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Preface

Since the late 1990s, the authors have produced an extensive portfolio of results on
differential equations and differential inclusions undergoing impulse effects. Both
initial value problems and boundary value problems have been dealt with in their
work. The primary motivation for this book is in gathering under one cover an
encyclopedic resource for many of these recent results. Having succinctly stated
the motivation of the book, there is certainly an obligation to include mentioning
some of the all important roles of modelling natural phenomena with impulse
problems.

The dynamics of evolving processes is often subjected to abrupt changes such
as shocks, harvesting, and natural disasters. Often these short-term perturbations
are treated as having acted instantaneously or in the form of “impulses.” Impulsive
differential equations such as

x′ = f (t, x), t ∈ [0, b] \ {t1, . . . , tm
}

, (1)

subject to impulse effects

Δx
(
tk
) = x

(
t+k
)− x(t−k

) = Ik
(
x
(
t−k
))

, k = 1, . . . ,m, (2)

with f : ([0, b] \ {t1, . . . , tm}) × Rn → Rn and Ik an impulse operator, have
been developed in modelling impulsive problems in physics, population dynam-
ics, biotechnology, pharmacokinetics, industrial robotics, and so forth; in the case
when the right-hand side of (1) has discontinuities, differential inclusions such as

x′(t) ∈ F
(
t, x(t)

)
, t ∈ [0, b] \ {t1, . . . , tm

}
, (3)

subject to the impulse conditions (2), where F : ([0, b] \ {t1, . . . , tm})×Rn → 2Rn
,

have played an important role in modelling phenomena, especially in scenarios
involving automatic control systems. In addition, when these processes involve
hereditary phenomena such as biological and social macrosystems, some of the
modelling is done via impulsive functional differential equations such as

x′ = f
(
t, xt
)
, t ∈ [0, b] \ {t1, . . . , tm

}
, (4)
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subject to (2), and an initial value

x(s) = φ(s), s ∈ [−r, 0], t ∈ [0, b], (5)

where xt(θ) = x(t + θ), t ∈ [0, b], and −r ≤ θ ≤ 0, and f : ([0, b] \ {t1, . . . , tm})×
D → Rn, and D is a space of functions from [−r, 0] into Rn which are continu-
ous except for a finite number of points. When the dynamics is multivalued, the
hereditary phenomena are modelled via impulsive functional differential inclu-
sions such as

x′(t) ∈ F
(
t, xt
)
, t ∈ [0, b] \ {t1, . . . , tm

}
, (6)

subject to the impulses (2) and the initial condition (5).
An outline of the book as it is devoted to articles published by the authors

evolves in a somewhat natural way around addressing issues relating to initial value
problems and boundary value problems for both impulsive differential equations
and differential inclusions, as well as for both impulsive functional differential
equations and functional differential inclusions. Chapter 1 contains fundamen-
tal results from multivalued analysis and differential inclusions. In addition, this
chapter contains a number of fixed point theorems on which most of the book’s
existence results depend. Included among these fixed point theorems are those rec-
ognized their names: Avery-Henderson, Bohnenblust-Karlin, Covitz and Nadler,
Krasnosel’skii, Leggett-Williams, Leray-Schauder, Martelli, and Schaefer. Chapter
1 also contains background material on semigroups that is necessary for the book’s
presentation of impulsive semilinear functional differential equations.

Chapter 2 is devoted to impulsive ordinary differential equations and scalar
differential inclusions, given, respectively, by

y′ − Ay = By + f (t, y), y′ ∈ F(t, y), (7)

each subject to (2), and each satisfies an initial condition y(0) = y0, where A is an
infinitesimal generator of a family of semigroups, B is a bounded linear operator
from a Banach space E back to itself, and F : [0, b] × E → 2E. Chapter 3 deals
with functional differential equations and functional differential inclusions, with
each undergoing impulse effects. Also, neutral functional differential equations
and neutral functional differential inclusions are addressed in which the deriva-
tive of the state variable undergoes a delay. Chapter 4 is directed toward impulsive
semilinear ordinary differential inclusions and functional differential inclusions
satisfying nonlocal boundary conditions such as g(y) = ∑n

k=1 ci y(ti), with each
ci > 0 and 0 < t1 < · · · < tn < b. Such problems are used to describe the diffusion
phenomena of a small amount of gas in a transport tube.

