
(2.3) through (τ0,Y0) is initial time difference Lipschitz stable with respect to the solu-
tion X(t− η, t0,X0) for t ≥ τ0, where X(t, t0,X0) is any solution of the nonlinear matrix
differential system (2.1) and η = τ0− t0 ≥ 0. Then there exists an L= L(τ0) > 0 such that

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤ L(τ0

)[∥
∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]
, t ≥ τ0. (4.1)

Given any ε > 0, we can choose

∥
∥Y0−X0

∥
∥ <

ε

2L
= δ1

(
ε,τ0

)
,

∣
∣τ0− t0

∣
∣ <

ε

2L
= δ2

(
ε,τ0

)
, (4.2)

then we get

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥ < ε, t ≥ τ0, (4.3)

and so Y(t,τ0,Y0) the solution of the nonlinear matrix differential system (2.3) through
(τ0,Y0) is initial time difference Lipschitz stable with respect to the solutionX(t−η, t0,X0)
for t ≥ τ0, where X(t, t0,X0) is any solution of the nonlinear matrix differential system
(2.1) and η = τ0− t0 ≥ 0.

If L is independent of τ0, then so are δ1 and δ2 and the result holds uniformly. �

Theorem 4.2. Initial time difference stability for nonlinear matrix differential system does
not imply Lipschitz stability for nonlinear matrix differential system with initial time differ-
ence.

For the proof, see [7].
For the special case of Y0 = X0 and τ0 = t0, there is a counterexample previously con-

structed in [2, Example 1.4].

Theorem 4.3. Let the nonlinear matrix differential systems (2.2) and (2.1) admit unique
solutions X(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0 and X(t, t0,X0) through (t0,X0) for t ≥ t0,
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respectively. Let X(t−η, t0,X0) be defined for t ≥ τ0 and η = τ0− t0 ≥ 0. Assume that
(i) there exist finite, nonnegative constants K(τ0) and ln(M(τ0)) such that

∫∞
τ0
N(s)ds=

K(τ0) and
∫∞
τ0
λ(s)ds= ln(M(τ0)), where N(s),λ(s)∈ C[[0,∞),R+],

(ii) F is Lipschitzian in time and space such that

∥
∥F
(
t,V

(
t,τ0,V0

)
+X

(
t−η, t0,X0

))−F(t−η,X
(
t−η, t0,X0

))∥
∥

≤ λ(t)
∥
∥V(t)

∥
∥+

|η|
K
(
τ0
)N(t),

(4.4)

where V(t,τ0,V0)= X(t,τ0,Y0)−X(t−η, t0,X0), V0 = Y0−X0 for t ≥ τ0.
Then the solution X(t,τ0,Y0) of nonlinear matrix differential equation of (2.2) is initial

time difference Lipschitz stable with respect to the solution X(t−η, t0,X0).

Proof. Let us consider the unique solutionsX(t,τ0,Y0) through (τ0,Y0) andX(t−η, t0,X0)
through (t0,X0) for t ≥ τ0 of (2.1) and (2.2), respectively. Let us set

V
(
t,τ0,V0

)= X(t,τ0,Y0
)−X(t−η, t0,X0

)
, V0 = Y0−X0, t ≥ τ0. (4.5)

By using assumptions (i) and (ii), we obtain

∥
∥V
(
t,τ0,V0

)∥
∥≤ ∥∥Y0−X0

∥
∥+

∫ t

τ0

[

λ(s)
∥
∥V(s)

∥
∥+

|η|
K
(
τ0
)N(s)

]

ds,

Z(t)≤ Z(t0
)

+ |η|+
∫ t

τ0

[
λ(s)Z(s)

]
ds,

(4.6)

where Z(t)=‖X(t,τ0,Y0)−X(t−η, t0,X0)‖, Z0=‖Y0−X0‖ for t≥τ0. By using Gronwall’s
inequality for Z(t) and λ(s) in (4.6),

∥
∥X
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤ L[∥∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]

(4.7)

for M(τ0)≤ L. Definition 2.2 leads to the desired conclusion.
If ln(M(τ0)) is independent of τ0, then the solutionX(t,τ0,Y0) of nonlinear matrix dif-

ferential equation of (2.2) is initial time difference uniformly Lipschitz stable with respect
to the solution X(t−η, t0,X0). �

Theorem 4.4. Let the nonlinear matrix differential systems of (2.1), (2.2), and (2.3) admit
unique solutions X(t, t0,X0) through (t0,X0) for t ≥ t0, X(t,τ0,Y0) through (τ0,Y0), and
Y(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0, respectively. Let X(t− η, t0,X0) be defined for t ≥ τ0

and η = τ0− t0 ≥ 0. Assume that the hypotheses of Theorem 4.3 are satisfied, and
(i) the solution X(t,τ0,Y0) of nonlinear matrix differential equation of (2.2) is initial

time difference uniformly Lipschitz stable with respect to the solution X(t−η, t0,X0),
(ii) there exist an M1 and λ1 ∈ C[[0,∞),R+], and the matrices W and Z as in Theorem

3.2

∥
∥W

(
t,s,Y(s)

)∥
∥
∥
∥Z
(
t,s,Y(s)

)∥
∥≤M1,

∥
∥R
(
s,Y(s)

)∥
∥≤ λ1(s)

∥
∥Y(s)

∥
∥, (4.8)

where ‖Y(s)‖ ≤ α for α > 0.
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Then the solution Y(t,τ0,Y0) of nonlinear matrix differential equation of (2.2) is initial
time difference uniformly Lipschitz stable in variation with respect to the solution X(t −
η, t0,X0).

Proof. By using Theorem 3.3, formula (3.12), and V(t), V0 = Y0−X0, t ≥ τ0, as in Theo-
rem 4.3(ii), we have

Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)

=V(t,τ0,V0
)

+
∫ t

τ0

W
(
t,s,Y

(
s,τ0,Y0

))
R
(
s,Y
(
s,τ0,Y0

))
Z
(
t,s,Y

(
s,τ0,Y0

))
ds,

(4.9)

the integral equation with different initial time and position for perturbed and unper-
turbed nonlinear matrix differential systems. Then,

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥

≤ [∥∥Y0−X0
∥
∥+

∣
∣τ0− t0

∣
∣
]
L
(
τ0
)

+
∫ t

τ0

∥
∥W

(
t,s,Y

(
s,τ0,Y0

))∥
∥
∥
∥R
(
s,Y
(
s,τ0,Y0

))∥
∥
∥
∥Z
(
t,s,Y

(
s,τ0,Y0

))∥
∥ds, t ≥ τ0.

(4.10)

Setting T(t)= ‖Y(t,τ0,Y0)−X(t− η, t0,X0)‖,
∫ t
τ0
λ1(s)ds=Ω(τ0), M1λ1(t)= λ(t) for t ≥

τ0, we obtain

T(t)≤ C+
∫ t

τ0

λ(s)T(s)ds, (4.11)

where C = [(‖Y0−X0‖+ |τ0− t0|)L(τ0) +αM2
1Ω(τ0)]. Applying Gronwall’s inequality,

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤M[∥∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]
, t ≥ τ0, (4.12)

where

M = [∥∥Y0−X0
∥
∥+

∣
∣τ0− t0

∣
∣
]−1[[(∥∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
)
L
(
τ0
)

+αM2
1Ω
(
τ0
)]]

exp
[
M1N1

(
τ0
)]
.

