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Abstract. 
UML 2.0 sequence diagrams are
used to synthesize test scenarios. A UML 2.0 sequence diagram
usually consists of a large number of different types of fragments
and possibly with nesting. As a consequence, arriving at a
comprehensive system behavior in the presence of multiple,
nested fragment is a complex and challenging task. So far the
test scenario synthesis from sequence diagrams is concerned, the
major problem is to extract an arbitrary flow of control. In
this regard, an approach is presented here to facilitate a simple
representation of flow of controls and its subsequent use in the
test scenario synthesis. Also, the flow of controls is simplified on
the basis of UML 2.0 control primitives and brought to a testable
form known as intermediate testable model (ITM). The proposed
approach leads to the systematic interpretation of control flows
and helps to generate test scenarios satisfying a set of coverage
criteria. Moreover, the ability to support UML 2.0 models leads
to increased levels of automation than the existing approaches.


1. Introduction
Due to the increasing size and complexity of software applications, the design and specification have become an important activity in the software life cycle. Interaction-based specifications such as UML sequence diagrams have been found effective in this regard, as they describe system requirements in the most intuitive way. A sequence diagram captures dynamic aspects of a system by means of messages and corresponding responses of collaborating objects. In other words, method calls, parameters, return values, and the collaborating objects can be explicitly modeled in a sequence diagram. As a result, these specifications can be used not only for capturing system behaviors but also for generating test cases that can precisely check for faults at the implementation level.
 As recommended by Jacobson, the requirements of a system can be represented by a set of use cases [1, 2]. A use case can have several scenarios describing the main (primary) and alternate (secondary) scenarios. Since a scenario represents the single trace of behavior of the system, completely describing a system requires all the possible scenarios. These multiple scenarios of a use case are not completely independent of one another and are related to realize the behavior of a use case [3–5]. So the test scenario synthesis from sequence diagram must not only consider the sequence diagram corresponding to a single scenario but consider the behavior from multiple scenarios that are related to a use case.
 Before UML 2.0, the sequence diagram notations considered each scenario separately in a single sequence diagram [6, 7]. Probably, due to that, early research on test scenario synthesis from sequence diagrams has concentrated on each scenario in isolation. However, there have been many problems on maintaining such a large set of sequence diagrams. The redundant information leading to different errors in design documents is reported by some researchers [8, 9]. Mainly, any change in the specification induced a lot of modification in the associated diagrams. In the absence of scenario relationships, many studies are conducted to infer scenario relationships from multiple sequence diagrams. To get over-all behavior of the system, such independently written partial behaviors are combined in some of the approaches [10, 11]. However, constructing a single consistent model requires significant additional effort from the designers [10].
 UML 2.0 specifications have introduced the notion of combined fragments to model multiple scenarios in a concise manner [7, 12]. These new modeling capabilities have provided significant improvement in the ability to model large-scale software systems [6]. Using the standard constructs to model hierarchical capabilities, it is possible to support models at any arbitrary levels of complexity. At one end, maintaining a large set of diagrams and the subsequent effort in combining has been subsumed by new constructs. However, at the other end, it turns out that there remains a gap to generate test scenarios from the new models.
 To address the above gap, this paper investigates the application of sequence diagrams in software testing. There are many approaches in the literature for generating test cases from new sequence diagrams. However, these approaches focus on interpreting each scenario independently rather than identifying dependencies among them. Consequently, none of the models in the existing approaches allow nested and hierarchical constructs of a sequence diagram ever since the inception of UML 2.0. Even the approaches [13–17] proposed after the introduction of UML 2.0 have only sketched how to derive test cases while paying little attention to the model itself. In UML-based testing, models serve as the blueprint from which test cases are derived. To increase the automation of this procedure and thereby to derive greater benefit from model-based testing, models have to be accurate. In contrast, the existing tools and techniques are not capable of handling new constructs. This can lead to inaccuracies while interpreting the models. Thus, the primary motivation for the proposed research comes from the need to support higher level of automation and model precision while adopting UML 2.0 standard.
 Although 2.0 version of sequence diagrams has increased expressive power, it is very hard to interpret sequence diagrams with new structured control constructs [18, 19]. The interpretation of a single scenario is evident but the way it relates to other scenarios cannot be interpreted easily [20]. Obviously, the interpretation becomes harder for large and complex specifications. Hence, despite the advantages, test scenario synthesis from the sequence diagrams becomes a difficult and challenging task, especially when interactions include repetitive, alternative, and concurrent control flows. A combined fragment may also enclose nested fragment(s). Further, there can be several operands, each containing its combined fragment [7], which can again be a plain combined fragment or another nested fragment. This implies that the nesting can be arbitrarily complex. Also, there can be different types of operators designating each fragment and some of the scenarios may denote early exit paths from these fragments (break fragment). Based on the type and nesting of combined fragments, scenario identification requires identifying various control flows that are embedded within combined fragments. Moreover, an early exit path of a combined fragment needs detailed interpretation. For example, an early exit path from a concurrent fragment cannot be mapped into a one-to-one basis with a scenario. The parallel merging leads to more number of scenarios compared to that of an alternative fragment. Pan-Wei [21] pointed out that exploring every possible use case scenario is a challenging task. This necessitates the conversion of a sequence diagram to a representation suitable for test scenario generation. In other words, the objective is to develop a testable model that can manage the test scenario generation process from a sequence diagram.
 This paper aims at providing methodological support for automating the test scenario generation process from a sequence diagram using a two-phase approach. The control flow analysis of a sequence diagram is accomplished in the first phase. In order to accomplish control flow analysis, it is desirable to view a sequence diagram in terms of units of interaction such as in control flow analysis of programs [22]. These units of interaction are termed as blocks and identify the messages of a sequence diagram in terms of blocks of messages. A directed graph representation known as scenario graph is presented as an outcome of the first phase. In the second phase, test scenarios are generated from the scenario graph.
 The rest of the paper is organized as follows. A brief discussion on basic definitions and concepts used in proposed methodology is given in Section 2. Section 3 presents the proposed approach to test scenario generation. Section 4 presents an illustration to explain the proposed approach. Experimental results are presented in Section 5. In Section 6, the related work is described and compared with the proposed approach. Finally, Section 7 concludes the paper.
2. Basic Concepts
 In this section, a brief review of UML 2.0 sequence diagram is presented. The scenario graph is then defined for mapping the control flow semantics of various fragments. Based on the control primitives appearing in the scenario graph, a classification scheme is proposed. Finally, the concept of testable model known as Intermediate Testable Model (ITM) is discussed.
2.1. UML 2.0 Sequence Diagrams
 A sequence diagram also called interaction diagram graphically displays a sequence of messages among collaborating objects for various scenarios of a use case. A set of such messages forms an interaction. In order to specify the notion of interaction, the abstract syntax of sequence diagram is defined as follows.
Definition 1. A sequence diagram is a tuple 
	
		
			
				𝐷
				=
				⟨
				𝑃
				,
				𝐸
				,
				𝑙
				,
				𝐹
				⟩
			

		
	
 where one has the following.(i)
	
		
			

				𝑃
			

		
	
 is a set of objects denoting participants involved in an interaction.(ii)
	
		
			

				𝐸
			

		
	
 is a set of events where each event corresponds to sending or receiving a message.(iii)
	
		
			

				𝑙
			

		
	
 is a labeling function that maps each event 
	
		
			
				𝑒
				∈
				𝐸
			

		
	
 to one specific participant 
	
		
			
				𝑝
				∈
				𝑃
			

		
	
 such that 
	
		
			
				𝑙
				(
				𝑒
				)
				=
				𝑝
			

		
	
