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Abstract. 
This paper reviews the current status of theoretical modeling of electric dipole radiation from spinning dust grains. The fundamentally simple problem of dust grain rotation appeals to a rich set of concepts of classical and quantum physics, owing to the diversity of processes involved. Rotational excitation and damping rates through various mechanisms are discussed, as well as methods of computing the grain angular momentum distribution function. Assumptions on grain properties are reviewed. The robustness of theoretical predictions now seems mostly limited by the uncertainties regarding the grains themselves, namely, their abundance, dipole moments, and size and shape distribution.


1. Introduction
Rotational radiation from small grains in the interstellar medium (ISM) has been suggested as a source of radio emission several decades ago already. The basic idea was first introduced by Erickson (1957) [1] and then revisited by Hoyle and Wickramasinghe (1970) [2] and Ferrara and Dettmar (1994) [3]. Rouan et al. (1992) [4] were the first to provide a thorough description of the physics of rotation of polycyclic aromatic hydrocarbons (PAHs), although not including all gas processes.
Shortly after the discovery of the anomalous dust-correlated microwave emission (AME) in the galaxy by Leitch et al. (1997) [5], Draine and Lazarian (1998, hereafter DL98) [6, 7] suggested that spinning dust radiation might be responsible for the AME and provided an in-depth theoretical description of the process.
Understanding the spinning dust spectrum in as much detail as possible is important. First, the AME constitutes a foreground emission to cosmic microwave background (CMB) radiation. Second, it provides a window into the properties of small grains, which play crucial roles for the physics and chemistry of the ISM.
Motivated by these considerations and the accumulating observational evidence for diffuse and localized AME, several groups have since then revisited and refined the DL98 model [8–12]. New physical processes were accounted for, which can significantly affect the predicted spectrum. A publicly available code to evaluate spinning dust emissivities (SPDUST) is now available, including most (but not all thus far) processes recently investigated (SPDUST is available at http://www.sns.ias.edu/~yacine/spdust/spdust.html.). 
The purpose of this paper is to provide an overview of the physics involved in modeling spinning dust spectra. We attempt to provide a comprehensive description of the problem at the formal level, and let the interested reader learn about the details in the various works that deal with the subject.
This paper is organized as follows: Section 2 reviews the basic process of electric dipole radiation and the resulting emissivity. We then describe the assumed properties of the small grains, which are believed to be the source of the spinning dust radiation in Section 3. Section 4 discusses the rotational configuration of small grains stochastically heated by ultraviolet (UV) photons. Section 5 describes the methods to obtain the distribution of grain angular momentum, as well as the various physical processes that affect it. We conclude and mention potential future research directions in Section 6. 
2. Basic Process
2.1. Electric Dipole Radiation of a Spinning Grain
Consider a grain with permanent electric dipole moment 
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2.1.1. Spherical Grain
We first consider the simplest case of a freely rotating spherical grain, with isotropic moment of inertia tensor 
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 is the frequency of rotation. The power radiated in this simple case is then 
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2.1.2. Axisymmetric Grain
 Here we consider an oblate axisymmetric grain with moments of inertia 
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. We describe the orientation of the grain principal axes with respect to its angular momentum 
	
		
			

				𝐋
			

		
	
 with the three Euler angles 
	
		
			
				𝜙
				,
				𝜃
				,
				𝜓
			

		
	
 pictured in Figure 1.


	
		
			
		
			
		
	




	
		
		
			
		
		
			
		
	


	
		
		
			
		
		
			
		
	


	
		
			
		
			
		
	








	
		
		
			
		
		
			
		
	


	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
				
			
			
				
			
			
				
					
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
			
		
		
			
		
		
			
		
		
			
				
			
		
	
	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
		
		
			
				
			
		
	


	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	

Figure 1: Euler angles used for the description of an axisymmetric grain. The figure was reproduced from [9].