(4.13)

By using Definition 2.2, the solution Y(t,τ0,Y0) of the nonlinear matrix differential sys-
tem (2.3) through (τ0,Y0) is initial time difference uniformly Lipschitz stable in variation
with respect to the solution X(t−η, t0,X0) for t ≥ τ0. This completes the proof. �
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Theorem 4.5. Let the nonlinear matrix differential systems of (2.2) admit the unique so-
lution X(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0 and let the nonlinear matrix differential sys-
tems of (2.1) admit the unique solution X(t− η, t0,X0) through (t0,X0) for t ≥ τ0 and η =
τ0− t0 ≥ 0. Assume that

(i) for P, p ∈�, p is antiderivative of P and V(t,τ0,V0)= X(t,τ0,Y0)−X(t−η, t0,X0)
for t ≥ τ0,

lim
h→0−

∥
∥V
(
t,τ0,V0

)
+
[
F
(
t,X
(
t−η, t0,X0

)
+V
(
t,τ0,V0

))−F(t,X(t−η,t0,X0
))]
h
∥
∥−∥∥V(t,τ0,V0

)∥
∥

h

≤−p(t)
∥
∥V
(
t,τ0,V0

)∥
∥,

(4.14)

(ii) nonlinear Matrix F is Lipschitz in time such that

∥
∥F
(
t,X
(
t−η, t0,X0

))−F(t−η,X
(
t−η, t0,X0

))∥
∥≤ L1(t)

|η|
L2
(
τ0
) , (4.15)

where L2 ∈ C[R+,R+] and
∫∞
τ0

exp[P(u)−P(τ0)]L1(u)du= L2(τ0).
Then the solution X(t,τ0,Y0) of nonlinear unperturbed matrix differential equation of

(2.2) is initial time difference generalized exponentially asymptotically Lipschitz stable with
respect to the solution X(t−η, t0,X0).

Proof. Let us consider the unique solution X(t,τ0,Y0) through (τ0,Y0) of the system (2.2)
for t ≥ τ0 and let the nonlinear matrix differential systems of (2.1) admit the unique
solution X(t− η, t0,X0) through (t0,X0) for t ≥ τ0 and η = τ0− t0 ≥ 0, where X(t, t0,X0)
is the solution of the system (2.1) through (t0,X0) for t ≥ t0. Setting T(t)= ‖V(t,τ0,V0)‖,
by differentiating and using a Taylor approximation for V , we have

T′(t)≤−p(t)T(t) +
|η|

L2
(
τ0
)L1(t), T

(
τ0
)= ∥∥Y0−X0

∥
∥ (4.16)

differential inequality which leads to the inequality

T(t)≤ exp
[

−
∫ t

τ0

p(s)ds
][

T
(
τ0
)

+
|η|

L2
(
τ0
)

∫ t

τ0

exp
[∫ u

τ0

p(s)ds
]

L1(u)du
]

. (4.17)

By using assumption (ii), we obtain

T(t)≤ exp
[
P
(
τ0
)−P(t)

]
[

T
(
τ0
)

+
|η|

L2
(
τ0
)

∫∞

τ0

exp
[∫ u

τ0

p(s)ds
]

L1(u)du
]

,

T(t)≤ exp
[
P
(
τ0
)−P(t)

][
T
(
τ0
)

+ |η|], T
(
τ0
)= ∥∥Y0−X0

∥
∥,

(4.18)

which is

∥
∥X
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤ exp

[
P
(
τ0
)−P(t)

][∥
∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]
. (4.19)

By using Definition 2.5 with L = 1, the solution X(t,τ0,Y0) of nonlinear unperturbed
matrix differential equation of (2.2) is initial time difference generalized exponentially
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asymptotically Lipschitz stable with respect to the solutionX(t−η, t0,X0). This completes
the proof. �

Remark 4.6. Let the nonlinear matrix differential systems of (2.2) admit the unique so-
lution X(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0 and let the nonlinear matrix differential sys-
tems of (2.1) admit the unique solution X(t − η, t0,X0) through (t0,X0) for t ≥ τ0 and
η = τ0− t0 ≥ 0. Assume that

(i) for ϑ > 0 and V(t,τ0,V0)= X(t,τ0,Y0)−X(t−η, t0,X0) for t ≥ τ0,

lim
h→0−

‖V(t,τ0,V0)+[F(t,X(t−η, t0,X0)+V(t,τ0,V0))−F(t,X(t−η, t0,X0))]h‖−‖V(t,τ0,V0)‖
h

≤−ϑ‖V(t,τ0,V0)‖,
(4.20)

(ii) nonlinear Matrix F is Lipschitz in time such that

∥
∥F
(
t,X
(
t−η, t0,X0

))−F(t−η,X
(
t−η, t0,X0

))∥
∥≤ L1(t)

|η|
L2
(
τ0
) , (4.21)

where L2 ∈ C[R+,R+] and
∫∞
τ0

exp[ϑ(s− τ0)]L1(s)ds= L2(τ0).
Then the solutionX(t,τ0,Y0) of nonlinear unperturbed matrix differential equation of

(2.2) is initial time difference exponentially asymptotically Lipschitz stable with respect
to the solution X(t−η, t0,X0).

Proof. Let us consider the unique solution X(t,τ0,Y0) through (τ0,Y0) of the system (2.2)
for t ≥ τ0 and let the nonlinear matrix differential systems of (2.1) admit the unique
solution X(t− η, t0,X0) through (t0,X0) for t ≥ τ0 and η = τ0− t0 ≥ 0, where X(t, t0,X0)
is the solution of the system (2.1) through (t0,X0) for t ≥ t0. Setting T(t)= ‖V(t,τ0,V0)‖,
by differentiating and using a Taylor approximation for V , we have

T′(t)≤−ϑT(t) +
|η|

L2
(
τ0
)L1(t), T

(
τ0
)= ∥∥Y0−X0

∥
∥ (4.22)

differential inequality which leads to the inequality

T(t)≤ exp
[− ϑ(t− τ0

)]
[

T
(
τ0
)

+
|η|

L2
(
τ0
)

∫∞

τ0

exp
[
ϑ
(
s− τ0

)]
L1(s)ds

]

. (4.23)

By using assumption (ii), we obtain

T(t)≤ exp
[− ϑ(t− τ0

)][
T
(
τ0
)

+ |η|], T
(
τ0
)= ∥∥Y0−X0

∥
∥, (4.24)

which is
∥
∥X
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤ exp

[− ϑ(t− τ0
)][∥
∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]
. (4.25)

By using Definition 2.5 with L = 1 and P(t) = ϑt, ϑ > 0, the solution X(t,τ0,Y0) of non-
linear unperturbed matrix differential equation of (2.2) is initial time difference expo-
nentially asymptotically Lipschitz stable with respect to the solution X(t−η, t0,X0). This
completes the proof. �
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Theorem 4.7. Let the nonlinear matrix differential systems of (2.1), (2.2), and (2.3) admit
unique solutions X(t, t0,X0) through (t0,X0) for t ≥ t0, X(t,τ0,Y0) through (τ0,Y0), and
Y(t,τ0,Y0) through (τ0,Y0) for t ≥ τ0, respectively. Let X(t− η, t0,X0) be defined for t ≥ τ0

and η = τ0 − t0 ≥ 0. In addition to the hypotheses of Theorem 4.3 being satisfied, assume
that

(i) the solution X(t,τ0,Y0) of nonlinear matrix differential equation of (2.2) is initial
time difference exponentially asymptotically Lipschitz stable with respect to the solu-
tion X(t−η, t0,X0),

(ii) there exist an N and λ ∈ C[[0,∞),R+], the matrices W and Z as in Theorem 3.2,
and

∥
∥W

(
t,s,Y(s)

)∥
∥
∥
∥Z
(
t,s,Y(s)

)∥
∥≤N exp

[−α(t− s)],
∥
∥R
(
s,Y(s)

)∥
∥≤ λ(s)

∥
∥Y(s)

∥
∥,

(4.26)

where ‖Y(s)‖ ≤ α for α > 0.
Then the solution Y(t,τ0,Y0) of nonlinear perturbed matrix differential equation of (2.3)

is initial time difference exponentially asymptotically Lipschitz stable in variation with re-
spect to the solution X(t−η, t0,X0).