Chapter 5 is focused on positive solutions and multiple positive solutions for
impulsive ordinary differential equations and functional differential equations,
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including initial value problems as well as boundary value problems for second-
order problems such as

y′′ = f
(
t, yt
)
, t ∈ [0, b] \ {t1, . . . , tm

}
, (8)

subject to impulses

Δy
(
tk
) = Ik

(
y
(
tk
))

, Δy′
(
tk
) = Jk

(
y
(
tk
))

, k = 1, . . . ,m, (9)

and initial conditions

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η. (10)

Chapter 6 is primarily concerned with boundary value problems for periodic im-
pulsive differential inclusions. Upper- and lower-solution methods are developed
for first-order systems and then for second-order systems of functional differen-
tial inclusions, y′′(t) ∈ F(t, yt). For Chapter 7, impulsive differential inclusions
satisfying periodic boundary conditions are studied. The problems of interest are
termed as being nonresonant, because the linear operators involved are invertible
in the absence of impulses. The chapter deals with first-order and higher-order
nonresonance impulsive inclusions.

Chapter 8 extends the theory of some of the previous chapters to functional
differential equations and functional differential inclusions under impulses for
which the impulse effects vary with time; that is, y(t+k ) = Ik(y(t)), t = τk(y(t)),
k = 1, . . . ,m. Chapter 9, as well, extends several results of previous chapters on
semilinear problems now to semilinear functional differential equations and func-
tional differential inclusions for operators that are nondensely defined on a Banach
space.

Chapter 10 ventures into results for second-order impulsive hyperbolic differ-
ential inclusions,

∂2u(t, x)
∂t∂x

∈ F
(
t, x,u(t, x)

)
a.e. (t, x) ∈ ([0, a] \ {t1, . . . , tm

})× [0, b],

Δu
(
tk, x
) = Ik

(
u
(
tk, x
))

, k = 1, . . . ,m,

u(t, 0) = ψ(t), t ∈ [0, a] \ {t1, . . . , tm
}

, u(0, x) = φ(x), x ∈ [0, b].
(11)

Such models arise especially for problems in biological or medical domains.
The next to last chapter, Chapter 11, addresses some questions for impulsive

dynamic equations on time scales. The methods constitute adjustments from those
for impulsive ordinary differential equations to dynamic equations on time scales,
but these results are the first such results in the direction of impulsive problems on
time scales. The final chapter, Chapter 12, is a brief chapter dealing with periodic
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boundary value problems for first-order perturbed impulsive systems,

x′ ∈ F
(
t, x(t)

)
+G
(
t, x(t)

)
, t ∈ [0, b] \ {t1, . . . , tm

}
,

x
(
t+j
) = x

(
t−j
)

+ I j
(
x
(
t−j
))

, j = 1, . . . ,m, x(0) = x(b),
(12)

where both F,G : ([0, b] \ {t1, . . . , tm})×R→ 2R.
We express our appreciation and thanks to R. I. Avery, A. Boucherif, B. C.

Dhage, E. Gatsori, L. Górniewicz, J. R. Graef, J. J. Nieto, A. Ouahab, and Y. G. Sfi-
cas for their collaboration in research and to E. Gatsori and A. Ouahab for their
careful typing of some parts of this manuscript. We are especially grateful to the
Editors-in-Chief of the Contemporary Mathematics and Applications book series,
R. P. Agarwal and D. O’Regan, for their encouragement of us during the prepara-
tion of this volume for inclusion in the series.

M. Benchohra
J. Henderson

S. Ntouyas



1
Preliminaries

1.1. Definitions and results for multivalued analysis

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis, which are used throughout this book.

Let (X ,d) be a metric space and let Y be a subset of X . We denote
(i) P (X) = {Y ⊂ X : Y �= ∅};

(ii) Pp(X) = {Y ∈ P(X) : Y has the property “p”}, where p could be cl =
closed, b = bounded, cp = compact, cv = convex, and so forth.

Thus
(i) Pcl(X) = {Y ∈ P(X) : Y closed},

(ii) Pb(X) = {Y ∈ P (X) : Y bounded},
(iii) Pcv(X) = {Y ∈ P(X) : Y convex},
(iv) Pcp(X) = {Y ∈ P (X) : Y compact},
(v) Pcv,cp(X) = Pcv(X)∩Pcp(X), and so forth.