Between two discrete events that change its angular momentum, the grain can be considered as freely rotating. During these periods, the Euler angles change according to 
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Electromagnetic radiation is now emitted at the four frequencies 
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2.1.3. Triaxial Grain
 The case of a triaxial grain is unfortunately not analytic. In that case, power is radiated at a countably infinite number of frequencies. Hoang et al. (2011) [11] obtained the power spectrum of a freely rotating grain numerically. They show that for a classically rotating grain, only a few modes are dominant.
2.2. Emissivity
The quantity of interest to us is the emissivity 
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. This is the case if there are no magnetic fields and anisotropic radiation fields, or if none of them are efficient at aligning the grains. In what follows, we will assume perfect isotropy of space. The emissivity is then given by 
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							Finally, we note that the actual observable is the radio intensity, given by the emissivity integrated along the line of sight, 
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							At each point in space, the emissivity depends on the local environmental conditions (density, temperature, ionization degree, and ambient radiation field, as well as grain abundance), as we shall see below. Therefore, predicting the spinning dust spectrum along a line of sight requires modeling the ISM properties (see e.g., [13]). Reference [11] evaluates the effect of turbulence on the spinning dust spectrum and finds that the effective emissivity (averaged over the probability distribution for the compression factor along the line of sight) can be shifted to larger frequencies and enhanced by several tens of percent.
We do not deal with this aspect in this paper as it does not belong, per se, to the field of spinning dust theory, but rather to the larger field of ISM modeling. It is, however, crucial to accurately model the environmental spatial variations in order to get precise predictions.
3. Grain Properties
3.1.  Abundance and Size Distribution
The small grain abundance is determined primarily from observations of the wavelength-dependent extinction and the 3–25 μm emission, attributed to various vibrational modes of PAHs (for a review on interstellar PAHs and their properties, see e.g., Tielens (2008) [14]). Note that the UV extinction indicates the presence of nanodust but does not give any detailed information on grain sizes. Only the IR emission allows to constrain the small grain size distribution, as discussed in Li and Mann (2012) [15]. Observations require a few percent of the interstellar carbon to be locked in PAHs, and a significant population of very small grains (less than ~1 nm in size) to reproduce the strength of the 3–12
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 and showed that such a distribution reproduced the infrared emission well. Observations tend to indicate that PAHS are less abundant in dense clouds than in the diffuse ISM.
Note that we assume the smallest grains in the ISM being mostly PAHs, but a population of ultrasmall silicate grains is not completely ruled out by observations [19].
3.2. Shapes
PAHs may take a variety of shapes, from disk-like to nearly linear. They are not necessarily planar: for example, if one of the hexagonal carbon rings is replaced by a pentagonal ring, they are bent and become three dimensional. Above a certain size, PAHs may form irregular clusters and eventually, large three-dimensional grains.
The exact distribution of shapes is largely unknown. The lowest-frequency IR emission bands in principle carry information about the individual grains and seem to indicate that PAHs may be dominated by a few well-defined molecular structures, although not conclusively [14].
The smallest grains dominate the spinning dust spectrum (they can be spun up to larger frequencies and hence emit more power). It is commonly assumed that these grains are nearly planar up to a spherical-equivalent radius 
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 Å, corresponding to 100 carbon atoms. The peak of the spinning dust spectrum is not very sensitive to the exact cut-off between planar and spherical grains.
3.3. Permanent Dipole Moments
In principle a consistent prescription should be given for small grains, which gives the precise nature of the grain, hence its shape (or rotational constants) and permanent electric dipole moment, which can be computed quantum-mechanically for small enough molecules. Such computations were carried out by Hudgins et al. (2005) [20] for nitrogen-substituted PAHs. They found typical permanent dipole moments of a few Debyes, depending on the precise position of the substituted nitrogen atom.
Eventually, observations will hopefully allow for a more precise determination of the population of PAHs and their properties. We are currently far from having a definite handle on such refined properties of small grains, and an empirical distribution of dipole moments is required. Following DL98, more recent models assume a three-dimensional Gaussian distribution of dipole moments, with variance 
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. The first term, largely dominant, accounts for the permanent dipole moment and the second term accounts for charge displacement in ionized grains. We repeat that this distribution is largely ad hoc and may be far from reflecting reality, except (hopefully) for the characteristic permanent dipole moment.
4. Rotational Configuration
4.1. Fast Vibration-Rotation Energy Transfer
In principle, one should solve for the distribution of angular momentum and rotational configuration 
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The situation is much simplified if one single process is very efficient at changing the rotational configuration, on timescales much shorter than the overall timescale to change the angular momentum. If this process is characterized by an equilibrium temperature 
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Luckily Nature does provide us with such an efficient process to change 
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: internal vibrational-rotational energy transfer (IVRET) (see e.g., [9, 11, 21–23] for application to spinning dust modeling). The first detailed studies of how internal relaxation may affect grain alignment were carried in [24, 25].
Following the absorption of an ultraviolet (UV) photon, small grains get heated up to large vibrational temperatures 
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, all rotational configurations become equiprobable (of course when converting to actual angles one needs to be careful of using the appropriate phase-space volume 
	
		
			
				𝑑
				𝝕
			

		
	
).
For example, an axisymmetric oblate grain with 
	
		
			

				𝐼
			

			

				3
			

			
				>
				𝐼
			

			

				2
			

			
				=
				𝐼
			

			

				1
			

		
	
 has a rotational energy 
								
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝐸
			

			
				r
				o
				t
			

			
				𝐿
				(
				𝐿
				,
				𝜃
				)
				=
			

			

				2
			

			
				
			
			
				2
				𝐼
			

			

				1
			

			
				
				
				𝐼
				1
				−
				1
				−
			

			

				1
			

			
				
			
			

				𝐼
			

			

				3
			

			
				
				c
				o
				s
			

			

				2
			

			
				𝜃
				
				,
			

		
	

							where 
	
		
			

				𝜃
			

		
	
 is the angle between 
	
		
			

				𝐋
			

		
	
 and the axis of greatest inertia. If 
	
		
			

				𝑇
			

			

				𝝕
			

			
				≪
				𝑇
			

			

				𝐿
			

		
	
, the most probable configurations are 
	
		
			
				𝜃
				=
				0
			

		
	
 or 
	
		
			

				𝜋
			

		
	
. In the case where 
	
		
			

				𝑇
			

			

				𝝕
			

			
				≫
				𝑇
			

			

				𝐿
			

		
	
, we obtain that 
	
		
			
				𝑓
				(
				𝜃
				∣
				𝐿
				)
				∝
				s
				i
				n
				𝜃
			

		
	
 (here we used 
	
		
			
				𝑑
				𝝕
				=
				𝑑
				𝜙
				s
				i
				n
				𝜃
				𝑑
				𝜃
			

		
	
 in the usual spherical polar coordinates).
SPDUST only allows for the two limiting regimes 
	
		
			

				𝑇
			

			

				𝝕
			

			
				→
				0
			

		
	
 and 
	
		
			

				𝑇
			

			

				𝝕
			

			
				→
				∞
			

		
	
, bracketing the range of possibilities. The authors of [11] explore the effect of continuously varying 
	
		
			

				𝑇
			

			

				𝝕
			

		
	
, interpolating continuously between the two extreme regimes. In general, there will be a different temperature 
	
		
			

				𝑇
			

			

				𝝕
			

		
	
 for each grain size and depending on the environment, but the precise modeling of this parameter has not been addressed in the literature yet. In what follows, we shall only discuss the two limiting regimes.
4.2. Implication for the Emitted Power at Fixed Angular Momentum
The last integral in (8) can be rewritten as 
								
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				𝑑
			

			

				3
			

			
				𝐋
				𝑑
				𝝕
				𝑓
				(
				𝐿
				,
				𝝕
				)
				𝑑
				𝑃
			

			
				
			
			
				
				𝑑
				𝑑
				𝜈
				(
				𝐿
				,
				𝝕
				)
				=
			

			

				3
			

			
				
				𝐋
				𝑓
				(
				𝐿
				)
				𝑑
				𝑃
			

			
				
			
			
				
				𝑑
				𝜈
				(
				𝐿
				)
				,
			

		
	

							where the power averaged over the rotational configuration is 
								
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				
				𝑑
				𝑃
			

			
				
			
			
				
				
				𝑑
				𝜈
				(
				𝐿
				)
				≡
				𝑑
				𝝕
				𝑓
				(
				𝝕
				∣
				𝐿
				)
				𝑑
				𝑃
			

			
				
			
			
				𝑑
				𝜈
				(
				𝐿
				,
				𝝕
				)
				.
			