Proof. By Theorem 4.3 and the assumptions (i) and (ii), we have

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥

≤ ∥∥V(t,τ0,V0
)∥
∥

+
∫ t

τ0

∥
∥W

(
t,s,Y

(
s,τ0,Y0

))∥
∥
∥
∥R
(
s,Y
(
s,τ0,Y0

))∥
∥
∥
∥Z
(
t,s,Y

(
s,τ0,Y0

))∥
∥ds

≤M[∥∥Y0−X0
∥
∥+

∣
∣τ0− t0

∣
∣exp−α(t− τ0

)]
+
∫ t

τ0

Nλ(s)exp
[−α(t− s)]∥∥Y(s)

∥
∥ds.

(4.27)

Setting T(t)= exp[−α(t− τ0)]‖Y(t,τ0,Y0)−X(t−η, t0,X0)‖, we obtain

T(t)
[
M
[∥
∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]

+N2αN1
(
τ0
)]

+
∫ t

τ0

Nλ(s)T(s)ds, t ≥ τ0, (4.28)

where N1(τ0)= ∫ tτ0
λ(s)ds. By using Gronwall’s inequality, we have

T(t)≤ [M[∥∥Y0−X0
∥
∥+

∣
∣τ0− t0

∣
∣
]

+N2αN1
(
τ0
)]

exp
[∫ t

τ0

Nλ(s)ds
]

, t ≥ τ0,

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥

≤ [M[∥∥Y0−X0
∥
∥+

∣
∣τ0− t0

∣
∣
]

+N2αN1
(
τ0
)]

exp
[
NN1

(
τ0
)]

exp
[−α(t− τ0

)]
.

(4.29)
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If we choose

L
(
α,τ0

)= [∥∥Y0−X0
∥
∥+

∣
∣τ0− t0

∣
∣
]−1[

M
[∥
∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]

+N2αN1
(
τ0
)]

exp
[
NN1

(
τ0
)]

,
(4.30)

then we get the desired conclusion. Hence,

∥
∥Y
(
t,τ0,Y0

)−X(t−η, t0,X0
)∥
∥≤ L[∥∥Y0−X0

∥
∥+

∣
∣τ0− t0

∣
∣
]

exp
[−α(t− τ0

)]
, (4.31)

where L = L(α,τ0). The solution Y(t,τ0,Y0) of nonlinear perturbed matrix differential
equation of (2.2) is initial time difference exponentially asymptotically Lipschitz stable
in variation with respect to the solution X(t− η, t0,X0). This completes the proof of the
theorem. �

Theorem 4.8. Exponentially asymptotically (uniform) Lipschitz stability with initial time
difference for the nonlinear matrix differential system does imply asymptotically (uniform)
Lipschitz stability with initial time difference for the nonlinear matrix differential system.
Proof. One can prove this theorem very easily by using Definition 2.3 of asymptotically
(uniform) Lipschitz stability with initial time difference. The details are omitted. �

Theorem 4.9. Exponentially asymptotically (uniform) Lipschitz stability in variation with
initial time difference for the nonlinear matrix differential system does imply asymptotically
(uniform) Lipschitz stability in variation with initial time difference for the nonlinear matrix
differential system.

Proof. One also can prove this theorem very easily by using Definition 2.4 of asymptot-
ically Lipschitz stability in variation with initial time difference. The details are omit-
ted. �
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MONOTONE TECHNIQUE FOR NONLINEAR
SECOND-ORDER PERIODIC BOUNDARY VALUE
PROBLEM IN TERMS OF TWO MONOTONE FUNCTIONS

COSKUN YAKAR AND ALI SIRMA

This paper investigates the fundamental theorem concerning the existence of coupled
minimal and maximal solutions of the second-order nonlinear periodic boundary value
problems involving the sum of two different functions. We have such a problem in ap-
plied mathematics, which has several applications to the theory of monotone iterative
techniques for periodic problems, as has been pointed in the several results and theorems
made in the paper.

Copyright © 2006 C. Yakar and A. Sırma. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The method of upper and lower solutions has been effectively used, an interesting and
fruitful technique, for proving the existence results for a wide variety of nonlinear pe-
riodic boundary value problems. When coupled with monotone iterative technique, it
manifests itself as an effective and flexible mechanism that offers theoretical as well as
constructive existence results in a closed set, generated by lower and upper solutions.
One obtains a constructive procedure for obtaining the solutions of the nonlinear prob-
lems besides enabling the study of the qualitative properties of the solutions of periodic
boundary value problems. The concept embedded in these techniques has proved to be
of enormous value and has played an important role consolidating a wide variety of non-
linear problems [1–4]. Moreover, iteration schemes are also useful for the investigation
of qualitative properties of the solutions, particularly, in unifying a variety of periodic
nonlinear boundary value problems.

We have to refer [1, 2] for an excellent and comprehensive introduction to the mono-
tone iterative techniques for nonlinear periodic boundary value problems.

This method has further been exploited in combination with the method of quasilin-
earization to obtain concurrently the lower and upper bounding monotone sequences,
whose elements are solutions of linear boundary value problems which converge uni-
fomly and monotonically to the unique solution of (2.1) and the convergence is quadratic.

Hindawi Publishing Corporation
Proceedings of the Conference on Differential & Difference Equations and Applications, pp. 1217–1229
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This extemporization, known as generalized quasilinearization, has also been effectively
used to study the second-order nonlinear periodic boundary problems [1, 2].

In many cases, we can find a minimal solution and a maximal solution for (2.1) be-
tween the lower and upper solutions using the monotone iterative technique. The follow-
ing fundamental theorems are of importance in this context.

2. Basic definitions and theorems

Consider the second-order periodic boundary value problem

−u′′ = f (t,u), u(0)= u(2π), u′(0)= u′(2π), (2.1)

where f ∈ C[JxR,R] and J = [0,2π].
Before the main theorems, let us give the definition of lower and upper solutions of

(2.1) and the comparison lemma.

Definition 2.1. Given α,β ∈ C2,0[J ,R] and α,β satisfy
(i) −α′′ ≤ f (t,α), t ∈ J , α(0)= α(2π), and α′(0) � α′(2π),

(ii) −β′′ � f (t,β), t ∈ J , β(0)= β(2π), and β′(0)≤ β′(2π),
then α and β are called lower and upper solutions of second-order PBVP, respectively.

Now we have the comparison lemma.

Lemma 2.2. Let m∈ C2,0[J ,R] and let m satisfy

−m′′(t)≤−M2m(t), m(0)=m(2π), m′(0)≥m′(2π), t ∈ J , (2.2)

then m(t)≤ 0 on J . If equality holds in the above formula, then it becomes m(t)= 0 on J .

