ISRN Machine VisionVolume 2013 (2013), Article ID 252406, 13 pageshttp://dx.doi.org/10.1155/2013/252406
Research Article
LoCoBoard: Low-Cost Interactive Whiteboard Using Computer Vision Algorithms
Christophe Soares,1,2 Rui S. Moreira,1,2 José M. Torres,1 and Pedro Sobral1
1ISUS Group, FCT, University Fernando Pessoa, Porto, Portugal2INESC TEC, FEUP, University of Porto, Porto, Portugal
Received 13 December 2012; Accepted 10 January 2013
Academic Editors: M. A. Rahman and T. Zhang
Copyright © 2013 Christophe Soares et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract.
In the current digital age, the adoption of natural interfaces between humans and machines is increasingly important. This
trend is particularly significant in the education sector where interactive tools and applications can ease the presentation and comprehension of complex concepts, stimulate collaborative work, and improve teaching practices. An important step towards this vision, interactive whiteboards are gaining widespread adoption in various levels of education. Nevertheless, these solutions are usually expensive, making their acceptance slow, especially in countries with more fragile economies. In this context, we present the low-cost interactive whiteboard (LoCoBoard) project, an open-source interactive whiteboard with low-cost hardware requirements, usually accessible in our daily lives, for an easy installation: a webcam-equipped computer, a video projector, and an infrared pointing device. The detection software framework offers five different Pointer Location algorithms with support for the Tangible User Interface Object protocol and also adapts to support multiple operating systems. We discuss the detailed physical and logical structure of LoCoBoard and compare its performance with that of similar systems. We believe that the proposed solution may represent a valuable contribution to ease the access to interactive whiteboards and increase widespread use with obvious benefits.