In what follows, by E we will denote a Banach space over the field of real
numbers R and by J a closed interval in R. We let

C(J ,E) = {y : J �→ E | y is continuous
}
. (1.1)

We consider the Tchebyshev norm

‖ · ‖∞ : C(J ,E) �→ [0,∞), (1.2)

defined by

‖y‖∞ = max
{∣∣y(t)

∣
∣, t ∈ J

}
, (1.3)

where | · | stands for the norm in E. Then (C(J ,E),‖ · ‖) is a Banach space.
Let N : E → E be a linear map. N is called bounded provided there exists r > 0

such that

∣
∣N(x)

∣
∣ ≤ r|x|, for every x ∈ E. (1.4)

The following result is classical.
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Impulsive ordinary differential
equations & inclusions

2.1. Introduction

For well over a century, differential equations have been used in modeling the dy-
namics of changing processes. A great deal of the modeling development has been
accompanied by a rich theory for differential equations.

The dynamics of many evolving processes are subject to abrupt changes, such
as shocks, harvesting and natural disasters. These phenomena involve short-term
perturbations from continuous and smooth dynamics, whose duration is negli-
gible in comparison with the duration of an entire evolution. In models involv-
ing such perturbations, it is natural to assume these perturbations act instanta-
neously or in the form of “impulses.” As a consequence, impulsive differential
equations have been developed in modeling impulsive problems in physics, pop-
ulation dyamics, ecology, biological systems, biotechnology, industrial robotics,
pharmcokinetics, optimal control, and so forth. Again, associated with this de-
velopment, a theory of impulsive differential equations has been given extensive
attention. Works recognized as landmark contributions include [29, 30, 180, 217],
with [30] devoted especially to impulsive periodic systems of differential equa-
tions.

Some processes, especially in areas of population dynamics, ecology, and phar-
macokinetics, involve hereditary issues. The theory and applications addressing
such problems have heavily involved functional differential equations as well as
impulsive functional differential equations. The literature devoted to this study is
also extensive, with [6, 12–14, 25, 27, 28, 38, 42, 46, 49, 52, 53, 55, 57, 70, 71, 75,
85, 89–91, 94, 95, 117, 130–132, 134, 136, 147, 152, 159, 167, 176, 181, 183, 189,
191, 194, 195, 212, 214, 216, 228] providing a good view of the panorama of work
that has been done.

Much attention has also been devoted to modeling natural phenomena with
differential equations, both ordinary and functional, for which the part govern-
ing the derivative(s) is not known as a single-valued function; for example, a dy-
namic process governing the derivative x′(t) of a state x(t) may be known only
within a set S(t, x(t)) ⊂ R, and given by x′(t) ∈ S(t, x(t)). A common example
of this is observed in a so-called differential inequality such as x′(t) ≤ f (t, x(t)),



3
Impulsive functional differential
equations & inclusions

3.1. Introduction

While the previous chapter was devoted to ordinary differential equations and in-
clusions involving impulses, our attention in this chapter is turned to functional
differential equations and inclusions each undergoing impulse effects. These equa-
tions and inclusions have played an important role in areas involving hereditary
phenomena for which a delay argument arises in the modelling equation or in-
clusion. There are also a number of applications in which the delayed argument
occurs in the derivative of the state variable, which are sometimes modelled by
neutral differential equations or neutral differential inclusions.

This chapter presents a theory for the existence of solutions of impulsive func-
tional differential equations and inclusions, including scenarios of neutral equa-
tions, as well as semilinear models. The methods used throughout the chapter
range over applications of the Leray-Schauder nonlinear alternative, Schaefer’s
fixed point theorem, a Martelli fixed point theorem for multivalued condensing
maps, and a Covitz-Nadler fixed point theorem for multivalued maps.