Proof. Assume by contradiction that there exists t0 ∈ [0,2π] and there exists ε > 0 such
thatm(t0)= ε for all t ∈ J m(t)≤ ε. Assume that t0 ∈ (0,2π). In this case sincem has local
maximum at t = t0 on J , then it becomes m′(t0)= 0 and m′′(t0)≤ 0 so that

0≤−m′′(t0
)≤−M2m

(
t0
)=−M2ε < 0, (2.3)

which is a contradiction. Let t0 = 0 or 2π, then m(0) = m(2π) = ε and m(t) ≤ ε on J .
This implies that m′(0)≤ 0 and m′(2π)≥ 0. Using the boundary conditions, we arrive at
0≥m′(0)≥m′(2π)≥ 0, that is, m′(0)=m′(2π)= 0. Hence for i= 1 or 2π, and

−m′′(i)≤−M2m(i)=−M2ε < 0, (2.4)

this contradicts with m(0)=m(2π)= ε. �

Theorem 2.3. Assume that α and β are lower and upper solutions of second-order PBVP
(2.1), respectively. Assume also that for α(t)≤ u2 ≤ u1 ≤ β(t), f satisfying

f
(
t,u1

)− f
(
t,u2

)≥−M2(u1−u2
)
, (2.5)
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then there exist monotone sequences {αn(t)} and {βn(t)} with α0 = α and β0 = β, and

α= α0 ≤ α1 ≤ ··· ≤ αn ≤ βn ≤ ··· ≤ β1 ≤ β0 = β (2.6)

such that they converge uniformly to minimal and maximal solutions of (2.5), respectively,
on [α,β]= {u∈ C[J ,R] : α≤ u≤ β}.
Proof. For any

η ∈ [α,β]= {η ∈ C[J ,R] : α(t)≤ η(t)≤ β(t), t ∈ J}, (2.7)

consider the second-order linear PBVP

−u′′(t) +M2u(t)= σ(t,η), u(0)= u(2π), u′(0)= u′(2π), (2.8)

where

σ(t,η)≡ f (t,η) +M2η. (2.9)

We can find solution u(t) of (2.1) in the following way.
First solve homogeneous equation

u′′(t)−M2u(t)= 0. (2.10)

It has solution in the form of

u(t)= c1e
Mt + c2e

−Mt, (2.11)

where c1 and c2 are real constants. Using the method of undetermined coefficients, solu-
tion of (2.8) becomes in the form of

u(t)= c1(t)eMt + c2(t)e−Mt. (2.12)

Now we need to find the functions c1(t) and c2(t). Therefore

w(t)=
∣
∣
∣
∣
∣

eMt e−Mt

MeMt −Me−Mt

∣
∣
∣
∣
∣
=−2M�= 0,

w1(t)=
∣
∣
∣
∣
∣

0 e−Mt

1 −Me−Mt

∣
∣
∣
∣
∣
=−e−Mt, w2(t)=

∣
∣
∣
∣
∣

eMt 0

MeMt 1

∣
∣
∣
∣
∣
= eMt,

c1(t)=
∫ t

0

w1(s)h(s)
w(s)

ds=−
∫ t

0

e−Msσ(s,η)
2M

ds,

c2(t)=
∫ t

0

w2(s)h(s)
w(s)

ds=
∫ t

0

e−Msσ(s,η)
2M

ds.

(2.13)
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So that the general solution

u(t)=
[

c1−
∫ t

0

e−Msσ(s,η)
2M

ds
]

eMt +
[

c2 +
∫ t

0

eMsσ(s,η)
2M

ds
]

e−Mt. (2.14)

If we substitute the boundary condition on (2.14), then we can find constants c1 and c2

such that

u(0)= c1 + c2 = u(2π),

u(2π)=−e
2Mπ

2M

∫ 2π

0
e−Msσ(s)ds+

e−2Mπ

2M

∫ 2π

0
eMsσ(s)ds+ c1e

2Mπ + c2e
−2Mπ ,

(2.15)

therefore

(
1− e2Mπ

)
c1 +

(
1− e−2Mπ

)
c2 =−e

2Mπ

2M

∫ 2π

0
e−Msσ(s,η)ds+

e−2Mπ

2M

∫ 2π

0
eMsσ(s,η)ds,

u′(t)=−e
Mt

2

∫ t

0
e−Msσ(s,η)ds− e−Mt

2

∫ t

0
eMsσ(s,η)ds+ c1M · eMt − c2M · e−Mt

(2.16)

so that

u′(0)= c1M− c2M = u′(2π)

=−e
2Mπ

2

∫ 2π

0
e−Msσ(s)ds− e−2Mπ

2

∫ 2π

0
eMsσ(s)ds+ c1M · e2Mπ − c2M · e−2Mπ ,

(2.17)

and hence

(
1− e2Mπ

)
c1−

(
1− e−2Mπ

)
c2 =−e

2Mπ

2M

∫ 2π

0
e−Msσ(s,η)ds− e−2Mπ

2M

∫ 2π

0
eMsσ(s,η)ds.

(2.18)

Combining (2.16) and (2.18), we have

c1 = e2Mπ

2M
(
e2Mπ − 1

)

∫ 2π

0
e−Msσ(s,η)ds. (2.19)

If we subtract (2.17) from (2.18), we get

c2 = 1
2M
(
e2Mπ − 1

)

∫ 2π

0
eMsσ(s,η)ds. (2.20)

Now we claim that the solution u(t) is unique. Using proof by contradiction, assume
that v(t) is another solution of the problem (2.1). Define p(t)= v(t)−u(t) on J ,

−p′′ = −v′′(t) +u′′(t)= σ(t,η)−M2v(t)− [σ(t,η)−M2u(t)
]
,

−p′′ = −M2p, p(0)= p(2π), p′(0)= p′(2π).
(2.21)
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Using Lemma 2.2, we get

p(t)≡ 0, (2.22)

that is,

v(t)≡ u(t). (2.23)

Linear second-order PBVP (2.8) has a unique solution.
Now for any η ∈ [α,β], we can define an operator A by Aη = u, where u is the unique

solution of the PBVP (2.1). We show that
(i) α≤Aα, β ≥ Aβ,

(ii) A is monotone and nondecreasing on [α,β].
To prove (i), define p = α−α1, where α1 = Aα. Then

−p′′ = −α′′ − (−α′′1
)≤ f (t,α)− [ f (t,α) +M2α−M2α1

]
,

−p′′ ≤ −M2p,

p(0)= p(2π), p′(0)≥ p′(2π).

(2.24)

Hence by Lemma 2.2, we get

p(t)≤ 0, (2.25)

implying that

α≤Aα. (2.26)

Similar arguments hold for β ≥ Aβ.
To prove (ii), take η1,η2 ∈ [α,β] such that η1 ≤ η2. Let A η1 = u1 and let A η2 = u2.

Setting p = u1−u2, then

−p′′ = −u′′1 −
(−u′′2

)

=−[ f (t,η2
)− f

(
t,η1

)]
+M2[η1−η2

]−M2[u1(t)−u2(t)
]
.

(2.27)

Since α≤ η1 ≤ η2 ≤ β using inequality (2.5), we get

−p′′ ≤M2[η2−η1
]

+M2[η1−η2
]−M2[u1(t)−u2(t)

]=−M2p,

p(0)= p(2π), p′(0)= p′(2π),
(2.28)

hence by Lemma 2.2, on J ,

p(t)≤ 0, (2.29)

this implies that A is monotone and nondecreasing on [α,β]. It therefore follows that we
can define sequences {αn} and {βn} in such a way that

αn =Aαn−1,

βn =Aβn−1
(2.30)
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with α0 = α and β0 = β on J . By (i) and (ii), we can obtain

α= α0 ≤ α1 ≤ α2 ≤ ··· ≤ αn,

β = β0 ≥ β1 ≥ β2 ≥ ··· ≥ βn.
(2.31)

By using (ii) and mathematical induction, we have

α0 ≤ β0, α1 ≤ β1, α2 ≤ β2, . . . , αn ≤ βn, (2.32)

so that we get the result

α= α0 ≤ α1 ≤ α2 ≤ ··· ≤ αn ≤ βn ≤ ··· ≤ β2 ≤ β1 ≤ β0 = β. (2.33)

Now we will show that the monotone sequences {αn(t)} and {βn(t)} converge uni-
formly to continuous functions ρ(t) and r(t) on J , respectively, by using standard ar-
gument. According to Arzela-Ascoli theorem, if a sequence is uniformly bounded and
equicontinuous, then it has a uniformly convergent subsequence. Namely, since for all
n ∈ N , α0 ≤ αn ≤ β0 on J , then the sequence {αn(t)} is pointwise bounded on J . Since J
is compact, and α0 and β0 are continuous on J , then α0 and β0 have minimum and max-
imum values on J . This shows that {αn} is a uniform bounded sequence of functions on
J . Then

α′n(t)=−e
Mt

2

∫ t

0
e−Msσ

(
s,αn−1

)
ds− e−Mt

2

∫ t

0
eMsσ

(
s,αn−1

)
ds+ cn1MeMt − cn2Me−Mt

(2.34)

so that

∣
∣α′n(t)

∣
∣≤ eMt

2

∫ t

0
e−Ms

∣
∣σ
(
s,αn−1

)∣
∣ds+

e−Mt

2

∫ t

0
eMs
∣
∣σ
(
s,αn−1

)∣
∣ds

+
∣
∣cn1

∣
∣MeMt +

∣
∣cn2

∣
∣Me−Mt.