		
	

							In the case of a grain rotating about its axis of the greatest inertia 
	
		
			

				𝐼
			

			

				3
			

		
	
, the averaged power collapses to 
								
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				𝑑
				𝑃
			

			
				
			
			
				
				=
				2
				𝑑
				𝜈
			

			
				
			
			
				3
				𝑐
			

			

				3
			

			
				(
				2
				𝜋
				𝜈
				)
			

			

				4
			

			

				𝜇
			

			
				2
				⟂
			

			
				𝛿
				
				𝐿
				𝜈
				−
			

			
				
			
			
				2
				𝜋
				𝐼
			

			

				3
			

			
				
				,
				𝑇
			

			

				𝝕
			

			
				→
				0
				,
			

		
	

							which is identical to the case of a spherical grain. If we now consider an oblate axisymmetric grain with 
	
		
			

				𝑇
			

			

				𝝕
			

			
				→
				∞
			

		
	
, we obtain, using the results of Section  2.1.2 and averaging over isotropically distributed nutation angles 
	
		
			

				𝜃
			

		
	
, 
								
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				𝑑
				𝑃
			

			
				
			
			
				
				=
				𝑑
				𝜈
				4
				𝜇
			

			
				2
				‖
			

			
				
			
			
				9
				𝑐
			

			

				3
			

			
				
				2
				𝜋
				𝜈
			

			

				1
			

			

				
			

			

				4
			

			
				𝛿
				
				𝜈
				−
				𝜈
			

			

				1
			

			
				
				+
				𝜇
			

			
				2
				⟂
			

			
				
			
			
				3
				𝑐
			

			

				3
			

			
				(
				2
				𝜋
				𝜈
				)
			

			

				4
			

			
				×
				
				
				𝜈
				1
				−
			

			
				
			
			

				𝜈
			

			
				1
				3
			

			

				
			

			

				2
			

			
				
				𝟏
			

			
				𝜈
				<
				𝜈
			

			
				1
				3
			

			
				
			
			

				𝜈
			

			
				1
				3
			

			
				+
				𝜇
			

			
				2
				⟂
			

			
				
			
			
				3
				𝑐
			

			

				3
			

			
				(
				2
				𝜋
				𝜈
				)
			

			

				4
			

			
				×
				
				𝜈
			

			

				1
			

			
				+
				𝜈
			

			
				1
				3
			

			
				−
				𝜈
			

			
				
			
			

				𝜈
			

			
				1
				3
			

			

				
			

			

				2
			

			

				𝟏
			

			

				𝜈
			

			

				3
			

			
				<
				𝜈
				<
				𝜈
			

			

				1
			

			
				+
				𝜈
			

			
				1
				3
			

			
				
			
			
				2
				𝜈
			

			
				1
				3
			

			
				,
				𝑇
			

			

				𝝕
			

			
				→
				∞
				,
			

		
	

							where the function 
	
		
			

				𝟏
			

		
	
 is unity where its subscript is valid and zero elsewhere, and we have defined the two frequencies 
								
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝜈
			

			

				1
			

			
				≡
				𝐿
			

			
				
			
			
				2
				𝜋
				𝐼
			

			

				1
			

			
				,
				𝜈
			

			
				1
				3
			

			
				≡
				𝐿
			

			
				
			
			
				2
				𝜋
				𝐼
			

			

				1
			

			
				−
				𝐿
			

			
				
			
			
				2
				𝜋
				𝐼
			

			

				3
			

			

				.
			

		
	

							In the case of a planar grain with 
	
		
			

				𝐼
			

			

				3
			

			
				=
				2
				𝐼
			

			

				1
			

		
	
 and 
	
		
			

				𝜈
			

			

				1
			

			
				=
				2
				𝜈
			

			

				3
			

			
				=
				2
				𝜈
			

			
				1
				3
			

		
	
, the power radiated by a wobbling grain is emitted at characteristic frequencies about twice as large as in the case of a grain rotating primarily about its axis of greatest inertia. The integrated power is, in the former case (and assuming 
	
		
			

				𝜈
			

			

				3
			

			
				=
				𝜈
			

			
				1
				3
			

		
	
),
								
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝑃
				
				𝑇
			

			

				𝝕
			

			
				
				=
				→
				∞
				4
				𝜇
			

			
				2
				|
				|
			

			
				
			
			
				9
				𝑐
			

			

				3
			

			
				
				2
				𝜋
				𝜈
			

			

				1
			

			

				
			

			

				4
			

			
				𝜇
				+
				1
				0
			

			
				2
				⟂
			

			
				
			
			
				3
				𝑐
			

			

				3
			

			
				
				2
				𝜋
				𝜈
			

			

				3
			

			

				
			

			

				4
			

			

				,
			

		
	

							which is about 10 times larger, at equal angular momentum, than the power radiated by a grain rotating mostly about its axis of greatest inertia if 
	
		
			

				𝜇
			

			
				2
				⟂
			

			
				=
				2
				𝜇
			

			
				2
				|
				|
			

		
	
.
One must not forget, however, that the angular momentum distribution itself depends upon the rotational configuration 
	
		
			
				𝑓
				(
				𝝕
				∣
				𝐿
				)
			

		
	
, since one must use this distribution to average transition rates. We shall see in the next section that the effect of randomized rotational configuration is to lower the characteristic angular momentum 
	
		
			

				𝐿
			

		
	
.
5. Angular Momentum Distribution
 To determine the angular momentum distribution, we need to evaluate the differential transition rates 
	
		
			
				Γ
				(
				𝐿
				→
				𝐿
			

			

				
			

			

