ISRN Software EngineeringVolume 2013 (2013), Article ID 803638, 53 pageshttp://dx.doi.org/10.1155/2013/803638
Review Article
Towards the Consolidation of a Diagramming Suite for Agent-Oriented Modelling Languages
Brian Henderson-Sellers
University of Technology, Sydney, Broadway, NSW 2007, Australia
Received 21 October 2012; Accepted 7 November 2012
Academic Editors: X. He, S. Sutton, and M. Viroli
Copyright © 2013 Brian Henderson-Sellers. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract.
Whilst several agent-oriented modelling languages have been developed by independent research groups, it is now appropriate to consider a consolidation of these various approaches. There are arguably three things that need consolidation and future standardization: individual symbols, the underpinning metamodel, and the diagram types. Here we address only the third issue by extending an earlier analysis that resulted in recommendations for various diagram types for the modelling of a multiagent system (MAS). Here, we take each of these previously recommended diagram types and see how each is realized in a wide variety (over 20) of current agent-oriented software engineering (AOSE) methodologies. We also take the opportunity to express, as exemplars, some of these diagram types using the recently published FAML notation.

1. Introduction
Any software development benefits from the use of a methodology. Part of such a methodological approach is a means to depict interim work products, typically documented using a graphical notation (a.k.a. concrete syntax). Symbols are used to represent single concepts, defined in an appropriate modelling language (ML), itself typically represented, at least in part, by a metamodel (e.g., [1]). These symbols can then be grouped in heterogeneous yet semantically related ways. A coherent model, thus depicted, is often said to be of a specific diagram type. In other words, a diagram type refers to a collection of classes in the metamodel, that is, it defines which metaclasses can be appropriately instantiated for this particular scope and focus.
For agent-oriented software engineering (AOSE), such modelling languages (and their notations and recommended diagram types) are in their infancy. A large number of AOSE methodological approaches exist, all with their own notational elements. As part of a community goal of standardizing agent-oriented modelling languages, collaborative notations have been proposed (e.g., [2]), as well as mergers at the conceptual level (e.g., [3, 4]), the latter of these being complemented more recently by a concrete syntax [5].
Notations need to have a high degree of usability, which can often be accomplished based on semiotic principles (e.g., [6–8]). Information is needed not only about individual agents and interagent communications, but also on the context of the environment in which they are situated. Current practice in many methodological approaches is to utilize standard object-oriented diagramming techniques, typically using UML [9–11] as a notation, whenever possible, although there are many concepts in AOSE not so representable. For example, Garcia et al. [12] comment on the need to include specific agenthood properties, including interaction/communication, autonomy, and adaptation with possible additional properties of learning, mobility, collaboration, and roles. A similar list, yet with a BDI (BDI = beliefs, desires, and intentions (e.g., [13, 14])) slant, is given by Sturm and Shehory [15, 16] as agent, belief, desire, intention, message, norm, organization, protocol, role, society, and task. Taveter and Wagner [17] identify the most important concepts as including agents, events, actions, communication, and message, underpinning these in terms of ontological theory (e.g., endurants and perdurants). Bertolini et al. [18] focus primarily on the Goal Diagram and the Actor Diagram in their presentation of TAOM4E—an Eclipse-based tool to support the Tropos methodology and based solidly on a metamodel.
Beydoun et al. [4] present a generic metamodel which itself contains four connected perspectives. In this case, the discrimination is between organization as compared to agent level and between design time and run time. However, they do not explicitly link these to diagram types, although there is in fact a weak relationship.
Diagram types are often divided into two loosely defined groups: static or structural diagrams and dynamic (a.k.a. behavioural) diagrams (e.g., [69, 70])—a grouping that will also be utilized here. The former depict aspects that might be termed architectural, typified by variants of an OO class diagram; the latter depict some forms of functionality and time-dependent actions.
Torres da Silva et al. [71] have presented MAS-ML as a metamodel-based modelling language for agent-oriented software engineering. As well as introducing new agent-focussed concepts, as discussed below, they also recommend a suite of diagram types—three static and two dynamic:(i)Extended UML Class Diagram,(ii)Organization Diagram,(iii)Role Diagram,(iv)Extended UML Sequence Diagram,(v)Extended UML Activity Diagram.

				In contrast to the approach taken in the ML proposed by Beydoun et al. [4] that focusses first on a viewpoint and later on the detailed concepts, Torres da Silva et al. [71] propose not viewpoints but specific diagram types, although they neglect to give a clear problem statement for which these diagram types are the proposed solution. In other words, whilst useful, they are at the diagram level rather than the viewpoint level as advocated in Henderson-Sellers [19]. We will therefore comment on each of these diagrams in the appropriate place in Sections 5 and 6.
In summary, we aim here to make a contribution towards future standardization of agent-oriented modelling languages—focussing here on diagram suites. Section 2 outlines the approach taken in determining an appropriate framework, which we then use to analyze over 20 contemporary agent-oriented methodologies in terms of the kinds of diagrams that they support and recommend. Section 3 discusses notational aspects, introducing the FAML notation [5] that we use in later examples in comparison with the notations used by these individual AOSE methodologies. Following an overview of diagram types in Section 4, in the next two sections, we describe in detail static diagram types (Section 5) and then dynamic diagram types (Section 6). In each of these two sections, we categorize diagrams using the several views derived in Section 2. Section 7 provides a final discussion and indicates some other related work not otherwise cited followed by a brief conclusion section (Section 8) including some ideas for future research. From this detailed comparison, we aim to draw out commonalities and variations in the suite of diagram types utilized across all extant agent-modelling languages as a precursor to future international standardization.

