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Abstract. 
Tree and graph structures have been widely used to present hierarchical and linked data. Hyperbolic trees are special types of graphs composed of nodes (points or vertices) and edges (connecting lines), which are visualized on a non-Euclidean space. In traditional Euclidean space graph visualization, distances between nodes are measured by straight lines. Displays of large graphs in Euclidean spaces may not utilize efficiently the available space and may impose limitations on the number of graph nodes. The special hyperbolic space rendering of tree-graphs enables adaptive and efficient use of the available space and facilitates the display of large hierarchical structures. In this paper we report on a newly developed advanced hyperbolic graph viewer, Hyperbolic Wheel, which enables the navigation, traversal, discovery and interactive manipulation of information stored in large hierarchical structures. Examples of such structures include personnel records, disc directory structures, ontological constructs, web-pages and other nested partitions. The Hyperbolic Wheel framework provides an intuitive and dynamic graphical interface to explore and retrieve information about individual nodes (data objects) and their relationships (data associations). The Hyperbolic Wheel is freely available online for educational and research purposes.


1. Introduction
Graph structures are frequently used for presenting hierarchical and linked data [1, 2]. One special type of graphs is hyperbolic trees, which are composed of nodes (points or vertices) and edges (connecting lines), and are visualized on a non-Euclidean space [3, 4]. Graph views in Euclidean spaces show distances between nodes as straight lines proportional to corresponding edge weights [5]. However, visualizations of large graphs in such Euclidean spaces do not utilize efficiently the available space and impose limitations on the number of nodes for the graph [6]. The special cases of large tree-graphs can be efficiently displayed in hyperbolic spaces. Here, we report on a newly developed advanced hyperbolic graph viewer, Hyperbolic Wheel, which provides the infrastructure for navigation, traversal, discovery, and interactive manipulation of information stored in such large hierarchical structures. Examples of such data structures include personnel records, disc directory structures, ontological systems, web-pages, and other nested partitions. The Hyperbolic Wheel provides an intuitive and dynamic graphical interface to explore and retrieve information about individual nodes (data objects) and their relationships (data associations). The entire Hyperbolic Wheel project is open-source and the Java code is available under LGPL license to the entire community.
There is a diverse array of data visualization techniques [7]. The choice of a computational, algorithmic, or visualization technique for processing or navigating large datasets is typically based on the intrinsic characteristics of the data. Information visualization of independent objects or unstructured datasets is more challenging as little or no dimensionality reduction may be possible in these cases. On the flip side, exploration of data with well-defined structure may be significantly simplified by employing graphical visualization techniques [8–10]. Tree-maps [11] employ color-coded space-filling rectangles to represent (tree) hierarchical structures. Force-directed graph visualization [12] utilizes an edge-bundling method and a self-organizing approach to model node connectivity using flexible (contracting/expanding) springs. This approach does not require hierarchical data and reduces clutter by visibly exposing the high-level structural patterns in the data. Multiscale graph visualization allows interactive representations of hierarchical information [13] and provides scalable visualization with abstraction of detail and clutter at different scales [14]. Semantic maps introduce a new visualization technique based on semantically annotated data and the implicit impartation of knowledge [15].
There is a constant push to increase the amount and complexity of information that can be coherently, efficiently, and interactively displayed on a drawing canvas. The hyperbolic graph framework [16, 17] allows for displaying and manipulating large hierarchical datasets via smooth transformations of location and focus. Conventional graph display approaches map hierarchical data into large regions and provide scrolling or panning functionality to navigate the larger display canvas. This approach may hide node relationships between visible and invisible portions of the graph. Another interesting graph layout technique for drawing directed acyclic graphs is the H3 3D hyperbolic graph [18–20]. The H3 graph viewing mechanism utilizes the hierarchical graph organization to display node-cluster specific information using spanning trees. As the volume of 3D hyperbolic spaces increases exponentially in the periphery (in terms of the hyperbolic space metric), H3 provides a mechanism for displaying large number of nodes and edges. This 3D hyperbolic navigation has been tested on graphs of the order of 20,000 nodes and facilitates a Focus + Context view of hierarchical structures and minimizes visual clutter. Other 3D graph visualization techniques use hyperbolic geometry on spherical surfaces and enable dynamic fly-through-the-graph functionality avoiding node/edge boundaries [21].
Hierarchy visualization may also be achieved using radial, space-filling methods, for example, DocuBurst [22], InterRing [23], coaxial viewer [24], and Sunburst [25, 26]. These offer the advantages of efficient utilization of the drawing canvas and manual/automated multifocus selection. The ASK-GraphView is a large graph visualization framework [27], which allows scalable clustering and rendering of hierarchical and weighted undirected graph structures. This approach trades off interactivity to gain significant scalability enabling visualization of graphs containing millions of edges. The graph navigation is driven by expanding or collapsing individual clusters. Focus + Context techniques, like document lens, perspective wall, and fish-eye, facilitate the rendering of complex tree structures [17, 28, 29]. However, there are many alternatives to display tree structures, for example, zoomable adjacency matrices, hierarchical edge bundles, geometric edge clustering [30–32], and so forth. Some challenges of these approaches may include inadequate spacing between leaf nodes, obscuring of the hierarchy level, lack of context display, or inconsistent spacing between nodes. Some of these problems are addressed by the new Hyperbolic Wheel viewer, which also provides a dynamic mechanism for linking nodes with external web-pages.
2. Materials and Methods
This section describes the design and implementation details of the Hyperbolic Wheel architecture and its practical utilization to interactively render large hierarchical graph structures.
2.1. Layout of the Unit Plane
The Hyperbolic Wheel layout is a unit disc with polar coordinates which represents a 2D hyperbolic space. “Unit disk” indicates that the radius of all nodes is always less than or equal to 1. A root of a tree is referred to as the origin and all other nodes are placed radially about the root. All the nodes’ coordinates are determined by their (radial) level and angle 
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. The radii and angles are determined using a recursive algorithm. The radial level is simply the depth of a node and is determined by the distance between the root and the node:
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							where TreeHeight is the total number of levels of the tree structure (i.e., the maximal length between all nodes and the root).
The radii of all nodes are ≤1. For a particular node, to compute the angle, 
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, we need to know the starting radian and the angular quota of that node. The starting radian is a property of a sector (more details about sector structure are available in the Structure of sectors section). When we draw a sector, we need to know where to start and where to end. For example, if a root has four children, the first sector will have angular-range from 0 to 
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, the second sector will have a range from 
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, and so on. Thus, the starting angular measures of the first and the second child are 0 and 
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, respectively. For a given parent node, the starting angular measure for the 
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							The parent’s angular quota represents how much radial space is available to be assigned to its children. Obviously, the root has angular quota of 
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 and all other (deeper level) nodes have progressively smaller angular quotas. We used the following straightforward angular quota assignment of each node:
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							This assignment ensures that all children of a particular parent utilize, but not exceed, their parent’s quota and there is no overlap with children from different parents. This approach assigns equal quotas to all the children of the same parent, which results in a visually appealing graph. Once we have the starting radial and the angular quotas, the actual angle for a node, 
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, can be determined as follows:
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							According to 
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, a node is located in the center of its corresponding sector. In fact, the angular quota assignment, 
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, is only a primitive equation. A child can get only a portion of its parent’s quota, up to the entire parent quota, if it is the only child. In general, the quota may be exhausted quickly even after 3 or 4 levels in the hierarchy. Exhausting the quota means that the angular quota of a parent node is split between the children into too many (smaller) fragments. This may result in some of the children being invisible. The quota may be exhausted when the number of nodes grows exponentially as the depth level of the graph increases. As we navigate to a deeper level in the hierarchical structure, we have a limited partial quota assigned to each node. Even at 3rd or 4th levels, we may encounter this problem when the number of children is large. Therefore, we need a more sophisticated equation to boost the children-node visibility. To do that, we need to revise 
	