1. Introduction
Over the past decades, the computing power evolution has been remarkable, but human computer interaction (HCI) is still being realized, in most cases, through the traditional keyboard and mouse. The future of HCI should rely more on the use of natural interfaces, such as haptic, speech, and gestures. In particular, the use of natural interfaces through Interactive Whiteboards (IWs) in education environments can ease the presentation and comprehension of complex concepts, allow collaborative work between teachers and students and improve pedagogical practices. Although there are wide ranges of commercial IW solutions, they are generally expensive and difficult to afford and implement by a large number of education institutions.
The main goal of this project consists in developing an open source software-based IW solution, based on usually accessible hardware in our daily lives, that is, a video projector, a laptop with a webcam, and an Infra-Red (IR) pointing device. The LoCoBoard [1] prototype uses computer vision algorithms for processing captured images through the webcam and interpret the user interactions. Each developed algorithm tries to isolate sets of pixels with common characteristics (cf. binary large objects-blob) from each image and is tested in its performance, accuracy, and CPU load. The application is proactive, adapting itself to the environment light conditions (cf. Background Subtraction techniques [2]). Coordinates of detected user interaction points are then used to control the cursor/interaction on the computer or distributed to other applications, through Tangible User Interface Objects (TUIO) protocol [3]. The developed prototype reveals that with this software running on a common computer, it is possible to obtain a generic, low-cost, easy to install, and useful IW system for any classroom.
The rest of the paper is organized as follows. In Section 2, we briefly discuss the current state, mostly open-source, for interactive surfaces in general and interactive whiteboards in particular. In Section 3, we present the physical and logical structure of the LoCoBoard system. Section 4 is devoted to presenting the quantitative and qualitative evaluation carried out. We introduce a comparative evaluation between the five Pointer Location (PL) detection algorithms implemented within the LoCoBoard system and also a comparison with other available systems. We conclude the paper in Section 5.
2. State of the Art
In the last years, there has been quite active research in developing solutions for interactive surfaces, in general, ranging from small sized displays to large interactive whiteboards [4]. The LoCoBoard system, described in this paper, has been conceived, in first hand, for working as an interactive whiteboard system, targeted to be used with existing whiteboard surfaces, universally present in class and meeting rooms, although it can easily be adapted to setup an interactive table using multitouch gestures (cf. Algorithm A5, see Algorithm 6).
Interactive whiteboards can be a valuable aid in the process of teaching although some problems may arise when teachers fail to appreciate that interactivity requires a new approach to pedagogy [5]. Also, the use of pen and touch, in interactive whiteboards, for tasks such as data exploration or others, constitutes a challenge for rethinking conventional application solutions [6]. Nevertheless, one of the major problems of typical commercially available whiteboards solutions continues to be their excessive prices, avoiding the proliferation of this valuable educative tool as a way to enhance educative practices.
As mentioned in [7], there are five main techniques, being refined by the open community research efforts that allow for the creation of a stable multitouch hardware systems: frustrated total internal reflection (FTIR); rear diffused illumination (Rear DI); laser light plane (LLP); diffused surface illumination (DSI); and LED light plane (LED-LP). All these five key techniques work in conjunction with image sensing devices (e.g., cameras) and presume the use of computer vision techniques to process the image signal produced. Besides those techniques, there are other sensing hardware devices frequently used, based on sensors such as the resistive, capacitive, motion, and others, or a combination of more than one of the listed. Several solutions are presented in literature, demonstrating the application of these types of technology [8]. In general, multitouch technologies, using more or less complex hardware setups, have been in use for some time, triggering a challenge for user interfaces designers [9].
Two significant requirements that guide the development of the LoCoBoard system were: (i) the system should be simple to setup and (ii) it should be low cost. This leaded to the decision of using a hardware setup based solely in a camera and an infrared pen, besides the computer and projector.
Other touch systems based on overhead cameras are also presented in the literature. The PlayAnywhere system [10] considers the camera and projector sitting off to the side of the active surface. The solution proposed in [11] uses a pair of cameras mounted above the surface.
Some other popular interactive whiteboard systems based on the Nintendo Wii remote command, the wiimote, are the ones presented by Lee [12] and Schmidt [13]. Both systems provide software libraries to implement the interactive whiteboard. The wiimote also has inspired several works in the interaction area using diverse types of sensing technology, such as accelerometers [14].
All the presented systems based on image sensing (i.e., video cameras), with or without extra sensor devices, need software libraries to process the video input signal and transform it into pointing devices locations and/or commands to be passed to a client application. Among the most used software libraries are Touchlib [15] and Community Core Vision (CCV aka tbeta) [16] from the NUI Group and the reacTIVision framework [17].
Those pointing device commands can be sent by the tracker application to the client application using appropriate protocols. The protocol TUIO [3], based on Open Sound Control (OSC) interface [18], is a popular open framework that defines a common protocol and APL for tangible multitouch surfaces. Using the TUIO, the client application, for instance, an application written in ActionScript 3 language and Adobe Flash, can reside in the same computer or a different computer of the tracker application, for instance, the LoCoBoard system.
3. LoCoBoard System
3.1. Overview
The LoCoBoard system overview is presented in Figure 1. We can see a computer running the LoCoBoard software, a camera which allows us to sense/capture the interactions on the projected image, an infra-red (IR) pointing device to generate the interaction, and a video projector to output the computer application image over the whiteboard. The pointing device, presented in Figure 2, was built using an IR led installed on top of a traditional whiteboard pen. Switching on and off the IR led in the pen, allows the user to interact directly with the computer through the whiteboard surface. The supported kinds of interactions are click and drag, single and double mouse click. The camera is equipped, with an IR band-pass filter, to discard unwanted light wavelengths from the captured images, easing the real-time detection of the IR pointing device. A photographic film can be used as a straightforward IR band-pass filter. Since all the hardware is widely available and is much cheaper than traditional interactive whiteboards, this project could be easily replicated in many education institutions.

	
		
	

	
	
	
	
	
	

	
		
			
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 1: Overview of the LoCoBoard system.

	
		
	
	
	
	
		
	
	
		
	
	
		
	
		
	
	
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
		
	
	
		
	
		
	

	
		
			
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
			
		
		
			
				
				
				
				
				
				
				
			
		
	

Figure 2: Components of the Infrared Pointer device.

Figure 3 presents the software architecture of the LoCoBoard system. On top of the already described hardware layer, we have the computer operating system. The LoCoBoard system was designed to support the most widely used operating systems, that is, Microsoft Windows, Linux, and Mac OS X. Regarding the libraries, OpenCV computer vision framework [19] is used to manage image acquisition and to preprocess those images. Although in the current version OpenCV offers some blob detection capabilities, they are not used in this system. We have developed, implemented, and tested our own blob detection algorithms in LoCoBoard. The Oscpack framework [20] provides interoperability between LoCoBoard and any TUIO [3] compliant client application. The TUIO protocol is also used in applications like the Touchlib or CCV [16]. A detailed description of the four LoCoBoard building blocks is presented in Section 3.2.

