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We develop two mathematical models to study the fly fishing rod static and dynamic
response. Due to the flexible characteristics of fly fishing rod, the geometric nonlinear
models must be used to account for the large static and dynamic fly rod deformations.
A static nonlinear beam model is used to calculate the fly rod displacement under a tip
force and the solution can be represented as elliptic integrals. A nonlinear finite element
model is applied to analyze static and dynamic responses of fly rods.
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1. Introduction

The literature of fishing is the richest among all sports and its history dates back to 2000
B.C. The literature of fishing is restrict among any other sports. Even for a subset of fly
fishing, much literature is available. However, a significant fraction of fly fishing literature
is devoted to its history, rod makers, casting techniques, and so forth. There is a lack of
literature about the technology of fly rods in terms of technical rod analysis, rod design,
and rod performance evaluation.

In this paper, we will use two different approaches to discuss mathematics for a fly rod
based on its geometry and material properties. The first mathematical model is based on
the nonlinear equation of a fly rod under a static tip force. The fly rod responses can be
solved using an elliptic integrals. The second mathematical model is based on the finite
element method, in which a nonlinear finite element model was developed to account for
both static and dynamic responses of a fly rod. Typically, a fly rod is considered a long
slender tapered beam. The variation of fly rod properties along its length will add com-
plexities to our problem. In this paper, we focus on the presentation of two mathematical
models and demonstrate the solution approach. We will continue the follow-up study to
provide simplified and accurate solution/formulas for fly rod design and analysis. The
paper is based on lectures given by the first author during the International Conference
on Differential and Difference Equations which was held at the Florida Institute of Tech-
nology, August 1 to 6, 2005. The first author takes great pleasure in expressing his thank
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Figure 2.1. Uniform cantilever beam under tip point force.

to Professor Ravi Agarwal for organizing this activity and for the warm hospitality that
he received while his visit to Melbourne, Florida.

2. Nonlinear model of fly fishing rod

It was Leonard Euler who first published a result concerning the large deflection of flex-
ible rods in 1744, and it was continued in the Appendix of his book Des Curvis Elastics.
He stated that for a rod in bending, the slope of the deflection curve cannot be neglected
in the expression of the curve unless the deflections are small. Later, this theory was fur-
ther developed by Jacob Bernoulli, Johann Bernoulli, and L. Euler. The derivation of a
mathematical model of a fly rod is based on their fundamental work, which states that
the bending moment M is proportional to the change in the curvature produced by the
action of the load (see Bisshopp and Drucker [4], also Fertis [6]). Of course, one has to
assume that bending does not alter the length of the rod. Now let us consider a long, thin
cantilevel leaf spring. Denote L the length of the rod, δ the horizontal component of the
displacement of the loaded end of the rod, ω the corresponding vertical displacement, P
the concentrated vertical load at the free end, B the flexural stiffness (see Figure 2.1). It is
known that

B = EI , (2.1)

where E is the modulus of elasticity and I is the cross-sectional moment of inertia. If x is
the horizontal coordinate measured from the fixed end of the rod, then the product of B
and the curvature of the rod equal the bending moment M:

B
dθ

ds
= P(L− x− δ)=M⇐⇒ d2θ

ds2
=−P

B

dx

ds
=− P

EI
cosθ, (2.2)

where s is the arc length and θ is the slope angle. It follows that

1
2

(
dθ

ds

)2

=− P

EI
sinθ +C. (2.3)

The constant C can be determined by observing that the curvature at the loaded end is
zero. If θ0 is the corresponding slope, then

dθ

ds
=
√

2P
EI

√
sinθ0− sinθ. (2.4)
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Since the rod is inextensible, the value of θ0 can be calculated implicitly as follows:
√

2PL2

EI
=
√

2P
EI

∫ L

0
ds=

∫ θ0

0

dψ
√

sinθ0− sinθ
. (2.5)

Let

1 + sinθ = 2k2 sin2ψ = (1 + sinθ0
)

sin2ψ. (2.6)