		
			
				(
				c
				)
			

		
	
 and consider all the successors of a node rather than just its immediate siblings
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							In this equation, the smallest nodal angular quota will be assigned sufficient angular space for all of its successors. The more successors a node has, the larger its assigned quotas will be (see the Results section).
2.2. Structure of Sectors
A sector is like a coat of a node. It is the wrapper interface that enables the user to see and interact with the node. A node may be considered as a pair of a location (center) point and a sector, and rendered in an area (sector) covering that node. In the Hyperbolic Wheel viewer, sectors can be turned on or off (all together, but not individually). Users may select whether they want to see the hyperbolic disk, the tree structure or both in the same display. 
There are 3 kinds of nodes: the Root, a nonLeaf or a Leaf node. They are all constructed as sectors. We compute a number of anchor points around a node and draw a sector by connecting all those points together using quadratic Bézier curves [33]. The number of anchor points varies for each node. A sector is formed by four curves: top, bottom, left, and right curves (Figure 1). 


	
	
		
	
		
	
		
			
				
			
				
			
			
				
			
		
	
	
		
	
		
			
				
			
				
			
		
	
	
		
	
		
			
				
					
				
					
				
			
		
	
	
	


	
		
			
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
			
		
	
	
		
			
				
			
		
	

Figure 1: Schematic of a sector.


A Leaf has the simplest structure among the three kinds of nodes (Figure 2). It has 8 points and all leaves have exactly the same structure and number of points. There are 4 endpoints (red dots) and 4 control points (white dots) of the Bézier curve. A nonleaf, child node, or C-node, on the other hand, has the most complicated structure (Figure 3). 


	
	
	
	
	
	
	
	
	


	
		
			
				
				
				
				
			
		
	

Figure 2: Hyperbolic leaf.




	
	
	
		
	
		
	
		
			
			
				
			
			
				
			
		
	
	
		
			
			
				
			
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		


	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
			
		
	

Figure 3: C-node structure.