	
		
	
		
			
		
		
			
		
		
			
				
		
		
			
				
				
			
			
		
		
			
				
				
			
			
		
		
			
		
		
			
		
		
			
				
					
						
					
						
					
				
			
		
		
			
				
				
			
			
		
		
			
				
				
			
			
			
		
		
			
		
		
			
				
					
						
					
						
					
					
						
					
				
			
		
		
			
				
				
			
			
			
		
		
			
				
					
						
					
						
					
				
			
		
		
			
				
				
			
			
			
				
					
						
					
						
					
				
			
			
				
		
		
			
				
				
			
			
		
		
			
			
			
			
		
	
	
	
	
		
	
		
	
		
	
		

	
		
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
			
		
	
	
		
	
		

Figure 3: Logical architecture of LoCoBoard.

The system operation starts with a calibration process to map the projected image area in the whiteboard as seen by the video camera (cf. geometrical transformation), back into the original computer coordinate space (cf. monitor resolution). This task is essential to enable a real-time and robust process of Pointer Location detection using the computer coordinates. After the calibration phase, the LoCoBoard system starts interpreting the camera output identifying the mouse interaction through the displacement of the IR Pointer over the projected image. We also report in real-time the coordinates of the detected IR dots (one or two PL) using the TUIO protocol [3] and enabling the support for existing multitouch applications based on this protocol.
3.2. Implementing LoCoBoard
The LoCoBoard’s block diagram, presented in Figure 3, reveals the core of the application. The image acquisition and preprocessing phase is responsible to grab and filter the images captured by the camera. Using OpenCV, we improve image quality and ease the IR Blob recognition. In the Pointer Location (PL) detection phase, we apply our developed algorithms to detect and track IR Blobs. Finally, the last component reports the interaction coordinates using TUIO protocol and updates the cursor position.
3.2.1. Image Acquisition and Preprocessing
The image acquisition block maps the computer resolution on the projection image captured through the camera using the OpenCV framework transformation matrix. We apply filters, in each image, to remove eventual interferences and noises induced by other light sources. There are often other IR emitters in the environment, which may interfere with the IR pointing device (e.g., lamps, sunlight, etc.). Hence, to improve system accuracy, we use a physical (e.g., photo film) and logical IR band-pass filter (e.g., proactive background subtraction model). We use a foreground and background extraction model to identify and remove unwanted IR interferences from the image. The background filtering algorithm dynamically adapts its model to the variations on the environment light conditions.
3.2.2. Pointer Location Detection Algorithms
The image received from the previous block is then handled by the PL detection algorithms. An image is represented by a matrix where each pixel is coded by three values corresponding to the RGB color model. This image is then converted to gray scale in order to reduce the pixel state space. This transformation is useful in real time systems, where the color is not relevant since image processing can be more efficient and decrease the amount of time to process PL detection algorithm. PL coordinates are then searched on a gray scale image. For each PL found by the system, we return its pixel position using Cartesian coordinates. The Cartesian coordinates are reported setting the upper left corner pixel as (0, 0) and the lower right corner pixel as (width and height of the image). The system handles different image sizes depending on the camera resolution. The better the camera resolution the higher the system accuracy. However, large camera resolutions and high frame-rates substantially increase the CPU load. Image resolution and frame rate can be adjusted to allow better support on legacy computers.
In the following two subsections, we describe the PL detection algorithms. Figure 4(c) shows the common visual symbology used in the algorithms descriptions.

	
		
		
		
		
		
		
		
		
		
	

	
		
			
		
			
		
	

(a)

	
		
		
		
		
		
		
		
		
		
	

(b)

	
		
		
		
		
		
		
		
		
		
	

	
		
		
			
		
	

	
		
		
			
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
		
		
			
		
	

	
		
			
			
			
			
			
			
			
			
			
			
			
			
		
	

	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	

	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	

	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
			
			
			
			
			
			
			
			
			
		
	

(c)
Figure 4: Algorithm A1 process. The first step: analyzing and collecting Pointers Location over the threshold (a), the second step: identifying the centroid (b), and terminology used in the algorithms representation (c).