2. Research Approach
As detailed in Henderson-Sellers [19], in order to analyze the various options for a suite of AOSE relevant diagrams, the first step was to identify static versus dynamic diagram types (Tables 1 and 2) and then to group these in terms of their relevance to a number of views or viewpoints as previously discussed in the AOSE literature (e.g., [20, 48]). Seven such views were identified (Table 3), and, for each, both static and dynamic diagram types were identified (Table 4). (Details of the several iterations needed to derive Table 4 are to be found by Henderson-Sellers [19] and are not replicated here.) Finally, the atomic elements identified for each of these diagram types are listed in Table 5. However, this list is not absolute in that different methodologies offer different interpretations and consequently use different atomic elements on any one named diagram—for example, Padgham et al. [2] note that in the Prometheus methodology an Agent Society model shows actions and percepts but would not use an Ontology diagram, whereas users of the PASSI methodology would use a separate Ontology diagram.
Table 1: Set of diagram types recommended in Henderson-Sellers [19] in the light of his analysis of AOSE methodologies. These diagram types should then be supplemented by textual based templates and descriptors as shown in Table 2.
	

	Static diagram types	Dynamic diagram types
	

	Environment description	Agent goal-based use case
	Environmental connectivity	Use case map
	External organization structure chart	Conversation a.k.a. interaction
	Architecture	Protocol (a kind of conversation)
	Agent society	Workflow
	Agent role	Agent state
	Role dependency	Task specification
	Agent internals	Task state
	Agent overview	
	Goal decomposition	
	Ontology	
	Plan	
	Capability	
	Service	
	Task decomposition	
	Deployment	
	UI design	
	

Table 2: Textual work products (static and dynamic).
	

	Static textual diagram types	Dynamic textual diagram types
	

	System requirements	Goal-based use case template
	Role definition template 	Contractual template
	Agent descriptors 	Event descriptors
	CRC cards	Data descriptors
	Plan descriptor 	Plan descriptors
	Capability descriptors 	Task template
	Service diagram 	Protocol descriptors
	Task template	Message descriptors
	Percept descriptor	Action descriptor
	 	Process descriptor
	

Table 3: Seven views recommended in the analysis of Henderson-Sellers [19]. Note that the original analysis was based on the AOSE literature which essentially eschews aspects of user interface. To these seven, an eighth one, UI, needs to be added (reprinted from [19], copyright 2010, with permission from IOS Press).
	

	View name	Focus of view
	

	Environment	External context, including system requirements
	Architecture	High level structure of system independent of agent technology
	Agent societies	Structure of agents into groups together with interactions and information exchange, typically within the group
	Agent workflow	Workflows
	Agent knowledge	Roles of individual agents, their responsibilities, and purpose
	Agent services	Services offered, tasks to be undertaken, goals to be attained, and detailed capabilities. Applied to a small number of interacting agents
	Deployment	Interface with run-time platform
	

Table 4: Two dimensional matrix for views versus static/dynamic aspects for various AOSE diagram types (modified and reprinted from [19], copyright 2010, with permission from IOS Press).
	

	View	Static diagram types	Dynamic diagram types
	

	Environment	Environment description; environmental connectivity; system requirements; use case	N/A
	Architecture	Agent societies/organization	N/A
	Agent societies	Agent society details; agent role	Conversation (including interaction and protocol); task
	Agent workflow	N/A	Workflow
	Agent knowledge	Goal; agent type; agent role; plan; ontology	Goal; agent state; capability
	Agent services	Agent society details; agent type; goal; ontology	Goal; task; capability
	Deployment	Allocation to run-time platform	N/A
	UI	User interface design	States and transitions related to interface
	

Table 5: Atomic elements and diagram types.
	

	Diagram type	Atomic elements to be displayed
	

	(1) Static diagram types 	
	Environment description	Entities represented by classes; relationships between the modelled entities
	Environmental connectivity	Agents/MASs, internal and external resources, relationships across the MAS/environment interface
	External organization structure chart	Organizational units in the real-life business
	Architecture	Technology-independent large-scale structure
	Agent society	Agents inside the MAS, how they associate with each other
	Agent role	Links between the agents and the roles they play
	Role dependency	Hierarchical structure of many roles
	Agent internals	Constituent elements in an individual agent or role
	Agent overview	High level view of an agent
	Goal decomposition	Goals, subgoals
	Ontology	The underpinning semantic structure
	Plan	The (process) steps needed to effect a task and accomplish a goal
	Capability	The ability or responsibility of an agent
	Service	Functionality offered by the agent
	Task decomposition	Tasks, subtasks
	Deployment	Allocation of MAS elements to nodes of the run-time platform
	UI design	TBD (the topic of proposed future research). (See brief discussion in Sections 5.7 and 6.5 on the relevant, non-AOSE UI literature)
	(2) Dynamic diagram types 	
	Agent goal-based use case	Functionality offered by the MAS
	Use case map	Threads across many agents to realize a use case
	Conversation	Dynamic interaction details
	Protocol 	Rules associated with interactions
	Workflow	Large-scale processes relating to problem solving (in the real world)
	Agent state	Attribute values determining the current state of an agent
	Task specification	Definitions of tasks needed to accomplish a specific goal
	Task state	The current state of a task, in terms of how far through the task enactment
	