				)
			

		
	
 between different values of the angular momentum magnitude, defined such that 
	
		
			
				Γ
				(
				𝐿
				→
				𝐿
			

			

				
			

			
				)
				Δ
				𝐿
			

			

				
			

		
	
 is the rate of transition from an initial angular momentum 
	
		
			

				𝐿
			

		
	
 to a final angular momentum in the interval 
	
		
			
				[
				𝐿
			

			

				
			

			
				,
				𝐿
			

			

				
			

			
				+
				Δ
				𝐿
			

			

				
			

			

				]
			

		
	
. These rates are averaged over the rotational configuration for 
	
		
			

				𝝕
			

		
	
 discussed above. The steady-state distribution function 
	
		
			
				𝑓
				(
				𝐿
				)
			

		
	
 should then in principle be obtained from the integral master equation 
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝜕
				
				𝑓
				(
				𝐿
				)
			

			
				
			
			
				=
				
				
				
				𝑓
				
				𝐿
				𝜕
				𝑡
			

			

				
			

			
				
				Γ
				
				𝐿
			

			

				
			

			
				
				−
				
				
				→
				𝐿
				𝑓
				(
				𝐿
				)
				Γ
				𝐿
				→
				𝐿
			

			

				
			

			
				
				
				𝑑
				𝐿
			

			

				
			

			
				=
				0
				,
				∀
				𝐿
				,
			

		
	

					where we have defined 
	
		
			
				
				𝑓
				(
				𝐿
				)
				≡
				4
				𝜋
				𝐿
			

			

				2
			

			
				𝑓
				(
				𝐿
				)
			

		
	
 so that 
	
		
			
				
				𝑓
				(
				𝐿
				)
			

		
	
 is the distribution function for the magnitude of 
	
		
			

				𝐋
			

		
	
 (whereas 
	
		
			
				𝑓
				(
				𝐋
				)
				=
				𝑓
				(
				𝐿
				)
			

		
	
 is the distribution function for the vector angular momentum, even if it only depends on its magnitude due to isotropy). This equation is, clearly, rather cumbersome to solve and below we present a simpler (if approximate) method of solution, based on the Fokker-Planck equation. Section  5.1 provides a formal introduction to the problem, and actual physical mechanisms are discussed in Section  5.2.
5.1. The Fokker-Planck Equation
5.1.1. Derivation
In general, transition rates are not significant for arbitrarily large values of 
	
		
			
				Δ
				𝐿
				≡
				𝐿
			

			

				
			

			
				−
				𝐿
			

		
	
: there always exists some characteristic 
	
		
			
				Δ
				𝐿
			

			

				0
			

		
	
 such that 
	
		
			
				Γ
				(
				𝐿
				→
				𝐿
				+
				Δ
				𝐿
				)
			

		
	
 decreases rapidly for 
	
		
			
				|
				Δ
				𝐿
				|
				≳
				Δ
				𝐿
			

			

				0
			

		
	
. An important simplification can be made if the scale 
	
		
			
				Δ
				𝐿
			

			

				0
			

		
	
 is much smaller than the characteristic scale over which both the distribution function varies and the rates themselves vary—the distribution function being unknown a priori, the validity this assumption has in principle to be checked a posteriori. If this is the case, we may expand the first term in the integral of (20), setting 
	
		
			

				𝐿
			

			

				
			

			
				=
				𝐿
				+
				Δ
				𝐿
			

		
	
: 
										
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				
				≈
				
				𝜕
				𝑓
				(
				𝐿
				+
				Δ
				𝐿
				)
				Γ
				(
				𝐿
				+
				Δ
				𝐿
				→
				𝐿
				)
				𝑓
				(
				𝐿
				)
				Γ
				(
				𝐿
				→
				𝐿
				−
				Δ
				𝐿
				)
				+
				Δ
				𝐿
			

			
				
			
			
				
				
				
				+
				1
				𝜕
				𝐿
				𝑓
				(
				𝐿
				)
				Γ
				(
				𝐿
				→
				𝐿
				−
				Δ
				𝐿
				)
			

			
				
			
			
				2
				(
				Δ
				𝐿
				)
			

			

				2
			

			

				𝜕
			

			

				2
			

			
				
			
			
				𝜕
				𝐿
			

			

				2
			

			
				×
				
				
				
				.
				𝑓
				(
				𝐿
				)
				Γ
				(
				𝐿
				→
				𝐿
				−
				Δ
				𝐿
				)
			

		
	

									Plugging this expansion back into (20), we see that the term linear in 
	
		
			
				
				𝑓
				(
				𝐿
				)
			

		
	
 cancels out with the second term of the integral (the integrand being an odd function of 
	
		
			
				Δ
				𝐿
			

		
	
). Recalling that 
	
		
			
				
				𝑓
				(
				𝐿
				)
				=
				4
				𝜋
				𝐿
			

			

				2
			

			
				𝑓
				(
				𝐿
				)
			

		
	
, we finally obtain 
										
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				4
				𝜋
				𝐿
			

			

				2
			

			
				𝜕
				𝑓
				(
				𝐿
				)
			

			
				
			
			
				𝜕
				𝜕
				𝑡
				=
				−
			

			
				
			
			
				
				𝜕
				𝐿
				𝑑
				⟨
				Δ
				𝐿
				⟩
			

			
				
			
			
				𝑑
				𝑡
				4
				𝜋
				𝐿
			

			

				2
			

			
				
				+
				1
				𝑓
				(
				𝐿
				)
			

			
				
			
			
				2
				𝜕
			

			

				2
			

			
				
			
			
				𝜕
				𝐿
			

			

				2
			

			
				
				𝑑
				
				(
				Δ
				𝐿
				)
			

			

				2
			

			

				
			

			
				
			
			
				𝑑
				𝑡
				4
				𝜋
				𝐿
			

			

				2
			

			
				
				𝑓
				(
				𝐿
				)
				=
				0
				,
			

		
	

									where we have defined the rate of angular momentum drift (the opposite of which is the rate of angular momentum dissipation or damping), 
										
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝑑
				⟨
				Δ
				𝐿
				⟩
			

			
				
			
			
				≡
				
				𝑑
				𝑡
				Δ
				𝐿
				Γ
				(
				𝐿
				→
				𝐿
				+
				Δ
				𝐿
				)
				𝑑
				(
				Δ
				𝐿
				)
				,
			

		
	

									and the rate of angular momentum diffusion (also termed fluctuation or excitation), 
										
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝑑
				
				(
				Δ
				𝐿
				)
			

			

				2
			

			

				
			

			
				
			
			
				≡
				
				𝑑
				𝑡
				(
				Δ
				𝐿
				)
			

			

				2
			

			
				Γ
				(
				𝐿
				→
				𝐿
				+
				Δ
				𝐿
				)
				𝑑
				(
				Δ
				𝐿
				)
				.
			