Single Pointer Location (Algorithms A1, A2, A3, and A4). (See Algorithms 1, 2, 3, and 5).
		function ALGORITHM
	
		
			

				(
			

		
	
image_height, image_width, image, threshold
	
		
			

)
			

		
	
 return coordinates of the PL
	centroid
	inputs: image_height, height of the image
	   image_width, width of the image
	   image, captured grayscale image
	   threshold, lower limit of brightness to identify pixels belonging to PL blob
	size
	
		
			

				←
			

		
	
0
	colValue
	
		
			

				←
			

		
	
0
	rowValue
	
		
			

				←
			

		
	
0
	row
	
		
			

				←
			

		
	
0
	  
	
		
			
				𝐰
				𝐡
				𝐢
				𝐥
				𝐞
			

		
	
row
	
		
			

				<
			

		
	
image_height
	
		
			
				𝐝
				𝐨
			

		
	

	   column
	
		
			

				←
			

		
	
0
	   while column
	
		
			

				<
			

		
	
image_width
	
		
			
				𝐝
				𝐨
			

		
	

	   if
	
		
			
				𝑖
				𝑚
				𝑎
				𝑔
				𝑒
			

		
	
[row][column]
	
		
			

				≥
			

		
	
threshold then
	        colValue
	
		
			

				←
			

		
	
colValue
	
		
			

				+
			

		
	
column
	        rowValue
	
		
			

				←
			

		
	
rowValue
	
		
			

				+
			

		
	
row
	        size
	
		
			

				←
			

		
	
size
	
		
			

				+
			

		
	
1
	   column
	
		
			

				←
			

		
	
column
	
		
			

				+
			

		
	
1
	   row
	
		
			

				←
			

		
	
row
	
		
			

				+
			

		
	
1
	colValue
	
		
			

				←
			

		
	
colValue/size
	rowValue
	
		
			

				←
			

		
	
rowValue/size
	return
	
		
			

				(
			

		
	
rowValue, colValue)

	Algorithm 1: Pseudo code Algorithm A1.

		function ALGORITHM
	
		
			

				(
			

		
	
image_height, image_width, image, threshold, step)
	
		
			
				𝐫
				𝐞
				𝐭
				𝐮
				𝐫
				𝐧
			

		
	
 coordinates of the PL centroid
	inputs:   image_height, height of the image
	 image_width, width of the image
	 image, captured grayscale image
	 threshold, lower limit of brightness to identify pixels belonging to PL blob
	 step, interval between consecutive processed pixels per row during search
	size ← 0
	colValue ← 0
	rowValue ← 0
	index ← 0
	 while index < image_height ⋆ image_width do
	 row ← index/image_width
	 column ← index % image_width
	
	
		
			
				𝐢
				𝐟
			

		
	
image[row][column]
	
		
			

				≥
			

		
	
threshold then
	 colValue ← colValue
	
		
			

				+
			

		
	
column
	 rowValue ← rowValue
	
		
			

				+
			

		
	
row
	 size ← size
	
		
			

				+
			

		
	
1
	 index ← index + step
	colValue ← colValue/size
	rowValue ← rowValue/size
	return
	
		
			

				(
			

		
	
rowValue, colValue)

	Algorithm 2: Pseudo code Algorithm A2.

		function ALGORITHM
	
		
			

				(
			

		
	
image_height, image_width, image, threshold, step)
	
		
			
				𝐫
				𝐞
				𝐭
				𝐮
				𝐫
				𝐧
			

		
	
 coordinates of PL centroid, or
	failure
	inputs:   image_height, height of the image
	 image_width, width of the image
	 image, captured grayscale image
	 threshold, lower limit of brightness to identify pixels belonging to PL blob
	 step, interval between consecutive processed pixels per row during search
	size
	
		
			

				←
			

		
	
0
	index
	
		
			

				←
			

		
	
0
	 while index
	
		
			

				<
			

		
	
image_height ⋆ image_width do
	 row
	
		
			

				←
			

		
	
index/image_width
	 column ← index % image_width
	
	
		
			
				𝐢
				𝐟
			

		
	
image
	
		
			

				[
			

		
	
row
	
		
			
]
				[
			

		
	
column
	
		
			

]
			

		
	