3.2. Impulsive functional differential equations

In this section, we will establish existence theory for first- and second-order im-
pulsive functional differential equations. The section will be divided into parts. In
the first part, by a nonlinear alternative of Leray-Schauder type, we will present an
existence result for the first-order initial value problem

y′(t) = f
(
t, yt
)
, a.e. t ∈ J := [0,T], t �= tk, k = 1, . . . ,m, (3.1)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (3.2)

y(t) = φ(t), t ∈ [−r, 0], (3.3)

where f : J ×D → E is a given function, D = {ψ : [−r, 0] → E | ψ is continuous
everywhere except for a finite number of points s at which ψ(s) and the right limit
ψ(s+) exist and ψ(s−) = ψ(s)}, φ ∈ D , (0 < r < ∞), 0 = t0 < t1 < · · · < tm <
tm+1 = T , Ik ∈ C(E,E) (k = 1, 2, . . . ,m), and E a real separable Banach space with
norm | · |. Also, throughout, J ′ = J \ {t1, . . . , tm}.
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Impulsive differential inclusions with
nonlocal conditions

4.1. Introduction

In this chapter, we will prove existence results for impulsive semilinear ordinary
and functional differential inclusions, with nonlocal conditions. Often, nonlocal
conditions are motivated by physical problems. For the importance of nonlocal
conditions in different fields we refer to [112]. As indicated in [112, 113, 126]
and the references therein, the nonlocal condition y(0) + g(y) = y0 can be more
descriptive in physics with better effect than the classical initial condition y(0) =
y0. For example, in [126], the author used

g(y) =
p∑

k=1

ci y
(
ti
)
, (4.1)

where ci, i = 1, . . . , p are given constants and 0 < t1 < t2 < · · · < tp ≤ b, to
describe the diffusion phenomenon of a small amount of gas in a transparent tube.
In this case, (4.1) allows the additional measurements at ti, i = 1, . . . , p.

Nonlocal Cauchy problems for ordinary differential equations have been in-
vestigated by several authors, (see, e.g., [103, 113, 114, 202–204, 206, 207]). Non-
local Cauchy problems, in the case where F is a multivalued map, were studied
by Benchohra and Ntouyas [77–79], and Boucherif [103]. Akça et al. [14] initi-
ated the study of a class of first-order semilinear functional differential equations
for which the nonlocal conditions and the impulse effects are combined. Again,
in this chapter, we will invoke some of our fixed point theorems in establishing
solutions for these nonlocal impulsive differential inclusions.

4.2. Nonlocal impulsive semilinear differential inclusions

In this section, we begin the study of nonlocal impulsive initial value problems by
proving existence results for the problem

y′(t) ∈ Ay(t) + F
(
t, y(t)

)
, t ∈ J := [0, b], t �= tk, k = 1, 2, . . . ,m, (4.2)
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Positive solutions for impulsive
differential equations

5.1. Introduction

Positive solutions and multiple positive solutions of differential equations have re-
ceived a tremendous amount of attention. Studies have involved initial value prob-
lems, as well as boundary value problems, for both ordinary and functional differ-
ential equations. In some cases, impulse effects have also been present. The meth-
ods that have been used include multiple applications of the Guo-Krasnosel’skii
fixed point theorem [158], the Leggett-Williams multiple fixed point theorem
[187], and extensions such as the Avery-Henderson double fixed point theorem
[26]. Many such multiple-solution works can be found in the papers [6, 8–10, 19,
52, 94, 95, 137, 159, 194].

This chapter is devoted to positive solutions and multiple positive solutions
of impulsive differential equations.

5.2. Positive solutions for impulsive functional differential equations

Throughout this section, let J = [0, b], and the points 0 = t0 < t1 < · · · < tm <
tm+1 = b are fixed. This section is concerned with the existence of three non-
negative solutions for initial value problems for first- and second-order functional
differential equations with impulsive effects. In Section 5.2.1, we consider the first-
order IVP

y′(t) = f
(
t, yt
)
, t ∈ J = [0, b], t �= tk, k = 1, . . . ,m,

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

(5.1)

where f : J×D → R is a given function, D = {ψ : [−r, 0] → R+ | ψ is continuous
everywhere except for a finite number of points s at which ψ(s) and the right limit
ψ(s+) exist and ψ(s−) = ψ(s)}, φ ∈ D , 0 < r < ∞, Ik : R → R+ (k = 1, 2, . . . ,m),
Δy|t=tk = y(t+k )− y(t−k ), and J ′ = J \ {t1, . . . , tm}.
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Boundary value problems for impulsive
differential inclusions

6.1. Introduction

The method of upper and lower solutions has been successfully applied to study
the existence of solutions for first-order impulsive initial value problems and
boundary value problems. This method generates solutions of such problems, with
the solutions located in an order interval with the upper and lower solutions serv-
ing as bounds. Moreover, this method, coupled with some monotonicity-type hy-
potheses, leads to monotone iterative techniques which generate in a constructive
way (amenable to numerical treatment) the extremal solutions within the order
interval determined by the upper and lower solutions.