		
	

									Equation (22) is known as the Fokker-Planck equation and has a broad range of applications in physics (see e.g., Chapter 6 of the book [26] by Blandford and Thorne). In the context of grain rotation, this approach was used in [1, 8, 9, 27] and is the basic equation solved in SPDUST. Solving this equation is much simpler than solving the full master equation, and it may even have a simple analytic solution if the excitation and damping rates are simple enough.
5.1.2. General Form of the Rates and Solution
General Processes besides Electric Dipole Radiation Damping Most processes through which grains may change angular momentum (except for electric dipole radiation itself, to which we shall come back later on) are characterized by a damping timescale 
	
		
			

				𝜏
			

		
	
 such that 
											
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝑑
				⟨
				Δ
				𝐋
				⟩
			

			
				
			
			
				𝐋
				𝑑
				𝑡
				=
				−
			

			
				
			
			

				𝜏
			

		
	

										and have an isotropic and constant diffusion rate of the form 
											
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝑑
				
				Δ
				𝐿
			

			

				𝑖
			

			
				Δ
				𝐿
			

			

				𝑗
			

			

				
			

			
				
			
			
				=
				1
				𝑑
				𝑡
			

			
				
			
			
				3
				𝜎
			

			
				2
				𝐿
			

			
				
			
			
				𝜏
				𝛿
			

			
				𝑖
				𝑗
			

			

				.
			

		
	

										Taylor-expanding 
	
		
			
				Δ
				𝐿
			

		
	
 to second order in 
	
		
			
				Δ
				𝐋
			

		
	
, we obtain 
											
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				Δ
				𝐿
				=
				𝐋
				+
				Δ
				𝐋
				−
				𝐿
				≈
				Δ
				𝐋
				⋅
				𝐋
				+
				(
				Δ
				𝐋
				)
			

			

				2
			

			
				−
				
				
				𝐋
				
				Δ
				𝐋
				⋅
			

			

				2
			

			
				
			
			
				.
				2
				𝐿
			

		
	

										The excitation and damping rates for the magnitude of the angular momentum are therefore 
											
	
 		
 			
				(
				2
				8
				)
			
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝑑
				⟨
				Δ
				𝐿
				⟩
			

			
				
			
			
				=
				𝜎
				𝑑
				𝑡
			

			
				2
				𝐿
			

			
				/
				3
				−
				𝐿
			

			

				2
			

			
				
			
			
				,
				𝑑
				
				𝐿
				𝜏
				(
				Δ
				𝐿
				)
			

			

				2
			

			

				
			

			
				
			
			
				=
				𝜎
				𝑑
				𝑡
			

			
				2
				𝐿
			

			
				
			
			
				.
				3
				𝜏
			

		
	

										The form of these coefficients stems from the fact that only longitudinal excitation generates a true diffusion in the magnitude of 
	
		
			

				𝐋
			

		
	
, whereas excitations perpendicular to 
	
		
			

				𝐋
			

		
	
 lead to a systematic increase of the magnitude of the angular momentum and hence appear as a positive drift rate in (28).If only one single process was interacting with the grains, their steady-state distribution would then be the Maxwellian with three-dimensional variance 
	
		
			
				⟨
				𝐿
			

			

				2
			

			
				⟩
				=
				(
				1
				/
				2
				)
				𝜎
			

			
				2
				𝐿
			

		
	
, 
											
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				
				−
				𝑓
				(
				𝐿
				)
				∝
				e
				x
				p
				3
				𝐿
			

			

				2
			

			
				
			
			

				𝜎
			

			
				2
				𝐿
			

			
				
				,
			

		
	

										as can be seen from inserting the rates (28) and (29) into the Fokker-Planck equation (22).Often, however, there is not a single process that dominates both excitation and damping. Since transition rates add up linearly for independent processes, so do excitation and damping rates. If all rates are of the form (25), (26), then the final distribution is still Maxwellian, with a variance weighted by the characteristic rates of the various processes indexed by 
	
		
			

				𝛼
			

		
	

	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				
				−
				𝑓
				(
				𝐿
				)
				∝
				e
				x
				p
				3
				𝐿
			

			

				2
			

			
				
			
			

				𝜎
			

			
				2
				𝐿
			

			
				
				,
				𝜎
			

			
				2
				𝐿
			

			
				≡
				∑
			

			

				𝛼
			

			

				𝜏
			

			
				𝛼
				−
				1
			

			

				𝜎
			

			
				2
				𝐿
				,
				𝛼
			

			
				
			
			

				𝜏
			

			
				−
				1
			

			
				,
				𝜏
			

			
				−
				1
			

			
				≡
				
			

			

				𝛼
			

			

				𝜏
			

			
				𝛼
				−
				1
			

			

				.
			