Denote

sinψ1 = 1√
2k

, γ2 = 2PL2

EI
. (2.7)

Then

γ =
∫ π/2

ψ1

dψ
√

1− 2k2 sin2ψ

=
∫ π/2

0

dψ
√

1− 2k2 sin2ψ
−
∫ ψ1

0

dψ
√

1− 2k2 sin2ψ

= K(
√

2k)− sn−1 (sinψ1,
√

2k
)

= K(
√

2k)−F(ψ1,
√

2k
)
,

(2.8)

where

K(k)= π

2

[

1 +
(

1
2

)2

k2 +
(

1 · 3
2 · 4

)2

k4 +
(

1 · 3 · 5
2 · 4 · 6

)2

k6 + ···
]

(2.9)

is the complete elliptic integral of the first kind and F(ψ,k) is the Legendre’s form of the
integral sn−1. Next, one needs to represent the deflection ω in terms of γ and an elliptic
integral. Since

dy

dθ

dθ

ds
= dy

ds
= sinθ, (2.10)

then we have

dy

dθ

2P
EI

√
sinθ0− sinθ = sinθ. (2.11)

It follows that

ω =
∫ y

0
dy = EI

2P

∫ θ0

0

sinθdθ
√

sinθ0− sinθ
. (2.12)

Plugging (2.6) into the above equation, one has

ω

L
= 1√

2γ

∫ θ0

0

sinθdθ
√

sinθ0− sinθ
= 1
γ

∫ π/2

ψ1

(2k2 sin2ψ − 1)dψ
√

1− k2 sin2ψ
. (2.13)



290 Analysis of fly fishing rod

It is known that (see Lawden [7])

∫ π/2

0

sin2ψdψ
√

1− k2 sin2ψ
= 1
k2

(K −E), (2.14)

where

E = π

2

[

1−
(

1
2

)2

k2− 1
3

(
1 · 3
2 · 4

)2

k4− 1
5

(
1 · 3 · 5
2 · 4 · 6

)2

k6 + ···
]

(2.15)

is the complete integral of the second kind. Hence,

∫ π/2

0

2k2 sin2ψdψ
√

1− k2 sin2ψ
= π

2

[

k2 +
3
2

(
1
2

)2

k4 +
5
3

(
1 · 3
2 · 4

)2

k6 +
7
4

(
1 · 3 · 5
2 · 4 · 6

)2

k8 + ···
]

.

(2.16)

Now we need to look at the term

∫ ψ1

0

sin2ψdψ
√

1− k2 sin2ψ
. (2.17)

After changing variables, this elliptic integral can be expressed as a Jacobi’s epsilon func-
tion E(u,k) defined by

E
(
ψ1,k

)=
∫ ψ1

0
dn2udu=

∫ snψ1

0

√
1− k2 sn2 v

1− sn2 v
cnv dnvdv. (2.18)

Therefore,

ω

L
= 1
γ

[
2K − 2E−E(ψ1,k

)
+K(

√
2k)−F(ψ1,

√
2k
)]

= 1
γ

[
1− 2J −E(ψ1,k

)]
,

(2.19)

where

J = K −E = k2
∫ K

0
sn2udu. (2.20)

Now the horizontal displacement of the loaded end can be calculated with x = 0 and
θ = 0. It follows that

P(L− δ)= EI
(
dθ

ds

)∣
∣
∣
∣
θ=0
=
√

2PEI sinθ0 (2.21)

or

L− δ
L
=
√

2
γ

√
sinθ0. (2.22)



Der-Chen Chang et al. 291

Then from (2.6), one has sinθ0 = 2k2 − 1. We have presented a detailed mathematical
solution of beam responses under a tip force. However, in the above solution, a uniform
beam with constant flexural stiffness was assumed. Normally it is not valid for a fly fishing
rod because it has a tapered shape and the flexural stiffness varies along the rod length.
In order to utilize the above elliptic integral solution, we could smear the tapered rod
properties and represent it using an equivalent uniform rod. Also, we can account for the
flexural stiffness variation and conduct similar elliptic integrals. We will continue such
study in a future paper. The goal is to provide a simple engineering solution to fly rod
design and analysis. We need to extract and create such simple solution based on the
results from elliptic integrals.