This method has been used only in the context of single-valued impulsive dif-
ferential equations. We refer to the monographs of Lakshmikantham et al. [180],
Samoı̆lenko and Perestyuk [217], the papers of Cabada and Liz [117], Frigon and
O’Regan [151], Heikkilä and Lakshmikantham [163], Liu [188], Liz [192, 193], Liz
and Nieto [194], and Pierson-Gorez [212]. However, this method has been used
recently by Benchohra and Boucherif [35] for the study of first-order initial value
problems for impulsive differential inclusions.

Let us mention that other methods like the nonlinear alternative, such as in
the papers of Benchohra and Boucherif [34, 35], Frigon and O’Regan [150], and
the topological transversality theorem Erbe and Krawcewicz [140], have been used
to analyze first- and second-order impulsive differential inclusions. The first part
of this chapter presents existence results using upper- and lower-solutions meth-
ods to obtain solutions of first-order impulsive differential inclusions with peri-
odic boundary conditions and nonlinear boundary conditions. The last section of
the chapter deals with boundary value problems for second-order impulsive dif-
ferential inclusions.

6.2. First-order impulsive differential inclusions with
periodic boundary conditions

This section is devoted to the existence of solutions for the impulsive periodic
multivalued problem
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Nonresonance impulsive differential
inclusions

7.1. Introduction

This chapter is devoted to impulsive differential inclusions satisfying periodic
boundary conditions. These problems are termed as being nonresonant, because
the linear operator involved will be invertible in the absence of impulses. The first
problem addressed concerns first-order problems. A result from [51] that gener-
alizes a paper by Nieto [199] is presented. The methods used involve the Martelli
fixed point theorem (Theorem 1.7) and the Covitz-Nadler fixed point theorem
(Theorem 1.11).

The second part of the chapter is focused on a second-order problem, and
a result of [55] is obtained which is an extension of the first-order result. Again
the method used involves an application of Theorem 1.7. Then, the final section
of the chapter is a successful extension of these results to nth order nonresonance
problems, which were first established in [63]. Also, an initial value function is
introduced for the higher-order consideration.

7.2. Nonresonance first-order impulsive functional differential
inclusions with periodic boundary conditions

This section is concerned with the existence of solutions for the nonresonance
problem for functional differential inclusions with impulsive effects as

y′(t)− λy(t) ∈ F
(
t, yt
)
, t ∈ J = [0,T], t �= tk, k = 1, . . . ,m, (7.1)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (7.2)

y(t) = φ(t), t ∈ [−r, 0], (7.3)

φ(0) = y(0) = y(T), (7.4)

where λ �= 0 and λ is not an eigenvalue of y′, F : J ×D → P (E) is a compact
convex-valued multivalued map, D = {ψ : [−r, 0] → E | ψ is continuous every-
where except for a finite number of points s at which ψ(s) and the right limit ψ(s+)



8
Impulsive differential equations &
inclusions with variable times

8.1. Introduction

The theory of impulsive differential equations with variable time is relatively less
developed due to the diffculties created by the state-dependent impulses. Recently,
some interesting extensions to impulsive differential equations with variable times
have been done by Bajo and Liz [31], Frigon and O’Regan [150, 151], Kaul [173],
Kaul et al. [174], and Benchohra et al. [43, 45, 70, 71, 91, 92].

8.2. First-order impulsive differential equations with variable times

This section is concerned with the existence of solutions, for initial value problems
(IVP for short), for first-order functional differential equations with impulsive ef-
fects

y′(t) = f
(
t, yt
)
, a.e. t ∈ J = [0,T], t �= τk

(
y(t)
)
, k = 1, . . . ,m,

y
(
t+
) = Ik

(
y(t)
)
, t = τk

(
y(t)
)
, k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

(8.1)

where f : J×D → Rn is a given function, D = {ψ : [−r, 0] → Rn : ψ is continuous
everywhere except for a finite number of points t at which ψ(t) and ψ(t+) exist, and
ψ(t−) = ψ(t)}, φ ∈ D, 0 < r < ∞, τk : Rn → R, Ik : Rn → Rn, k = 1, 2, . . . ,m, are
given functions satisfying some assumptions that will be specified later.