		
	

Damping through Electric Dipole Radiation One process behaves differently from (25), (26): the damping of angular momentum through electric dipole radiation itself. Since the rotational energy is proportional to 
	
		
			

				𝐿
			

			

				2
			

		
	
 and the radiated power is proportional to 
	
		
			

				𝐿
			

			

				4
			

		
	
, the rate of angular momentum damping scales as 
	
		
			

				𝐿
			

			

				3
			

		
	
. We may write it in the form 
											
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝑑
				⟨
				Δ
				𝐋
				⟩
			

			
				
			
			
				∣
				𝑑
				𝑡
			

			
				e
				d
			

			
				𝐿
				=
				−
			

			

				2
			

			

				𝐋
			

			
				
			
			

				𝜎
			

			
				2
				𝐿
			

			

				𝜏
			

			
				e
				d
			

			

				,
			

		
	

										where we may take the variance 
	
		
			

				𝜎
			

			
				2
				𝐿
			

		
	
 to be that given by (31). This defines 
	
		
			

				𝜏
			

			
				e
				d
			

		
	
 as the characteristic timescale to damp an angular momentum of order 
	
		
			

				𝜎
			

			

				𝐿
			

		
	
 through electric dipole radiation (note that this definition of 
	
		
			

				𝜏
			

			
				e
				d
			

		
	
 is different from the ones adopted in [7, 8], where 
	
		
			

				𝜎
			

			
				2
				𝐿
			

			
				=
				3
				𝐼
				𝑘
				𝑇
			

			
				g
				a
				s
			

		
	
 was specifically used in (32) to define 
	
		
			

				𝜏
			

			
				e
				d
			

		
	
). Every damping process has in general an associated excitation process, and vice versa. In the case of electric dipole radiation, the associated fluctuation in angular momentum is due to absorption of and decays stimulated by microwave photons (dominated by Cosmic Microwave Background (CMB) photons in the diffuse ISM). To our knowledge, this process was only considered in [28] and we shall get back to it in the next section.Accounting for the damping only for now and including this additional damping into the Fokker-Planck equation, we obtain the solution 
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				3
				)
			
 		
	

	
		
			
				
				𝐿
				𝑓
				(
				𝐿
				)
				∝
				e
				x
				p
				−
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				2
			

			
				
			
			

				𝜎
			

			
				2
				𝐿
			

			
				−
				3
			

			
				
			
			
				2
				𝜏
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										The most likely angular momentum for this distribution is such that the net drift rate vanishes 
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5.1.3. Limitation of the Fokker-Planck Approach: Impulsive Torques
The Fokker-Planck equation is a diffusion equation, and its validity is limited to processes that change the angular momentum by small increments. In this section, we formally discuss in which cases it may break down.
Let us now consider some stochastic interaction process 
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									The diffusion rate for such an interaction is, indeed, formally equal to that of (26). However, this process can only be considered as diffusive if 
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, the characteristic time to change the angular momentum.
The issue of impulsive torques was addressed by Hoang et al. [10]. Instead of solving a Fokker-Planck equation, Hoang et al. start with the Langevin equation, of the form
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 after a long enough evolution. In the form (40), the Langevin equation is exactly equivalent to the Fokker-Planck equation, in the sense that it assumes infinitesimal torques. However, it is simple to generalize this treatment to include impulsive toques. First, one draws the interval between two collisions from the Poisson distribution with mean 
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. This method allows to include random impulsive torques in addition to the quasicontinuous torques. We defer the discussion of Hoang et al.’s results to Section  5.4.
5.2. Excitation and Damping Rates for Various Mechanisms
 In this section, we describe the principal mechanisms that excite and damp the grains’ rotation. Since the detailed calculations are already worked out in various papers [4, 7–9], here we limit ourselves to giving a semiqualitative description of each process and order of magnitude estimates for the relevant rates. Since the smallest grains are producing the peak of the spinning dust spectrum, all numerical evaluations are normalized to the characteristic radius of coronene, 
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5.2.1. Collisions
 Collisional interactions of grains with gas atoms, molecules, or ions are perhaps the most intuitive of angular momentum transfer processes, even though the microphysical details could be very complex (see e.g., the discussion in Section  4.2 of [4]). Impactors with density 
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The attached impactors are ejected from the grain’s surface following the absorption of UV photons that heat up small grains to large temperatures (this is the process of photoevaporation). Because ions are in general more electronegative than large molecules, they leave the grain surface as neutral species. Here again, they give a random recoil to the grain, leading to 
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.
In addition to a random component, ejected particles systematically decrease the angular momentum of the grain: if their ejection velocity is random in the rotating grain’s frame, they carry on average an angular momentum 
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									From this expression, we see that the characteristic timescale for damping the angular momentum through ejection of colliding gas particles is 
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									Using the definition (29), we see that the characteristic variance in angular momentum that would stem from collisions alone is 
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									We see that collisions tend to drive the angular momentum distribution to a thermal distribution with temperature 
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									The maximum impact parameter (or effective cross-section) for incoming particles depends upon the charge state of the grain and impactor. It can easily be determined at an order-of magnitude for a spherically symmetric interaction potential 
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									In the case of a repulsive interaction 
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), the collisional cross-section can be determined from equating the kinetic energy of the incoming particle to the potential energy of the attractive induced-dipole interaction, 
													
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				1
				𝑉
				(
				𝑟
				)
				=
				−
			

			
				
			
			
				2
				𝛼
				𝑍
			

			
				2
				𝑔
			

			

				𝑒
			

			

				2
			

			
				
			
			

				𝑟
			

			

				4
			

			

				,
			

		
	
where 
	
		
			

