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Abstract. 
Image segmentation is a fundamental task for many computer vision and image processing applications. There exist many useful and reliable models for two-phase segmentation. However, the multiphase segmentation is a more challenging problem than two phase segmentation, mainly due to strong dependence on initialization of solutions. In this paper we propose a reliable hierarchical algorithm for multiphase texture image segmentation by making full use of two-phase texture models in a fuzzy
membership framework. Application of the new algorithm to the synthetic and real medical imaging data demonstrate more satisfactory results than existing algorithms.


1. Introduction
 Image segmentation is a fundamental problem in image processing which is a prerequisite to high-level computer vision applications. It aims to divide an image representing a real scene or a synthetic one into classes or categories, corresponding to different objects and the background in the image. In the end, each pixel should belong to one class and only one. In other words, we look for a partition of the image into distinct segments, and each of them shares some features in common such as intensities, color, or texture. In particular, image texture defined by repeated patterns of intensities adds much complication in image processing tasks. A textured image often has several regions with different textures in existence, and the task of segmentation is to locate the texture boundaries, with which this paper is concerned.
Over the past two decades, a variety of different techniques have been developed to solve the problem of image segmentation, ranging from region growing and emerging [1], watershed algorithms [2], minimum description length criteria [3], and active contour models [4, 5] to Mumford-Shah energy minimization model [6].
Historically, image segmentation is known as the process to segment an image into two categories of regions: the foreground and the background. This process nowadays is referred to as a two-phase modeling, whereas multiphase modeling is specifically to deal with segmentation of more than two regions. Earlier work on segmentation attempts to detect the feature boundaries directly by edge detection [7–9]. These methods are susceptible to noise which is often present in real applications, and as such they are not suitable for processing either textured or noisy images, unless one applies it to the transformed image after applying a Gabor-type filter to the original one [10].
For nontexture images, the most influential model, known as MS-model, is proposed by Mumford and Shah [6], where the required boundary set 
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 of features as well as the segmented image 
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 is determined from minimizing an energy functional. Unfortunately this elegant model is numerically difficult to realize, as such considerable effort has been made in order to alleviate this problem. For instance, Ambrosio and Tortorelli [11] have proposed a more solvable model by approximating the MS-model with elliptic functionals defined on Sobolev spaces. However, the most well-known paper based on [6] is the algorithm proposed by Chan and Vese [12]. Known as the CV-model, this was initially designed for two-phase segmentation of images of approximately piecewise constant intensities, using the framework of level set functions [13].
Segmentation of texture image is intrinsically more challenging than intensity-based ones. For texture images, detecting edges directly is problematic as it would treat texture patterns as image features. One of the strategies is to derive texture features from the image by first applying certain filters to it, and subsequently these features will be treated as a multichannel (i.e., color) segmentation problem. For instance, Sandberg et al. [14] have used Gabor filters for texture image segmentation by extending the original CV-model [12], and a similar strategy has also been adopted by a later work [15]. On the other hand, there have been other powerful models proposed to tackle texture segmentation of texture image directly [16–18]. Especially, both the region competition model of Zhu and Yuille [16] and the nonparametric model of Kim et al. [17] minimized mutual information as fidelity measure plus the regularization term. More recently Ni et al. [18] proposed a more reliable model based on Wasserstein distance as fidelity measure which leads to global optimal solutions to segmentation of texture image, where local histogram information is extensively used in order to divide the image domain into two regions in each of which the difference of the cumulative distribution function from its median is minimal.
Mory and Ardon [19] used the concept of fuzzy region competition to unify and extend it to model texture segmentation problems. Here, each pixel is assigned a probability, instead of a precise membership integer, of belonging to a particular region. The fuzzy region competition has been further generalized to deal with multiphase segmentation problems by Li and coworkers [20, 21], and in particular the multiphase texture segmentation model [20], referred to as LN-model, will be discussed in the following sections.
For the past decade, research in multiphase nontexture segmentation has been active with a focus on grayscale images. The work on multiphase texture segmentation is more recent.
A number of multiphase models have been proposed most of which are generalized from two-phase ones; see [22–30]. Gao and Bui [26] proposed a hierarchical model for multiphase segmentation problem for piecewise smoothing image. Jung et al. [31] formulated a multiphase segmentation model built upon the celebrated phase transition work of Modica and Mortola in material sciences. An efficient algorithm for minimizing the piecewise constant Mumford-Shah functional of image segmentation was proposed [32] based on the threshold dynamics of Merriman et al. [33] for evolving an interface by its mean curvature. More recent work include models based on shape and topological sensitivity [28] and 
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 regularization model [34]. Salah et al. [35] recently proposed to use a kernel function to map the original image into data of a higher dimension so that the piecewise constant model becomes applicable. Inclusion of shape constraints into the multiphase segmentation was also explored by Cremers [36]. Several models for multiphase segmentation of image frames have also been proposed [29, 37]. We also remarked that there is a very interesting unsupervised multiphase segmentation model from [30], which can automatically determine the number of regions during the segmentation process.
It has been observed that most generalized models work well only for a small number of problems, and robustness is a major issue. For instance, the above-mentioned CV-model [12] was generalized to multiphases in [22] and then refined in [23]. However as noted by [38, 39], the new model [23] has a strict requirement on its initial guess which contradicts the idea of automatic segmentation. Moreover, the phase number has to be 
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 is the number of level set functions. To improve this model, the idea of hierarchical implementation of the robust CV-model [12] was first considered in [38] (with time-marching solver a.k.a. additive operator splitting (AOS)) and was further improved by Badshah and Chen [39] with a robust multigrid solver. Along this line, Ni et al. [40] employed the fast time-marching dual algorithm proposed by [41]. These improved hierarchical models have produced convincing results in segmentation of intensity images but not yet applied to segmentation of texture images.
In clear contrast to two-phase segmentation, multiphase texture segmentation is relatively understudied so far. Several feature-based models have been proposed to tackle the problem by working on features derived by different strategies. For instance, Aujol et al. [42] have proposed a model based on features derived from applying wavelet transforms to the image of interest. Similarly, Wei and Xin [43] proposed a supervised model based on contourlet features for aerial image segmentation. These feature-based models have limitation in choosing appropriate descriptors of texture. The most recent Li-Ng (LN) model [20] was based on mutual information which implies that there is no need to detect features first as is required by feature-based models. However, this model is not globally convex, as such the performance is sensitive to initialization; Li and Ng [20] have remarked that this occurs in segmentation problems with three or more phases. As such more advanced segmentation models are needed.
We finally remark that there have been recent advances in efficient solvers for variational models. Different from the past solvers such as gradient descent level set methods, a diversity of fast solvers have been proposed; these include graph cut [44], multigrid [39, 45], dual projection algorithm [41], as well as genetic algorithms [46]. Amongst these, alternating optimization strategies via the elegant dual projection model have been increasingly employed in the literature [20, 40].
The rest of the paper is organized as follows. Section 2 reviews some existing segmentation models, paying special attention to fuzzy region competition models which assign a probability value at each pixel rather than an integer for phases. Section 3 introduces our new hierarchical algorithm based on general two-phase models. Section 4 shows a series of experiments for comparisons and verifications. Some conclusions are drawn in Section 5.
2. Review of Some Segmentation Models
 We shall review five models that are reliable for two-phase segmentation. The first two models are designed for non-texture segmentation, and the last three models are for texture segmentation; in particular the fourth model by Ni et al. is the most reliable as well as the most expensive.
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Mathematically, each phase may be characterized by a distinct constant as defined in [5] and in two phases with 
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, one may simply try to find a piecewise constant solution 
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2.1. The Mumford-Shah-Based CV Model
A general form of two-phase segmentation problem can be represented [19] as
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The well-known CV model [12] chooses 
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. The model can be adapted to tackle the multiphase segmentation problem [38–40] when more constants are defined.
The level set formulation (as a means to rewrite the above integrals over 
	