As the knowledge of AOSE increases, the diagram suite suggested in Table 4 and the details of Table 5 will almost certainly require further changes—this paper offers further comments based on further investigation of the extant literature.
 An initial assessment [19] resulted in some suggested recommendations for each diagram type in Table 4. Here, we commence with those recommendations and evaluate how each particular diagram type is utilized in methodologies not previously discussed. With the recent advent of a proposed notational standard for FAML [5], we take the opportunity of including an evaluation of how the symbols in this modelling language (summarized in Figure 2) can be useful. In cases where problems are identifiable, this could lead to improvements to be proposed to the FAML notation itself.
3. Notations
Notations (a.k.a. concrete syntax) currently utilized for agent-oriented methodologies are typically individualistic. However, there are efforts under way to systematize these. Two proposed notations, AML [72, 73] and AUML [74, 75], are essentially extensions of an object-oriented modelling language—whether this is appropriate is discussed in, for example, Torres da Silva and de Lucena [76], Choren and Lucena [77], and Beydoun et al. [4].
In AML, UML class diagrams are used with subtypes of Ontology Diagrams, Society Diagrams, Behavior Decomposition Diagrams, and Mental Diagrams (with a further subtype of Goal-Based Requirements Diagram). Composite Structure Diagrams (from UML) can be either Entity or Service Diagrams in AML; UML sequence diagrams are used as Protocol Sequence Diagrams with a subtype of Service Protocol Sequence Diagram. Finally, UML communication diagrams are realized as Protocol Communication Diagrams, a subtype of which is the Service Protocol Communication Diagram.
These UML-based notations are not readily related to the seven views identified by Henderson-Sellers [19] (see Table 3), although they do discuss static versus dynamic aspects of each diagram (Table 1).
Secondly, a number of methodologies use as their main notation that of
	
		
			

				𝑖
			

			

				∗
			

		
	
 [78] (later mapped in the agent-oriented context to UML by Mylopoulos et al. [79]). Designed for requirements engineering,
	
		
			

				𝑖
			

			

				∗
			

		
	
’s usage in AOSE has been primarily in the requirements and architectural design stages of Tropos (in later stages Tropos uses AUML/UML diagrams) because that agent-oriented methodology uses requirements engineering concepts throughout the development process. However, more recently this notation has been more widely evaluated. For example, Lapouchnian and Lespérance [80] map between
	
		
			

				𝑖
			

			

				∗
			

		
	
 and CASL (Cognitive Agents Specification Language [81]) representing agents’ goals and knowledge as mental states; Franch [82] assesses the predictability of
	
		
			

				𝑖
			

			

				∗
			

		
	
 models; Estrada et al. [83] undertake an empirical evaluation of
	
		
			

				𝑖
			

			

				∗
			

		
	
 using industrial case studies and conclude that extensions and modifications are needed for
	
		
			

				𝑖
			

			

				∗
			

		
	
 to address its lack of modularization.
Although most methodologists devise their own notation, there has been over the last few years a groundswell of opinion that notations (and metamodels) should be applicable to more than just a single methodological approach. In that spirit, Padgham et al. [2] suggest a notation based on a merger between the notations that are part of O-MaSE, Tropos, Prometheus, and PASSI. (Sources/citations for the various AOSE methodologies are found in Table 7). Although a huge step forward in the future creation of a widely acceptable standard AOML, Henderson-Sellers et al. [5] offered some areas for improvement, based on semiotic considerations. Using that experience (of Padgham et al. [2]), they then offered a notation that has a stronger semiotic basis whilst retaining ideas from Padgham et al. [2] when appropriate. This notation has elements that are conformant to the FAML metamodel of Beydoun et al. [4].
In their definition of a modelling language, which contains more detail than we seek at present, Beydoun et al. [4] split their metamodel diagrams into four parts, which correspond interestingly with the viewpoints discussed in Henderson-Sellers [19] and outlined above. Beydoun et al. [4] discriminate between internal versus external (to an agent) and design versus runtime perspectives. Their System-level diagram corresponds to the Organization view of Table 3 together with some aspects of the Knowledge view (specifically in terms of role modelling) and their Environment level diagram to the Environment view. Their agent-definition metamodel fragment depicts specifications for agent types, messages, and plans, inter alia, and would therefore seem to have a reasonable correlation with the Services view in Table 3, whereas the agent-level (runtime) portion of the metamodel goes somewhat beyond the views of Table 3, since it describes metamodelling support for the runtime “Actions” of individual agents, moving on from plan descriptors, for example, to plan enactment. Run-time concepts can thus be linked to some of the dynamic diagram types discussed by other authors (and one of the two discriminators used in this survey). An important distinction is made between agent types (the equivalent to OO classes in a class diagram) and (runtime) agents, which are individuals (equivalent to objects in an OO environment) (see also [59, page 93]). This distinction was made after surveying the literature wherein agent types are often (mis)labelled agents.
The initial studies for the derivation of FAML’s metamodel and notation were confined to what might be called “basics” (Figure 1), in that they did not take into account security, mobility, or trust. These are to be regarded as FAML Extensions, the detailed derivation of which is yet to be undertaken.