. The participant is known as the sender while an event 
	
		
			
				𝑒
				∈
				𝐸
			

		
	
 corresponds to sending a message; otherwise it is known as the receiver.(iv)
	
		
			

				𝐹
			

		
	
 is a set of ordered (from top to bottom) fragments.
 Each fragment is a set of operands such that  
	
		
			

				𝐹
			

			

				𝑖
			

			
				=
				{
				𝑜
				𝑝
				𝑑
			

			

				1
			

			
				,
				…
				,
				𝑜
				𝑝
				𝑑
			

			

				𝑞
			

			

				}
			

		
	
 where 
	
		
			

				𝑞
			

		
	
 is the number of operands. An operand 
	
		
			
				𝑜
				𝑝
				𝑑
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑞
			

		
	
 is in the form 
	
		
			
				⟨
				𝑜
				𝑝
				𝑟
				,
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
				,
				𝑀
				⟩
			

		
	
 where 
	
		
			
				𝑜
				𝑝
				𝑟
			

		
	
 denotes the interaction operator associated with the fragment and 
	
		
			
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
			

		
	
 denotes a boolean expression that may be associated with the operand. 
	
		
			

				𝑀
			

		
	
 is a finite set of messages that are associated with the operand and may contain any fragment(s) nested in the operand 
	
		
			
				𝑜
				𝑝
				𝑑
			

			

				𝑖
			

		
	
. Each 
	
		
			

				𝑀
			

		
	
 is in the form 
	
		
			
				(
				𝑚
				,
				𝑠
				,
				𝑟
				)
			

		
	
 where 
	
		
			

				𝑚
			

		
	
 is the label of the message and 
	
		
			
				𝑠
				,
				𝑟
				∈
				𝑃
			

		
	
 denote sender and receiver, respectively. There is an ordering relation over the messages in a operand. For any two distinct events 
	
		
			

				𝑒
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑒
			

			

				𝑗
			

		
	
 let 
	
		
			

				𝑒
			

			

				𝑖
			

			
				<
				𝑒
			

			

				𝑗
			

		
	
 denote that 
	
		
			

				𝑒
			

			

				𝑗
			

		
	
 occurs after 
	
		
			

				𝑒
			

			

				𝑖
			

		
	
. Two messages 
	
		
			

				𝑀
			

			

				𝑖
			

			
				=
				(
				𝑚
			

			

				𝑖
			

			
				,
				𝑠
			

			

				𝑖
			

			
				,
				𝑟
			

			

				𝑖
			

			

				)
			

		
	
 and 
	
		
			

				𝑀
			

			

				𝑗
			

			
				=
				(
				𝑚
			

			

				𝑗
			

			
				,
				𝑠
			

			

				𝑗
			

			
				,
				𝑟
			

			

				𝑗
			

			

				)
			

		
	
 in 
	
		
			

				𝑀
			

		
	
 can be described by the ordering relation <. If 
	
		
			

				𝑠
			

			

				𝑖
			

			
				=
				𝑠
			

			

				𝑗
			

		
	
 and 
	
		
			
				𝑒
				𝑠
			

			

				𝑖
			

			
				<
				𝑒
				𝑠
			

			

				𝑗
			

		
	
 or if 
	
		
			

				𝑟
			

			

				𝑖
			

			
				=
				𝑟
			

			

				𝑗
			

		
	
 and 
	
		
			
				𝑒
				𝑟
			

			

				𝑖
			

			
				<
				𝑒
				𝑟
			

			

				𝑗
			

		
	
 or if 
	
		
			

				𝑟
			

			

				𝑖
			

			
				=
				𝑠
			

			

				𝑗
			

		
	
 and 
	
		
			
				𝑒
				𝑟
			

			

				𝑖
			

			
				<
				𝑒
				𝑠
			

			

				𝑗
			

		
	
, then 
	
		
			

				𝑀
			

			

				𝑖
			

			
				<
				𝑀
			

			

				𝑗
			

		
	
. Here, 
	
		
			
				𝑒
				𝑠
			

			

				𝑖
			

		
	
 and 
	
		
			
				𝑒
				𝑟
			

			

				𝑖
			

		
	
 denote the sending event and receiving event for a message 
	
		
			

				𝑀
			

			

				𝑖
			

		
	
, respectively.
Example 2. A typical sequence diagram is shown in Figure 1(a) with three participant objects involved in the interaction where 
	
		
			
				𝑃
				=
				{
				𝑂
				𝑏
				𝑗
				𝑒
				𝑐
				𝑡
			

			

				1
			

			
				,
				𝑂
				𝑏
				𝑗
				𝑒
				𝑐
				𝑡
			

			

				2
			

			
				,
				𝑂
				𝑏
				𝑗
				𝑒
				𝑐
				𝑡
			

			

				3
			

			

				}
			

		
	
. There are two alt fragments, each fragment with two operands. In addition, a main fragment named sd will exist by default [7] which holds these two alt fragments. The main fragment is thus divided into several operands which are ordered from top to bottom. These operands are marked on the rightmost side of Figure 1(a) as 
	
		
			

				𝐵
			

			

				1
			

		
	
 to 
	
		
			

				𝐵
			

			

				7
			

		
	
. In this work, it is considered that messages are generated by synchronous interactions among objects. For every message, there can be Occurrence Specifications, which specifies the occurrence of message events such as invoking and receiving of method calls [7]. The occurrence specifications, in this way, denote message end points along a lifeline. 
	
		
			
				𝑒
				𝑠
			

			

				𝑖
			

		
	
 is used here as the convention for labeling message end points. For example, events associated with message 
	
		
			
				𝑚
				1
			

		
	
 are 
	
		
			
				(
				𝑒
				𝑠
			

			

				1
			

			
				,
				𝑒
				𝑟
			

			

				1
			

			

				)
			

		
	
 where 
	
		
			
				𝑒
				𝑠
			

			

				1
			

		
	
 is the sender event and 
	
		
			
				𝑒
				𝑟
			

			

				1
			

		
	
 is the receiver event.










	
		
		
			
		
	


	
		
		
			
		
	










	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	




	
		
		
			
		
	


	
		
		
			
		
	




	
		
		
			
		
	






















	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
		
		
		
		
		
		
	
	
		
	


	
		
		
		
		
		
		
	
	
		
	


	
		
		
		
		
		
		
	
	
		
	


	
		
		
		
	


	
		
		
		
	

(a) An example sequence diagram


	


	


	


	


	


	


	


	


	


	


	


	


	


	



	
		
		
			
		
	



	
		
		
			
		
	





	
		
		
			
		
	


	
		
		
			
		
	





	
		
		
			
		
	



	
		
		
			
		
	



	
		
		
			
		
	



	
		
		
			
		
	





	
		
		
			
		
	


	
		
		
			
		
	





	
		
		
			
		
	



	
		
		
			
		
	



	
		
		
			
		
	






	
		
		
			
		
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	

(b) The scenario graph for the sequence diagram
Figure 1: An example illustrating a sequence diagram and its scenario graph.