		
			

				Ω
			

			

				1
			

			
				,
				Ω
			

			

				2
			

		
	
 as over 
	
		
			

				Ω
			

		
	
) is commonly used to represent this model, and subsequently the resulting partial differential equation (PDE) is solved by a gradient descent time-marching method, as with the celebrated CV model [12]. However, this model (1) is not convex (neither is the CV model), as such the level set methods need a reasonable initialization in order to avoid local minima. This prerequisite and the slow convergence are inherent weakness of this PDE-based method.
2.2. A Global Convex Model
 Recently, Bresson et al. [47] have tried to reformulate the above problem into a convex one so that the global minimum becomes easier to compute. The idea is to introduce constraints and to convert the two-phase model into a convex total variational (TV) model as follows:
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							It should be remarked that Bae and Tai [48] have proposed a convexified model for four-phase segmentation.
Further, the Chambolle’s pioneering work [41] of fast dual projection can be used to provide an elegant efficient solver for this equation. More specifically, after an auxiliary variable 
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 is added to it, (2) will be formulated as
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							where the minimization problem (4) can be efficiently solved by a fast dual projection algorithm [41] and (5) is solved explicitly. The derived solution is
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2.3. The Fuzzy Region Competition Form of Two-Phase Segmentation
The fuzzy region competition model by Zhu and Yuille [16] or Kim et al. [17] for texture segmentation chooses 
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 denotes the probability density function (usually a Gaussian) for a conditional probability. Although Zhu and Yuille have used parametric representation [16], and Kim et al. used nonparametric representation [17], both of them have used standard PDE solution methods. So these models again are not globally convex; as such solvers may suffer from getting stuck at local minima. Of note, if the probability density 
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2.4. The Local Histogram-Based Model
Rather than the mutual information-based strategies, Ni et al. [18] proposed a new strategy using local histograms (i.e., Wasserstein distance, instead of image intensities) to define a region in order to segment texture images. First of all, a Wasserstein distance with exponent  1 (measuring the distance of two histograms 
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							That is to say, an image is segmented according to how accumulated local histograms of a group of pixels are close to a fixed value. We remark that this approach so far has only been used in two-phase texture image segmentation. Since both 
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2.5. The LN Multiphase Texture Model
Derived from fuzzy region competition method, the multiphase segmentation problem for texture images can be formulated through the concept of mutual information as follows [20]:
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This energy can be reformulated in a total variational framework as follows:
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Then minimization of this energy 
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