 ≥ threshold
	
		
			
				𝐭
				𝐡
				𝐞
				𝐧
			

		
	

	 (centroid.row, centroid.col
	
		
			

				←
			

		
	
FINDCENTER(image_height, image_width, image, threshold, row, column)
	
	
		
			
				𝐫
				𝐞
				𝐭
				𝐮
				𝐫
				𝐧
			

		
	
(centroid.row, centroid.col)
	 index ← index
	
		
			

				+
			

		
	
step
	return failure
	
		
			
				/
				⋆
			

		
	
 didn’t found any center ⋆
	
		
			

				/
			

		
	

	Algorithm 3: Pseudo code Algorithm A3.

(1) A1: this algorithm performs a scan on the image pixel by pixel as illustrated in Figure 4 and Algorithm 1, to find a pixel with a luminance value exceeding a threshold set by the program during the calibration phase. This algorithm collects the coordinates of all points that have a value above the threshold and returns the average of the values in a row and column axis.
 (2) A2: the traditional linear search algorithm (cf. A1) is modified using a step value
	
		
			

				𝑆
			

		
	
 to speed up the search phase and returns when a pixel value grater than the threshold is found. The best results are obtained when
	
		
			

				𝑆
			

		
	
 is lower than half the size of the PL. With
	
		
			

				𝑆
			

		
	
 greater than the PL size (overfitting), we may never find the PL on the image.
Thus, between two pixels readings, the algorithm ignores
	
		
			

				𝑆
			

		
	
-1 pixels (see Figure 5 and Algorithm 2). The process to calculate the coordinates of PL is the same as in the previous algorithm (cf. A1). This algorithm provides accurate results on the centroid PL estimation, when
	
		
			

				𝑆
			

		
	
 is small. However, the larger the
	
		
			

				𝑆
			

		
	
 value the faster will be the image processing.

	
		
		
		
		
		
		
		
		
		
	

	
		
		
			
		
	

	
		
		
			
		
	

	
		
		
			
		
	

	
		
			
		
			
		
	

	
		
		
			
		
	

	
		
		
			
		
	

	
		
		
			
		
	

	
		
			
		
			
		
	

	
		
			
				
					
				
					
				
			
		
	

	
		
			
				
					
				
					
				
			
		
	

	
		
			
				
					
				
					
				
			
		
	

	
		
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

(a)

	
		
		
		
		
		
		
		
		
		
	

(b)
Figure 5: Algorithm A2 process. The first step: analyzing and collecting Points Location over the threshold (a) and the second step: identifying the centroid (b).

(3) A3: this algorithm focuses on reducing processing costs per image when a PL is present, but it is not in the right lower corner of the image. We use a linear search as described for Algorithm A2 (see Figure 6 and Algorithm 3). Unlike the previous algorithm (cf. A2), A3 stops the linear search as soon as it finds the first suitable pixel. After identifying this pixel in the image, another algorithm is applied, in this area, to determine the center coordinates of the PL (see Figure 6(b)). This algorithm searches in four directions starting from the over the threshold pixel previous found. We search horizontally (west and east) to detect the maximum and minimum values on the row-axis and vertically (north and south) to detect the maximum and minimum values on the column-axis. These two sets of values ({min row-axis, max row-axis}; {min column-axis, max column-axis}) correspond to the prediction center for the PL (see Figure 6(b)).

	
		
		
		
		
		
		
		
		
		
	

	
		
		
			
		
	

	
		
		
			
		
	

	
		
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
		
			
		
	

	
		
			
		
			
		
	

(a)

	
		
		
		
		
		
		
		
		
		
	

	
		
	
	
		
	
	
		
			
		
	

	
		
			
				
					
				
					
				
				
					
				
			
		
	

	
		
			
				
					
				
					
				
				
					
				
			
		
	

(b)
Figure 6: The Algorithm A3 Process (a) and how to find the centroid of PL (b).