Now consider messages within operand 
	
		
			

				𝐵
			

			

				1
			

			
				=
				(
				𝑜
				𝑝
				𝑟
				,
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
				,
				𝑀
				=
				{
				𝑚
			

			

				1
			

			
				,
				𝑚
			

			

				2
			

			
				}
				)
			

		
	
 where 
	
		
			
				𝑜
				𝑝
				𝑟
				=
				𝑠
				𝑑
			

		
	
 and 
	
		
			
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
				=
				𝑡
				𝑟
				𝑢
				𝑒
			

		
	
. For both messages 
	
		
			

				𝑚
			

			

				1
			

		
	
 and 
	
		
			

				𝑚
			

			

				2
			

		
	
, the sender object is 
	
		
			
				𝑂
				𝑏
				𝑗
				𝑒
				𝑐
				𝑡
				1
			

		
	
 such that 
	
		
			

				𝑚
			

			

				1
			

			
				=
				(
				𝑚
				1
				,
				𝑂
				𝑏
				𝑗
				𝑒
				𝑐
				𝑡
				1
				,
				𝑂
				𝑏
				𝑗
				𝑒
				𝑐
				𝑡
				3
				)
			

		
	
 and 
	
		
			

				𝑚
			

			

				2
			

			
				=
				(
				𝑚
				2
				,
				𝑂
				𝑏
				𝑗
				𝑒
				𝑐
				𝑡
				1
				,
				𝑂
				𝑏
				𝑗
				𝑒
				𝑐
				𝑡
				2
				)
			

		
	
. Since 
	
		
			
				𝑒
				𝑠
			

			

				1
			

			
				<
				𝑒
				𝑠
			

			

				2
			

		
	
, 
	
		
			

				𝑚
			

			

				1
			

			
				<
				𝑚
			

			

				2
			

		
	
. Next, there appears an alt fragment with two operands 
	
		
			
				𝐵
				2
			

		
	
 and 
	
		
			
				𝐵
				3
			

		
	
 where 
	
		
			
				𝐵
				2
				=
				(
				𝑎
				𝑙
				𝑡
				,
				[
				𝑐
				1
				]
				,
				{
				𝑚
			

			

				3
			

			
				,
				𝑚
			

			

				4
			

			
				}
				)
			

		
	
 and 
	
		
			

				𝐵
			

			

				3
			

			
				=
				(
				𝑎
				𝑙
				𝑡
				,
				[
				𝑐
			

			

				2
			

			
				]
				,
				{
				𝑚
			

			

				5
			

			
				}
				)
			

		
	
. Now, for messages 
	
		
			

				𝑚
			

			

				3
			

		
	
 and 
	
		
			

				𝑚
			

			

				4
			

		
	
, the receiver of 
	
		
			
				𝑚
				3
			

		
	
 and sender of 
	
		
			
				𝑚
				4
			

		
	
 are the same. Accordingly, the ordering is established as 
	
		
			

				𝑚
			

			

				3
			

			
				<
				𝑚
			

			

				4
			

		
	
 since 
	
		
			
				𝑒
				𝑟
			

			

				3
			

			
				<
				𝑒
				𝑠
			

			

				4
			

		
	
. Similarly, messages within all operands are ordered that reflect the visual order from top to bottom. To indicate this ordering, the messages are named sequentially as 
	
		
			
				𝑚
				1
			

		
	
 to 
	
		
			
				𝑚
				9
			

		
	
 in Figure 1(a). Thus, a sequence diagram precisely specifies the set of objects and the sequences of message exchanges that are involved in a use case.
2.2. Scenario Graph
 In order to systematically investigate the comprehensive flow of control from a sequence diagram, the information contained in the sequence diagram is extracted and stored in a graph known as scenario graph [23]. The following nodes are considered while mapping a sequence diagram to a scenario graph.(i)An initial node represents the beginning of a scenario graph.(ii)A block node represents a sequence of messages such as messages within operands of a fragment.(iii)A decision node represents a conditional expression such as Boolean expression that needs to be satisfied for selection among operands of a fragment.(iv)A merge node represents an exit from the selection behavior such as an exit from an alt or an opt fragment.(v)A fork node represents an entry into a par fragment.(vi)A join node represents an exit from a par fragment.(vii)A final node represents an exit of a scenario graph.
 A scenario graph is defined as follows.
Definition 3. A scenario graph is a directed graph, 
	
		
			
				𝐺
				=
				⟨
				𝐴
				,
				𝐸
				,
				𝑖
				𝑛
				,
				𝐹
				⟩
			

		
	
. Here, 
	
		
			
				𝑖
				𝑛
			

		
	
 denotes the initial node such that there is a path from 
	
		
			
				𝑖
				𝑛
			

		
	
 to all other nodes and 
	
		
			

				𝐹
			

		
	
 denotes a set of all final nodes representing terminal nodes of the graph. Here, 
	
		
			

				𝐴
			

		
	
 is a set of nodes consisting of 
	
		
			
				𝐵
				𝑁
				∪
				𝐶
				𝑁
			

		
	
 where 
	
		
			
				𝐵
				𝑁
			

		
	
 is a set of block nodes, and  
	
		
			
				𝐶
				𝑁
				=
				𝐷
				𝑁
				∪
				𝑀
				𝑁
				∪
				𝐹
				𝑁
				∪
				𝐽
				𝑁
			

		
	
 is a set of control nodes such that 
	
		
			
				𝐷
				𝑁
			

		
	
 is a set of decision nodes, 
	
		
			
				𝑀
				𝑁
			

		
	
 is a set of merge nodes, 
	
		
			
				𝐹
				𝑁
			

		
	
 is a set of fork nodes, and 
	
		
			
				𝐽
				𝑁
			

		
	
 is a set of join nodes. 
	
		
			

				𝐸
			

		
	
 denotes a set of control edges such that 
	
		
			
				𝐸
				=
				{
				(
				𝑥
				,
				𝑦
				)
				∣
				𝑥
				,
				𝑦
				∈
				𝐴
				}
			

		
	
. It is assumed that each edge is labeled with the Boolean expression where the Boolean expression “true” is the default edge label attached to an edge.
The structure of each node 
	
		
			

				𝐴
			

			

				𝑖
			

			
				∈
				𝐴
			

		
	
 is defined as follows.

	
		
			
				⟨
				𝑛
				𝑜
				𝑑
				𝑒
				𝐼
				𝑑
				,
				𝑛
				𝑜
				𝑑
				𝑒
				𝑇
				𝑦
				𝑝
				𝑒
				,
				𝑛
				𝑜
				𝑑
				𝑒
				𝐷
				𝑒
				𝑡
				𝑎
				𝑖
				𝑙
				𝑠
				⟩
			

		
	
 where one has the following.(i)
	
		
			
				𝑛
				𝑜
				𝑑
				𝑒
				𝐼
				𝑑
			

		
	
 is a unique label attached to each node in scenario graph.(ii)
	
		
			
				𝑛
				𝑜
				𝑑
				𝑒
				𝑇
				𝑦
				𝑝
				𝑒
				=
				{
				𝑑
				𝑒
				𝑐
				𝑖
				𝑠
				𝑖
				𝑜
				𝑛
				,
				𝑚
				𝑒
				𝑟
				𝑔
				𝑒
				,
				𝑓
				𝑜
				𝑟
				𝑘
				,
				𝑗
				𝑜
				𝑖
				𝑛
				}
			

		
	
 for each 
	
		
			

				𝐶
			

			

				𝑖
			

			
				∈
				𝐶
				𝑁
			

		
	
 and 
	
		
			
				𝑛
				𝑜
				𝑑
				𝑒
				𝑇
				𝑦
				𝑝
				𝑒
				=
				{
				𝑏
				𝑙
				𝑜
				𝑐
				𝑘
				,
				𝑖
				𝑛
				𝑖
				𝑡
				𝑖
				𝑎
				𝑙
				,
				𝑓
				𝑖
				𝑛
				𝑎
				𝑙
				}
			

		
	
 for all other nodes.(iii)
	
		
			
				𝑛
				𝑜
				𝑑
				𝑒
				𝐷
				𝑒
				𝑡
				𝑎
				𝑖
				𝑙
				𝑠
				=
				{
				𝑚
			

			

				1
			

			
				,
				…
				,
				𝑚
			

			

				𝑞
			

			
				∣
				𝑞
			

		
	
 is a number of messages in 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∈
				𝐵
				𝑁
			

		
	
}. Each 
	
		
			

				𝑚
			

			

				𝑗
			

			
				∈
				𝑛
				𝑜
				𝑑
				𝑒
				𝐷
				𝑒
				𝑡
				𝑎
				𝑖
				𝑙
				𝑠
			

		
	
 is defined as a triple 
	
		
			
				⟨
				𝑚
				,
				𝑠
				,
				𝑟
				⟩
			

		
	
 with each message specifying its sender 
	
		
			

				𝑠
			

		
	
, receiver 
	
		
			

				𝑟
			

		
	
, and name of the message 
	
		
			

				𝑚
			

		
	
 for all block nodes 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∈
				𝐵
				𝑁
			

		
	
. 
	