	
	
		
		
		
		
	
	
	
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
	
		
		
		
		
	
	
		
		
		
		
		
		
	
	
	
	
	
		
	
	
	
	
		
	
	
		
	
		
	
		
	
	
		
	
	
		
	

	
		
			
			
			
			
		
	

	
		
			
			
			
			
		
	

	
		
			
			
			
			
		
	

Figure 1: Organizational structure of FAML into basic elements and extensional elements.

	
	
	
	
	
	
	
	
	
		
	
	
		
	
	
	
	
	
	
		
	
	
	
	
	
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
	
	
	
	
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
	
		
	
		
	
		
	
		
	
		
			
			
			
			
			
		
	
	
	
		
	
		
	
	
		
	
		
	
	
	
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
		
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
		
			
			
			
			
			
			
			
			
			
			
		
	
	
	
	
		
			
			
			
			
			
			
			
		
	
	
	
	
		
			
			
			
			
			
			
			
			
		
	
	
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
	
	
	
		
	
		
	
		
	
		
	
		
			
			
			
			
			
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
				
			
			
				
				
				
				
			
			
				
			
		
	

	
		
			
				
			
			
				
				
				
				
			
			
				
			
		
	

	
		
			
				
			
			
				
				
				
				
			
			
				
			
		
	

	
		
			
				
			
			
				
				
				
				
			
			
				
			
		
	

	
		
			
				
			
			
				
				
				
				
			
			
				
			
		
	

Figure 2: Symbols selected for FAML’s notation.

The set of symbols proposed for the FAML Basics (Figure 1) by Henderson-Sellers et al. [5] have since been slightly modified as a result of questions and discussions at the conference presentation. Figure 2 shows this final set, which we evaluate further in this paper. The principles behind the choice of symbol include ease of drawing, that “families” of symbols should have the same shape and colour (Table 6) and that colour should be an enhancer and not a determinant; that is, the shapes should be understandable in black and white as well as colour. These, and other principles, accord well with the semiotic discussion and principles of Constantine and Henderson-Sellers [6, 84] and Moody [7].
Table 6: Initially proposed families and their members.
	

	Family	Members	Shape	Colour (optional)	Source and/or influence for notation
	

	Agents and roles1	Agent, role, group, position, organization	Circle atop mask or rectangle	Yellow	INGENIAS [20]
	Tasks and plans	Action specification, FAML task, plan specification	Curvilinear	Green	ISO/IEC [21]
	Events and resources	Event, resource	Triangular	Blue/green	
	Goals	Hard goal, soft goal, belief	Complex curvilinear	Brown	
	Ontology	Ontology, service, capability	Polygonal	Dark blue	
	Use cases	Scenario, actor	Double oval, stick figure	None	Padgham et al. [2]
	Messages	Conversation, message in, message out	Arrow heads	B/W	Padgham et al. [2]
	

								1Strictly agent types and role types (design time concepts) rather than their run-time equivalents of individual agents and individual roles.

Table 7: Prime references for the AOSE methodologies quoted here.
	

	Methodology name	Main references
	

	ADELFE	Picard and Gleizes [22]
	Agent factory	Collier et al. [23, 24]
	CAMLE	Shan and Zhu [25]
	Cassiopeia	Collinot et al. [26]Collinot and Dragoul [27]
	Elammari and Lalonde	Elammari and Lalonde [28]
	Gaia	Wooldridge et al. [29]Zambonelli et al. [30, 31]
	ROADMAP extensions to Gaia	Juan et al. [32]Sterling et al. [33]
	INGENIAS	Pavón and Gómez-Sanz [34]Pavón et al. [20]
	ISLANDER	Sierra et al. [35, 36]
	MAS-CommonKADS	Iglesias and Garijo [37]Iglesias et al. [38, 39]
	MaSE	Wood and DeLoach [40]DeLoach [41–43]DeLoach and Kumar [44]
	O-MaSE	Garcia-Ojeda et al. [45]DeLoach and Garcia-Ojeda [46]
	MESSAGE	Caire et al. [47, 48]Garijo et al. [49]
	MOBMAS	Tran et al. [50]Tran and Low [51]
	OperA	Dignum [52]Mensonides et al. [53]
	PASSI	Burrafato and Cossentino [54]Cossentino [55, 56]Cossentino and Potts [57, 58]
	Prometheus	Padgham and Winikoff [59, 60]Winikoff and Padgham [61]Khallouf and Winikoff [62]
	RAP/AOR	Taveter and Wagner [17]
	SODA	Omicini [63]
	SONIA	Alonso et al. [64]
	Tropos	Bresciani et al. [65, 66]Giorgini et al. [67]
	