The main theorem of this section extends the problem (8.1) considered by
Benchohra et al. [46] when the impulse times are constant. Our approach is based
on Schaefer’s fixed point theorem.

Let us start by defining what we mean by a solution of problem (8.1).

Definition 8.1. A function y ∈ Ω ∩ AC((tk, tk+1), R), k = 0, . . . ,m, is said to be a
solution of (8.1) if y satisfies the equation y′(t) = f (t, yt) a.e. on J , t �= τk(y(t)),
k = 1, . . . ,m, and the conditions y(t+) = Ik(y(t)), t = τk(y(t)), k = 1, . . . ,m, and
y(t) = φ(t) on [−r, 0].
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Nondensely defined impulsive
differential equations & inclusions

9.1. Introduction

This chapter deals with semilinear functional differential equations and functional
differential inclusions involving linear operators that are nondensely defined on a
Banach space. This chapter extends several previous results of this book that were
devoted to semilinear problems with densely defined operators. Some of the results
of this chapter were first presented in the work by Benchohra et al. [76].

9.2. Nondensely defined impulsive semilinear differential
equations with nonlocal conditions

In this section, we will prove existence results for an evolution equation with non-
local conditions of the form

y′(t) = Ay(t) + F
(
t, y(t)

)
, t ∈ J := [0,T], t �= tk, k = 1, . . . ,m, (9.1)

Δy|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m, (9.2)

y(0) + g(y) = y0, (9.3)

where A : D(A) ⊂ E → E is a nondensely defined closed linear operator, F :
J × E → E is continuous, g : C(J ′,E) → E, (J ′ = J\{t1, . . . , tm}), Ik : E → D(A),
k = 1, . . . ,m, Δy|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) =
limh→0+ y(tk − h), and E is a separable Banach space with norm | · |.

As indicated in [112, 115, 126] and the references therein, the nonlocal condi-
tion y(0) + g(y) = y0 can be applied to physics with better effect than the classical
initial condition y(0) = y0. For example, in [126], the author used

g(y) =
p∑

k=1

ci y
(
ti
)
, (9.4)

where ci, i = 1, . . . , p, are given constants and 0 < t1 < t2 < · · · < tp ≤ T ,
to describe the diffusion phenomenon of a small amount of gas in a transparent
tube. In this case, (9.4) allows the additional measurements at ti, i = 1, . . . , p.



10
Hyperbolic impulsive
differential inclusions

10.1. Introduction

In this chapter, we will be concerned with the existence of solutions for second-
order impulsive hyperbolic differential inclusions in a separable Banach space.
More precisely, we will consider impulsive hyperbolic differential inclusions of the
form

∂2u(t, x)
∂t∂x

∈ F
(
t, x,u(t, x)

)
, a.e. (t, x) ∈ Ja × Jb, t �= tk, k = 1, . . . ,m,

Δu
(
tk, x
) = Ik

(
u
(
tk, x
))

, k = 1, . . . ,m,

u(t, 0) = ψ(t), t ∈ Ja, u(0, x) = φ(x), x ∈ Jb,

(10.1)

where Ja = [0, a], Jb = [0, b], F : Ja × Jb × E → P (E) is a multivalued map (P (E)
is the family of all nonempty subsets of E), φ ∈ C(Ja,E), 0 = t0 < t1 < · · · < tm <
tm+1 = a, Ik ∈ C(E,E) (k = 1, . . . ,m), Δu|t=tk = u(t+k , y) − u(t−k , y), u(t+k , y) =
lim(h,x)→(0+,y) u(tk + h, x) is the right limit and u(t−k , y) = lim(h,x)→(0+,y) u(tk − h, x)
is left limit of u(t, x) at (tk, x), and E is a real separable Banach space with norm
| · |.

In the last few years impulsive differential and partial differential equations
have become the object of increasing investigation in some mathematical models
of real world phenomena, especially in biological or medical domain; see the mon-
ographs by Baı̆nov and Simeonov [29], Lakshmikantham et al. [180], Samoı̆lenko
and Perestyuk [217].