(2.35)

Since f is continuous on J and {αn} is uniformly bounded, and there exists anN > 0 such
that |σ(s,αn)| ≤N for each n, therefore

∣
∣α′n(t)

∣
∣≤ e2πM

2

∫ 2π

0

∣
∣σ
(
s,αn−1

)∣
∣ds+

e2πM

2

∫ 2π

0

∣
∣σ
(
s,αn−1

)∣
∣ds+

∣
∣cn1

∣
∣Me2πM +

∣
∣cn2

∣
∣M

≤ e2πM

2
2πN +

e2πM

2
2πN + 2πNMe2πM + 2πNM = K.

(2.36)

This shows that the sequence {α′n} is uniformly bounded on J .
Using mean value theorem, for all x, y ∈ J , there exists ξ ∈ (x, y) such that

αn(y)−αn(x)= (y− x)α′n(ξ),
∣
∣αn(y)−αn(x)

∣
∣≤ ∣∣(y− x)

∣
∣K. (2.37)
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As it is seen, K is independent of x and y. Taking δ = ε/K , we see that {αn} is equicon-
tinuous on J . Since {αn} is uniformly bounded and equicontinuous on J , then by Arzela-
Ascoli theorem {αn} has uniform convergent subsequence {αnk}. Since {αn} is a mono-
tone sequence, then

lim
n→∞αn(t)= ϑ(t) (2.38)

uniformly. And because of the uniform convergence on J , for all t∗ ∈ J ,

lim
t→t∗

ϑ(t)= lim
t→t∗

(

lim
n→∞αn(t)

)

= lim
n→∞

(

lim
t→t∗

αn(t)
)

= lim
n→∞αn

(
t∗
)= ϑ(t∗). (2.39)

That is, ϑ is continuous on J . Now let us show that ϑ(t) is a minimal solution of second-
order PBVP (2.1). Since for all n ≥ 1, αn is the solution of the periodic boundary value
problem

−α′′n (t) +M2αn(t)= f
(
t,αn

)
+M2αn, αn(0)= αn(2π),

α′n(0)= α′n(2π),
(2.40)

then if we take limit of both sides for n→∞ using the continuity of f ,

−ϑ′′(t) +M2ϑ(t)= f (t,ϑ) +M2ϑ, ϑ(0)= ϑ(2π), ϑ′(0)= ϑ′(2π), (2.41)

that is, we get

−ϑ′′(t)= f (t,ϑ), ϑ(0)= ϑ(2π), ϑ′(0)= ϑ′(2π). (2.42)

This shows that ϑ(t) is a solution of PBVP (2.1).
Now assume that u(t) is a solution of (2.1) with α(t)≤ u(t)≤ β(t) on J . Using math-

ematical induction, let us show that for all n ≥ 1, αn(t) ≤ u(t) on J . For this, let us set
p1(t)= α1(t)−u(t). Then

−p′′1 (t)=−α′′1 (t) +u′′(t)

= f
(
t,α0

)
+M2α0−M2α1(t)− f (t,u)

≤−M2(α0−u
)

+M2α0−M2α1 =−M2p1(t).

(2.43)

Using p1(0)= p1(2π) and p′1(0)= p′1(2π) by comparison lemma, we get α1(t)≤ u(t) so
that we obtain that all n > 1, αn(t)≤ u(t). pn+1(t)= αn+1(t)−u(t),

−p′′n+1(t)=−α′′n+1(t) +u′′(t)

= f
(
t,αn

)
+M2αn−M2αn+1(t)− f (t,u)

≤−M2(αn−u
)

+M2αn−M2αn+1,

−p′′n+1(t)≤−M2pn+1(t).

(2.44)
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Using pn+1(0) = pn+1(2π) and p′n+1(0) = p′n+1(2π) then by comparison lemma, we get
αn+1(t) ≤ u(t) so that we obtain that for all n ≥ 1, αn(t) ≤ u(t). If we take the limit for
n→∞, we get the result ϑ(t) ≤ u(t). This shows that ϑ(t) is the minimum solution of
second-order PBVP (2.1) on [α,β]. With the same way, we can show that the sequence

β= β0 ≥ β1 ≥ β2 ≥ ··· ≥ βn (2.45)

converges uniformly to the maximal solution of PBVP (2.1) on [α,β]. �

3. Main results

In this section we will consider the case when the right-hand side of (2.1) is the sum of the
two functions with some special properties. Consider second-order nonlinear periodic
boundary value problem involving two functions,

−u′′ = f (t,u) + g(t,u), u(0)= u(2π), u′(0)= u′(2π), (3.1)

where f ,g ∈ C[JxR,R].

Definition 3.1. Let α,β ∈ C2,0[J ,R] and if
(i) −α′′ ≤ f (t,α) + g(t,β), t ∈ J , α(0)= α(2π), and α′(0) � α′(2π),

(ii) −β′′ � f (t,β) + g(t,α), t ∈ J , β(0)= β(2π), and β′(0)≤ β′(2π)
are satisfied, then α and β are called coupled lower and upper solutions of the PBVP (3.1).

Theorem 3.2. Assume that α and β are coupled lower and upper solutions of second-order
PBVP (3.1), respectively, with α(t)≤ β(t) on J . Furthermore, the function

F(t,x, y)= f (t,x) + g(t, y) (3.2)

satisfies the inequality

F
(
t, x̂, ŷ

)−F(t,x, y)≤−M2[(x̂− x)+
(
ŷ− y)] (3.3)

with x̂ ≤ x and ŷ ≥ y. Then there exist monotone sequences {αn(t)} and {βn(t)}with α0 = α
and β0 = β and they satisfy

α= α0 ≤ α1 ≤ α2 ≤ ··· ≤ αn ≤ βn ≤ ··· ≤ β2 ≤ β1 ≤ β0 = β (3.4)

such that they converge uniformly to coupled minimal and maximal solutions of (3.1), re-
spectively, on [α,β]= {u∈ C[J ,R] : α≤ u≤ β}.
Proof. Take α0 = α and β0 = β. We can construct elements of monotone sequences using
the following linear periodic boundary value recursive equations of second order:

−α′′n+1 +M2αn+1 = f
(
t,αn

)
+ g
(
t,βn

)
+M2αn =H

(
t,αn,βn

)
,

αn+1(0)= αn+1(2π), α′n+1(0)= α′n+1(2π),
(3.5)

−β′′n+1 +M2βn+1 = f
(
t,βn

)
+ g
(
t,αn

)
+M2βn =H

(
t,βn,αn

)
,

βn+1(0)= βn+1(2π), β′n+1(0)= β′n+1(2π).
(3.6)
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By a similar manner as in Theorem 2.3, it can be shown that (3.5) and (3.6) have unique
solutions, and these solutions are

αn+1(t)=−
∫ t

0

e−MsH
(
t,αn,βn

)

2M
dseMt

+
∫ t

0

eMsH
(
t,αn,βn

)

2M
dse−Mt + c1e

Mt + c2e
−Mt,

(3.7)

where

c1 = e2Mπ

2M
(
e2Mπ − 1

)

∫ 2π

0
e−MsH

(
t,αn,βn

)
ds,

c2 = 1
2M
(
e2Mπ − 1

)

∫ 2π

0
eMsH

(
t,αn,βn

)
ds,

βn+1(t)=−
∫ t

0

e−MsH
(
t,βn,αn

)

2M
dseMt

+
∫ t

0

eMsH
(
t,βn,αn

)

2M
dse−Mt + c3e

Mt + c4e
−Mt,

(3.8)

where

c3 = e2Mπ

2M
(
e2Mπ − 1

)

∫ 2π

0
e−MsH

(
t,βn,αn

)
ds,

c4 = 1
2M
(
e2Mπ − 1

)

∫ 2π

0
eMsH

(
t,βn,αn

)
ds.