Symbols for agents and roles utilize the role “mask” and its variations. Process-style symbols are similar to those in ISO/IEC [21], topologically similar and green in colour. Events and resources, whilst being a little difficult to defend as a “family”, have, nevertheless, similar shapes and colours. Goals, on the other hand, are linked to beliefs as part of the mental state of agents. They use a familiar representation using Yu’s [78]
	
		
			

				𝑖
			

			

				∗
			

		
	
 notation, as used in agent methodologies like Tropos and Secure Tropos [85]. When used, the fill colour is brown. Ontology, service, and capability are grouped together because both Service and Ontology are linked to Role in FAML. Finally, both scenarios and actors can be linked by their common usage in use case style diagrams. For these, we simply adopt the symbols proposed by Padgham et al. [2].
Agent interactions utilize various variants of an arrowhead (Figure 3). Two alternatives (for MessageIn and MessageOut) were also proposed, but discussants at the EMMSAD conference in June 2012 at which these ideas were first presented were undecided whether the symbols in Figure 3 or in Figure 4 were preferable. Here, we use those of Figure 3.

	
	
	
		
	
		
	
		
	
		
	
		
	
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	

	
		
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	

Figure 3: Communication symbols in FAML (after [5]).

	
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
	
	
	
	
		
	
	
		
	
	
		
	
	
		
	

Figure 4: Some suggested alternative representations of agent communication.

4. Diagram Types Used in Current AOSE Methodologies
Henderson-Sellers [19] proposed a number of static and dynamic diagram types for the seven identified views, see Table 4. He then discussed a small selection of methodologies that supported each diagram type, the methodologies being selected from over 20 contemporary AOSE methodologies (Table 7)—excluding those dealing with mobility, for example, Hachicha et al. [86], security (Low et al. [87] discuss security diagrams, offering them as extensions to existing diagrams—as shown here in Figure 4), for example, Mouratidis [85], and Bresciani et al. [66], or with noncooperative and adaptive agents. (We, however, do include aspects of ADELFE relevant to cooperative agents), for example, Georgé et al. [88] and Steegmans et al. [89], which introduce additional specifically-focussed concepts, symbols, and diagram types. Furthermore, Tran and Low [51] note that all are deficient in at least one of the three areas of agent internal design, agent interaction design, and MAS organization modelling. The numbers for each diagram type proposed in each of the methodologies of Table 7 are given in Table 8, although it should be noted that some diagram types could be classified under different headings.
Table 8: Summary of the number of distinct usages of each diagram type per methodology.
	

	 	View
	 	Environment	Architecture	Agent societies	Agent knowledge	Agent services	Deployment	
						User interface
	 	Static	Dynamic	Static	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static
	

	ADELFE	 	1	 	1	1	 	 	 	 	 	
	Agent factory	 	1	 	1	3	 	 	 	 	 	
	CAMLE	 	 	 	1	1	 	2	 	 	 	
	Cassiopeia	 	 	 	1	 	 	 	 	 	 	
	Elammari and Lalonde	 	1	1	1 + 2 textual	 	1 textual	 	 	 	 	
	Gaia	1	 	1	2 + 1 textual	 	2 textual	 	 	 	 	
	ROADMAP extensions to Gaia	 	1	 	1 textual	 	1	 	 	 	 	
	INGENIAS	1	 	2	 	2	1	 	1	 	 	
	ISLANDER	 	 	 	2	 	1 + 1 textual	1	1	1	 	
	MAS-CommonKADS	 	1	1	1	2	4 + 1 textual	 	 	1	2	
	MaSE	 	1	1	2	2	1	2	 	1	1	
	O-MaSE (extras)	 	 	 	2	1	3	 	 	 	 	
	MESSAGE	4	 	 	5	1	2	1	2	 	 	
	MOBMAS	4	 	1	2	2	7 + 1 textual	1	 	 	1	
	OperA	 	 	 	4 + 5 textual	1	1 + 1 textual	 	 	 	 	
	PASSI	1	1	 	2	3	2	1	 	1	1 + 1 textual	
	Prometheus	 	2	 	2	2	5 + 2 textual	 	 	1	 	
	RAP/AOR	 	2	 	5	2	 	 	 	 	1	
	SODA	1	 	 	2	 	2 textual	 	 	 	 	
	SONIA	 	 	 	 	 	3	 	1	 	 	
	Tropos	 	 	 	 	1	5	 	 	 	1	
	