 (4) A4: A4 Algorithm uses a different approach since its focus is on tracking PL over consecutive images. Hence, it should present better results, that is, less processing cost and time elapsed to detect PL, when a previous detected PL moves on consecutive images (e.g., dragging the pointing device). The algorithm uses a vector to store information about the PL displacement, that is, the difference of PL positions between two consecutive images. Consider three consecutive images:
	
		
			

				𝐹
			

			

				1
			

		
	
,
	
		
			

				𝐹
			

			

				2
			

		
	
, and
	
		
			

				𝐹
			

			

				3
			

		
	
. All respectively contain a PL in movement/displacement, which has the respective coordinates,
	
		
			

				𝑃
			

			

				1
			

			
				=
				(
				𝑥
			

			

				1
			

			
				,
				𝑦
			

			

				1
			

			

)
			

		
	
,
	
		
			

				𝑃
			

			

				2
			

			
				=
				(
				𝑥
			

			

				2
			

			
				,
				𝑦
			

			

				2
			

			

)
			

		
	
, and
	
		
			

				𝑃
			

			

				3
			

			
				=
				(
				𝑥
			

			

				3
			

			
				,
				𝑦
			

			

				3
			

			

)
			

		
	
. The value of the PL displacement vector, between
	
		
			

				𝐹
			

			

				1
			

		
	
 and
	
		
			

				𝐹
			

			

				2
			

		
	
,
	
		
			
				Δ
				𝑠
			

		
	
 is calculated as follows:
										
	
 		
 			
				(
				1
)
			
 		
	

	
		
			
				
				𝑥
				Δ
				𝑠
				=
				(
				Δ
				𝑥
				,
				Δ
				𝑦
)
				=
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				,
				𝑦
			

			

				2
			

			
				−
				𝑦
			

			

				1
			

			
				
				.
			

		
	

									The algorithm uses
	
		
			
				Δ
				𝑠
			

		
	
 to predict the future position of
	
		
			

				𝑃
			

			

				3
			

		
	
 and then execute from this prediction a spiral search to find the real coordinates of PL in
	
		
			

				𝐹
			

			

				3
			

		
	
 (see Figure 7(a)). This approach assumes that the displacement is similar between consecutive images unless the IR pen stops abruptly. The estimation of
	
		
			

				𝑃
			

			

				3
			

		
	
 coordinates in
	
		
			

				𝐹
			

			

				3
			

		
	
 is calculated through the formula:
										
	
 		
 			
				(
				2
)
			
 		
	

	
		
			
				
				𝑃
			

			

				3
			

			
				=
				𝑃
			

			

				2
			

			
				
				𝑥
				+
				Δ
				𝑠
				=
			

			

				2
			

			
				+
				Δ
				𝑥
				,
				𝑦
			

			

				2
			

			
				
				.
				+
				Δ
				𝑦
			

		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
	
	
		
	

	
		
	
	
		
	

	
		
	
	
		
	

	

	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
		
			
		
	

(a)

	
		
		
		
		
		
		
		
		
		
	

	
		
			
				
					
						
							
						
							
						
						
							
						
					
				
			
		
	

	
		
			
				
					
						
							
						
							
						
						
							
						
					
				
			
		
	

(b)
Figure 7: The representation of Algorithm A4 process—prediction (a) centroid process (b).

The algorithm uses the estimation of
	
		
			

				𝑃
			

			

				3
			

		
	
 as a starting point to initiate the spiral search. On average, this algorithm provides better results when compared with searching PL from the origin. A traditional spiral search can be time consuming due to nonlinear memory accesses. Hence, we use a lookup table with the distance related to row-axis and column-axis, which by addition would apply the movement of a spiral as can be seen in Figure 7(a). Spiral search algorithm can be inefficient, when compared to linear search methods, when a PL suddenly moves to an unpredicted position or disappears from the image. The spiral search repeatedly performs jumps between different memory areas while the linear search processes consecutive storage positions. Therefore, when the algorithm reaches the maximum spiral size
	
		
			

				𝑁
			

		
	
 and fails, a linear search strategy is applied. After the search phase, the coordinates for the PL centroid are obtained as previously described (see Figure 7(b)).
Multiple Pointers Location (Algorithm A5). The multipoint algorithm uses an ordinary linear search and recursively collects and labels the foreground pixels information for all existing PLs in the image (see in Figure 8(a)). For each of those groups, the centroid coordinates are determined as illustrated in Figure 8(b). Although this algorithm can detect a large number of PLs, we only track up to two simultaneous PLs in the LoCoBoard system.

	
		
		
		
		
		
		
		
		
		
	

	
		
			
				
			
				
			
		
	

(a)

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