(3.9)

Now let us show that {αn} is a monotone nondecreasing sequence and {βn} is a mono-
tone nonincreasing sequence. For this, it is enough to show that

(i) α1 ≥ α0 and β1 ≤ β0,
(ii) if αn ≥ αn−1 and βn ≤ βn−1, then αn+1 ≥ αn and βn+1 ≤ βn. First, for t ∈ J , let us

show that α1 ≥ α0. For this, set p1(t)= α0−α1. Then

−p′′1 (t)=−α′′0 +α′′1 ≤ f
(
t,α0

)
+ g
(
t,β0

)
+α′′1

= f
(
t,α0

)
+ g
(
t,β0

)− [ f (t,α0
)

+ g
(
t,β0

)
+M2(α0−α1

)]
,

(3.10)

therefore

−p′′1 (t)≤−M2p1(t),

p1(0)= α0(0)−α1(0)= α0(2π)−α1(2π)= p1(2π),

p′1(0)= α′0(0)−α′1(0)≥ α0(2π)−α1(2π)= p′1(2π).

(3.11)

By using Lemma 2.2, p1(0)≤ 0, that is, α0 ≤ α1. With the same way, it can be shown that
β1 ≤ β0.
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Now assume that for all n≥ 1, αn ≥ αn−1 and βn ≤ βn−1. Define

pn+1(t)= αn−αn+1. (3.12)

Then

−p′′n+1(t) +M2pn+1(t)=−α′′n +M2αn−
[−α′′n+1 +M2αn+1

]

= [ f (t,αn−1
)− f

(
t,αn

)]
+
[
g
(
t,βn−1

)− g(t,βn
)]

+M2(αn−1−αn
)
.

(3.13)

Since αn−1 ≤ αn and βn−1 ≥ βn using inequality (3.3), we get

−p′′n+1(t) +M2pn+1(t)≤−M2[αn−1−αn +βn−1−βn
]

+M2(αn−1−αn+1
)
, (3.14)

and then

−p′′n+1(t)≤−M2[βn−1−βn
]≤ 0. (3.15)

p(0) = p(2π) and p′(0) = p′(2π) imply again by comparison lemma that pn+1(t) ≤ 0,
that is, αn ≤ αn+1 on J . With the same way, it can be shown that βn ≤ βn−1 so that we get
the results

α= α0 ≤ α1 ≤ α2 ≤ ··· ≤ αn,

β = β0 ≥ β1 ≥ β2 ≥ ··· ≥ βn.
(3.16)

Now let us show that

α= α0 ≤ α1 ≤ α2 ≤ ··· ≤ αn ≤ βn ≤ ··· ≤ β2 ≤ β1 ≤ β0 = β. (3.17)

We know that α0 ≤ β0. Let p1(t)= α1−β1 on J . Then

−p′′1 (t) +M2p1(t)=−α′′1 +M2α1−
(−β′′1 +M2β1

)

= [ f (t,α0
)− f

(
t,β0

)]
+
[
g
(
t,β0

)− g(t,α0
)]

+M2(α0−β0
)
,

(3.18)

since α0 ≤ β0 using (3.3), we get

−p′′1 (t) +M2p1(t)≤−M2[(α0−β0
)

+
(
β0−α0

)]
+M2(α0−β0

)

=M2(α0−β0
)≤ 0.

(3.19)

By p1(0)= p1(2π) and p′1(0)= p′1(2π) using comparison lemma (Lemma 2.2), we obtain
α1 ≤ β1. Now assume that αn ≤ βn. To show that

αn+1 ≤ βn+1, (3.20)

define

pn+1(t)= αn+1−βn+1. (3.21)
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Then

−p′′n+1(t) +M2pn+1(t)=−α′′n+1 +M2αn+1−
(−β′′n+1 +M2βn+1

)

= [ f (t,αn
)− f

(
t,βn

)]
+
[
g
(
t,βn

)− g(t,αn
)]

+M2(αn−βn
)
.

(3.22)

Since αn ≤ βn using (3.3),

−p′′n+1(t) +M2pn+1(t)≤−M2(αn−βn +βn−αn
)

+M2(αn−βn
)≤ 0,

pn+1(0)= pn+1(2π), p′n+1(0)= p′n+1(2π).
(3.23)

Again using comparison lemma, we get the result

αn+1 ≤ βn+1 (3.24)

so that

α= α0 ≤ α1 ≤ α2 ≤ ··· ≤ αn ≤ βn ≤ ··· ≤ β2 ≤ β1 ≤ β0 = β (3.25)

is satisfied. The fact that the monotone sequences {αn(t)} and {βn(t)} converge to con-
tinuous functions ρ(t) and r(t), which are the coupled solutions of (3.1), can be shown
as in Theorem 2.3 by using standard argument. Now let us show that the functions ρ(t)
and r(t) are coupled minimal and maximal solutions of PBVP (3.1). For this, let u be a
solution of (3.1) with α0 ≤ u≤ β0 on J . Now let us show that

(i) α1 ≤ u and u≤ β1,
(ii) αn+1 ≤ u and u≤ βn+1 whenever αn ≤ u and u≤ βn.

To prove (i), define p1(t)= α1(t)−u(t). Then

−p′′1 (t) +M2p1(t)=−α′′1 (t) +u′′(t) +M2[α1(t)−u(t)
]

= [ f (t,α0
)− f (t,u)

]
+
[
g
(
t,β0

)− g(t,u)
]

+M2[α0−u(t)
]
.

(3.26)

Since α0 ≤ u≤ β0 using (3.3),

−p′′1 (t) +M2p1(t)≤−M2[(α0−u
)

+
(
β0−u

)]
+M2[α0−u(t)

]

=−M2(β0−u
)≤ 0,

(3.27)

and by p1(0)= p1(2π), p′1(0)≥ p′1(2π) using comparison lemma, we get α1(t)≤ u(t). In
the same way, it can be shown that β1(t)≥ u(t). Now assume that αn ≤ u and u≤ βn and
define pn+1(t)= αn+1(t)−u(t),

−p′′n+1(t) +M2pn+1(t)=−α′′n+1(t) +u′′(t) +M2[αn+1(t)−u(t)
]

= [ f (t,αn
)− f (t,u)

]
+
[
g
(
t,βn

)− g(t,u)
]

+M2[αn−u(t)
]
.

(3.28)
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Since αn ≤ u and u≤ βn using inequality (3.3),

−p′′n+1(t) +M2pn+1(t)≤−M2[(αn−u
)

+
(
βn−u

)]
+M2[αn−u(t)

]

=−M2(βn−u
)≤ 0.

(3.29)

By pn+1(0)= pn+1(2π), p′n+1(0)≥ p′n+1(2π) using comparison lemma again, αn+1(t)≤u(t).
With the same way, one can show that βn+1(t) ≥ u(t) so that for all n ≥ 1, we obtain
αn(t) ≤ u(t) and βn(t) ≥ u(t). If we take the limit for n→∞, we get the results ρ(t) ≤
u(t) and r(t)≤ u(t) so that we show that ρ(t) and r(t) are coupled extremal solutions of
second-order PBVP (3.1). This completes the proof. �

Theorem 3.3. If the condition in Theorem 3.2 is substituted by inequality (3.3) that f is
nondecreasing and g is nonincreasing with respect to the second variable, then the conclusion
of Theorem 3.2 remains the same.