				𝛼
			

		
	
 is the polarizability of the impactor. Typically, 
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. This potential must also be accounted for when evaluating the escape probability of neutral particles ejected from ionized grains.(i)For positively charged impacting ions, the dominant interaction is the attractive Coulomb attraction with negatively charged grains (whenever collisions with ions are relevant, a significant fraction of grains are negatively charged by colliding electrons, so the cation-
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									Therefore, we see that collisions with ions may overcome collisions with neutrals even for relatively small ionization degrees.
5.2.2. Plasma Excitation and Drag
Ions can exchange angular momentum with the grains at a distance, without necessarily colliding with them, by exerting a torque on their permanent electric dipole moment, 
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									With the characteristic interaction timescale being 
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									Integrating over impact parameters 
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To obtain the damping rate from first principles would require accurate evaluations of the back-reaction of the grain on the ions’ trajectories, leading to a small asymmetry between trajectories increasing the magnitude of 
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 and those decreasing it. However, a powerful theorem, the fluctuation-dissipation theorem [26, 29], allows us to very simply evaluate the dissipation rate from the fluctuation rate if the interaction is with a thermal bath. Put simply, excitation and damping must balance in such a way that, if only the thermal process considered was at play, the resulting distribution would also be thermal, of the form 
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In the case of a grain rotating about its axis of greatest inertia, and using the notation of Section  5.1.2, the damping timescale for plasma drag 
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									The case of a wobbling grain is a little more complex, since the temperature for the rotational configuration is set by the internal relaxation process and is in general different from the gas temperature. However, one can use a closely related principle, that of detailed balance, to compute the proper damping rate given the tensorial excitation rate. Details can be found in [9].
5.2.3. Emission of Infrared Photons
Every time a small dust grain absorbs a UV photon, it gets into a highly excited vibrational state from which it decays by emitting a cascade of infrared (IR) photons, typically about a hundred per absorbed UV photon. Each one of the emitted IR photons carries one quantum of angular momentum, so its angular momentum squared is 
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									A classical calculation can be found in [7] (with missing factors of two for both damping and excitation rates), [8] (with a missing factor of two for the excitation rate), and [9]. A fully rigorous quantum-mechanical treatment can be found in [4, 8, 12, 28]. They are perfectly equivalent since ISM grains are classical rotators.
The main difficulty in correctly evaluating (57) and (60) is that one must be able to compute the infrared spectrum with high accuracy, especially at long wavelengths (where it is not well constrained by observations).
5.2.4. Electric Dipole Radiation and Absorption of CMB Photons
 Damping RateA grain emitting electric dipole radiation also radiates away angular momentum. Classically, the radiation reaction torque is given by 
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										In the case of a wobbling disk-like grain with completely randomized nutation state, the corresponding damping rate is (assuming 
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										We see that the electric dipole radiation damping timescale is typically about 5 times shorter if the grain is wobbling than when it is rotating primarily about its axis of greatest inertia.
Excitation RateThe associated excitation mechanism comes from the absorption of CMB photons [28]. For simplicity, here we only consider the case of a grain rotating about its axis of greatest inertia.Quantum mechanically, the damping of the angular momentum is due to spontaneous decays 
	
		
			
				𝐽
				→
				𝐽
				−
				1
			

		
	
, with rate 
	
		
			

				𝐴
			

			
				𝐽
				,
				𝐽
				−
				1
			

		
	
, so we may rewrite 
											
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			
				𝑑
				⟨
				Δ
				𝐋
				⟩
			

			
				
			
			
				∣
				𝑑
				𝑡
			

			
				e
				d
			

			
				=
				−
				ℏ
				𝐴
			

			
				𝐽
				,
				𝐽
				−
				1
			

			
				
				𝐋
				.
			

		
	

										In addition to these spontaneous decays, stimulated decays take place, as well as absorptions of CMB photons. For large 
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										For a coronene grain rotating at 30 GHz, the rotational quantum number is typically 
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. We therefore conclude that excitations by absorptions of and decays stimulated by CMB photons are subdominant, having an effect of the order of a few percent, with a greater importance in regions where grains are slowly rotating.
5.2.5. 
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 Formation and Photoelectric Ejection
Draine and Lazarian [7] considered the random torques exerted on grains as molecular hydrogen is formed on their surface and subsequently ejected and found that this effect was subdominant.
Similarly, the rotational excitation due to photoejection of electrons following UV photon absorption is a subdominant excitation mechanism.
5.3. Dominant Excitation and Damping Mechanisms as a Function of Environment
The relative importance of the various mechanisms described above depends upon the precise environmental conditions, that is, the gas density, temperature, ionization state, and ambient radiation field. Note that these parameters also affect the rotational transition rates through their dependence on grain charge. Since the timescale for grains to change charge is in general shorter than the timescale to change the grain angular momentum (though they are in fact comparable for the smallest grains, see Figure 3 of [7]), excitation and damping rates must be averaged over the grain charge distribution function. As a consequence, the electric dipole radiation should not be correlated with indicators of grain charge, such as IR line strength ratios. However, since charging time and rotational decay time are comparable for the smallest grains, in practice there could be some level of correlation. Quantifying this would require solving for 
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 simultaneously, a problem not addressed in the literature.
We list in Table 1 the dominant excitation and damping mechanisms for the smallest grains in the various idealized environments defined in Table 1 of Draine and Lazarian [7]. It can be seen that every mechanism discussed above can be dominant under some conditions, and several may be of comparable importance in some regions. In diffuse ISM phases, electric dipole radiation torque is systematically the dominant damping mechanism, and collisions (in general with ions) are almost always the dominant excitation mechanism.
Table 1: Dominant excitation and damping mechanisms for the smallest grains considered (
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 Å), as a function of idealized environment (see definitions in Table 1 of [7]). Two or more mechanisms are written down if they are of comparable importance, by decreasing order of importance. “e.d” stands for electric dipole radiation torque.
	

	Phase 	DC 	MC 	RN 	PDR 
	

	 Excitation   	 coll. (neutrals, ions)      	coll. (ions)     	 IR    	 coll. (neutrals) 
	Damping       	 e.d., coll. (neutrals)      	 plasma drag      	e.d., IR      	 e.d., IR, coll. (neutrals) 
	

	  Phase 	CNM 	WNM 	WIM 	 
	

	 Excitation      	coll. (ions, neutrals)      	 coll. (ions, neutrals), IR      	coll. (ions) 	 
	Damping       	 e.d.      	e.d     	e.d 	 
	