In determining to which view (of Table 3) any specific methodological diagram type should be allotted, terminology definitions were sometimes found to be absent, ambiguous, or apparently contradictory. There are several sets of such terms including (i) organization and domain, (ii) interaction diagram and protocol diagram, (iii) goal and task, and (iv) “capability,” “service,” “responsibility,” and “functionality”.
Since some authors are using their own definitions, for example, in categorizing views/perspectives, the scoping we have established in Table 3 is sometimes not matched by particular methodological approaches. In particular, our anticipation that the Architecture view should be independent of technology chosen for the solution, as described, for instance, in Giorgini et al. [67], is not met (see further discussion in Section 5.2). In other methodologies, the different use of terms such as “model,” “diagram,” “view,” and “viewpoint” is often unclear (e.g., [20, 29, 31, 39, 49, 90]). As another example, PASSI confounds work product terms with process terms by using model/diagram names to describe tasks.
Another challenge in developing a standard diagramming suite, useful for all AOSE methodologies, is that, while some published methodologies recommend a set of diagrams that occurs in every publication (e.g., [17, 44, 45]), other methodologies continue to evolve so that examination of any one methodology-specific paper often results in difficulty in our determining of what diagrams are recommended for that particular methodology at the present time, although some authors do make it clear what changes have been made (e.g., [62]). In other words, some methodologies contain a stable set of work products, whilst in others the recommended diagramming suite has not yet stabilized.
While Henderson-Sellers [19] attempted to be comprehensive, here we will emphasize those diagram types and diagram usages recommended therein, extending the discussion and incorporating new ideas on AOML notations [5]. When standard UML (OO) diagrams are recommended, we will not include a pictorial representation of what (we assume) will be a diagram well known to readers, being part of the International Standard 19501 [93].
We do not undertake a side-by-side methodology comparison, as is done, for example, in Tran and Low [94] or, more recently, in Dam and Winikoff [95]. Rather, we try to exemplify some of the differences in representational style for diagrams pertinent to each of the several views identified in Henderson-Sellers [19] and summarized below.
In the following two sections, we analyze diagram types currently used in a number of AOSE methodologies using the framework of Table 4. Section 5 discusses the various static diagram types and Section 6 the dynamic counterparts. For both sections, we adopt the seven views deduced in Henderson-Sellers [19] plus the added UI view (Table 3) and try to make additional suggestions, where appropriate, regarding appropriate notations for these identified diagram types.
The Environment View is used either to describe the interface between the MAS and the external entities in the problem domain and/or the externalities to the MAS (Figure 5). Indeed, domain modelling is seen by Müller [96], Parunak and Odell [97], and Dignum and Dignum [98] as being crucial.

	
	
	
	
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
			
			
			
			
			
			
			
			
			
			
		
	

	
		
			
		
			
		
		
			
		
	

	
		
			
		
			
		
		
			
		
	

	
		
			
		
			
		
		
			
		
	

	
		
			
		
			
		
		
			
		
	

Figure 5: Agents in an MAS interact with their environment using sensors and effectors.

Relevant diagram types may be solely focussed on the environment (a.k.a. domain), but there are many methodologies in which an organizational diagram type, as discussed in Section 5.3, serves a second purpose: that of including not only the agent organization but also its interface with the environment, whilst retaining the (perhaps confusing) name of “organizational diagram.” This is especially seen in methodological approaches such as MAS-CommonKADS and MESSAGE. For the organizational model of the former, it is clear that the organization model is intended to serve also beyond the agent organization and to interface with the environment, since the recommended notation for the organizational model (Figure 6) includes sensors and actuators (a.k.a. effectors) in the agent symbol (actually an agent type—see earlier discussion).

	
		
		
		
		
	
	
		
	
	
	
	
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
		
			
		
		
			
		
	

	
		
			
		
			
		
		
			
		
	

Figure 6: Organizational model notation for MAS-CommonKADS (based on [37], reprinted by permission of the publisher © IGI Global).