		
			
				𝑛
				𝑜
				𝑑
				𝑒
				𝐷
				𝑒
				𝑡
				𝑎
				𝑖
				𝑙
				𝑠
				=
				{
				𝑎
				𝑙
				𝑡
				,
				𝑙
				𝑜
				𝑜
				𝑝
				,
				𝑏
				𝑟
				𝑒
				𝑎
				𝑘
				,
				𝑜
				𝑝
				𝑡
				,
				𝑝
				𝑎
				𝑟
				}
			

		
	
 associates an interaction operator to a control node, 
	
		
			

				𝐶
			

			

				𝑖
			

			
				∈
				𝐶
				𝑁
			

		
	
.
Example 4. Figure 1(b) illustrates the scenario graph for the example sequence diagram of Figure 1(a). In a scenario graph, an operand of a fragment is denoted by a block node. A block node is shown in ovals and only node-id is mentioned for each of the nodes, for brevity. The guard associated with an operand is shown as an edge descriptor. For denoting fork and join nodes thick-line segments are considered whereas for denoting decision and merge nodes diamond symbols are used. A solid circle is used for denoting initial node and a solid circle enclosed within a hollow outer circle is used for denoting final nodes. Further, node label 
	
		
			

				𝐵
			

			

				𝑖
			

		
	
 is used for denoting block nodes. 
	
		
			
				𝐹
				𝑁
			

			

				𝑖
			

		
	
 and 
	
		
			
				𝐽
				𝑁
			

			

				𝑖
			

		
	
 labels refer to fork and join nodes, respectively. For denoting decision and merge nodes 
	
		
			

				𝐷
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑀
			

			

				𝑖
			

		
	
 are used as node labels. The node structures for block nodes and control nodes are discussed hereinafter.
As shown in Figure 1(b), a block node is assigned one or more messages of an operand. Thus, the node structure for 
	
		
			

				𝐵
			

			

				1
			

		
	
 is assigned as 
	
		
			
				(
				𝑛
				𝑜
				𝑑
				𝑒
				𝐼
				𝑑
				=
				𝐵
			

			

				1
			

			
				,
				𝑛
				𝑜
				𝑑
				𝑒
				𝑇
				𝑦
				𝑝
				𝑒
				=
				𝑏
				𝑙
				𝑜
				𝑐
				𝑘
				,
				𝑛
				𝑜
				𝑑
				𝑒
				𝐷
				𝑒
				𝑡
				𝑎
				𝑖
				𝑙
				𝑠
				=
				{
				𝑚
			

			

				1
			

			
				,
				𝑚
			

			

				2
			

			
				}
				)
			

		
	
. It can be seen that a decision node 
	
		
			

				𝐷
			

			

				1
			

		
	
 is connected to the node 
	
		
			

				𝐵
			

			

				1
			

		
	
. Since 
	
		
			

				𝐷
			

			

				1
			

		
	
 is a control node, the structure 
	
		
			
				(
				𝑛
				𝑜
				𝑑
				𝑒
				𝐼
				𝑑
				=
				𝐷
			

			

				1
			

			
				,
				𝑛
				𝑜
				𝑑
				𝑒
				𝑇
				𝑦
				𝑝
				𝑒
				=
				𝑑
				𝑒
				𝑐
				𝑖
				𝑠
				𝑖
				𝑜
				𝑛
				,
				𝑛
				𝑜
				𝑑
				𝑒
				𝐷
				𝑒
				𝑡
				𝑎
				𝑖
				𝑙
				𝑠
				=
				𝑎
				𝑙
				𝑡
				)
			

		
	
 is assigned to the decision node. In this way, a scenario graph provides an alternate representation for the sequence diagram by preserving all the details that are required for scenario generation.
2.3. Control Primitives in a Scenario Graph
 A combined fragment encloses a group of messages that are associated with a specific type of operator and is expressed in terms of its operands. In the following, each combined fragment will be considered as a basic control primitive. This allows to express nested fragments in terms of basic primitives.
2.3.1. Loop Construct
A loop in a scenario graph is a set of nodes involved in an iterative computation.
2.3.2. Selection Constructs
The alt fragment and its variants such as break and opt result in a selection behavior, which are collectively referred here as a selection construct. A selection construct in a scenario graph can be identified as a set of nodes involved within a decision node and a merge node. However, there can be different variations of selection depending on the way a merge node converges. That is, there exist 
	
		
			

				𝑁
			

		
	
, 
	
		
			
				𝑁
				≠
				0
			

		
	
, such that 
	
		
			

				𝑁
			

		
	
 denotes outgoing flows from a decision node; a merge node may be used to converge 
	
		
			

				𝐾
			

		
	
 flows where 
	
		
			

				𝐾
			

		
	
 denotes incoming flows to a merge node and 
	
		
			
				0
				≤
				𝐾
				≤
				𝑁
			

		
	
. A selection can be termed as matched selection if all outgoing flows from a decision node can be matched with each incoming flow of a merge node; that is, 
	
		
			
				𝐾
				=
				𝑁
			

		
	
. If 
	
		
			
				𝐾
				<
				𝑁
			

		
	
, then it is K-out-of-N selection. Further, there may not be a merge node; that is, flows from a decision node may not converge into any merge node. This situation is referred as unmatched selection.
2.3.3. Fork Construct
A pair of fork-join nodes is considered as a fork construct in a scenario graph. The occurrence of a fork node initiates multiple parallel flows whereas a join node synchronizes these parallel flows. The default action associated with join is AND and therefore the join node introduces a wait action. Only, when all other incoming flows are ready, the control is transferred on the outgoing edge of a join node.
2.4. Intermediate Testable Model (ITM)
 The scenario graph is built on the description of the message sequences that occur in a use case. In a scenario graph, a test scenario is corresponding to an execution thread. A sequence diagram can be arbitrarily complex, and in such a case, it is not straightforward to interpret execution behavior directly from a scenario graph. In order to manage the complexity of a scenario graph, an intermediate representation of the scenario graph is proposed which is intermediate testable model (ITM). With ITM representation, each control construct can be analyzed independently. That is, a control construct in the scenario graph can be mapped to a special node in ITM termed as composite node. This region is termed as Control Construct Graph (CCG). To preserve the nesting structure, this mapping is done hierarchically such that a composite node may enclose zero or more composite nodes. An ITM can therefore be viewed as a concise representation of the scenario graph [23]. Since each fragment has been compressed into a composite node, an ITM is finally a chain of nodes 
	
		
			
				⟨
				𝑎
			

			

				1
			

			
				,
				…
				,
				𝑎
			

			

				𝑘
			

			

				⟩
			

		
	
 such that for all 
	
		
			