In the last three decades several papers have been devoted to the study of hy-
perbolic partial differential equations with local and nonlocal initial conditions;
see for instance [113, 115, 182] and the references cited therein. For similar results
with set-valued right-hand side, we refer to the papers by Byszewski and Papageor-
giou [116], Papageorgiou [208], and Benchohra and Ntouyas [33, 81, 83, 84].

Here we will present three existence results for problem (10.1) in the cases
when F has convex and nonconvex values. In the convex case, an existence result
will be given by means of the nonlinear alternative of Leray-Schauder type for
multivalued maps. In the nonconvex, case two results will be presented. The first
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Impulsive dynamic equations
on time scales

11.1. Introduction

In recent years dynamic equations on time scales have received much attention. We
refer to the books by Agarwal and O’Regan [7], Bohner and Peterson [101, 102],
and Lakshmikantham et al. [184], and the papers by Anderson [15, 18], Agarwal
et al. [2, 3, 5], Bohner and Guseinov [100], Bohner and Eloe [99], and Erbe and
Peterson [141, 142].

The time scales calculus has a tremendous potential for applications in some
mathematical models of real processes and phenomena studied in physics, chem-
ical technology, population dynamics, biotechnology and economics, neural net-
works, social sciences, as is pointed out in the monographs of Aulbach and Hilger
[24], Bohner and Peterson [101, 102], and Lakshmikantham et al. [184].

The existence of solutions of boundary value problem on a time scale was re-
cently studied by Agarwal and O’Regan [7], Anderson [16, 17], Henderson [166],
and Sun and Li [223]. In this chapter, dynamic equations on time scales are con-
sidered for both impulsive initial value problems and impulsive boundary value
problems. The results here are based on work from [72, 165].

11.2. Preliminaries

We will introduce some basic definitions and facts from the time scale calculus
that we will use in the sequel.

A time scale T is a nonempty closed subset of R. It follows that the jump
operators σ , ρ : T→ T defined by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} (11.1)

(supplemented by inf ∅ := sup T and sup∅ := inf T) are well defined. The point
t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t,
σ(t) = t, σ(t) > t, respectively. If T has a right-scattered minimum m, define
Tk := T − {m}; otherwise, set Tk = T. If T has a left-scattered maximum M,
define Tk := T − {M}; otherwise, set Tk = T. The notations [c,d], [c,d), and so
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On periodic boundary value
problems of first-order
perturbed impulsive
differential inclusions

12.1. Introduction

In this chapter, we study the existence of solutions to periodic nonlinear boundary
value problems for first-order Carathéodory impulsive ordinary differential inclu-
sions with convex multifunctions. Given a closed and bounded interval J := [0,T]
in R, and given the impulsive moments t1, t2, . . . , tp with 0 = t0 < t1 < t2 < · · · <
tp < tp+1 = T , J ′ = J \{t1, t2, . . . , tp}, J j = (t j , t j+1), consider the following periodic
boundary value problem for impulsive differential inclusions (IDI):

x′(t) ∈ F
(
t, x(t)

)
+G
(
t, x(t)

)
a.e. t ∈ J ′, (12.1)

x
(
t+j
) = x

(
t−j
)

+ I j
(
x
(
t−j
))

, (12.2)

x(0) = x(T), (12.3)

where F,G : J × R → P (R) are impulsive multifunctions, I j : R → R, j =
1, 2, . . . , p, are the impulse functions, and x(t+j ) and x(t−j ) are, respectively, the
right and the left limits of x at t = t j .

Let C(J , R) and L1(J , R) denote the space of continuous and Lebesgue inte-
grable real-valued functions on J . Consider the Banach space

X : ={x : J �→ R :x∈C(J ′, R), x
(
t+j
)
, x
(
t−j
)

exist, x
(
t−j
)=x(t j

)
, j=1, 2, . . . , p

}
,

(12.4)

equipped with the norm ‖x‖ = max{|x(t)| : t ∈ J}, and the space

Y := {x ∈ X : x is differentiable a.e. on (0,T), x′ ∈ L1(J , R)
}
. (12.5)

By a solution of (12.1)–(12.3), we mean a function x in YT := {v ∈ Y : v(0) =
v(T)} that satisfies the differential inclusion (12.1) and the impulsive conditions
(12.2).

Our aim is to provide sufficient conditions to the multifunctions F, G and
the impulsive functions I j that insure the existence of solutions of problem IDI
(12.1)–(12.3).
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