In other words, some of the diagram types discussed in Section 5.1 could well be equally allocated to Section 5.3 (and vice versa). (For a more detailed and more philosophical discussion of environment abstractions, see Viroli et al. [99]). Environment was also recently a major topic of conversation within the OMG as part of their emerging interests in agents [100].
For the Architecture View, we note that the term “architecture” can have many interpretations in the context of an MAS. Here, we use it to describe large-scale features that are independent of the technology used to undertake the implementation of the MAS. In different AOSE methodologies, the level of detail can vary—some diagrams include agents and their roles whilst others do not.
Both the Environment View and the Architecture View diagrams are restricted to static diagram types.
In the Agent Societies View, diagrams depict agent societies or organizations. (As noted earlier, the term organization can be used both as a synonym for society and to represent the environment); for example, Ferber and Gutknecht [102] provide more detail than that of an architecture diagram. They typically focus on agent interaction rather than system structure (e.g., [63, 103]). Indeed, the architectural diagrams identified in Section 5.2 for various AOSE methodologies can also be extended to depict agent society details.
Furthermore, “organizational patterns” (i.e., patterns applied to agent societies) are discussed in Zambonelli et al. [30] and Gonzalez-Palacios and Luck [104]. Typical examples include pipeline, single hierarchy, and multiple hierarchies.
Here, we seek to depict how agents interact in terms of such an interacting society of agents and/or roles, again dividing the discussion into static and dynamic aspects.
The Agent Workflow View relates solely to dynamic diagram types since a workflow reflects agent behaviour. This can involves concepts such as process, actions, and interagent messaging.
For the Agent Knowledge View we need to represent the internal structure and behaviour of individual agents. Concepts such as goals, beliefs, commitments, plans, capabilities, perceptions, protocols, events, sensors, actuators, and services are all considered by one or more authors. In Section 5.4 we focus particularly on goals, ontologies, and plans.
The Agent Services View can involve a number of different diagramming techniques (see Table 4) including goals, tasks, capabilities, and a domain ontology. Services can be described as encapsulated blocks of offered functionality [30, 32, 105]. In AOSE, a service may be described in terms of capabilities, where a capability is defined as “the ability of an actor of defining, choosing and executing a plan for the fulfillment of a goal, given certain world conditions and in presence of a specific event” [65], a definition similar to that used in Prometheus.
For the Deployment View, the allocation of software components to hardware nodes has traditionally been the focus; for AOSE a greater emphasis is placed on agent conversations.
Finally, the UI View is ill represented in current AOSE methodologies. Our discussion therefore makes suggestions from outside the agent-oriented methodology community.
In the following two sections, citations to specific methodologies will be by methodology name rather than author name(s)—these are found in Table 7—unless a specific paper needs a direct citation. We introduce methodology-specific examples of diagram types not discussed in Henderson-Sellers [19] and assess their match to the previous recommendations. We also describe a selection of these diagrams with the new FAML notation [5], merely as an illustration of the visualization resulting from the combination of a specific diagram type and this notation. We introduce an oversimplified running example in the Travel Agent domain. None of these diagrams are intended to be a complete depiction but rather should be regarded as merely illustrations of the diagramming style to which they refer.
5. Static Diagram Types
5.1. Environment View
For an MAS, the environment is relevant to two separate phases of the development lifecycle. Initially, requirements will relate to real-life problems, and the MAS will itself interact with this environment. This interaction will be evident in both the analysis and design phases. Secondly, environment issues are relevant in the deployment phase, when allocation of software code to a specific run-time platform node is necessitated. This second interface occasion is described in Section 5.6.
The recommended diagram type [19] for the environment description diagram, which models the external environment, is a UML-style class diagram with entities representing domain entities. For the environmental connectivity diagram, which shows the interfacial linkages between the environment and the top level agents in the MAS, particularly in terms of how agents are likely to access external resources such as databases, actors, and other MASs, a UML-style class diagram can also be useful. A third diagram type (more optional) is an External organization structure chart: a UML-style class diagram with entities = organizational unit, decomposition using the membership relation and acquaintance relationships between collaborating organizational units (see, e.g., Figure 7, which shows the use of this style of diagram in MOBMAS).

	
	
		
	
	
	
		
	
		
	
	
	
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
	
		
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
		
		
		
		
		
	

	
		
			
			
			
		
		
			
		
	
	
		
			
			
			
		
		
			
		
	
	
		
			
		
	

Figure 7: Organization context chart in MOBMAS.

Environment description diagrams are also used in SODA and PASSI. INGENIAS offers an Environment Viewpoint diagram (Figure 8) depicting the external entities with which the MAS-to-be-constructed will interact.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
				
			
				
			
		
	
	
	
		
	
	
		
	
	
	
		
			
				
			
				
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
				
			
				
			
		
	
	
	
	
	
	
	
		
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
				
			
				
			
		
	
	
	
		
			
				
			
				
			
		
	
	
	
	
		
			
				
			
				
			
		
	
	
	
		
			
				
			
				
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
				
			
				
			
		
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
		
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
		
	
	
		
			
			
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
		
		
			
				
				
				
				
				
				
				
				
			
		
		
			
				
			
		
		
			
				
				
				
				
			
		
	
	
		
		
		
			
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
			
		
	
	
		
		
		
		
			
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
			
		
		
			
				
			
		
		
			
				
				
				
				
			
		
	
	
		
		
		
		
			
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
			
		
		
			
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
			
				
			
		
	

	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	

	
		
			
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	

Figure 8: Example of an INGENIAS environment viewpoint diagram (after [20]), with key showing typical elements (after [20], reprinted by permission of the publisher © IGI Global).

A second style of diagram is often used to describe the functionality aspects relevant to the interaction between external stakeholders and the software system. This often relates to an early stage in the lifecycle, when requirements need to be identified and documented. Here, it is fairly common practice to use some sort of use case diagram, identical or very similar to that proposed in UML [10]. Henderson-Sellers [19] recommends that, to appropriately support the agent aspects more accurately, a goal-based use diagram that extends the “User-Environment-Responsibility (UER) case” diagram of Iglesias and Garijo [106] is useful for showing agent actors as well as human actors. An example of this is shown in Figure 9. To accompany this, a set of completed use case templates is necessary, such as that provided in Prometheus or by Taveter and Wagner [17], as originally proposed by Cockburn [107] (see example in Table 9). Here, the internal and external actors correspond directly to internal and external agents in AOR modelling.
Table 9: Example of a goal-based use case, here for the business process type “Process the request for a quote” (after [17], reprinted by permission of the publisher © IGI Global).
	