				𝑖
				,
				1
				≤
				𝑖
				≤
				𝑘
				−
				1
			

		
	
, 
	
		
			

				𝑎
			

			

				𝑖
			

		
	
 is a predecessor of 
	
		
			

				𝑎
			

			
				𝑖
				+
				1
			

		
	
.
Definition 5. An ITM 
	
		
			

				𝐺
			

			

				𝑘
			

			
				=
				⟨
				𝐴
				,
				𝐸
				,
				𝑖
				𝑛
				,
				𝑓
				⟩
			

		
	
 is a chain of nodes where one has the following.(1)
	
		
			
				𝐴
				=
				𝐴
			

			

				𝐵
			

			
				∪
				𝐴
			

			

				𝐶
			

		
	
: a finite set of nodes. Each node in 
	
		
			

				𝐴
			

			

				𝐵
			

		
	
 and 
	
		
			

				𝐴
			

			

				𝐶
			

		
	
 is a block node and composite node, respectively.(2)
	
		
			
				𝐸
				⊆
				{
				(
				𝑎
			

			

				𝑖
			

			
				,
				𝑎
			

			

				𝑗
			

			
				)
				∣
				𝑎
			

			

				𝑖
			

			
				,
				𝑎
			

			

				𝑗
			

			
				∈
				𝐴
				,
				𝑖
				≠
				𝑗
				}
			

		
	
: a set of directed edges between two nodes 
	
		
			

				𝑎
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑎
			

			

				𝑗
			

		
	
.(3)
	
		
			
				𝑖
				𝑛
				∈
				𝐴
			

		
	
: the start node representing an initial node of the sequence diagram.(4)
	
		
			
				𝑓
				∈
				𝐴
			

		
	
: a final node representing a node without any successor node.
3. STUSD Methodology
 In this section, the proposed approach for generating test scenarios from a sequence diagram is presented. The proposed methodology is termed as STUSD where STUSD stands for Synthesis of Test scenarios using UML Sequence Diagrams. Figure 2 gives an overview of the proposed methodology. A sequence diagram modeled using UML 2.0 design specifications is input to the test scenario synthesis methodology. The sequence diagram is composed by a designer using a CASE tool and stored in XMI format. The STUSD approach consists of two phases, control flow analysis and test scenario synthesis. The control flow analysis phase produces the scenario graph which is the directed graph representation of the given sequence diagram. In the first step of the analysis phase, the XMI parser reads the sequence diagram and retrieves details such as objects, messages, and fragments along with their corresponding guard information. In the subsequent step, the control flow interpreter deduces the sequence information from the temporal ordering of messages and forms a scenario graph. This graph, in turn, is used as input to the synthesis phase. In the first step of the synthesis phase, the ITM generator transforms the scenario graph into a testable model called the Intermediate Testable Model (ITM). Subsequently, the test scenario generator generates test scenarios from the ITM known as abstract test cases. Details of these steps are discussed in the following subsections.


	
	
	
		
			
			
				
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
			
				
			
		
	
	
	
	
	
	
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	

Figure 2: An overview of STUSD.


3.1. Capturing Model Element Details
 In order to map a sequence diagram (exported in XMI format) to a scenario graph, a parser is designed to retrieve all information pertaining to a sequence diagram. The parser considers the following structures for messages and fragments to capture their information.
 A message 
	
		
			

				𝑀
			

			

				𝑖
			

		
	
 in a sequence diagram is of the form 
	
		
			
				⟨
				𝑚
			

			

				𝑖
			

			
				,
				𝑠
				𝑒
				𝑛
				𝑑
				𝑒
				𝑟
				,
				𝑟
				𝑒
				𝑐
				𝑒
				𝑖
				𝑣
				𝑒
				𝑟
				⟩
			

		
	
 (see Definition 1), where the message is 
	
		
			

				𝑚
			

			

				𝑖
			

		
	
 = 
	
		
			
				⟨
				𝑚
				𝑒
				𝑡
				ℎ
				𝑜
				𝑑
				𝑁
				𝑎
				𝑚
				𝑒
				,
				𝑝
				𝑎
				𝑟
				𝑎
				𝑚
				𝐿
				𝑖
				𝑠
				𝑡
				,
				𝑟
				𝑉
				𝑎
				𝑙
				𝑢
				𝑒
				⟩
			

		
	
. Here, 
	
		
			
				𝑚
				𝑒
				𝑡
				ℎ
				𝑜
				𝑑
				𝑁
				𝑎
				𝑚
				𝑒
			

		
	
 denotes the name of a method from the object sender to the object receiver, 
	
		
			
				𝑝
				𝑎
				𝑟
				𝑎
				𝑚
				𝐿
				𝑖
				𝑠
				𝑡
			

		
	
 = 
	
		
			
				{
				𝑝
			

			

				1
			

			
				,
				…
				,
				𝑝
			

			

				𝑛
			

			

				}
			

		
	
 denotes a set of parameters associated with the method, and 
	
		
			
				𝑟
				𝑉
				𝑎
				𝑙
				𝑢
				𝑒
			

		
	
 is the return value of the corresponding message on the sequence diagram. Both parameters and return values are denoted by 
	
		
			
				⟨
				𝑛
				𝑎
				𝑚
				𝑒
				,
				𝑡
				𝑦
				𝑝
				𝑒
				,
				𝑣
				𝑎
				𝑙
				𝑢
				𝑒
				⟩
			

		
	
. Here, 
	
		
			
				𝑛
				𝑎
				𝑚
				𝑒
			

		
	
 denotes the name of the attribute, 
	
		
			
				𝑡
				𝑦
				𝑝
				𝑒
			

		
	
 denotes the data type associated with the attribute, and 
	
		
			
				𝑣
				𝑎
				𝑙
				𝑢
				𝑒
			

		
	
 is an instance of the value which is assigned to the attribute. Each participant is of the form 
	
		
			
				⟨
				𝑜
				𝑏
				𝑗
				𝑒
				𝑐
				𝑡
				𝑁
				𝑎
				𝑚
				𝑒
				,
				𝑐
				𝑙
				𝑎
				𝑠
				𝑠
				𝑁
				𝑎
				𝑚
				𝑒
				⟩
			

		
	
.
 Each fragment 
	
		
			

				𝐹
			

			

				𝑖
			

		
	
 is structured in terms of its operands, that is, 
	
		
			

				𝐹
			

			

				𝑖
			

			
				=
				{
				𝑜
				𝑝
				𝑑
			

			

				1
			

			
				,
				…
				,
				𝑜
				𝑝
				𝑑
			

			

				𝑞
			

			
				∣
				𝑞
				𝑖
				𝑠
				𝑡
				ℎ
				𝑒
				𝑛
				𝑢
				𝑚
				𝑏
				𝑒
				𝑟
				𝑜
				𝑓
				𝑜
				𝑝
				𝑒
				𝑟
				𝑎
				𝑛
				𝑑
				𝑠
				}
			

		
	
. An operand structure is assumed to contain four elements: 
	
		
			
				𝑜
				𝑝
				𝑑
			

			

				𝑖
			

		
	
 = 
	
		
			
				⟨
				𝑓
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				𝐼
				𝑑
				,
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
				,
				𝑀
				,
				𝐹
			

			

				𝑖
			

			

				⟩
			

		
	
 where 
	
		
			
				𝑓
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				𝐼
				𝑑
			

		
	
 denotes the interaction operator such as alt, par, and break that designate the type of fragment and 
	
		
			
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
			

		
	
 denotes a Boolean expression that may be associated with each operand. 
	