5.4.  Effect of Impulsive Torques
We discussed in Section  5.1.3 how to characterize the importance of impulsive torques. In this section, we discuss specifically the case of the warm ionized medium (WIM), where collisions with ions are frequent and the rotational damping time is short.
The WIM is characterized by a large gas temperature 
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. Collisions with ions provide the dominant excitation mechanism. Grains are mostly negatively charged due to the high rate of sticking collisions with high-velocity electrons. For a coronene molecule, the characteristic time between ion collisions and the characteristic rotational damping time at the peak angular momentum 
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 turn out to be comparable, (of order a few years). This indicates that the diffusion approximation is not strictly correct, and impulsive torques may affect the rotational distribution function. Note that Hoang et al. [10] compare 
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, explaining the marginal importance of the effect near the peak of the distribution function.
Hoang et al. [10] provided a detailed calculation for the effect of impulsive torques by solving a generalized Langevin equation. We reproduce the angular momentum distribution function they obtain in Figure 2. We see that impulsive torques significantly enhance the high-frequency tail of the distribution function, due to grains rotating near the peak frequency being impulsively spun up to larger rotation rates. This enhancement is mostly unobservable because the vibrational emission from large grains dominate at these frequencies. More importantly, Hoang et al. found that the peak emissivity is enhanced by about 23% for the WIM [and only 11% for the warm neutral medium (WNM)], although the peak frequency remains unchanged. This effect is therefore marginally important for the WIM and should be included in precise modeling tools  (this effect is not, as yet, included into SPDUST).


	
	
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	


	
		
			
				
				
				
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
				
			
		
	


	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


	
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	


	
		
			
				
			
		
	
	
		
			
				
				
				
			
		
	
	
		
			
				
				
				
				
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
			
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


	
		
			
				
				
			
		
	
	
		
			
				
				
				
			
		
	
	
		
			
		
		
			
			
		
		
			
		
		
			
			
			
			
			
		
	

Figure 2: Effect of impulsive torques due to collisions with ions in the WIM. Figure reproduced from [10].


5.5. Effect of Grain Wobbling
A more important effect on the spectrum is that of increasing the characteristic internal temperature 
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, which makes the grains wobble rather than simply spin about their axis of greatest inertia. It is instructive to make a basic estimate of the effect from simple considerations.
The rotational energy of an axisymmetric grain is given by (13). Depending on the value of 
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							With the excitation rate being roughly independent of the actual angular momentum, we deduce that the damping timescale must scale in a similar fashion as 
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							We saw previously that the rate of electric dipole damping is about 5 times larger in the wobbling case, at equal angular momentum. The characteristic electric dipole damping timescale defined in (32) is therefore 
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Finally, the most likely angular momentum, in the case 
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							The peak frequency is linear in the peak angular momentum, and at equal angular momentum it is ~ twice as large in the case of a wobbling grain, hence we get 
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							The total power radiated scales as the fourth power of the angular momentum and at equal angular momentum are ~ ten as large in the case of a wobbling grain, and therefore the total power radiated is roughly twice as large in the case of wobbling grains.
This heuristic argument is in excellent agreement with results from detailed calculations. We show in Figure 3 the difference in emissivity in the WIM environment. The peak frequency is enhanced by a factor of 1.33 and the total power by a factor of 1.9 for wobbling grains. Hoang et al. [10] studied the intermediate case where the internal relaxation temperature 
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 is set to a finite value, and obtain similar results as they vary it from low values to large values. A similar heuristic argument could be made to estimate the peak frequency and total radiated power as a function of 
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Figure 3: Effect of wobbling of axisymmetric grains on the spinning dust emissivity in the WIM environment. The spectra were produced with SPDUST.


Hoang et al. [11] also studied the effect of triaxiality. They found an additional enhancement of the peak frequency and total power by up to the same factors (~30% and 2, resp.) for a large internal relaxation temperature and highly elliptical grains.
One cannot therefore neglect the fact that small PAHs are likely to be somewhat triaxial. The difficulty in properly accounting for this is that the exact distribution of ellipticities is largely unknown.
6. Concluding Remarks
In this paper we have reviewed the current status of spinning dust modeling, and tried to summarize the recent advances in this field since the seminal papers of Draine and Lazarian [8–12]. In addition to refined calculations, the most important new effect accounted for recently is grain wobbling following frequent absorption of UV photons. The rotational dynamics of small grains of various shapes is now believed to be well understood, even if there remain uncertainties and simplifications in the implemented models.
The accuracy of theoretical predictions remains mostly limited by our poor knowledge of the properties of small grains, namely, their dipole moments, shapes and sizes, and their overall abundance, about which other observations give little information. This uncertainty can be turned into an asset, as one could potentially use the observed spinning dust emission (assuming it is the dominant AME process at tens of GHz frequencies) to constrain properties of small grains.
Such a procedure can, however, only be accomplished if environmental parameters are very well known. Indeed, the gas density, temperature, and ionization state as well as the ambient radiation field all affect the rotational distribution function of small grains in nontrivial ways. In addition, the actual observable, the emissivity, depends upon the properties of the medium along the line of sight, and an accurate modeling of the spatial properties of the environment is also required. Unless the properties of the environment are well understood, it seems very difficult to extract dust grain parameters from observed spectra, due to the important degeneracies that are bound to be present for such a large parameter space.
The view of the author is that significant advances in the field would be possible if several regions of the ISM were put under the scrutiny, not only of radio telescopes, but also of instruments at other wavelengths, in order to determine their detailed properties as much as possible and get rid of the uncertainties related to environmental dependencies.
Finally, let us mention another potentially interesting avenue to probe the properties of emitting grains, namely, the high-resolution spectral properties of the spinning dust spectrum. Indeed, even if the PAHs are classical rotators with large rotational quantum numbers, the line spacing remains relatively large for the smallest molecules (for coronene, e.g., rotational lines are spaced by about 0.33 GHz). A large number of different grains are probably present in the ISM, which results in a dense, quasismooth forest of lines. However, grains with a few tens of atoms might only be present in a limited number of stable configurations, or there might only be a fraction of possible grain configurations that lead to a significant electric dipole moment. If this were the case, radio observations with a narrow bandwidth should allow to detect some amount of bumpiness on top of a smooth spectrum. Even upper limits on the variability of the spectrum in the frequency domain should allow one to get some handle on the properties of small grains. A quantitative analysis of this issue will be the subject of future work.
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