When a node’s angular quota is small, drawing the node 4 borders using quadratic Bézier curves requires good approximations of the curves in the hyperbolic plane. If C-nodes have a large number of children and their angular quotas are too small for the approximation empty space may appear between parent and children. To solve this challenge, we use a dynamic number of points on a C-node’s top curve. The idea is to reuse the bottom curve of the node’s children to form the node’s top curve and therefore avoid gaps between parents and children. In practice we use the following equation to compute the number of points of a C-node is depending on the number of its children: 
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							Figure 3 illustrates the construction of the left, right, and bottom curves for a C-node by taking 2 points for every child and adding another 6 more points. Figure 4 shows the number-of-points allocation for the root and any other node with angular quota of 
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. Note that in a degenerate case when a root has only one child, that child will inherit the root’s angular quota of 
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. There are two different possibilities for these full angular quota nodes. The first one is similar to the C-nodes except that they don’t have the left, right, and bottom curves. From Figure 3, we see that when the angular quota is 
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, the sector is no longer a sector shape but rather a complete track. The second possibility is a special case which occurs when a node has angular quota of 
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 and has only one child. In the first case, a C-node will only take 2 points from each child, and 2 points are insufficient to form a circle-like shape of the C-node. So, we compute the sector point separately in order to approximate a circle. In these cases, we use 8 points and we divide the radian 
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 in 8 equal segments. By using constant angles and constant radii, we can compute those 8 anchor points.


	
		
	
	
	
	
	
	
	
	


	
		
			
				
				
				
				
			
		
	

Figure 4: Root node.


2.3. Mapping
Below are some details about the Hyperbolic Wheel viewer. First, the unit hyperbolic disc is only used as a conceptual idea to help us develop an understanding of the hyperbolic space layout. The coordinates of a node are stored in a Java hash-table indexed by the nodes and we compute the shape and locations of all nodes on the fly when we render the entire graph as a planar Euclidean structure. The concept of the unit hyperbolic disc facilitates the understanding of how the user interacts with the graph. Thus, we employ the unit disc for better conceptual explanation. Second, all the coordinate computations and angular assignments from Sections 1 and 2 occur in the unit hyperbolic disc. Although points are computed in polar coordinates, they are actually stored as Euclidean coordinates. The reason for this choice is to decrease the computational complexity of the hyperbolic graph rendering engine. Therefore, all functions used in the calculations are based on objects’ (node’s or edge’s) Euclidean coordinates. Third, every point on the unit disc is relatively fixed. This means that the position of each node is fixed relative to the other node’s coordinates. As an analogy, a unit disc is like a paper circle where computing object coordinates is like drawing points on the 2D disc. If a user moves or rotates the paper disc in 3D, the individual points remain in their initial relative positions. Fourth, users interact with the hyperbolic graph by moving the unit disc in space-that is, altering the scene observation point. Conceptually, the hyperbolic graph we render on the screen is the shadow of the real graph and we can only move the shadow by moving the unit disc. The reason for separating the coordinates of the unit disc and the screen is to improve the efficiency of the calculations. Also, the arithmetic in Euclidean coordinates enables adding of novel future mappings to the viewer. Finally, mapping is applied to point coordinates only. All lines, arcs and nodes in the hyperbolic graph are drawn directly on the screen using their pure Euclidean space coordinates.
In summary, these mappings are used for converting points between the unit disc and the screen canvas. So far, we are using two specific mappings: Poincaré disc model [34] and Klein model [35]. Poincaré disc model is a conformal model, that is, an angle-preserving model, where lines are represented by segments of circles perpendicular to the disc’s boundary [36]. Circles that exclude the origin are shrunk by transformations between the Poincaré hyperbolic disc space and the Euclidean disk. The forward and reverse transformations are given by the complex variable mappings:
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 encodes the radial panning of the graph between the origin and 
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 represents the angular rotation. The inverse transformation maps the Euclidian display coordinates to the (Poincaré) hyperbolic space and is given by an analogous Möbius transformation, 
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The Klein model, on the other hand, is a projective model where Euclidian lines are represented as chords [17]. The forward and reverse mappings between the Poincaré and the Klein disks are also Möbius transformations:
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							Both models are trying to spread and expand nodes when a user navigates the hyperbolic graph (e.g., by clicking and dragging the mouse) [38]. The further a node is from the root-node, the less screen real-estate is available for the rendering of that node in the periphery of the graph. This spreads apart nodes in the center of the hyperbolic disc, and contracts nodes towards the disc boundary far from the disc center. Graphically speaking, the Poincaré disc model provides a more appealing graph rendering than the Klein model [39] because the former separates naturally and nonlinearly the graph nodes (Figures 5 and 6). In the Poincaré disc model, the angle between lines is preserved, so when we spread the nodes, the shape of the area close to the root-node shows little distortion. In the Klein model, however, as the nodes are spread out, the shape of that area near the root-node will be significantly distorted.



Figure 5: Poincaré disc model.





Figure 6: Klein disc model.


2.4. Hyperbolic Wheel Functionality 
2.4.1. Text Drawing
Text displays are used to convey information regarding each of the graph nodes. A simple horizontally displayed text is no longer suitable for this hyperbolic viewer, as the node names may fall beyond the boundary of their corresponding sectors. We developed a new schema to display the node names according to the orientation of the node (and its sector). First, we adjust the text to match the angle of the corresponding nod