		
			

				𝑀
			

		
	
 is a set of messages that are associated with the operand and 
	
		
			

				𝐹
			

			

				𝑖
			

		
	
 denotes an optional list of fragments indicating multiple instances of nested fragments within an operand.
 The retrieved information in the format as stated previously is used to build the scenario graph, which is discussed in the following subsection.
3.2. Building Scenario Graph
 The element structure stated in the previous section is used to build a scenario graph. It may be noted that the scenario graph representation preserves the sequencing among messages of a sequence diagram. Depending on the interaction operator, each fragment can be featured with its own flow of control. In order to extract this control flow, the transformation procedure is given for each fragment type. However, there are two particular issues to be considered in order to apply these transformations to a given fragment.(i)Variability of an operand structure: an operand of the fragment may enclose subfragments varying the structure of each operand.(ii)Variability of message structure: the number and type of messages contained within an operand of a fragment may vary.
To address the previous, messages within each fragment are confined as an unit of interaction and denoted by a block node. Irrespective of the message structure and operand structure, this allows us to construct the semantics of a fragment in terms of its constituent nodes such as block nodes and control nodes. This abstraction results in predefined transformation so that every fragment can be uniquely transformed to a set of nodes and edges. As a result, any nested fragment can be successively transformed in terms of its contained fragments.
 The approach to build the scenario graph from a given sequence diagram is stated in algorithm CreateScenarioGraph. It is defined in terms of a recursive function exitNode = ProcessFragment (fragmentId, entryNode) to extract the control flow within nested fragments (Procedure 1 and Algorithm 1). Initially, the main frame that hosts the sequence diagram of a use case is supplied as a fragmentId. Depending on the contained elements within this main frame, the function is recursively called with the fragmentId of the element to be transformed. In each transformation, two nodes are distinguished—entry node and exit node. The entry node is the current node which is connected to the outside by incoming edges and therefore supplied as input to the function. The exit node is the node which is connected to the outside by outgoing edges and hence returned as output of the function. The fragments are processed until the termination condition is reached. When the termination condition for the main fragment is reached, the scenario graph is returned with initial node 
	
		
			
				𝑖
				𝑛
			

		
	
 as the entry node and the final node 
	
		
			
				𝑓
				𝑛
			

		
	
 as the exit node (see Procedure 1).
		Input:  
	
		
			

				𝐷
			

		
	
: Sequence diagram in XMI form                    // 
	
		
			

				𝐷
			

		
	
 is the main fragment
	Output: G: scenario graph in the form 
	
		
			
				⟨
				𝐴
				,
				𝐸
				,
				𝑖
				𝑛
				,
				𝐹
				⟩
			

		
	

	1: Create initial node 
	
		
			
				𝑖
				𝑛
			

		
	
;
	2:
	
		
			
				𝑥
				=
				𝑃
				𝑟
				𝑜
				𝑐
				𝑒
				𝑠
				𝑠
				𝐹
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				(
				𝐷
				,
				𝑖
				𝑛
				)
			

		
	
                // Process the main
	     fragment with 
	
		
			
				𝑓
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				𝐼
				𝑑
				=
				𝐷
			

		
	

	3:
	
		
	
 if   
	
		
			
				𝑥
				≠
				𝑓
				𝑖
				𝑛
				𝑎
				𝑙
				𝑛
				𝑜
				𝑑
				𝑒
			

		
	
 then
	4:      Create final node 
	
		
			
				𝑓
				𝑛
				∈
				𝐹
			

		
	
;
	5:      Connect edge from 
	
		
			
				𝑥
				𝑡
				𝑜
				𝑓
				𝑛
			

		
	
;
	6:  end if
	7:  return   
	
		
			

				𝐺
			

		
	
 with entry node 
	
		
			
				𝑖
				𝑛
				∈
				𝐴
			

		
	
 and exit node 
	
		
			
				𝑓
				𝑛
				∈
				𝐹
			

		
	
;
	8: stop
	 Algorithm—The scenario graph generation algorithm


	Procedure 1: 
							Function Create Scenario Graph. 
						


		Input:   
	
		
			
				𝑓
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				𝐼
				𝑑
			

		
	
: Fragment, a tag indicating the type of fragment
	              
	
		
			
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				∈
				𝐴
			

		
	

	Output:   
	
		
			
				𝑒
				𝑥
				𝑖
				𝑡
				𝑁
				𝑜
				𝑑
				𝑒
				∈
				𝐴
			

		
	

	1:  While  ! End Offragment do // end of current fragment
	2:          
	
		
			
				𝑥
				=
				𝐺
				𝑒
				𝑡
				𝑁
				𝑒
				𝑥
				𝑡
				𝐸
				𝑙
				𝑒
				𝑚
				𝑒
				𝑛
				𝑡
				(
				)
			

		
	
;            // Read the next element
	             in the fragment
	3:          if  
	
		
			
				𝑥
				=
				′
				𝐸
				𝑂
				𝐹
				′
			

		
	
 then // Termination condition
	4:          
	
		
			
				𝑒
				𝑥
				𝑖
				𝑡
				𝑁
				𝑜
				𝑑
				𝑒
				=
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
			

		
	
;
	5:          return   
	
		
			
				𝑒
				𝑥
				𝑖
				𝑡
				𝑁
				𝑜
				𝑑
				𝑒
			

		
	

	6:          end if
	7:          case:   
	
		
			
				𝑥
				=
				′
				𝑚
				𝑒
				𝑠
				𝑠
				𝑎
				𝑔
				𝑒
				′
			

		
	
                // 
	
		
			

				𝑥
			

		
	
 is a message element
	8:                 InsertAtPos
	
		
			
				(
				𝑖
				,
				𝑥
				,
				𝐿
				)
			

		
	
;
	9:                 x = GetNextElement();
	10:          while  
	
		
			
				𝑥
				=
				′
				𝑚
				𝑒
				𝑠
				𝑠
				𝑎
				𝑔
				𝑒
				′
			

		
	
  do
	11:                     InsertAtPos
	
		
			
				(
				𝑖
				+
				1
				,
				𝑥
				,
				𝐿
				)
			

		
	
;
	12:                     x = GetNextElement();
	13:          end while
	14:          if  
	
		
			
				𝑥
				!
				=
				′
				𝑚
				𝑒
				𝑠
				𝑠
				𝑎
				𝑔
				𝑒
				′
			

		
	
  then
	15:                         unread(x); break;
	16:          end if
	17:        
	
		
			
				𝐵
				𝑁
				=
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝐵
				𝑙
				𝑜
				𝑐
				𝑘
				𝑁
				𝑜
				𝑑
				𝑒
				(
				𝐿
				)
			

		
	
          //  Create a block
	        node, 
	
		
			
				𝐵
				𝑁
			

		
	
 with block of messages in partial order 
	
		
			

				𝑂
			

		
	
;
	18:             ConnectEdge
	
		
			
				(
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				,
				𝐵
				𝑁
				)
			

		
	
;          // Edge from
	        
	
		
			
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
			

		
	
 to the next node 
	
		
			
				𝐵
				𝑁
			

		
	

	19:             
	
		
			
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				=
				𝐵
				𝑁
			

		
	
;
	20:        end case;
	21:        case:   
	
		
			
				𝑥
				=
				′
				𝑙
				𝑜
				𝑜
				𝑝
				′
			

		
	
                    // 
	
		
			

				𝑥
			

		
	
 is a loop fragment
	22:                         
	
		
			
				𝐷
				𝑁
			

		
	
    
	
		
			

				=
			

		
	
    
	
		
			
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝐷
				𝑒
				𝑐
				𝑖
				𝑠
				𝑖
				𝑜
				𝑛
				𝑁
				𝑜
				𝑑
				𝑒
				(
				𝑥
				.
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
				)
			