3. Finite element method

The key idea is to express the nonlinear strain of deformed configuration in terms of
unknown displacements, which are defined with respect to the initial coordinates (see
Wang and Wereley [11]). The Newton-Raphson method must be used to iteratively solve
for the displacement in the nonlinear finite element model. In the finite strain beam the-
ory, we included the shearing deformation, which leads to the Timosenko beam the-
ory and rotation angle is an independent variable and not equal the slope of transverse
displacement. By doing this, we obtain a simple kinematic relationship between strain
and displacements. As discussed in Reissner [9], the nonlinear beam axial strain, ε, shear
strain, γ, and bending curvature, κ, can be expressed in terms of axial displacement, u(x),
transverse displacement, w(x), and rotational displacement, θ, as follows for a straight
beam (see also Antman [1]):

ε =
(

1 +
du

dx

)

cosθ +
dw

dx
sinθ− 1,

γ = du

dx
cosθ−

(

1 +
du

dx

)

sinθ,

κ= dθ

dx
.

(3.1)

The next step is to apply the finite element techniques to discretize the beam system.
Figure 3.1 shows the two-node geometrically nonlinear finite element based on the finite
strain beam theory.

This has been called a geometrically nonlinear Timosenko beam element. The element
is not aligned to the x axis for general consideration, which has an initial angel φ0. The
nodal degrees of freedom were defined in the fixed frame except that the rotation angles
θ1 and θ2 were calculated with respect to the initial element orientation. All displacements
were linearly interpolated within an element using nodal degrees of freedom

u(x)=N1(x)U1 +N2(x)U2,

w(x)=N1(x)W1 +N2(x)W2,

θ(x)=N1(x)θ1 +N2(x)θ2,

(3.2)
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Figure 3.1. Two-node nonlinear finite element based on finite strain beam theory.

where the interpolation functions, N1(x) and N2(x), were defined as

N1(x)= 1− x

L
, N2(x)= x

L
. (3.3)

Let us first study the geometric relationships as shown in Figure 2.1. Given the node coor-
dinates at node 1 (X1,Y1), and node 2 (X2,Y2), the initial reference angle φ0 is determined
by

cosφ0 = X2−X1

L0
, sinφ0 = Y2−Y1

L0
, (3.4)

where

L0 =
√(
X2−X1

)2
+
(
Y2−Y1

)2
. (3.5)

The angle φ0 +ψ can be expressed by

cos
(
φ0 +ψ

)= x2− x1

L
, sin

(
φ0 +ψ

)= y2− y1

L
, (3.6)

where

x1 = X1 +U1, x2 = X2 +U2, y1 = Y1 +W1,

y2 = Y2 +W2, L=
√(
x2− x1

)2
+
(
y2− y1

)2
.

(3.7)

Solving for ψ, one has

cosψ =
(
X2−X1

)(
x2− x1

)
+
(
Y2−Y1

)(
y2− y1

)

LL0
,

sinψ =
(
X2−X1

)(
x2− x1

)− (Y2−Y1
)(
y2− y1

)

LL0
.

(3.8)
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In order to derive the basic stiffness matrices, we need to study the strain and displace-
ment variational relationship

δ��= Bδ��, (3.9)

where δ is a variation operator and �� is the strain vector. Here �� is the nodal displace-
ment vector:

�=
[
ε γ κ

]T
, � =

[
U1 W1 θ1 U2 W2 θ2

]T
. (3.10)

The matrix B is calculated by taking partial derivatives of strain vector with respect to
nodal displacements which can be written as follows:

⎡

⎢
⎢
⎣

cos
(
ωN ′1

)
sin
(
ωN ′1

)
N1γ cos

(
ωN ′2

)
sin
(
ωN ′2

)
N2γ

−sin
(
ωN ′1

)
cos

(
ωN ′1

) −(1 + ε)N1 −sin
(
ωN ′2

)
cos

(
ωN ′2

) −(1 + ε)N2

0 0 N ′1 0 0 N ′2

⎤

⎥
⎥
⎦ ,

(3.11)

where ω = θ +φ0, ε, and γ are evaluated by

ε = Lcosψ cosθ +Lsinψ sinθ
L0

− 1,

γ = Lsinψ cosθ−Lcosψ sinθ
L0

.