Proof. The proof is similar to Theorem 3.2 with small differences such that whenever we
use inequality (3.3) in previous proof, we use the fact that f is nondecreasing and g is
nonincreasing with respect to second variable. For example, let us show that for all n≥ 1,
αn+1 ≥ αn whenever αn ≥ αn−1 and βn ≤ βn−1 using this new condition. For this again, let
us define

pn+1(t)= αn−αn+1. (3.30)

Then

−p′′n+1(t) +M2pn+1(t)=−α′′n +M2αn−
[−α′′n+1 +M2αn+1

]

= [ f (t,αn−1
)− f

(
t,αn

)]
+
[
g
(
t,βn−1

)− g(t,βn
)]

+M2(αn−1−αn
)
.

(3.31)

Since αn−1 ≤ αn and βn−1 ≥ βn, f is nondecreasing, and g is nonincreasing with respect
to second variable, we obtain f (t,αn−1)− f (t,αn)≤ 0 and g(t,βn−1)− g(t,βn)≤ 0 so that

−p′′n+1(t) +M2pn+1(t)≤M2(αn−1−αn
)≤ 0. (3.32)

By p(0) = p(2π) and p′(0) = p′(2π) using comparison lemma, we obtain pn+1(t) ≤ 0
which implies that αn ≤ αn+1.

Other inequalities can be shown similarly. This completes the proof. �

Theorem 3.4. If the condition in Theorem 2.3 is substituted by inequality (3.3) that f is
nonincreasing and g is nondecreasing with respect to second variable, we get the same result
in Theorem 3.2.

Remark 3.5. In PBVP (3.1), if we take g(t)= 0, then we obtain PBVP (2.1) and inequality
(3.3) turns into (2.5).
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DIFFERENCE EQUATIONS AND THE ELABORATION
OF COMPUTER SYSTEMS FOR MONITORING AND
FORECASTING SOCIOECONOMIC DEVELOPMENT
OF THE COUNTRY AND TERRITORIES

D. L. ANDRIANOV

A review of the author’s results concerning boundary value problems and control prob-
lems for difference systems is given in context of economic mathematical modeling. The
role of difference models in the elaboration of computer systems for monitoring and
forecasting socioeconomic development of the country and territories is discussed.

Copyright © 2006 D. L. Andrianov. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

An actual problem in the improvement of economy management methods is increasing
the scientifically grounded validity of the decisions made on all levels of economy. One
of the most important trends in its studying is connected with an on-target approach
to forecasting and controlling socioeconomic systems. This approach gives an opportu-
nity to discover methods of reaching strategic targets, balance aims, and their means of
achieving on the level of macroeconomic indexes, and to define attainable target values.

The basic principle of program-target planning is a principle of planning from termi-
nal targets to means (resources and tools of influence), which provides aims reaching.
This principle has been embodied in the decision-making support system (in what fol-
lows - the System) elaborated under the supervision of the author [3]. In the System,
on-target control problem is considered and solved as a task of defining operating pa-
rameters of economic policy (tax load, distribution of government investments between
regions, etc.); these parameters provide given dynamics of indexes of the socioeconomic
development (production in economic branches, ecology standards maintain, etc.). As
economic problems are so hard to solve, one can develop a solution only as a result of
joint work of specialists experienced in synthesizing particular, productive, and industry-
sectoral decisions and are aware of the real content of key processes and relationships,
which take place on micro-, meso-, and macrolevels in modern economy of the Russian
Federation [1, 2, 5, 6]. The key points of the System are based on the dynamic models
of economy in the form of difference equations with some constraints (boundary condi-
tions, target conditions, etc.).

Hindawi Publishing Corporation
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In this paper we give a very brief review of some results concerning boundary value
problems (BVPs) and control problems (CPs) for difference systems (see, e.g., [1, 4]),
which are used in the construction of the System. Then a description of the System elab-
orated is presented.

2. Boundary value problems and control problems for difference equations

Consider the system

x(t+ 1)=
t∑

i=0

A(t, i)x(t) + f (t), t = 0, . . . ,T − 1, (2.1)

where x(t)∈Rn for any t = 0, . . . ,T .
Let us denote by x the T × (T + 1)-matrix with the columns x(0),x(1), . . . ,x(T). The

set of all such matrices is denoted by Mn
T+1. Thus we can write (2.1) in the form

�x = f , (2.2)

where � :Mn
T+1→Mn

T is the linear operator defined by (�x)(t)=x(t+1)−∑t
i=0A(t, i)x(i),

f ∈Mn
T .

The Cauchy problem

�x = f , x(0)= α, (2.3)

is uniquely solvable for any f ∈Mn
T , α∈Rn, and its solution x ∈Mn

T+1 has the represen-
tation

x(t)= X(t)α+ (C f )(t), t = 0, . . . ,T. (2.4)

Here, X(·) is the fundamental matrix of the homogeneous equation �x = 0, C : Mn
T →

Mn
T+1 is the Cauchy operator of (2.1). The Cauchy operator has the representation

(C f )(t)=
t∑

i=1

C(t, i) f (i), t = 0, . . . ,T. (2.5)

The matrices X(t) and C(t, i) are defined by the recurrent equalities

X(t+ 1)=
t∑

i=0

A(t+ 1, i)X(i), t = 0, . . . ,T − 1, X(0)= E;

C(t, i)=
t−1∑

j=1

A(t, j)C( j, i), 1≤ i < t ≤ T ;

C(t, i)= 0, 1≤ t < i≤ T , C(t, t)= E, t = 0, . . . ,T.

(2.6)
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Here and in what follows E stands for the identity matrix. The linear BVP for (2.1) is the
system

�x = f , lx = α, (2.7)

where l :Mn
T+1→Rn is a given linear vector-functional,

lx = B0x(0) + ···+BTx(T). (2.8)

BVP (2.7) is uniquely solvable if and only if det lX �= 0. In the case det lX �= 0, the solution
of (2.7) can be written in the form

x(t)= X(t)[lX]−1α+ (G f )(t), t = 0, . . . ,T , (2.9)

where G :Mn
T →Mn

T+1 is the Green operator of BVP (2.7).
Consider the quasilinear BVP

�x = Fx, lx = ψx, (2.10)

where F :Mn
T+1→Mn

T and ψ :Mn
T+1→Rn are in general nonlinear continuous operators.

Theorem 2.1. Assume that (a) det lX �= 0 and (b) for all solutions of the problems

�x = λFx, lx = λψx, λ∈ [0,1], (2.11)

the total a priori estimate ‖xλ‖Mn
T+1
≤ d <∞ holds.

Then BVP (2.10) has at least one solution x ∈Mn
T+1.

The proof is based on the representation (2.9). The cases when condition (b) of the
theorem is fulfilled are studied in [1, 4].

The linear control problem (CP) for system (2.1) is the problem

�x =Hu+ f , x(0)= α, x(T)= β, (2.12)

where u = {u(0), . . . ,u(T − 1)} ∈Mr
T is the control, H : Mr

T →Mn
T is a given linear op-

erator, and (Hu)(t) =∑T−1
i=0 H(t, i)u(i), t = 0, . . . ,T − 1, with n× r-matrices H(t, i). The

system �x =Hu+ f is called controllable if, for any f ∈Mn
T and α,β ∈Rn, there exists a

control u∈Mr
T such that BVP (2.12) is solvable. Let us denote B( j)=∑T

i=1C(T , i)H(i, j−
1), j = 1, . . . ,T , where C(t, i), i= 1, . . . ,T , are n×n-matrices generating the Cauchy oper-
ator C, and let the n×n matrix W be defined by W = B ·B∗, where B = (B(1), . . . ,B(T)),
·∗ is the symbol of transposition.