		
	

	                                  //    Create decision node with predicate
	                  
	
		
			
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
			

		
	
 in 
	
		
			

				𝑥
			

		
	
;
	23:                      ConnectEdge
	
		
			
				(
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				,
				𝐷
				𝑁
				)
			

		
	
;
	24:                      
	
		
			
				𝑦
				=
				𝑃
				𝑟
				𝑜
				𝑐
				𝑒
				𝑠
				𝑠
				𝐹
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				(
				𝑥
				,
				𝐷
				𝑁
				.
				𝑇
				𝑅
				𝑈
				𝐸
				)
			

		
	
;
	25:                      ConnectEdge
	
		
			
				(
				𝑦
				,
				𝐷
				𝑁
				)
			

		
	
;                    // Create back edge
	26:                      
	
		
			
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				=
				𝐷
				𝑁
				.
				𝐹
				𝐴
				𝐿
				𝑆
				𝐸
			

		
	
;                         // Out edge
	                  from decision node
	27:             end case;
	28:             case:   
	
		
			
				𝑥
				=
				′
				𝑜
				𝑝
				𝑡
				′
			

		
	
                    // 
	
		
			

				𝑥
			

		
	
 is an opt fragment
	29:                          
	
		
			
				𝐷
				𝑁
			

		
	
        
	
		
			

				=
			

		
	
        
	
		
			
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝐷
				𝑒
				𝑐
				𝑖
				𝑠
				𝑖
				𝑜
				𝑛
				𝑁
				𝑜
				𝑑
				𝑒
				(
				𝑥
				.
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
				)
			

		
	

	                                     //    Create decision node with predicate
	                  
	
		
			
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
			

		
	
 in 
	
		
			

				𝑥
			

		
	
;
	30:                      ConnectEdge
	
		
			
				(
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				,
				𝐷
				𝑁
				)
			

		
	
;
	31:                      
	
		
			
				𝑦
				=
				𝑃
				𝑟
				𝑜
				𝑐
				𝑒
				𝑠
				𝑠
				𝐹
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				(
				𝑥
				,
				𝐷
				𝑁
				.
				𝑇
				𝑅
				𝑈
				𝐸
				)
			

		
	
;
	32:                      
	
		
			
				𝑀
				𝑁
				=
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝑀
				𝑒
				𝑟
				𝑔
				𝑒
				𝑁
				𝑜
				𝑑
				𝑒
				(
				)
			

		
	
;
	33:                      ConnectEdge
	
		
			
				(
				𝐷
				𝑁
				.
				𝐹
				𝐴
				𝐿
				𝑆
				𝐸
				,
				𝑀
				𝑁
				)
			

		
	
;
	34:                      ConnectEdge
	
		
			
				(
				𝑦
				,
				𝑀
				𝑁
				)
			

		
	
;
	35:                      
	
		
			
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				=
				𝑀
				𝑁
			

		
	
;
	36:             end case;
	37:             case:   
	
		
			
				𝑥
				=
				′
				𝑏
				𝑟
				𝑒
				𝑎
				𝑘
				′
			

		
	
                     // 
	
		
			

				𝑥
			

		
	
 is a break fragment
	38:                          
	
		
			
				𝐷
				𝑁
			

		
	
        
	
		
			

				=
			

		
	
        
	
		
			
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝐷
				𝑒
				𝑐
				𝑖
				𝑠
				𝑖
				𝑜
				𝑛
				𝑁
				𝑜
				𝑑
				𝑒
				(
				𝑥
				.
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
				)
			

		
	

	                                     // Create decision node with predicate
	                  
	
		
			
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
			

		
	
 in 
	
		
			

				𝑥
			

		
	
;
	39:                      ConnectEdge
	
		
			
				(
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				,
				𝐷
				𝑁
				)
			

		
	
;
	40:                      
	
		
			
				𝑦
				=
				𝑃
				𝑟
				𝑜
				𝑐
				𝑒
				𝑠
				𝑠
				𝐹
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				(
				𝑥
				,
				𝐷
				𝑁
				.
				𝑇
				𝑅
				𝑈
				𝐸
				)
			

		
	
;
	41:                      
	
		
			
				𝑓
				𝑛
				=
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝐹
				𝑖
				𝑛
				𝑎
				𝑙
				𝑁
				𝑜
				𝑑
				𝑒
				(
				)
			

		
	
;
	42:                      ConnectEdge
	
		
			
				(
				𝑦
				,
				𝑓
				𝑛
				)
			

		
	
;
	43:                      
	
		
			
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				=
				𝐷
				𝑁
				.
				𝐹
				𝐴
				𝐿
				𝑆
				𝐸
			

		
	
;
	44:             end case;
	45:             case:   
	
		
			
				𝑥
				=
				′
				𝑎
				𝑙
				𝑡
				′
			

		
	
                     // 
	
		
			

				𝑥
			

		
	
 is an alt fragment
	46:                        
	
		
			
				𝐷
				𝑁
			

		
	
    
	
		
			

				=
			

		
	
    
	
		
			
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝐷
				𝑒
				𝑐
				𝑖
				𝑠
				𝑖
				𝑜
				𝑛
				𝑁
				𝑜
				𝑑
				𝑒
				(
				𝑛
				𝑖
				𝑙
				)
			

		
	
                     //
	                  Create decision node with multioperands;
	47:                      ConnectEdge
	
		
			
				(
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				,
				𝐷
				𝑁
				)
			

		
	
;
	48:                      
	
		
			
				𝑀
				𝑁
				=
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝑀
				𝑒
				𝑟
				𝑔
				𝑒
				𝑁
				𝑜
				𝑑
				𝑒
				(
				)
			

		
	
;
	49:                      for   
	
		
			
				𝑒
				𝑎
				𝑐
				ℎ
				𝑜
				𝑝
				𝑒
				𝑟
				𝑎
				𝑛
				𝑑
				𝑜
				𝑝
				𝑑
			

			

				𝑖
			

			
				∈
				𝑥
			

		
	

	50:                                      
	
		
			

				𝑒
			

			

				𝑖
			

			
				=
				𝑔
				𝑢
				𝑎
				𝑟
				𝑑
				(
				𝑜
				𝑝
				𝑑
			

			

				𝑖
			

			

				)
			

		
	
;
	51:                                      
	
		
			
				𝑦
				=
				𝑃
				𝑟
				𝑜
				𝑐
				𝑒
				𝑠
				𝑠
				𝐹
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				(
				𝑜
				𝑝
				𝑑
			

			

				𝑖
			

			
				,
				𝐷
				𝑁
				.
				𝑒
			

			

				𝑖
			

			

				)
			

		
	
;
	52:                                      ConnectEdge
	
		
			
				(
				𝑦
				,
				𝑀
				𝑁
				)
			

		
	
;
	53:                      end for
	54:                      
	
		
			
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				=
				𝑀
				𝑁
			

		
	
;
	55:             end case;
	56:             case:   
	
		
			
				𝑥
				=
				′
				𝑝
				𝑎
				𝑟
				′
			

		
	
                     // 
	
		
			

				𝑥
			

		
	
 is a par fragment
	57:                      
	
		
			
				𝐹
				𝑁
				=
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝐹
				𝑜
				𝑟
				𝑘
				𝑁
				𝑜
				𝑑
				𝑒
				(
				)
			

		
	
                     //Create fork
	                  node;
	58:                      ConnectEdge
	
		
			
				(
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				,
				𝐹
				𝑁
				)
			

		
	
;
	59:                      
	
		
			