(3.12)

Here ε and γ are defined in (3.1). Finally, the beam element potential energy based on the
finite strain beam theory is

U = 1
2

∫ L0

0

{

EA(x̃)ε2 +GA(x̃)γ2 +EI(x̃)
(
dθ

dx̃

)2
}

dx̃

= 1
2

∫ L0

0
�T�dx̃,

(3.13)

where G is the shear modulus and �= [EA(x̃)ε GA(x̃)γ EI(x̃)θ′]T is the stress resul-
tant vector. For isotropic materials, it can be expressed in terms of Young’s modulus, E,
and material constant Poisson ratio, ν:

G= E

2(1 + ν)
. (3.14)

The internal nodal force vector can be obtained by taking the first variation of potential
energy. Hence,

δU =
∫ L0

0
�TBdx̃× δ� (3.15)
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and the nodal internal force vector is

f =
∫ L0

0
BT�Tdx̃. (3.16)

It follows that f is a 6× 1 vector. The tangent stiffness matrix can be defined by taking
the first variation of internal force vector. Therefore,

δ f =
∫ L0

0

(
BTδ�T + δBT�T

)
dx̃ = (�m + �g

)
δ� =�δ�. (3.17)

The tangent stiffness matrix � is the sum of material stiffness �m and geometric stiffness
�g . It is known that the material stiffness matrix is

�m =
∫ L0

0
BT

⎡

⎢
⎢
⎣

EA(x̃) 0 0

0 GA(x̃) 0

0 0 EI(x̃)

⎤

⎥
⎥
⎦B

Tdx̃. (3.18)

In order to calculate the geometric stiffness matrix �g , the important step is to calculate
the variation of the matrix B with respect to nodal displacement. From (3.11), we know
that the matrix B is a function of ε, γ, and θ. Then B is also a matrix-valued function
of nodal displacement. The variation of B with respect to nodal displacements can be
calculated by

δB = ∂B

∂qj
δqj = Bjδqj , j = 1, . . . ,6. (3.19)

After some calculation, the geometric stiffness matrix �g can be written as follows:

�g =
∫ L0

0

(
EA(x̃)εBu +GA(x̃)γBw

)
dx̃, (3.20)

where Bu and Bw are 6× 6 matrices, and they are assembled using the matrices defined in
(3.19) where

Bu =
[
B1(1,·)T B2(1,·)T B3(1,·)T B4(1,·)T B5(1,·)T B6(1,·)T

]
,

Bw =
[
B1(2,·)T B2(2,·)T B3(2,·)T B4(2,·)T B5(2,·)T B6(2,·)T

]
.

(3.21)

In order to take flexibility of a fly rod during a cast into account, we must include the
inertia terms in our nonlinear finite element model. The kinetic energy of a fly rod is

T = 1
2

∫ L0

0

[

ρA(x̃)
(
∂u

∂t

)2

+ ρA(x̃)
(
∂w

∂t

)2

+ ρI(x̃)
(
∂θ

∂t

)2
]

dx̃, (3.22)
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where ρ is the density of the fly rod material. Using the same interpolation functions for
axial displacement, u(x̃), transverse displacement, w(x̃), and rotation angular displace-
ment, θ(x̃), we finally obtain the element mass matrix M which is a 6× 6 matrix with
components

M11 =M22 =
∫ L0

0
ρA(x̃)N2

1dx̃,

M33 =
∫ L0

0
ρI(x̃)N2

1dx̃,

M44 =M55 =
∫ L0

0
ρA(x̃)N2

2dx̃,

M66 =
∫ L0

0
ρI(x̃)N2

2dx̃,

M14 =M41 =M25 =M52 =
∫ L0

0
ρA(x̃)N1N2dx̃,

M36 =M63 =
∫ L0

0
ρI(x̃)N1N2dx̃,

(3.23)

and the rest components are zero. Next, we need to solve the nonlinear dynamic response
by using nonlinear finite element approach. The Newton-Raphson equilibrium iteration
loop can be used to achieve this goal (see Simo and Vu-Quoc [10] and Newmark [8]).
The algorithm of this approach used in our work is listed as follows.