	Use case 1	
									Process the request for a quote
	Goal of the primary actor	
									To receive from the seller the quote
	Goal of the focus actor	
									To provide the buyer with the quote
	Scope and level	
									Seller, primary task
	Success end condition	
									The buyer has received from the seller the quote
	Primary actor 	
									Buyer
	Secondary actors	 	
	Triggering event	
									A request for a quote by the buyer
	Description	Step 	Action
	 	 1	Check and register the availability of the product items included in the request for a quote
	 	 2	Send the quote to the buyer.
	

	
		
		
		
		
		
		
		
		
		
		
			
				
				
					
				
				
					
				
			
		
		
		
		
		
		
		
		
		
		
		
		
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
		
		
		
		
			
				
				
					
				
				
					
				
			
		
		
		
		
		
		
		
		
		
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
				
				
					
				
				
					
				
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
			
			
		
		
			
				
				
					
				
				
					
				
			
		
		
		
			
				
				
					
				
				
					
				
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
			
			
			
		
		
		
		
		
		
		
		
		
		
		
		
			
				
				
					
				
				
					
				
			
		
		
		
		
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
		
		
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
		
		
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
		
		
		
		
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
		
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
		
			
			
			
			
			
			
			
			
			
		
	

	
		
			
			
			
			
			
			
			
			
			
			
		
	

Figure 9: Recommended diagram for an agent goal-based use case diagram, (reprinted from [19], copyright 2010, with permission from IOS Press).

As is the case with the use of use cases in object-oriented software development, the use case diagram only offers a high level viewpoint on requirements. Of more value [107] is the textual description of each use case. In the Prometheus approach, Padgham and Winikoff [59] note that, since agents have abilities beyond those of objects, it is necessary to provide a textual template significantly beyond those found in OO requirements engineering. Specifically, their textual template (called a “functionality descriptor”) describes the system functionality in terms of name, description, percepts, actions, data used/produced, and a brief discussion of interactions with other functionality. While these functionality descriptors are said to be intermediate work products, a final work product that is cross-checked (Figure 10) with them is the use case scenarios (or “scenarios” for short). These are again textual—a typical scenario descriptor in Prometheus is given in Table 10. Each step described in the scenario is a small piece of functionality.
Table 10: Example of a Prometheus scenario descriptor (after [60], reprinted by permission of the publisher © IGI Global).
	

	
									Name: new meeting scheduled
	
									Description: the user adds a new meeting
	
									Trigger: new meeting requested by user
	
									Steps:
	

	No.	Type	Name	Functionality	Data
	

	1	Percept	Request meeting	User interaction	
	2	Goal	Propose time meeting user preferences	Meeting scheduler	MeetDB(R), Prefs(R)
	3	Goal	Negotiate with other users	Negotiator	MeetDB(R), Prefs(R)
	4	Goal	Update user's diary	Meeting manager	MeetDB(W)
	5	Goal	Inform others of meeting	Contact notify	
	6	Other	Wait for day of meeting	 	
	7	Goal	Remind user of meeting	User notify	MeetDB(R), Prefs(R)
	8	Goal	Remind others of meeting	Contact notify	ContactInfo(R)
	

Variations:(i) Steps 2
	
		
			

				-
			

		
	
3 may be repeated in order to obtain agreement.(ii) If agreement on a meeting time is not reached then steps 4–8 are replaced with notifying the user that the meeting could not be scheduled.(iii) The meeting can be rescheduled or cancelled during step 6 (waiting).Key:(i) MeetDB(R): meetings database read.(ii) Prefs(R): user preferences read.(iii) MeetDB(W): meetings database written.(iv) ContactInfo(R): contact information read.

	
	
	
		
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
		
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
			
				
			
				
			
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
		
		
		
		
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
			
				
			
				
			
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
	
	
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
	
	
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
	

Figure 10: Phases and work products defined in Prometheus (after [60], reprinted by permission of the publisher © IGI Global).

Other methodologies use UML use cases “as-is,” for example, MaSE, ROADMAP, ADELFE, MAS-CommonKADS and PASSI where it is called a “domain descriptor diagram.”
5.2. Architecture View
Henderson-Sellers [19] recommends a UML-style package diagram as the Organization-based architecture diagram (Figure 11) similar to that used in MESSAGE [49] (Figure 12), although this diagram often has a different name, using different basic shapes, for example, organization structure model in Gaia [29] (Figure 13), or as a jurisdictional diagram (as in Figure 14).

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
		
			
		
			
		
	

	
		
			
		
			
		
	

	
		
			
		
			
		
		
			
		
	

Figure 11: Recommended diagram style for an Architecture Diagram.

	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
	
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
			
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
		
		
		
		
		
		
		
		
		
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	

Figure 12: Organization-based architecture diagram of MESSAGE (after [49], reprinted by permission of the publisher © IGI Global).

	
		
		
		
		
		
		
			
				
					
					
					
					
					
					
					
					
					
					
					
				
			
		
		
			
				
					
					
					
					
					
					
					
					
					
				
			
		
		
		
		
		
			
				
					
					
					
					
					
					
					
					
					
					
					
				
			
		
		
			
				
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
				
			
		
		
		
		
		
			
				
					
					
					
					
					
					
					
					
					
					
					
					
					
				
			
		
		
			
				
					
					
					
					
					
				
			