Theorem 2.2. CP (2.12) is solvable for any f ∈Mn
T and α,β ∈Rn if and only if detW �= 0.

In the case detW �= 0, CP (2.12) is solved by the control u such that col(u(0), . . . ,u(T − 1))=
B∗W−1(β−X(T)α− (C f )(T)).
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Conditions of the solvability of the nonlinear CP

�x =Hu+F(x,u), x(0)= α, x(T)= β, (2.13)

where F : Mn
T+1×Mr

T →Mn
T is a nonlinear continuous operator, are given by the follow-

ing.

Theorem 2.3. Assume that (a) detW �= 0 and (b) for all solutions of the problems

x = λ[CHu+CF(x,u)
]

+Xα,

u=−λB∗W−1(CF(x,u)
)
(T) +B∗W−1(β−X(T)α

)
,

(2.14)

where λ∈ [0,1], the total a priori estimate

∥
∥
(
xλ,uλ

)∥
∥
Mn

T+1×Mr
T
≤ d <∞ (2.15)

holds.
Then CP (2.13) has at least one solution (x,u)∈Mn

T+1×Mr
T .

Among the problems that arise in economic modeling, a special place is occupied by
the problems of the form

�x = F(x̂,u), (2.16)

lx = ψ(x̂,u), (2.17)

η(x,u)≤ 0. (2.18)

Here, F :Rν×Mr
T →Mn

T , ψ :Rν×Mr
T →Rn, and η :Mn

T+1×Mr
T →Rm are nonlinear con-

tinuous operators; the components of x̂ ∈Rν, ν < n, belong to a fixed collection of com-
ponents of x ∈Mn

T+1 (thus the mapping x→ x̂ is a projector). Assuming � and l to be
such that det lX �= 0 and using the representation (2.9), we can reduce problem (2.16)–
(2.18) to the system of inequalities

η
(
Xψ(x̂,u) +GF(x̂,u),u

)≤ 0. (2.19)

This system is to be solved if we are going to find a control u under which the trajectories
of the dynamic model (2.16) satisfy the constraints (2.17) and (2.18). The main feature
of (2.19) as compared to (2.16)–(2.18) is that in practice it has a much smaller dimension
and allows one to apply the effective algorithms for solving. The techniques of the study
of the problems (2.7), (2.10), (2.12), (2.13), (2.16)–(2.18) are translated into the System
whose description is given in the next section.
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3. Econometric modeling, difference systems, and decision-making support systems

The main source of economy-wide models in the form of difference systems is the econo-
metric modeling. As it was outlined in [7, page 10], “the value of adopting an economet-
ric model-building approach to economics increases, and is indeed necessitated, because
of the fact that both governments and industry are involved in some kind of planning
and target-setting. Furthermore, there is no serious alternative to economy-wide model-
building in carrying out such functions. Even in academic research a large model is some-
times the only vehicle by which the implications and dynamic effects of a theoretical ar-
gument can be evaluated.”

Building, continuously updating, and developing an economy-wide model is a mul-
tifaceted process. Among the features of the process, the following are to be marked off:
it uses a large amount of historical data, covering many aspects of economic activity;
in modeling practice, measurement problems, lag responses, and stability questions are
recurrent issues which have to be faced and to be fully specified.

The estimated model can then be used for the following different but related purposes:
to make conditional forecasts of the future—the conditions being the alternative assump-
tions on future values of exogenous variables or policy strategies, to simulate the conse-
quences of alternative economic policies, and to search for an optimal way of controlling
certain targets through manipulation of certain instruments.

The targets and constraints are set by the so-called decision maker. The defining of
operating parameters and resources is made step by step [5, 6]. Let us discuss the main
steps.

(1) Defining basic variant of economic development.
Compilation of the program (complex of arrangements) begins by analyzing current

socioeconomic states of regions to estimate tendencies and mark problems out.
To forecast regional development, recursive imitation model is used; it is described

by difference equations (linear and nonlinear ones). The model is based on integrated
economic and mathematical methods and models (multiple regression models, models
of static and dynamic balances, etc.). With the help of an imitation model, the tool can
detect possible negative changes in socioeconomic development of the regions and thus
include problem solving into the program today, in case they appear in future.

(2) Searching for operating parameters needed to achieve the target.
Operating parameter here is a means of achieving the aim and element of resources.

Most aims of socioeconomic development have alternative ways to be achieved. For in-
stance, one can raise government investments on the territory of the region, or cut taxes
and meet a lack of budgetary profits by grants and transfers. That is why when searching
for operating parameters (by solving a control problem) one can consider interchange-
able variants or take an appropriate proportion and correlation in operating parameters
usage [3].

(3) Choosing the best combination of operating parameters according to the criteria
stated.

As soon as all variants of possible operating parameters are found, we select the most
effective parameter using the prescribed criteria.
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The necessity to solve complicated tasks of analysis, forecasting, and controlling (con-
ducting many model calculations and working with data) caused the creation of program
complex which contains database constructor; reporting form constructor; and construc-
tor of dynamic models of socioeconomic processes.

Database is aimed at store housing and processing of reporting and perspective infor-
mation on the major indexes of socioeconomic development in the Russian Federation
and its regions.

Reports are formed by report constructor, which conducts information proceeding
(putting in order, clasterization, arithmetic transformations, etc.) and displays data on
the electronic map of the territory.

Constructor of dynamic models of socioeconomic processes makes it possible to form
new models using fitted macro language and apply existing multilinked “chains” of local
models of economic dynamics, financial planning, which are based on different mathe-
matical methods of analysis and forecasting.

As for the models, the complex contains the following:
(i) econometric macroeconomic model of Russia allows forecasting most aggregat-

ed indexes: GDP, inflation, production volumes of the most important branches,
investments, export, import, currency volumes, gold currency reserves, and na-
tional currency rate, which are transferred into models that describe separate
economic sectors in detail. This model contains about 250 econometric and bal-
ance equations;

(ii) model of the payment balance of Russia is aimed at modeling external economic
activity of Russia. It includes indexes of current operations with capital and fi-
nancial ones by balance correlation and considers the dynamics of economic and
political relationships between Russia and the rest of the world, including future.
This model consists of about 80 econometric differences and balance equations;

(iii) model of the federal budget of Russia allows forecasting the main parameters of
the state budget in a period given considering the perspective economic situa-
tion. The model’s calculation algorithms of forming and the assessment of the
federal budget are equal to calculations on articles of profit and expenses classi-
fications, which were used by forming the 2004 federal budget. The model has
about 200 econometric and balance equations;

(iv) interbranch model of Russia provides an opportunity to receive variant balanced
forecasts of socioeconomic development of Russia, which consider structural
shifts of the economy;

(v) complex of imitation models of the RF regions reflects the dynamics of the re-
gional economy functioning on the basis of the integrated system of intercon-
nected macroeconomic indexes which are included into national accounts sys-
tem. The model includes about 300 econometric and balance equations.

Information provision includes aggregated indexes of socioeconomic development,
indexes of income and expenses balance of the population, external trade, branch struc-
ture of production and distribution of goods, products and services, indexes of budgetary
process and inter-budgetary relations, financial markets indexes, as well as classificatory
and reference books used to describe index sections. Sources of information are official
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data from ministries, departments, state and international organizations, and informa-
tion agencies: Federal Service of the State Statistics, Ministry of Finance of Russia, Bank
of Russia, International Monetary Fund, Reuters, Bloomberg, and so forth; structure, for-
mat, methods, and conditions of data transmitting are determined by applied tasks to be
solved.
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