Step 1. Initialize i, i= 0.

Step 2. Predictor

Ui
t+Δt =Ut, Üi

t+Δt =
−1
βΔt

U̇t +
2β− 1

2β
Üt,

U̇i
t+Δt = U̇t +Δt

[
(1− γ)Üt + γÜi

t+Δt

]
.

(3.24)

Step 3. Increment i, i= i+ 1.

Step 4. Calculate effective stiffness, Ki
eff , and residual force vector, Yi,

Ki
eff =

1
βΔt2

Mi−1 +
γ

βΔt
Di−1 +Ki−1

m +Ki−1
g ,

Yi = Riext−Mi−1Üi−1
t+Δt −Di−1U̇i−1

t+Δt −Fi−1
t+Δt .

(3.25)

Step 5. Solve for displacement increment, ΔUi = (Ki
eff )−1Yi.
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Table 3.1. Tip vertical displacement results for a tapered cantilevered beam under tip point force.

Taper parameter Exact NFEM Error

r ω [m] ω [m] [%]

1.0 18.594 18.586 −0.04

1.2 16.302 16.303 0.00

1.4 13.990 13.995 0.03

1.5 12.881 12.885 0.04

1.6 11.822 11.827 0.05

1.8 9.900 9.905 0.05

2.0 8.264 8.270 0.08

2.2 6.910 6.916 0.09

2.5 5.331 5.337 0.10

3.0 3.580 3.585 0.13

Step 6. Corrector

Ui
t+Δt =Ui−1

t+Δt +ΔUi, U̇i
t+Δt = U̇i−1

t+Δt +
γ

βΔt
ΔUi,

Üi
t+Δt = Üi−1

t+Δt +
1

βΔt2
ΔUi.

(3.26)

Step 7. If ‖Yi‖ > 1.0× 10−5, repeat iteration, go to Step 4. Otherwise, t = t+Δt and go to
Step 1.

The parameter values of β = 0.25 and γ = 0.5 were used in our calculation, and D ma-
trix is damping matrix for the fly rod system. We assume that D is the Rayleigh damping
matrix and it is expressed as D = ηM where η is a constant. In order to obtain the conver-
gent and accurate solution, the time step size should be as small as possible. Here we use
Δt ≤ 1.0× 10−3. The convergence of this process has been discussed by Belytschko-Huges
[3] and Argyris-Mlejnek [2]. Similar to the discussion in Chang-Wang-Wereley [5], one
can give a mathematical proof of the convergence of this algorithm. Our predictions of
tip displacements were compared to those obtained by Fertis [6], as shown in Table 3.1.
Here we just list the table of the numerical results for tip vertical displacement results.
The beam was 25.4 meters (1000 in) long, and bending stiffness, EI , was assumed to be
EI = 516.21 N −m2 (180× 103 kip- in2). The variations of beam moment of inertia and
cross-section areas were defined as

EI(x)= EI0
(

r +
1− r
L

x
)3

,

A(x)= A0

(

r +
1− r
L

x
)

,

(3.27)
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where r is a taper parameter, and cross-section area is assumed asA0 = 32.258 cm2 (5 in2),
where Poisson’s ratio is ν= 0. For a fixed tip loading, P = 4448.22N (1 kip), we calculated
tip deflection under different taper rates, or a taper parameter r varying from 1.0 to 3.0.
We will give a detailed discussion and comparison of elliptic integrals and finite element
solution for the fly rod in a forthcoming paper. A simplified engineering solution will be
developed based on the elliptic integral results.
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