				𝐽
				𝑁
				=
				𝐶
				𝑟
				𝑒
				𝑎
				𝑡
				𝑒
				𝐽
				𝑜
				𝑖
				𝑛
				𝑁
				𝑜
				𝑑
				𝑒
				(
				)
			

		
	
;
	60:                      for  
	
		
			
				𝑒
				𝑎
				𝑐
				ℎ
				𝑜
				𝑝
				𝑒
				𝑟
				𝑎
				𝑛
				𝑑
				𝑜
				𝑝
				𝑑
			

			

				𝑖
			

			
				∈
				𝑥
			

		
	

	61:                                      
	
		
			
				𝑦
				=
				𝑃
				𝑟
				𝑜
				𝑐
				𝑒
				𝑠
				𝑠
				𝐹
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				(
				𝑜
				𝑝
				𝑑
			

			

				𝑖
			

			
				,
				𝐹
				𝑁
				)
			

		
	
;
	62:                                      ConnectEdge
	
		
			
				(
				𝑦
				,
				𝐽
				𝑁
				)
			

		
	
;
	63:                      end for
	64:                      
	
		
			
				𝑐
				𝑢
				𝑟
				𝑁
				𝑜
				𝑑
				𝑒
				=
				𝐽
				𝑁
			

		
	
;
	65:             end case;
	66:  end while
	67: exitNode = curNode;
	68:  return    
	
		
			
				𝑒
				𝑥
				𝑖
				𝑡
				𝑁
				𝑜
				𝑑
				𝑒
			

		
	

	Function ProcessFragment
	
		
			
				(
				𝐹
				𝑟
				𝑎
				𝑔
				𝑚
				𝑒
				𝑛
				𝑡
				,
				𝐴
				)
			

		
	



	Algorithm 1: 
							Function ProcessFragment (Fragment: fragmentId, A: curNode). 
						


Figure 3 depicts each of the fragment transformation in terms of a rule. In Figure 3 the left side of the rule is a fragment and the right side is a set of nodes and edges. After applying a particular rule, the fragment on the left side is transformed into a graph structure which is shown at the right side of the transformation rule. The nodes 
	
		
			

				𝐵
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝐵
			

			

				𝑘
			

		
	
 in each of the transformation depict the nodes which are outside the fragment. For the sake of explicitly showing entry and exit nodes, the nodes 
	
		
			

				𝐵
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝐵
			

			

				𝑘
			

		
	
 are marked as entry and exit nodes, respectively. An edge with arrow-head pointing to a node is shown to mark the entry node. Similarly, an outgoing edge from a node is shown to mark the exit node.


















	
	
		
	








	
		
		
			
		
	




	
		
		
			
		
	



	
		
		
			
		
	


	
		
		
			
		
	





	
		
		
			
		
	



	
		
		
			
		
	



	
		
		
			
		
	





	
		
		
			
		
	


	
		
		
			
		
	



	
		
		
			
		
	





	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	






	
	
		
	






	
		
		
			
		
	





	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	









	
	
		
	








	
		
		
			
		
	





	
		
		
			
		
	



	
		
		
			
		
	




	
		
		
			
		
	






	
		
		
			
		
	


	
		
		
			
		
	




	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	





	
	
		
	






	
		
		
			
		
	




	
		
		
			
		
	



	
		
		
			
		
	






	
		
		
			
		
	



	
		
		
			
		
	






	
		
		
			
		
	


	
		
		
			
		
	



	
		
		
			
		
	




	
		
		
			
		
	



	
		
		
			
		
	


	
	
		
	






	
		
		
			
		
	



	
		
		
			
		
	


	
		
		
			
		
	







	
		
		
			
		
	






	
		
		
			
		
	





	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	




	
		
		
			
		
	




	
		
		
			
		
	


	
		
		
			
		
	




	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
		
		
		
	


	
		
		
		
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
		
		
		
		
	


	
		
		
		
	


	
		
		
		
		
		
	


	


	


	
		
		
			
		
	




	
		
		
			
		
	


	
		
		
			
		
	






	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	





	


	


	


	


	


	


	


	


	
	


	




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
	


	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
	


	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
		
	


	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
		
		
	


	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
	


	
	
	
	
	
	
	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
	


	


	


	


	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	

Figure 3: Transforming fragments to their scenario graphs.


3.3. Building an ITM
 While obtaining a scenario graph, the emphasis is on extracting the underlying control flow semantics of a sequence diagram. However, to generate test scenarios, it is required to analyze the dependencies that arise within nested fragments. It makes sense, therefore, to provide a structured representation for generating test scenarios. Based on the classification proposed in Section 2.3, a simplification on the structure of a scenario graph is carried out. A set of basic primitives are identified to express a scenario graph in terms of a hierarchical structure.
 The simplifications lead to a testable model known as Intermediate Testable Model (ITM). The ITM is an intermediate form of the scenario graph. The objective is to identify all basic primitives in a scenario graph and reduce them to their corresponding composite nodes (see Section 2.4). Such a procedure of replacing the basic primitives by a composite node is termed as composition. To do the composition, the scenario graph 
	
		
			

				𝐺
			

		
	
 is traversed looking for basic primitives enclosed by its entry and exit node. For each such basic primitive in 
	
		
			

				𝐺
			

		
	
, it is replaced by its composite node. Thus a new graph 
	
		
			

				𝐺
			

			

				𝑖
			

		
	
 is formed. If regions are nested with other regions, then the composition is done from the innermost region to the outermost region successively. The traversal of the scenario graph hence may be repeated several times until no more composition is possible. The composition procedure eventually reduces a scenario graph to a single chain of nodes known as ITM. The composite nodes corresponding to selection, loop, and concurrent constructs are referred as selection nodes, loop nodes, and concurrent nodes, respectively.
 There are two main tasks in the composition: identifying different types of basic constructs and creating respective composite nodes for each of these types. In the following, the issues related to the compositions of various types of constructs are discussed and then the algorithm that makes use of composite nodes for building the ITM is presented.
3.3.1. Identifying Loops and Creating Composite Nodes
 A loop in a scenario graph is modeled through a decision node. The branches that leave a decision node all have a conditional expression. Among these, there exists branch that exits the loop by connecting the branch to the node outside the region. Similarly, there exists branch that continues looping by connecting the branch to the node inside the region. These conditions are mutually exclusive so that the loop is either entered or exited. A loop fragment of a sequence diagram is essentially a pretest loop as the decision node precedes the looping section.
 For a pretest loop, the decision node is the entry node. A set of nodes and edges within the entry and exit nodes are recognized as a region and constitute a control construct graph. This region is reduced to a single node as shown in Figure 4(a). It may be noted that the edge entering to the entry node is connected to the composite node. Similarly, the edge leaving the exit node is originated from the composite node. In addition to this, information regarding the type of a composite node is associated with the composite node. For example, the type of the composite node would be loop here.


	
	
	
	
		
			
			
				
			
		
	
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
	
		
			
			
				
			
		
	
	
	
	
		
			
			
				
			
		
	
	
	
		
			
			
				
			
		
	
	
	
	
		
		
			
		
	
	
	
	
		
			
			
				
			
		
	
	
	
	
		
			
			
				
			
		
	
	
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
		
	


	


	


	


	


	


	


	


	


	


	


	


	

(a) Creating composite node for a loop fragment



	
		
			
		
			
		
	




	
		
			
		
			
		
	


	
		
			
		
			
		
	





	
		
			
		
			
		
	


	
		
			
		
			
		
	



	
		
			
		
			
		
	




	
	
		
	



	
		
			
		
			
		
	


	
		
			
		
			
		
	





	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	




	
		
			
		
			
		
	




	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


